File size: 6,180 Bytes
0b99a8c
b3fc532
 
0b99a8c
b3fc532
 
 
0b99a8c
 
 
 
 
 
 
b3fc532
 
212b7cb
 
b3fc532
212b7cb
b3fc532
212b7cb
b3fc532
0b99a8c
 
0af7fb7
589bcdc
a59a74c
0b99a8c
a59a74c
0b99a8c
a59a74c
 
 
 
 
0b99a8c
a59a74c
0b99a8c
a59a74c
0b99a8c
a59a74c
0b99a8c
a59a74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b99a8c
 
a59a74c
 
 
 
 
0b99a8c
 
 
 
a59a74c
 
 
 
589bcdc
a59a74c
 
 
 
 
589bcdc
a59a74c
589bcdc
a59a74c
 
 
 
0b99a8c
a59a74c
0b99a8c
589bcdc
a59a74c
0b99a8c
780f401
a59a74c
 
 
 
 
 
 
0b99a8c
a59a74c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
language:
- en
license: cc-by-nc-sa-4.0
size_categories:
- 10K<n<100K
pretty_name: DAPFAM  Domain‑Aware Patent Retrieval at the Family level
tags:
- patents
- retrieval
- information‑retrieval
- cross‑domain
- patent
- fulltext
task_categories:
- text-retrieval
configs:
- config_name: corpus
  data_files: corpus.parquet
- config_name: queries
  data_files: queries.parquet
- config_name: relations
  data_files: qrels_all.parquet
---

# **DAPFAM** dataset

> **What’s new (Sept 2025)****DAPFAM patent family retrieval tasks are now in MTEB.** 18 tasks (ALL / IN / OUT × 3 query views × 3 target views) are available, including the 6 main ones used in our paper. You can benchmark any model with a single script and reproduce the paper’s results by selecting the same encoder (Snowflake/snowflake-arctic-embed-m-v2.0). Our paper used int8 quantization for hardware reasons; results may vary very slightly (not significantly) if you run in float16/32.

### DAPFAM — A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval

**License:** CC‑BY‑NC‑SA‑4.0  
**Tasks:** text‑retrieval (patent family prior‑art retrieval)  
**Languages:** English (eng‑Latn)  
**Evaluation date span:** 1964‑06‑26 → 2023‑06‑20  
**Cite:** Ayaou et al., 2025 — _DAPFAM: A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval_ (arXiv:2506.22141)

---

### Summary

**DAPFAM** provides **1,247 query patent families** and **45,336 target families** with **citation‑based relevance** and explicit **domain labels** (IN/OUT). Each positive pair is IN‑domain if query and target share at least one IPC3 code, OUT‑domain otherwise. Text is at **family‑level full text** (title, abstract, claims, description). Supports both **document-** and **passage‑level** retrieval.

**What makes DAPFAM different?**
- **Explicit domain partitions** (IN vs OUT) → enables true cross‑domain evaluation.
- **Family‑level aggregation** → reduces cross‑jurisdiction redundancy.
- **Compute‑aware** → Small enough to support passage level experimentations on consumer-grade hardware.

---

### Benchmark DAPFAM on MTEB

**18 retrieval tasks** have been added (ALL / IN / OUT × 3 query × 3 target field views). Six of them were directly evaluated in the paper.

#### Task naming scheme
- Query view: **TA** (Title+Abstract) or **TAC** (Title+Abstract+Claims)  
- Target view: **TA**, **TAC**, or **FullText** (adds description)
- Subsets: **ALL**, **IN**, **OUT** (IPC overlap filtering)

#### Task list (18 total)

**ALL**
- `DAPFAMAllTitlAbsToTitlAbsRetrieval`
- `DAPFAMAllTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMAllTitlAbsToFullTextRetrieval`
- `DAPFAMAllTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMAllTitlAbsClmToFullTextRetrieval`

