seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
21988639916
# update.py import requests import json import tarfile url = "https://ddragon.leagueoflegends.com/api/versions.json" response = requests.get(url) obj = response.json() patch = str(obj[0]) zipUrl = "https://ddragon.leagueoflegends.com/cdn/dragontail-" + patch + ".tgz" print(zipUrl) data = requests.get(zipUrl) with open("src/assets/prev-data/dragontail-" + patch + ".tgz", 'wb') as f: # opening the file in write mode f.write(data.content) tgzFile = tarfile.open("src/assets/prev-data/dragontail-10.22.1.tgz", 'r') print('Extracting one file...') tgzFile.extractall('src/assets/prev-data/data-hold') print('Extracting Done!') tgzFile.close()
ryanweston/lol-skills
src/assets/update.py
update.py
py
659
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 8, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 16, "usage_type": "call" }, { "api_name": "tarfile.open", "line_number": 22, "usage_type": "call" } ]
32094781612
import sys sys.stdin = open("input.txt", "r") from collections import Counter A = int(input()) B = int(input()) C = int(input()) X = str(A*B*C) for n in range(0,10): N = str(n) if N in Counter(X): print(Counter(X).get(N)) else: print(0)
doll2gom/TIL
KDT/week4/01.19/2577.py
2577.py
py
267
python
en
code
2
github-code
6
[ { "api_name": "sys.stdin", "line_number": 2, "usage_type": "attribute" }, { "api_name": "collections.Counter", "line_number": 13, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 14, "usage_type": "call" } ]
19827881272
from flask import Flask, request import json import socket import urllib.request as urllib2 import re from functools import wraps application = Flask(__name__) CONFIG = json.load(open("config.json", "r")) API_KEYS = CONFIG["api_keys"] def requires_auth_key(func): @wraps(func) def wrapplicationed(*args, **kwargs): api_key = request.form.get("api_key", None) if api_key not in API_KEYS: return "Unauthorized", 401 else: if not API_KEYS[api_key]["enabled"]: return "Unauthorized", 401 return func(*args, **kwargs) return wrapped @application.route('/carbon/metrics', methods=["POST"]) @requires_auth_key def post_metric(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((CONFIG["carbon"]["host"], int(CONFIG["carbon"]["port"]))) except Exception as e: return "<h2>Error: %s</h2>" % e, 500 else: data = request.form.get('data'); if (data != None): data = re.findall("([\w\.]+\ [\S]+\ [\d]+)",request.form.get('data'), re.MULTILINE); else: data = request.form.getlist('data[]') sentCmd = 0 for str in data: str = re.findall("([\w\.]+\ [\S]+\ [\d]+)",str); str = str[0] if (len(str) < 10): continue str += "\n" #print(("Send:"+str).encode('utf8')) s.send(b"%s" % str.encode('utf8')) sentCmd+=1 s.close() if sentCmd < 1: return "NOTHING SENT TO SERVER. BAD FORMATED STRING/VAR?", 202 return "OK", 200 return "Unkown error", 500 @application.route('/carbon/events', methods=["POST"]) @requires_auth_key def post_event(): req = urllib2.Request('http://{host}:{port}/events'.format(**CONFIG["graphite"]), data=request.form.get('data').encode('utf8'), headers={'Content-type': 'application/json'}) try: urllib2.urlopen(req) except Exception as e: return "<h2>Error: %s</h2>" % e, 500 else: return "OK", 200 return "Unkown error", 500 if __name__ == "__main__": application.run(debug=False, use_reloader=False, host="127.0.0.1", port=8081, threaded=True)
s0lesurviv0r/graphite_http_relay
main.py
main.py
py
2,262
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 8, "usage_type": "call" }, { "api_name": "json.load", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 17, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 17, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 15, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 31, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 31, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.request.form.get", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 36, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 36, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 38, "usage_type": "name" }, { "api_name": "re.MULTILINE", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request.form.getlist", "line_number": 40, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 40, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 40, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 44, "usage_type": "call" }, { "api_name": "urllib.request.Request", "line_number": 61, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 61, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 62, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 62, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 62, "usage_type": "name" }, { "api_name": "urllib.request.urlopen", "line_number": 64, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 64, "usage_type": "name" } ]
27132126928
import logging import redis from rq import Connection, Queue from agent.agents import get_agent_info from plugins.patching.os_apps.incoming_updates import \ incoming_packages_from_agent from plugins.patching.custom_apps.custom_apps import \ add_custom_app_to_agents from plugins.patching.supported_apps.syncer import \ get_all_supported_apps_for_agent, get_all_agent_apps_for_agent rq_host = 'localhost' rq_port = 6379 rq_db = 0 rq_pool = redis.StrictRedis(host=rq_host, port=rq_port, db=rq_db) logging.config.fileConfig('/opt/TopPatch/conf/logging.config') logger = logging.getLogger('rvapi') class RvHandOff(): def __init__(self, username, customer_name, uri, method, agentid, rv_plugin, agent_data=None, oper_type='newagent', delete_afterwards=True): self.delete_afterwards = delete_afterwards self.customer_name = customer_name if not agent_data: agent_data = get_agent_info( agentid=agentid ) self.add_packages_from_agent( username, agentid, agent_data, rv_plugin ) if oper_type == 'newagent': self.add_custom_apps( username, customer_name, uri, method, agentid ) self.add_supported_apps(agentid) self.add_agent_apps(agentid) elif oper_type == 'updatesapplications': self.add_supported_apps(agentid) self.add_agent_apps(agentid) def add_custom_apps(self, username, customer_name, uri, method, agentid): rv_q = Queue('incoming_updates', connection=rq_pool) rv_q.enqueue_call( func=add_custom_app_to_agents, args=( username, customer_name, uri, method, None, agentid ), timeout=3600 ) def add_supported_apps(self, agentid): rv_q = Queue('incoming_updates', connection=rq_pool) rv_q.enqueue_call( func=get_all_supported_apps_for_agent, args=( agentid, ), timeout=3600 ) def add_agent_apps(self, agentid): rv_q = Queue('incoming_updates', connection=rq_pool) rv_q.enqueue_call( func=get_all_agent_apps_for_agent, args=( agentid, ), timeout=3600 ) def add_packages_from_agent(self, username, agent_id, agent_data, apps): rv_q = Queue('incoming_updates', connection=rq_pool) rv_q.enqueue_call( func=incoming_packages_from_agent, args=( username, agent_id, self.customer_name, agent_data['os_code'], agent_data['os_string'], apps, self.delete_afterwards ), timeout=3600 )
SteelHouseLabs/vFense
tp/src/receiver/rvhandler.py
rvhandler.py
py
2,924
python
en
code
5
github-code
6
[ { "api_name": "redis.StrictRedis", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.config.fileConfig", "line_number": 19, "usage_type": "call" }, { "api_name": "logging.config", "line_number": 19, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 20, "usage_type": "call" }, { "api_name": "agent.agents.get_agent_info", "line_number": 32, "usage_type": "call" }, { "api_name": "rq.Queue", "line_number": 55, "usage_type": "call" }, { "api_name": "plugins.patching.custom_apps.custom_apps.add_custom_app_to_agents", "line_number": 57, "usage_type": "name" }, { "api_name": "rq.Queue", "line_number": 66, "usage_type": "call" }, { "api_name": "plugins.patching.supported_apps.syncer.get_all_supported_apps_for_agent", "line_number": 68, "usage_type": "name" }, { "api_name": "rq.Queue", "line_number": 76, "usage_type": "call" }, { "api_name": "plugins.patching.supported_apps.syncer.get_all_agent_apps_for_agent", "line_number": 78, "usage_type": "name" }, { "api_name": "rq.Queue", "line_number": 87, "usage_type": "call" }, { "api_name": "plugins.patching.os_apps.incoming_updates.incoming_packages_from_agent", "line_number": 89, "usage_type": "name" } ]
23327135383
import logging from telegram.ext import Updater, CommandHandler, MessageHandler, Filters import settings logging.basicConfig(filename='bot.log', level=logging.INFO) # Настройки прокси. Используем ради интереса PROXY = {'proxy_url': settings.PROXY_URL, 'urllib3_proxy_kwargs': {'username': settings.PROXY_USERNAME, 'password': settings.PROXY_PASSWORD}} def greet_user(update, context): print('Вызван /start') # print(update) update.message.reply_text('Привет, пользователь! Ты вызвал команду /start') def talk_to_me(update, context): user_text = update.message.text print(user_text) update.message.reply_text(user_text) def main(): # Создаем бота и передаем ему токен, выданный BOTfather при регистрации нашего бота mybot = Updater(settings.API_KEY, use_context=True, request_kwargs=PROXY) dp = mybot.dispatcher # запускаем диспитчер dp.add_handler(CommandHandler('start', greet_user)) # запускаем обработчик dp.add_handler(MessageHandler(Filters.text, talk_to_me)) # Включаем логирование logging.info("Бот стартовал") # Комманда для запуска обращения бота к телеграмму с запросом о наличие новых сообщений mybot.start_polling() # Запуск бота. Будет работать до принудительного останова. mybot.idle() if __name__ == "__main__": main()
SanuNak/mybot
bot.py
bot.py
py
1,646
python
ru
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 6, "usage_type": "attribute" }, { "api_name": "settings.PROXY_URL", "line_number": 9, "usage_type": "attribute" }, { "api_name": "settings.PROXY_USERNAME", "line_number": 10, "usage_type": "attribute" }, { "api_name": "settings.PROXY_PASSWORD", "line_number": 10, "usage_type": "attribute" }, { "api_name": "telegram.ext.Updater", "line_number": 25, "usage_type": "call" }, { "api_name": "settings.API_KEY", "line_number": 25, "usage_type": "attribute" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 28, "usage_type": "call" }, { "api_name": "telegram.ext.MessageHandler", "line_number": 29, "usage_type": "call" }, { "api_name": "telegram.ext.Filters.text", "line_number": 29, "usage_type": "attribute" }, { "api_name": "telegram.ext.Filters", "line_number": 29, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 32, "usage_type": "call" } ]
14993235685
# 引用url模块 from django.conf.urls import url #导入视图函数 from .views import * app_name="booktest" urlpatterns=[ # url('myurl/',myview) # url(r'^index/$',index), # url(r'^$',index,name="index"), # url(r'^$',indexView.as_view(),name="index"), # url(r'^$',indexTemplateView.as_view(),name="index"), # url(r'^list/$',listView.as_view(),name="list"), url(r'^list/$',list,name="list"), url(r'^detail/(\d+)/$',detail,name="detail"), url(r'^deletebook/(\d+)/$',deletebook,name="deletebook"), url(r'^addhero/(\d+)/$',addhero,name="addhero"), url(r'^deletehero/(\d+)/$',deletehero,name="deletehero"), url(r'^addads/$',addads,name="addads"), ]
pan0527/chenpan
demo1/booktest/urls.py
urls.py
py
712
python
en
code
0
github-code
6
[ { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 21, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 22, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 24, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 26, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 28, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 30, "usage_type": "call" } ]
41933031591
import pyautogui import time pyautogui.moveTo(3530, 983) # Lokasi kursor kearah chat pyautogui.click() # Spam chat 100 pesan. for i in range(100): pyautogui.write("PING!!!") # Message pesan spam time.sleep(0.01) # Waktu jeda spam pyautogui.press("Enter")
arvandha121/SPAM_CHAT_WHATSAPP
spam.py
spam.py
py
268
python
en
code
0
github-code
6
[ { "api_name": "pyautogui.moveTo", "line_number": 4, "usage_type": "call" }, { "api_name": "pyautogui.click", "line_number": 5, "usage_type": "call" }, { "api_name": "pyautogui.write", "line_number": 9, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 10, "usage_type": "call" }, { "api_name": "pyautogui.press", "line_number": 11, "usage_type": "call" } ]
74795559226
from django.db import models from Pages.models import Page import urllib from .special_character_table import TABLE def get_report_url(post_hashtag): return "http://c8763.webutu.com?hashtag="+str(post_hashtag) # Create your models here. class Record(models.Model): submit_type=models.IntegerField(default=0) post_id=models.IntegerField(blank=False) fb_post_id=models.TextField(blank=False) class Report(models.Model): REPORTER_TYPE=( ("S","Submitter"), ("R","Related"), ("F","Friend"), ("O","Other") ) reporter=models.CharField(max_length=10,choices=REPORTER_TYPE,default="S") reason=models.TextField(blank=False) post_hashtag=models.IntegerField(blank=False) fb_post_id=models.TextField(blank=False) class Submission(models.Model): context=models.TextField(blank=False) submit_type=models.IntegerField(default=0) submit_time=models.DateTimeField(auto_now_add=True) def publish(self,manager): page=Page.objects.all()[0] fb_api_url="https://graph.facebook.com/v2.12/"+page.page_id post_context="#" post_context+=page.prefix+str(page.post_count) # post_context+="\n檢舉這篇文章:" # post_context+=get_report_url(page.post_count) page.post_count=page.post_count+1 page.save() response=None if self.submit_type==0: fb_api_url+="/feed" post_context+="\n\n"+self.context+"\n\n" post_context+=manager values={ 'message':post_context, 'access_token':page.access_token } data=urllib.parse.urlencode(values) byte_data=data.encode('utf8') response=urllib.request.urlopen(fb_api_url,byte_data) else: fb_api_url+="/photos" image_text=self.context+"\n" watermark=manager for tup in TABLE: image_text=image_text.replace(tup[0],tup[1]) watermark=watermark.replace(tup[0],tup[1]) param=urllib.parse.urlencode({'text':image_text,'line_length':16,'watermark':watermark}) image_url="http://complain-kskg.ga/texttoimage/?%s"%param values={ 'caption':post_context, 'url':image_url, 'access_token':page.access_token } data=urllib.parse.urlencode(values) byte_data=data.encode('utf8') response=urllib.request.urlopen(fb_api_url,byte_data) return response.read()
austin880625/KSKGcomplain
Submissions/models.py
models.py
py
2,572
python
en
code
1
github-code
6
[ { "api_name": "django.db.models.Model", "line_number": 10, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 10, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 11, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 12, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 12, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 13, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 13, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 15, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 25, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 26, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 26, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 27, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 27, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 28, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 28, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 29, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 29, "usage_type": "name" }, { "api_name": "Pages.models.Page.objects.all", "line_number": 31, "usage_type": "call" }, { "api_name": "Pages.models.Page.objects", "line_number": 31, "usage_type": "attribute" }, { "api_name": "Pages.models.Page", "line_number": 31, "usage_type": "name" }, { "api_name": "urllib.parse.urlencode", "line_number": 49, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 49, "usage_type": "attribute" }, { "api_name": "urllib.request.urlopen", "line_number": 51, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 51, "usage_type": "attribute" }, { "api_name": "special_character_table.TABLE", "line_number": 56, "usage_type": "name" }, { "api_name": "urllib.parse.urlencode", "line_number": 59, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 59, "usage_type": "attribute" }, { "api_name": "urllib.parse.urlencode", "line_number": 67, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 67, "usage_type": "attribute" }, { "api_name": "urllib.request.urlopen", "line_number": 69, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 69, "usage_type": "attribute" } ]
17688731362
import json import os import gui import wx import addonHandler import braille import config import controlTypes import languageHandler from .common import configDir addonHandler.initTranslation() CUR_LANG = languageHandler.getLanguage().split('_')[0] PATH_JSON = os.path.join(configDir, f"roleLabels-{CUR_LANG}.json") class SettingsDlg(gui.settingsDialogs.SettingsPanel): # Translators: title of a dialog. title = _("Role labels") roleLabels = {} def makeSettings(self, settingsSizer): self.roleLabels = roleLabels.copy() sHelper = gui.guiHelper.BoxSizerHelper(self, sizer=settingsSizer) self.toggleRoleLabels = sHelper.addItem(wx.CheckBox(self, label=_("Use custom braille &role labels"))) self.toggleRoleLabels.SetValue(config.conf["brailleExtender"]["features"]["roleLabels"]) self.toggleRoleLabels.Bind(wx.EVT_CHECKBOX, self.onToggleRoleLabels) self.categories = sHelper.addLabeledControl(_("Role cate&gory:"), wx.Choice, choices=[_("General"), _("Landmarks"), _("Positive states"), _("Negative states")]) self.categories.Bind(wx.EVT_CHOICE, self.onCategories) self.categories.SetSelection(0) choices = [] if hasattr(controlTypes, "roleLabels"): choices = [controlTypes.roleLabels[int(k)] for k in braille.roleLabels.keys()] self.labels = sHelper.addLabeledControl(_("&Role:"), wx.Choice, choices=choices) self.labels.Bind(wx.EVT_CHOICE, self.onLabels) self.label = sHelper.addLabeledControl(_("Braille &label"), wx.TextCtrl) self.label.Bind(wx.EVT_TEXT, self.onLabel) bHelper = gui.guiHelper.ButtonHelper(orientation=wx.HORIZONTAL) self.resetLabelBtn = bHelper.addButton(self, wx.NewId(), _("&Reset this role label"), wx.DefaultPosition) self.resetLabelBtn.Bind(wx.EVT_BUTTON, self.onResetLabelBtn) self.resetAllLabelsBtn = bHelper.addButton(self, wx.NewId(), _("Reset a&ll role labels"), wx.DefaultPosition) self.resetAllLabelsBtn.Bind(wx.EVT_BUTTON, self.onResetAllLabelsBtn) sHelper.addItem(bHelper) self.onToggleRoleLabels(None) self.onCategories(None) def onToggleRoleLabels(self, evt): l = [ self.categories, self.labels, self.label, self.resetLabelBtn, self.resetAllLabelsBtn, ] for e in l: if self.toggleRoleLabels.IsChecked(): e.Enable() else: e.Disable() def onCategories(self, event): labels = [] idCategory = self.categories.GetSelection() oldRoleLabels = hasattr(controlTypes, "roleLabels") if idCategory == 0: if oldRoleLabels: labels = [controlTypes.roleLabels[int(k)] for k in braille.roleLabels.keys()] else: labels = [role.displayString for role in braille.roleLabels.keys()] elif idCategory == 1: labels = list(braille.landmarkLabels.keys()) elif idCategory == 2: if oldRoleLabels: labels = [controlTypes.stateLabels[k] for k in braille.positiveStateLabels.keys()] else: labels = [role.displayString for role in braille.positiveStateLabels.keys()] elif idCategory == 3: if oldRoleLabels: labels = [controlTypes.stateLabels[k] for k in braille.negativeStateLabels.keys()] else: labels = [role.displayString for role in braille.negativeStateLabels.keys()] for iLabel, label in enumerate(labels): idLabel = getIDFromIndexes(idCategory, iLabel) actualLabel = getLabelFromID(idCategory, idLabel) originalLabel = self.getOriginalLabel(idCategory, idLabel, actualLabel) labels[iLabel] += _(": %s") % actualLabel if actualLabel != originalLabel: labels[iLabel] += " (%s)" % originalLabel self.labels.SetItems(labels) if idCategory > -1 and idCategory < 4: self.labels.SetSelection(0) self.onLabels(None) def onLabels(self, event): idCategory = self.categories.GetSelection() idLabel = getIDFromIndexes(idCategory, self.labels.GetSelection()) key = f"{idCategory}:{idLabel}" if key in self.roleLabels.keys(): self.label.SetValue(self.roleLabels[key]) else: self.label.SetValue(self.getOriginalLabel(idCategory, idLabel)) def onLabel(self, evt): idCategory = self.categories.GetSelection() iLabel = self.labels.GetSelection() idLabel = getIDFromIndexes(idCategory, iLabel) key = "%d:%s" % (idCategory, idLabel) label = self.label.GetValue() if idCategory >= 0 and iLabel >= 0: if self.getOriginalLabel(idCategory, idLabel, chr(4)) == label: if key in self.roleLabels.keys(): self.roleLabels.pop(key) else: self.roleLabels[key] = label actualLabel = getLabelFromID(idCategory, idLabel) originalLabel = self.getOriginalLabel(idCategory, idLabel, actualLabel) if label != originalLabel: self.resetLabelBtn.Enable() else: self.resetLabelBtn.Disable() def onResetLabelBtn(self, event): idCategory = self.categories.GetSelection() iLabel = self.labels.GetSelection() idLabel = getIDFromIndexes(idCategory, iLabel) key = "%d:%s" % (idCategory, idLabel) actualLabel = getLabelFromID(idCategory, idLabel) originalLabel = self.getOriginalLabel(idCategory, idLabel, actualLabel) self.label.SetValue(originalLabel) self.onLabel(None) self.label.SetFocus() def onResetAllLabelsBtn(self, event): nbCustomizedLabels = len(self.roleLabels) if not nbCustomizedLabels: msg = _("You have no customized role labels.") res = gui.messageBox(msg, _("Reset role labels"), wx.OK|wx.ICON_INFORMATION) return msg = _("You have %d customized role labels defined. Do you want to reset all labels?") % nbCustomizedLabels flags = wx.YES|wx.NO|wx.ICON_INFORMATION res = gui.messageBox(msg, _("Reset role labels"), flags) if res == wx.YES: self.roleLabels = {} self.onCategories(None) def getOriginalLabel(self, idCategory, idLabel, defaultValue = ''): key = f"{idCategory}:{idLabel}" if key in backupRoleLabels.keys(): return backupRoleLabels[key][1] return getLabelFromID(idCategory, idLabel) def postInit(self): self.toggleRoleLabels.SetFocus() def onSave(self): global roleLabels config.conf["brailleExtender"]["features"]["roleLabels"] = self.toggleRoleLabels.IsChecked() saveRoleLabels(self.roleLabels) discardRoleLabels() if config.conf["brailleExtender"]["features"]["roleLabels"]: loadRoleLabels() backupRoleLabels = {} roleLabels = {} def getIDFromIndexes(idCategory, idLabel): oldRoleLabels = hasattr(controlTypes, "roleLabels") if not isinstance(idCategory, int): raise TypeError(f"Wrong type for idCategory ({idCategory})") if not isinstance(idLabel, int): raise TypeError(f"Wrong type for idLabel ({idLabel})") idRole = -1 if idCategory == 0: idRole = list(braille.roleLabels.keys())[idLabel] elif idCategory == 1: idRole = list(braille.landmarkLabels.keys())[idLabel] elif idCategory == 2: idRole = list(braille.positiveStateLabels.keys())[idLabel] elif idCategory == 3: idRole = list(braille.negativeStateLabels.keys())[idLabel] else: raise ValueError(f"Wrong value for category ({idCategory})") if not oldRoleLabels and isinstance(idRole, (controlTypes.Role, controlTypes.State)): idRole = idRole.value return idRole def getLabelFromID(idCategory, idLabel): if idCategory == 0: return braille.roleLabels[int(idLabel)] if idCategory == 1: return braille.landmarkLabels[idLabel] if idCategory == 2: return braille.positiveStateLabels[int(idLabel)] if idCategory == 3: return braille.negativeStateLabels[int(idLabel)] raise ValueError("Invalid value: %d" % idCategory) def setLabelFromID(idCategory, idLabel, newLabel): if idCategory == 0: braille.roleLabels[int(idLabel)] = newLabel elif idCategory == 1: braille.landmarkLabels[idLabel] = newLabel elif idCategory == 2: braille.positiveStateLabels[int(idLabel)] = newLabel elif idCategory == 3: braille.negativeStateLabels[int(idLabel)] = newLabel else: raise ValueError(f"Unknown category {idCategory}") def loadRoleLabels(roleLabels_=None): global backupRoleLabels, roleLabels roleLabels.clear() if roleLabels_: roleLabels.update(roleLabels_) elif "roleLabels" in config.conf["brailleExtender"] and config.conf["brailleExtender"]["roleLabels"].copy(): roleLabels.update(config.conf["brailleExtender"]["roleLabels"].copy()) saveRoleLabels(roleLabels) config.conf["brailleExtender"]["roleLabels"] = {} elif os.path.exists(PATH_JSON): f = open(PATH_JSON, "r", encoding="UTF-8") try: roleLabels.update(json.load(f)) except json.decoder.JSONDecodeError: pass f.close() for k, v in roleLabels.items(): idCategory, idRole = k.split(':') idCategory = int(idCategory) backupRoleLabels[k] = (v, getLabelFromID(idCategory, idRole)) setLabelFromID(idCategory, idRole, v) def saveRoleLabels(roleLabels_): f = open(PATH_JSON, 'w') json.dump(roleLabels_, f, ensure_ascii=False, indent=2) f.close() def discardRoleLabels(): global backupRoleLabels, roleLabels for k, v in backupRoleLabels.items(): idCategory, idRole = k.split(':') idCategory = int(idCategory) setLabelFromID(idCategory, idRole, v[1]) backupRoleLabels = {} roleLabels = {}
aaclause/BrailleExtender
addon/globalPlugins/brailleExtender/rolelabels.py
rolelabels.py
py
8,877
python
en
code
15
github-code
6
[ { "api_name": "addonHandler.initTranslation", "line_number": 14, "usage_type": "call" }, { "api_name": "languageHandler.getLanguage", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "common.configDir", "line_number": 17, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "gui.settingsDialogs", "line_number": 19, "usage_type": "attribute" }, { "api_name": "gui.guiHelper.BoxSizerHelper", "line_number": 28, "usage_type": "call" }, { "api_name": "gui.guiHelper", "line_number": 28, "usage_type": "attribute" }, { "api_name": "wx.CheckBox", "line_number": 30, "usage_type": "call" }, { "api_name": "config.conf", "line_number": 31, "usage_type": "attribute" }, { "api_name": "wx.EVT_CHECKBOX", "line_number": 32, "usage_type": "attribute" }, { "api_name": "wx.Choice", "line_number": 33, "usage_type": "attribute" }, { "api_name": "wx.EVT_CHOICE", "line_number": 34, "usage_type": "attribute" }, { "api_name": "controlTypes.roleLabels", "line_number": 39, "usage_type": "attribute" }, { "api_name": "braille.roleLabels.keys", "line_number": 39, "usage_type": "call" }, { "api_name": "braille.roleLabels", "line_number": 39, "usage_type": "attribute" }, { "api_name": "wx.Choice", "line_number": 41, "usage_type": "attribute" }, { "api_name": "wx.EVT_CHOICE", "line_number": 42, "usage_type": "attribute" }, { "api_name": "wx.TextCtrl", "line_number": 44, "usage_type": "attribute" }, { "api_name": "wx.EVT_TEXT", "line_number": 45, "usage_type": "attribute" }, { "api_name": "gui.guiHelper.ButtonHelper", "line_number": 47, "usage_type": "call" }, { "api_name": "gui.guiHelper", "line_number": 47, "usage_type": "attribute" }, { "api_name": "wx.HORIZONTAL", "line_number": 47, "usage_type": "attribute" }, { "api_name": "wx.NewId", "line_number": 48, "usage_type": "call" }, { "api_name": "wx.DefaultPosition", "line_number": 48, "usage_type": "attribute" }, { "api_name": "wx.EVT_BUTTON", "line_number": 49, "usage_type": "attribute" }, { "api_name": "wx.NewId", "line_number": 50, "usage_type": "call" }, { "api_name": "wx.DefaultPosition", "line_number": 50, "usage_type": "attribute" }, { "api_name": "wx.EVT_BUTTON", "line_number": 51, "usage_type": "attribute" }, { "api_name": "controlTypes.roleLabels", "line_number": 76, "usage_type": "attribute" }, { "api_name": "braille.roleLabels.keys", "line_number": 76, "usage_type": "call" }, { "api_name": "braille.roleLabels", "line_number": 76, "usage_type": "attribute" }, { "api_name": "braille.roleLabels.keys", "line_number": 78, "usage_type": "call" }, { "api_name": "braille.roleLabels", "line_number": 78, "usage_type": "attribute" }, { "api_name": "braille.landmarkLabels.keys", "line_number": 80, "usage_type": "call" }, { "api_name": "braille.landmarkLabels", "line_number": 80, "usage_type": "attribute" }, { "api_name": "controlTypes.stateLabels", "line_number": 83, "usage_type": "attribute" }, { "api_name": "braille.positiveStateLabels.keys", "line_number": 83, "usage_type": "call" }, { "api_name": "braille.positiveStateLabels", "line_number": 83, "usage_type": "attribute" }, { "api_name": "braille.positiveStateLabels.keys", "line_number": 85, "usage_type": "call" }, { "api_name": "braille.positiveStateLabels", "line_number": 85, "usage_type": "attribute" }, { "api_name": "controlTypes.stateLabels", "line_number": 88, "usage_type": "attribute" }, { "api_name": "braille.negativeStateLabels.keys", "line_number": 88, "usage_type": "call" }, { "api_name": "braille.negativeStateLabels", "line_number": 88, "usage_type": "attribute" }, { "api_name": "braille.negativeStateLabels.keys", "line_number": 90, "usage_type": "call" }, { "api_name": "braille.negativeStateLabels", "line_number": 90, "usage_type": "attribute" }, { "api_name": "gui.messageBox", "line_number": 139, "usage_type": "call" }, { "api_name": "wx.OK", "line_number": 140, "usage_type": "attribute" }, { "api_name": "wx.ICON_INFORMATION", "line_number": 140, "usage_type": "attribute" }, { "api_name": "wx.YES", "line_number": 143, "usage_type": "attribute" }, { "api_name": "wx.NO", "line_number": 143, "usage_type": "attribute" }, { "api_name": "wx.ICON_INFORMATION", "line_number": 143, "usage_type": "attribute" }, { "api_name": "gui.messageBox", "line_number": 144, "usage_type": "call" }, { "api_name": "wx.YES", "line_number": 145, "usage_type": "attribute" }, { "api_name": "config.conf", "line_number": 159, "usage_type": "attribute" }, { "api_name": "config.conf", "line_number": 162, "usage_type": "attribute" }, { "api_name": "braille.roleLabels.keys", "line_number": 175, "usage_type": "call" }, { "api_name": "braille.roleLabels", "line_number": 175, "usage_type": "attribute" }, { "api_name": "braille.landmarkLabels.keys", "line_number": 176, "usage_type": "call" }, { "api_name": "braille.landmarkLabels", "line_number": 176, "usage_type": "attribute" }, { "api_name": "braille.positiveStateLabels.keys", "line_number": 177, "usage_type": "call" }, { "api_name": "braille.positiveStateLabels", "line_number": 177, "usage_type": "attribute" }, { "api_name": "braille.negativeStateLabels.keys", "line_number": 178, "usage_type": "call" }, { "api_name": "braille.negativeStateLabels", "line_number": 178, "usage_type": "attribute" }, { "api_name": "controlTypes.Role", "line_number": 180, "usage_type": "attribute" }, { "api_name": "controlTypes.State", "line_number": 180, "usage_type": "attribute" }, { "api_name": "braille.roleLabels", "line_number": 185, "usage_type": "attribute" }, { "api_name": "braille.landmarkLabels", "line_number": 186, "usage_type": "attribute" }, { "api_name": "braille.positiveStateLabels", "line_number": 187, "usage_type": "attribute" }, { "api_name": "braille.negativeStateLabels", "line_number": 188, "usage_type": "attribute" }, { "api_name": "braille.roleLabels", "line_number": 192, "usage_type": "attribute" }, { "api_name": "braille.landmarkLabels", "line_number": 193, "usage_type": "attribute" }, { "api_name": "braille.positiveStateLabels", "line_number": 194, "usage_type": "attribute" }, { "api_name": "braille.negativeStateLabels", "line_number": 195, "usage_type": "attribute" }, { "api_name": "config.conf", "line_number": 204, "usage_type": "attribute" }, { "api_name": "config.conf", "line_number": 205, "usage_type": "attribute" }, { "api_name": "config.conf", "line_number": 207, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 208, "usage_type": "call" }, { "api_name": "os.path", "line_number": 208, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 211, "usage_type": "call" }, { "api_name": "json.decoder", "line_number": 212, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 224, "usage_type": "call" } ]
26213379014
import time import numpy as np from scipy.sparse import csr_matrix from scipy.special import expit from tqdm import tqdm from hw1.base import FactorizationModel from hw1.utils import log_iter class BPRModel(FactorizationModel): def __init__(self, factors: int, lr: float, iterations: int, lambd: float = 0., verbose: bool = False, verbose_every: int = 1): super().__init__(factors, iterations, verbose, verbose_every) self._lr = lr self._lambd = lambd self._correct_cnt = 0 self._triplet_acc = 0. @staticmethod def _sample_negative(user_item: csr_matrix, user: int) -> int: neg_item = np.random.choice(user_item.shape[1]) while user_item[user, neg_item] != 0: neg_item = np.random.choice(user_item.shape[1]) return neg_item def _grad_step(self, user: int, pos_item: int, neg_item: int): score = expit(self._U[user] @ (self._I[neg_item] - self._I[pos_item])) self._correct_cnt += score < 0.5 grad_user = score * (self._I[neg_item] - self._I[pos_item]) + self._lambd * self._U[user] grad_pos = score * -self._U[user] + self._lambd * self._I[pos_item] grad_neg = score * self._U[user] + self._lambd * self._I[neg_item] self._U[user] -= self._lr * grad_user self._I[pos_item] -= self._lr * grad_pos self._I[neg_item] -= self._lr * grad_neg def _grad_steps(self, user_item: csr_matrix): self._triplet_acc = self._correct_cnt = 0 n_samples = user_item.count_nonzero() order = np.random.permutation(n_samples) users, items = user_item.nonzero() for user, pos_item in zip(users[order], items[order]): neg_item = self._sample_negative(user_item, user) self._grad_step(user, pos_item, neg_item) self._triplet_acc = self._correct_cnt / n_samples def fit(self, user_item: csr_matrix) -> "BPRModel": self._start_time = time.time() self.init_matrices(*user_item.shape) for iteration in tqdm(range(self._iterations), disable=not self._verbose): self._grad_steps(user_item) if self._verbose and (iteration + 1) % self._verbose_every == 0: log_iter(iteration + 1, {"Triplet acc": self._triplet_acc}, time.time() - self._start_time) return self
Sushentsev/recommendation-systems
hw1/models/bpr_model.py
bpr_model.py
py
2,367
python
en
code
0
github-code
6
[ { "api_name": "hw1.base.FactorizationModel", "line_number": 12, "usage_type": "name" }, { "api_name": "scipy.sparse.csr_matrix", "line_number": 22, "usage_type": "name" }, { "api_name": "numpy.random.choice", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 23, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 25, "usage_type": "attribute" }, { "api_name": "scipy.special.expit", "line_number": 29, "usage_type": "call" }, { "api_name": "scipy.sparse.csr_matrix", "line_number": 40, "usage_type": "name" }, { "api_name": "numpy.random.permutation", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 43, "usage_type": "attribute" }, { "api_name": "scipy.sparse.csr_matrix", "line_number": 52, "usage_type": "name" }, { "api_name": "time.time", "line_number": 53, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 56, "usage_type": "call" }, { "api_name": "hw1.utils.log_iter", "line_number": 60, "usage_type": "call" }, { "api_name": "time.time", "line_number": 60, "usage_type": "call" } ]
70766850107
from fastapi import APIRouter, Depends from app.model.param import ( ListTaskParams, NewTasksListParams, StopTaskParams, ) from app.model.response import ( NewTasksResp, ListTasksResp, StopTasksResp, ) from exception import DataExistsError, APIBaseError from app.model.data import TaskModel, StopTaskModel from .helper import task as taskhelper from traceback import format_exc task_router = APIRouter() @task_router.get( '/list', response_model=ListTasksResp ) async def list_task( param: ListTaskParams = Depends(ListTaskParams) ): """ 任务列表。""" # data = _list_task(param.offset, param.limit) data = taskhelper.list(param.offset, param.limit, param.active) return ListTasksResp( data=data ) @task_router.post( '/new', response_model=NewTasksResp ) async def create_tasks( params: NewTasksListParams, ): """ 批量添加任务。""" data = [] for url in params.urls: try: t = taskhelper.create(url, params.options) t.run_async() errcode = 0 errmsg = None except APIBaseError as err: t = taskhelper.get(err.data) errcode = err.code errmsg = err.msg data.append(TaskModel( sign=t.sign, title=t.title, url=t.url, errcode=errcode, errmsg=errmsg )) return NewTasksResp(data=data) @task_router.post( '/stop', response_model=StopTasksResp ) async def stop_tasks( params: StopTaskParams ): data = [] for key in params.keys: try: result = taskhelper.stop(key) errcode = 0 errmsg = None except APIBaseError as err: errcode = err.code errmsg = err.msg data.append(StopTaskModel( errcode=errcode, errmsg=errmsg )) return StopTasksResp(data=data)
ZSAIm/VideoCrawlerEngine
app/taskflow/routers/task.py
task.py
py
1,962
python
en
code
420
github-code
6
[ { "api_name": "fastapi.APIRouter", "line_number": 19, "usage_type": "call" }, { "api_name": "app.model.param.ListTaskParams", "line_number": 27, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 27, "usage_type": "call" }, { "api_name": "helper.task.list", "line_number": 31, "usage_type": "call" }, { "api_name": "helper.task", "line_number": 31, "usage_type": "name" }, { "api_name": "app.model.response.ListTasksResp", "line_number": 32, "usage_type": "call" }, { "api_name": "app.model.response.ListTasksResp", "line_number": 24, "usage_type": "name" }, { "api_name": "app.model.param.NewTasksListParams", "line_number": 42, "usage_type": "name" }, { "api_name": "helper.task.create", "line_number": 48, "usage_type": "call" }, { "api_name": "helper.task", "line_number": 48, "usage_type": "name" }, { "api_name": "exception.APIBaseError", "line_number": 52, "usage_type": "name" }, { "api_name": "helper.task.get", "line_number": 53, "usage_type": "call" }, { "api_name": "helper.task", "line_number": 53, "usage_type": "name" }, { "api_name": "app.model.data.TaskModel", "line_number": 56, "usage_type": "call" }, { "api_name": "app.model.response.NewTasksResp", "line_number": 63, "usage_type": "call" }, { "api_name": "app.model.response.NewTasksResp", "line_number": 39, "usage_type": "name" }, { "api_name": "app.model.param.StopTaskParams", "line_number": 71, "usage_type": "name" }, { "api_name": "helper.task.stop", "line_number": 76, "usage_type": "call" }, { "api_name": "helper.task", "line_number": 76, "usage_type": "name" }, { "api_name": "exception.APIBaseError", "line_number": 79, "usage_type": "name" }, { "api_name": "app.model.data.StopTaskModel", "line_number": 83, "usage_type": "call" }, { "api_name": "app.model.response.StopTasksResp", "line_number": 87, "usage_type": "call" }, { "api_name": "app.model.response.StopTasksResp", "line_number": 68, "usage_type": "name" } ]
3516700430
#********************* BGINFO_MULTI *************************** # Desenvolvido por Frederico de Jesus Almeida # Analista de Suporte PLENO - Multi #******************* 06/06/2023 **************************** import os import re import psutil import socket import subprocess import tkinter as tk def get_ip_address(): ip_local = socket.gethostbyname(socket.gethostname()) return ip_local def get_mac_address(): # Obtém o endereço MAC do adaptador de rede principal mac_address = '' for iface in psutil.net_if_addrs().values(): for addr in iface: if addr.family == psutil.AF_LINK: mac_address = addr.address break if mac_address: break return mac_address def get_hostname(): # Obtém o nome do host do computador return socket.gethostname() def get_username(): # Obtém o nome do usuário logado return os.getlogin() def get_domain(): # Obtém o nome de domínio do computador texto = socket.getfqdn() if "MLTBR.LOCAL" in texto: return ("Domínio: 'MLTBR.LOCAL'") else: return ("Domínio: NONE") def update_data(): # Atualiza os dados dos widgets da interface gráfica hostname_label.config(text='Hostname: ' + get_hostname()) mac_address_label.config(text='MAC: ' + get_mac_address()) ip_address_label.config(text='IP: ' + get_ip_address()) username_label.config(text='Usuário : ' + get_username()) domain_label.config(text=get_domain()) network_type = get_network_type() network_type_label.config(text='' + network_type) # Aguarda 5 minutos e chama a função update_data novamente root.after(300000, update_data) #Função que verifica se esta no wifi ou no cabo def verificar_conectado(linha): padrao = r"\bConectado\b" resultado = re.search(padrao, linha) if resultado: return False else: return True #Função que retorna o tipo da conexão def get_network_type(): # Chama a função no CMD output = subprocess.check_output('netsh interface show interface | findstr "Ethernet"', shell=True) # Decodifica a saída para uma string legível output = output.decode('utf-8') #Verifica se esta conectado no wi-fi ou no cabo if verificar_conectado(output): wifi = subprocess.check_output('netsh wlan show interfaces | findstr "Faixa"', shell=True) wifi = wifi.decode('utf-8') wifi = wifi.replace(" ", "") return (wifi) else: wifi = 'Conexão: Cabeada' return (wifi) get_network_type() # Cria a janela principal root = tk.Tk() root.title('Sistema') # Configura o fundo da janela para ser transparente root.attributes('-alpha', 0.5) # Oculta a barra de título root.overrideredirect(True) # Define a posição da janela no canto inferior direito screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight() window_width = 300 window_height = 180 x_position = screen_width - window_width y_position = screen_height - window_height root.geometry('{}x{}+{}+{}'.format(window_width, window_height, x_position, y_position)) # Cria os widgets da interface hostname_label = tk.Label(root, text='Hostname: ' + get_hostname(), anchor='w', justify='left') mac_address_label = tk.Label(root, text='MAC: ' + get_mac_address(), anchor='w', justify='left') ip_address_label = tk.Label(root, text='IP: ' + get_ip_address(), anchor='w', justify='left') username_label = tk.Label(root, text='Usuário: ' + get_username(), anchor='w', justify='left') domain_label = tk.Label(root, text=get_domain(), anchor='w', justify='left') network_type_label = tk.Label(root, text='' + get_network_type(), anchor='w', justify='left') # Posiciona os widgets na janela hostname_label.pack() mac_address_label.pack() ip_address_label.pack() username_label.pack() domain_label.pack() network_type_label.pack() # Aguarda 5 minutos e chama a função update_data root.after(30000, update_data) # Inicia o loop da interface gráfica root.mainloop()
Frederico02/info-sistema
main_final.py
main_final.py
py
4,077
python
pt
code
1
github-code
6
[ { "api_name": "socket.gethostbyname", "line_number": 17, "usage_type": "call" }, { "api_name": "socket.gethostname", "line_number": 17, "usage_type": "call" }, { "api_name": "psutil.net_if_addrs", "line_number": 24, "usage_type": "call" }, { "api_name": "psutil.AF_LINK", "line_number": 26, "usage_type": "attribute" }, { "api_name": "socket.gethostname", "line_number": 36, "usage_type": "call" }, { "api_name": "os.getlogin", "line_number": 41, "usage_type": "call" }, { "api_name": "socket.getfqdn", "line_number": 46, "usage_type": "call" }, { "api_name": "re.search", "line_number": 70, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 80, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 87, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 99, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 118, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 119, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 120, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 121, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 122, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 123, "usage_type": "call" } ]
33188473740
# -*-coding:utf-8-*- import logging from datetime import datetime class MyLogger(): def __init__(self, name): self.logger = logging.getLogger(name) self.handler = logging.FileHandler(filename='logging/%s.log' % name) self.logger.addHandler(self.handler) def warning(self, info): msg = '%s : %s \n==========================\n' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), info) self.logger.warning(msg) if __name__ == '__main__': logger = MyLogger('test') logger.warning('test msg')
xxxx-hhhh/spider
baojianhui_spider/my_logging.py
my_logging.py
py
546
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 9, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 13, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 13, "usage_type": "name" } ]
23896439023
# repeat_bot.py from bot.common import verify_user, job_name from dotenv import load_dotenv from bot.messages import account_summary from telegram import Update from telegram.ext import Application, CommandHandler, ContextTypes from data_model import BotConfig from utils import load_config load_dotenv() class PostHelp: def __init__(self, cfg: BotConfig): self.cfg = cfg async def post_help_info(self, update: Update, context: ContextTypes.DEFAULT_TYPE): # pylint: disable=W0613 if await verify_user(update=update, auth_users=self.cfg.auth.telegram.users): text = [ "/help to view this text", "/set [number] to set how often the message should be posted", "/stop to stop the repeating message", "/jobs to see what repeating message is currently working", ] text = "\n".join(text) await update.message.reply_text(text) class RepeatMessage: def __init__(self, cfg: BotConfig): self.cfg = cfg async def send_message(self, context: ContextTypes.DEFAULT_TYPE): job = context.job text = await account_summary(cfg=self.cfg) await context.bot.send_message( job.chat_id, message_thread_id=self.cfg.chat.message_thread_id, text=text ) class StopRepeatMessage: def __init__(self, cfg: BotConfig): self.cfg = cfg async def stop(self, update: Update, context: ContextTypes.DEFAULT_TYPE): current_jobs = context.job_queue.get_jobs_by_name(self.cfg.name) if len(current_jobs) > 0: for job in current_jobs: job.schedule_removal() await update.effective_message.reply_text( "succesfully stopped repeat message" ) return await update.effective_message.reply_text( "there are no repeating message jobs to stop" ) class SetTimer: def __init__(self, cfg: BotConfig): self.cfg = cfg async def set_timer(self, update: Update, context: ContextTypes.DEFAULT_TYPE): if await verify_user(update=update, auth_users=self.cfg.auth.telegram.users): try: interval = float(context.args[0]) if interval < 0: await update.effective_message.reply_text( "interval must be numeric and greater than zero" ) return message_function = RepeatMessage(cfg=self.cfg) context.job_queue.run_repeating( message_function.send_message, interval=interval, chat_id=self.cfg.chat.chat_id, name=self.cfg.name, data=interval ) text = f"repeating message every {interval} seconds" await update.effective_message.reply_text(text) except (IndexError, ValueError): await update.effective_message.reply_text( "The interval has to be a number, interpreted as seconds" ) class Jobs: def __init__(self, cfg: BotConfig): self.cfg = cfg async def post_job_status(self, update: Update, context: ContextTypes.DEFAULT_TYPE): if await verify_user(update=update, auth_users=self.cfg.auth.telegram.users): current_jobs = context.job_queue.get_jobs_by_name(self.cfg.name) if len(current_jobs) > 0: text = job_name(cfg=self.cfg) await update.effective_message.reply_text(text=text) return text = "idle, no jobs" await update.effective_message.reply_text(text=text) def repeat_bot(cfg: BotConfig): # cfg = load_config(bot_name=bot_name) post_help = PostHelp(cfg=cfg) set_timer = SetTimer(cfg=cfg) jobs = Jobs(cfg=cfg) stop_message = StopRepeatMessage(cfg=cfg) application = Application.builder().token(cfg.auth.telegram.token).build() application.add_handler(CommandHandler("help", post_help.post_help_info)) application.add_handler(CommandHandler("set", set_timer.set_timer)) application.add_handler(CommandHandler("stop", stop_message.stop)) application.add_handler(CommandHandler("jobs", jobs.post_job_status)) application.run_polling()
KD6-Dash-37/telegram-chat-bot
