Datasets:
Modalities:
Geospatial
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
diffusion-models
remote-sensing
image-synthesis
controlnet
earth-observation
generative-models
License:
metadata
license: mit
task_categories:
- text-to-image
- image-to-image
- mask-generation
- image-segmentation
language:
- en
size_categories:
- 100K<n<1M
source_datasets:
- OpenEarthMap
- LoveDA
- DeepGlobe
- SAMRS
- LAE-1M
tags:
- diffusion-models
- remote-sensing
- image-synthesis
- controlnet
- earth-observation
- generative-models
pretty_name: EarthSynth-180K
EarthSynth-180K Dataset
EarthSynth-180K is a multi-task, conditional, diffusion-based generative dataset designed for remote sensing image synthesis and understanding.
It was introduced in the paper "EarthSynth: Generating Informative Earth Observation with Diffusion Models" (arXiv 2025).
This dataset supports text-to-image generation, mask-conditioned synthesis, and multi-category augmentation for Earth observation research.
Dataset Details
Dataset Description
- Curated by: Jiancheng Pan, Shiye Lei, Yuqian Fu, Jiahao Li, Yanxing Liu, Yuze Sun, Xiao He, Long Peng, Xiaomeng Huang, Bo Zhao
- Funded by: [Not specified]
- Shared by: EarthSynth Team
- Language(s): English (for prompts)
- License: MIT License
Dataset Sources
- Repository: GitHub - EarthSynth
- Paper: ArXiv 2505.12108
- Project Page: EarthSynth Website
- Dataset Download: HuggingFace
Dataset Structure
Subset | # Images | Annotations | Format | Condition Types |
---|---|---|---|---|
Train | 180,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
Validation | 10,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
Augmented | 180,000 | Single-Category | PNG + JSONL | Category + Mask + Text |
- Masks: Binary/instance masks for each object category.
- Prompts: Text prompts for conditional generation.
- Augmentation: Single-category augmentation for CF-Comp training strategy.
Quick Start
from datasets import load_dataset
# Load dataset
dataset = load_dataset("jaychempan/EarthSynth-180K", split="train")
# Access one example
example = dataset[0]
print(example.keys()) # ['image', 'mask', 'prompt']
# Display image
from PIL import Image
import io
img = Image.open(io.BytesIO(example["image"]))
img.show()