Datasets:
Modalities:
Geospatial
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
diffusion-models
remote-sensing
image-synthesis
controlnet
earth-observation
generative-models
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-to-image
|
5 |
+
- image-to-image
|
6 |
+
- mask-generation
|
7 |
+
- image-segmentation
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
size_categories:
|
11 |
+
- 100K<n<1M
|
12 |
+
source_datasets:
|
13 |
+
- OpenEarthMap
|
14 |
+
- LoveDA
|
15 |
+
- DeepGlobe
|
16 |
+
- SAMRS
|
17 |
+
- LAE-1M
|
18 |
+
tags:
|
19 |
+
- diffusion-models
|
20 |
+
- remote-sensing
|
21 |
+
- image-synthesis
|
22 |
+
- controlnet
|
23 |
+
- earth-observation
|
24 |
+
- generative-models
|
25 |
+
pretty_name: EarthSynth-180K
|
26 |
+
---
|
27 |
+
|
28 |
+
|
29 |
+
# EarthSynth-180K Dataset
|
30 |
+
|
31 |
+
<p align="center">
|
32 |
+
<img src="https://jianchengpan.space/EarthSynth-website/assets/EarthSynth-180K.png" alt="EarthSynth-180K" width="600"/>
|
33 |
+
</p>
|
34 |
+
|
35 |
+
**EarthSynth-180K** is a **multi-task, conditional, diffusion-based generative dataset** designed for remote sensing image synthesis and understanding.
|
36 |
+
It was introduced in the paper *"EarthSynth: Generating Informative Earth Observation with Diffusion Models"* (arXiv 2025).
|
37 |
+
|
38 |
+
This dataset supports **text-to-image generation**, **mask-conditioned synthesis**, and **multi-category augmentation** for Earth observation research.
|
39 |
+
|
40 |
+
---
|
41 |
+
|
42 |
+
## Dataset Details
|
43 |
+
|
44 |
+
### Dataset Description
|
45 |
+
|
46 |
+
- **Curated by:** Jiancheng Pan, Shiye Lei, Yuqian Fu, Jiahao Li, Yanxing Liu, Yuze Sun, Xiao He, Long Peng, Xiaomeng Huang, Bo Zhao
|
47 |
+
- **Funded by:** [Not specified]
|
48 |
+
- **Shared by:** EarthSynth Team
|
49 |
+
- **Language(s):** English (for prompts)
|
50 |
+
- **License:** MIT License
|
51 |
+
|
52 |
+
### Dataset Sources
|
53 |
+
|
54 |
+
- **Repository:** [GitHub - EarthSynth](https://github.com/jaychempan/EarthSynth)
|
55 |
+
- **Paper:** [ArXiv 2505.12108](https://arxiv.org/abs/2505.12108)
|
56 |
+
- **Project Page:** [EarthSynth Website](https://jianchengpan.space/EarthSynth-website/index.html)
|
57 |
+
- **Dataset Download:** [HuggingFace](https://huggingface.co/datasets/jaychempan/EarthSynth-180K)
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## Dataset Structure
|
62 |
+
|
63 |
+
| Subset | # Images | Annotations | Format | Condition Types |
|
64 |
+
|-------------|-----------|--------------------|------------------|---------------------------|
|
65 |
+
| Train | 180,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
|
66 |
+
| Validation | 10,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
|
67 |
+
| Augmented | 180,000 | Single-Category | PNG + JSONL | Category + Mask + Text |
|
68 |
+
|
69 |
+
- **Masks:** Binary/instance masks for each object category.
|
70 |
+
- **Prompts:** Text prompts for conditional generation.
|
71 |
+
- **Augmentation:** Single-category augmentation for CF-Comp training strategy.
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
## Quick Start
|
76 |
+
|
77 |
+
```python
|
78 |
+
from datasets import load_dataset
|
79 |
+
|
80 |
+
# Load dataset
|
81 |
+
dataset = load_dataset("jaychempan/EarthSynth-180K", split="train")
|
82 |
+
|
83 |
+
# Access one example
|
84 |
+
example = dataset[0]
|
85 |
+
print(example.keys()) # ['image', 'mask', 'prompt']
|
86 |
+
|
87 |
+
# Display image
|
88 |
+
from PIL import Image
|
89 |
+
import io
|
90 |
+
|
91 |
+
img = Image.open(io.BytesIO(example["image"]))
|
92 |
+
img.show()
|