bot/repeat_bot.py
repeat_bot.py
py
4,481
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 13, "usage_type": "call" }, { "api_name": "data_model.BotConfig", "line_number": 18, "usage_type": "name" }, { "api_name": "telegram.Update", "line_number": 22, "usage_type": "name" }, { "api_name": "telegram.ext.ContextTypes.DEFAULT_TYPE", "line_number": 22, "usage_type": "attribute" }, { "api_name": "telegram.ext.ContextTypes", "line_number": 22, "usage_type": "name" }, { "api_name": "bot.common.verify_user", "line_number": 24, "usage_type": "call" }, { "api_name": "data_model.BotConfig", "line_number": 39, "usage_type": "name" }, { "api_name": "telegram.ext.ContextTypes.DEFAULT_TYPE", "line_number": 43, "usage_type": "attribute" }, { "api_name": "telegram.ext.ContextTypes", "line_number": 43, "usage_type": "name" }, { "api_name": "bot.messages.account_summary", "line_number": 47, "usage_type": "call" }, { "api_name": "data_model.BotConfig", "line_number": 57, "usage_type": "name" }, { "api_name": "telegram.Update", "line_number": 61, "usage_type": "name" }, { "api_name": "telegram.ext.ContextTypes.DEFAULT_TYPE", "line_number": 61, "usage_type": "attribute" }, { "api_name": "telegram.ext.ContextTypes", "line_number": 61, "usage_type": "name" }, { "api_name": "data_model.BotConfig", "line_number": 84, "usage_type": "name" }, { "api_name": "telegram.Update", "line_number": 88, "usage_type": "name" }, { "api_name": "telegram.ext.ContextTypes.DEFAULT_TYPE", "line_number": 88, "usage_type": "attribute" }, { "api_name": "telegram.ext.ContextTypes", "line_number": 88, "usage_type": "name" }, { "api_name": "bot.common.verify_user", "line_number": 90, "usage_type": "call" }, { "api_name": "data_model.BotConfig", "line_number": 126, "usage_type": "name" }, { "api_name": "telegram.Update", "line_number": 130, "usage_type": "name" }, { "api_name": "telegram.ext.ContextTypes.DEFAULT_TYPE", "line_number": 130, "usage_type": "attribute" }, { "api_name": "telegram.ext.ContextTypes", "line_number": 130, "usage_type": "name" }, { "api_name": "bot.common.verify_user", "line_number": 132, "usage_type": "call" }, { "api_name": "bot.common.job_name", "line_number": 138, "usage_type": "call" }, { "api_name": "data_model.BotConfig", "line_number": 149, "usage_type": "name" }, { "api_name": "telegram.ext.Application.builder", "line_number": 161, "usage_type": "call" }, { "api_name": "telegram.ext.Application", "line_number": 161, "usage_type": "name" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 163, "usage_type": "call" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 165, "usage_type": "call" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 167, "usage_type": "call" }, { "api_name": "telegram.ext.CommandHandler", "line_number": 169, "usage_type": "call" } ]
8660192902
import nltk nltk.download('stopwords') nltk.download('punkt') from nltk.corpus import stopwords from nltk.tokenize import word_tokenize, sent_tokenize #global set of stopwords english_stopwords = set(stopwords.words('english')) def tokenizeText(content): global english_stopwords #returns a list of tokens found in the given pathname tokens = word_tokenize(content) tokensWithoutStopWords = [] for word in tokens: if word not in english_stopwords: tokensWithoutStopWords.append(word) #print(Simhash(tokensWithoutStopWords)) return tokensWithoutStopWords def computeWordFrequencies(tokens): mydict = dict() for token in tokens: frequency = 1 if(token not in mydict.keys()): mydict[token] = frequency else: mydict[token] += frequency return mydict
daveA420/ics121Crawler
newParser.py
newParser.py
py
857
python
en
code
0
github-code
6
[ { "api_name": "nltk.download", "line_number": 2, "usage_type": "call" }, { "api_name": "nltk.download", "line_number": 3, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 9, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 9, "usage_type": "name" }, { "api_name": "nltk.tokenize.word_tokenize", "line_number": 14, "usage_type": "call" } ]
3439809361
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class Solution(object): def widthOfBinaryTree(self, root): """ :type root: TreeNode :rtype: int """ if root == None: return 0 maxWidth = 1 q = deque([(0, root)]) while len(q) != 0: cnt = len(q) start = q[0] end = q[-1] width = end[0] - start[0] + 1 maxWidth = max(maxWidth, width) while cnt > 0: cnt -= 1 idx, node = q.popleft() if node.left != None: q.append((idx * 2, node.left)) if node.right != None: q.append((idx * 2 + 1, node.right)) return maxWidth
cuiy0006/Algorithms
leetcode/662. Maximum Width of Binary Tree.py
662. Maximum Width of Binary Tree.py
py
957
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 18, "usage_type": "call" } ]
71611302909
import json import open3d as o3d import numpy as np import os import trimesh import zipfile from tqdm import tqdm import matplotlib.pyplot as plt plt.style.use('bmh') default_color = [0,0.5,1] cube = np.array([ [0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,0,1], [1,0,1], [1,1,1], [0,1,1], ]) '''plt figure''' def plt_show_save(data, title, save_path=None, xname='', bins=50): plt.cla() plt.figure(figsize=(12,9)) if type(data) == dict: plt.bar(data.keys(), data.values()) # plt.xticks(rotation=90) else: plt.hist(data, bins=bins) plt.title(title) plt.ylabel('value') plt.xlabel(xname) if save_path is not None: plt.savefig(save_path) else: plt.show() def get_pcd(pc, color=default_color): pc = np.array(pc) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pc) pcd.paint_uniform_color(color) # 默认是彩虹色过渡,这里指定染色 return pcd def get_o3d_FOR(origin=[0, 0, 0],size=0.1): mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=size) mesh_frame.translate(origin) return(mesh_frame) def show_pcds(pcds, wname='Open3D', FOR=0.1): if FOR: pcds.append(get_o3d_FOR(size = FOR)) o3d.visualization.draw_geometries(pcds, width=800, height=800, window_name=wname) def csv2box(csv_path): obb_info = np.loadtxt(open(csv_path, 'r'),delimiter = ",") # (5,4) center = obb_info[0,:3] dirs = 0.5 * (obb_info[2:,:3] * obb_info[2:,-1].reshape(3,1) ) val = cube*2 - 1 vec = np.matmul(val, dirs) # (8,3)@(3,3) corner = center.reshape(1,3) + vec return corner,dirs def add_thickness(pc, direction, scale): direction = direction / np.linalg.norm(direction) noise = np.random.normal(0, scale, (pc.shape[0],1)) return pc + noise * direction.reshape(1,3) def PCA(data, sort=True): average_data = np.mean(data,axis=0) decentration_matrix = data - average_data H = np.dot(decentration_matrix.T,decentration_matrix) eigenvectors,eigenvalues,eigenvectors_T = np.linalg.svd(H) if sort: sort = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[sort] eigenvectors = eigenvectors[:, sort] return eigenvalues, eigenvectors def box_from_pc(pc, color=default_color, aabb=False, return_corner=True): pcd = get_pcd(pc) box = pcd.get_axis_aligned_bounding_box() if aabb else \ pcd.get_oriented_bounding_box() if return_corner: corner = np.array(box.get_box_points()) return corner else: box.color = color return box def box_from_corner(corner, color=default_color, aabb=False): corner = np.asarray(corner) box = o3d.geometry.AxisAlignedBoundingBox() if aabb else \ o3d.geometry.OrientedBoundingBox() box = box.create_from_points(o3d.utility.Vector3dVector(corner)) box.color = color return box def box2cen_dir(box:np.ndarray): centers = np.zeros((6,3)) sorted_box = sort_pts(box) v1 = sorted_box[1]-sorted_box[0] v2 = sorted_box[3]-sorted_box[0] cos = v1@v2 / (np.linalg.norm(v1) * np.linalg.norm(v2)) if abs(cos) < 0.001: tmp = sorted_box[3].copy() sorted_box[3] =sorted_box[4] sorted_box[4] = tmp # 0246, 0145 centers[0] = sorted_box[:4].mean(axis=0) centers[1] = sorted_box[[0,2,4,6]].mean(axis=0) centers[2] = sorted_box[[0,1,4,5]].mean(axis=0) centers[3:] = 2 * box.mean(0).reshape(1,3) - centers[:3] return centers def box2dir(box:np.ndarray): sorted_box = np.array(sorted(box, key = lambda x:x[0]) ) dirs3 = sorted_box[1:4] - sorted_box[0].reshape(1,-1) cos = cosine(dirs3, dirs3).flatten() idx = np.argmin(cos) if cos[idx]<1e-3: d1 = idx//3 d2 = idx%3 left_dir = np.cross(dirs3[d1], dirs3[d2]) return np.vstack([dirs3[d1], dirs3[d2], left_dir]) else: return None def aabb_dirs(pc): mins = pc.min(0) maxs = pc.max(0) dirs = np.eye(3,3) * (maxs-mins).reshape(1,3) / 2 center = (mins + maxs) / 2 corners = center.reshape(1,3) + (cube*2-1)@dirs return corners, dirs def obb_2dirs(pc, axis, return_corner=True): else_axis = [0,1,2] else_axis.pop(axis) sub_pc = pc[:,else_axis] cov_pts = np.cov(sub_pc, y=None, rowvar=False, bias=True) v, vect = np.linalg.eig(cov_pts) tvect = vect.T rpts = np.dot(sub_pc, np.linalg.inv(tvect)) mina = np.min(rpts, 0) maxa = np.max(rpts, 0) diff = (maxa - mina)*0.5 center = mina + diff corners = center.reshape(-1,2) + np.array([ [-1,-1], [1,-1], [1,1], [-1,1] ]) * diff.reshape(-1,2) corners = np.dot(corners, tvect) # (4,2) axis_pc = pc[:, axis] axis_min,axis_max = axis_pc.min(), axis_pc.max() cor1 = np.insert(corners, axis, axis_min, axis=1) cor2 = np.insert(corners, axis, axis_max, axis=1) corners = np.vstack([cor1,cor2]) center = corners.mean(0) dirs = (corners[[1,3,4]] - corners[0].reshape(1,3))/2 if return_corner: return corners, dirs else: return center, dirs def obb_adjust(pc:np.ndarray, fix_dir:np.array, ori_dir:np.array): '''ori_dir should be [0,0,1] or [0,1,0] or [1,0,0]''' axis = np.argmax(ori_dir) fix_dir = fix_dir / np.linalg.norm(fix_dir) ori_dir = ori_dir / np.linalg.norm(ori_dir) cro = np.cross(ori_dir, fix_dir) cos = ori_dir@fix_dir if abs(cos)>0.99: return obb_2dirs(pc, axis, True) vx = np.array([ [0, -cro[2], cro[1]], [cro[2], 0, -cro[0]], [-cro[1], cro[0], 0 ] ]) rot_w = np.eye(3,3) + vx + np.matmul(vx,vx) / (1+cos) rot_verse = np.linalg.inv(rot_w) rot_pc = np.matmul(pc, rot_verse.T) center, dirs = obb_2dirs(rot_pc, axis, False) # dirs[-1][:2] = 0 # dirs[-1,-1] = rot_pc[:,axis].max() - rot_pc[:,axis].min() cen = center.reshape(-1,3) dirs = np.matmul(dirs, rot_w.T) box = (cube*2 - 1)@dirs + cen@rot_w.T return box, dirs def pts2pts_dis(pts1,pts2): diff = pts1.reshape((-1, 1, 3)) - pts2.reshape((1, -1, 3)) distance = (diff**2).reshape((-1,3)).sum(axis=-1) return distance def sort_pts(box): uniques = [] for i in range(3): uni = np.unique(box[:,i]).shape[0] uniques.append(uni<8) # and uni//2==0 if sum(uniques)==0: uniques[0] = True sorted_box = np.array(sorted(box, key = lambda x:x[uniques].sum())) return sorted_box def pc2mesh(pts): pts = np.asarray(pts) pcd = get_pcd(pts) pcd.estimate_normals() distances = pcd.compute_nearest_neighbor_distance() avg_dist = np.mean(distances) radius = 1.5 * avg_dist mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting( pcd, o3d.utility.DoubleVector([radius, radius * 2]), ) # return np.asarray(mesh.triangles) return mesh def pc_from_mesh(obj_path, npoints): mesh = o3d.io.read_triangle_mesh(obj_path) pts = mesh.sample_points_uniformly(number_of_points=npoints) return np.array(pts.points) def load_mesh(obj_path): return trimesh.load(obj_path, 'obj', force='mesh') def merge_mesh(meshs): merged_mesh = trimesh.util.concatenate(meshs) return merged_mesh def write_mesh(mesh, path, normal=False, color=False): o3d.io.write_triangle_mesh( path, mesh, write_vertex_normals=normal, write_vertex_colors=color ) def gen_meshs(obj_folder, hier_tree, npoints=1024): all_node_mesh = {} for node in hier_tree: id_ = node['id'] if 'children' in node.keys(): sub_mesh = gen_meshs(obj_folder, node['children'], npoints) all_node_mesh = {**all_node_mesh, **sub_mesh} child_mesh = [sub_mesh[me['id']] for me in node['children']] node_mesh = merge_mesh(child_mesh) all_node_mesh[id_] = node_mesh else: meshs = [] for obj_name in node['objs']: obj_path = os.path.join(obj_folder, obj_name+'.obj') mesh = load_mesh(obj_path) meshs.append(mesh) if len(meshs)>1: meshs = merge_mesh(meshs) else: meshs = meshs[0] all_node_mesh[id_] = meshs return all_node_mesh def get_leaves(tree, only=None, flatten=False, pop_child=True): leaf_parts = [] for node in tree: data = node[only] if only is not None else node if 'children' not in node.keys(): leaf_parts.append(data) else: node_list = get_leaves(node['children'], only, flatten) # [{...},] with parent+children idx leaf_parts.extend(node_list) if flatten: if only == None: data = data.copy() if pop_child:data.pop('children') leaf_parts.append(data) return leaf_parts def hier2graphic(hier_tree, parent_id=-1, depth=0): all_nodes = {} for node in hier_tree: renode = { 'name': node['name'], 'objs': node['objs'] if 'objs' in node.keys() else [], 'parent': parent_id, 'depth': depth, 'box': node['box'] if 'box' in node.keys() else [], 'brother':[], 'children_id': [], 'leaves': get_leaves([node], 'id'), } if 'children' in node.keys(): children_nodes = hier2graphic(node['children'], node['id'], depth+1) all_nodes = {**all_nodes, **children_nodes} renode['children_id'] = [i['id'] for i in node['children']] all_nodes[node['id']] = renode for child in renode['children_id']: all_nodes[child]['brother'] = renode['children_id'][:] all_nodes[child]['brother'].remove(child) return all_nodes def update_mopara(hash_hier, ids=[0]): main_child = ids[:] for key in ids: if hash_hier[key]['children_id'] != []: tree, mochild = update_mopara(hash_hier, hash_hier[key]['children_id'] ) hash_hier = {**hash_hier, **tree} mopara = {'jointData':{}, 'joint':'', 'motype':''} node = hash_hier[mochild] if 'ref' in node.keys() and key!=0: mopara['jointData'] = node['jointData'] mopara['joint'] = node['joint'] if 'motype' in node.keys(): mopara['motype'] = node['motype'] refs = node['ref'][:] for idx,ref in enumerate(refs): while(hash_hier[ref]['depth'] > hash_hier[key]['depth']): ref = hash_hier[ref]['parent'] refs[idx] = ref mopara['ref'] = list(set(refs)) for ref in mopara['ref']: if ref in main_child and ref != key: main_child.remove(key) break hash_hier[key] = {**hash_hier[key], **mopara} elif 'ref' in hash_hier[key].keys(): refs = hash_hier[key]['ref'] for idx,ref in enumerate(refs): while(hash_hier[ref]['depth'] > hash_hier[key]['depth']): ref = hash_hier[ref]['parent'] hash_hier[key]['ref'][idx] = ref hash_hier[key]['ref'] = list(set(hash_hier[key]['ref'])) for ref in hash_hier[key]['ref']: if ref in main_child and ref != key: main_child.remove(key) break return hash_hier, main_child[0] def gen_graph(hier_tree, mobi): ''' 将hierarchy tree转化称graph ''' hash_hier = hier2graphic(hier_tree) for idx,node in enumerate(mobi): # mobi[idx]['ids'] = [i['id'] for i in node['parts']] mopara = {'jointData':{}, 'joint':'', 'motype':''} if node['jointData'] != {}: mopara['jointData'] = node['jointData'] mopara['joint'] = node['joint'] if 'motype' in node.keys(): mopara['motype'] = node['motype'] if node['parent'] != -1 and 'parts' in mobi[node['parent']].keys(): ref = [j['id'] for j in mobi[node['parent']]['parts']] mopara['ref'] = ref for sub_node in node['parts']: sub_id = sub_node['id'] hash_hier[sub_id] = {**hash_hier[sub_id], **mopara} graph, _ = update_mopara(hash_hier) statics = {} for key in graph.keys(): if 'ref' in graph[key].keys(): refs = graph[key]['ref'][:] for ref in refs: if graph[key]['parent'] != graph[ref]['parent'] or ref == key: graph[key]['ref'].remove(ref) if graph[key]['ref'] == []: graph[key].pop('ref') for key in graph.keys(): node = graph[key] graph[key]['edges'] = { 'children':{}, 'space':{} } for child in graph[key]['children_id']: graph[key]['edges']['children'][child] = '' brothers = graph[key]['brother'][:] if 'ref' in graph[key].keys(): for bro in brothers: if bro in graph[key]['ref']: graph[key]['edges']['space'][bro] = 'motion' else: graph[key]['edges']['space'][bro] = 'none' graph[key].pop('ref') else: for bro in brothers: graph[key]['edges']['space'][bro] = 'none' if 'ref' in graph[bro].keys() else 'fixed' return graph, statics def ref_count(graph): for key in graph.keys(): edges = graph[key]['edges']['space'] refs = [r for r in edges.keys() if edges[r]=='motion'] graph[key]['refs'] = refs invalids, child_allref, expect = reduce_ref(graph) return invalids, expect def reduce_ref(graph, node_key='0'): ref_child = set() all_invalid = 0 flgs = 0 for child in graph[node_key]['children_id']: child = str(child) if graph[child]['refs'] == []: ref_child.add(int(child)) if graph[child]['children_id'] != []: invalid, flg, expect = reduce_ref(graph, child) all_invalid += invalid if flg else invalid-1 flgs += 1-flg children_allref = False if len(ref_child)==0 and graph[node_key]['brother'] == []: children_allref = True elif len(ref_child) and ref_child == set(graph[node_key]['children_id']) \ and not flgs: children_allref = True all_invalid += len(ref_child) # print('%s invalids:%d'%(node_key, all_invalid)) return all_invalid, children_allref, (flgs if flgs else 1) '''direction, angle, pos, ...''' def cosine(dirs, vec, abs=True): vec = vec.reshape(-1,3) vec = vec / np.linalg.norm(vec, axis=-1).reshape(-1,1) # (1-n, 3) -> (1-n,) or val mul_res = [email protected] cos = mul_res / np.linalg.norm(dirs, axis=-1).reshape(-1,1) if abs: cos = np.abs(cos) return cos def cross(dirs, vec, abs=False): # vec = vec / np.linalg.norm(vec) cro = np.cross(dirs, vec) cro = cro / np.linalg.norm(cro, axis=-1) if abs: cro = np.abs(cro) return cro def motion_pos(direction, gt_pos, pos): direction= direction / np.linalg.norm(direction) cro = np.cross(pos - gt_pos.reshape(1,3), direction) dis = np.abs(np.linalg.norm(cro, axis=-1)) min_idx = np.argmin(dis) return min_idx, dis[min_idx] def read_json(json_path): return json.load(open(json_path, 'r')) def get_boolseg(seg:np.ndarray, mov_idx): mov_idx = np.array(mov_idx).reshape((-1,1)) # (n,1), and seg(1,N) return ( seg.reshape((1,-1)) == mov_idx ).sum(axis=0) == 1. if __name__ == '__main__': pass
GengxinLiu/SWMP
Extern/tools/mobility_tool.py
mobility_tool.py
py
14,370
python
en
code
4
github-code
6
[ { "api_name": "matplotlib.pyplot.style.use", "line_number": 9, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style", "line_number": 9, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 9, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.cla", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 35, "usage_type": "call" }, { "api_name": "open3d.geometry.PointCloud", "line_number": 37, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 37, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 38, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 38, "usage_type": "attribute" }, { "api_name": "open3d.geometry.TriangleMesh.create_coordinate_frame", "line_number": 44, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 44, "usage_type": "attribute" }, { "api_name": "open3d.visualization.draw_geometries", "line_number": 52, "usage_type": "call" }, { "api_name": "open3d.visualization", "line_number": 52, "usage_type": "attribute" }, { "api_name": "numpy.loadtxt", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.matmul", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 66, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 67, "usage_type": "attribute" }, { "api_name": "numpy.mean", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.linalg.svd", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 74, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 95, "usage_type": "call" }, { "api_name": "open3d.geometry.AxisAlignedBoundingBox", "line_number": 96, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 96, "usage_type": "attribute" }, { "api_name": "open3d.geometry.OrientedBoundingBox", "line_number": 97, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 97, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 98, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 102, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 120, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 121, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.cross", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.cov", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.linalg.eig", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 147, "usage_type": "attribute" }, { "api_name": "numpy.dot", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.linalg.inv", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 149, "usage_type": "attribute" }, { "api_name": "numpy.min", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 159, "usage_type": "call" }, { "api_name": "numpy.insert", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.insert", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 173, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 173, "usage_type": "attribute" }, { "api_name": "numpy.argmax", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 177, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 177, "usage_type": "attribute" }, { "api_name": "numpy.linalg.norm", "line_number": 178, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 178, "usage_type": "attribute" }, { "api_name": "numpy.cross", "line_number": 179, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 190, "usage_type": "call" }, { "api_name": "numpy.matmul", "line_number": 190, "usage_type": "call" }, { "api_name": "numpy.linalg.inv", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 191, "usage_type": "attribute" }, { "api_name": "numpy.matmul", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.matmul", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 211, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 219, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 224, "usage_type": "call" }, { "api_name": "open3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting", "line_number": 227, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 227, "usage_type": "attribute" }, { "api_name": "open3d.utility.DoubleVector", "line_number": 228, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 228, "usage_type": "attribute" }, { "api_name": "open3d.io.read_triangle_mesh", "line_number": 233, "usage_type": "call" }, { "api_name": "open3d.io", "line_number": 233, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 235, "usage_type": "call" }, { "api_name": "trimesh.load", "line_number": 238, "usage_type": "call" }, { "api_name": "trimesh.util.concatenate", "line_number": 241, "usage_type": "call" }, { "api_name": "trimesh.util", "line_number": 241, "usage_type": "attribute" }, { "api_name": "open3d.io.write_triangle_mesh", "line_number": 245, "usage_type": "call" }, { "api_name": "open3d.io", "line_number": 245, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 264, "usage_type": "call" }, { "api_name": "os.path", "line_number": 264, "usage_type": "attribute" }, { "api_name": "numpy.linalg.norm", "line_number": 460, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 460, "usage_type": "attribute" }, { "api_name": "numpy.linalg.norm", "line_number": 463, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 463, "usage_type": "attribute" }, { "api_name": "numpy.abs", "line_number": 465, "usage_type": "call" }, { "api_name": "numpy.cross", "line_number": 470, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 471, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 471, "usage_type": "attribute" }, { "api_name": "numpy.abs", "line_number": 473, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 477, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 477, "usage_type": "attribute" }, { "api_name": "numpy.cross", "line_number": 478, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 479, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 479, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 479, "usage_type": "attribute" }, { "api_name": "numpy.argmin", "line_number": 480, "usage_type": "call" }, { "api_name": "json.load", "line_number": 484, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 486, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 487, "usage_type": "call" } ]
70315957309
""" bony_downloader.py module contains BonyDownloader class to provide provider specific functionality """ __author__ = 'Dattatraya Tembare<[email protected]>' import datetime import itertools import lxml.html import requests from common.download_exceptions import DownloadException from download.file_downloader import FileDownloader class BonyDownloader(FileDownloader): """ BonyDownloader class has functions for parsing page source code parse() : implementation for 'BONY' provider """ def authenticate(self, provider): """ Step 1:: Authenticate and login to provider's portal :param provider: provider :return: requests session """ logging.debug('BonyDownloader:authenticate') auth_config = self.configs.auth_config[provider] access_config = self.configs.access_config[provider] session = requests.Session() logging.debug(f':::1 Connect to {access_config["login-url"]} and get cookies') session.get(access_config['login-url']) logging.debug(f':::2 Call {access_config["auth-url"]} page') # requests will use the available cookies from session try: res1 = session.post(access_config["auth-url"], data=auth_config) if self._login_failed(provider, res1): raise DownloadException('2000_AUTHENTICATION_FAILED', custom_message=f"Authentication failed for {provider}") logging.debug(f'Login status :: {res1.status_code}') # BONY request need certificate key for each request f_html = self.utils.format_html(res1.text) tree = lxml.html.fromstring(f_html) csrf_key = tree.xpath('//form[@name="NavForm"]/input[@name="csrfKey"]/@value')[0] except Exception as e: raise DownloadException('2000_AUTHENTICATION_FAILED', e) from None return session, {'for_next_params': True, 'csrfKey': csrf_key} def _login_failed(self, provider, response): if 'Invalid Login' in response.text: return True else: return False def access(self, session, **opts): """ Step 2:: Pull access URL/s from configs file and use it to pull page source which has URLs for file download after method execution a_url['deal_info_dict_list'] appended to opts dictionary TODO Use namedtuple DealInfo to make current dictionary generic to all providers :param session: session with site cookies :param opts: user/commandline inputs :return: None """ logging.debug('FileDownloader:access') provider = opts['provider'] previous_url_results = list() for a_url in opts['access_urls']: logging.debug(f':::3 Send request to {a_url} page') # Pull input parameters to append as a query string user_config = opts['user_input_config'] if 'user_input_config' in opts else None user_inputs = user_config['input'] if user_config else self.configs.user_input_config[provider][ 'input'] deal_info_list = self._prepare_params(a_url, user_inputs) # Update URL with values pulled from previous page response deal_info_list = self._use_previous_url_result(deal_info_list, previous_url_results) # After use clean the previous_url_results previous_url_results = [] for deal_info in deal_info_list: params = deal_info['params'] from_opts = opts['response_dict'] if 'response_dict' in opts else {} params = {**params, **from_opts} opts['response_dict'] = {} try: if a_url['method'] == 'POST': res = session.post(deal_info['link'], data=params) elif a_url['method'] == 'GET': res = session.get(deal_info['link'], params=params) except Exception as e: raise DownloadException('3000_ACCESS_FAILED', e) logging.debug(f'status code :: {res.status_code} history :: {res.history} response URL :: {res.url}') f_html = self.utils.format_html(res.text) tree = lxml.html.fromstring(f_html) for ele_name, ele_value in a_url['result-dict'].items(): if 'for_next_params' in ele_name: _result = self._dict_for_next_url(ele_value, tree) _result['for_next_params'] = True previous_url_results.append(_result) deal_info['for_next_params'] = _result opts['response_dict'] = {'csrfKey': _result['csrfKey']} elif 'for_next_url' in ele_name: _result = self._dict_for_next_url(ele_value, tree) _result['for_next_url'] = True previous_url_results.append(_result) elif 'deal_info' in ele_name: deal_info['deal_info'] = self._dict_for_next_url(ele_value, tree) elif 'for_parsing' in ele_name: f_html_trees = list() for xp in ele_value: f_html_trees.append(tree.xpath(xp)) deal_info['f_html'] = f_html_trees a_url['deal_info_dict_list'] = deal_info_list def _prepare_params(self, a_url, user_inputs): # pull mandatory input parameters from access-config input_param_dict = a_url['input-param'] # prepare links for next request/s links_with_params = list() for attr_name, attr_values in user_inputs.items(): for attr_value in attr_values: req_body = input_param_dict.copy() req_body[attr_name] = attr_value links_with_params.append({'link': a_url['url'], 'params': req_body}) return links_with_params def _use_previous_url_result(self, links, previous_url_results): if len(links) == len(previous_url_results): for link, previous_url_result in zip(links, previous_url_results): if 'hd_deal_number' in previous_url_result: deal_num = previous_url_result['hd_deal_number'] deal_num = deal_num[:deal_num.index('~')] if deal_num else deal_num previous_url_result['hd_deal_number'] = deal_num if 'for_next_params' in previous_url_result: link['params'] = {**link['params'], **previous_url_result} else: for link, previous_url_result in itertools.product(links, previous_url_results): if 'for_next_params' in previous_url_result: link['params'] = {**link['params'], **previous_url_result} return links def _dict_for_next_url(self, input_dict, tree): # print(f'table.text :: {etree.tostring(tree)}') result_dict = dict() for k, xp in input_dict.items(): try: xp_result = tree.xpath(xp) result_dict[k] = ''.join(xp_result).strip() except Exception as e: raise DownloadException('3000_ACCESS_FAILED', e) return result_dict def parse(self, **opts): """ method parses the 'BONY' specific page source using xpath from access-configs, after method execution a_url['download_urls'] appended to opts dictionary :param opts: user/commandline inputs + a_url['deal_info_dict_list'] :return: """ logging.debug('BonyDownloader:parse') out_dir = opts['output'] provider = opts['provider'] for a_url in opts['access_urls']: download_urls = list() for deal_info_dict in a_url['deal_info_dict_list']: if 'f_html' in deal_info_dict: f_url = a_url['for_download_urls']['download_url'] input_dict = a_url['for_download_urls']['request_body'].copy() for k, v in deal_info_dict['for_next_params'].items(): if 'for_next_params' not in k: input_dict[k] = v deal_name = deal_info_dict['deal_info']['deal_name'] for trs in deal_info_dict['f_html']: for tr in trs: # print(f'table.text :: {etree.tostring(tr)}') report_id = tr.xpath('td/input[@name="cb_rpt_id"]/@value') report_name = ''.join(tr.xpath('td[2]/a/text()')).strip() if len(report_id) > 0: report_id = report_id[0][:report_id[0].index('~')] payment_date = tr.xpath('td[6]/text()') if len(payment_date) > 0: payment_date = payment_date[0].strip() dt = datetime.datetime.strptime(payment_date, "%d-%b-%Y") for span in tr.xpath('td/span[@class="RecordNormalText"]/input'): report_ext_key = span.xpath('@name')[0] report_ext_value = span.xpath('@value')[0] file_extension = report_ext_value[report_ext_value.index('~') + 1:] input_dict_copy = dict(input_dict) input_dict_copy['hd_avl_rpt_id'] = report_id input_dict_copy[report_ext_key] = report_ext_value input_dict_copy['lb_reportdate'] = dt.strftime("%B") + '++' + str(dt.year) input_dict_copy['hd_extension'] = file_extension o_file = out_dir + '/' + str(dt.year) + '-' + str(dt.month) + '/' + provider + '/' o_file += (deal_name + ' pay ' + payment_date + ' ' + report_name).replace(' ', '_') o_file += '.' + file_extension search_data = report_id + ' || ' + report_name + ' || ' + dt.strftime("%b") + ' ' search_data += str(dt.year) + ' || ' + deal_name download_urls.append( DownloadUrl(f_url, o_file, search_data, deal_name, input_dict_copy, 'POST')) # del a_url['f_html'] a_url['download_urls'] = download_urls
dattatembare/file_downloader
src/download/bony_downloader.py
bony_downloader.py
py
10,730
python
en
code
0
github-code
6
[ { "api_name": "download.file_downloader.FileDownloader", "line_number": 18, "usage_type": "name" }, { "api_name": "requests.Session", "line_number": 33, "usage_type": "call" }, { "api_name": "common.download_exceptions.DownloadException", "line_number": 41, "usage_type": "call" }, { "api_name": "lxml.html.html.fromstring", "line_number": 46, "usage_type": "call" }, { "api_name": "lxml.html.html", "line_number": 46, "usage_type": "attribute" }, { "api_name": "lxml.html", "line_number": 46, "usage_type": "name" }, { "api_name": "common.download_exceptions.DownloadException", "line_number": 49, "usage_type": "call" }, { "api_name": "common.download_exceptions.DownloadException", "line_number": 92, "usage_type": "call" }, { "api_name": "lxml.html.html.fromstring", "line_number": 95, "usage_type": "call" }, { "api_name": "lxml.html.html", "line_number": 95, "usage_type": "attribute" }, { "api_name": "lxml.html", "line_number": 95, "usage_type": "name" }, { "api_name": "itertools.product", "line_number": 138, "usage_type": "call" }, { "api_name": "common.download_exceptions.DownloadException", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 184, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 184, "usage_type": "attribute" } ]
40787879761
from time import sleep import time import datetime from datetime import timedelta from time import sleep, strftime motionTimeOutSeconds = 5 lastMotionTime = datetime.datetime.now() def motionTimedOut(): myNow = datetime.datetime.now() deltaTime = (myNow - lastMotionTime).total_seconds() if deltaTime > motionTimeOutSeconds: print('Motion timed out after {0} seconds'.format(deltaTime)) return True return False sleep(2) # bTime = datetime.datetime.now() # deltaT = (bTime-lastMotionTime).total_seconds() # print(deltaT) if motionTimedOut(): print('Motion timeout test of 2 seconds failed!') exit(-1) print('No timeout after 2 seconds.') lastMotionTime = datetime.datetime.now() sleep(6) if motionTimedOut(): print('Motion timeout test is working after 6 seconds')
mrncmoose/smart_controller
pi-code/thermalPreTest.py
thermalPreTest.py
py
816
python
en
code
3
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 8, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 8, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 11, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 18, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 27, "usage_type": "call" } ]
810789082
from __future__ import division import numpy as np from scipy import sparse from sklearn.metrics.pairwise import euclidean_distances import time # Produce grid points for a 2d grayscale image def get_points_2d(image, res): rows, columns = image.shape grid_x, grid_y = np.mgrid[0:columns:res, 0:rows:res] grid = np.array((grid_x.flatten(), grid_y.flatten())).T return grid # Produce grid points for a 3d grayscale image def get_points_3d(image, res): rows, columns, z = image.shape grid_z, grid_x, grid_y = np.mgrid[0:z:res, 0:columns:res, 0:rows:res] grid = np.array((grid_x.flatten(), grid_y.flatten(), grid_z.flatten())).T return grid # Wendland kernel as a function of r = norm(x-y)/c_sup def dist_kernel(r): return max((1-r, 0))**4 * (4*r + 1) def blowup_S(S, dim): (m, n) = S.shape if dim == 3: S_full = sparse.lil_matrix((3 * m, 3 * n), dtype = np.float32) #S_full = np.zeros((3 * m, 3 * n)) S_full[0::3, 0::3] = S S_full[1::3, 1::3] = S S_full[2::3, 2::3] = S else: S_full = np.zeros((2 * m, 2 * n)) S_full[0::2, 0::2] = S S_full[1::2, 1::2] = S return S_full.tocsc() # Create evaluation matrix given kernel centers (grid points), evaluation points # and kernel support def evaluation_matrix(kernels, points, c_sup, dim): dim = kernels.shape[1] vect_kernel = np.vectorize(dist_kernel) start = time.time() S = euclidean_distances(points, kernels) / c_sup #print("VEC -- euc dist ", (time.time() - start) / 60) # Mark entries with 0 kernel support start = time.time() S[np.where(S > 1)] = -1 non_zero_indices = np.where(S >= 0) #print("VEC -- S[np.where(S > 1)] and np.where(S>=0) ", (time.time() - start) / 60) # Evaluate kernel at points within support start = time.time() S[non_zero_indices] = vect_kernel(S[non_zero_indices]) #print("VEC -- S[non_zero] = vect_kernel ", (time.time() - start) / 60) start = time.time() S[np.where(S == -1)] = 0 #print("VEC -- S[np.where(S == -1)] = 0 ", (time.time() - start) / 60) start = time.time() #full_S = blowup_S_old(S, dim) #print("VEC -- blowup ", (time.time() - start) / 60) return sparse.csc_matrix(S) def evaluation_matrix_blowup(kernels, points, c_sup, dim): dim = kernels.shape[1] vect_kernel = np.vectorize(dist_kernel) start = time.time() S = euclidean_distances(points, kernels) / c_sup #print("VEC -- euc dist ", (time.time() - start) / 60) # Mark entries with 0 kernel support start = time.time() S[np.where(S > 1)] = -1 non_zero_indices = np.where(S >= 0) #print("VEC -- S[np.where(S > 1)] and np.where(S>=0) ", (time.time() - start) / 60) # Evaluate kernel at points within support start = time.time() S[non_zero_indices] = vect_kernel(S[non_zero_indices]) #print("VEC -- S[non_zero] = vect_kernel ", (time.time() - start) / 60) start = time.time() S[np.where(S == -1)] = 0 #print("VEC -- S[np.where(S == -1)] = 0 ", (time.time() - start) / 60) start = time.time() full_S = blowup_S(S, dim) #print("VEC -- blowup ", (time.time() - start) / 60) return full_S # Create velocity field by weighing kernels by alphas def make_V(S, alpha, d): alpha = alpha.flatten() if (S.shape[1] == alpha.shape[0]): lmda = S.dot(alpha) return lmda.reshape(-1, d) else: alpha = alpha.reshape(-1, d) return S.dot(alpha)
polaschwoebel/NonLinearDataAugmentation
vector_fields.py
vector_fields.py
py
3,499
python
en
code
2
github-code
6
[ { "api_name": "numpy.mgrid", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.mgrid", "line_number": 17, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "scipy.sparse.lil_matrix", "line_number": 28, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 28, "usage_type": "name" }, { "api_name": "numpy.float32", "line_number": 28, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.vectorize", "line_number": 43, "usage_type": "call" }, { "api_name": "time.time", "line_number": 44, "usage_type": "call" }, { "api_name": "sklearn.metrics.pairwise.euclidean_distances", "line_number": 45, "usage_type": "call" }, { "api_name": "time.time", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 50, "usage_type": "call" }, { "api_name": "time.time", "line_number": 53, "usage_type": "call" }, { "api_name": "time.time", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 57, "usage_type": "call" }, { "api_name": "time.time", "line_number": 59, "usage_type": "call" }, { "api_name": "scipy.sparse.csc_matrix", "line_number": 62, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 62, "usage_type": "name" }, { "api_name": "numpy.vectorize", "line_number": 66, "usage_type": "call" }, { "api_name": "time.time", "line_number": 67, "usage_type": "call" }, { "api_name": "sklearn.metrics.pairwise.euclidean_distances", "line_number": 68, "usage_type": "call" }, { "api_name": "time.time", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 73, "usage_type": "call" }, { "api_name": "time.time", "line_number": 76, "usage_type": "call" }, { "api_name": "time.time", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 80, "usage_type": "call" }, { "api_name": "time.time", "line_number": 82, "usage_type": "call" } ]
38075843165
