Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
language: | |
- en | |
license: cc-by-nc-sa-4.0 | |
size_categories: | |
- 10K<n<100K | |
pretty_name: DAPFAM – Domain‑Aware Patent Retrieval at the Family level | |
tags: | |
- patents | |
- retrieval | |
- information‑retrieval | |
- cross‑domain | |
- patent | |
- fulltext | |
task_categories: | |
- text-retrieval | |
configs: | |
- config_name: corpus | |
data_files: corpus.parquet | |
- config_name: queries | |
data_files: queries.parquet | |
- config_name: relations | |
data_files: qrels_all.parquet | |
# **DAPFAM** dataset | |
> **What’s new (Sept 2025)** — **DAPFAM patent family retrieval tasks are now in MTEB.** 18 tasks (ALL / IN / OUT × 3 query views × 3 target views) are available, including the 6 main ones used in our paper. You can benchmark any model with a single script and reproduce the paper’s results by selecting the same encoder (Snowflake/snowflake-arctic-embed-m-v2.0). Our paper used int8 quantization for hardware reasons; results may vary very slightly (not significantly) if you run in float16/32. | |
### DAPFAM — A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval | |
**License:** CC‑BY‑NC‑SA‑4.0 | |
**Tasks:** text‑retrieval (patent family prior‑art retrieval) | |
**Languages:** English (eng‑Latn) | |
**Evaluation date span:** 1964‑06‑26 → 2023‑06‑20 | |
**Cite:** Ayaou et al., 2025 — _DAPFAM: A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval_ (arXiv:2506.22141) | |
--- | |
### Summary | |
**DAPFAM** provides **1,247 query patent families** and **45,336 target families** with **citation‑based relevance** and explicit **domain labels** (IN/OUT). Each positive pair is IN‑domain if query and target share at least one IPC3 code, OUT‑domain otherwise. Text is at **family‑level full text** (title, abstract, claims, description). Supports both **document-** and **passage‑level** retrieval. | |
**What makes DAPFAM different?** | |
- **Explicit domain partitions** (IN vs OUT) → enables true cross‑domain evaluation. | |
- **Family‑level aggregation** → reduces cross‑jurisdiction redundancy. | |
- **Compute‑aware** → Small enough to support passage level experimentations on consumer-grade hardware. | |
--- | |
### Benchmark DAPFAM on MTEB | |
**18 retrieval tasks** have been added (ALL / IN / OUT × 3 query × 3 target field views). Six of them were directly evaluated in the paper. | |
#### Task naming scheme | |
- Query view: **TA** (Title+Abstract) or **TAC** (Title+Abstract+Claims) | |
- Target view: **TA**, **TAC**, or **FullText** (adds description) | |
- Subsets: **ALL**, **IN**, **OUT** (IPC overlap filtering) | |
#### Task list (18 total) | |
**ALL** | |
- `DAPFAMAllTitlAbsToTitlAbsRetrieval` | |
- `DAPFAMAllTitlAbsToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMAllTitlAbsToFullTextRetrieval` | |
- `DAPFAMAllTitlAbsClmToTitlAbsRetrieval` | |
- `DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMAllTitlAbsClmToFullTextRetrieval` | |
**IN** | |
- `DAPFAMInTitlAbsToTitlAbsRetrieval` | |
- `DAPFAMInTitlAbsToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMInTitlAbsToFullTextRetrieval` | |
- `DAPFAMInTitlAbsClmToTitlAbsRetrieval` | |
- `DAPFAMInTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMInTitlAbsClmToFullTextRetrieval` | |
**OUT** | |
- `DAPFAMOutTitlAbsToTitlAbsRetrieval` | |
- `DAPFAMOutTitlAbsToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMOutTitlAbsToFullTextRetrieval` | |
- `DAPFAMOutTitlAbsClmToTitlAbsRetrieval` | |
- `DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** | |
- `DAPFAMOutTitlAbsClmToFullTextRetrieval` | |
#### Quick start — run all tasks | |
```python | |
import mteb | |
from sentence_transformers import SentenceTransformer | |
model_name = "Snowflake/snowflake-arctic-embed-m-v2.0" | |
model = SentenceTransformer(model_name, trust_remote_code=True, | |
model_kwargs={"torch_dtype":"float16"}).cuda().eval() | |
task_names = [ | |
# ALL | |
"DAPFAMAllTitlAbsToTitlAbsRetrieval", | |
"DAPFAMAllTitlAbsToTitlAbsClmRetrieval", | |
"DAPFAMAllTitlAbsToFullTextRetrieval", | |
"DAPFAMAllTitlAbsClmToTitlAbsRetrieval", | |
"DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval", | |
"DAPFAMAllTitlAbsClmToFullTextRetrieval", | |
# IN | |
"DAPFAMInTitlAbsToTitlAbsRetrieval", | |
"DAPFAMInTitlAbsToTitlAbsClmRetrieval", | |
"DAPFAMInTitlAbsToFullTextRetrieval", | |
"DAPFAMInTitlAbsClmToTitlAbsRetrieval", | |
"DAPFAMInTitlAbsClmToTitlAbsClmRetrieval", | |
"DAPFAMInTitlAbsClmToFullTextRetrieval", | |
# OUT | |
"DAPFAMOutTitlAbsToTitlAbsRetrieval", | |
"DAPFAMOutTitlAbsToTitlAbsClmRetrieval", | |
"DAPFAMOutTitlAbsToFullTextRetrieval", | |
"DAPFAMOutTitlAbsClmToTitlAbsRetrieval", | |
"DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval", | |
"DAPFAMOutTitlAbsClmToFullTextRetrieval", | |
] | |
tasks = mteb.get_tasks(tasks=task_names) | |
results = mteb.MTEB(tasks=tasks).run( | |
model, | |
output_folder=f"mteb_res/{model_name}", | |
encode_kwargs={"batch_size": 16, "prompt_name": None} | |
) | |
print(results) | |
``` | |
> To reproduce the **paper’s reported MTEB-compatible results**, restrict to the six **in-paper tasks** listed above. The encoder was run with int8 quantization in the paper; float16 runs on GPU may differ slightly. | |
--- | |
### How to Load the Dataset | |
```python | |
from datasets import load_dataset | |
dc = load_dataset("datalyes/DAPFAM_patent", "corpus") # 45,336 targets | |
dq = load_dataset("datalyes/DAPFAM_patent", "queries") # 1,247 queries | |
dr = load_dataset("datalyes/DAPFAM_patent", "relations") # qrels: all/in/out | |
``` | |
**Counts** | |
- Queries: **1,247** | |
- Targets: **45,336** | |
- Qrels (all): **≈49,869** (positives + sampled negatives) | |
- Positive qrels: **IN ~19,736**, **OUT ~5,193** | |
--- | |
### Evaluation choices | |
- Metrics: **NDCG@100** (primary), **Recall@100** (secondary). | |
- Document-level views in MTEB; paper also explores **passage-level** retrieval and **RRF fusion** separately. | |
- Encoder: `Snowflake/snowflake-arctic-embed-m-v2.0`; in-paper runs quantized to int8 for efficiency. | |
--- | |
### Citation | |
``` | |
@misc{ayaou2025dapfamdomainawarefamilyleveldataset, | |
title={DAPFAM: A Domain-Aware Family-level Dataset to benchmark cross domain patent retrieval}, | |
author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane}, | |
year={2025}, | |
eprint={2506.22141}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL}, | |
url={https://arxiv.org/abs/2506.22141}, | |
} | |
``` |