Datasets:
Modalities:
Geospatial
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
diffusion-models
remote-sensing
image-synthesis
controlnet
earth-observation
generative-models
License:
Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
EarthSynth-180K Dataset
EarthSynth-180K is a multi-task, conditional, diffusion-based generative dataset designed for remote sensing image synthesis and understanding.
It was introduced in the paper "EarthSynth: Generating Informative Earth Observation with Diffusion Models" (arXiv 2025).
This dataset supports text-to-image generation, mask-conditioned synthesis, and multi-category augmentation for Earth observation research.
Dataset Details
Dataset Sources
- Repository: GitHub - EarthSynth
- Paper: ArXiv 2505.12108
- Project Page: EarthSynth Website
- Dataset Download: HuggingFace
Dataset Structure
Subset | # Images | Annotations | Format | Condition Types |
---|---|---|---|---|
Train | 180,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
Validation | 10,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
Augmented | 180,000 | Single-Category | PNG + JSONL | Category + Mask + Text |
- Masks: Binary/instance masks for each object category.
- Prompts: Text prompts for conditional generation.
- Augmentation: Single-category augmentation for CF-Comp training strategy.
Quick Start
from datasets import load_dataset
# Load dataset
dataset = load_dataset("jaychempan/EarthSynth-180K", split="train")
# Access one example
example = dataset[0]
print(example.keys()) # ['image', 'mask', 'prompt']
# Display image
from PIL import Image
import io
img = Image.open(io.BytesIO(example["image"]))
img.show()
- Downloads last month
- 91