EarthSynth-180K / README.md
jaychempan's picture
Update README.md
83bf5ed verified
metadata
license: mit
task_categories:
  - text-to-image
  - image-to-image
  - mask-generation
  - image-segmentation
language:
  - en
size_categories:
  - 100K<n<1M
source_datasets:
  - OpenEarthMap
  - LoveDA
  - DeepGlobe
  - SAMRS
  - LAE-1M
tags:
  - diffusion-models
  - remote-sensing
  - image-synthesis
  - controlnet
  - earth-observation
  - generative-models
pretty_name: EarthSynth-180K

EarthSynth-180K Dataset

EarthSynth-180K

EarthSynth-180K is a multi-task, conditional, diffusion-based generative dataset designed for remote sensing image synthesis and understanding.
It was introduced in the paper "EarthSynth: Generating Informative Earth Observation with Diffusion Models" (arXiv 2025).

This dataset supports text-to-image generation, mask-conditioned synthesis, and multi-category augmentation for Earth observation research.


Dataset Details

Dataset Description

  • Curated by: Jiancheng Pan, Shiye Lei, Yuqian Fu, Jiahao Li, Yanxing Liu, Yuze Sun, Xiao He, Long Peng, Xiaomeng Huang, Bo Zhao
  • Funded by: [Not specified]
  • Shared by: EarthSynth Team
  • Language(s): English (for prompts)
  • License: MIT License

Dataset Sources


Dataset Structure

Subset # Images Annotations Format Condition Types
Train 180,000 Masks, Prompts PNG + JSONL Mask + Text
Validation 10,000 Masks, Prompts PNG + JSONL Mask + Text
Augmented 180,000 Single-Category PNG + JSONL Category + Mask + Text
  • Masks: Binary/instance masks for each object category.
  • Prompts: Text prompts for conditional generation.
  • Augmentation: Single-category augmentation for CF-Comp training strategy.

Quick Start

from datasets import load_dataset

# Load dataset
dataset = load_dataset("jaychempan/EarthSynth-180K", split="train")

# Access one example
example = dataset[0]
print(example.keys())  # ['image', 'mask', 'prompt']

# Display image
from PIL import Image
import io

img = Image.open(io.BytesIO(example["image"]))
img.show()