Datasets:
metadata
license: cc-by-nc-sa-4.0
pretty_name: "DAPFAM –\_Domain‑Aware Patent Retrieval at the Family level"
tags:
- patents
- retrieval
- information‑retrieval
- cross‑domain
- patent
- fulltext
size_categories:
- 10K<n<100K
language:
- en
configs:
- config_name: corpus
data_files: corpus.parquet
- config_name: queries
data_files: queries.parquet
- config_name: relations
data_files: qrels_all.parquet
DAPFAM dataset
For more details on the dataset construction and baseline experimentations, see the accompanying paper: Ayaou et al., 2025 — “DAPFAM: A Domain‑Aware Patent Retrieval Dataset Aggregated at the Family Level”(Here) .
Summary
DAPFAM provides 1 247 domain balanced full-text query patent families and 45 336 full-text target families with forward/backward‑citation relevance labels (≈ 50 K pairs). Each relevant link is explicitly marked in‑domain or out‑of‑domain according to IPC 3‑char overlap, enabling rigorous cross‑domain evaluation.
- Full text (title · abstract · claims · description) plus rich metadata for every family.
- Multi‑jurisdictional, English‑only text (families may originate in US, JP, EP, CN, …).
- Parquet qrel file:
qrels_all.parquet
.
Dataset Structure
corpus.parquet # 45 336 rows, targets – every original column from the paper
queries.parquet # 1 247 rows, queries – same columns + abstract_keywords
qrels_all.parquet # (all | in | out) four‑column tables → query_id · relevant_id · relevance_score · domain_rel
How to load
from datasets import load_dataset
#According to your usage, you might not need to load all 3 subsets
dc = load_dataset("datalyes/DAPFAM_patent", "corpus")
dq = load_dataset("datalyes/DAPFAM_patent", "queries")
dr = load_dataset("datalyes/DAPFAM_patent", "relations")
Citation
If you find our paper or dataset helpful, please consider citing as follows:
@misc{ayaou2025dapfam,
title={DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level},
author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane},
year={2025},
eprint={2506.22141},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Quick Stats
- Queries: 1,247
- Corpus (targets): 45,336
- Qrels (all): 49,869
- Qrels (in): 19,736
- Qrels (out): 5,193