Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 6,180 Bytes
0b99a8c b3fc532 0b99a8c b3fc532 0b99a8c b3fc532 212b7cb b3fc532 212b7cb b3fc532 212b7cb b3fc532 0b99a8c 0af7fb7 589bcdc a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 0b99a8c a59a74c 589bcdc a59a74c 589bcdc a59a74c 589bcdc a59a74c 0b99a8c a59a74c 0b99a8c 589bcdc a59a74c 0b99a8c 780f401 a59a74c 0b99a8c a59a74c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
language:
- en
license: cc-by-nc-sa-4.0
size_categories:
- 10K<n<100K
pretty_name: DAPFAM – Domain‑Aware Patent Retrieval at the Family level
tags:
- patents
- retrieval
- information‑retrieval
- cross‑domain
- patent
- fulltext
task_categories:
- text-retrieval
configs:
- config_name: corpus
data_files: corpus.parquet
- config_name: queries
data_files: queries.parquet
- config_name: relations
data_files: qrels_all.parquet
---
# **DAPFAM** dataset
> **What’s new (Sept 2025)** — **DAPFAM patent family retrieval tasks are now in MTEB.** 18 tasks (ALL / IN / OUT × 3 query views × 3 target views) are available, including the 6 main ones used in our paper. You can benchmark any model with a single script and reproduce the paper’s results by selecting the same encoder (Snowflake/snowflake-arctic-embed-m-v2.0). Our paper used int8 quantization for hardware reasons; results may vary very slightly (not significantly) if you run in float16/32.
### DAPFAM — A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval
**License:** CC‑BY‑NC‑SA‑4.0
**Tasks:** text‑retrieval (patent family prior‑art retrieval)
**Languages:** English (eng‑Latn)
**Evaluation date span:** 1964‑06‑26 → 2023‑06‑20
**Cite:** Ayaou et al., 2025 — _DAPFAM: A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval_ (arXiv:2506.22141)
---
### Summary
**DAPFAM** provides **1,247 query patent families** and **45,336 target families** with **citation‑based relevance** and explicit **domain labels** (IN/OUT). Each positive pair is IN‑domain if query and target share at least one IPC3 code, OUT‑domain otherwise. Text is at **family‑level full text** (title, abstract, claims, description). Supports both **document-** and **passage‑level** retrieval.
**What makes DAPFAM different?**
- **Explicit domain partitions** (IN vs OUT) → enables true cross‑domain evaluation.
- **Family‑level aggregation** → reduces cross‑jurisdiction redundancy.
- **Compute‑aware** → Small enough to support passage level experimentations on consumer-grade hardware.
---
### Benchmark DAPFAM on MTEB
**18 retrieval tasks** have been added (ALL / IN / OUT × 3 query × 3 target field views). Six of them were directly evaluated in the paper.
#### Task naming scheme
- Query view: **TA** (Title+Abstract) or **TAC** (Title+Abstract+Claims)
- Target view: **TA**, **TAC**, or **FullText** (adds description)
- Subsets: **ALL**, **IN**, **OUT** (IPC overlap filtering)
#### Task list (18 total)
**ALL**
- `DAPFAMAllTitlAbsToTitlAbsRetrieval`
- `DAPFAMAllTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMAllTitlAbsToFullTextRetrieval`
- `DAPFAMAllTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMAllTitlAbsClmToFullTextRetrieval`
**IN**
- `DAPFAMInTitlAbsToTitlAbsRetrieval`
- `DAPFAMInTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMInTitlAbsToFullTextRetrieval`
- `DAPFAMInTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMInTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMInTitlAbsClmToFullTextRetrieval`
**OUT**
- `DAPFAMOutTitlAbsToTitlAbsRetrieval`
- `DAPFAMOutTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMOutTitlAbsToFullTextRetrieval`
- `DAPFAMOutTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMOutTitlAbsClmToFullTextRetrieval`
#### Quick start — run all tasks
```python
import mteb
from sentence_transformers import SentenceTransformer
model_name = "Snowflake/snowflake-arctic-embed-m-v2.0"
model = SentenceTransformer(model_name, trust_remote_code=True,
model_kwargs={"torch_dtype":"float16"}).cuda().eval()
task_names = [
# ALL
"DAPFAMAllTitlAbsToTitlAbsRetrieval",
"DAPFAMAllTitlAbsToTitlAbsClmRetrieval",
"DAPFAMAllTitlAbsToFullTextRetrieval",
"DAPFAMAllTitlAbsClmToTitlAbsRetrieval",
"DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
"DAPFAMAllTitlAbsClmToFullTextRetrieval",
# IN
"DAPFAMInTitlAbsToTitlAbsRetrieval",
"DAPFAMInTitlAbsToTitlAbsClmRetrieval",
"DAPFAMInTitlAbsToFullTextRetrieval",
"DAPFAMInTitlAbsClmToTitlAbsRetrieval",
"DAPFAMInTitlAbsClmToTitlAbsClmRetrieval",
"DAPFAMInTitlAbsClmToFullTextRetrieval",
# OUT
"DAPFAMOutTitlAbsToTitlAbsRetrieval",
"DAPFAMOutTitlAbsToTitlAbsClmRetrieval",
"DAPFAMOutTitlAbsToFullTextRetrieval",
"DAPFAMOutTitlAbsClmToTitlAbsRetrieval",
"DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval",
"DAPFAMOutTitlAbsClmToFullTextRetrieval",
]
tasks = mteb.get_tasks(tasks=task_names)
results = mteb.MTEB(tasks=tasks).run(
model,
output_folder=f"mteb_res/{model_name}",
encode_kwargs={"batch_size": 16, "prompt_name": None}
)
print(results)
```
> To reproduce the **paper’s reported MTEB-compatible results**, restrict to the six **in-paper tasks** listed above. The encoder was run with int8 quantization in the paper; float16 runs on GPU may differ slightly.
---
### How to Load the Dataset
```python
from datasets import load_dataset
dc = load_dataset("datalyes/DAPFAM_patent", "corpus") # 45,336 targets
dq = load_dataset("datalyes/DAPFAM_patent", "queries") # 1,247 queries
dr = load_dataset("datalyes/DAPFAM_patent", "relations") # qrels: all/in/out
```
**Counts**
- Queries: **1,247**
- Targets: **45,336**
- Qrels (all): **≈49,869** (positives + sampled negatives)
- Positive qrels: **IN ~19,736**, **OUT ~5,193**
---
### Evaluation choices
- Metrics: **NDCG@100** (primary), **Recall@100** (secondary).
- Document-level views in MTEB; paper also explores **passage-level** retrieval and **RRF fusion** separately.
- Encoder: `Snowflake/snowflake-arctic-embed-m-v2.0`; in-paper runs quantized to int8 for efficiency.
---
### Citation
```
@misc{ayaou2025dapfamdomainawarefamilyleveldataset,
title={DAPFAM: A Domain-Aware Family-level Dataset to benchmark cross domain patent retrieval},
author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane},
year={2025},
eprint={2506.22141},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.22141},
}
``` |