**IN**
- `DAPFAMInTitlAbsToTitlAbsRetrieval`
- `DAPFAMInTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMInTitlAbsToFullTextRetrieval`
- `DAPFAMInTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMInTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMInTitlAbsClmToFullTextRetrieval`

**OUT**
- `DAPFAMOutTitlAbsToTitlAbsRetrieval`
- `DAPFAMOutTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMOutTitlAbsToFullTextRetrieval`
- `DAPFAMOutTitlAbsClmToTitlAbsRetrieval`
- `DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
- `DAPFAMOutTitlAbsClmToFullTextRetrieval`

#### Quick start — run all tasks
```python
import mteb
from sentence_transformers import SentenceTransformer

model_name = "Snowflake/snowflake-arctic-embed-m-v2.0"
model = SentenceTransformer(model_name, trust_remote_code=True,
                            model_kwargs={"torch_dtype":"float16"}).cuda().eval()

task_names = [
  # ALL
  "DAPFAMAllTitlAbsToTitlAbsRetrieval",
  "DAPFAMAllTitlAbsToTitlAbsClmRetrieval",
  "DAPFAMAllTitlAbsToFullTextRetrieval",
  "DAPFAMAllTitlAbsClmToTitlAbsRetrieval",
  "DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
  "DAPFAMAllTitlAbsClmToFullTextRetrieval",
  # IN
  "DAPFAMInTitlAbsToTitlAbsRetrieval",
  "DAPFAMInTitlAbsToTitlAbsClmRetrieval",
  "DAPFAMInTitlAbsToFullTextRetrieval",
  "DAPFAMInTitlAbsClmToTitlAbsRetrieval",
  "DAPFAMInTitlAbsClmToTitlAbsClmRetrieval",
  "DAPFAMInTitlAbsClmToFullTextRetrieval",
  # OUT
  "DAPFAMOutTitlAbsToTitlAbsRetrieval",
  "DAPFAMOutTitlAbsToTitlAbsClmRetrieval",
  "DAPFAMOutTitlAbsToFullTextRetrieval",
  "DAPFAMOutTitlAbsClmToTitlAbsRetrieval",
  "DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval",
  "DAPFAMOutTitlAbsClmToFullTextRetrieval",
]

tasks = mteb.get_tasks(tasks=task_names)
results = mteb.MTEB(tasks=tasks).run(
    model,
    output_folder=f"mteb_res/{model_name}",
    encode_kwargs={"batch_size": 16, "prompt_name": None}
)
print(results)
```

> To reproduce the **paper’s reported MTEB-compatible results**, restrict to the six **in-paper tasks** listed above. The encoder was run with int8 quantization in the paper; float16 runs on GPU may differ slightly.

---

### How to Load the Dataset

```python
from datasets import load_dataset

dc = load_dataset("datalyes/DAPFAM_patent", "corpus")      # 45,336 targets
dq = load_dataset("datalyes/DAPFAM_patent", "queries")     # 1,247 queries
dr = load_dataset("datalyes/DAPFAM_patent", "relations")   # qrels: all/in/out
```

**Counts**
- Queries: **1,247**
- Targets: **45,336**
- Qrels (all): **≈49,869** (positives + sampled negatives)
- Positive qrels: **IN ~19,736**, **OUT ~5,193**

---

### Evaluation choices
- Metrics: **NDCG@100** (primary), **Recall@100** (secondary).
- Document-level views in MTEB; paper also explores **passage-level** retrieval and **RRF fusion** separately.
- Encoder: `Snowflake/snowflake-arctic-embed-m-v2.0`; in-paper runs quantized to int8 for efficiency.

---


### Citation
```
@misc{ayaou2025dapfamdomainawarefamilyleveldataset,
  title={DAPFAM: A Domain-Aware Family-level Dataset to benchmark cross domain patent retrieval},
  author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane},
  year={2025},
  eprint={2506.22141},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  url={https://arxiv.org/abs/2506.22141},
}
```