import gc from collections import defaultdict import cupy as cp import pandas as pd import torch import torch.nn.functional as F from cuml.metrics import pairwise_distances from cuml.neighbors import NearestNeighbors from torch.utils.data import DataLoader, Dataset, default_collate from tqdm import tqdm from transformers import AutoTokenizer, TrainerCallback from utils import clean_text, f2_score, get_pos_score LANGUAGE_TOKENS = [ "<|lang_pnb|>", "<|lang_tr|>", "<|lang_ur|>", "<|lang_bn|>", "<|lang_hi|>", "<|lang_en|>", "<|lang_kn|>", "<|lang_km|>", "<|lang_zh|>", "<|lang_gu|>", "<|lang_ta|>", "<|lang_my|>", "<|lang_fr|>", "<|lang_swa|>", "<|lang_or|>", "<|lang_mul|>", "<|lang_fil|>", "<|lang_sw|>", "<|lang_es|>", "<|lang_pt|>", "<|lang_pl|>", "<|lang_ru|>", "<|lang_mr|>", "<|lang_it|>", "<|lang_ar|>", "<|lang_bg|>", "<|lang_te|>", "<|lang_as|>", ] CATEGORY_TOKENS = [ "<|category_supplemental|>", "<|category_aligned|>", "<|category_source|>", ] LEVEL_TOKENS = [ "<|level_0|>", "<|level_1|>", "<|level_2|>", "<|level_3|>", "<|level_4|>", "<|level_5|>", "<|level_6|>", "<|level_7|>", "<|level_8|>", "<|level_9|>", "<|level_10|>", ] KIND_TOKENS = [ "<|kind_document|>", "<|kind_video|>", "<|kind_html5|>", "<|kind_exercise|>", "<|kind_audio|>", ] OTHER_TOKENS = [ "<|topic|>", "<|content|>", "<s_title>", "</s_title>", "<s_description>", "</s_description>", "<s_text>", "</s_text>", ] RELATION_TOKENS = [ "<s_parent>", "</s_parent>", "<s_children>", "</s_children>", ] def init_tokenizer(tokenizer_name): tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) tokenizer.add_special_tokens( dict( additional_special_tokens=LANGUAGE_TOKENS + CATEGORY_TOKENS + LEVEL_TOKENS + KIND_TOKENS + OTHER_TOKENS + RELATION_TOKENS ) ) if "sentence-t5" in tokenizer_name: tokenizer.add_special_tokens({"sep_token": "<sep>"}) return tokenizer class LECRDataset(Dataset): def __init__( self, supervised_df, topic_df, content_df, topic_dict, content_dict, correlation_df, tokenizer_name="xlm-roberta-base", max_len=512, use_content_pair=False, is_training=False, use_augmentation=False, objective="siamese", ): self.tokenizer = init_tokenizer(tokenizer_name) self.max_len = max_len self.supervised_df = supervised_df.dropna() self.topic_df = topic_df self.content_df = content_df self.topic_dict, self.content_dict = topic_dict, content_dict self.correlation_df = correlation_df self.use_content_pair = use_content_pair self.is_training = is_training self.use_augmentation = use_augmentation self.objective = objective self.topic_texts, self.content_texts, self.labels = self.process_csv() def process_csv(self): # get text pairs topic_ids = self.supervised_df.topic_id.values content_ids = self.supervised_df.content_ids.values labels = list(self.supervised_df.target.values) topic_texts = [] content_texts = [] for topic_id in topic_ids: topic_texts.append(self.topic_dict[topic_id]) for content_id in content_ids: content_texts.append(self.content_dict[content_id]) set_topic_ids = set(topic_ids) use_all_pairs = ( False # use all pair, no need to be in the intersection of content_ids of topic ids ) if self.use_content_pair: # todo: create content pairs from each topic content_to_topic = defaultdict(lambda: []) topic_to_content = defaultdict(lambda: []) pairs = set() for i, row in tqdm(self.correlation_df.iterrows()): content_list = row["content_ids"].split(" ") if row["topic_id"] not in set_topic_ids: continue for content_id in content_list: content_to_topic[content_id].append(row["topic_id"]) topic_to_content[row["topic_id"]].append(content_id) if len(content_list) <= 1: continue if use_all_pairs: for idx1 in range(len(content_list) - 1): for idx2 in range(idx1 + 1, len(content_list)): if (content_list[idx1], content_list[idx2],) not in pairs and ( content_list[idx2], content_list[idx1], ) not in pairs: pairs.add((content_list[idx1], content_list[idx2])) if not use_all_pairs: for content_id, topics in tqdm(content_to_topic.items()): intersection_contents = list( set.intersection(*[set(topic_to_content[topic_id]) for topic_id in topics]) ) for idx1 in range(len(intersection_contents) - 1): for idx2 in range(idx1 + 1, len(intersection_contents)): if ( intersection_contents[idx1], intersection_contents[idx2], ) not in pairs and ( intersection_contents[idx2], intersection_contents[idx1], ) not in pairs: pairs.add( ( intersection_contents[idx1], intersection_contents[idx2], ) ) for pair in pairs: topic_texts.append(self.content_dict[pair[0]]) content_texts.append(self.content_dict[pair[1]]) labels.append(1) return topic_texts, content_texts, labels def __len__(self): if self.is_training: return len(self.labels) else: return 1 def augment(self, inputs): probability_matrix = torch.full(inputs["input_ids"].shape, 0.15) masked_indices = torch.bernoulli(probability_matrix).bool() indices_replaced = ( torch.bernoulli(torch.full(inputs["input_ids"].shape, 0.8)).bool() & masked_indices ) inputs["input_ids"][indices_replaced] = self.tokenizer.convert_tokens_to_ids( self.tokenizer.mask_token ) inputs["input_ids"] *= inputs["attention_mask"] return inputs def __getitem__(self, idx): topic_text = self.topic_texts[idx] content_text = self.content_texts[idx] label = self.labels[idx] if self.objective == "siamese": # topic if isinstance(topic_text, tuple): topic_inputs = self.tokenizer.encode_plus( topic_text[0], topic_text[1], return_tensors=None, add_special_tokens=True, max_length=self.max_len, padding="max_length", truncation=True, ) else: topic_inputs = self.tokenizer.encode_plus( topic_text, return_tensors=None, add_special_tokens=True, max_length=self.max_len, padding="max_length", truncation=True, ) for k, v in topic_inputs.items(): topic_inputs[k] = torch.tensor(v, dtype=torch.long) # content content_inputs = self.tokenizer.encode_plus( content_text, return_tensors=None, add_special_tokens=True, max_length=self.max_len, padding="max_length", truncation=True, ) for k, v in content_inputs.items(): content_inputs[k] = torch.tensor(v, dtype=torch.long) if isinstance(topic_text, tuple): topic_text = topic_text[0] + topic_text[1] if self.is_training and self.use_augmentation: topic_inputs = self.augment(topic_inputs) content_inputs = self.augment(content_inputs) return topic_inputs, content_inputs, topic_inputs, label elif self.objective == "classification": combined_inputs = self.tokenizer.encode_plus( topic_text, content_text, return_tensors=None, add_special_tokens=True, max_length=self.max_len, padding="max_length", truncation=True, ) for k, v in combined_inputs.items(): combined_inputs[k] = torch.tensor(v, dtype=torch.long) if self.is_training and self.use_augmentation: combined_inputs = self.augment(combined_inputs) return combined_inputs, combined_inputs, combined_inputs, label else: raise ValueError("Only support siamese/classification for now.") class InferenceDataset(Dataset): def __init__(self, texts, tokenizer_name="xlm-roberta-base", max_len=512): self.texts = texts self.tokenizer = init_tokenizer(tokenizer_name) self.max_len = max_len def __len__(self): return len(self.texts) def __getitem__(self, idx): text = self.texts[idx] # topic inputs = self.tokenizer.encode_plus( text, return_tensors=None, add_special_tokens=True, max_length=self.max_len, padding="max_length", truncation=True, ) for k, v in inputs.items(): inputs[k] = torch.tensor(v, dtype=torch.long) return inputs def collate_fn(inputs): inputs = default_collate(inputs) mask_len = int(inputs["attention_mask"].sum(axis=1).max()) for k, v in inputs.items(): inputs[k] = inputs[k][:, :mask_len] return inputs class DatasetUpdateCallback(TrainerCallback): """ Trigger re-computing dataset A hack that modifies the train/val dataset, pointed by Trainer's dataloader 0. Calculate new train/val topic/content embeddings, train KNN, get new top-k 1. Calculate top-k max positive score, compare to current val best, if greater, continue to step 2, else do nothing 2. Update supervised_df and update dataset: self.topic_texts, self.content_texts, self.labels = self.process_csv() """ def __init__( self, trainer, train_topic_ids, val_topic_ids, topic_df, content_df, topic_dict, content_dict, correlation_df, tokenizer_name, max_len, best_score=0, top_k=50, use_translated=False, mix_translated=False, fold=0, ): super(DatasetUpdateCallback, self).__init__() self.trainer = trainer self.topic_df = topic_df self.content_df = content_df self.correlation_df = correlation_df self.best_score = best_score self.top_k = top_k self.use_translated = use_translated self.mix_translated = mix_translated self.fold = fold self.tokenizer = init_tokenizer(tokenizer_name) self.topic_dict, self.content_dict = topic_dict, content_dict train_topic_texts = [ topic_dict[topic_id] for topic_id in self.topic_df.id.values if topic_id in train_topic_ids ] self.train_topic_ids = [ topic_id for topic_id in self.topic_df.id.values if topic_id in train_topic_ids ] self.train_topic_languages = [] for topic_id, topic_lang in zip(self.topic_df.id.values, self.topic_df.language.values): if topic_id in train_topic_ids: self.train_topic_languages.append(topic_lang) val_topic_texts = [ topic_dict[topic_id] for topic_id in self.topic_df.id.values if topic_id in val_topic_ids ] self.val_topic_ids = [ topic_id for topic_id in self.topic_df.id.values if topic_id in val_topic_ids ] content_texts = [ content_dict[content_id] for content_id in self.content_df.id.values if content_id.startswith("c_") ] def inference_collate_fn(inputs): inputs = default_collate(inputs) mask_len = int(inputs["attention_mask"].sum(axis=1).max()) for k, v in inputs.items(): inputs[k] = inputs[k][:, :mask_len] return inputs train_topic_dataset = InferenceDataset( texts=train_topic_texts, tokenizer_name=tokenizer_name, max_len=max_len ) self.train_topic_dataloader = DataLoader( train_topic_dataset, num_workers=self.trainer.args.dataloader_num_workers, batch_size=32, shuffle=False, collate_fn=inference_collate_fn, ) val_topic_dataset = InferenceDataset( texts=val_topic_texts, tokenizer_name=tokenizer_name, max_len=max_len ) self.val_topic_dataloader = DataLoader( val_topic_dataset, num_workers=self.trainer.args.dataloader_num_workers, batch_size=32, shuffle=False, collate_fn=inference_collate_fn, ) content_dataset = InferenceDataset( texts=content_texts, tokenizer_name=tokenizer_name, max_len=max_len ) self.content_dataloader = DataLoader( content_dataset, num_workers=self.trainer.args.dataloader_num_workers, batch_size=32, shuffle=False, collate_fn=inference_collate_fn, ) def on_train_begin(self, args, state, control, **kwargs): self.on_epoch_end(args, state, control, **kwargs) def on_epoch_end(self, args, state, control, **kwargs): local_rank = args.local_rank if args.local_rank != -1 else 0 with cp.cuda.Device(local_rank): torch.cuda.empty_cache() print("Callback on local_rank =", local_rank) self.trainer.model.eval() print("On Epoch Begin") topic_embs = [] device = f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu" with torch.no_grad(): for inputs in tqdm(self.val_topic_dataloader): for k, v in inputs.items(): inputs[k] = inputs[k].to(device) out = self.trainer.model.feature(inputs) topic_embs.extend(out.cpu().detach().numpy()) content_embs = [] # TODO: only use original content embeddings to avoid translation confusing for inputs in tqdm(self.content_dataloader): for k, v in inputs.items(): inputs[k] = inputs[k].to(device) out = self.trainer.model.feature(inputs) content_embs.extend(out.cpu().detach().numpy()) # Transfer predictions to gpu with cp.cuda.Device(local_rank): topic_embs_gpu = cp.array(topic_embs) content_embs_gpu = cp.array(content_embs) # Release memory torch.cuda.empty_cache() # KNN model content_idx_to_id = {} for idx, row in self.content_df.iterrows(): content_idx_to_id[idx] = row.id print("Evaluating current score...") if self.use_translated: # get 500 nearest contents, then select top k contents that is in original contents, just approximate, can't check all original_indices = [ # indices of original contents in self.content_df i for i, emb in enumerate(content_embs) if self.content_df.id.values[i].startswith("c_") ] # original_content_embs = [ # emb # for i, emb in enumerate(content_embs) # if self.content_df.id.values[i].startswith("c_") # ] # original_content_embs_gpu = cp.array(original_content_embs) original_content_embs_gpu = content_embs_gpu neighbors_model = NearestNeighbors(n_neighbors=500, metric="cosine") neighbors_model.fit(original_content_embs_gpu) indices = neighbors_model.kneighbors(topic_embs_gpu, return_distance=False) for selected_k in [5, 10, 20, 50, 100, 200]: predictions = [] for k in tqdm(range(len(indices))): pred = indices[k] # original_contents = [self.content_df.loc[ind, "id"] for ind in pred.get() if self.content_df.loc[ind, "id"].startswith("c_")] # original_contents = [content_idx_to_id[ind] for ind in pred.get() if content_idx_to_id[ind].startswith("c_")] original_contents = [ content_idx_to_id[original_indices[ind]] for ind in pred.get() ] p = " ".join(original_contents[:selected_k]) predictions.append(p) knn_preds = pd.DataFrame( {"topic_id": self.val_topic_ids, "content_ids": predictions} ).sort_values("topic_id") gt = self.correlation_df[ self.correlation_df.topic_id.isin(self.val_topic_ids) ].sort_values("topic_id") score = get_pos_score( gt["content_ids"], knn_preds.sort_values("topic_id")["content_ids"], selected_k, ) print( "Selecting", selected_k, "nearest contents", "top-k score =", f2_score( gt["content_ids"], knn_preds.sort_values("topic_id")["content_ids"], ), "max positive score =", score, ) print("Training KNN model...") print("Generating KNN predictions with top_k =", self.top_k) neighbors_model = NearestNeighbors(n_neighbors=self.top_k, metric="cosine") neighbors_model.fit(original_content_embs_gpu) print("Generating embedding for validation topics") indices = neighbors_model.kneighbors(topic_embs_gpu, return_distance=False) predictions = [] for k in tqdm(range(len(indices))): pred = indices[k] # original_contents = [self.content_df.loc[ind, "id"] for ind in pred.get() if self.content_df.loc[ind, "id"].startswith("c_")] # original_contents = [content_idx_to_id[ind] for ind in pred.get() if content_idx_to_id[ind].startswith("c_")] original_contents = [ content_idx_to_id[original_indices[ind]] for ind in pred.get() ] p = " ".join(original_contents[: self.top_k]) predictions.append(p) else: for selected_k in [5, 10, 20, 50, 100, 200]: neighbors_model = NearestNeighbors(n_neighbors=selected_k, metric="cosine") neighbors_model.fit(content_embs_gpu) indices = neighbors_model.kneighbors(topic_embs_gpu, return_distance=False) predictions = [] for k in tqdm(range(len(indices))): pred = indices[k] # p = " ".join([self.content_df.loc[ind, "id"] for ind in pred.get()]) p = " ".join([content_idx_to_id[ind] for ind in pred.get()]) predictions.append(p) knn_preds = pd.DataFrame( {"topic_id": self.val_topic_ids, "content_ids": predictions} ).sort_values("topic_id") gt = self.correlation_df[ self.correlation_df.topic_id.isin(self.val_topic_ids) ].sort_values("topic_id") score = get_pos_score( gt["content_ids"], knn_preds.sort_values("topic_id")["content_ids"], selected_k, ) print( "Selecting", selected_k, "nearest contents", "top-k score =", f2_score( gt["content_ids"], knn_preds.sort_values("topic_id")["content_ids"], ), "max positive score =", score, ) print("Training KNN model...") print("Generating KNN predictions with top_k =", self.top_k) neighbors_model = NearestNeighbors(n_neighbors=self.top_k, metric="cosine") neighbors_model.fit(content_embs_gpu) print("Generating embedding for validation topics") indices = neighbors_model.kneighbors(topic_embs_gpu, return_distance=False) predictions = [] for k in tqdm(range(len(indices))): pred = indices[k] # p = " ".join([self.content_df.loc[ind, "id"] for ind in pred.get()]) p = " ".join([content_idx_to_id[ind] for ind in pred.get()]) predictions.append(p) knn_preds = pd.DataFrame( {"topic_id": self.val_topic_ids, "content_ids": predictions} ).sort_values("topic_id") score = get_pos_score( gt["content_ids"], knn_preds.sort_values("topic_id")["content_ids"], self.top_k, ) print("Current Score:", score, "Best Score:", self.best_score) if score > self.best_score: self.best_score = score print("saving best model to data/ folder") # torch.save(self.trainer.model.state_dict(), f"data/siamese_model_{score}.pth") generate_new_dataset_every_epoch = True if generate_new_dataset_every_epoch or (score == self.best_score): # generate new pairs in dataset print("Building new validation supervised df") new_val_supervised_df = build_new_supervised_df(knn_preds, self.correlation_df)[ ["topic_id", "content_ids", "target"] ].sort_values(["topic_id", "content_ids"]) if score == self.best_score: # only save for the best checkpoint print("saving new_val_supervised_df to data/ folder") new_val_supervised_df.to_csv("data/new_val_supervised_df.csv") # get top-k for training set # TODO: only get original content neighbors for original topics print("Generating embedding for train topics") train_topic_embs = [] with torch.no_grad(): for inputs in tqdm(self.train_topic_dataloader): for k, v in inputs.items(): inputs[k] = inputs[k].to(device) out = self.trainer.model.feature(inputs) train_topic_embs.extend(out.cpu().detach().numpy()) with cp.cuda.Device(local_rank): train_topic_embs_gpu = cp.array(train_topic_embs) train_indices = neighbors_model.kneighbors( train_topic_embs_gpu, return_distance=False ) # if self.use_translated: # topic_language_df = pd.DataFrame({ # "topic_id": self.train_topic_ids, # "language": self.train_topic_languages # }) train_predictions = [] for k in tqdm(range(len(train_indices))): pred = train_indices[k] # p = " ".join([self.content_df.loc[ind, "id"] for ind in pred.get()]) if self.use_translated: p = " ".join( [content_idx_to_id[original_indices[ind]] for ind in pred.get()] ) else: p = " ".join([content_idx_to_id[ind] for ind in pred.get()]) train_predictions.append(p) train_knn_preds = pd.DataFrame( { "topic_id": self.train_topic_ids, "content_ids": train_predictions, "language": self.train_topic_languages, } ).sort_values("topic_id") print("Building new train supervised df") # if self.use_translated: # count_dict = { # "ar": 3701, # "as": 167, # "bg": 2867, # "bn": 2176, # "en": 36161, # "es": 13910, # "fil": 247, # "fr": 3701, # "gu": 2320, # "hi": 1786, # "it": 866, # "km": 121, # "kn": 119, # "mr": 300, # "mul": 4, # "my": 135, # "or": 70, # "pl": 43, # "pnb": 51, # "pt": 4177, # "ru": 34, # "sw": 2860, # "swa": 35, # "ta": 60, # "te": 93, # "tr": 40, # "ur": 66, # "zh": 862, # } # times_positive_samples = 4 # # select all original topics and a part of translated topics # translated_knn_preds = ( # train_knn_preds[~train_knn_preds.topic_id.str.startswith("t_")] # .groupby("language") # .apply( # lambda x: x.sample( # n=count_dict[x["language"].iat[0]] * times_positive_samples, # replace=True, # ) # ) # .reset_index(drop=True) # ) # original_knn_preds = train_knn_preds[ # train_knn_preds.topic_id.str.startswith("t_") # ] # train_knn_preds = pd.concat([original_knn_preds, translated_knn_preds]) new_train_supervised_df = build_new_supervised_df( train_knn_preds, self.correlation_df ) if self.use_translated: # Only add positive cases in training set for translated topics translated_supervised_df = new_train_supervised_df[ ~new_train_supervised_df.topic_id.str.startswith("t_") & new_train_supervised_df.target == 1 ].copy() # Only original contents for original topics original_supervised_df = new_train_supervised_df[ new_train_supervised_df.topic_id.str.startswith("t_") & new_train_supervised_df.content_ids.str.startswith("c_") ].copy() # TODO: duplicate number of positive by using translated data id_to_language = {} for _, row in tqdm(self.topic_df.iterrows()): id_to_language[row.id] = row.language original_supervised_df["language"] = original_supervised_df["topic_id"].apply( lambda x: id_to_language[x] ) count_df = ( original_supervised_df[original_supervised_df.target == 1] .groupby("language") .size() .reset_index(name="counts") ) count_dict = {} for _, row in count_df.iterrows(): count_dict[row.language] = row.counts times_positive_samples = 3 translated_supervised_df["language"] = translated_supervised_df[ "topic_id" ].apply(lambda x: id_to_language[x]) translated_supervised_df = ( translated_supervised_df.groupby("language") .apply( lambda x: x.sample( n=count_dict[x["language"].iat[0]] * times_positive_samples, replace=True, ) ) .reset_index(drop=True) ) original_supervised_df = original_supervised_df.drop(columns=["language"]) translated_supervised_df = translated_supervised_df.drop(columns=["language"]) new_train_supervised_df = pd.concat( [translated_supervised_df, original_supervised_df] )[["topic_id", "content_ids", "target"]].sort_values( ["topic_id", "content_ids"] ) if score == self.best_score: # only save for the best checkpoint print("saving new_train_supervised_df to data/ folder") new_train_supervised_df.to_csv("data/new_train_supervised_df.csv") # update train_dataset and val_dataset print("preprocess csv for train/validation topics, contents, labels") self.trainer.train_dataset.supervised_df = new_train_supervised_df.dropna() ( self.trainer.train_dataset.topic_texts, self.trainer.train_dataset.content_texts, self.trainer.train_dataset.labels, ) = self.trainer.train_dataset.process_csv() self.trainer.eval_dataset.supervised_df = new_val_supervised_df.dropna() ( self.trainer.eval_dataset.topic_texts, self.trainer.eval_dataset.content_texts, self.trainer.eval_dataset.labels, ) = self.trainer.eval_dataset.process_csv() print("Saving knn csvs ...") train_knn_preds.to_csv(f"data/train_knn_fold{self.fold}.csv") knn_preds.to_csv(f"data/val_knn_fold{self.fold}.csv") del ( train_topic_embs, train_topic_embs_gpu, train_knn_preds, train_indices, train_predictions, ) gc.collect() del ( topic_embs, content_embs, topic_embs_gpu, content_embs_gpu, knn_preds, indices, neighbors_model, predictions, ) gc.collect() torch.cuda.empty_cache() if self.mix_translated: self.use_translated = not self.use_translated def build_new_supervised_df(knn_df, correlations): # Create lists for training topics_ids = [] content_ids = [] targets = [] # Iterate over each topic in df mapping = set() # get all class 1 in correlations topic_ids = set(knn_df.topic_id.values) filtered_correlations = correlations[correlations["topic_id"].isin(topic_ids)] for i, row in tqdm(filtered_correlations.iterrows()): if str(row["content_ids"]) and str(row["content_ids"]) != "nan": content_ids = str(row["content_ids"]).split(" ") for content_id in content_ids: mapping.add((row["topic_id"], content_id, 1)) for i, row in tqdm(knn_df.iterrows()): if str(row["content_ids"]) and str(row["content_ids"]) != "nan": content_ids = str(row["content_ids"]).split(" ") for content_id in content_ids: if ( row["topic_id"], content_id, 1, ) not in mapping: # because mapping already contains all positive cases mapping.add((row["topic_id"], content_id, 0)) # Build training dataset mapping = list(mapping) new_df = pd.DataFrame( { "topic_id": [item[0] for item in mapping if item[1]], "content_ids": [item[1] for item in mapping if item[1]], "target": [item[2] for item in mapping if item[1]], } ) # Release memory del topics_ids, content_ids gc.collect() return new_df def collate_fn(batch): batch = default_collate(batch) topic_inputs, content_inputs, combined_inputs, labels = batch mask_len = int(topic_inputs["attention_mask"].sum(axis=1).max()) for k, v in topic_inputs.items(): topic_inputs[k] = topic_inputs[k][:, :mask_len] mask_len = int(content_inputs["attention_mask"].sum(axis=1).max()) for k, v in content_inputs.items(): content_inputs[k] = content_inputs[k][:, :mask_len] mask_len = int(combined_inputs["attention_mask"].sum(axis=1).max()) for k, v in combined_inputs.items(): combined_inputs[k] = combined_inputs[k][:, :mask_len] return { "topic_inputs": topic_inputs, "content_inputs": content_inputs, "combined_inputs": combined_inputs, "labels": labels, }
thanhhau097/lecr
dataset.py
dataset.py
py
35,343
python
en
code
0
github-code
6
[ { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 96, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 96, "usage_type": "name" }, { "api_name": "torch.utils.data.Dataset", "line_number": 112, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 163, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 164, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 168, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.full", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.bernoulli", "line_number": 226, "usage_type": "call" }, { "api_name": "torch.bernoulli", "line_number": 228, "usage_type": "call" }, { "api_name": "torch.full", "line_number": 228, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 264, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 264, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 276, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 276, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 297, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 297, "usage_type": "attribute" }, { "api_name": "torch.utils.data.Dataset", "line_number": 307, "usage_type": "name" }, { "api_name": "torch.tensor", "line_number": 330, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 330, "usage_type": "attribute" }, { "api_name": "torch.utils.data.default_collate", "line_number": 336, "usage_type": "call" }, { "api_name": "transformers.TrainerCallback", "line_number": 344, "usage_type": "name" }, { "api_name": "torch.utils.data.default_collate", "line_number": 417, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 427, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 438, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 449, "usage_type": "call" }, { "api_name": "cupy.cuda.Device", "line_number": 462, "usage_type": "call" }, { "api_name": "cupy.cuda", "line_number": 462, "usage_type": "attribute" }, { "api_name": "torch.cuda.empty_cache", "line_number": 463, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 463, "usage_type": "attribute" }, { "api_name": "torch.cuda.is_available", "line_number": 468, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 468, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 470, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 471, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 479, "usage_type": "call" }, { "api_name": "cupy.cuda.Device", "line_number": 486, "usage_type": "call" }, { "api_name": "cupy.cuda", "line_number": 486, "usage_type": "attribute" }, { "api_name": "cupy.array", "line_number": 487, "usage_type": "call" }, { "api_name": "cupy.array", "line_number": 488, "usage_type": "call" }, { "api_name": "torch.cuda.empty_cache", "line_number": 491, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 491, "usage_type": "attribute" }, { "api_name": "cuml.neighbors.NearestNeighbors", "line_number": 514, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 520, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 530, "usage_type": "call" }, { "api_name": "utils.get_pos_score", "line_number": 537, "usage_type": "call" }, { "api_name": "utils.f2_score", "line_number": 547, "usage_type": "call" }, { "api_name": "cuml.neighbors.NearestNeighbors", "line_number": 557, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 563, "usage_type": "call" }, { "api_name": "cuml.neighbors.NearestNeighbors", "line_number": 574, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 579, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 585, "usage_type": "call" }, { "api_name": "utils.get_pos_score", "line_number": 592, "usage_type": "call" }, { "api_name": "utils.f2_score", "line_number": 602, "usage_type": "call" }, { "api_name": "cuml.neighbors.NearestNeighbors", "line_number": 612, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 618, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 624, "usage_type": "call" }, { "api_name": "utils.get_pos_score", "line_number": 628, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 656, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 657, "usage_type": "call" }, { "api_name": "cupy.cuda.Device", "line_number": 663, "usage_type": "call" }, { "api_name": "cupy.cuda", "line_number": 663, "usage_type": "attribute" }, { "api_name": "cupy.array", "line_number": 664, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 677, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 689, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 770, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 804, "usage_type": "call" }, { "api_name": "gc.collect", "line_number": 840, "usage_type": "call" }, { "api_name": "gc.collect", "line_number": 852, "usage_type": "call" }, { "api_name": "torch.cuda.empty_cache", "line_number": 853, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 853, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 870, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 876, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 889, "usage_type": "call" }, { "api_name": "gc.collect", "line_number": 898, "usage_type": "call" }, { "api_name": "torch.utils.data.default_collate", "line_number": 903, "usage_type": "call" } ]
15653063144
from aiogram import Bot, types, Dispatcher, executor import logging from config import TOKEN, html import parser as ps import time import random import os import qrcode def make_qr(text): qr = qrcode.QRCode() qr.add_data(text) img_qr = qr.make_image(fill_color='white', back_color="black") img_qr.save('qr.png') bot = Bot(token=TOKEN) dp = Dispatcher(bot) logging.basicConfig(level=logging.INFO) async def on_startup(_): print('Бот онлайн') @dp.message_handler(commands='numhent') async def numhent(msg : types.Message): number = msg.text.split(' ', 1) try: ps.get_html(html,number[1]) photo = ps.parse('content', number[1]) await msg.reply_photo(photo,caption=number[1]) except: await msg.reply('отправь число дурак') @dp.message_handler(commands='hent') async def hent(msg : types.Message): rnd = random.randint(1,6330000) ps.get_html(html,rnd) t = ps.parse('content', rnd) await msg.reply_photo(t,caption=rnd) @dp.message_handler(commands='qr') async def test(msg : types.Message): split = msg.text.split(' ', 1)[1] make_qr(split) await msg.reply_photo(open('qr.png', 'rb'), caption=split) if __name__ == '__main__': executor.start_polling(dp,skip_updates=True, on_startup=on_startup)
sarenis/tg_parsing_bot
bot.py
bot.py
py
1,329
python
en
code
0
github-code
6
[ { "api_name": "qrcode.QRCode", "line_number": 11, "usage_type": "call" }, { "api_name": "aiogram.Bot", "line_number": 17, "usage_type": "call" }, { "api_name": "config.TOKEN", "line_number": 17, "usage_type": "name" }, { "api_name": "aiogram.Dispatcher", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 19, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 19, "usage_type": "attribute" }, { "api_name": "aiogram.types.Message", "line_number": 25, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 25, "usage_type": "name" }, { "api_name": "parser.get_html", "line_number": 28, "usage_type": "call" }, { "api_name": "config.html", "line_number": 28, "usage_type": "argument" }, { "api_name": "parser.parse", "line_number": 29, "usage_type": "call" }, { "api_name": "aiogram.types.Message", "line_number": 35, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 35, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 36, "usage_type": "call" }, { "api_name": "parser.get_html", "line_number": 37, "usage_type": "call" }, { "api_name": "config.html", "line_number": 37, "usage_type": "argument" }, { "api_name": "parser.parse", "line_number": 38, "usage_type": "call" }, { "api_name": "aiogram.types.Message", "line_number": 42, "usage_type": "attribute" }, { "api_name": "aiogram.types", "line_number": 42, "usage_type": "name" }, { "api_name": "aiogram.executor.start_polling", "line_number": 48, "usage_type": "call" }, { "api_name": "aiogram.executor", "line_number": 48, "usage_type": "name" } ]
17534446407
from functools import reduce from typing import List from project.caretaker import Caretaker from project.cheetah import Cheetah from project.keeper import Keeper from project.lion import Lion from project.tiger import Tiger from project.vet import Vet from project.animal import Animal from project.worker import Worker class Zoo: def __init__(self, name: str, budget: int, animal_capacity: int, workers_capacity: int ): # public instance attribute self.name = name # private attributes self.__budget = budget self.__animal_capacity = animal_capacity self.__workers_capacity = workers_capacity # public instance attributes self.animals: List[Animal] = [] self.workers: List[Worker] = [] def add_animal(self, animal: Animal, price: int) -> str: if (price <= self.__budget) and (len(self.animals) < self.__animal_capacity): self.animals.append(animal) self.__budget -= price return f'{animal.name} the {animal.__class__.__name__} added to the zoo' # or type(animal).__name__ if (price > self.__budget) and (len(self.animals) < self.__animal_capacity): return 'Not enough budget' return 'Not enough space for animal' def hire_worker(self, worker): if len(self.workers) < self.__workers_capacity: self.workers.append(worker) return f'{worker.name} the {worker.__class__.__name__} hired successfully' # or {type(worker).__name__} return 'Not enough space for worker' def fire_worker(self, worker_name): worker = [w for w in self.workers if w.name == worker_name] if worker: self.workers.remove(worker[0]) return f'{worker[0].name} fired successfully' return f'There is no {worker_name} in the zoo' def pay_workers(self): # !!!!! workers_payment = sum([w.salary for w in self.workers]) if workers_payment <= self.__budget: self.__budget -= workers_payment return f'You payed your workers. They are happy. ' \ f'Budget left: {self.__budget}' return 'You have no budget to pay your workers. They are unhappy' def tend_animals(self): # get_needs = self.money_for_care amount_to_pay = sum([t.get_needs() for t in self.animals]) if self.__budget >= amount_to_pay: self.__budget -= amount_to_pay return f"You tended all the animals. They are happy. Budget left: {self.__budget}" return "You have no budget to tend the animals. They are unhappy." def profit(self, amount) -> None: self.__budget += amount def animals_status(self): animals_types = ['Lion', 'Tiger', 'Cheetah'] animals_list = {idx: [] for idx in range(0, 3)} for animal in self.animals: idx = animals_types.index(type(animal).__name__) animals_list[idx].append(animal) lions, tigers, cheetahs = animals_list[0], animals_list[1], animals_list[2] # # lions = [animal for animal in self.animals if type(animal).__name__ == animals_types[0]] # tigers = [animal for animal in self.animals if type(animal).__name__ == animals_types[1]] # cheetahs = [animal for animal in self.animals if type(animal).__name__ == animals_types[2]] result = [f'You have {len(self.animals)} animals'] result.append(f'----- {len(lions)} Lions:') result.append('\n'.join([animal.__repr__() for animal in lions])) result.append(f'----- {len(tigers)} Tigers:') result.append('\n'.join([animal.__repr__() for animal in tigers])) result.append(f'----- {len(cheetahs)} Cheetahs:') result.append('\n'.join([animal.__repr__() for animal in cheetahs])) return '\n'.join(result) def workers_status(self): keepers = [w for w in self.workers if w.__class__.__name__ == 'Keeper'] caretakers = [w for w in self.workers if w.__class__.__name__ == 'Caretaker'] vets = [w for w in self.workers if w.__class__.__name__ == 'Vet'] result = f"You have {len(self.workers)} workers\n" result += f'----- {len(keepers)} Keepers:\n' result += '\n'.join([k.__repr__() for k in keepers]) + '\n' result += f'----- {len(caretakers)} Caretakers:\n' result += '\n'.join([c.__repr__() for c in caretakers]) + '\n' result += f'----- {len(vets)} Vets:\n' result += '\n'.join([v.__repr__() for v in vets]) return result
emilynaydenova/SoftUni-Python-Web-Development
Python-OOP-Oct2023/Exercises/04.Encapsulation/wild_cat_zoo/project/zoo.py
zoo.py
py
4,687
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 30, "usage_type": "name" }, { "api_name": "project.animal.Animal", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 31, "usage_type": "name" }, { "api_name": "project.worker.Worker", "line_number": 31, "usage_type": "name" }, { "api_name": "project.animal.Animal", "line_number": 33, "usage_type": "name" } ]
29214466760
from celery import shared_task, Celery from django.utils import timezone from .models import Post app = Celery() @shared_task def publish_posts_task(): posts = Post.objects.filter( status=False, published_date__lte=timezone.now() ) for post in posts: post.status = True post.save() return ( print(f"{posts.count()} published!") if posts else print("There is no post to publish") ) @app.on_after_finalize.connect def setup_periodic_tasks(sender, **kwargs): sender.add_periodic_task( 60 * 60, publish_posts_task().s(), name="published posts every one hour", )
smz6990/DRF-Blog
core/blog/tasks.py
tasks.py
py
665
python
en
code
2
github-code
6
[ { "api_name": "celery.Celery", "line_number": 7, "usage_type": "call" }, { "api_name": "models.Post.objects.filter", "line_number": 12, "usage_type": "call" }, { "api_name": "models.Post.objects", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.Post", "line_number": 12, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 13, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 13, "usage_type": "name" }, { "api_name": "celery.shared_task", "line_number": 10, "usage_type": "name" } ]
21138667122
#!/usr/bin/python3 # -*-coding:utf-8 -*- # Reference:********************************************** # @Time    : 2019/11/1 23:30 # @Author  : Raymond Luo # @File    : train_emb.py # @User    : luoli # @Software: PyCharm # Reference:********************************************** import pickle from gensim.models import Word2Vec, KeyedVectors import pandas as pd import torch.nn as nn import torch def train_motif_wordemb(path): data = pd.read_csv(path) walk_a = data['user_neighbor'].values.tolist() walk_b = data['target_neighbor'].values.tolist() walk_a.extend(walk_b) walk = [] for line in walk_a: new_line = line[1:-1].split(", ") walk.append(new_line) model = Word2Vec(walk, size=128, window=3, min_count=0, sg=1, workers=12, iter=2, compute_loss=True) print("Node2vec loss:", model.get_latest_training_loss()) model.wv.save_word2vec_format("../model/motif_walk.emb") def change_emb_index(emb_path, uid2idx_path): with open(uid2idx_path, "rb") as f: uid2idx = pickle.load(f) with open(emb_path, "r") as f: emb_file = f.readlines() head = 1 new_file = [] for line in emb_file: if head: head = 0 new_file.append(line) continue # 跳过第一行 line_list = line.split(" ") idx = uid2idx[int(line_list[0])] # uid 2 idx line_list[0] = str(idx) # 转回去 new_line = " ".join(line_list) new_file.append(new_line) with open("../model/motif_walk_idx.emb", "w", encoding="utf-8") as f: for line in new_file: f.write(line) if __name__ == "__main__": # train_motif_wordemb("../data/train_data.csv") # change_emb_index("../model/motif_walk.emb", "../data/uid_2_idx.pkl") # test # 构建词向量 word_vectors = KeyedVectors.load_word2vec_format("../model/motif_walk_idx.emb", binary=False) # 节点向量 weight = torch.FloatTensor(word_vectors.syn0) # 获取2D numpy矩阵 emb = nn.Embedding.from_pretrained(weight, freeze=False) print(emb(torch.LongTensor([47066])))
RManLuo/MotifGNN
src_sjjy/train_emb.py
train_emb.py
py
2,114
python
en
code
7
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 18, "usage_type": "call" }, { "api_name": "gensim.models.Word2Vec", "line_number": 26, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 33, "usage_type": "call" }, { "api_name": "gensim.models.KeyedVectors.load_word2vec_format", "line_number": 58, "usage_type": "call" }, { "api_name": "gensim.models.KeyedVectors", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.FloatTensor", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn.Embedding.from_pretrained", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn.Embedding", "line_number": 60, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "name" }, { "api_name": "torch.LongTensor", "line_number": 61, "usage_type": "call" } ]
18480731961
#!/usr/bin/env python # coding=utf-8 import datetime import hashlib import json class LastUpdated(): def __init__(self, file='last-updated.json'): self.file = file def read(self): with open(self.file, 'r') as f: data = json.load(f) return { 'amiibo_sha1': data['amiibo_sha1'], 'game_info_sha1': data['game_info_sha1'], 'timestamp': datetime.datetime.strptime(data['timestamp'], '%Y-%m-%dT%H:%M:%S.%f'), } def read_timestamp(self): return self.read()['timestamp'] def write(self, amiibo_sha1, game_info_sha1, timestamp): with open(self.file, 'w') as f: json.dump({ 'amiibo_sha1': amiibo_sha1, 'game_info_sha1': game_info_sha1, 'timestamp': timestamp.isoformat(), }, f, sort_keys=True) def hash(self, data): return hashlib.sha1(data).hexdigest() def update(self, data, data1): amiibo_sha1 = self.hash(data) game_info_sha1 = self.hash(data1) try: last_update = self.read() except Exception as e: print(e) last_update = None updated = False if last_update is None or last_update['amiibo_sha1'] != amiibo_sha1 or last_update['game_info_sha1'] != game_info_sha1: last_update = { 'amiibo_sha1': amiibo_sha1, 'game_info_sha1': game_info_sha1, 'timestamp': datetime.datetime.utcnow(), } self.write(**last_update) updated = True return last_update, updated if __name__ == '__main__': last_updater = LastUpdated() with open('database/amiibo.json', 'rb') as f: with open('database/games_info.json', 'rb') as g: last_update, updated = last_updater.update(f.read(), g.read()) if updated: print('Updated: {}'.format(last_updater.file)) print('amiibo_sha1: {}'.format(last_update['amiibo_sha1'])) print('game_info_sha1: {}'.format(last_update['game_info_sha1'])) print('timestamp: {}'.format(last_update['timestamp'].isoformat()))
N3evin/AmiiboAPI
last_updated.py
last_updated.py
py
2,178
python
en
code
459
github-code
6
[ { "api_name": "json.load", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 20, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 20, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 28, "usage_type": "call" }, { "api_name": "hashlib.sha1", "line_number": 35, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "attribute" } ]
4524699811
import pytest import requests from budget.enums import ExpensesCategoryEnum, IncomeCategoryEnum from common.tests_fixtures.fixtures import admin_credentials, admin_id, base_url budgets_url = f"{base_url}/budgets/" incomes_url = f"{base_url}/incomes/" expenses_url = f"{base_url}/expenses/" @pytest.fixture def create_budget(): budget_data = { "owner": admin_id, "name": "New budget name", } response = requests.post(budgets_url, json=budget_data, **admin_credentials) assert response.status_code == 201 return response.json() def test_creating_budget(): budget_data = { "owner": admin_id, "name": "New budget name", } response = requests.post(budgets_url, json=budget_data, **admin_credentials) assert response.status_code == 201 created_budget_url = response.json()["url"] response = requests.get(created_budget_url, **admin_credentials) assert response.status_code == 200 response = response.json() assert response["owner"] == budget_data["owner"] assert response["name"] == budget_data["name"] def test_add_income(create_budget): created_budget_url = create_budget["url"] budget_id = int(created_budget_url.split("/")[-2]) income_data = {"category": IncomeCategoryEnum.EARNED_INCOME, "amount": 1000.00, "budget": budget_id} response = requests.post(incomes_url, json=income_data, **admin_credentials) assert response.status_code == 201 response = response.json() assert income_data["category"] == response["category"] assert float(income_data["amount"]) == float(response["amount"]) assert income_data["budget"] == response["budget"] def test_add_expense(create_budget): created_budget_url = create_budget["url"] budget_id = int(created_budget_url.split("/")[-2]) expense_data = {"category": ExpensesCategoryEnum.SAVING, "amount": 950.21, "budget": budget_id} response = requests.post(expenses_url, json=expense_data, **admin_credentials) assert response.status_code == 201 response = response.json() assert expense_data["category"] == response["category"] assert float(expense_data["amount"]) == float(response["amount"]) assert expense_data["budget"] == response["budget"] def test_add_expense_with_incorrect_category(create_budget): created_budget_url = create_budget["url"] budget_id = int(created_budget_url.split("/")[-2]) expense_data = {"category": "incorrect_category", "amount": 950.21, "budget": budget_id} response = requests.post(expenses_url, json=expense_data, **admin_credentials) assert response.status_code == 400 assert response.json() == {"category": ['"incorrect_category" is not a valid choice.']} def test_filtering_expense(create_budget): created_budget_url = create_budget["url"] budget_id = int(created_budget_url.split("/")[-2]) expense_data_1 = {"category": ExpensesCategoryEnum.SAVING, "amount": 950.21, "budget": budget_id} expense_data_2 = {"category": ExpensesCategoryEnum.PERSONAL, "amount": 950.21, "budget": budget_id} response_1 = requests.post(expenses_url, json=expense_data_1, **admin_credentials) assert response_1.status_code == 201 response_1 = response_1.json() response_2 = requests.post(expenses_url, json=expense_data_2, **admin_credentials) assert response_2.status_code == 201 response_2 = response_2.json() response = requests.get(f"{expenses_url}?category={ExpensesCategoryEnum.SAVING}", **admin_credentials) assert response.status_code == 200 response = response.json() responses_url = [expense["url"] for expense in response["results"]] assert response_1["url"] in responses_url assert response_2["url"] not in responses_url
MaciejChalusiak/FamilyBudget
budget/tests.py
tests.py
py
3,755
python
en
code
0
github-code
6
[ { "api_name": "common.tests_fixtures.fixtures.base_url", "line_number": 7, "usage_type": "name" }, { "api_name": "common.tests_fixtures.fixtures.base_url", "line_number": 8, "usage_type": "name" }, { "api_name": "common.tests_fixtures.fixtures.base_url", "line_number": 9, "usage_type": "name" }, { "api_name": "common.tests_fixtures.fixtures.admin_id", "line_number": 15, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 18, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 18, "usage_type": "name" }, { "api_name": "pytest.fixture", "line_number": 12, "usage_type": "attribute" }, { "api_name": "common.tests_fixtures.fixtures.admin_id", "line_number": 25, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 28, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 28, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 32, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 32, "usage_type": "name" }, { "api_name": "budget.enums.IncomeCategoryEnum.EARNED_INCOME", "line_number": 43, "usage_type": "attribute" }, { "api_name": "budget.enums.IncomeCategoryEnum", "line_number": 43, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 45, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 45, "usage_type": "name" }, { "api_name": "budget.enums.ExpensesCategoryEnum.SAVING", "line_number": 56, "usage_type": "attribute" }, { "api_name": "budget.enums.ExpensesCategoryEnum", "line_number": 56, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 58, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 58, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 71, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 71, "usage_type": "name" }, { "api_name": "budget.enums.ExpensesCategoryEnum.SAVING", "line_number": 79, "usage_type": "attribute" }, { "api_name": "budget.enums.ExpensesCategoryEnum", "line_number": 79, "usage_type": "name" }, { "api_name": "budget.enums.ExpensesCategoryEnum.PERSONAL", "line_number": 80, "usage_type": "attribute" }, { "api_name": "budget.enums.ExpensesCategoryEnum", "line_number": 80, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 82, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 82, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 86, "usage_type": "call" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 86, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 90, "usage_type": "call" }, { "api_name": "budget.enums.ExpensesCategoryEnum.SAVING", "line_number": 90, "usage_type": "attribute" }, { "api_name": "budget.enums.ExpensesCategoryEnum", "line_number": 90, "usage_type": "name" }, { "api_name": "common.tests_fixtures.fixtures.admin_credentials", "line_number": 90, "usage_type": "name" } ]
30170732214
import numpy as np import pandas as pd import matplotlib.pyplot as plt from PyPDF2 import PdfWriter, PdfReader import io from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfgen.canvas import Canvas from reportlab.lib import pagesizes # ======== Plotting Util ======== # assign numbers for sorting when combining outputs export_counter = 1 def plot_amplitude_data(plot_title: str, axis1_name: str, resolution, data1, data1dots: list = [None], axis2_name: str = "", data2: list = [None], data2dots: list = [None], graph_on_same_axis: bool = False, export: bool = True, custom_prefix: str = ""): global export_counter x = np.linspace(0, len(data1) / resolution, len(data1)) plt.figure() fig, ax = plt.subplots() ax.plot(x, data1, "-b", label="data1") if len(data1dots) > 1 and data1dots[0] != None: ax.plot(x, data1dots, ".", color="#55AAFF", label="data1 dots") ax.set_xlabel("Time passed [s]") ax.set_ylabel(axis1_name, color="blue") # set the x-spine ax.spines['left'].set_position('zero') # type: ignore # turn off the right spine/ticks ax.spines['right'].set_color('none') ax.yaxis.tick_left() # set the y-spine ax.spines['bottom'].set_position('zero') # type: ignore # turn off the top spine/ticks ax.spines['top'].set_color('none') ax.xaxis.tick_bottom() if len(data2) > 1 and data2[0] != None: ax2 = ax if not graph_on_same_axis: ax2 = ax.twinx() ax2.plot(x, data2, "-r", label="data2") if len(data2dots) > 1 and data2dots[0] != None: ax2.plot(x, data2dots, ".", color='#FFA500', label="data2 dots") ax2.set_xlabel("Time passed [s]") ax2.set_ylabel(axis2_name, color="red") plt.title(plot_title) if export: name = plot_title.lower().replace(" ", "_") plt.savefig( f"summarized_plots/png/({custom_prefix}a_{export_counter}){name}.png") plt.savefig( f"summarized_plots/pdf/({custom_prefix}a_{export_counter}){name}.pdf") export_counter += 1 plt.show() export_counter = 1 def plot_graph(plot_title: str, axis_name: str, points_x, points_val, graph_x, graph_y, y_axis_limit, export: bool = True, custom_prefix: str = ""): """ Usage example: >>> t = np.arange(0, 5, 0.2) >>> plot_graph("", "", ..., ..., t, t ** 2) """ global export_counter plt.figure() fig, ax = plt.subplots() ax.plot(points_x, points_val, ".", color="#55AAFF", label="points") ax.plot(graph_x, graph_y, "-r", label="function") ax.set_ylim(ymax=y_axis_limit) ax.set_xlabel("Points [1]") ax.set_ylabel(axis_name, color="blue") plt.title(plot_title) if export: name = plot_title.lower().replace(" ", "_") plt.savefig( f"summarized_plots/png/({custom_prefix}b_{export_counter}){name}.png") plt.savefig( f"summarized_plots/pdf/({custom_prefix}b_{export_counter}){name}.pdf") export_counter += 1 plt.show() def plot_4_curves__vs_time(data1, data2, data3, data4, steps_per_second, y_axis_title): x1 = np.linspace(0, len(data1) / steps_per_second, len(data1)) x2 = np.linspace(0, len(data2) / steps_per_second, len(data2)) x3 = np.linspace(0, len(data3) / steps_per_second, len(data3)) x4 = np.linspace(0, len(data4) / steps_per_second, len(data4)) plt.figure() fig, ax = plt.subplots() ax.plot(x1, data1) ax.plot(x2, data2) ax.plot(x3, data3) ax.plot(x4, data4) ax.set_xlabel("Verstrichene Zeit [s]") ax.set_ylabel(y_axis_title) plt.title(f"{y_axis_title} gegen Zeit") plt.show() def create_pdf_text_page(filename: str, text: str, page_size=pagesizes.landscape(pagesizes.A5)): global A5 # PDF page with info data # src: https://stackoverflow.com/a/17538003/19474335 packet = io.BytesIO() cvs = Canvas(packet, bottomup=False, pagesize=page_size) # utf-8 encoding support: https://stackoverflow.com/a/17011377/19474335 pdfmetrics.registerFont(TTFont('Verdana', 'Verdana.ttf')) cvs.setFont("Verdana", 11) line_height = 15 y_counter = 2 * line_height for line in text.split("\n"): cvs.drawString(40, y_counter, line) y_counter += line_height cvs.save() # move to the beginning of the BytesIO buffer # packet.seek(0) new_pdf = PdfReader(packet) with open(filename.replace(".pdf", "") + ".pdf", "wb") as outStream: output = PdfWriter() output.add_page(new_pdf.pages[0]) output.write(outStream)
vexplained/JugendForscht2022
programming/python-analysis/plotting_util.py
plotting_util.py
py
4,641
python
en
code
0
github-code
6
[ { "api_name": "numpy.linspace", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 88, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 93, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 93, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 110, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "reportlab.lib.pagesizes.landscape", "line_number": 115, "usage_type": "call" }, { "api_name": "reportlab.lib.pagesizes", "line_number": 115, "usage_type": "name" }, { "api_name": "reportlab.lib.pagesizes.A5", "line_number": 115, "usage_type": "attribute" }, { "api_name": "io.BytesIO", "line_number": 121, "usage_type": "call" }, { "api_name": "reportlab.pdfgen.canvas.Canvas", "line_number": 122, "usage_type": "call" }, { "api_name": "reportlab.pdfbase.pdfmetrics.registerFont", "line_number": 125, "usage_type": "call" }, { "api_name": "reportlab.pdfbase.pdfmetrics", "line_number": 125, "usage_type": "name" }, { "api_name": "reportlab.pdfbase.ttfonts.TTFont", "line_number": 125, "usage_type": "call" }, { "api_name": "PyPDF2.PdfReader", "line_number": 138, "usage_type": "call" }, { "api_name": "PyPDF2.PdfWriter", "line_number": 140, "usage_type": "call" } ]
6966794859
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from kazoo.client import KazooClient __name__ = "weichigong" __version__ = '1.0.3' __author__ = 'dashixiong' __author_email__ = '[email protected]' class zconfig: def __init__(self, zkHosts, app, env): self.app = app self.env = env self.client = KazooClient(hosts=zkHosts) self.client.start() def getPath(self, path): return os.path.join('/', self.app, self.env, path) def set(self, path, value): fullPath = self.getPath(path) self.client.ensure_path(fullPath) self.client.set(fullPath, value) def get(self, path): fullPath = self.getPath(path) return self.client.get(fullPath)[0].decode('utf-8')
perfeelab/weichigong
weichigong/__init__.py
__init__.py
py
764
python
en
code
0
github-code
6
[ { "api_name": "kazoo.client.KazooClient", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" } ]
31209257710
import uuid from random import randint from src.infratructure.json_parser import JsonParser from src.infratructure.serializable_object import SerializableObject class PersonModel(SerializableObject): def __init__(self, id: int, nick: str, photo: str, name: str = None): self.id = id self.nick = nick self.photo = photo self.name = name @classmethod def random(cls): id = randint(0, 10) nick = str(uuid.uuid4()) photo = str(uuid.uuid4()) name = str(uuid.uuid4()) return cls(id=id, nick=nick, photo=photo, name=name) @classmethod def from_json(cls, json): id = JsonParser.try_get_parameter_with_sub_name(json, "member", "id") nick = JsonParser.try_get_parameter_with_sub_name(json, "member", "name") photo = JsonParser.try_get_parameter_with_two_sub_name(json, "member", "photo", "highres_link") return cls(id=id, nick=nick, photo=photo, name=None)
GDGPetropolis/backend-event-checkin
src/application/models/person_model.py
person_model.py
py
978
python
en
code
0
github-code
6
[ { "api_name": "src.infratructure.serializable_object.SerializableObject", "line_number": 7, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 17, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 18, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 19, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 20, "usage_type": "call" }, { "api_name": "src.infratructure.json_parser.JsonParser.try_get_parameter_with_sub_name", "line_number": 26, "usage_type": "call" }, { "api_name": "src.infratructure.json_parser.JsonParser", "line_number": 26, "usage_type": "name" }, { "api_name": "src.infratructure.json_parser.JsonParser.try_get_parameter_with_sub_name", "line_number": 27, "usage_type": "call" }, { "api_name": "src.infratructure.json_parser.JsonParser", "line_number": 27, "usage_type": "name" }, { "api_name": "src.infratructure.json_parser.JsonParser.try_get_parameter_with_two_sub_name", "line_number": 28, "usage_type": "call" }, { "api_name": "src.infratructure.json_parser.JsonParser", "line_number": 28, "usage_type": "name" } ]
31569881800
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from corai_util.tools.src.function_file import is_empty_file from data_input.json.parameter_loader import fetch_param_json_loader_simulation, fetch_param_json_loader_itideep from root_dir import linker_path_to_result_file from src.estim_hawkes.estim_hawkes import Estim_hawkes sns.set() STR_CONFIG = "MSE" (STR_CONFIG, NB_SIMUL, SEED, UNDERLYING_FUNCTION_NUMBER, _, KERNEL_DIVIDER, NB_DIFF_TIME_ESTIM, DIM, STYL, NB_POINTS_TT, id_hp, parameters, t0, time_batch, fct_parameters, true_breakpoints, _, _, _) = fetch_param_json_loader_simulation(False, STR_CONFIG) (L, R, h, l, CONSIDERED_PARAM, ALL_KERNELS_DRAWN, TYPE_ANALYSIS, NUMBER_OF_BREAKPOINTS, MODEL, MIN_SIZE, WIDTH) = fetch_param_json_loader_itideep(flagprint=True, str_config=STR_CONFIG) # should match the data given in the script.sh NB_T_MAX = 10 # from 1 to 10. NB_TH_OF_CURRENT_ESTIMATION = 2 # any int > 0. Represents the refinement of the ITiDeEP. # 1 is the first naive estimation. # The number given is the number of lines on the plot / nb of repetition of the estimation process undergone. # Only possible to plot all the lines (1, 2...) together and not a subset of it not including the lower part. ######### LIST_T_MAX = np.linspace(6000, 33000, NB_T_MAX) ####################################################### # TODO explain gather result in readme + explain MSE pipeline. # We use this file to gather the estimation together (gather function) and then plot the curve of the MSE. matrix_err_tmax_APE = np.zeros((NB_TH_OF_CURRENT_ESTIMATION, len(LIST_T_MAX))) matrix_err_tmax_SPE = np.zeros((NB_TH_OF_CURRENT_ESTIMATION, len(LIST_T_MAX))) iter_refinement = NB_TH_OF_CURRENT_ESTIMATION while iter_refinement > 0: # we collect the data from # NB_TH_OF_CURRENT_ESTIMATION to 1 by reducing by 1 at every iteration. for i_tmax in range(len(LIST_T_MAX)): ###################### # gather results of previous estimation for a given T max ###################### path_result_directory = linker_path_to_result_file(["MSE", f"{STR_CONFIG}_res_{iter_refinement}", f"data_{i_tmax}", ""]) assert not is_empty_file(path_result_directory), \ f"file must contain some data. Directory {path_result_directory} is empty." list_estim_hp = Estim_hawkes.folder_csv2list_estim(path_result_directory) estim_hp = Estim_hawkes.merge(list_estim_hp) # new estim gathered result path_super_result = linker_path_to_result_file( ["MSE", f"{STR_CONFIG}_res_{iter_refinement}", f"data_together_{i_tmax}", f"results_together.csv"]) estim_hp.to_csv(path_super_result) # saved gather result ###################### # compute error: ###################### path_result_res = linker_path_to_result_file( ["MSE", f"{STR_CONFIG}_res_{iter_refinement}", f"data_together_{i_tmax}", "results_together.csv"]) print("Reading: ", path_result_res) estim_hp = Estim_hawkes.from_csv(path_result_res) estim_hp.add_SPE_APE_col() # computed the SRE per parameter groupby_param, keys = estim_hp.groupby(['parameter', 'm', 'n']) total_SPE_APE = (groupby_param.get_group(('alpha', 0, 0))[["time estimation", 'SPE', 'APE']] .sort_values(by="time estimation").reset_index(drop=True)) # a copy is made # : we create a container where the error is aggregated. total_SPE_APE['SPE'] = 0 # we empty the values inside the column total_SPE_APE['APE'] = 0 # we empty the values inside the column for key in keys: ordered_SPE_APE = (groupby_param.get_group(key)[["time estimation", 'SPE', 'APE']] .sort_values(by="time estimation").reset_index(drop=True)) # sort to be sure we add the correct values together, drop index for prettiness. total_SPE_APE['SPE'] += ordered_SPE_APE['SPE'] total_SPE_APE['APE'] += ordered_SPE_APE['APE'] # MISRE = total_SRE.mean()["RSE"] # this is wrong. We need to compute it by hand. # It does not account for non converging estimations. total_SPE_APE_grouped = total_SPE_APE.groupby("time estimation") # we groupby so we compute the integral MISPE = 0 MIAPE = 0 # compute the mean squared error and compute the mean absolute error for time in total_SPE_APE_grouped.groups: average_per_time = total_SPE_APE_grouped.get_group(time).mean() MISPE += average_per_time['SPE'] / len(total_SPE_APE_grouped.groups) MIAPE += average_per_time['APE'] / len(total_SPE_APE_grouped.groups) matrix_err_tmax_SPE[iter_refinement - 1, i_tmax] = MISPE # store result matrix_err_tmax_APE[iter_refinement - 1, i_tmax] = MIAPE # store result iter_refinement -= 1 dict_result = {"MISPE": matrix_err_tmax_SPE.flatten(), "MIAPE": matrix_err_tmax_APE.flatten(), "nb application ITiDeEP": np.repeat(range(NB_TH_OF_CURRENT_ESTIMATION), NB_T_MAX), "T max": np.tile(LIST_T_MAX, NB_TH_OF_CURRENT_ESTIMATION)} data_err = pd.DataFrame(dict_result) fig, ax = plt.subplots(2, 1) sns.lineplot(x="T max", y="MISPE", hue="nb application ITiDeEP", marker='o', legend='full', ci=None, err_style="band", palette='Dark2', ax=ax[0], data=data_err) sns.lineplot(x="T max", y="MIAPE", hue="nb application ITiDeEP", marker='o', legend='full', ci=None, err_style="band", palette='Dark2', ax=ax[1], data=data_err) path_save_plot = linker_path_to_result_file(["MSE", f"MSE_result_{NB_TH_OF_CURRENT_ESTIMATION}" + '.png']) fig.savefig(path_save_plot, dpi=500) plt.show()
Code-Cornelius/ITiDeEP
mse/estimation_MSE_plot.py
estimation_MSE_plot.py
py
6,145
python
en
code
0
github-code
6
[ { "api_name": "seaborn.set", "line_number": 11, "usage_type": "call" }, { "api_name": "data_input.json.parameter_loader.fetch_param_json_loader_simulation", "line_number": 16, "usage_type": "call" }, { "api_name": "data_input.json.parameter_loader.fetch_param_json_loader_itideep", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 35, "usage_type": "call" }, { "api_name": "root_dir.linker_path_to_result_file", "line_number": 45, "usage_type": "call" }, { "api_name": "corai_util.tools.src.function_file.is_empty_file", "line_number": 48, "usage_type": "call" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes.folder_csv2list_estim", "line_number": 51, "usage_type": "call" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes", "line_number": 51, "usage_type": "name" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes.merge", "line_number": 52, "usage_type": "call" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes", "line_number": 52, "usage_type": "name" }, { "api_name": "root_dir.linker_path_to_result_file", "line_number": 53, "usage_type": "call" }, { "api_name": "root_dir.linker_path_to_result_file", "line_number": 62, "usage_type": "call" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes.from_csv", "line_number": 66, "usage_type": "call" }, { "api_name": "src.estim_hawkes.estim_hawkes.Estim_hawkes", "line_number": 66, "usage_type": "name" }, { "api_name": "numpy.repeat", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 103, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "seaborn.lineplot", "line_number": 107, "usage_type": "call" }, { "api_name": "seaborn.lineplot", "line_number": 113, "usage_type": "call" }, { "api_name": "root_dir.linker_path_to_result_file", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 121, "usage_type": "name" } ]
6942571337
from otree.api import * from settings import SESSION_CONFIGS doc = """ Your app description """ class Constants(BaseConstants): name_in_url = 'Intro' players_per_group = None num_rounds = 1 max_payoff = "£2.20" money = "£3.00" total_balls = "five" no_task_balls = "three" # create a vector to randomise treatment num_participants = 350 # note this should be substantially larger than the number of participants I actually intend to hire, because some Prolificers will join the session but not complete num_blocks = -1*( -num_participants // 14) # I'm gonna create blocks within which the treatment is exactly balanced (2 in LC, 2 in LN, 5 in HC, 5 in HN). Then add the blocks together to get to the desired number of participants. import random treatment_block = list(range(1,15)) treatment_assignment = [] for i in range(num_blocks): treatment_assignment = treatment_assignment + treatment_block random.shuffle(treatment_assignment) for i in range(len(treatment_assignment)): if treatment_assignment[i] <= 2: treatment_assignment[i] = "LC" elif treatment_assignment[i] > 2 and treatment_assignment[i] <= 4: treatment_assignment[i] = "LN" elif treatment_assignment[i] > 4 and treatment_assignment[i] <= 9: treatment_assignment[i] = "HC" elif treatment_assignment[i] >9: treatment_assignment[i] = "HN" class Subsession(BaseSubsession): pass def creating_session(subsession): import itertools, random treatment_assignment = itertools.cycle(Constants.treatment_assignment) for player in subsession.get_players(): # determine treatment player.participant.treatment = next(treatment_assignment) player.treatment = player.participant.treatment # practice maths questions - randomly select two to show in instructions practice_maths_qs_index = list(range(4)) random.shuffle(practice_maths_qs_index) player.participant.mathspractice_q1 = practice_maths_qs_index[0] player.participant.mathspractice_q2 = practice_maths_qs_index[1] class Group(BaseGroup): pass class Player(BasePlayer): ProlificID = models.StringField() treatment = models.StringField() start_epochtime = models.IntegerField() start_clocktime = models.StringField() # maths practice questions q1 = models.StringField( label = "A shop has an offer: buy 8 kiwis, and every extra kiwi after that is half price. A man goes to the shop and pays £4.50 for some kiwis. The full price of a kiwi is £0.50. How many does he buy?", choices = [ "9", "12", "10", "15" ], widget = widgets.RadioSelectHorizontal, blank=True) q2 = models.StringField( label = "A hairdresser has an offer: every third visit is free. They charge £48 for a haircut. Last year Sarah paid £144 for a haaircut. How many times did she go?", choices = [ "Two times", "Three times", "Four times", "Five times" ], widget = widgets.RadioSelectHorizontal, blank=True) q3 = models.StringField( label = "A woman walks from the bottom to the top of a hill. She starts at 9.40am and arrives at the top at 10.20 am. She takes a rest for ten minutes. Then she walks back down. On the way down she walks twice as fast as she did on the way up. What time is it when she reaches the bottom of the hill?", choices = [ "11.20", "10.40", "10.50", "11.10" ], widget = widgets.RadioSelectHorizontal, blank=True) q4 = models.StringField( label = "A trader buys a painting for £120 and sells it for £170. They pay a £10 transaction fee. Their profit expressed as a percentage of total cost is:", choices = [ "50%", "60%", "80%", "33%" ], widget = widgets.RadioSelectHorizontal, blank=True) # PAGES class Consent(Page): def is_displayed(player): # record time player entered application import time time_in = round(time.time()) player.start_epochtime = time_in player.participant.start_epochtime = time_in player.start_clocktime = time.strftime('%H:%M:%S', time.localtime(time_in)) return 1 class ProlificID(Page): form_model = 'player' form_fields = ['ProlificID'] class Introduction(Page): form_model = 'player' def get_form_fields(player: Player): questions = ['q1','q2','q3','q4'] form_fields = [ questions[player.participant.mathspractice_q1] ] return form_fields page_sequence = [Consent, ProlificID, Introduction]
LiamOFoghlu/Receiver
Intro/__init__.py
__init__.py
py
5,072
python
en
code
0
github-code
6
[ { "api_name": "random.shuffle", "line_number": 29, "usage_type": "call" }, { "api_name": "itertools.cycle", "line_number": 47, "usage_type": "call" }, { "api_name": "{'random': 'random'}.treatment_assignment", "line_number": 47, "usage_type": "attribute" }, { "api_name": "random.shuffle", "line_number": 56, "usage_type": "call" }, { "api_name": "time.time", "line_number": 119, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 122, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 122, "usage_type": "call" } ]
2441674100
from flask import Flask, render_template, request from pymysql import connections import os import boto3 from config import * from datetime import date from botocore.exceptions import ClientError app = Flask(__name__) bucket = custombucket region = customregion db_conn = connections.Connection( host=customhost, port=3306, user=customuser, password=custompass, db=customdb ) output = {} table = 'employee' @app.route("/", methods=['GET', 'POST']) @app.route("/index") def home(): return render_template('Login.html') @app.route("/addemp", methods=['GET']) def addemp(): return render_template('AddEmp.html', Title="Add to Employee Database") @app.route("/updateemp", methods=['GET']) def updateemp(): return render_template('UpdateEmp.html', Title="Update Employee Database") @app.route("/about", methods=['GET','POST']) def about(): return "Hello, Flask is running" @app.route("/leave", methods=['GET']) def leave(): return render_template('AddLeave.html') #get employee codes @app.route("/getemp", methods=['GET','POST']) def GetEmp(): return render_template('GetEmp.html') @app.route("/addleave", methods=['POST']) def AddLeave(): leave_id = request.form['leave_id'] emp_id = request.form['emp_id'] date = request.form['date'] reason = request.form['reason'] prove = request.files['prove_file'] insert_sql = "INSERT INTO leaves VALUES (%s, %s, %s, %s)" cursor = db_conn.cursor() if prove.filename == "": return "Please select a file" try: cursor.execute(insert_sql, (leave_id, emp_id, date, reason)) db_conn.commit() #emp_name = "" + first_name + " " + last_name # Uplaod image file in S3 # prove_image_in_s3 = "leave_id-" + str(leave_id) + "_image_file" s3 = boto3.resource('s3') try: print("Data inserted in MySQL RDS... uploading image to S3...") s3.Bucket(custombucket).put_object(Key=prove_image_in_s3, Body=prove) bucket_location = boto3.client('s3').get_bucket_location(Bucket=custombucket) s3_location = (bucket_location['LocationConstraint']) if s3_location is None: s3_location = '' else: s3_location = '-' + s3_location object_url = "https://s3{0}.amazonaws.com/{1}/{2}".format( s3_location, custombucket, prove_image_in_s3) except Exception as e: return str(e) finally: cursor.close() print("all modification done...") return render_template('AddLeaveOutput.html', name=emp_id) @app.route("/login", methods=['POST']) def login(): id = request.form['admin_id'] password = request.form['admin_password'] sqllogin = "SELECT COUNT(*) FROM admin WHERE password= %s AND username= %s" cursor = db_conn.cursor() try: cursor.execute(sqllogin, (password, id)) valid = cursor.fetchall() db_conn.commit() except Exception as e: return str(e) finally: cursor.close() if valid[-1][-1] == 1: print("Login Success") return render_template('AddEmp.html') else : print("Invalid User Credentials") return render_template('Login.html') @app.route("/addemp", methods=['POST']) def AddEmp(): emp_id = request.form['emp_id'] first_name = request.form['first_name'] last_name = request.form['last_name'] pri_skill = request.form['pri_skill'] location = request.form['location'] emp_image_file = request.files['emp_image_file'] insert_sql = "INSERT INTO employee VALUES (%s, %s, %s, %s, %s)" cursor = db_conn.cursor() if emp_image_file.filename == "": return "Please select a file" try: cursor.execute(insert_sql, (emp_id, first_name, last_name, pri_skill, location)) db_conn.commit() emp_name = first_name + " " + last_name # Uplaod image file in S3 # emp_image_file_name_in_s3 = "emp-id-" + str(emp_id) + "_image_file" s3 = boto3.resource('s3') try: print("Data inserted in MySQL RDS... uploading image to S3...") s3.Bucket(custombucket).put_object(Key=emp_image_file_name_in_s3, Body=emp_image_file) bucket_location = boto3.client('s3').get_bucket_location(Bucket=custombucket) s3_location = (bucket_location['LocationConstraint']) if s3_location is None: s3_location = '' else: s3_location = '-' + s3_location object_url = "https://s3{0}.amazonaws.com/{1}/{2}".format( s3_location, custombucket, emp_image_file_name_in_s3) except Exception as e: return str(e) finally: cursor.close() print("all modification done...") return render_template('AddEmpOutput.html', name=emp_name) @app.route("/fetchdata", methods=['POST']) def GetEmpOutput(): try: emp_id = request.form['emp_id'] if(emp_id == ""): raise ValueError("Please enter a valid employee id") except ValueError: emp_id, first_name, last_name, pri_skill, location = "N/A","N/A","N/A","N/A","N/A" image_link = "../static/images/getUser.png" return render_template('GetEmpOutput.html', id=emp_id, fname=first_name, lname=last_name, interest=pri_skill, location=location, image_url=image_link) select_sql = "SELECT * FROM employee WHERE emp_id = %s" cursor = db_conn.cursor() try: cursor.execute(select_sql, (emp_id)) db_conn.commit() (emp_id, first_name, last_name, pri_skill, location) = cursor.fetchone() emp_image_file_name_in_s3 = "emp-id-" + str(emp_id) + "_image_file" try: # Generate temporary URL for image file in S3 image_link = boto3.client('s3').generate_presigned_url('get_object', Params={'Bucket': custombucket, 'Key': emp_image_file_name_in_s3}, ExpiresIn=3600) except ClientError: image_link = "../static/images/getUser.png" finally: cursor.close() return render_template('GetEmpOutput.html', id=emp_id, fname=first_name, lname=last_name, interest=pri_skill, location=location, image_url=image_link) #update employee code @app.route("/updateemp", methods=['POST']) def UpdateEmp(): emp_id = request.form['emp_id'] first_name = request.form['first_name'] last_name = request.form['last_name'] pri_skill = request.form['pri_skill'] location = request.form['location'] emp_image_file = request.files['emp_image_file'] update_sql = "UPDATE employee SET first_name = %s, last_name = %s, pri_skill = %s, location = %s WHERE emp_id = %s" values = (first_name, last_name, pri_skill, location, emp_id) cursor = db_conn.cursor() try: cursor.execute(update_sql, values) db_conn.commit() emp_name = "" + first_name + " " + last_name # Uplaod image file in S3 # emp_image_file_name_in_s3 = "emp-id-" + str(emp_id) + "_image_file" s3 = boto3.resource('s3') try: print("Data updated in MySQL RDS... updating image to S3...") s3.Object(custombucket, emp_image_file_name_in_s3).delete() s3.Bucket(custombucket).put_object(Key=emp_image_file_name_in_s3, Body=emp_image_file) bucket_location = boto3.client('s3').get_bucket_location(Bucket=custombucket) s3_location = (bucket_location['LocationConstraint']) if s3_location is None: s3_location = '' else: s3_location = '-' + s3_location object_url = "https://s3{0}.amazonaws.com/{1}/{2}".format( s3_location, custombucket, emp_image_file_name_in_s3) except Exception as e: return str(e) finally: cursor.close() print("All modification done...") return render_template('UpdateEmp.html', name=emp_name) # delete employee code # TODO: HTML page for delete employee @app.route("/deletemp", methods=['POST']) def DeleteEmp(): emp_id = request.form['emp_id'] delete_sql = "DELETE FROM employee WHERE emp_id = %s" cursor = db_conn.cursor() try: cursor.execute(delete_sql, (emp_id)) db_conn.commit() print("Data deleted from MySQL RDS... deleting image from S3...") emp_image_file_name_in_s3 = "emp-id-" + str(emp_id) + "_image_file" s3 = boto3.resource('s3') s3.Object(custombucket, emp_image_file_name_in_s3).delete() finally: cursor.close() print("all modification done...") return "Deleted employee with id: " + emp_id @app.route("/attendance", methods=['GET']) def takeattendance(): today = date.today() date_time = today.strftime("%d/%m/%Y") return render_template('Attendance.html',Title="Attendance", date=date_time) @app.route("/attendance", methods=['POST']) def attendance(): cursor = db_conn.cursor() emp_id = request.form['emp_id'] today = date.today() date_time = today.strftime("%d/%m/%Y") select_sql = "SELECT emp_id, first_name, last_name FROM employee WHERE emp_id = %s" insert_sql = "INSERT INTO attandance VALUES (%s, %s, %s, %s)" try: cursor.execute(select_sql, (emp_id)) (emp_id, first_name, last_name) = cursor.fetchone() cursor.execute(insert_sql, (emp_id, first_name, last_name, date_time)) db_conn.commit() message = "Attendance marked for " + emp_id + " " + first_name + " " + last_name except Exception as e: emp_id = "Employee not found" message = "Employee not found" finally: cursor.close() return render_template('Attendance.html', Title="Attendance", date=date_time, message=message) @app.route("/viewatt", methods=['GET']) def viewatt(): cursor = db_conn.cursor() select_sql = "SELECT * FROM attandance" try: cursor.execute(select_sql) data = cursor.fetchall() finally: cursor.close() return render_template('ViewAttandance.html', Title="Attendance", data=data) if __name__ == '__main__': app.run(host='0.0.0.0', port=80, debug=True)
Darkless123/aws-live
EmpApp.py
EmpApp.py
py
10,617
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 9, "usage_type": "call" }, { "api_name": "pymysql.connections.Connection", "line_number": 14, "usage_type": "call" }, { "api_name": "pymysql.connections", "line_number": 14, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 29, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 37, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 45, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 50, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 54, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 54, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 55, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 55, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 56, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 56, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 56, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 57, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 58, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 58, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 68, "usage_type": "name" }, { "api_name": "boto3.resource", "line_number": 73, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 78, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 98, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 102, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 102, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 103, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 103, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 120, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 124, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 128, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 128, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 129, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 129, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 130, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 130, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 131, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 131, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 132, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 132, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 133, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 133, "usage_type": "name" }, { "api_name": "boto3.resource", "line_number": 147, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 152, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 172, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 179, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 179, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 185, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 200, "usage_type": "call" }, { "api_name": "botocore.exceptions.ClientError", "line_number": 204, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 211, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 216, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 216, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 218, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 218, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 219, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 219, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 220, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 220, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 221, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 221, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 222, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 222, "usage_type": "name" }, { "api_name": "boto3.resource", "line_number": 234, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 242, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 262, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 268, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 268, "usage_type": "name" }, { "api_name": "boto3.resource", "line_number": 277, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 288, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 288, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 290, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 295, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 295, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 296, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 296, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 312, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 324, "usage_type": "call" } ]
31969871422
from django.contrib.auth import get_user_model from django.db import transaction from django.db.models import Q from rest_framework import serializers from rest_framework.exceptions import ValidationError, NotFound from rest_framework.generics import get_object_or_404 from versatileimagefield.serializers import VersatileImageFieldSerializer User = get_user_model() class PrivateMeSerializer(serializers.ModelSerializer): image = VersatileImageFieldSerializer( required=False, sizes=[ ("original", "url"), ("at256", "crop__256x256"), ("at512", "crop__512x512"), ], ) class Meta: model = User fields = [ "first_name", "last_name", "username", "slug", "phone", "image", "email", ] read_only_fields = ["slug", "phone","username",]
seefat/harvest_hub_apis
core/rest/serializers/me.py
me.py
py
928
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.get_user_model", "line_number": 12, "usage_type": "call" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 14, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 14, "usage_type": "name" }, { "api_name": "versatileimagefield.serializers.VersatileImageFieldSerializer", "line_number": 15, "usage_type": "call" } ]
73535540349
from django.urls import path from . import views app_name = 'party' urlpatterns = [ #party # Party URLs path('create/<int:tournament_pk>/', views.PartyCreateView.as_view(), name='party_create'), path('update/<int:pk>/', views.PartyUpdateView.as_view(), name='party_update'), path('details/<int:pk>/', views.PartyDetailView.as_view(), name='party_details'), path('parties/', views.PartyListView.as_view(), name='party_list'), path('<int:pk>/', views.PartyDetailView.as_view(), name='party_detail'), path('join/<int:party_pk>/', views.JoinPartyView.as_view(), name='join_party'), path('leave/<int:party_pk>/', views.LeavePartyView.as_view(), name='leave_party'), # URL pattern for closing a party path('close/<int:pk>/', views.ClosePartyView.as_view(), name='close_party'), # Delete an existing party path('delete/<int:pk>/', views.PartyDeleteView.as_view(), name='party_delete'), ]
theAcer/wejprod
apps/party/urls.py
urls.py
py
942
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 19, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 23, "usage_type": "call" } ]
72340854587
import os import csv import json import tweepy import numpy as np import pandas as pd from datetime import datetime, timedelta from tweepy_auth import tweepy_auth ''' today = datetime.today() week_ago = today - timedelta(days=7) week_ago_str = week_ago.strftime('%Y-%m-%d') ''' auth = tweepy_auth() api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) tweets = tweepy.Cursor(api.search, q=['#blacklivesmatter OR #blm'], lang='en', result_type='recent', tweet_mode='extended', count=100).items() df = pd.DataFrame(columns=['id', 'created_at', 'full_text', 'favorite_count', 'retweet_count', 'hashtags']) for tweet in tweets: hashtags = [] for hashtag in tweet.entities['hashtags']: hashtags.append(hashtag['text']) print(tweet.created_at) df = df.append({'id': tweet.id, 'created_at': tweet.created_at, 'full_text': tweet.full_text.encode('utf-8','ignore'), 'favorite_count': tweet.favorite_count, 'retweet_count': tweet.retweet_count, 'hashtags': hashtags}, ignore_index=True) df['created_at'] = pd.to_datetime(df['created_at']) print(df.head()) for name, group in df.groupby(pd.Grouper(key='created_at',freq='D')): parsed_name = str(name).split(' ')[0].replace('-', '_') print(parsed_name) group.to_csv('./data/blm_'+ parsed_name +'.csv', index=False)
ConwayHsieh/BLM_tweets
tweepy_pandastry.py
tweepy_pandastry.py
py
1,444
python
en
code
0
github-code
6
[ { "api_name": "tweepy_auth.tweepy_auth", "line_number": 16, "usage_type": "call" }, { "api_name": "tweepy.API", "line_number": 18, "usage_type": "call" }, { "api_name": "tweepy.Cursor", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 47, "usage_type": "call" }, { "api_name": "pandas.Grouper", "line_number": 50, "usage_type": "call" } ]
7573771770
import os import logging from dotenv import load_dotenv from flask import Flask, jsonify, request from flask_cors import CORS from flask_restful import Api, Resource, reqparse from models.db.postgresDB import PostgresDB from models.services.logger import get_module_logger import models.services.flask_service as flask_service load_dotenv() app = Flask(__name__) CORS(app, resources=r'/*') parser = reqparse.RequestParser() parser.add_argument('keywords', type=list) @app.route('/', methods=['GET']) def hello_server(): return jsonify({"info": "Server works"}), 200 @app.route('/articles', methods=['GET']) def get_articles(): article_id = request.args.get("article_id", None) return flask_service.get_articles(db=postgresDB, article_id=article_id) #TODO: z parametrem # @app.route('/articles', methods=['GET']) # def get_articles(): # keywords = parser.parse_args() # return keywords # #return flask_service.get_articles(db=postgresDB, keywords=keywords) @app.route('/articles', methods=['POST']) def create_article(): data = request.json return flask_service.create_article(db=postgresDB, data=data) @app.route('/articles/<article_id>', methods=['PUT']) def update_article(article_id): data = request.json return flask_service.update_article(db=postgresDB, article_id=article_id, data=data) @app.route('/articles/<article_id>', methods=['DELETE']) def delete_article(article_id): return flask_service.delete_article(db=postgresDB, article_id=article_id,article_table=article_table) @app.route('/categories', methods=['GET']) def get_category(): category_id = request.args.get("category_id", None) return flask_service.get_categories(db=postgresDB, category_id=category_id) @app.route('/categories', methods=['POST']) def create_categories(): data = request.json return flask_service.create_category(db=postgresDB, data=data) @app.route('/categories/<category_id>', methods=['PUT']) def update_categories(category_id): data = request.json return flask_service.update_category(db=postgresDB, category_id=category_id, data=data) @app.route('/categories/<category_id>', methods=['DELETE']) def delete_categories(category_id): return flask_service.delete_category(db=postgresDB, category_id=category_id,category_table=category_table) @app.route('/comments', methods=['GET']) def get_comment(): article_id = request.args.get("article_id", None) author=request.args.get("author", None) return flask_service.get_comments(db=postgresDB, article_id=article_id,author=author,comment_table=comment_table) @app.route('/comments', methods=['POST']) def create_comments(): data = request.json return flask_service.create_comment(db=postgresDB, data=data) @app.route('/comments/<comment_id>', methods=['PUT']) def update_comments(comment_id): data = request.json return flask_service.update_comment(db=postgresDB, comment_id=comment_id, data=data) @app.route('/comments/<comment_id>', methods=['DELETE']) def delete_comments(comment_id): return flask_service.delete_comment(db=postgresDB, comment_id=comment_id,comment_table=comment_table) @app.route("/export", methods=['GET']) def to_txt(): return flask_service.db_to_txt(db=postgresDB, article_table=article_table, relation_category_article_table=relation_category_article_table, category_table=category_table, comment_table=comment_table) if __name__ == "__main__": logger = get_module_logger(mod_name=__name__, log_path='./logs/app_logs.log', lvl=logging.DEBUG) postgresDB = PostgresDB(db_host=os.environ.get("DB_HOST"), db_port=os.environ.get("DB_PORT"), db_user=os.environ.get("POSTGRES_USER"), db_password=os.environ.get("POSTGRES_PASSWORD"), db_name=os.environ.get("POSTGRES_DB")) try: article_table = postgresDB.get_table('article') category_table = postgresDB.get_table('category') comment_table = postgresDB.get_table('comment') relation_category_article_table = postgresDB.get_table('relation_category_article') logger.info('Got tables') app.run(host='0.0.0.0', port=5000) except Exception as e: logger.exception(e) logger.exception('Error, could not get tables from database')
Mariusz94/Knowledge-base
backend/app.py
app.py
py
4,372
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 13, "usage_type": "call" }, { "api_name": "flask_cors.CORS", "line_number": 15, "usage_type": "call" }, { "api_name": "flask_restful.reqparse.RequestParser", "line_number": 17, "usage_type": "call" }, { "api_name": "flask_restful.reqparse", "line_number": 17, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 22, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 26, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "name" }, { "api_name": "models.services.flask_service.get_articles", "line_number": 27, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 27, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 39, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 39, "usage_type": "name" }, { "api_name": "models.services.flask_service.create_article", "line_number": 40, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 40, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 45, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 45, "usage_type": "name" }, { "api_name": "models.services.flask_service.update_article", "line_number": 46, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 46, "usage_type": "name" }, { "api_name": "models.services.flask_service.delete_article", "line_number": 51, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 51, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 56, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 56, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 56, "usage_type": "name" }, { "api_name": "models.services.flask_service.get_categories", "line_number": 57, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 62, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 62, "usage_type": "name" }, { "api_name": "models.services.flask_service.create_category", "line_number": 63, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 63, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 68, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 68, "usage_type": "name" }, { "api_name": "models.services.flask_service.update_category", "line_number": 69, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 69, "usage_type": "name" }, { "api_name": "models.services.flask_service.delete_category", "line_number": 73, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 73, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 77, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 77, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 77, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 78, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 78, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 78, "usage_type": "name" }, { "api_name": "models.services.flask_service.get_comments", "line_number": 79, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 79, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 84, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 84, "usage_type": "name" }, { "api_name": "models.services.flask_service.create_comment", "line_number": 85, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 85, "usage_type": "name" }, { "api_name": "flask.request.json", "line_number": 90, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 90, "usage_type": "name" }, { "api_name": "models.services.flask_service.update_comment", "line_number": 91, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 91, "usage_type": "name" }, { "api_name": "models.services.flask_service.delete_comment", "line_number": 96, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 96, "usage_type": "name" }, { "api_name": "models.services.flask_service.db_to_txt", "line_number": 101, "usage_type": "call" }, { "api_name": "models.services.flask_service", "line_number": 101, "usage_type": "name" }, { "api_name": "models.services.logger.get_module_logger", "line_number": 106, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 106, "usage_type": "attribute" }, { "api_name": "models.db.postgresDB.PostgresDB", "line_number": 107, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 107, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 107, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 108, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 108, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 109, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 109, "usage_type": "attribute" } ]
7789722347
from tqdm import tqdm import numpy as np import torch import torchvision.transforms as ttr from torch.utils.data import DataLoader import argparse from aermanager import AERFolderDataset from test_spiking import test_spiking # Parameters BATCH_SIZE = 256 parser = argparse.ArgumentParser() parser.add_argument('--quantize_testing', action='store_true', default=False) parser.add_argument('--max_batches', type=int, default=1000000) opt = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # prepare dataset and dataloader test_dataset = AERFolderDataset( root='data/test/', from_spiketrain=False, transform=ttr.ToTensor(), ) print("Number of testing frames:", len(test_dataset)) test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) def detach(activity): for activations in activity: for (i, activation) in enumerate(activations): activations[i] = activation.item() return np.array(activity) # def compute_accuracy(output, target): # _, predicted = torch.max(output, 1) # acc = (predicted == target).sum().float() / len(target) # return acc.cpu().numpy() # def test(path, w_rescale=1.0): # # Define model and learning parameters # classifier = MNISTClassifier(quantize=opt.quantize_testing).to(device) # # Load appropriate model # state_dict = torch.load(path) # # Do rescaling # if w_rescale != 1.0: # state_dict['seq.0.weight'] *= w_rescale # classifier.load_state_dict(state_dict) # # Set hooks # activity_tracker = SynOpCounter(classifier.modules(), sum_activations=False) # # Test network accuracy # with torch.no_grad(): # classifier.eval() # activity = [] # accuracy = [] # for batch_id, sample in enumerate(tqdm(test_dataloader)): # if batch_id > opt.max_batches: # break # test_data, test_labels = sample # test_data = test_data.to(device) # output = classifier(test_data) # accuracy.append(compute_accuracy(output, test_labels.to(device))) # activity.append(activity_tracker()) # return np.mean(detach(activity), axis=0), np.mean(accuracy) if __name__ == '__main__': # test non-optimized model baseline_activity, baseline_accuracy = test_spiking( 'models/nopenalty_0.0.pth', return_all_synops=True ) # test optimized model optimized_activity, optimized_accuracy = test_spiking( 'models/l1-fanout-qtrain_321289.514081772.pth', return_all_synops=True ) baseline_activity = baseline_activity[baseline_activity > 0] optimized_activity = optimized_activity[optimized_activity > 0] np.savez( 'opt_benchmark.npz', baseline_activity=baseline_activity, optimized_activity=optimized_activity, baseline_accuracy=baseline_accuracy, optimized_accuracy=optimized_accuracy )
fgr1986/synoploss
mnist_dvs/optimization_benchmarking.py
optimization_benchmarking.py
py
2,996
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 20, "usage_type": "attribute" }, { "api_name": "aermanager.AERFolderDataset", "line_number": 23, "usage_type": "call" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 26, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 38, "usage_type": "call" }, { "api_name": "test_spiking.test_spiking", "line_number": 86, "usage_type": "call" }, { "api_name": "test_spiking.test_spiking", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.savez", "line_number": 99, "usage_type": "call" } ]
3977236501
#!/usr/bin/env python3 from ddpg import Agent import numpy as np from ts_forecasting_env import ts_forecasting_env import time import matplotlib.pyplot as plt import csv import pandas as pd from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error import argparse from ray import tune from ray.tune.schedulers import ASHAScheduler # Argument parser parser = argparse.ArgumentParser() parser.add_argument("--traj", type=int, default=1, help="choose trajectory") args = parser.parse_args() # Load and prepare data ############################## Define variables ######################################### TRAJECTORY = args.traj SPLIT_RATE = 0.80 # split data into train and test data ######################################################################################### # Open csv file = open('allData/traj' + str(TRAJECTORY) + '_allData.csv') # Read csv csvreader = csv.reader(file) # Store csv data in numpy ndarray rows = [] for row in csvreader: rows.append(row) file.close() data_ = np.array(rows, dtype=np.float64) data_ = np.concatenate(data_) # Data split split_index = round(len(data_) * SPLIT_RATE) train_data, test_data = data_[:split_index], data_[split_index:] # Normalize data max = np.max(data_) min = np.min(data_) TRAIN_DATA = (train_data - min) / (max - min) TEST_DATA = (test_data - min) / (max - min) # Run LSTM with tuning configurations def tune_lstm(config): # Training setup ############################## Define hyper parameters ################################## LR_ACTOR = config["a_lr"] LR_CRITIC = config["c_lr"] TAU = 0.1 GAMMA = 0.9 BATCH_SIZE = config["bs"] ACTOR_LAYER = config["layer"] CRITIC_LAYER = config["layer"] REPLAY_BUFFER_SIZE = 100000 HISTORICAL_DP = config["hdp"] # historical data points (length of state) ######################################################################################### # Call environment env = ts_forecasting_env(historical_dp=HISTORICAL_DP, data=TRAIN_DATA) # Call agent agent = Agent(alpha=LR_ACTOR, beta=LR_CRITIC, input_dims=[HISTORICAL_DP], tau=TAU, gamma=GAMMA,batch_size=BATCH_SIZE, layer1_size=ACTOR_LAYER, n_actions=1, layer2_size=CRITIC_LAYER, max_size=REPLAY_BUFFER_SIZE) ############################## Define training parameters ############################### EPISODES = 15 MAX_STEPS = 1000 ######################################################################################### np.random.seed(0) # Train the agent for i in range(1, EPISODES + 1): obs = env.reset() done = False reward = 0 for step in range(MAX_STEPS): act = agent.choose_action(obs) new_state, step_reward, done, _ = env.step(act) agent.remember(obs, act, step_reward, new_state, int(done)) agent.learn() reward += step_reward obs = new_state if done: break # Test the agent pred = [] for i in range(len(TEST_DATA)): state = np.array(TEST_DATA[0 + i:HISTORICAL_DP + i], dtype=np.float64) action = agent.choose_action(state) pred.append(action) if HISTORICAL_DP + i == len(TEST_DATA): break pred = np.concatenate(pred) pred = pd.Series(pred) pred = pred * (max - min) + min real = pd.Series(test_data[HISTORICAL_DP:]) # Report result to tuner # MAE tune.report(mean_accuracy=mean_absolute_error(real, pred)) # # MSE # tune.report(mean_accuracy=mean_squared_error(real, pred, squared=False)) # Tuner configurations config = { "a_lr": tune.grid_search([0.001, 0.002, 0.003, 0.004, 0.005]), "c_lr": tune.grid_search([0.001, 0.002, 0.003, 0.004, 0.005]), "bs": tune.grid_search([2 ** i for i in range(5,8)]), "layer": tune.grid_search([2 ** i for i in range(5,8)]), "hdp": tune.grid_search([10, 15, 25]), } # Run tuner analysis = tune.run( tune_lstm, resources_per_trial={"cpu": 12, "gpu": 1}, config=config, mode="min" ) print("Best config: ", analysis.get_best_config(metric="mean_accuracy")) df = analysis.dataframe()
tiagomateus25/time-series-forecasting-ddpg
bvg_optimization.py
bvg_optimization.py
py
4,277
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 15, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 36, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 45, "usage_type": "call" }, { "api_name": "ts_forecasting_env.ts_forecasting_env", "line_number": 65, "usage_type": "call" }, { "api_name": "ddpg.Agent", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 77, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 104, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 105, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 107, "usage_type": "call" }, { "api_name": "ray.tune.report", "line_number": 111, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 111, "usage_type": "name" }, { "api_name": "sklearn.metrics.mean_absolute_error", "line_number": 111, "usage_type": "call" }, { "api_name": "ray.tune.grid_search", "line_number": 118, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 118, "usage_type": "name" }, { "api_name": "ray.tune.grid_search", "line_number": 119, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 119, "usage_type": "name" }, { "api_name": "ray.tune.grid_search", "line_number": 120, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 120, "usage_type": "name" }, { "api_name": "ray.tune.grid_search", "line_number": 121, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 121, "usage_type": "name" }, { "api_name": "ray.tune.grid_search", "line_number": 122, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 122, "usage_type": "name" }, { "api_name": "ray.tune.run", "line_number": 126, "usage_type": "call" }, { "api_name": "ray.tune", "line_number": 126, "usage_type": "name" } ]
10254372975
from multiprocessing import context from django.shortcuts import render, redirect from .models import * # Create your views here. def produk_list(request): template_name = "produk_list.html" group_produk = Circle_produk.objects.all() context ={ "produk" : group_produk, } return render(request, template_name, context) def tambah_barang(request): template_name = "add_barang.html" kategori = Kategori.objects.all() if request.method == "POST": input_nama = request.POST.get('nama') input_jumlah = request.POST.get('jumlah') input_deskripsi = request.POST.get('deskripsi') input_kategori = request.POST.get('kategori') get_kategori = Kategori.objects.get(nama=input_kategori) Circle_produk.objects.create( nama = input_nama, jumlah = input_jumlah, deskripsi = input_deskripsi, kategori = get_kategori ) return redirect(produk_list) context ={ "kategori": kategori } return render(request, template_name, context) def update_barang(request,id): template_name = "add_barang.html" kategori = Kategori.objects.all() get_produk = Circle_produk.objects.get(id=id) if request.method == "POST": input_nama = request.POST.get('nama') input_jumlah = request.POST.get('jumlah') input_deskripsi = request.POST.get('deskripsi') input_kategori = request.POST.get('kategori') get_kategori = Kategori.objects.get(nama=input_kategori) get_produk.nama = input_nama get_produk.jumlah = input_jumlah get_produk.deskripsi = input_deskripsi get_produk.kategori = get_kategori get_produk.save() return redirect(produk_list) context ={ "kategori": kategori, "get_produk" : get_produk } return render(request, template_name, context) def delete_barang(request, id): Circle_produk.objects.get(id=id).delete() return redirect(produk_list)
RenalPutra/kasir-django
produk/views.py
views.py
py
2,103
python
tr
code
0
github-code
6
[ { "api_name": "multiprocessing.context", "line_number": 9, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 12, "usage_type": "call" }, { "api_name": "multiprocessing.context", "line_number": 12, "usage_type": "argument" }, { "api_name": "django.shortcuts.redirect", "line_number": 31, "usage_type": "call" }, { "api_name": "multiprocessing.context", "line_number": 32, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 36, "usage_type": "call" }, { "api_name": "multiprocessing.context", "line_number": 36, "usage_type": "argument" }, { "api_name": "django.shortcuts.redirect", "line_number": 54, "usage_type": "call" }, { "api_name": "multiprocessing.context", "line_number": 57, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 62, "usage_type": "call" }, { "api_name": "multiprocessing.context", "line_number": 62, "usage_type": "argument" }, { "api_name": "django.shortcuts.redirect", "line_number": 66, "usage_type": "call" } ]
31286775508
import os import sys from datetime import datetime from argparse import ArgumentParser, ArgumentTypeError from subprocess import check_output, CalledProcessError, Popen, PIPE, DEVNULL from contextlib import contextmanager class FileExistsException(Exception): def __init__(self, path): self.path = path def main(): args = parse_args(sys.argv[1:]) try: path = jekyll_post(args) except FileExistsException as ex: print('A file already exists at \'{}\'.'.format(ex.path), file=sys.stderr) return 1 if path != '-': print(path) return 0 def parse_args(raw_args): args = make_parser().parse_args(raw_args) args.date = args.date or now() args.attributes = args.attributes or [] return args def make_parser(): p = ArgumentParser(description='Creates a new Jekyll post, and prints its ' 'path to standard out.') p.add_argument('title', type=escape_str, help='The title for the new post.') g = p.add_mutually_exclusive_group(required=True) g.add_argument('-c', '--category', help='The path of the category directory for the new post, ' 'such that it will be written into ' '\'$JEKYLL_SITE_PATH/$category/_posts\'. ') g.add_argument('-d', '--directory', type=directory_exists, help='The path of the directory to write the new post ' 'into.') g.add_argument('-o', '--output', metavar='PATH', help='The path to write the new post to. Provide \'-\' to ' 'write to standard out.') p.add_argument('-t', '--date', type=parse_datetime, help='The date and time for the new post, in a format ' 'accepted by the `date` utility. Default: now.') p.add_argument('-x', '--extension', default='md', help='The file extension for the new post. ' 'Default: \'md\'.') p.add_argument('-a', '--attributes', nargs="*", metavar='ATTR', help='Extra attributes to put in the header, provided in a ' 'format according to \'jekyll-post-header\'. The ' '\'layout\' attribute defaults to \'default\'.') p.add_argument('-p', '--padding', type=int, default=10, metavar='NSPACES', help='The number of spaces to left-align the attributes ' 'by. Default: 10.') return p def escape_str(s): return s.replace('\'', '\\\'') def directory_exists(s): if not os.path.isdir(s): raise ArgumentTypeError('\'{}\' is not a directory.'.format(s)) return s def parse_datetime(s): try: ds = check_output(['date', '--date={}'.format(s), '--iso-8601=seconds'], stderr=DEVNULL).decode().strip() except CalledProcessError: raise ArgumentTypeError(('\'{}\' is an invalid date. It must be in a ' 'format accepted by the `date` utility\'s ' '`--date` argument.').format(s)) return datetime.strptime(ds, '%Y-%m-%dT%H:%M:%S%z') def now(): return parse_datetime(datetime.now().isoformat()) def jekyll_post(args): with header_proc(args) as proc: path = get_post_path(args) with open_post_file(path) as file: for bline in proc.stdout: line = bline.decode()[:-1] print(line, file=file) return path def get_post_path(args): if args.output: return args.output else: filename = check_output(['jekyll-post-filename', args.title, '--date', args.date.strftime('%Y-%m-%d'), '--extension', args.extension], stderr=DEVNULL).decode()[:-1] dirname = (args.directory or os.path.join(os.environ.get('JEKYLL_SITE_PATH', ''), args.category, '_posts')) return os.path.join(dirname, filename) @contextmanager def open_post_file(path): if path == '-': yield sys.stdout else: if os.path.exists(path): raise FileExistsException(path) with open(path, 'w') as f: yield f def header_proc(args): # TODO: this won't raise an exception if the script fails. Is there a way to # check for errors, while still streaming the output? return Popen(['jekyll-post-header', '--padding', str(args.padding), 'layout:"default"', 'date:"{}"'.format(args.date), 'title:"{}"'.format(args.title)] + args.attributes, stdout=PIPE, stderr=DEVNULL) if __name__ == '__main__': rv = main() sys.exit(rv)
Rainymood/rainymood.github.io
main.py
main.py
py
4,987
python
en
code
8
github-code
6
[ { "api_name": "sys.argv", "line_number": 15, "usage_type": "attribute" }, { "api_name": "sys.stderr", "line_number": 20, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path", "line_number": 75, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 76, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 82, "usage_type": "call" }, { "api_name": "subprocess.DEVNULL", "line_number": 84, "usage_type": "name" }, { "api_name": "subprocess.CalledProcessError", "line_number": 85, "usage_type": "name" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 86, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 89, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 89, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 93, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 93, "usage_type": "name" }, { "api_name": "subprocess.check_output", "line_number": 110, "usage_type": "call" }, { "api_name": "subprocess.DEVNULL", "line_number": 113, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path", "line_number": 115, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 115, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 115, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path", "line_number": 118, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 124, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 126, "usage_type": "call" }, { "api_name": "os.path", "line_number": 126, "usage_type": "attribute" }, { "api_name": "contextlib.contextmanager", "line_number": 121, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 135, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 140, "usage_type": "name" }, { "api_name": "subprocess.DEVNULL", "line_number": 140, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 145, "usage_type": "call" } ]
26043166506
from __future__ import annotations import logging import os from dataclasses import dataclass from pathlib import PurePath from typing import Iterable from pants.engine.engine_aware import EngineAwareParameter from pants.engine.fs import ( AddPrefix, CreateDigest, Digest, Directory, FileContent, MergeDigests, RemovePrefix, ) from pants.engine.process import ProcessResult from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.jvm.jdk_rules import InternalJdk, JvmProcess from pants.jvm.resolve.coursier_fetch import ToolClasspath, ToolClasspathRequest from pants.jvm.resolve.jvm_tool import GenerateJvmLockfileFromTool from pants.jvm.shading import jarjar from pants.jvm.shading.jarjar import JarJar, JarJarGeneratorLockfileSentinel, MisplacedClassStrategy from pants.jvm.target_types import JvmShadingRule, _shading_validate_rules from pants.util.logging import LogLevel logger = logging.getLogger(__name__) @dataclass(frozen=True) class ShadeJarRequest(EngineAwareParameter): path: PurePath digest: Digest rules: tuple[JvmShadingRule, ...] # JarJar configuration options skip_manifest: bool | None misplaced_class_strategy: MisplacedClassStrategy | None def __init__( self, *, path: str | PurePath, digest: Digest, rules: Iterable[JvmShadingRule] | None = None, skip_manifest: bool | None = None, misplaced_class_strategy: MisplacedClassStrategy | None = None, ) -> None: object.__setattr__(self, "path", path if isinstance(path, PurePath) else PurePath(path)) object.__setattr__(self, "digest", digest) object.__setattr__(self, "rules", tuple(rules or ())) object.__setattr__(self, "skip_manifest", skip_manifest) object.__setattr__(self, "misplaced_class_strategy", misplaced_class_strategy) self.__post_init__() def __post_init__(self): validation_errors = _shading_validate_rules(self.rules) if validation_errors: raise ValueError("\n".join(["Invalid rules provided:\n", *validation_errors])) def debug_hint(self) -> str | None: return str(self.path) @dataclass(frozen=True) class ShadedJar: path: str digest: Digest _JARJAR_MAIN_CLASS = "com.eed3si9n.jarjar.Main" _JARJAR_RULE_CONFIG_FILENAME = "rules" @rule(desc="Applies shading rules to a JAR file") async def shade_jar(request: ShadeJarRequest, jdk: InternalJdk, jarjar: JarJar) -> ShadedJar: if not request.rules: return ShadedJar(path=str(request.path), digest=request.digest) output_prefix = "__out" output_filename = os.path.join(output_prefix, request.path.name) rule_config_content = "\n".join([rule.encode() for rule in request.rules]) + "\n" logger.debug(f"Using JarJar rule file with following contents:\n{rule_config_content}") lockfile_request, conf_digest, output_digest = await MultiGet( Get(GenerateJvmLockfileFromTool, JarJarGeneratorLockfileSentinel()), Get( Digest, CreateDigest( [ FileContent( path=_JARJAR_RULE_CONFIG_FILENAME, content=rule_config_content.encode("utf-8"), ), ] ), ), Get(Digest, CreateDigest([Directory(output_prefix)])), ) tool_classpath, input_digest = await MultiGet( Get(ToolClasspath, ToolClasspathRequest(lockfile=lockfile_request)), Get(Digest, MergeDigests([request.digest, output_digest])), ) toolcp_prefix = "__toolcp" conf_prefix = "__conf" immutable_input_digests = { toolcp_prefix: tool_classpath.digest, conf_prefix: conf_digest, } def should_skip_manifest() -> bool: if request.skip_manifest is not None: return request.skip_manifest return jarjar.skip_manifest system_properties: dict[str, str] = { "verbose": str(logger.isEnabledFor(LogLevel.DEBUG.level)).lower(), "skipManifest": str(should_skip_manifest()).lower(), } misplaced_class_strategy = request.misplaced_class_strategy or jarjar.misplaced_class_strategy if misplaced_class_strategy: system_properties["misplacedClassStrategy"] = misplaced_class_strategy.value result = await Get( ProcessResult, JvmProcess( jdk=jdk, argv=[ _JARJAR_MAIN_CLASS, "process", os.path.join(conf_prefix, _JARJAR_RULE_CONFIG_FILENAME), str(request.path), output_filename, ], classpath_entries=tool_classpath.classpath_entries(toolcp_prefix), input_digest=input_digest, extra_immutable_input_digests=immutable_input_digests, extra_jvm_options=[ *jarjar.jvm_options, *[f"-D{prop}={value}" for prop, value in system_properties.items()], ], description=f"Shading JAR {request.path}", output_directories=(output_prefix,), level=LogLevel.DEBUG, ), ) shaded_jar_digest = await Get(Digest, RemovePrefix(result.output_digest, output_prefix)) if request.path.parents: # Restore the folder structure of the original path in the output digest shaded_jar_digest = await Get( Digest, AddPrefix(shaded_jar_digest, str(request.path.parent)) ) return ShadedJar(path=str(request.path), digest=shaded_jar_digest) def rules(): return [*collect_rules(), *jarjar.rules()]
pantsbuild/pants
src/python/pants/jvm/shading/rules.py
rules.py
py
5,649
python
en
code
2,896
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 29, "usage_type": "call" }, { "api_name": "pants.engine.engine_aware.EngineAwareParameter", "line_number": 33, "usage_type": "name" }, { "api_name": "pathlib.PurePath", "line_number": 34, "usage_type": "name" }, { "api_name": "pants.engine.fs.Digest", "line_number": 35, "usage_type": "name" }, { "api_name": "pants.jvm.target_types.JvmShadingRule", "line_number": 36, "usage_type": "name" }, { "api_name": "pants.jvm.shading.jarjar.MisplacedClassStrategy", "line_number": 40, "usage_type": "name" }, { "api_name": "pathlib.PurePath", "line_number": 45, "usage_type": "name" }, { "api_name": "pants.engine.fs.Digest", "line_number": 46, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 47, "usage_type": "name" }, { "api_name": "pants.jvm.target_types.JvmShadingRule", "line_number": 47, "usage_type": "name" }, { "api_name": "pants.jvm.shading.jarjar.MisplacedClassStrategy", "line_number": 49, "usage_type": "name" }, { "api_name": "pathlib.PurePath", "line_number": 51, "usage_type": "argument" }, { "api_name": "pants.jvm.target_types._shading_validate_rules", "line_number": 60, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 32, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 71, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 68, "usage_type": "call" }, { "api_name": "pants.jvm.jdk_rules.InternalJdk", "line_number": 79, "usage_type": "name" }, { "api_name": "pants.jvm.shading.jarjar.JarJar", "line_number": 79, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" }, { "api_name": "pants.engine.rules.rule.encode", "line_number": 86, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 86, "usage_type": "name" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 89, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 90, "usage_type": "call" }, { "api_name": "pants.jvm.resolve.jvm_tool.GenerateJvmLockfileFromTool", "line_number": 90, "usage_type": "argument" }, { "api_name": "pants.jvm.shading.jarjar.JarJarGeneratorLockfileSentinel", "line_number": 90, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 91, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 92, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 93, "usage_type": "call" }, { "api_name": "pants.engine.fs.FileContent", "line_number": 95, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 102, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 102, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 102, "usage_type": "call" }, { "api_name": "pants.engine.fs.Directory", "line_number": 102, "usage_type": "call" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 105, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 106, "usage_type": "call" }, { "api_name": "pants.jvm.resolve.coursier_fetch.ToolClasspath", "line_number": 106, "usage_type": "argument" }, { "api_name": "pants.jvm.resolve.coursier_fetch.ToolClasspathRequest", "line_number": 106, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 107, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 107, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 107, "usage_type": "call" }, { "api_name": "pants.jvm.shading.jarjar.skip_manifest", "line_number": 120, "usage_type": "attribute" }, { "api_name": "pants.jvm.shading.jarjar", "line_number": 120, "usage_type": "name" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 123, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 123, "usage_type": "name" }, { "api_name": "pants.jvm.shading.jarjar.misplaced_class_strategy", "line_number": 126, "usage_type": "attribute" }, { "api_name": "pants.jvm.shading.jarjar", "line_number": 126, "usage_type": "name" }, { "api_name": "pants.engine.rules.Get", "line_number": 130, "usage_type": "call" }, { "api_name": "pants.engine.process.ProcessResult", "line_number": 131, "usage_type": "argument" }, { "api_name": "pants.jvm.jdk_rules.JvmProcess", "line_number": 132, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 137, "usage_type": "call" }, { "api_name": "os.path", "line_number": 137, "usage_type": "attribute" }, { "api_name": "pants.jvm.shading.jarjar.jvm_options", "line_number": 145, "usage_type": "attribute" }, { "api_name": "pants.jvm.shading.jarjar", "line_number": 145, "usage_type": "name" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 150, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 150, "usage_type": "name" }, { "api_name": "pants.engine.rules.Get", "line_number": 154, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 154, "usage_type": "argument" }, { "api_name": "pants.engine.fs.RemovePrefix", "line_number": 154, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 157, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 158, "usage_type": "argument" }, { "api_name": "pants.engine.fs.AddPrefix", "line_number": 158, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 78, "usage_type": "call" }, { "api_name": "pants.engine.rules.collect_rules", "line_number": 165, "usage_type": "call" }, { "api_name": "pants.jvm.shading.jarjar.rules", "line_number": 165, "usage_type": "call" }, { "api_name": "pants.jvm.shading.jarjar", "line_number": 165, "usage_type": "name" } ]
39267295276
import sys import multiprocessing from controls import ManualControl from cam import Camera from server import get_command_keyboard, stream_frame, get_command import threading # Klavye ile hareket için mode = 1 # Sesli komut ile hareket için mode = 2 # Klavye ile hareket ve Aynı anda Raspberryden PC'ye frame aktarma için mode = 3 # Sesli komut ile hareket ve Aynı anda Raspberryden PC'ye frame aktarma için mode = 4 # default mode = 1 mode = 1 def cam(targets, isRead, phase, frm): # set camera object with Camera class camera = Camera(show=False, captureIndex=-1, camRes=(640, 480)) camera.set_camera_settings(966.9541358947754) camera.set_aruco_settings(markerSize=4, totalMarkers=50, arucoWidth=6) while True: camera.set_frame() isRead.value = camera.isRead camera.detect_aruco() if camera.target is not None: camera.target.set_instant_phase_angle(phase.value) targets.append(camera.target) frm["data"] = camera.frame camera.break_and_release() if camera.out: break if __name__ == '__main__': manager = multiprocessing.Manager() targets = manager.list() isRead = multiprocessing.Value('i', 0) phase = multiprocessing.Value('i', 0) frm = manager.dict() frm["command"] = "dur" # PC'den raspberry'yi klavye ile kontrol etmek istiyorsanız mode = 1 yapın. if mode == 1: t1 = threading.Thread(target=get_command_keyboard, args=(frm,)) t2 = threading.Thread(target=ManualControl.get_command_keyboard_from_pc, args=(frm,)) try: t1.start() t2.start() except (KeyboardInterrupt, SystemExit): sys.exit() # PC'den raspberry'yi sesli komut ile kontrol etmek istiyorsanız mode = 2 yapın. elif mode == 2: t1 = threading.Thread(target=get_command, args=(frm,)) t2 = threading.Thread(target=ManualControl.speech_move, args=(frm,)) try: t1.start() t2.start() except (KeyboardInterrupt, SystemExit): sys.exit() # Klavye ile hareket ve Aynı anda Raspberry'den PC'ye frame aktarma için mode = 3 elif mode == 3: p1 = multiprocessing.Process(target=cam, args=(targets, isRead, phase, frm)) t1 = threading.Thread(target=stream_frame, args=(frm,)) t2 = threading.Thread(target=get_command_keyboard, args=(frm,)) t3 = threading.Thread(target=ManualControl.get_command_keyboard_from_pc, args=(frm,)) try: p1.start() t1.start() t2.start() t3.start() except (KeyboardInterrupt, SystemExit): sys.exit() # Sesli komut ile hareket ve Aynı anda Raspberry'den PC'ye frame aktarma için mode = 4 elif mode == 4: p1 = multiprocessing.Process(target=cam, args=(targets, isRead, phase, frm)) t1 = threading.Thread(target=stream_frame, args=(frm,)) t2 = threading.Thread(target=get_command, args=(frm,)) t3 = threading.Thread(target=ManualControl.speech_move, args=(frm,)) try: p1.start() t1.start() t2.start() t3.start() except (KeyboardInterrupt, SystemExit): p1.kill() sys.exit()
AbdullahTas123/pi-robot-car
raspberrypi/main.py
main.py
py
3,394
python
en
code
1
github-code
6
[ { "api_name": "cam.Camera", "line_number": 17, "usage_type": "call" }, { "api_name": "multiprocessing.Manager", "line_number": 35, "usage_type": "call" }, { "api_name": "multiprocessing.Value", "line_number": 37, "usage_type": "call" }, { "api_name": "multiprocessing.Value", "line_number": 38, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 45, "usage_type": "call" }, { "api_name": "server.get_command_keyboard", "line_number": 45, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 46, "usage_type": "call" }, { "api_name": "controls.ManualControl.get_command_keyboard_from_pc", "line_number": 46, "usage_type": "attribute" }, { "api_name": "controls.ManualControl", "line_number": 46, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 51, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 55, "usage_type": "call" }, { "api_name": "server.get_command", "line_number": 55, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 56, "usage_type": "call" }, { "api_name": "controls.ManualControl.speech_move", "line_number": 56, "usage_type": "attribute" }, { "api_name": "controls.ManualControl", "line_number": 56, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 61, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 65, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 66, "usage_type": "call" }, { "api_name": "server.stream_frame", "line_number": 66, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 67, "usage_type": "call" }, { "api_name": "server.get_command_keyboard", "line_number": 67, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 68, "usage_type": "call" }, { "api_name": "controls.ManualControl.get_command_keyboard_from_pc", "line_number": 68, "usage_type": "attribute" }, { "api_name": "controls.ManualControl", "line_number": 68, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 75, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 79, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 80, "usage_type": "call" }, { "api_name": "server.stream_frame", "line_number": 80, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 81, "usage_type": "call" }, { "api_name": "server.get_command", "line_number": 81, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 82, "usage_type": "call" }, { "api_name": "controls.ManualControl.speech_move", "line_number": 82, "usage_type": "attribute" }, { "api_name": "controls.ManualControl", "line_number": 82, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 90, "usage_type": "call" } ]
32414340113
from flask import Flask, send_file, request, abort from pathlib import Path import youtube_dl import json app = Flask(__name__) @app.route('/queuemp3', methods=['GET', 'POST']) def queuemp3(): if request.method == 'POST': try: data = request.get_json() url = data['url'] print(url) ydl = youtube_dl.YoutubeDL() r = None with ydl: # don't download, much faster r = ydl.extract_info(url, download=False) options = { 'format': 'bestaudio/best', 'extractaudio': True, # only keep the audio 'audioformat': "mp3", # convert to mp3 'outtmpl': '{}.mp3'.format(r['title']), # name the file the ID of the video 'noplaylist': True, # only download single song, not playlist } ''' print some typical fields if needed print("%s uploaded by '%s', has %d views, %d likes, and %d dislikes" % ( r['title'], r['uploader'], r['view_count'], r['like_count'], r['dislike_count']))''' with youtube_dl.YoutubeDL(options) as ydl: ydl.download([url]) try: return json.dumps({'filename': r['title']}) except Exception as e: return str(e) finally: print("A request was sent for queueing a conversion") @app.route('/downloadmp3', methods=['GET', 'POST']) def downloadmp3(): if request.method == 'POST': filename = request.form['filename'] print(filename) audio_file = Path("./{}.mp3".format(filename)) if audio_file.is_file(): return send_file('./{}.mp3'.format(filename), attachment_filename='{}.mp3'.format(filename)) else: abort(404) if __name__ == "__main__": app.run(host="0.0.0.0", port=8080, debug=True)
BK-Modding/youtube-2-mp3
flask server/app.py
app.py
py
1,961
python
en
code
2
github-code
6
[ { "api_name": "flask.Flask", "line_number": 6, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 10, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 10, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 12, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 12, "usage_type": "name" }, { "api_name": "youtube_dl.YoutubeDL", "line_number": 16, "usage_type": "call" }, { "api_name": "youtube_dl.YoutubeDL", "line_number": 34, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 37, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 46, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 46, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 47, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 47, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 49, "usage_type": "call" }, { "api_name": "flask.send_file", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 54, "usage_type": "call" } ]
33561633117
import typing as t import json import re from pathlib import Path from PIL import Image from torch.utils.data import Dataset from .types.marked_image \ import MarkedImage, MarkedImageTensor from .transforms import ( ToTensor ) from ..utils import coord class BdcDataSet(Dataset): def __init__(self, img_path: str, land_path: str, transform=None): super().__init__() if transform is None: self.transform = ToTensor() else: self.transform = transform self.image_files = [ p for p in Path(img_path).glob("**/*") if re.search('/*.(jpg|png)', str(p)) ] if land_path is not None: with open(land_path) as lm: landmarks = json.load(lm) self.landmarks = self.__normalize_landmarks(landmarks) else: self.landmarks = {} def __len__(self) -> int: return len(self.image_files) def __getitem__(self, idx: int) -> MarkedImageTensor: p = self.image_files[idx] with Image.open(str(p)).convert('RGB') as img: img.load() lmarks = self.landmarks.get(p.name, []) sample: MarkedImage = { 'image': img, 'landmarks': lmarks } sample = self.transform(sample) return sample def __normalize_landmarks(self, landmarks) -> t.Dict: norm_lands = {} for p in self.image_files: lmarks = landmarks[p.name] with Image.open(str(p)).convert('RGB') as img: img.load() norm_lands[p.name] = list(map( lambda x: coord.to_ml_coord(x, img.size), lmarks )) return norm_lands
daikon-oroshi/court-detection
court_detection/data/data_set.py
data_set.py
py
1,789
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 16, "usage_type": "name" }, { "api_name": "transforms.ToTensor", "line_number": 22, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 27, "usage_type": "call" }, { "api_name": "re.search", "line_number": 28, "usage_type": "call" }, { "api_name": "json.load", "line_number": 32, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 42, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 42, "usage_type": "name" }, { "api_name": "types.marked_image.MarkedImage", "line_number": 46, "usage_type": "name" }, { "api_name": "types.marked_image.MarkedImageTensor", "line_number": 40, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 60, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 60, "usage_type": "name" }, { "api_name": "utils.coord.to_ml_coord", "line_number": 63, "usage_type": "call" }, { "api_name": "utils.coord", "line_number": 63, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 55, "usage_type": "attribute" } ]
35411640384
#!/usr/bin/python # -*- coding: utf-8 -*- """ Update map explorers -------------------- """ import logging from os.path import join from hdx.data.dataset import Dataset from hdx.data.resource import Resource from src.acled import update_lc_acled, update_ssd_acled from src.cbpf import update_cbpf from src.fts import update_fts #from src.rowca import update_rowca logger = logging.getLogger(__name__) def get_valid_names(downloader, url, headers): rows_gen = downloader.get_tabular_rows(url, dict_rows=True, headers=headers) return [x['Name'] for x in rows_gen if x['Name'] != 'Name'] def update_resources(resource_updates): for resource_info in resource_updates.values(): resource = Resource.read_from_hdx(resource_info['id']) resource.set_file_to_upload(resource_info['path']) resource.update_in_hdx() def update_lc(today, downloader, folder, lc_names_url, lc_mappings_url, acled_base_url, fts_base_url, rowca_base_url): logger.info('Lake Chad Map Explorer Data') country_list = ['Cameroon', 'Nigeria', 'Niger', 'Chad'] valid_names = get_valid_names(downloader, lc_names_url, headers=['ISO', 'Name']) replace_values = downloader.download_tabular_key_value(lc_mappings_url) resource_updates = dict() resource_updates['acled_events'] = {'id': 'fc396bf2-d204-48b2-84d2-337ada015273', 'path': join(folder, 'Lake_Chad_Basin_Recent_Conflict_Events.csv')} resource_updates['acled_fatalities'] = {'id': '3792ee5d-ca30-4e5c-96c8-618c6b625d12', 'path': join(folder, 'Lake_Chad_Basin_Recent_Conflict_Event_Total_Fatalities.csv')} resource_updates['fts'] = {'id': '2890c719-4fb2-4178-acdb-e0c5c91cfbce', 'path': join(folder, 'Lake_Chad_Basin_Appeal_Status.csv')} # resource_updates['rowca_population'] = {'id': '048df35c-e35f-4b1f-aa1a-2d1ce1292f22', # 'path': join(folder, 'Lake_Chad_Basin_Estimated_Population.csv')} # resource_updates['rowca_displaced'] = {'id': '1bdcc8f3-223c-4f7d-9bc6-48be317d50c5', # 'path': join(folder, 'Lake_Chad_Basin_Displaced.csv')} logger.info('Lake Chad - ACLED') update_lc_acled(today, acled_base_url, country_list, valid_names, replace_values, resource_updates) logger.info('Lake Chad - FTS') update_fts(fts_base_url, downloader, country_list, resource_updates) # logger.info('Lake Chad - ROWCA') # update_rowca(rowca_base_url, downloader, valid_names, replace_values, resource_updates) logger.info('Lake Chad - Dataset Date') update_resources(resource_updates) dataset = Dataset.read_from_hdx('lake-chad-crisis-map-explorer-data') dataset.set_dataset_date_from_datetime(today) dataset.update_in_hdx() def update_ssd(today, downloader, folder, ssd_adm1_names_url, ssd_adm2_names_url, ssd_mappings_url, acled_base_url, cbpf_base_url): logger.info('South Sudan Map Explorer Data') country_list = ['South Sudan'] valid_adm1_names = get_valid_names(downloader, ssd_adm1_names_url, headers=['Name']) valid_adm2_names = get_valid_names(downloader, ssd_adm2_names_url, headers=['Name']) replace_values = downloader.download_tabular_key_value(ssd_mappings_url) resource_updates = dict() resource_updates['acled_events'] = {'id': '3480f362-67bb-44d0-b749-9e8fc0963fc0', 'path': join(folder, 'South_Sudan_Recent_Conflict_Events.csv')} resource_updates['acled_fatalities'] = {'id': 'a67b85ee-50b4-4345-9102-d88bf9091e95', 'path': join(folder, 'South_Sudan_Recent_Conflict_Event_Total_Fatalities.csv')} resource_updates['cbpf'] = {'id': 'd6b18405-5982-4075-bb0a-a1a85f09d842', 'path': join(folder, 'South_Sudan_Country_Based_Pool_Funds.csv')} logger.info('South Sudan - ACLED') update_ssd_acled(today, acled_base_url, country_list, valid_adm2_names, replace_values, resource_updates) logger.info('South Sudan - CBPF') update_cbpf(cbpf_base_url, downloader, 'SSD19', today, valid_adm1_names, replace_values, resource_updates) logger.info('South_Sudan_ - Dataset Date') update_resources(resource_updates) dataset = Dataset.read_from_hdx('south-sudan-crisis-map-explorer-data') dataset.set_dataset_date_from_datetime(today) dataset.update_in_hdx()
OCHA-DAP/hdx-scraper-mapexplorer
mapexplorer.py
mapexplorer.py
py
4,508
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "hdx.data.resource.Resource.read_from_hdx", "line_number": 29, "usage_type": "call" }, { "api_name": "hdx.data.resource.Resource", "line_number": 29, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 46, "usage_type": "call" }, { "api_name": "src.acled.update_lc_acled", "line_number": 52, "usage_type": "call" }, { "api_name": "src.fts.update_fts", "line_number": 54, "usage_type": "call" }, { "api_name": "hdx.data.dataset.Dataset.read_from_hdx", "line_number": 59, "usage_type": "call" }, { "api_name": "hdx.data.dataset.Dataset", "line_number": 59, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 77, "usage_type": "call" }, { "api_name": "src.acled.update_ssd_acled", "line_number": 79, "usage_type": "call" }, { "api_name": "src.cbpf.update_cbpf", "line_number": 81, "usage_type": "call" }, { "api_name": "hdx.data.dataset.Dataset.read_from_hdx", "line_number": 84, "usage_type": "call" }, { "api_name": "hdx.data.dataset.Dataset", "line_number": 84, "usage_type": "name" } ]
37076072504
import subprocess import time import os import stat import threading import uuid class Iperf3(object): def __init__(self, _ssh_machine1, _ssh_key1, _ssh_machine2, _ssh_key2): self.ssh_machine1 = _ssh_machine1 self.ssh_machine2 = _ssh_machine2 self.ssh_key1 = _ssh_key1 self.ssh_key2 = _ssh_key2 def generate_test_file(self, command_list, filename): with open(filename, 'w') as f: f.write("#!/bin/bash\n") for command in command_list: f.write(" ".join(command) + "\n") f.write("sleep 5\n") os.chmod(filename, os.stat(filename).st_mode | stat.S_IEXEC) def get_result_value_from_client_iperf_file(self,client_file): print(client_file) proc = subprocess.Popen(['./get_value.sh',client_file],stdout=subprocess.PIPE) proc.wait() value_bytes = proc.communicate()[0].decode('utf-8') value=''.join(str(v) for v in value_bytes) # May return \n only if not value or ('\n' in value and len(value)==1): return None print(value) proc = subprocess.Popen(['./get_metric.sh',client_file],stdout=subprocess.PIPE) proc.wait() metric_bytes = proc.communicate()[0].decode('utf-8') metric=''.join(str(v) for v in metric_bytes) if 'M' in metric: return float(value) if 'G' in metric: return (float(value) * 1000.0) return(float(value) * 0.001) def get_results(self, client_key, client_addr, flow_num=20): sum = 0.0 filepath='./' + client_addr + '_' filepath += str(uuid.uuid4()) filepath += '/' os.mkdir(filepath) scp = subprocess.Popen(['scp','-i',client_key,client_addr + ':~/iperf3_output.*',filepath]) scp.wait() failed_flows = 0 for i in range(0,flow_num): outfile = filepath + 'iperf3_output.' + str(i) res = self.get_result_value_from_client_iperf_file(outfile) if res == None: failed_flows += 1 else: sum += res print('Total is: {} Mbps'.format(sum)) print('Mean is: {} Mbps'.format(sum/float(flow_num))) def run_performance_tests(self, use_udp=False, # protocol to be used bw='500M', # bandwidth duration='300', flow_num=20, server_addr=None, server_port=5201, server_file='server_file.sh', client_file='client_file.sh'): sleep_between_serv_clients = 30 s_cmd_base = 'iperf3 -s -1' c_cmd_base = 'iperf3 -c ' + self.ssh_machine2 + ' -b ' + bw + ' -t ' + duration if use_udp: c_cmd_base += ' -u' port=server_port s_cmd_list = [] for i in range(0,flow_num): outfile = 'iperf3_output.' + str(i) #s_cmd = ['ssh','-i',self.ssh_key2,self.ssh_machine2, # 'nohup',s_cmd_base,'-p',str(port+i),'&>',outfile] s_cmd = ['nohup',s_cmd_base,'-p',str(port+i),'&>',outfile,'&'] s_cmd_list.append(s_cmd) self.generate_test_file(s_cmd_list,server_file) s_scp = subprocess.Popen(['scp','-i',self.ssh_key2,server_file,self.ssh_machine2 + ':~/']); s_scp.wait() #print("Running: {} as server".format(s_cmd)) subprocess.Popen(['ssh','-i',self.ssh_key2,self.ssh_machine2,'./' + server_file]) time.sleep(sleep_between_serv_clients) c_cmd_list = [] for i in range(0,flow_num): outfile = 'iperf3_output.' + str(i) #c_cmd = ['ssh','-i',self.ssh_key1,self.ssh_machine1, # 'nohup',c_cmd_base,'-p',str(port+i),'&>',outfile] c_cmd = ['nohup',c_cmd_base,'-p',str(port+i),'&>',outfile,'&'] c_cmd_list.append(c_cmd) self.generate_test_file(c_cmd_list,client_file) c_scp = subprocess.Popen(['scp','-i',self.ssh_key1,client_file,self.ssh_machine1 + ':~/']); c_scp.wait() #print("Running: {} as server".format(c_cmd)) subprocess.Popen(['ssh','-i',self.ssh_key1,self.ssh_machine1,'./' + client_file]) print("Waiting for test to finish........") time.sleep(int(duration) + sleep_between_serv_clients) print("DONE") #subprocess.Popen(['ssh','-i',self.ssh_key2,self.ssh_machine2, # "kill -9 $(ps aux | grep iperf | awk \'{print $2}\')"]) self.get_results(client_key=self.ssh_key1, client_addr=self.ssh_machine1, flow_num=flow_num) if __name__=="__main__": print("*************************************") print("** Make sure SSH keys for servers **") print("** SSH address should of form: **") print("** name@IP **") print("** or **") print("** name@hostname **") print("** Key should be a filepath **") print("** **") print("** Make sure iperf3 is installed **") print("*************************************") ##### test STARTUP parameters: use_udp=False bw='500M' duration='300' flow_num=20 server_addr=None server_port=5201 #### # test_list syntax: # ( IP MACHINE 1, KEY MACHINE 1, IP MACHINE 2, KEY MACHINE 2) test_list = [('10.5.0.3','./id_iperf_test','10.5.0.30','./id_iperf_test')] #('10.5.0.3','./id_iperf_test','10.5.0.30','./id_iperf_test')] thread_list = [] for tup in test_list: test = Iperf3(tup[0],tup[1],tup[2],tup[3]) thread = threading.Thread(test.run_performance_tests(use_udp=use_udp, bw=bw, duration=duration, flow_num=flow_num, server_port=server_port)) thread_list.append(thread) thread.start() #waiting threads to finish: for t in thread_list: t.join()
phvalguima/iperf-testing
iperf.py
iperf.py
py
6,642
python
en
code
0
github-code
6
[ { "api_name": "os.chmod", "line_number": 30, "usage_type": "call" }, { "api_name": "os.stat", "line_number": 30, "usage_type": "call" }, { "api_name": "stat.S_IEXEC", "line_number": 30, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 35, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 35, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 43, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 43, "usage_type": "attribute" }, { "api_name": "uuid.uuid4", "line_number": 60, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 62, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 63, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 102, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 105, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 108, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 119, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 122, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 126, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 164, "usage_type": "call" } ]
37564490314
import pdb import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal from scipy.stats import entropy, gaussian_kde, normaltest import nflows from nflows import distributions, transforms, utils, flows from nflows.transforms.normalization import BatchNorm from nflows.nn import nets from nflows.transforms.base import ( CompositeTransform, InputOutsideDomain, InverseTransform, Transform, ) from nflows.utils import torchutils def build_nflows(num_layers=2, hids=20, dims=2, context_dims=2, batch_norm=False, activation=torch.nn.functional.relu, bins = 15, tail=8.0, device = 'cuda', rqs=True, bimodal=False): context_net = Linear_2L(context_dims, 2*dims, hids, 0.5, 0, mc_drop = False, fixed_masks = False, different_heads = False, device = device) base_dist = nflows.distributions.ConditionalDiagonalNormal( shape=[dims], context_encoder= context_net) transforms = [] def create_net(in_features, out_features): return Linear_2L(in_features, out_features, hids, 0.5, context_dims, fixed_masks = False, different_heads = False, device=device) for _ in range(num_layers): if dims > 1: transforms.append(nflows.transforms.RandomPermutation(features=dims)) mask = nflows.utils.torchutils.create_mid_split_binary_mask(dims) transforms.append( nflows.transforms.PiecewiseCubicCouplingTransform(mask, create_net, tails='linear', num_bins=bins, tail_bound=tail, )) if dims == 1: transforms.append( nflows.transforms.MaskedPiecewiseQuadraticAutoregressiveTransform( features=dims, hidden_features=hids, context_features=context_dims, num_blocks = 2, use_batch_norm=batch_norm, num_bins=bins, tails='linear', tail_bound = tail, activation = activation, use_residual_blocks = False,)) transform = nflows.transforms.CompositeTransform(transforms) flow = nflows.flows.Flow(transform, base_dist) return flow def build_nflows_ensemble(num_layers=2, hids=20, dims=2, context_dims=2, batch_norm=False, activation=torch.nn.functional.relu, bins = 15, tail=8.0, device = 'cuda', rqs=True, base = True, flows = True, multihead=False, fixed_masks=False, ensemble_size=15, bimodal=False): if base: context_net = Linear_2L(context_dims, 2*dims, hids*2, 0.5, 0, fixed_masks = fixed_masks, num_masks = ensemble_size, different_heads = multihead, device = device) else: context_net = Linear_2L(context_dims, 2*dims, hids*2, 0.5, 0, fixed_masks = False, num_masks = ensemble_size, different_heads = False, device = device) base_dist = nflows.distributions.ConditionalDiagonalNormal( shape=[dims], context_encoder= context_net) transforms = [] if flows: def create_net(in_features, out_features): return Linear_2L(in_features, out_features, hids, 0.5, context_dims, fixed_masks=fixed_masks, different_heads = multihead, num_masks=ensemble_size, device=device) else: def create_net(in_features, out_features): return Linear_2L(in_features, out_features, hids, 0.5, context_dims, fixed_masks = False, different_heads = False, device=device) for _ in range(num_layers): if dims > 1: transforms.append(nflows.transforms.RandomPermutation(features=dims)) mask = nflows.utils.torchutils.create_mid_split_binary_mask(dims) transforms.append( nflows.transforms.PiecewiseCubicCouplingTransform(mask, create_net, tails='linear', num_bins=bins, tail_bound=tail, )) if dims == 1: transforms.append( nflows.transforms.MaskedPiecewiseQuadraticAutoregressiveTransform( features=dims, hidden_features=hids, context_features=context_dims, num_blocks = 1, use_batch_norm=batch_norm, num_bins=bins, tails='linear', tail_bound = tail, activation = activation, use_residual_blocks = False, ensemble = flows)) #create_context_net = create_net)) transform = nflows.transforms.CompositeTransform(transforms) flow = nflows.flows.Flow(transform, base_dist) return flow class Linear_2L(nn.Module): def __init__(self, input_dim, output_dim, n_hid, pdrop, context_dim, fixed_masks = False, num_masks = 10, different_heads = False, device='cpu'): super(Linear_2L, self).__init__() self.pdrop = pdrop self.input_dim = input_dim self.output_dim = output_dim self.n_hid = n_hid self.fc1 = nn.Linear(input_dim+context_dim, n_hid) self.fc2 = nn.Linear(n_hid, n_hid) if different_heads: self.heads = [] for i in range(num_masks): exec(f'self.head{i} = nn.Linear(n_hid, output_dim)') exec(f'self.heads.append(self.head{i})') else: self.fc3 = nn.Linear(n_hid, output_dim) self.different_heads = different_heads # choose your non linearity # self.act = nn.Tanh() # self.act = nn.Sigmoid() self.act = nn.ReLU(inplace=True) # self.act = nn.ELU(inplace=True) # self.act = nn.SELU(inplace=True) self.fixed_masks = fixed_masks if fixed_masks: self.create_masks(num_masks, device) self.num_masks = num_masks def forward(self, x, context=None, rand_mask=True, mask_index = 0): if self.fixed_masks: if rand_mask: mask = self.masks[np.random.choice(self.num_masks)] else: mask = self.masks[mask_index] if self.different_heads: if rand_mask: head_idx = np.random.choice(self.num_masks) else: head_idx = mask_index x = x.view(-1, self.input_dim) # view(batch_size, input_dim) if context is None: pass else: x = torch.cat((x, context), dim=1) # ----------------- x = self.fc1(x) if self.fixed_masks: x = mask[0].repeat(x.shape[0],1)*x # ----------------- x = self.act(x) # ----------------- x = self.fc2(x) if self.fixed_masks: x = mask[1].repeat(x.shape[0],1)*x # ----------------- x = self.act(x) # ----------------- if self.different_heads: y = self.heads[head_idx](x) else: y = self.fc3(x) return y def create_masks(self, num_masks, device): masks = [] for i in range(num_masks): mask_l1 = torch.bernoulli(torch.full_like(torch.ones(self.n_hid), self.pdrop))\ .to(device) mask_l2 = torch.bernoulli(torch.full_like(torch.ones(self.n_hid), self.pdrop))\ .to(device) masks.append([mask_l1, mask_l2]) self.masks = masks
nwaftp23/nflows_epistemic
nflows_utils.py
nflows_utils.py
py
7,615
python
en
code
1
github-code
6
[ { "api_name": "torch.nn", "line_number": 22, "usage_type": "attribute" }, { "api_name": "nflows.distributions.ConditionalDiagonalNormal", "line_number": 27, "usage_type": "call" }, { "api_name": "nflows.distributions", "line_number": 27, "usage_type": "attribute" }, { "api_name": "nflows.transforms", "line_number": 30, "usage_type": "name" }, { "api_name": "nflows.transforms.append", "line_number": 38, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 38, "usage_type": "name" }, { "api_name": "nflows.transforms.RandomPermutation", "line_number": 38, "usage_type": "call" }, { "api_name": "nflows.utils.torchutils.create_mid_split_binary_mask", "line_number": 39, "usage_type": "call" }, { "api_name": "nflows.utils", "line_number": 39, "usage_type": "attribute" }, { "api_name": "nflows.transforms.append", "line_number": 40, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 40, "usage_type": "name" }, { "api_name": "nflows.transforms.PiecewiseCubicCouplingTransform", "line_number": 41, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 41, "usage_type": "attribute" }, { "api_name": "nflows.transforms.append", "line_number": 45, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 45, "usage_type": "name" }, { "api_name": "nflows.transforms.MaskedPiecewiseQuadraticAutoregressiveTransform", "line_number": 46, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 46, "usage_type": "attribute" }, { "api_name": "nflows.transforms.CompositeTransform", "line_number": 57, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 57, "usage_type": "argument" }, { "api_name": "nflows.flows.Flow", "line_number": 59, "usage_type": "call" }, { "api_name": "nflows.flows", "line_number": 59, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "attribute" }, { "api_name": "nflows.distributions.ConditionalDiagonalNormal", "line_number": 74, "usage_type": "call" }, { "api_name": "nflows.distributions", "line_number": 74, "usage_type": "attribute" }, { "api_name": "nflows.transforms", "line_number": 77, "usage_type": "name" }, { "api_name": "nflows.flows", "line_number": 80, "usage_type": "name" }, { "api_name": "nflows.transforms.append", "line_number": 92, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 92, "usage_type": "name" }, { "api_name": "nflows.transforms.RandomPermutation", "line_number": 92, "usage_type": "call" }, { "api_name": "nflows.utils.torchutils.create_mid_split_binary_mask", "line_number": 93, "usage_type": "call" }, { "api_name": "nflows.utils", "line_number": 93, "usage_type": "attribute" }, { "api_name": "nflows.transforms.append", "line_number": 94, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 94, "usage_type": "name" }, { "api_name": "nflows.transforms.PiecewiseCubicCouplingTransform", "line_number": 95, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 95, "usage_type": "attribute" }, { "api_name": "nflows.transforms.append", "line_number": 99, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 99, "usage_type": "name" }, { "api_name": "nflows.transforms.MaskedPiecewiseQuadraticAutoregressiveTransform", "line_number": 100, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 100, "usage_type": "attribute" }, { "api_name": "nflows.flows", "line_number": 111, "usage_type": "name" }, { "api_name": "nflows.transforms.CompositeTransform", "line_number": 113, "usage_type": "call" }, { "api_name": "nflows.transforms", "line_number": 113, "usage_type": "argument" }, { "api_name": "nflows.flows.Flow", "line_number": 115, "usage_type": "call" }, { "api_name": "nflows.flows", "line_number": 115, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 119, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 119, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 139, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 139, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 145, "usage_type": "name" }, { "api_name": "numpy.random.choice", "line_number": 156, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 156, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 162, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 170, "usage_type": "call" }, { "api_name": "torch.bernoulli", "line_number": 194, "usage_type": "call" }, { "api_name": "torch.full_like", "line_number": 194, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 194, "usage_type": "call" }, { "api_name": "torch.bernoulli", "line_number": 196, "usage_type": "call" }, { "api_name": "torch.full_like", "line_number": 196, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 196, "usage_type": "call" } ]
2348487124
import os import sys import logging if sys.version_info >= (3, 0): from io import StringIO else: try: from cStringIO import StringIO except ImportError: from StringIO import StringIO assert StringIO from pylint import lint from pylint.__pkginfo__ import numversion class PyLinter(object): """PyLinter class for Anaconda """ def __init__(self, filename, rcfile): self.filename = filename self.exit = sys.exit self.rcfile = rcfile self.stdout = sys.stdout self.output = StringIO() sys.exit = lambda x: None sys.stdout = self.output self.execute() def execute(self): """Execute the linting process """ if numversion < (1, 0, 0): args = '--include-ids=y -r n'.split(' ') else: args = '--msg-template={msg_id}:{line}:{column}:{msg} -r n'.split( ' ') if self.rcfile: args.append('--rcfile={0}'.format(os.path.expanduser(self.rcfile))) args.insert(0, self.filename) lint.Run(args) def parse_errors(self): """Parse the output given by PyLint """ errors = {'E': [], 'W': [], 'V': []} data = self.output.getvalue() sys.exit = self.exit sys.stdout = self.stdout for error in data.splitlines(): if '************* Module ' in error: _, module = error.split('************* Module ') if not module in self.filename: continue else: offset = None try: if numversion >= (1, 0, 0): code, line, offset, message = error.split(':', 3) else: code, line, message = error.split(':', 2) except ValueError as exception: logging.debug( 'unhandled exception in PyLinter parse_errors ' 'this is a non fatal error: {0}'.format(exception) ) logging.debug( 'the error string that raised this exception was: ' '{0}, please, report this in the GitHub site'.format( error ) ) continue if numversion < (1, 0, 0): try: line, offset = line.split(',') except ValueError: # seems like some versions (or packagers) of pylint # prior to 1.0.0 adds offset to the output but others # doesn't pass errors[self._map_code(code)[0]].append({ 'line': int(line), 'offset': offset, 'code': self._map_code(code)[1], 'message': '[{0}] {1}'.format( self._map_code(code)[1], message ) }) return errors def _map_code(self, code): """Map the given code to fit Anaconda codes """ mapping = {'C': 'V', 'E': 'E', 'F': 'E', 'I': 'V', 'R': 'W', 'W': 'W'} return (mapping[code[0]], code[1:])
blizzrdof77/Sublime-Text-3-Packages
Anaconda/anaconda_lib/linting/anaconda_pylint.py
anaconda_pylint.py
py
3,368
python
en
code
1
github-code
6
[ { "api_name": "sys.version_info", "line_number": 5, "usage_type": "attribute" }, { "api_name": "StringIO.StringIO", "line_number": 12, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 24, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 26, "usage_type": "attribute" }, { "api_name": "StringIO.StringIO", "line_number": 27, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 29, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 30, "usage_type": "attribute" }, { "api_name": "pylint.__pkginfo__.numversion", "line_number": 38, "usage_type": "name" }, { "api_name": "os.path.expanduser", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "pylint.lint.Run", "line_number": 48, "usage_type": "call" }, { "api_name": "pylint.lint", "line_number": 48, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 57, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 58, "usage_type": "attribute" }, { "api_name": "pylint.__pkginfo__.numversion", "line_number": 68, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 73, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 77, "usage_type": "call" }, { "api_name": "pylint.__pkginfo__.numversion", "line_number": 85, "usage_type": "name" } ]
3357675588
from numpy.lib.polynomial import RankWarning import torch as pt import numpy as np from dataset.GuidedBraTSDataset3D import GuidedBraTSDataset3D from model.PFSeg import PFSeg3D import cv2 import SimpleITK as sitk lr=0.0001 epoch=100 batch_size=1 model_path='/path/to/Saved_models' img_size=(64,96,96) model=PFSeg3D().cuda() model.load_state_dict(pt.load(model_path+'/PFSeg_3D_BraTS_patch-free_bs_best.pt',map_location = 'cpu')) trainset=GuidedBraTSDataset3D('/path/to/BraTS20',mode='all',augment=False) # valset=BraTSDataset3D('/path/to/BraTS20',mode='val') # testset=GuidedBraTSDataset3D('/path/to/BraTS20',mode='test') train_dataset=pt.utils.data.DataLoader(trainset,batch_size=batch_size,shuffle=False,drop_last=True) # val_dataset=pt.utils.data.DataLoader(valset,batch_size=1,shuffle=True,drop_last=True) # test_dataset=pt.utils.data.DataLoader(testset,batch_size=1,shuffle=True,drop_last=True) def GenerateCoarseMask(): model.eval() dice_sum=0 hd_sum=0 jc_sum=0 for i,data in enumerate(train_dataset): output_list=np.zeros((1,1,2*img_size[0],2*img_size[1],2*img_size[2])) label_list=np.zeros((1,1,2*img_size[0],2*img_size[1],2*img_size[2])) (inputs,labels,raw_image,guidance,_)=data labels3D = pt.autograd.Variable(labels).type(pt.FloatTensor).cuda().unsqueeze(1) guidance = pt.autograd.Variable(guidance).type(pt.FloatTensor).cuda().unsqueeze(1) inputs3D = pt.autograd.Variable(inputs).type(pt.FloatTensor).cuda().unsqueeze(1) with pt.no_grad(): outputs3D,_ = model(inputs3D,guidance) outputs3D=np.array(outputs3D.squeeze(0).squeeze(0).cpu().data.numpy()) output_list=np.zeros((raw_image.shape[1]+64,raw_image.shape[2]+64,raw_image.shape[3]+64)) output_list[32:-32,32:-32,32:-32]=outputs3D label_list=np.zeros((raw_image.shape[1]+64,raw_image.shape[2]+64,raw_image.shape[3]+64)) label_list[32:-32,32:-32,32:-32]=np.array(labels3D.squeeze(0).squeeze(0).cpu().data.numpy()) input_real=np.array(raw_image.squeeze(0).numpy()) input_list=np.zeros((raw_image.shape[1]+64,raw_image.shape[2]+64,raw_image.shape[3]+64)) input_list[32:-32,32:-32,32:-32]=input_real output_list[output_list<0.5]=0. output_list[output_list>=0.5]=1. results=np.where(output_list!=0) x_list=results[0] y_list=results[1] z_list=results[2] x_max=x_list.max() x_min=x_list.min() y_max=y_list.max() y_min=y_list.min() z_max=z_list.max() z_min=z_list.min() x_length=64*(1+(x_max-x_min)//64) #确保是16的倍数 y_length=64*(1+(y_max-y_min)//64) z_length=64*(1+(z_max-z_min)//64) x_center=(x_max-x_min)//2+x_min y_center=(y_max-y_min)//2+y_min z_center=(z_max-z_min)//2+z_min bbox_xmin=x_center-x_length//2 bbox_xmax=x_center+x_length//2 bbox_ymin=y_center-y_length//2 bbox_ymax=y_center+y_length//2 bbox_zmin=z_center-z_length//2 bbox_zmax=z_center+z_length//2 # cropped_coarse=np.zeros((x_length,y_length,z_length)) # cropped_image=np.zeros((x_length,y_length,z_length)) # cropped_mask=np.zeros((x_length,y_length,z_length)) cropped_image=input_list[bbox_xmin:bbox_xmax,bbox_ymin:bbox_ymax,bbox_zmin:bbox_zmax] cropped_coarse=output_list[bbox_xmin:bbox_xmax,bbox_ymin:bbox_ymax,bbox_zmin:bbox_zmax] cropped_mask=label_list[bbox_xmin:bbox_xmax,bbox_ymin:bbox_ymax,bbox_zmin:bbox_zmax] if not(cropped_mask.shape==cropped_image.shape): raise Exception() if not(cropped_image.shape[0]%16==0 and cropped_image.shape[1]%16==0 and cropped_image.shape[2]%16==0): raise Exception() # save the cropped images for next round training np.save('/path/to/BraTS20/cropped_coarse/Case_{:3d}_64image.npy'.format(i+1),cropped_image) np.save('/path/to/BraTS20/cropped_coarse/Case_{:3d}_64coarse.npy'.format(i+1),cropped_coarse) np.save('/path/to/BraTS20/cropped_coarse/Case_{:3d}_64mask.npy'.format(i+1),cropped_mask) # final_img=np.zeros(shape=(2*img_size[1],2*2*img_size[2])) # final_img[:,:2*img_size[2]]=output_list[0,0,64,:,:]*255 # final_img[:,2*img_size[2]:]=label_list[0,0,64,:,:]*255 # cv2.imwrite('TestPhase_BraTS.png',final_img) pr_sum = output_list.sum() gt_sum = label_list.sum() pr_gt_sum = np.sum(output_list[label_list == 1]) dice = 2 * pr_gt_sum / (pr_sum + gt_sum) dice_sum += dice print("dice:",dice) # hausdorff=hd95(output_list.squeeze(0).squeeze(0),label_list.squeeze(0).squeeze(0)) # jaccard=jc(output_list.squeeze(0).squeeze(0),label_list.squeeze(0).squeeze(0)) # hd_sum+=hausdorff # jc_sum+=jaccard print("Finished. Total dice: ",dice_sum/len(train_dataset),'\n') print("Finished. Avg Jaccard: ",jc_sum/len(train_dataset)) print("Finished. Avg hausdorff: ",hd_sum/len(train_dataset)) return dice_sum/len(train_dataset) GenerateCoarseMask()
Dootmaan/PFSeg-ABR
step2_generateCoraseMask.py
step2_generateCoraseMask.py
py
5,166
python
en
code
3
github-code
6
[ { "api_name": "model.PFSeg", "line_number": 16, "usage_type": "name" }, { "api_name": "model.PFSeg.PFSeg3D", "line_number": 16, "usage_type": "call" }, { "api_name": "model.PFSeg.load_state_dict", "line_number": 17, "usage_type": "call" }, { "api_name": "model.PFSeg", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 17, "usage_type": "call" }, { "api_name": "dataset.GuidedBraTSDataset3D.GuidedBraTSDataset3D", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 23, "usage_type": "attribute" }, { "api_name": "model.PFSeg.eval", "line_number": 28, "usage_type": "call" }, { "api_name": "model.PFSeg", "line_number": 28, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 38, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 38, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 39, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 39, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 41, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 41, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 42, "usage_type": "call" }, { "api_name": "model.PFSeg", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 108, "usage_type": "call" } ]
5024929632
from django.core.management import call_command from django.core.management.base import BaseCommand, CommandError import requests, json from app_comments.models import RedditPost, Comment from annoying.functions import get_object_or_None from app_comments.lib.comments import CommentBuilder, RedditPostBuilder from bs4 import BeautifulSoup from app_comments.management.commands.get_comments import PostGetter from time import sleep class Command(BaseCommand): args = "" help = "" def add_arguments(s, parser): parser.add_argument('--url', nargs='+', type=str) def process_args(s, options): url = options['url'][0] if options['url'] else None return url # orig_url = url[:] # if url: # if url[-5:] != '.json': # url = url[:-1] + '.json' # return url, orig_url def handle(s, *args, **options): #url = s.process_args(options) #print(url) url = 'https://www.reddit.com/top.json?sort=top&t=year' base_url = 'https://www.reddit.com' resp = requests.get(url) if resp.status_code == 200: text_json = resp.text else: print(resp.text) return page_json = json.loads(text_json) for post_info in page_json['data']['children']: comments_url = base_url + post_info['data']['permalink'] comments_json_url = comments_url[:-1]+'.json' pg = PostGetter() resp = pg.get(comments_json_url, comments_url) print(resp, 1) if resp == 'bad http': sleep_time = 5 print('sleeping (%s)...' % sleep_time) sleep(sleep_time) resp = pg.get(comments_json_url, comments_url) if resp == 'bad http': print('sleeping (%s)...' % sleep_time) sleep(sleep_time) resp = pg.get(comments_json_url, comments_url) if resp == 'bad http': print('sleeping (%s)...' % sleep_time) sleep(sleep_time) # cmd_data = {'--url': comments_url} # call_command('get_comments', **cmd_data) # break
daviddennis/comments
app_comments/management/commands/get_links.py
get_links.py
py
2,264
python
en
code
0
github-code
6
[ { "api_name": "django.core.management.base.BaseCommand", "line_number": 14, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 43, "usage_type": "call" }, { "api_name": "app_comments.management.commands.get_comments.PostGetter", "line_number": 48, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 54, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 58, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 62, "usage_type": "call" } ]
14077597352
from lk.utils.config_util import ConfigUtil from lk.utils.shell_util import run_and_confirm, run, run_and_return_output from furl import furl bitbucket = 'bitbucket' bitbucket_domain = 'bitbucket.org' github = 'github' github_domain = 'github.com' class SourceCodeRepo(object): def __init__(self, url=None, service=None, user=None, repo_name=None): self._url = url self._service = service self._user = user self._repo_name = repo_name @property def url(self): if self._url: return self._url else: url = 'https://{service_domain}/{user}/{repo}'.format( service_domain=self.service_domain, user=self.user, repo=self.repo_name ) return url @property def hosting_service_host(self): hosting_service_host = self._url.split('/')[2] return hosting_service_host @property def hosting_service(self): hosting_service = self.hosting_service_host.split('.')[0] return hosting_service @property def user(self): if self._user: return self._user else: user = self._url.split('/')[3] return user @property def repo_name(self): if self._repo_name: return self._repo_name else: repo_name = self._url.split('/')[4] return repo_name @property def clone_command(self): # https://github.com/lk-commands/default # [email protected]:lk-commands/default.git # git clone [email protected]:eyalev/lk-commands.git # clone_command = 'git clone git@{hosting_service_host}:{user}/{repo_name}.git'.format( # clone_command = 'git clone {repo_url}.git'.format( clone_command = 'git clone {git_url}'.format( git_url=self.git_url ) return clone_command @property def git_url(self): url = self.url if 'github' in url: return url _furl = furl(url) git_url = 'git@{host}:{user}/{repo}.git'.format( host=_furl.host, user=str(_furl.path).split('/')[1], repo=str(_furl.path).split('/')[2] ) return git_url def clone(self): print('# Cloning lk-repo') clone_command = SourceCodeRepo(self.url).clone_command command = '{clone_command} {local_repo_path}'.format( clone_command=clone_command, local_repo_path=self.local_repo_string_path ) run_and_confirm(command) @property def commands_dir_string_path(self): return self.local_repo_string_path + '/commands' @property def local_repo_string_path(self): commands_repo_local_path = '{local_repos_dir}/{repo_service}/{repo_user}/{commands_repo_name}'.format( local_repos_dir=ConfigUtil().local_repos_dir, repo_service=self.hosting_service, repo_user=self.user, commands_repo_name=self.repo_name ) return commands_repo_local_path @property def service(self): if self._service: return self._service if 'bitbucket.org' in self.url: return bitbucket elif 'github.com' in self.url: return github else: raise NotImplementedError @property def bitbucket(self): return self.service == bitbucket @property def github(self): return self.service == github @property def service_domain(self): if self.bitbucket: return bitbucket_domain if self.github: return github_domain else: raise NotImplementedError def remote_file_source(self, file_name): if self.bitbucket: shell_command = 'git archive --remote=git@{service_domain}:{user}/{repo}.git HEAD commands/{file_name} | tar -x -O'.format( service_domain=self.service_domain, user=self.user, repo=self.repo_name, file_name=file_name ) output = run_and_return_output(shell_command) return output elif self.github: raise NotImplementedError else: raise NotImplementedError
eyalev/lk
lk/classes/source_code_repo.py
source_code_repo.py
py
4,401
python
en
code
0
github-code
6
[ { "api_name": "furl.furl", "line_number": 95, "usage_type": "call" }, { "api_name": "lk.utils.shell_util.run_and_confirm", "line_number": 116, "usage_type": "call" }, { "api_name": "lk.utils.config_util.ConfigUtil", "line_number": 126, "usage_type": "call" }, { "api_name": "lk.utils.shell_util.run_and_return_output", "line_number": 178, "usage_type": "call" } ]
8092333942
from vector import Vector import turtle scale = 40 def print_vector(vector, color): turtle.pencolor(color) turtle.penup() turtle.home() turtle.pendown() turtle.goto(vector.elements[0]*scale,vector.elements[1]*scale) def print_system(x,y): turtle.home() for i in range(x): turtle.dot(3) turtle.write(i, align='right') turtle.setx(scale*(i+1)) turtle.home() for j in range(y): turtle.dot(3) turtle.write(j, align='right') turtle.sety(scale*(j+1)) turtle.speed(10) print_system(10,10) vector1 = Vector([3, 2]) print_vector(vector1, 'red') vector2 = Vector([1,-4]) print_vector(vector2, 'blue') vector1.add_vector(vector2) print_vector(vector1, 'green') turtle.done()
sashokbg/python-exercises
vector/draw.py
draw.py
py
760
python
en
code
0
github-code
6
[ { "api_name": "turtle.pencolor", "line_number": 7, "usage_type": "call" }, { "api_name": "turtle.penup", "line_number": 8, "usage_type": "call" }, { "api_name": "turtle.home", "line_number": 9, "usage_type": "call" }, { "api_name": "turtle.pendown", "line_number": 10, "usage_type": "call" }, { "api_name": "turtle.goto", "line_number": 11, "usage_type": "call" }, { "api_name": "vector.elements", "line_number": 11, "usage_type": "attribute" }, { "api_name": "turtle.home", "line_number": 14, "usage_type": "call" }, { "api_name": "turtle.dot", "line_number": 16, "usage_type": "call" }, { "api_name": "turtle.write", "line_number": 17, "usage_type": "call" }, { "api_name": "turtle.setx", "line_number": 18, "usage_type": "call" }, { "api_name": "turtle.home", "line_number": 20, "usage_type": "call" }, { "api_name": "turtle.dot", "line_number": 22, "usage_type": "call" }, { "api_name": "turtle.write", "line_number": 23, "usage_type": "call" }, { "api_name": "turtle.sety", "line_number": 24, "usage_type": "call" }, { "api_name": "turtle.speed", "line_number": 26, "usage_type": "call" }, { "api_name": "vector.Vector", "line_number": 29, "usage_type": "call" }, { "api_name": "vector.Vector", "line_number": 33, "usage_type": "call" }, { "api_name": "turtle.done", "line_number": 41, "usage_type": "call" } ]
72014598908
import json import sys import argparse sys.path.append("../evaluation") from evaluate import tuple_f1, convert_opinion_to_tuple def get_args(): """ Helper function to get the gold json, predictions json and negation jsons """ parser = argparse.ArgumentParser() parser.add_argument("gold") parser.add_argument("predictions") parser.add_argument("metadata") args = parser.parse_args() return args def open_json(json_file): """ Helper function to open the json files """ with open(json_file) as o: file = json.load(o) sent_dict = {sent["sent_id"]: sent for sent in file} sent_keys = set(sent_dict.keys()) return sent_keys, sent_dict def main(): args = get_args() with open(args.metadata) as o: metadata = json.load(o) test_domains = {} gold_keys, gold = open_json(args.gold) pred_keys, pred = open_json(args.predictions) # get the domains found in the test data for sent_id in gold_keys: domain = metadata[sent_id[:6]]["category"] if domain not in test_domains: test_domains[domain] = [sent_id] else: test_domains[domain].append(sent_id) # print the domains in descending order for key, value in sorted(test_domains.items(), key=lambda kv: len(kv[1])): print("{}: \t{}".format(key, len(value))) print() print() # get the sentiment graph F1 for each domain for domain, sent_ids in sorted(test_domains.items(), key=lambda kv: len(kv[1])): domain_gold = dict([(sent_id, convert_opinion_to_tuple(gold[sent_id])) for sent_id in sent_ids]) domain_pred = dict([(sent_id, convert_opinion_to_tuple(pred[sent_id])) for sent_id in sent_ids]) f1 = tuple_f1(domain_gold, domain_pred) print("{0}: {1:.3f}".format(domain, f1)) if __name__ == "__main__": main()
jerbarnes/semeval22_structured_sentiment
analysis/domain_analysis.py
domain_analysis.py
py
1,950
python
en
code
71
github-code
6
[ { "api_name": "sys.path.append", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 13, "usage_type": "call" }, { "api_name": "json.load", "line_number": 26, "usage_type": "call" }, { "api_name": "json.load", "line_number": 35, "usage_type": "call" }, { "api_name": "evaluate.convert_opinion_to_tuple", "line_number": 59, "usage_type": "call" }, { "api_name": "evaluate.convert_opinion_to_tuple", "line_number": 60, "usage_type": "call" }, { "api_name": "evaluate.tuple_f1", "line_number": 61, "usage_type": "call" } ]
72683621307
from matplotlib import pyplot as plt from numpy import loadtxt, zeros from skimage.measure import label from os import path if __name__ == '__main__': current_dir = path.dirname(__file__) file_names = ['mat_p0.70.dat', 'mat_p0.72.dat'] for file_name in file_names: file_path = path.join(current_dir, file_name) lattice = loadtxt(file_path) # change connectivity to 2 if you want to consider Moore neighborhood labelled_lattice = label(lattice, background=0, connectivity=1) num_clusters = labelled_lattice.max() cluster_sizes = [] for cluster_id in range(1, num_clusters + 1): cluster_sizes.append((labelled_lattice == cluster_id).sum()) cluster_size_distribution = zeros(max(cluster_sizes)) for cluster_size in cluster_sizes: cluster_size_distribution[cluster_size - 1] += 1 inverse_cdf = zeros(max(cluster_sizes)) for cluster_size in range(max(cluster_sizes)): inverse_cdf[cluster_size] = (cluster_size_distribution[cluster_size:]).sum() inverse_cdf /= sum(cluster_size_distribution) plt.figure(figsize=(11, 5)) plt.subplot(1, 2, 1) plt.title(f"Lattice from {file_name}") plt.imshow(lattice) plt.subplot(1, 2, 2) plt.title("Cluster Size Distribution") plt.xlabel("Cluster Size s") plt.ylabel("P(S > s)") plt.loglog(range(1, max(cluster_sizes) + 1), inverse_cdf, 'bo') plt.show()
tee-lab/patchy-ecosterics
temp_actions/CSD/plotter.py
plotter.py
py
1,513
python
en
code
2
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 13, "usage_type": "call" }, { "api_name": "skimage.measure.label", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.loglog", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" } ]
810990786
'''Time Based Key-Value Store - https://leetcode.com/problems/time-based-key-value-store/ Design a time-based key-value data structure that can store multiple values for the same key at different time stamps and retrieve the key's value at a certain timestamp. Implement the TimeMap class: TimeMap() Initializes the object of the data structure. void set(String key, String value, int timestamp) Stores the key key with the value value at the given time timestamp. String get(String key, int timestamp) Returns a value such that set was called previously, with timestamp_prev <= timestamp. If there are multiple such values, it returns the value associated with the largest timestamp_prev. If there are no values, it returns "". Example 1: Input ["TimeMap", "set", "get", "get", "set", "get", "get"] [[], ["foo", "bar", 1], ["foo", 1], ["foo", 3], ["foo", "bar2", 4], ["foo", 4], ["foo", 5]] Output [null, null, "bar", "bar", null, "bar2", "bar2"] Explanation TimeMap timeMap = new TimeMap(); timeMap.set("foo", "bar", 1); // store the key "foo" and value "bar" along with timestamp = 1. timeMap.get("foo", 1); // return "bar" timeMap.get("foo", 3); // return "bar", since there is no value corresponding to foo at timestamp 3 and timestamp 2, then the only value is at timestamp 1 is "bar". timeMap.set("foo", "bar2", 4); // store the key "foo" and value "ba2r" along with timestamp = 4. timeMap.get("foo", 4); // return "bar2" timeMap.get("foo", 5); // return "bar2" ''' from collections import OrderedDict class TimeMap: def __init__(self): self.time_mapping = {} def set(self, key: str, value: str, timestamp: int) -> None: if key not in self.time_mapping: self.time_mapping[key] = OrderedDict() self.time_mapping[key][timestamp] = value def get(self, key: str, timestamp: int) -> str: if key in self.time_mapping: dictValues = self.time_mapping[key] temp = [] result = "" while dictValues: time, value = dictValues.popitem() temp.append((time, value)) if time <= timestamp: result = value break while temp: time, value = temp.pop() self.time_mapping[key][time] = value return result else: return "" # Your TimeMap object will be instantiated and called as such: # obj = TimeMap() # obj.set(key,value,timestamp) # param_2 = obj.get(key,timestamp) # Using Binary Search from collections import defaultdict class TimeMap: def __init__(self): self.time_mapping = defaultdict(list) def set(self, key: str, value: str, timestamp: int) -> None: self.time_mapping[key].append((value, timestamp)) def get(self, key: str, timestamp: int) -> str: if key not in self.time_mapping: return "" dictValues = self.time_mapping[key] left = 0 right = len(dictValues) - 1 while left < right: mid = left + (right - left) // 2 if dictValues[mid][1] < timestamp: left = mid + 1 elif dictValues[mid][1] > timestamp: right = mid - 1 else: return dictValues[mid][0] if dictValues[right][1] <= timestamp: return dictValues[right][0] return "" if right < 0 else dictValues[right - 1][0] # Your TimeMap object will be instantiated and called as such: # obj = TimeMap() # obj.set(key,value,timestamp) # param_2 = obj.get(key,timestamp)
Saima-Chaity/Leetcode
Google/Time Based Key-Value Store.py
Time Based Key-Value Store.py
py
3,635
python
en
code
0
github-code
6
[ { "api_name": "collections.OrderedDict", "line_number": 41, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 74, "usage_type": "call" } ]
30301888432
import os import sys import unittest from pathlib import Path import coverage from mpi4py import MPI def main(path, parallel): cov = coverage.coverage( branch=True, include=str(Path(path).parent) + '/ignis/executor/*.py', ) cov.start() import ignis.executor.core.ILog as Ilog Ilog.enable(False) tests = unittest.TestLoader().discover(path + '/executor/core', pattern='*Test.py') if parallel: tests.addTests(unittest.TestLoader().discover(path + '/executor/core', pattern='IMpiTest2.py')) else: print("WARNING: mpi test skipped", file=sys.stderr) result = unittest.TextTestRunner(verbosity=2, failfast=True).run(tests) cov.stop() cov.save() MPI.COMM_WORLD.Barrier() if result.wasSuccessful() and result.testsRun > 0 and MPI.COMM_WORLD.Get_rank() == 0: if parallel: others = ["../np" + str(i) + "/.coverage" for i in range(1, MPI.COMM_WORLD.Get_size())] cov.combine(data_paths=others, strict=True) covdir = os.path.join(os.getcwd(), "ignis-python-coverage") print('Coverage: (HTML version: file://%s/index.html)' % covdir, file=sys.stderr) cov.report(file=sys.stderr) cov.html_report(directory=covdir) if __name__ == '__main__': rank = MPI.COMM_WORLD.Get_rank() parallel = MPI.COMM_WORLD.Get_size() > 1 path = os.getcwd() Path("debug").mkdir(parents=True, exist_ok=True) os.chdir("debug") if parallel: wd = "np" + str(rank) Path(wd).mkdir(parents=True, exist_ok=True) os.chdir(wd) if rank > 0: log = open("log.txt", 'w') sys.stderr = log sys.stdout = log main(path, parallel) if rank > 0: sys.stderr.close()
andreasolla/core-python
ignis_test/Main.py
Main.py
py
1,575
python
en
code
1
github-code
6
[ { "api_name": "coverage.coverage", "line_number": 11, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 13, "usage_type": "call" }, { "api_name": "ignis.executor.core.ILog.enable", "line_number": 17, "usage_type": "call" }, { "api_name": "ignis.executor.core.ILog", "line_number": 17, "usage_type": "name" }, { "api_name": "unittest.TestLoader", "line_number": 18, "usage_type": "call" }, { "api_name": "unittest.TestLoader", "line_number": 20, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 22, "usage_type": "attribute" }, { "api_name": "unittest.TextTestRunner", "line_number": 23, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD.Barrier", "line_number": 26, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 26, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 26, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD.Get_rank", "line_number": 27, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 27, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 27, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD.Get_size", "line_number": 29, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 29, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 29, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 31, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 32, "usage_type": "attribute" }, { "api_name": "sys.stderr", "line_number": 33, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI.COMM_WORLD.Get_rank", "line_number": 38, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 38, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 38, "usage_type": "name" }, { "api_name": "mpi4py.MPI.COMM_WORLD.Get_size", "line_number": 39, "usage_type": "call" }, { "api_name": "mpi4py.MPI.COMM_WORLD", "line_number": 39, "usage_type": "attribute" }, { "api_name": "mpi4py.MPI", "line_number": 39, "usage_type": "name" }, { "api_name": "os.getcwd", "line_number": 40, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 41, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 42, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 45, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 46, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 49, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 50, "usage_type": "attribute" }, { "api_name": "sys.stderr.close", "line_number": 53, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 53, "usage_type": "attribute" } ]
21916878669
#!/usr/bin/env python2 import logging import os import shutil import tempfile from test_utils import TESTS_DIR, qsym, check_testcase SCHEDULE_DIR = os.path.join(TESTS_DIR, "schedule") logging.getLogger('qsym.Executor').setLevel(logging.DEBUG) def get_testcases(exe, bitmap, input_binary): output_dir = tempfile.mkdtemp(prefix="qsym-") input_file = tempfile.NamedTemporaryFile(prefix="qsym-", delete=False).name new_inputs = [] with open(input_file, "wb") as f: f.write(input_binary) try: q = qsym.Executor([exe], input_file, output_dir, bitmap=bitmap) q.run() for path in q.get_testcases(): with open(path, "rb") as f: data = f.read() new_inputs.append(data) return new_inputs finally: shutil.rmtree(output_dir) os.unlink(input_file) return None def get_seeds(target_dir): seeds = [] inputs_dir = os.path.join(target_dir, "inputs") for name in os.listdir(inputs_dir): path = os.path.join(inputs_dir, name) with open(path, "rb") as f: data = f.read() seeds.append(data) return seeds def get_all_testcases(target, max_iter=30): target_dir = os.path.join(SCHEDULE_DIR, target) exe = os.path.join(target_dir, "main") inputs = get_seeds(target_dir) processed = [] bitmap = tempfile.NamedTemporaryFile(prefix="qsym-", delete=False).name try: for i in xrange(max_iter): if not inputs: break input_binary = inputs.pop() new_inputs = get_testcases(exe, bitmap, input_binary) assert new_inputs is not None inputs.extend(new_inputs) processed.append(input_binary) return processed finally: os.unlink(bitmap) def check_testcases(exe, testcases): input_file = tempfile.NamedTemporaryFile(prefix="qsym-", delete=False).name try: for testcase in testcases: if check_testcase(exe, testcase): return True finally: os.unlink(input_file) return False def test_dup(): testcases = get_all_testcases("dup") # default + 0xdeadbeef assert len(testcases) == 2
sslab-gatech/qsym
tests/test_schedule.py
test_schedule.py
py
2,236
python
en
code
615
github-code
6
[ { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "test_utils.TESTS_DIR", "line_number": 9, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 10, "usage_type": "attribute" }, { "api_name": "tempfile.mkdtemp", "line_number": 13, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 14, "usage_type": "call" }, { "api_name": "test_utils.qsym.Executor", "line_number": 21, "usage_type": "call" }, { "api_name": "test_utils.qsym", "line_number": 21, "usage_type": "name" }, { "api_name": "shutil.rmtree", "line_number": 30, "usage_type": "call" }, { "api_name": "os.unlink", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 49, "usage_type": "call" }, { "api_name": "os.unlink", "line_number": 62, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 65, "usage_type": "call" }, { "api_name": "test_utils.check_testcase", "line_number": 69, "usage_type": "call" }, { "api_name": "os.unlink", "line_number": 72, "usage_type": "call" } ]
36650794154
from pywrap.exporter import (MethodDefinition, SetterDefinition, GetterDefinition, ConstructorDefinition, FunctionDefinition, CythonDeclarationExporter) from pywrap.ast import (Param, Function, Clazz, Constructor, Method, Field, Enum, Typedef) from pywrap.parser import Includes, TypeInfo from pywrap.utils import lines from pywrap.defaultconfig import Config from nose.tools import assert_multi_line_equal def test_simple_function_def(): method = MethodDefinition( "Testclass", "", "testfun", [], Includes(), "void", TypeInfo({}), Config()).make() assert_multi_line_equal( method, lines("cpdef testfun(Testclass self):", " self.thisptr.testfun()") ) def test_array_arg_function_def(): method = MethodDefinition( "Testclass", "", "testfun", [Param("a", "double *"), Param("aSize", "unsigned int")], Includes(), "void", TypeInfo({}), Config()).make() assert_multi_line_equal( method, lines("cpdef testfun(Testclass self, np.ndarray[double, ndim=1] a):", " self.thisptr.testfun(&a[0], a.shape[0])") ) def test_setter_definition(): field = Field("myField", "double", "MyClass") setter = SetterDefinition( "MyClass", field, Includes(), TypeInfo(), Config()).make() assert_multi_line_equal( setter, lines( "cpdef __set_my_field(MyClass self, double myField):", " cdef double cpp_myField = myField", " self.thisptr.myField = cpp_myField" ) ) def test_getter_definition(): field = Field("myField", "double", "MyClass") getter = GetterDefinition( "MyClass", field, Includes(), TypeInfo(), Config()).make() assert_multi_line_equal( getter, lines( "cpdef __get_my_field(MyClass self):", " cdef double result = self.thisptr.myField", " return result", "" ) ) def test_default_ctor_def(): ctor = ConstructorDefinition("MyClass", "", [], Includes(), TypeInfo(), Config(), "MyClass").make() assert_multi_line_equal( ctor, lines( "def __init__(MyClass self):", " self.thisptr = new cpp.MyClass()" ) ) def test_function_def(): fun = FunctionDefinition("myFun", "", [], Includes(), "void", TypeInfo(), Config()).make() assert_multi_line_equal( fun, lines( "cpdef my_fun():", " cpp.myFun()" ) ) def test_function_def_with_another_cppname(): fun = FunctionDefinition("myFunInt", "", [], Includes(), "void", TypeInfo(), Config(), cppname="myFun").make() assert_multi_line_equal( fun, lines( "cpdef my_fun_int():", " cpp.myFun()" ) ) def test_function_decl(): fun = Function("test.hpp", "", "myFun", "void") ignored_fun = Function("test.hpp", "", "myFun", "void") ignored_fun.ignored = True exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_function(fun) exporter.visit_function(ignored_fun) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " void myFun() except +" ) ) def test_class_decl(): clazz = Clazz("test.hpp", "", "MyClass") exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_clazz(clazz) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " cdef cppclass MyClass:", " pass" ) ) def test_ctor_decl(): clazz = Clazz("test.hpp", "", "MyClass") ctor = Constructor("MyClass") ignored_ctor = Constructor("MyClass") ignored_ctor.ignored = True exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_constructor(ctor) exporter.visit_constructor(ignored_ctor) exporter.visit_clazz(clazz) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " cdef cppclass MyClass:", " MyClass()" ) ) def test_method_decl(): clazz = Clazz("test.hpp", "", "MyClass") method = Method("myMethod", "void", "MyClass") ignored_method = Method("", "", "") ignored_method.ignored = True exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_param(Param("myParam", "double")) exporter.visit_method(method) exporter.visit_method(ignored_method) exporter.visit_clazz(clazz) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " cdef cppclass MyClass:", " void myMethod(double myParam) except +" ) ) def test_field_decl(): clazz = Clazz("test.hpp", "", "MyClass") field = Field("myField", "double", "MyClass") ignored_field = Field("myField", "double", "MyClass") ignored_field.ignored = True exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_field(field) exporter.visit_field(ignored_field) exporter.visit_clazz(clazz) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " cdef cppclass MyClass:", " double myField" ) ) def test_enum_decl(): enum = Enum("test.hpp", "", "MyEnum") enum.constants.append("one") enum.constants.append("two") exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_enum(enum) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " cdef enum MyEnum:", " one", " two" ) ) def test_typedef_decl(): typedef = Typedef("test.hpp", "", "MyType", "double") exporter = CythonDeclarationExporter(Includes(), Config()) exporter.visit_typedef(typedef) exporter.visit_ast(None) decl = exporter.export() assert_multi_line_equal( decl.strip(), lines( "cdef extern from \"test.hpp\" namespace \"\":", " ctypedef double MyType" ) )
AlexanderFabisch/cythonwrapper
pywrap/test/test_exporter.py
test_exporter.py
py
6,972
python
en
code
37
github-code
6
[ { "api_name": "pywrap.exporter.MethodDefinition", "line_number": 13, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 14, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 15, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 15, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 16, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 18, "usage_type": "call" }, { "api_name": "pywrap.exporter.MethodDefinition", "line_number": 24, "usage_type": "call" }, { "api_name": "pywrap.ast.Param", "line_number": 25, "usage_type": "call" }, { "api_name": "pywrap.ast.Param", "line_number": 26, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 27, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 27, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 27, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 28, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 30, "usage_type": "call" }, { "api_name": "pywrap.ast.Field", "line_number": 36, "usage_type": "call" }, { "api_name": "pywrap.exporter.SetterDefinition", "line_number": 37, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 38, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 38, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 38, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 39, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 41, "usage_type": "call" }, { "api_name": "pywrap.ast.Field", "line_number": 50, "usage_type": "call" }, { "api_name": "pywrap.exporter.GetterDefinition", "line_number": 51, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 52, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 52, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 52, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 53, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 55, "usage_type": "call" }, { "api_name": "pywrap.exporter.ConstructorDefinition", "line_number": 64, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 64, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 64, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 65, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 66, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 68, "usage_type": "call" }, { "api_name": "pywrap.exporter.FunctionDefinition", "line_number": 76, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 76, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 76, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 77, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 78, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 80, "usage_type": "call" }, { "api_name": "pywrap.exporter.FunctionDefinition", "line_number": 88, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 88, "usage_type": "call" }, { "api_name": "pywrap.parser.TypeInfo", "line_number": 88, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 89, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 90, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 92, "usage_type": "call" }, { "api_name": "pywrap.ast.Function", "line_number": 100, "usage_type": "call" }, { "api_name": "pywrap.ast.Function", "line_number": 101, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 103, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 103, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 103, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 108, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 110, "usage_type": "call" }, { "api_name": "pywrap.ast.Clazz", "line_number": 118, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 119, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 119, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 119, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 123, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 125, "usage_type": "call" }, { "api_name": "pywrap.ast.Clazz", "line_number": 134, "usage_type": "call" }, { "api_name": "pywrap.ast.Constructor", "line_number": 135, "usage_type": "call" }, { "api_name": "pywrap.ast.Constructor", "line_number": 136, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 138, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 138, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 138, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 144, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 146, "usage_type": "call" }, { "api_name": "pywrap.ast.Clazz", "line_number": 155, "usage_type": "call" }, { "api_name": "pywrap.ast.Method", "line_number": 156, "usage_type": "call" }, { "api_name": "pywrap.ast.Method", "line_number": 157, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 159, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 159, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 159, "usage_type": "call" }, { "api_name": "pywrap.ast.Param", "line_number": 160, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 166, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 168, "usage_type": "call" }, { "api_name": "pywrap.ast.Clazz", "line_number": 177, "usage_type": "call" }, { "api_name": "pywrap.ast.Field", "line_number": 178, "usage_type": "call" }, { "api_name": "pywrap.ast.Field", "line_number": 179, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 181, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 181, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 181, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 187, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 189, "usage_type": "call" }, { "api_name": "pywrap.ast.Enum", "line_number": 198, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 201, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 201, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 201, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 205, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 207, "usage_type": "call" }, { "api_name": "pywrap.ast.Typedef", "line_number": 217, "usage_type": "call" }, { "api_name": "pywrap.exporter.CythonDeclarationExporter", "line_number": 218, "usage_type": "call" }, { "api_name": "pywrap.parser.Includes", "line_number": 218, "usage_type": "call" }, { "api_name": "pywrap.defaultconfig.Config", "line_number": 218, "usage_type": "call" }, { "api_name": "nose.tools.assert_multi_line_equal", "line_number": 222, "usage_type": "call" }, { "api_name": "pywrap.utils.lines", "line_number": 224, "usage_type": "call" } ]
70285712189
""" SWF """ from __future__ import absolute_import from .tag import SWFTimelineContainer from .stream import SWFStream from .export import SVGExporter from six.moves import cStringIO from io import BytesIO class SWFHeaderException(Exception): """ Exception raised in case of an invalid SWFHeader """ def __init__(self, message): super(SWFHeaderException, self).__init__(message) class SWFHeader(object): """ SWF header """ def __init__(self, stream): a = stream.readUI8() b = stream.readUI8() c = stream.readUI8() if not a in [0x43, 0x46, 0x5A] or b != 0x57 or c != 0x53: # Invalid signature! ('FWS' or 'CWS' or 'ZFS') raise SWFHeaderException("not a SWF file! (invalid signature)") self._compressed_zlib = (a == 0x43) self._compressed_lzma = (a == 0x5A) self._version = stream.readUI8() self._file_length = stream.readUI32() if not (self._compressed_zlib or self._compressed_lzma): self._frame_size = stream.readRECT() self._frame_rate = stream.readFIXED8() self._frame_count = stream.readUI16() @property def frame_size(self): """ Return frame size as a SWFRectangle """ return self._frame_size @property def frame_rate(self): """ Return frame rate """ return self._frame_rate @property def frame_count(self): """ Return number of frames """ return self._frame_count @property def file_length(self): """ Return uncompressed file length """ return self._file_length @property def version(self): """ Return SWF version """ return self._version @property def compressed(self): """ Whether the SWF is compressed """ return self._compressed_zlib or self._compressed_lzma @property def compressed_zlib(self): """ Whether the SWF is compressed using ZLIB """ return self._compressed_zlib @property def compressed_lzma(self): """ Whether the SWF is compressed using LZMA """ return self._compressed_lzma def __str__(self): return " [SWFHeader]\n" + \ " Version: %d\n" % self.version + \ " FileLength: %d\n" % self.file_length + \ " FrameSize: %s\n" % self.frame_size.__str__() + \ " FrameRate: %d\n" % self.frame_rate + \ " FrameCount: %d\n" % self.frame_count class SWF(SWFTimelineContainer): """ SWF class The SWF (pronounced 'swiff') file format delivers vector graphics, text, video, and sound over the Internet and is supported by Adobe Flash Player software. The SWF file format is designed to be an efficient delivery format, not a format for exchanging graphics between graphics editors. @param file: a file object with read(), seek(), tell() methods. """ def __init__(self, file=None): super(SWF, self).__init__() self._data = None if file is None else SWFStream(file) self._header = None if self._data is not None: self.parse(self._data) @property def data(self): """ Return the SWFStream object (READ ONLY) """ return self._data @property def header(self): """ Return the SWFHeader """ return self._header def export(self, exporter=None, force_stroke=False): """ Export this SWF using the specified exporter. When no exporter is passed in the default exporter used is swf.export.SVGExporter. Exporters should extend the swf.export.BaseExporter class. @param exporter : the exporter to use @param force_stroke : set to true to force strokes on fills, useful for some edge cases. """ exporter = SVGExporter() if exporter is None else exporter if self._data is None: raise Exception("This SWF was not loaded! (no data)") if len(self.tags) == 0: raise Exception("This SWF doesn't contain any tags!") return exporter.export(self, force_stroke) def parse_file(self, filename): """ Parses the SWF from a filename """ self.parse(open(filename, 'rb')) def parse(self, data): """ Parses the SWF. The @data parameter can be a file object or a SWFStream """ self._data = data = data if isinstance(data, SWFStream) else SWFStream(data) self._header = SWFHeader(self._data) if self._header.compressed: temp = BytesIO() if self._header.compressed_zlib: import zlib data = data.f.read() zip = zlib.decompressobj() temp.write(zip.decompress(data)) else: import pylzma data.readUI32() #consume compressed length data = data.f.read() temp.write(pylzma.decompress(data)) temp.seek(0) data = SWFStream(temp) self._header._frame_size = data.readRECT() self._header._frame_rate = data.readFIXED8() self._header._frame_count = data.readUI16() self.parse_tags(data) def __str__(self): s = "[SWF]\n" s += self._header.__str__() for tag in self.tags: s += tag.__str__() + "\n" return s
timknip/pyswf
swf/movie.py
movie.py
py
5,642
python
en
code
154
github-code
6
[ { "api_name": "stream.readUI8", "line_number": 19, "usage_type": "call" }, { "api_name": "stream.readUI8", "line_number": 20, "usage_type": "call" }, { "api_name": "stream.readUI8", "line_number": 21, "usage_type": "call" }, { "api_name": "stream.readUI8", "line_number": 28, "usage_type": "call" }, { "api_name": "stream.readUI32", "line_number": 29, "usage_type": "call" }, { "api_name": "stream.readRECT", "line_number": 31, "usage_type": "call" }, { "api_name": "stream.readFIXED8", "line_number": 32, "usage_type": "call" }, { "api_name": "stream.readUI16", "line_number": 33, "usage_type": "call" }, { "api_name": "tag.SWFTimelineContainer", "line_number": 83, "usage_type": "name" }, { "api_name": "stream.SWFStream", "line_number": 97, "usage_type": "call" }, { "api_name": "export.SVGExporter", "line_number": 126, "usage_type": "call" }, { "api_name": "stream.SWFStream", "line_number": 143, "usage_type": "argument" }, { "api_name": "io.BytesIO", "line_number": 146, "usage_type": "call" }, { "api_name": "zlib.decompressobj", "line_number": 150, "usage_type": "call" }, { "api_name": "pylzma.decompress", "line_number": 156, "usage_type": "call" }, { "api_name": "stream.SWFStream", "line_number": 158, "usage_type": "call" }, { "api_name": "tag.__str__", "line_number": 168, "usage_type": "call" } ]
4582050726
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns from scipy import stats import collections import time from sklearn import cluster from sklearn.metrics import adjusted_rand_score import scipy as sp from tqdm import tqdm from sklearn.manifold import MDS from run_dist_mat import * from chromosome_alignment import * from scipy.cluster.hierarchy import dendrogram, linkage import itertools from mpl_toolkits.mplot3d import Axes3D from multiprocessing import Pool from itertools import repeat def robustness_analysis(): reads_to_inlcude = "inliers" #"all" clustering_method = "pckmeans" # "igs" num_chrs = 19 data = read_data(clustering_method, reads_to_inlcude) #cells with less than 150 reads are deleted: 80., 84., 105., 113. cum_lens = get_chr_cumulative_lengths() fig, axes = plt.subplots(4,4, figsize = (20,20)) for i, bin_size in tqdm(enumerate([200e6, 100e6, 50e6, 25e6])): for j, num_samples_for_resampling in tqdm(enumerate([5, 25, 50, 75])): print("\n bin size: ", bin_size) print("\n num samples: ", num_samples) proportion_matching = [] variances = [] cell_i_index = 91 cell_j_index = 93 cell_i = data.loc[(data.cell_index==cell_i_index) & (data.chr < 20)].copy() cell_i['abs_pos'] = -1 cell_i['abs_pos'] = cell_i.pos.copy() + [cum_lens[ch-1] for ch in cell_i.chr] #encodes the absolute position of the reads along the linear genome cell_j = data.loc[(data.cell_index==cell_j_index) & (data.chr < 20)].copy() cell_j['abs_pos'] = -1 cell_j['abs_pos'] = cell_j.pos.copy() + [cum_lens[ch-1] for ch in cell_j.chr] #encodes the absolute position of the reads along the linear genome bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs) num_trials = 40 min_dists = [] for trial in range(num_trials): bin_resampling_dists = [] for bin_resampling in range(num_samples_for_resampling): cell_i_dist,_ = pckmeans_get_dist_mat_binned_resample(cell_i, bins, num_bins_per_chr) cell_j_dist,_ = pckmeans_get_dist_mat_binned_resample(cell_j, bins, num_bins_per_chr) num_samples_for_ordering = 50 ordering_dists = [] random_orders = np.zeros((num_samples_for_ordering, 19)) for counter, sample in enumerate(range(num_samples_for_ordering)): order = np.arange(1,20) np.random.shuffle(order) random_orders[counter, :] = order ### parallelizing: num_workers = 4 with Pool(num_workers) as p: ordering_dists.append(p.starmap(get_aligned_inter_cell_dist, zip(repeat(cell_i_dist), repeat(cell_j_dist), repeat(num_bins_per_chr), repeat(19), random_orders))[0][0])#the first [0] gives the distance component of the output, the second [0] gets the actual distance and not the size of the intersection bin_resampling_dists.append(np.round(np.min(ordering_dists), 4)) min_dists.append(np.min(bin_resampling_dists)) axes[j,i].scatter(np.zeros_like(min_dists), min_dists) axes[j,i].set_title("bin size {}".format(bin_size/1e6)) axes[j,i].set_ylabel("sample size: {}".format(num_samples_for_resampling)) plt.suptitle("cell indeces {} and {}".format(cell_i_index, cell_j_index)) plt.savefig("figures/sequential_algorithm_bin_resampling_analysis_cells{}_{}.png".format(cell_i_index, cell_j_index))
pdavar/Analysis-of-3D-Mouse-Genome-Organization
bin_resample_analysis.py
bin_resample_analysis.py
py
3,912
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.subplots", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 32, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 69, "usage_type": "attribute" }, { "api_name": "multiprocessing.Pool", "line_number": 75, "usage_type": "call" }, { "api_name": "itertools.repeat", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" } ]
27735122824
from scipy import integrate import math def func1(x): return 1 / ((3*x - 1)**0.5) def func2(x): return math.log(x**2 + 1) / x def func3(x): return 1 / (0.2*x**2 + 1)**0.5 def rectangle_method(func, a, b, n): h = (b - a)/n integral_sum = sum(func(a + i * h) for i in range(n)) result = h * integral_sum return result def simpson_method(func, a, b, n): integral_result = integrate.simps([func(a + i * (b - a) / n) for i in range(n+1)], dx=(b - a) / n) return integral_result def trapezoid_method(func, a, b, n): h = (b - a) / n nodes = [func(a + i * h) for i in range(n + 1)] integral_result = h * (sum(nodes) - 0.5 * (nodes[0] + nodes[n])) return integral_result precision = 0.0001 integrals = [(func1, 1.4, 2.1), (func2, 0.8, 1.6), (func3, 1.3, 2.5)] methods = [rectangle_method, simpson_method, trapezoid_method] p_values = [10, 8, 20] for i, (func, a, b) in enumerate(integrals): print(f"Інтеграл {i + 1} (від {a} до {b}):") method = methods[i] n = p_values[i] result = method(func, a, b, n) print(f"Метод {i + 1}: {result:af}\n")
Alisa7A/Numerical-methods-of-programming
Pr11 Шамігулової Аліси.py
Pr11 Шамігулової Аліси.py
py
1,152
python
en
code
0
github-code
6
[ { "api_name": "math.log", "line_number": 6, "usage_type": "call" }, { "api_name": "scipy.integrate.simps", "line_number": 15, "usage_type": "call" }, { "api_name": "scipy.integrate", "line_number": 15, "usage_type": "name" } ]
70724549309
from django.urls import path from .views import RegiaoCreate, EmpresaCreate, AgendamentoColetaCreate, AgendamentoDescarteCreate from .views import RegiaoUpdate, EmpresaUpdate, AgendamentoColetaUpdate, AgendamentoDescarteUpdate from .views import RegiaoDelete, EmpresaDelete, AgendamentoColetaDelete, AgendamentoDescarteDelete from .views import RegiaoList, EmpresaList, AgendamentoColetaList, AgendamentoDescarteList urlpatterns = [ #Modelo de criação de url: path('endereco/',NomedaView.as.view(),name='nome_da_url'), path ('cadastros/regiao/', RegiaoCreate.as_view(), name='cadastrar-regiao'), path ('cadastros/empresa/', EmpresaCreate.as_view(), name='cadastrar-empresa'), path ('descarte/agendardescarte/', AgendamentoDescarteCreate.as_view(), name='cadastrar-descarte'), path ('coleta/agendarcoleta', AgendamentoColetaCreate.as_view(), name='cadastrar-coleta'), path ('editar/regiao/<int:pk>', RegiaoUpdate.as_view(), name='editar-regiao'), path ('editar/empresa/<int:pk>', EmpresaUpdate.as_view(), name='editar-empresa'), path ('editar/descarte/<int:pk>', AgendamentoDescarteUpdate.as_view(), name='editar-descarte'), path ('editar/coleta/<int:pk>', AgendamentoColetaUpdate.as_view(), name='editar-coleta'), path ('deletar/regiao/<int:pk>', RegiaoDelete.as_view(), name='deletar-regiao'), path ('deletar/empresa/<int:pk>', EmpresaDelete.as_view(), name='deletar-empresa'), path ('deletar/descarte/<int:pk>', AgendamentoDescarteDelete.as_view(), name='deletar-descarte'), path ('deletar/coleta/<int:pk>', AgendamentoColetaDelete.as_view(), name='deletar-coleta'), path ('listar/regiao', RegiaoList.as_view(), name='listar-regiao'), path ('listar/empresa', EmpresaList.as_view(), name='listar-empresa'), path ('listar/descarte', AgendamentoDescarteList.as_view(), name='listar-descarte'), path ('listar/coleta', AgendamentoColetaList.as_view(), name='listar-coleta'), ]
micaelhjs/PIUnivesp02
cadastros/urls.py
urls.py
py
1,948
python
pt
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "views.RegiaoCreate.as_view", "line_number": 10, "usage_type": "call" }, { "api_name": "views.RegiaoCreate", "line_number": 10, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "views.EmpresaCreate.as_view", "line_number": 11, "usage_type": "call" }, { "api_name": "views.EmpresaCreate", "line_number": 11, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteCreate.as_view", "line_number": 12, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteCreate", "line_number": 12, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaCreate.as_view", "line_number": 13, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaCreate", "line_number": 13, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "views.RegiaoUpdate.as_view", "line_number": 15, "usage_type": "call" }, { "api_name": "views.RegiaoUpdate", "line_number": 15, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "views.EmpresaUpdate.as_view", "line_number": 16, "usage_type": "call" }, { "api_name": "views.EmpresaUpdate", "line_number": 16, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteUpdate.as_view", "line_number": 17, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteUpdate", "line_number": 17, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 18, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaUpdate.as_view", "line_number": 18, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaUpdate", "line_number": 18, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 20, "usage_type": "call" }, { "api_name": "views.RegiaoDelete.as_view", "line_number": 20, "usage_type": "call" }, { "api_name": "views.RegiaoDelete", "line_number": 20, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 21, "usage_type": "call" }, { "api_name": "views.EmpresaDelete.as_view", "line_number": 21, "usage_type": "call" }, { "api_name": "views.EmpresaDelete", "line_number": 21, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 22, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteDelete.as_view", "line_number": 22, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteDelete", "line_number": 22, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 23, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaDelete.as_view", "line_number": 23, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaDelete", "line_number": 23, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 25, "usage_type": "call" }, { "api_name": "views.RegiaoList.as_view", "line_number": 25, "usage_type": "call" }, { "api_name": "views.RegiaoList", "line_number": 25, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 26, "usage_type": "call" }, { "api_name": "views.EmpresaList.as_view", "line_number": 26, "usage_type": "call" }, { "api_name": "views.EmpresaList", "line_number": 26, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 27, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteList.as_view", "line_number": 27, "usage_type": "call" }, { "api_name": "views.AgendamentoDescarteList", "line_number": 27, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 28, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaList.as_view", "line_number": 28, "usage_type": "call" }, { "api_name": "views.AgendamentoColetaList", "line_number": 28, "usage_type": "name" } ]
7091903997
import database from datetime import datetime import db_pyMySQL conn = database.connection # Thêm tài khoản "user": User sẽ không mã hoá mkhau do xài 2 ngôn ngữ khác nhau, # nên khi mã hoá xong NodeJS sẽ ko hỗ trợ để giải mã => sẽ không đăng nhập được. # INSERT: # Thêm tài khoản khách hàng: def insert_user(name, email, password, phone, address): with conn.cursor() as cur: mk = password + database.mysecret_key # pas = mk.encode() sql = ''' INSERT INTO khachhang(tenkh, email, matkhau, sodienthoai, diachi) VALUES (%s, %s, %s, %s, %s) ''' cur.execute(sql, (name, email, mk, phone, address)) conn.commit() # Thêm tài khoản "admin": def insert_admin(admin, matkhau, ten, diachi, sdt, maquyen): with conn.cursor() as cur: mk = matkhau + database.mysecret_key # pas = database.cipher.encrypt(matkhau) # Mã hoá mật khẩu sql = ''' INSERT INTO admin(admin, matkhau, tennv, diachi, sodienthoai, maquyen) VALUES (%s, %s, %s, %s, %s, %s) ''' cur.execute(sql, (admin, mk, ten, diachi, sdt, maquyen)) conn.commit() # Thêm "danh mục" sản phẩm: def insert_category(ma, ten): with conn.cursor() as cur: sql = ''' INSERT INTO danhmuc(madm, tendm) VALUES (%s, %s) ''' cur.execute(sql, (ma, ten)) conn.commit() # Thêm "nhà sản xuất": def insert_producer(ma, ten, xuatxu): with conn.cursor() as cur: sql = ''' INSERT INTO nhasx(mansx, tennsx, xuatxu) VALUES (%s, %s, %s) ''' cur.execute(sql, (ma, ten, xuatxu)) conn.commit() # Thêm "loại" sản phẩm: def insert_type(type_id, name): with conn.cursor() as cur: sql = ''' INSERT INTO loaisp(maloai, tenloai) VALUES (%s, %s) ''' cur.execute(sql, (type_id, name)) conn.commit() # Thêm "sản phẩm": def insert_product(code, name, price, reduced_price, amount, img, producer_id, type_id): with conn.cursor() as cur: sql = ''' INSERT INTO sanpham(code, tensp, gia, giamgia, soluong, hinh, mansx, maloai) VALUES (%s, %s, %s, %s, %s, %s, %s, %s) ''' cur.execute(sql, (code, name, price, reduced_price, amount, img, producer_id, type_id)) conn.commit() # Thêm mới "Quyền hạn - chức vụ": def insert_permission(code, name): with conn.cursor() as cur: sql = ''' INSERT INTO quyen(maquyen, Ten) VALUES (%s, %s) ''' cur.execute(sql, (code, name)) conn.commit() # Thêm mới "trạng thái": def insert_status(ten, trangthai): with conn.cursor() as cursor: sql = ''' INSERT INTO trangthai(tentt, trangthai) VALUES (%s, %s) ''' cursor.execute(sql, (ten, trangthai)) conn.commit() # UPDATE: # Sửa profile tài khoản admin: def update_profile_admin(email, name, address, phone, permission, admin_id): with conn.cursor() as cur: sql = ''' UPDATE admin SET admin = %s, tennv = %s, diachi = %s, sodienthoai = %s, maquyen = %s WHERE manv = %s ''' cur.execute(sql, (email, name, address, phone, permission, admin_id)) conn.commit() return 1 # Cập nhật mật khẩu của admin: def update_password_admin(pas, admin_id): with conn.cursor() as cur: password = pas + database.mysecret_key sql = ''' UPDATE admin SET matkhau = %s WHERE manv = %s ''' cur.execute(sql, (password, admin_id,)) conn.commit() return 1 # Sửa profile tài khoản khách hàng: def update_profile_user(name, email, phone, address, user_id): with conn.cursor() as cur: sql = ''' UPDATE khachhang SET tenkh = %s, email = %s, sodienthoai = %s, diachi = %s WHERE makh = %s ''' cur.execute(sql, (name, email, phone, address, user_id)) conn.commit() return 1 # Cập nhật mật khẩu của khách hàng: def update_password_user(pas, user_id): with conn.cursor() as cur: password = pas + database.mysecret_key sql = ''' UPDATE khachhang SET matkhau = %s WHERE makh = %s ''' cur.execute(sql, (password, user_id,)) conn.commit() return 1 # Sửa danh mục: def update_category(name, category_id): with conn.cursor() as cur: sql = ''' UPDATE danhmuc SET tendm = %s WHERE madm = %s ''' cur.execute(sql, (name, category_id,)) conn.commit() return 1 # Sửa loại: def update_type(name, type_id): with conn.cursor() as cur: sql = ''' UPDATE loaisp SET tenloai = %s WHERE maloai = %s ''' cur.execute(sql, (name, type_id,)) conn.commit() return 1 # Sửa nhà sản xuất: def update_producer(name, origin, producer_id): with conn.cursor() as cur: sql = ''' UPDATE nhasx SET tennsx = %s, xuatxu = %s WHERE mansx = %s ''' cur.execute(sql, (name, origin, producer_id,)) conn.commit() return 1 # Sửa quyền hạn - chức vụ: def update_permission(name, permission_id): with conn.cursor() as cur: sql = ''' UPDATE quyen SET Ten = %s WHERE maquyen = %s ''' cur.execute(sql, (name, permission_id,)) conn.commit() return 1 # Sửa trạng thái: def update_status(name, status_id): with conn.cursor() as cur: sql = ''' UPDATE trangthai SET tentt = %s WHERE trangthai = %s ''' cur.execute(sql, (name, status_id,)) conn.commit() return 1 # Sửa sản phẩm: def update_product(code, name, price, reduced_price, amount, img, producer_id, type_id, product_id): with conn.cursor() as cur: sql = ''' UPDATE sanpham SET code = %s, tensp = %s, gia = %s, giamgia = %s, soluong = %s, hinh = %s, mansx = %s, maloai = %s WHERE masp = %s ''' cur.execute(sql, (code, name, price, reduced_price, amount, img, producer_id, type_id, product_id)) conn.commit() return 1 # Chức năng của khách hàng. # Thêm đơn hàng: def insert_order(user_id, total, product_id, product_name, price, amount): try: with conn.cursor() as cur: order_date = datetime.today() sql_order = ''' INSERT INTO donhang(makh, tong, ngaydat) VALUES (%s, %s, %s); ''' val_order = (user_id, total, order_date) sql_orderID = "SELECT LAST_INSERT_ID() as LastID;" sql_detailOrder = ''' INSERT INTO chitietdh(masp, tensp, gia, soluong, madonhang) VALUES (%s, %s, %s, %s, %s); ''' arrayProduct = [] try: cur.execute(sql_order, val_order) conn.commit() cur.execute(sql_orderID) lastId = cur.fetchone() order_id = lastId['LastID'] # Lấy id của đơn hàng vừa tạo. for i in arrayProduct: code = i['masp'] name = i['tensp'] prices = i['gia'] amounts = i['soluong'] cur.execute(sql_detailOrder, (code, name, prices, amounts, order_id)) conn.commit() except: conn.rollback() finally: # Ngắt kết nối DB. conn.close() # Sửa đơn hàng: Chỉ sửa được đơn hàng khi trạng thái đơn hàng là 'Đang chờ xử lý', còn lại thì khách hàng ko được sửa. def update_order(amount, order_id): with conn.cursor() as cur: sql = "SELECT * FROM donhang WHERE madonhang = %s" cur.execute(sql, (order_id,)) order = cur.fetchone() product_id = order['masp'] # Tìm giá của sản phẩm: sql1 = "SELECT gia FROM sanpham WHERE masp = %s" cur.execute(sql1, (product_id,)) gia = cur.fetchone() price = amount * gia if order['trangthai'] == 0: # Kiểm tra trạng thái đơn hàng. sql = ''' UPDATE donhang SET soluong = %s, gia = %s WHERE madonhang = %s ''' cur.execute(sql, (amount, price, order_id,)) conn.commit() return 1 else: # Đơn hàng đã được duyệt ko thể sửa. return -1
letrinhan1509/FashionShop
api_admin/model_insert.py
model_insert.py
py
8,813
python
vi
code
0
github-code
6
[ { "api_name": "database.connection", "line_number": 5, "usage_type": "attribute" }, { "api_name": "database.mysecret_key", "line_number": 16, "usage_type": "attribute" }, { "api_name": "database.mysecret_key", "line_number": 29, "usage_type": "attribute" }, { "api_name": "database.mysecret_key", "line_number": 123, "usage_type": "attribute" }, { "api_name": "database.mysecret_key", "line_number": 150, "usage_type": "attribute" }, { "api_name": "datetime.datetime.today", "line_number": 245, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 245, "usage_type": "name" } ]
75108014908
# from unicodedata import lookup from django.urls import path, include from rest_framework.routers import SimpleRouter, DefaultRouter # This for the viewset models in the views from rest_framework_nested import routers # This is for the nested routers from store.models import Product # from pprint import pprint from . import views # This is for the nested routers router = routers.DefaultRouter() router.register('products', views.ProductViewSet, basename='products') router.register('carts', views.CartViewSet, basename='carts') router.register('customers', views.CustomerViewSet, basename='customers') router.register('orders', views.OrderViewSet, basename='orders') # product to review nested routing products_router = routers.NestedDefaultRouter(router, 'products', lookup='product') # This registers the url as a nested router products_router.register('reviews', views.ReviewViewSet, basename='product-reviews')# This allows configuration of the already created nested url products_router.register('images', views.ProductImageViewSet, basename='product-images')# This allows configuration of the already created nested url cart_router = routers.NestedDefaultRouter(router, 'carts', lookup='cart') # This registers the url as a nested router cart_router.register('items', views.CartItemViewSet, basename='cart-items')# This allows configuration of the already created nested url # This for the normal viewset # router = SimpleRouter() # router.register('products', views.ProductViewSet, basename='products') # the prefix 'products' is what displays as a url # router = DefaultRouter() # router.register('products', views.ProductViewSet, basename='products') # This is a the url pattern for the nestedviewset(its optional) # urlpatterns = router.urls + products_router.urls urlpatterns = [ ## THIS IS FOR ROUTER path('', include(router.urls)), path('', include(products_router.urls)), path('', include(cart_router.urls)), ### THIS IS FOR THE CLASS BASED VIEWS # path('products/', views.ProductList.as_view()), # ".as_views()" generates function url for the CBV # path('products/<int:pk>/', views.ProductDetail.as_view()), path('category/', views.CategoryList.as_view()), # path('category/', views.category_list), path('category/<int:pk>/', views.CategoryDetail.as_view()), ### THIS IS FOR THE FUNCTION BASED VIEWS # path('products/', views.product_list), # path('products/<int:pk>/', views.product_detail), # path('categories/', views.category_list), # path('categories/<int:pk>/', views.category_detail), # path('categories/<int:pk>/', views.category_detail, name='category-detail'), # This is for the HyperlinkedRelatedField ]
Auracule/e_commerce_api
store/urls.py
urls.py
py
2,718
python
en
code
0
github-code
6
[ { "api_name": "rest_framework_nested.routers.DefaultRouter", "line_number": 12, "usage_type": "call" }, { "api_name": "rest_framework_nested.routers", "line_number": 12, "usage_type": "name" }, { "api_name": "rest_framework_nested.routers.NestedDefaultRouter", "line_number": 19, "usage_type": "call" }, { "api_name": "rest_framework_nested.routers", "line_number": 19, "usage_type": "name" }, { "api_name": "rest_framework_nested.routers.NestedDefaultRouter", "line_number": 23, "usage_type": "call" }, { "api_name": "rest_framework_nested.routers", "line_number": 23, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 40, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 40, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 41, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 41, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 42, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 42, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 47, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 49, "usage_type": "call" } ]
32188022347
from itertools import permutations def primenumber(x): if x < 2: return False for i in range(2, x): if x % i == 0: return False return True def solution(numbers): answer = 0 num = [] for i in range(1, len(numbers)+1) : num.append(list(set(map(''.join, permutations(numbers, i))))) per = list(set(map(int, set(sum(num, []))))) for p in per : if primenumber(p) == True : answer += 1 return answer # ======================================================================== # 2023년 4월 16일 문제를 다시 풀어봄. from itertools import permutations def primenumber(x): if x < 2: return False for i in range(2, x): if x % i == 0: return False return True def solution(numbers): answer = 0 result = [] for number in range(1, len(numbers)+1): first = list(set(map(''.join, permutations(numbers, number)))) result.append(first) unduplicated_numbers = list(set(map(int, sum(result, [])))) for i in unduplicated_numbers: if primenumber(i) == True: answer += 1 return answer
kcw0331/python-for-coding-test
programmers-coding/소수찾기.py
소수찾기.py
py
1,183
python
en
code
0
github-code
6
[ { "api_name": "itertools.permutations", "line_number": 15, "usage_type": "call" }, { "api_name": "itertools.permutations", "line_number": 39, "usage_type": "call" } ]
10758898663
import uvicorn from fastapi import FastAPI, HTTPException app = FastAPI() @app.get("/") async def root(): return {"message": "Welcome to basic math operations api!"} @app.get("/add") async def add(a: int, b: int): return {"result": a + b} @app.get("/subtract") async def subtract(a: int, b: int): return {"result": a - b} @app.get("/multiply") async def multiply(a: int, b: int): return {"result": a * b} @app.get("/divide") async def divide(a: int, b: int): if b == 0: raise HTTPException( status_code=404, detail='Division by 0 not allowed!') return {"result": a / b} if __name__ == '__main__': uvicorn.run("app:app", host="0.0.0.0", port=5000, reload=True)
pawelcich/rest_api
web/app.py
app.py
py
722
python
en
code
0
github-code
6
[ { "api_name": "fastapi.FastAPI", "line_number": 5, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 31, "usage_type": "call" }, { "api_name": "uvicorn.run", "line_number": 37, "usage_type": "call" } ]
19631761443
from FACE_VERIFICATION.validation import Verify from utils.encrypt import Encrypt from utils.calling import caller import pickle obj1 = Verify() obj2 = Encrypt() obj3 = caller() class RUN: def __init__(self): pass def controller(self,data): mode = data['mode'] if mode == "verify": response = obj1.verify(frame_count=1,WINDOW=data['image_area']) print(response) return response if mode == "train": response = obj1.generate_embeds(frame_count=2,WINDOW=data['image_area']) print(response) return response if mode == "predict": response = obj1.verify(frame_count=1,WINDOW=data['image_area']) print(response) return response def encrypt_controller(self,unique_id=None,data=None,mode=None,_id=None): if mode == 'Add' or mode == 'Update': data = obj2.encrypt_data(unique_id,data) return obj3.database_controller(unique_id,data,mode=mode,_id =_id) elif mode == "View": data = obj3.database_controller(unique_id,data,mode=mode,_id =_id) new_data = [] for key in data.keys(): new_data = data[key] new_data = obj2.decrypt_data(unique_id,new_data) data[key] = new_data return data else: return obj3.database_controller(unique_id,data,mode=mode,_id =_id)
saquibquddus/Face-Unlock-Web-Application
STREAMLIT/utils/run.py
run.py
py
1,503
python
en
code
0
github-code
6
[ { "api_name": "FACE_VERIFICATION.validation.Verify", "line_number": 6, "usage_type": "call" }, { "api_name": "utils.encrypt.Encrypt", "line_number": 7, "usage_type": "call" }, { "api_name": "utils.calling.caller", "line_number": 8, "usage_type": "call" } ]
19416798117
"""Determine the fration of non-built-up land area needed to become autarkic.""" import click import pandas as pd import geopandas as gpd from src.potentials import Potential @click.command() @click.argument("path_to_demand") @click.argument("path_to_potential") @click.argument("path_to_footprint") @click.argument("path_to_built_up_area") @click.argument("path_to_units") @click.argument("path_to_output") @click.argument("share_from_pv", type=click.INT) def necessary_land(path_to_demand, path_to_potential, path_to_footprint, path_to_built_up_area, path_to_units, path_to_output, share_from_pv=100): """Determine the fraction of non-built-up land area needed to become autarkic. Can vary the share of demand satisfied by rooftop PV. Ignores offshore as it distorts total area sizes. """ assert share_from_pv <= 100 assert share_from_pv >= 0 share_from_pv = share_from_pv / 100 demand = pd.read_csv(path_to_demand, index_col=0)["demand_twh_per_year"] potentials = pd.read_csv(path_to_potential, index_col=0) footprint = pd.read_csv(path_to_footprint, index_col=0) built_up_area = pd.read_csv(path_to_built_up_area, index_col=0) country_codes = gpd.read_file(path_to_units).set_index("id")["country_code"] rooftop_pv = potentials[str(Potential.ROOFTOP_PV)].where( potentials[str(Potential.ROOFTOP_PV)] < share_from_pv * demand, share_from_pv * demand ) demand_after_rooftops = demand - rooftop_pv assert (demand_after_rooftops >= 0).all() open_field_potential = potentials[str(Potential.ONSHORE_WIND)] + potentials[str(Potential.OPEN_FIELD_PV)] open_field_footprint = footprint[Potential.ONSHORE_WIND.area_name] + footprint[Potential.OPEN_FIELD_PV.area_name] fraction_non_built_up_land = fraction_land_where_potential_exists( open_field_potential=open_field_potential, open_field_footprint=open_field_footprint, built_up_area=built_up_area, demand_after_rooftops=demand_after_rooftops ) fraction_non_built_up_land.where( fraction_non_built_up_land.notna(), fraction_land_where_no_potential_exists( open_field_potential=open_field_potential, open_field_footprint=open_field_footprint, built_up_area=built_up_area, demand_after_rooftops=demand_after_rooftops, country_codes=country_codes ), inplace=True ) # corner cases fraction_non_built_up_land[fraction_non_built_up_land > 1] = 1 pd.DataFrame( index=fraction_non_built_up_land.index, data={ "fraction_non_built_up_land_necessary": fraction_non_built_up_land, "fraction_roofs_necessary": rooftop_pv / potentials[str(Potential.ROOFTOP_PV)], "rooftop_pv_generation_twh_per_year": rooftop_pv } ).to_csv( path_to_output, index=True, header=True ) def fraction_land_where_potential_exists(open_field_potential, open_field_footprint, built_up_area, demand_after_rooftops): share_of_open_field_potential_necessary = demand_after_rooftops / open_field_potential necessary_land = open_field_footprint * share_of_open_field_potential_necessary return necessary_land / built_up_area["non_built_up_km2"] def fraction_land_where_no_potential_exists(open_field_potential, open_field_footprint, built_up_area, demand_after_rooftops, country_codes): factor = open_field_footprint.groupby(country_codes).sum() / open_field_potential.groupby(country_codes).sum() factor.name = "km2_per_twh_nationally" assert (factor > 10).all() assert (factor < 70).all() factor = pd.DataFrame(country_codes).join(factor.rename("factor"), on="country_code")["factor"] necessary_land = demand_after_rooftops * factor return necessary_land / built_up_area["non_built_up_km2"] if __name__ == "__main__": necessary_land()
timtroendle/possibility-for-electricity-autarky
src/necessary_land.py
necessary_land.py
py
4,031
python
en
code
10
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 28, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 30, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 31, "usage_type": "call" }, { "api_name": "geopandas.read_file", "line_number": 32, "usage_type": "call" }, { "api_name": "src.potentials.Potential.ROOFTOP_PV", "line_number": 34, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential", "line_number": 34, "usage_type": "name" }, { "api_name": "src.potentials.Potential.ROOFTOP_PV", "line_number": 35, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential", "line_number": 35, "usage_type": "name" }, { "api_name": "src.potentials.Potential.ONSHORE_WIND", "line_number": 41, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential", "line_number": 41, "usage_type": "name" }, { "api_name": "src.potentials.Potential.OPEN_FIELD_PV", "line_number": 41, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential.ONSHORE_WIND", "line_number": 42, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential", "line_number": 42, "usage_type": "name" }, { "api_name": "src.potentials.Potential.OPEN_FIELD_PV", "line_number": 42, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 63, "usage_type": "call" }, { "api_name": "src.potentials.Potential.ROOFTOP_PV", "line_number": 67, "usage_type": "attribute" }, { "api_name": "src.potentials.Potential", "line_number": 67, "usage_type": "name" }, { "api_name": "click.command", "line_number": 9, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 10, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 11, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 12, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 13, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 14, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 15, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 16, "usage_type": "call" }, { "api_name": "click.INT", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 90, "usage_type": "call" } ]
70793816827
from pathlib import Path import re, pickle, os import pickle, win32net from time import sleep class Scanner: wordList = "" ignored_type = "" ignored_dir = "" # this will store all of the file dictionsaries files = [] # This is the path that will be scanned p = '' # The code that iterates through the path from above def directory_file_iteration(self): ignored_directories = self.getIgnoredDirectories() ignored_filetypes = self.getIgnoredFileTypes() for i in Path(self.p).rglob("*"): # If there are directories in the "ignored directories.p" file, then it will iterate through them to see if file should be ignored if len(ignored_directories) > 0: # If the path of the file is in the ignored directories file, it will move to the next file if os.path.normpath(i.parents[0]) in ignored_directories: continue # if the file type of the file is in the ignored filetypes, it will move to the next file if Path(i).suffix.lower() in ignored_filetypes or len(Path(i).suffix) == 0 and "none" in ignored_filetypes: continue # if it passes both, it will check if it's actually a file else: if i.is_file(): # creating a file dictionary of attributes fileDict = {"filename":i.name,"pathParent":i.parents[0],"fullPath":i, "filetype":Path(i).suffix, "flag":False, "data":{"filename":"","filecontents":"","ssn":"","phone":"","email":[], "cc":""}} self.files.append(fileDict) else: continue # if there are none in ignored directories.p it will run this elif Path(i).suffix in ignored_filetypes: continue else: if i.is_file(): fileDict = {"filename":i.name,"pathParent":i.parents[0],"fullPath":i, "filetype":Path(i).suffix, "flag":False, "data":{"filename":"","filecontents":"","ssn":"","phone":"","email":[], "CC":""}} self.files.append(fileDict) # checking to see if a keyword is in a filename def checkFileNames(self): for file_ in self.files: for word in self.wordList: if word.lower() in str(file_["filename"].lower()): file_["flag"] = True file_["data"]["filename"] = word # reading in .txt files and checking for keywords def readInTextFile(self): for file_ in self.files: if file_["filetype"] == ".txt": try: # trying to open the file, sometimes it won't read because it isn't always ascii characters. f = open(file_["fullPath"], "r") fileContents = f.read() f.close() # searching the contents of the file for keyword for word in self.wordList: if word in fileContents.lower(): file_["flag"] = True file_["data"]["filecontents"] = file_["data"]["filecontents"] + " " + word # searching contents of file for SSN file_ = self.ssnSearch(file_, fileContents) # searching for phone numbers file_ = self.phoneNumberSearch(file_, fileContents) # searching for emails file_ = self.emailSearch(file_, fileContents) # searching for credit cards file_ = self.ccSearch(file_, fileContents) except UnicodeDecodeError: pass def ccSearch(self, file_, fileContents): ccAmexFound = re.findall(r'(?<!\d)3[47][0-9]{13}$(?!\d)', fileContents) ccVisaFound = re.findall(r'(?<!\d)4[0-9]{12}(?:[0-9]{3})?(?!\d)', fileContents) ccMasterCardFound = re.findall(r'(?<!\d)(5[1-5][0-9]{14}|2(22[1-9][0-9]{12}|2[3-9][0-9]{13}|[3-6][0-9]{14}|7[0-1][0-9]{13}|720[0-9]{12}))(?!\d)', fileContents) strAmex = '' strVisa = '' strMaster = '' for card in ccAmexFound: strAmex = strAmex + " , Amex " + str(card) for card in ccVisaFound: strVisa = strVisa + " , Visa " + str(card) for card in ccMasterCardFound: strMaster = strMaster + " , Master " + str(card) if len(strAmex) + len(strVisa) + len(strMaster) < 1: return file_ else: ccFound = str(strAmex) + str(strVisa) + str(strMaster) try: file_["flag"] = True except: pass file_["data"]["cc"] = file_["data"]["cc"] + ccFound return file_ def emailSearch(self, file_, fileContents): emailFound = re.findall(r'[A-Za-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w+', fileContents) strEmailFound = "" for email in emailFound: strEmailFound = strEmailFound + " , " + email if len(emailFound) < 1: return file_ else: try: file_["flag"] = True except: pass file_["data"]["email"] += emailFound return file_ def phoneNumberSearch(self, file_, fileContents): phoneFound = re.findall(r'(?<!\d)(?!000|.+0{4})(?:\d{10}|\d{3}-\d{3}-\d{4}|\d{3}\.\d{3}\.\d{4}|\d{3}\s\d{3}\s\d{4}|\(\d{3}\)\s\d{3}\s\d{4})(?!\d)', fileContents) strPhoneFound = "" for phone in phoneFound: strPhoneFound = strPhoneFound + " , " + phone if len(phoneFound) < 1: return file_ else: try: file_["flag"] = True except: pass file_["data"]["phone"] = file_["data"]["phone"] + strPhoneFound return file_ # searching for SSNs def ssnSearch(self,file_,fileContents): #ssn format: xxxxxxxxx or xxx-xx-xxxx ssnFound = re.findall(r'(?<!\d)(?!000|.+0{4})(?:\d{9}|\d{3}-\d{2}-\d{4})(?!\d)', fileContents) strSSNFOUND = "" for ssn in ssnFound: strSSNFOUND = strSSNFOUND + " , " + ssn if len(ssnFound) < 1: return file_ else: try: file_["flag"] = True except: pass file_["data"]["ssn"] = file_["data"]["ssn"] + strSSNFOUND return file_ # Ignore_dir.txt which will hold directories you want to ignore def getIgnoredDirectories(self): ignored_directories = pickle.load(open("ignored directories.p","rb")) return ignored_directories # Ignore the file types in this file such as .torrent, .txt def getIgnoredFileTypes(self): ignored_filetypes = pickle.load(open("ignored filetypes.p", "rb")) return ignored_filetypes # Setting path to scan def setPath(self,i): self.p = i def getWordList(self): self.wordList = pickle.load(open("word list.p", "rb")) def checkIfAdmin(self): if 'logonserver' in os.environ: server = os.environ['logonserver'][2:] else: server = None def if_user_is_admin(Server): groups = win32net.NetUserGetLocalGroups(Server, os.getlogin()) isadmin = False for group in groups: if group.lower().startswith('admin'): isadmin = True return isadmin, groups # Function usage is_admin, groups = if_user_is_admin(server) # Result handeling if is_admin == True: return True else: return False #print('You are in the following groups:') # for group in groups: # print(group) #sleep(10) #if error: no module named win32api, run these lines in cmd #pip uninstall pipywin32 #pip uninstall pywin32 #pip install pywin32 def get_scanning(self, scan_type): if scan_type == "quick": self.getWordList() self.files = [] # removing all data in the files list self.directory_file_iteration() self.checkFileNames() else: self.getWordList() self.files = [] # removing all data in the files list self.directory_file_iteration() self.checkFileNames() self.readInTextFile() return self.files
thang41/OpenSourceSecurityCheck
scanner.py
scanner.py
py
9,244
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.normpath", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 32, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 39, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 47, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 52, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 100, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 101, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 102, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 131, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 151, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 173, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 193, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 198, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 206, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 209, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 210, "usage_type": "attribute" }, { "api_name": "win32net.NetUserGetLocalGroups", "line_number": 215, "usage_type": "call" }, { "api_name": "os.getlogin", "line_number": 215, "usage_type": "call" } ]
29451178686
from selenium import webdriver import time, re, urllib, requests from telethon.sync import TelegramClient from config import api_id, api_hash client = TelegramClient('name', api_id, api_hash) client.start() dlgs = client.get_dialogs() tegmo = None for dlg in dlgs: if dlg.title == "LTC Click Bot": tegmo = dlg if tegmo == None: print("Отсутствует чат с ботом") exit() print(tegmo.title) # dr_options = webdriver.FirefoxOptions() # dr_options.set_headless() # driver = webdriver.Firefox(options=dr_options) from selenium.webdriver.chrome.options import Options chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--log-level=3') driver = webdriver.Chrome(chrome_options=chrome_options) tmp_url = '' n = 0 nn = 0 links = True links2 = True try: while True: msg = client.get_messages(tegmo, limit=1)[0] if re.search(r'\bThere is a new site for you to\b', msg.message): client.send_message( tegmo , "🖥 Visit sites") if re.search(r'\bPlease stay on the site for at least 10 seconds\b', msg.message): time.sleep(10) continue if re.search(r'\bSorry\b', msg.message): time.sleep(10) nn = nn + 1 print('Закончились ссылки ждем','.'*nn, end='\r') client.send_message( tegmo , "🖥 Visit sites") continue if re.search(r'\bPress the "Visit website" button to earn LTC\b', msg.message): nn = 0 url = msg.reply_markup.rows[0].buttons[0].url if tmp_url == url: nn = nn + 1 print("ссыдка с задежкой", '.'*nn , end='\r') time.sleep(5) t_el = driver.find_elements_by_class_name('timer') text = '' for i in t_el: if (len(i.text) > 0): text = i.text i.click() print(text) if ''.join(text) == '': client.send_message( tegmo , "🖥 Visit sites") links2 = False continue links = True print("переходим по ссылке", url) driver.get(url) n = n + 1 print("проходов ",n) tmp_url = url time.sleep(2) except Exception as ex: print(ex) finally: driver.close()
Sofron80/coin_bot
main2.py
main2.py
py
2,611
python
en
code
0
github-code
6
[ { "api_name": "telethon.sync.TelegramClient", "line_number": 8, "usage_type": "call" }, { "api_name": "config.api_id", "line_number": 8, "usage_type": "argument" }, { "api_name": "config.api_hash", "line_number": 8, "usage_type": "argument" }, { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 34, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 38, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 38, "usage_type": "name" }, { "api_name": "re.search", "line_number": 49, "usage_type": "call" }, { "api_name": "re.search", "line_number": 52, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 53, "usage_type": "call" }, { "api_name": "re.search", "line_number": 56, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 57, "usage_type": "call" }, { "api_name": "re.search", "line_number": 63, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 70, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 93, "usage_type": "call" } ]
71817771068
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # mid2sheet.py # Midi-Files -> Sheets for Musicbox (30 notes, starting from F) # (c) 2017 Niklas Kannenberg <[email protected]> and Gunnar J. # Released under the GPL v3 or later, see file "COPYING" # # ToDo # - Use 'pypdf' instead of external 'pdfjam' for PDF merging, avoid latex # (to much dependencies) # # Bugs # - No whitespace in path/to/script allowed # pdfjam and rm will not work, see subprocess.call() # - exits if input/output folder not exists, better create output folder # # # Useful links: # https://mido.readthedocs.io/en/latest/midi_files.html # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html # http://stackoverflow.com/questions/3444645/merge-pdf-files # https://pythonhosted.org/PyPDF2/ # # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import mido import os import pandas as pd import matplotlib.pyplot as plt import subprocess import datetime # version of this software version = 0.3 # print lot of debug messages? debug = 0 # directories inputdir = os.getcwd()+"/input" # input directory, e.g. "/input" outputdir = os.getcwd()+"/output" # output directory for PDFs # notes and y_mm yBase = 5.5 # y_mm first note yAbst = 58.5 / 29.0 # y_mm between notes yUppr = 70.0 # y_mm whole strip # Plot x8beat = 4.0 # x_mm per 1/8 beat minbeat = 7.9 # minimal playable x-distance for one note xprmax = 250.0 # printable size, A4 Landscape preplt = 8.0 # space for note names on plot, do not change # lut midi-note -> y_mm notemmlut = [ # Note # y_mm # name [ 53, yBase + 0 * yAbst ], # F [ 55, yBase + 1 * yAbst ], # G [ 60, yBase + 2 * yAbst ], # C [ 62, yBase + 3 * yAbst ], # D [ 64, yBase + 4 * yAbst ], # E [ 65, yBase + 5 * yAbst ], # F [ 67, yBase + 6 * yAbst ], # G [ 69, yBase + 7 * yAbst ], # A [ 70, yBase + 8 * yAbst ], # A# [ 71, yBase + 9 * yAbst ], # H [ 72, yBase + 10 * yAbst ], # C [ 73, yBase + 11 * yAbst ], # C# [ 74, yBase + 12 * yAbst ], # D [ 75, yBase + 13 * yAbst ], # D# [ 76, yBase + 14 * yAbst ], # E [ 77, yBase + 15 * yAbst ], # F [ 78, yBase + 16 * yAbst ], # F# [ 79, yBase + 17 * yAbst ], # G [ 80, yBase + 18 * yAbst ], # G# [ 81, yBase + 19 * yAbst ], # A [ 82, yBase + 20 * yAbst ], # A# [ 83, yBase + 21 * yAbst ], # H [ 84, yBase + 22 * yAbst ], # C [ 85, yBase + 23 * yAbst ], # C# [ 86, yBase + 24 * yAbst ], # D [ 87, yBase + 25 * yAbst ], # D# [ 88, yBase + 26 * yAbst ], # E [ 89, yBase + 27 * yAbst ], # F [ 91, yBase + 28 * yAbst ], # G [ 93, yBase + 29 * yAbst ], # A ] print("-> Converting .mid to .pdf for Musicbox - mid2sheet v"+str(version)) print("--------------------------------------------------------") print("Input from Folder: "+inputdir) print("Output to Folder: "+outputdir) # midi note number to y_mm def get_mm(note): retval = -1 for i in range(len(notemmlut)): if (notemmlut[i][0] == note): retval = notemmlut[i][1] return retval # name of midi note number def get_name(note): names = [ "C","C#","D","D#","E","F","F#","G","G#","A","A#","H" ] return names[note % 12] # returns 1 if note is to close to last note on same line def get_terr(notes, pos): gap = 9999 for i in range(0,pos): if(notes.note[i] == notes.note[pos]): gap = notes.x[pos] - notes.x[i] if(gap < minbeat): # gap < min_gap return 1 # not playable else: return 0 # OK # mm -> inch (for matplotlib) def mm2in(mm): return mm/10/2.54 # mm to inch # convert one midi file def do_convert(infile, outfile, fname): mid = mido.MidiFile(infile) # the input file now = datetime.datetime.now() # actual time sig_cnt = 0 # counter for signature messages tim_cnt = 0 # counter for timing messages # midi timing ticks per beat ticks_4th = mid.ticks_per_beat ticks_8th = ticks_4th / 2 # data frame for all midi events of melody track datacols = ['time','tdiff','type','track','bytes'] data = pd.DataFrame(columns=datacols) # data frame for note_on events notecols = ['time','note','name', 'x', 'y', 'bar'] notes = pd.DataFrame(columns=notecols) # list all tracks if(debug): print("Tracks : " + str(len(mid.tracks))) for i in range(len(mid.tracks)): track_len = len(mid.tracks[i]) print("Track " + str(i) + " : " + str(track_len) + " events") # extract all messages from all tracks to data frame 'data' for i, track in enumerate(mid.tracks): for msg in track: if(msg.type == "time_signature"): time_signature = msg.dict() numerator = time_signature['numerator'] denominator = time_signature['denominator'] sig_cnt += 1 if(debug): print("Timing : " + str(numerator) + "/" + str(denominator)) if(msg.type == "set_tempo"): set_tempo = msg.dict() tempo = round((500000 / set_tempo['tempo']) * 120, 2) tim_cnt += 1 if(debug): print("Tempo : " + str(tempo) + " bpm") data = data.append({ 'time' : 0, 'tdiff' : msg.time, 'type' : msg.type, 'track' : i, 'bytes' : msg.bytes() }, ignore_index=True) # warnings for tracks, tempo and signature if(len(mid.tracks) != 1): print("-> WARNING: Midi file has " + str(len(mid.tracks)) + " tracks instead of 1") if(sig_cnt != 1): print("-> WARNING: Midi file has " + str(sig_cnt) + " signature messages instead of 1. " + "Using " + str(numerator) + "/" + str(denominator)) if(tim_cnt != 1): print("-> WARNING: Midi file has " + str(tim_cnt) + " tempo messages instead of 1. " + "Using " + str(tempo) + " bpm.") # calculate absolute timing values for i in range(1, len(data)): # actual time difference tdiffnext = data.tdiff[i] # accumulate time only for same track if(data.track[i] == data.track[i-1]): timeacc = data.time[i-1] else: timeacc = 0 data.loc[i, 'time'] = timeacc + tdiffnext # extract all 'note_on' events from 'data' to 'notes for i in range(len(data)): # event == note_on AND velocity > x if(data.type[i] == 'note_on' and data.bytes[i][2] > 0): thisnote = data.bytes[i][1] mtime = data.time[i] x_val = ( mtime / ticks_8th ) * x8beat notes = notes.append({ 'time' : data.time[i], 'note' : thisnote, 'name' : get_name(thisnote), 'x' : x_val, 'y' : get_mm(thisnote), 'bar' : (data.time[i] / (4 * ticks_4th * (numerator/denominator))) + 1 }, ignore_index=True) # mm per bar mm_bar = 8 * x8beat * (numerator/denominator) # bars per page bars_pp = int((xprmax - preplt) / mm_bar) # debug if(debug): #print("--- DATA ---") #print(data) print("--- NOTES ---") print(notes) # generate plot # ----------------------------- # size of one strip strip_x = mm2in(preplt + bars_pp * mm_bar) # X-Size of plot strip_y = mm2in(yUppr) # Y-Size of plot hlines_x = mm2in(preplt) # start of horizontal note lines newpage = 1 # flag for newpage pagecnt = 0 # page counter poffs = 0 # x-offset for current page # for all notes (can't manipulate k in 'for' loop but in 'while' loop) k = 0 while(k < len(notes) ): # create a new plot if( newpage==1 ): newpage = 0 # reset flag pagecnt = pagecnt + 1 # increment page counter if(pagecnt > 1): # re plot last notes on current page while( (notes.bar[k] ) >= bars_pp * (pagecnt - 1) + 1 ): k -= 1 k += 1 # undo last while, no 'do-while' loop in python # frame line width, hacked plt.rcParams['axes.linewidth'] = 0.2 # x-offset for this page poffs = mm2in( -preplt + (pagecnt-1) * mm_bar * bars_pp ) # create figure f = plt.figure(figsize=(strip_x,strip_y), dpi=300,frameon=False) ax = plt.subplot(111) # figure has no borders plt.subplots_adjust(left=0,right=1,bottom=0,top=1) # plot 30 horizontal lines for i in range(len(notemmlut)): yy = mm2in(notemmlut[i][1]) # y-val nnote = get_name(notemmlut[i][0]) # name of the acutal note if(nnote == "C"): # C-Lines plt.plot([hlines_x,strip_x],[yy,yy],color="black", linewidth=0.4) elif nnote.endswith("#"): # #-Lines (Black keys) plt.plot([hlines_x,strip_x],[yy,yy],color="black", linewidth=0.1, linestyle=':') else: # Normal Lines plt.plot([hlines_x,strip_x],[yy,yy],color="black", linewidth=0.2) # add the name of the note if(i%2 ==0): ofs = 0.1 # indent every 2nd note else: ofs = 0.0 # no indent ax.text(.1+ofs,yy, nnote, fontsize=5,verticalalignment='center',rotation=90) # plot beat lines for i in range(bars_pp * numerator): xx = mm2in(mm_bar) / numerator # x per bar if(i % numerator == 0): # plot line (full bar) plt.plot([hlines_x+xx*i, hlines_x+xx*i ], [mm2in(notemmlut[0][1]), mm2in(notemmlut[-1][1])],color="black",linewidth=0.4) # plot bar number ax.text( hlines_x+xx*i + (xx/2), mm2in(notemmlut[0][1]) - mm2in(2.5), str(int(1+ i/numerator + bars_pp * (pagecnt-1))), fontsize=5,horizontalalignment='center',) else: # plot line (beat) plt.plot([hlines_x+xx*i, hlines_x+xx*i ], [mm2in(notemmlut[0][1]), mm2in(notemmlut[-1][1])], color="black",linewidth=0.1, linestyle=':') # add song name and info ax.text( hlines_x + mm2in(4), yy + mm2in(2), str(pagecnt) + " " + fname + " " + str(numerator) + "/" + str(denominator) + " " + str(tempo) + " bpm", fontsize=8, horizontalalignment='left') ax.text( mm2in(xprmax) / 2, yy + mm2in(2), "Generated in " + now.strftime('%Y-%m-%d') + " with mid2sheet v" + str(version) , fontsize=5, horizontalalignment='left') # vertical start line plt.plot([hlines_x,hlines_x],[0,strip_y],color="black", linewidth=0.4) plt.xticks([]) plt.yticks([]) ax.axis([0,strip_x, 0, strip_y]) # end if newpage # position of note to plot xx = mm2in(notes.x[k]) yy = mm2in(notes.y[k]) xx = xx -poffs # plot one note if(notes.y[k] != -1): # normal note plt.plot(xx,yy,marker='.',color='white',markersize=12) plt.plot(xx,yy,marker='.',color='black',markersize=8) plt.plot(xx,yy,marker='.',color='white',markersize=5) # fill red, if timing is to short if(get_terr(notes, k)): plt.plot(xx,yy,marker='.',color='red',markersize=3) else: # plot error note name (not in musicbox range) ax.text( xx,mm2in(1),get_name(int(notes.note[k])), fontsize=5,color='red', horizontalalignment='center',) # prepare new page, if this note was already outside current page if( (notes.bar[k] ) > bars_pp * pagecnt + 1 ): newpage = 1 # save current page to file filename = outfile + "_%03d" % (pagecnt) + '.pdf' f.savefig(filename, bbox_inches='tight') # next note (manually in while loop) else: k += 1 # for all notes # save last page to file filename = outfile + "_%03d" % (pagecnt) + '.pdf' f.savefig(filename, bbox_inches='tight') # combine pdfs, TODO: switch to PyPDF2 subprocess.call("pdfjam " + outfile + "_*.pdf --nup 1x2 --a4paper --landscape --noautoscale true --delta '0.5cm 0.5cm' --outfile " + outfile + ".pdf", shell=True) subprocess.call("rm " + outfile + "_*.pdf ", shell=True) # result: list of notes with x,y mm values return notes # convert all files for filename in os.listdir(inputdir): if filename.endswith(".mid"): inpfile = inputdir+"/"+filename outfile_name = filename.rsplit('.', 1)[0] outfile = outputdir+"/"+outfile_name print("--------------------------------------------------------") print("-> Input File : "+filename) print("-> Output File : "+outfile_name + ".pdf") do_convert(inpfile, outfile, outfile_name) print("--------------------------------------------------------") print("DONE")
flylens/mid2sheet
mid2sheet.py
mid2sheet.py
py
14,949
python
en
code
27
github-code
6
[ { "api_name": "os.getcwd", "line_number": 55, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 56, "usage_type": "call" }, { "api_name": "mido.MidiFile", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 152, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 152, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 162, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 166, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 286, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 286, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 292, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 293, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 293, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 295, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 295, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 304, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 304, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 306, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 306, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 308, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 308, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 320, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 320, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 328, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 328, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 343, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 343, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 344, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 344, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 345, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 345, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 357, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 357, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 358, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 358, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 359, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 359, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 362, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 362, "usage_type": "name" }, { "api_name": "subprocess.call", "line_number": 384, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 385, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 393, "usage_type": "call" } ]
22609873896
from django.contrib.auth.decorators import user_passes_test, login_required from django.http import HttpResponse, HttpResponseRedirect from django.http import JsonResponse from django.shortcuts import render, redirect from apps.rfid.models import GeneralAssembly from hybridjango.utils import group_test class Ballot: nr = 0 title = 'Avstemning' choices = [ 'Blank', 'Vevkom', 'Bedkom', 'Arrkom', 'Jentekom', 'Redaksjonen', ] only_members = True empty_votes = True is_attending = True has_voted = [] votes = [] active = True class Suggestion: num = 0 author = "Ikke vevsjef" suggestion_text = "Vevkom burde ta over styret" suggestions_enabled = False empty_vote = 'Tomt' suggestion_list = [] @user_passes_test(group_test("Tellekorps")) def overview(request): user = request.user if request.method == 'POST': if 'ballot_form' in request.POST: Ballot.title = request.POST.get('title', 'Avstemning') Ballot.only_members = True if request.POST.get('membersOnly') else False Ballot.empty_votes = True if request.POST.get('empty_votes') else False Ballot.is_attending = True if request.POST.get('is_attending') else False Ballot.choices = [v for k, v in request.POST.items() if k.startswith('choice-')] Ballot.votes = [] Ballot.has_voted = [] Ballot.nr += 1 return HttpResponseRedirect('#') elif 'active' in request.GET: Ballot.active = not (request.GET['active'] == 'Deaktiver') return render( request, 'ballot/overview.html', context={ 'active': Ballot.active, }, ) @user_passes_test(group_test("Nestleder")) def suggestion_overview(request): user = request.user if request.method == 'POST': if 'toggle_suggestions' in request.POST: Suggestion.suggestions_enabled = not Suggestion.suggestions_enabled elif 'clear_suggestions' in request.POST: del suggestion_list[:] return HttpResponseRedirect("#") return render(request, 'ballot/suggestions.html', context={ 'suggestions_enabled' : Suggestion.suggestions_enabled }) @login_required def post_suggestion(request): sugg = Suggestion() sugg.num += 1 sugg.author = request.user sugg.suggestion_text = request.POST.get('suggestion_text') suggestion_list.append(sugg) @user_passes_test(group_test("Nestleder")) def get_suggestions(request): json_list = [{ "author_name" : suggestion.author.full_name, "suggestion_text" : suggestion.suggestion_text, } for suggestion in suggestion_list] return JsonResponse({"suggestion_list" : json_list}) @login_required def ballot(request): return render(request, 'ballot/voteview.html', get_ballot_dict(request.user)) @login_required def get_choices(request): return JsonResponse(get_ballot_dict(request.user)) def get_ballot_dict(user): choices = Ballot.choices.copy() if Ballot.empty_votes: choices.append(empty_vote) return { 'nr': Ballot.nr, 'title': Ballot.title, 'choices': choices, 'has_voted': user.pk in Ballot.has_voted, 'active': Ballot.active, 'suggestions_enabled' : Suggestion.suggestions_enabled, } def vote(request): if request.method == 'POST': user = request.user generalassembly = GeneralAssembly.objects.all().last() #fetches the newest made generalassembly object if not user.is_authenticated: return HttpResponse("Du må være innlogget for å stemme") if not Ballot.active: return HttpResponse("Avstemningen er ikke aktiv") if user.pk < 2: return HttpResponse("Linjeforeningen Hybrida kan ikke stemme selv") if Ballot.only_members and not user.member: return HttpResponse("Kun medlemmer kan stemme") if Ballot.is_attending and user not in generalassembly.users.all(): return HttpResponse("Du må registrere oppmøte for å kunne stemme") if user.pk in Ballot.has_voted: return HttpResponse("Du har allerede stemt") new_vote = request.POST.get("choice", None) if new_vote in Ballot.choices or (Ballot.empty_votes and new_vote == empty_vote): Ballot.has_voted.append(user.pk) Ballot.votes.append(new_vote) return HttpResponse("Du stemte på {}.".format(new_vote)) return HttpResponse("Du avga ingen stemme") @user_passes_test(group_test("Tellekorps")) def get_results(request): user = request.user if not (user.is_authenticated and group_test("Tellekorps")): return JsonResponse( {"title": "Hvem er best?", "results": [{"name": "vevkom", "votes": 9001}, {"name": "andre", "votes": 0}], "total": 9001, "total_nonblank": 9001}) results = [{'name': choice, 'votes': Ballot.votes.count(choice)} for choice in Ballot.choices] total_nonblank = total = len(Ballot.votes) if Ballot.empty_votes: results.append({'name': empty_vote, 'votes': Ballot.votes.count(empty_vote)}) total_nonblank -= Ballot.votes.count(empty_vote) return JsonResponse({'title': Ballot.title, 'results': results, 'total': total, 'total_nonblank': total_nonblank})
hybrida/hybridjango
apps/ballot/views.py
views.py
py
5,402
python
en
code
4
github-code
6
[ { "api_name": "django.http.HttpResponseRedirect", "line_number": 51, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 54, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.user_passes_test", "line_number": 38, "usage_type": "call" }, { "api_name": "hybridjango.utils.group_test", "line_number": 38, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 68, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 70, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.user_passes_test", "line_number": 60, "usage_type": "call" }, { "api_name": "hybridjango.utils.group_test", "line_number": 60, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 74, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 88, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.user_passes_test", "line_number": 82, "usage_type": "call" }, { "api_name": "hybridjango.utils.group_test", "line_number": 82, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 93, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 91, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 98, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 96, "usage_type": "name" }, { "api_name": "apps.rfid.models.GeneralAssembly.objects.all", "line_number": 118, "usage_type": "call" }, { "api_name": "apps.rfid.models.GeneralAssembly.objects", "line_number": 118, "usage_type": "attribute" }, { "api_name": "apps.rfid.models.GeneralAssembly", "line_number": 118, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 121, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 123, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 125, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 127, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 129, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 131, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 137, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 139, "usage_type": "call" }, { "api_name": "hybridjango.utils.group_test", "line_number": 144, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 145, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 153, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.user_passes_test", "line_number": 141, "usage_type": "call" }, { "api_name": "hybridjango.utils.group_test", "line_number": 141, "usage_type": "call" } ]
73739270588
#!/usr/bin/env python3 import argparse import os import re import subprocess import sys LOG_FILE_OPTION = 'log_file' OUTPUT_PATH_OPTION = '--output-path' ONLY_FAILED_OPTION = '--only-failed' HUMAN_READABLE_OPTION = '--human-readable' USE_RUBY_PARSER_OPTION = '--use-ruby' FIND_COREDUMPS_OPTION = "--find-coredumps" WRITE_RESULTS_TO_DATABASE_OPTION = "--write-to-database" HELP_OPTION = '--help' options = argparse.ArgumentParser(description="CTest parser usage:") options.add_argument(LOG_FILE_OPTION, help="CTEST LOG FILE PATH") options.add_argument("-f", ONLY_FAILED_OPTION, action="store_true", help="PARSE ONLY FAILED TESTS") options.add_argument("-r", HUMAN_READABLE_OPTION, action="store_true", help="HUMAN READABLE OUTPUT") options.add_argument("-o", OUTPUT_PATH_OPTION, metavar="output_path", help="OUTPUT DIRECTORY PATH") options.add_argument("-u", USE_RUBY_PARSER_OPTION, action="store_true", help="USE OLD RUBY PARSER") options.add_argument("-c", FIND_COREDUMPS_OPTION, choices=["url", "files"], help="FIND AND STORE COREDUMPS") options.add_argument("-w", WRITE_RESULTS_TO_DATABASE_OPTION, action="store_true", help="WRITE TEST RESULTS TO DATABASE") parserRoot = os.path.dirname(os.path.abspath(__file__)) def parseCtestRuby(opts, path): command = [ "{}/ruby-scripts/parse_ctest_log.rb".format(parserRoot), "-l", opts.log_file, "-o", "{}/ruby/results".format(path), "-j", "{}/ruby/json".format(path), "-s", "{}/ruby/ctest_sublogs".format(path) ] if opts.human_readable: command.append("-r") if opts.only_failed: command.append("-f") return subprocess.check_output(command) def parseCtestPython(opts, path): command = [ "{}/python-scripts/parse_ctest_log.py".format(parserRoot), opts.log_file, "-o", "{}/python/results".format(path), "-j", "{}/python/json".format(path), "-s", "{}/python/ctest_sublogs".format(path) ] if opts.human_readable: command.append("-r") if opts.only_failed: command.append("-f") return subprocess.check_output(command) def storeCoredumpsRuby(opts, buildId, path): command = [ "{}/ruby-scripts/coredump_finder.sh".format(parserRoot), buildId, opts.find_coredumps ] coredumps = subprocess.check_output(command) writeCoredumpsToFile("{}/ruby/coredump".format(path), coredumps) def storeCoredumpsPython(opts, buildId, path): command = [ "{}/python-scripts/coredump_finder.py".format(parserRoot), buildId, opts.find_coredumps ] coredumps = subprocess.check_output(command) writeCoredumpsToFile("{}/python/coredump".format(path), coredumps) def getLogsDir(output): return re.search(b'(Logs dir: |"logs_dir": ")(\w+-\d+)', output).group(2) def writeCoredumpsToFile(path, coredumps): file = open(path, "w") file.write("COREDUMPS \\\n") file.writelines(coredumps) file.close() def writeToDatabaseRuby(opts, path): command = [ "{}/ruby-scripts/write_build_results.rb".format(parserRoot), "-f", "{}/ruby/json".format(path) ] return subprocess.check_output(command) def writeToDatabasePython(opts, path): command = [ "{}/python-scripts/write_build_results.py".format(parserRoot), "{}/python/json".format(path) ] return subprocess.check_output(command) def main(args=None): opts = options.parse_args(args=args) path = os.path.dirname(os.path.abspath(opts.log_file)) if opts.output_path: path = opts.output_path if opts.use_ruby: result = parseCtestRuby(opts, path) if opts.find_coredumps: storeCoredumpsRuby(opts, getLogsDir(result), path) if opts.write_to_database: writeToDatabaseRuby(opts, path) else: result = parseCtestPython(opts, path) if opts.find_coredumps: storeCoredumpsPython(opts, getLogsDir(result), path) if opts.write_to_database: writeToDatabasePython(opts, path) if os.path.samefile(__file__, sys.argv[0]): main()
dA505819/maxscale-buildbot
master/parser-tests/parser/parser.py
parser.py
py
4,117
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 28, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 43, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 58, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 67, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 77, "usage_type": "call" }, { "api_name": "re.search", "line_number": 82, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 97, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path.samefile", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path", "line_number": 128, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 128, "usage_type": "attribute" } ]
14490773282
""" create model Creator: Xiaoshui Huang Date: 2020-06-19 """ from se_math.so3 import inverse, transform import torch import numpy as np from random import sample import se_math.se3 as se3 import se_math.invmat as invmat import igl import os import sys sys.path.append('./../') sys.path.append('./../../') from loss import cal_loss_intersection_batch_whole_median_pts_lines, Reconstruction_point, Random_uniform_distribution_lines_batch_efficient_resample, chamfer_dist, Sample_neighs from utils import npmat2euler # we also make chamfer_loss for data! def dict_all_to_device(tensor_dict, device): """Sends everything into a certain device """ for k in tensor_dict: if isinstance(tensor_dict[k], torch.Tensor): tensor_dict[k] = tensor_dict[k].to(device) def save_pred_gt_obj(V_src, V_pred, V_gt, V_tgt_trans, paths_src, paths_pred, paths_gt, paths_gt_pred): Face = np.zeros(3).reshape(1, 3).astype(np.int32) for i in range(V_pred.shape[0]): igl.write_triangle_mesh(paths_src[i], V_src[i].numpy(), Face) igl.write_triangle_mesh(paths_pred[i], V_pred[i].numpy(), Face) igl.write_triangle_mesh(paths_gt[i], V_gt[i].numpy(), Face) igl.write_triangle_mesh(paths_gt_pred[i], V_tgt_trans[i].numpy(), Face) # a global function to flatten a feature def flatten(x): return x.view(x.size(0), -1) # a global function to calculate max-pooling def symfn_max(x): # [B, K, N] -> [B, K, 1] a = torch.nn.functional.max_pool1d(x, x.size(-1)) return a # a global function to generate mlp layers def _mlp_layers(nch_input, nch_layers, b_shared=True, bn_momentum=0.1, dropout=0.0): """ [B, Cin, N] -> [B, Cout, N] or [B, Cin] -> [B, Cout] """ layers = [] last = nch_input for i, outp in enumerate(nch_layers): if b_shared: weights = torch.nn.Conv1d(last, outp, 1) else: weights = torch.nn.Linear(last, outp) layers.append(weights) # layers.append(torch.nn.BatchNorm1d(outp, momentum=bn_momentum)) layers.append(torch.nn.GroupNorm(8, outp)) layers.append(torch.nn.ReLU()) if b_shared == False and dropout > 0.0: layers.append(torch.nn.Dropout(dropout)) last = outp return layers # a class to generate MLP network class MLPNet(torch.nn.Module): """ Multi-layer perception. [B, Cin, N] -> [B, Cout, N] or [B, Cin] -> [B, Cout] """ def __init__(self, nch_input, nch_layers, b_shared=True, bn_momentum=0.1, dropout=0.0): super().__init__() list_layers = _mlp_layers(nch_input, nch_layers, b_shared, bn_momentum, dropout) self.layers = torch.nn.Sequential(*list_layers) def forward(self, inp): out = self.layers(inp) return out # encoder network class PointNet(torch.nn.Module): def __init__(self, dim_k=1024): super().__init__() scale = 1 mlp_h1 = [int(64 / scale), int(64 / scale)] mlp_h2 = [int(64 / scale), int(128 / scale), int(dim_k / scale)] self.h1 = MLPNet(3, mlp_h1, b_shared=True).layers self.h2 = MLPNet(mlp_h1[-1], mlp_h2, b_shared=True).layers self.sy = symfn_max def forward(self, points): """ points -> features [B, N, 3] -> [B, K] """ # for pointnet feature extraction x = points.transpose(1, 2) # [B, 3, N] x = self.h1(x) x = self.h2(x) # [B, K, N] x = flatten(self.sy(x)) return x # decoder network class Decoder(torch.nn.Module): def __init__(self, num_points=2048, bottleneck_size=1024): super(Decoder, self).__init__() self.num_points = num_points self.bottleneck_size = bottleneck_size # self.bn1 = torch.nn.BatchNorm1d(bottleneck_size) # self.bn2 = torch.nn.BatchNorm1d(bottleneck_size // 2) # self.bn3 = torch.nn.BatchNorm1d(bottleneck_size // 4) self.bn1 = torch.nn.GroupNorm(8, bottleneck_size) self.bn2 = torch.nn.GroupNorm(8, bottleneck_size // 2) self.bn3 = torch.nn.GroupNorm(8, bottleneck_size // 4) self.fc1 = torch.nn.Linear(self.bottleneck_size, bottleneck_size) self.fc2 = torch.nn.Linear(self.bottleneck_size, bottleneck_size // 2) self.fc3 = torch.nn.Linear(bottleneck_size // 2, bottleneck_size // 4) self.fc4 = torch.nn.Linear(bottleneck_size // 4, self.num_points * 3) self.th = torch.nn.Tanh() def forward(self, x): batchsize = x.size()[0] x = torch.nn.functional.relu(self.bn1(self.fc1(x))) x = torch.nn.functional.relu(self.bn2(self.fc2(x))) x = torch.nn.functional.relu(self.bn3(self.fc3(x))) x = self.th(self.fc4(x)) * 10 x = x.view(batchsize, 3, self.num_points).transpose(1, 2).contiguous() return x # the neural network of feature-metric registration class SolveRegistration(torch.nn.Module): def __init__(self, ptnet, decoder=None): super().__init__() # network self.encoder = ptnet self.decoder = decoder # functions self.inverse = invmat.InvMatrix.apply self.exp = se3.Exp # [B, 6] -> [B, 4, 4] self.transform = se3.transform # [B, 1, 4, 4] x [B, N, 3] -> [B, N, 3] # initialization for dt: [w1, w2, w3, v1, v2, v3], 3 rotation angles and 3 translation delta = 1.0e-2 # step size for approx. Jacobian (default: 1.0e-2) dt_initial = torch.autograd.Variable( torch.Tensor([delta, delta, delta, delta, delta, delta])) self.dt = torch.nn.Parameter(dt_initial.view(1, 6), requires_grad=True) # results self.last_err = None self.g_series = None # for debug purpose self.prev_r = None self.g = None # estimated transformation T self.device = None self.g_series_gpu = None # estimate T # noly return the encoder loss, but also return intersection loss def estimate_t(self, data, maxiter=5, xtol=1.0e-7, p0_zero_mean=True, p1_zero_mean=True, mode='train'): """ give two point clouds, estimate the T by using IC algorithm :param p0: point cloud :param p1: point cloud :param maxiter: maximum iteration :param xtol: a threshold for early stop of transformation estimation :param p0_zero_mean: True: normanize p0 before IC algorithm :param p1_zero_mean: True: normanize p1 before IC algorithm :return: feature-metric projection error (r), encoder-decoder loss (loss_ende) and intersection loss! """ p1 = data['points_src_sample'] p0 = data['points_tar_sample'] a0 = torch.eye(4).view(1, 4, 4).expand(p0.size(0), 4, 4).to(p0) # [B, 4, 4] a1 = torch.eye(4).view(1, 4, 4).expand(p1.size(0), 4, 4).to(p1) # [B, 4, 4] self.device = p1.device batch_size = p1.shape[0] # normalization if p0_zero_mean: p0_m = p0.mean(dim=1) # [B, N, 3] -> [B, 3] a0 = a0.clone() a0[:, 0:3, 3] = p0_m q0 = p0 - p0_m.unsqueeze(1) else: q0 = p0 if p1_zero_mean: p1_m = p1.mean(dim=1) # [B, N, 3] -> [B, 3] a1 = a1.clone() a1[:, 0:3, 3] = -p1_m q1 = p1 - p1_m.unsqueeze(1) else: q1 = p1 # use IC algorithm to estimate the transformation # generate the transform! g0 = torch.eye(4).to(q0).view(1, 4, 4).expand(q0.size(0), 4, 4).contiguous() r, g, loss_ende = self.ic_algo(g0, q0, q1, maxiter, xtol) # the g don't backgrade the gradinent? self.g = g # re-normalization if p0_zero_mean or p1_zero_mean: est_g = self.g if p0_zero_mean: est_g = a0.to(est_g).bmm(est_g) if p1_zero_mean: est_g = est_g.bmm(a1.to(est_g)) self.g = est_g est_gs = self.g_series # [M, B, 4, 4] if p0_zero_mean: est_gs = a0.unsqueeze(0).contiguous().to(est_gs).matmul(est_gs) if p1_zero_mean: est_gs = est_gs.matmul(a1.unsqueeze(0).contiguous().to(est_gs)) self.g_series = est_gs est_gs_gpu = self.g_series_gpu # [M, B, 4, 4] if p0_zero_mean: est_gs_gpu = a0.unsqueeze(0).contiguous().to( est_gs_gpu).matmul(est_gs_gpu) if p1_zero_mean: est_gs_gpu = est_gs_gpu.matmul( a1.unsqueeze(0).contiguous().to(est_gs_gpu)) self.g_series_gpu = est_gs_gpu loss_pp_wise = (torch.mean( torch.abs( self.transform(self.g.unsqueeze(1), data['points_src_sample']) - self.transform( torch.inverse(data['igt']).unsqueeze(1), data['points_src_sample'])))) if mode is 'train': R = (torch.norm( data['tar_box'][:, 0, :] - data['tar_box'][:, -1, :], dim=-1, p=2) * 0.5).reshape(-1, 1) lines = None points_ref = data['points_tar_sample'].contiguous() tar_faces_tensor = data['points_based_neighs_tar'].reshape( points_ref.shape[0], -1, 9) # if we used the transformed, we may generate better results! temp_g = self.g_series_gpu[-1] pred_src_transformed_final_sample = self.transform( temp_g.unsqueeze(1), data['points_src_sample'].contiguous()).detach() # pred_src_transformed_final_sample = data['points_src_sample'] if lines is None: lines = Random_uniform_distribution_lines_batch_efficient_resample( R, data['centers'], 15000, pred_src_transformed_final_sample.contiguous(), data['points_tar_sample'].contiguous(), self.device) # set our loss; loss_intersection = torch.FloatTensor([0]).to(self.device) for i in range(maxiter - 3, maxiter): temp_g = self.g_series_gpu[i] pred_src_transformed_final_sample = self.transform( temp_g.unsqueeze(1), data['points_src_sample']) pred_src_faces_tensor = self.transform( temp_g.unsqueeze(1), data['points_based_neighs_src']).reshape( pred_src_transformed_final_sample.shape[0], -1, 9) tp_loss_intersection = torch.FloatTensor([0]).to(self.device) for j in range(pred_src_faces_tensor.shape[0]): tp_loss_intersection += cal_loss_intersection_batch_whole_median_pts_lines( 1, 1, 5, 5, pred_src_faces_tensor[j:j + 1, :, :], tar_faces_tensor[j:j + 1, :, :], lines[j:j + 1, :, :], self.device) / 5.0 loss_intersection = loss_intersection + \ tp_loss_intersection*0.5**(maxiter-i-1) loss_chamfer = chamfer_dist(pred_src_transformed_final_sample, data['points_tar_sample']) return r, loss_ende, loss_intersection / batch_size, loss_pp_wise, loss_chamfer return r, loss_ende, loss_pp_wise, # IC algorithm # encoder, we just use the chamfer! def ic_algo(self, g0, p0, p1, maxiter, xtol): """ use IC algorithm to estimate the increment of transformation parameters :param g0: initial transformation :param p0: point cloud :param p1: point cloud :param maxiter: maxmimum iteration :param xtol: a threashold to check increment of transformation for early stop :return: feature-metric projection error (r), updated transformation (g), encoder-decoder loss """ training = self.encoder.training # training = self.decoder.training batch_size = p0.size(0) self.last_err = None g = g0 self.g_series = torch.zeros(maxiter + 1, *g0.size(), dtype=g0.dtype) self.g_series[0] = g0.clone() self.g_series_gpu = torch.zeros(maxiter, *g0.size(), dtype=g0.dtype).to(self.device) # generate the features f0 = self.encoder(p0) f1 = self.encoder(p1) # task 1 loss_enco_deco = 0.0 if self.decoder is not None: # we generate the decoder f0? # make an encoder decoder! decoder_out_f0 = self.decoder(f0) decoder_out_f1 = self.decoder(f1) # the decoder meets AE! p0_dist1, p0_dist2 = self.chamfer_loss( p0.contiguous(), decoder_out_f0) # loss function loss_net0 = (torch.mean(p0_dist1)) + (torch.mean(p0_dist2)) p1_dist1, p1_dist2 = self.chamfer_loss( p1.contiguous(), decoder_out_f1) # loss function loss_net1 = (torch.mean(p1_dist1)) + (torch.mean(p1_dist2)) loss_enco_deco = loss_net0 + loss_net1 # self.encoder.eval() # and fix them BN. # if fix, ho to backward gradients? # task 2 f0 = self.encoder(p0) # [B, N, 3] -> [B, K] # approx. J by finite difference dt = self.dt.to(p0).expand(batch_size, 6) # convert to the type of p0. [B, 6] J = self.approx_Jac(p0, f0, dt) # compute pinv(J) to solve J*x = -r try: Jt = J.transpose(1, 2) # [B, 6, K] H = Jt.bmm(J) # [B, 6, 6] # H = H + u_lamda * iDentity B = self.inverse(H) pinv = B.bmm(Jt) # [B, 6, K] except RuntimeError as err: self.last_err = err f1 = self.encoder(p1) # [B, N, 3] -> [B, K] r = f1 - f0 self.ptnet.train(training) return r, g, -1 itr = 0 r = None # we for itr in range(maxiter): p = self.transform(g.unsqueeze(1), p1) # [B, 1, 4, 4] x [B, N, 3] -> [B, N, 3] f1 = self.encoder(p) # [B, N, 3] -> [B, K] r = f1 - f0 # [B,K] # generate the r! dx = -pinv.bmm(r.unsqueeze(-1)).view(batch_size, 6) check = dx.norm(p=2, dim=1, keepdim=True).max() if float(check) < xtol: if itr == 0: self.last_err = 0 # no update. break g = self.update(g, dx) self.g_series_gpu[itr] = g self.g_series[itr + 1] = g.clone() self.prev_r = r self.encoder.train(training) return r, g, loss_enco_deco # estimate Jacobian matrix def approx_Jac(self, p0, f0, dt): # p0: [B, N, 3], Variable # f0: [B, K], corresponding feature vector # dt: [B, 6], Variable # Jk = (ptnet(p(-delta[k], p0)) - f0) / delta[k] batch_size = p0.size(0) num_points = p0.size(1) # compute transforms transf = torch.zeros(batch_size, 6, 4, 4).to(p0) for b in range(p0.size(0)): d = torch.diag(dt[b, :]) # [6, 6] D = self.exp(-d) # [6, 4, 4] transf[b, :, :, :] = D[:, :, :] transf = transf.unsqueeze(2).contiguous() # [B, 6, 1, 4, 4] p = self.transform(transf, p0.unsqueeze(1)) # x [B, 1, N, 3] -> [B, 6, N, 3] f0 = f0.unsqueeze(-1) # [B, K, 1] f1 = self.encoder(p.view(-1, num_points, 3)) f = f1.view(batch_size, 6, -1).transpose(1, 2) # [B, K, 6] df = f0 - f # [B, K, 6] J = df / dt.unsqueeze(1) # [B, K, 6] return J # update the transformation def update(self, g, dx): # [B, 4, 4] x [B, 6] -> [B, 4, 4] dg = self.exp(dx) return dg.matmul(g) # calculate the chamfer loss def chamfer_loss(self, a, b): x, y = a, b bs, num_points, points_dim = x.size() xx = torch.bmm(x, x.transpose(2, 1)) yy = torch.bmm(y, y.transpose(2, 1)) zz = torch.bmm(x, y.transpose(2, 1)) # diag_ind = torch.arange(0, num_points).type(torch.cuda.LongTensor) diag_ind = torch.arange(0, num_points) rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx) ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy) P = (rx.transpose(2, 1) + ry - 2 * zz) return torch.min(P, 1)[0], torch.min(P, 2)[0] @staticmethod def rsq(r): # |r| should be 0 z = torch.zeros_like(r) return torch.nn.functional.mse_loss(r, z, reduction='sum') @staticmethod def comp(g, igt): """ |g*igt - I| (should be 0) """ assert g.size(0) == igt.size(0) assert g.size(1) == igt.size(1) and g.size(1) == 4 assert g.size(2) == igt.size(2) and g.size(2) == 4 A = g.matmul(igt) I = torch.eye(4).to(A).view(1, 4, 4).expand(A.size(0), 4, 4) return torch.nn.functional.mse_loss(A, I, reduction='mean') * 16 @staticmethod def comp_inv(g, igt): """ |g*igt - I| (should be 0) """ assert g.size(0) == igt.size(0) assert g.size(1) == igt.size(1) and g.size(1) == 4 assert g.size(2) == igt.size(2) and g.size(2) == 4 # A = g.matmul(igt) gt = torch.inverse(igt) # I = torch.eye(4).to(A).view(1, 4, 4).expand(A.size(0), 4, 4) return torch.nn.functional.mse_loss(g, gt, reduction='mean') # main algorithm class class FMRTrain: def __init__(self, dim_k, num_points, train_type): self.dim_k = dim_k self.num_points = num_points self.max_iter = 5 # max iteration time for IC algorithm # 0: unsupervised, 1: semi-supervised see. self.compute_loss() self._loss_type = train_type self.transform = se3.transform # [B, 1, 4, 4] x [B, N, 3] -> [B, N, 3] def create_model(self): # Encoder network: extract feature for every point. Nx1024 ptnet = PointNet(dim_k=self.dim_k) # Decoder network: decode the feature into points decoder = Decoder(num_points=self.num_points) # feature-metric ergistration (fmr) algorithm: estimate the transformation T fmr_solver = SolveRegistration(ptnet, decoder) return fmr_solver def compute_loss(self, solver, data, device, mode='train', maxiter=5): # p0, p1, igt = data # p0 = p0.to(device) # template # p1 = p1.to(device) # source # igt = igt.to(device) # igt: p0 -> p1 dict_all_to_device(data, device) p1 = data['points_src_sample'] p0 = data['points_tar_sample'] igt = data['igt'] if mode is 'train': r, loss_ende, loss_intersection, loss_pp_wise, loss_chamfer = solver.estimate_t( data, self.max_iter, mode=mode) else: # test model! r, loss_ende, loss_pp_wise = solver.estimate_t(data, maxiter, mode=mode) loss_r = solver.rsq(r) est_g = solver.g # generate the difference between the pred and gt! loss_g = solver.comp_inv(est_g, igt) # unsupervised learning, set max_iter=0 if self.max_iter == 0: return loss_ende # semi-supervised learning, set max_iter>0 if self._loss_type == 0: loss = loss_ende elif self._loss_type == 1: loss = loss_ende + loss_g elif self._loss_type == 2: loss = loss_r + loss_g else: loss = loss_g # we need use the multiple indicators to measure the quality! np_pred_rotation = est_g[:, :3, :3].transpose( 2, 1).detach().cpu().numpy() np_pred_euler = npmat2euler(np_pred_rotation, 'xyz') np_gt_rotation = data['R'].detach().cpu().numpy() np_gt_euler = npmat2euler(np_gt_rotation, 'xyz') loss_rotation_euler_mae = np.mean(np.abs(np_pred_euler - np_gt_euler)) loss_rotation_euler_rmse = np.sqrt( np.mean((np_pred_euler - np_gt_euler)**2)) np_loss = { 'loss_rot_euler_mae': loss_rotation_euler_mae, 'loss_rot_euler_rmse': loss_rotation_euler_rmse } # set the weights if mode is 'train': return 0.01 * loss_ende + 1.0 * loss_intersection + .0 * loss_g + 0.0 * loss_chamfer, loss_g.detach( ), loss_intersection.detach(), loss_pp_wise.detach( ), loss_ende.detach(), np_loss return loss_g, loss_g.detach(), loss_pp_wise.detach( ), loss_ende.detach(), np_loss def train(self, model, trainloader, optimizer, device, epoch, train_writer=None): model.train() Debug = True total_loss = 0 total_loss_gt = 0 total_loss_intersection = 0 total_loss_pp_wise = 0 total_loss_encoder = 0 total_loss_rot_euler_mae = 0 total_loss_rot_euler_rmse = 0 if Debug: epe = 0 count = 0 count_mid = 9 for i, data in enumerate(trainloader): loss, loss_gt, loss_intersection, loss_pp_wise, loss_ende, np_loss = self.compute_loss( model, data, device) optimizer.zero_grad() loss.backward() optimizer.step() loss_item = loss.item() total_loss += loss_item total_loss_gt += loss_gt.item() total_loss_pp_wise += loss_pp_wise.item() total_loss_intersection += loss_intersection.item() total_loss_encoder += loss_ende.item() total_loss_rot_euler_mae += np_loss['loss_rot_euler_mae'] total_loss_rot_euler_rmse += np_loss['loss_rot_euler_rmse'] if Debug: epe += loss_item if count % 10 == 0: print('i=%d, fmr_loss=%f ' % (i, float(epe) / (count_mid + 1))) epe = 0.0 count += 1 print( "ba/ep{:0d}/{:0d},l_insec:{:4f}, l_gt{:4f},l_pp_w{:4f}, l_en{:4f}, l_rot_eu_mae{:4f}, l_rot_eu_rmse{:4f}" .format(i, epoch, loss_intersection.item(), loss_gt.item(), loss_pp_wise.item(), loss_ende.item(), np_loss['loss_rot_euler_mae'], np_loss['loss_rot_euler_rmse'])) ave_loss = float(total_loss) / count ave_loss_gt = float(total_loss_gt) / count ave_loss_intersection = float(total_loss_intersection) / count ave_loss_wise = float(total_loss_pp_wise) / count ave_loss_encoder = float(total_loss_encoder) / count ave_loss_rot_euler_mae = (float)(total_loss_rot_euler_mae) / count ave_loss_rot_euler_rmse = (float)(total_loss_rot_euler_rmse) / count if train_writer is not None: train_writer.add_scalar('./loss/loss_sum', ave_loss, epoch) train_writer.add_scalar('./loss/loss_gt', ave_loss_gt, epoch) train_writer.add_scalar('./loss/loss_intersec', ave_loss_intersection, epoch) train_writer.add_scalar('./loss/loss_wise_mse', ave_loss_wise, epoch) train_writer.add_scalar('./loss/loss_ende', ave_loss_encoder, epoch) train_writer.add_scalar('./lr', optimizer.param_groups[0]['lr'], epoch) train_writer.add_scalar('./loss/loss_rot_euler_mae', ave_loss_rot_euler_mae, epoch) train_writer.add_scalar('./loss/loss_rot_euler_rmse', ave_loss_rot_euler_rmse, epoch) # \033[36m,test gt:{:4f}, pp_wise:{:4f}, rot_mae{:4f}, rot_rmse{:4f}\033[0m print( " \033[36m,train:l_gt:{:4f}, l_intersec:{:4f}, l_pp_wise{:4f}, l_encoder{:4f}, l_rot_eu_mae{:4f}, l_rot_eu_rmse{:4f} \033[0m, " .format(ave_loss_gt, ave_loss_intersection, ave_loss_wise, ave_loss_encoder, ave_loss_rot_euler_mae, ave_loss_rot_euler_rmse)) return ave_loss def validate(self, model, testloader, device, epoch, save_results=None): # model.eval() vloss = 0.0 vloss_gt = 0.0 vloss_pp_wise = 0.0 vloss_rot_euler_mae = 0.0 vloss_rot_euler_rmse = 0.0 count = 0 count_i = 0 with torch.no_grad(): for i, data in enumerate(testloader): loss_net, loss_gt, loss_pp_wise, loss_ende, np_loss = self.compute_loss( model, data, device, mode='test') vloss += loss_net.item() vloss_gt += loss_gt.item() vloss_pp_wise += loss_pp_wise.item() vloss_rot_euler_mae += np_loss['loss_rot_euler_mae'] vloss_rot_euler_rmse += np_loss['loss_rot_euler_rmse'] count += 1 print("Test:sample{:0d},loss_pp_wise:{:4f}".format( i, loss_pp_wise.item())) if epoch % 10 == 0: est_g = model.g # (1, 4, 4) igt = data['igt'] ig_gt = igt.cpu().contiguous().view(-1, 4, 4) # --> [1, 4, 4] g_hat = est_g.cpu().contiguous().view(-1, 4, 4) # --> [1, 4, 4] p1 = data['points_src_sample'] p0 = data['points_tar_sample'] if save_results is not None: paths_pred = [] paths_gt = [] paths_src = [] paths_gt_pred = [] src_transform = self.transform(est_g.unsqueeze(1), p1) src_transform_sample = self.transform( est_g.unsqueeze(1), data['points_src_sample']) tgt_transform = self.transform(igt.unsqueeze(1), p0) V_src = p0.cpu().detach() V_pred = src_transform.cpu().detach() V_gt = p1.cpu().detach() V_tgt_trans = tgt_transform.cpu().detach() for j in range(p0.shape[0]): paths_pred.append( os.path.join( save_results, str(epoch) + "pred_src" + str(count_i) + ".obj")) paths_gt.append( os.path.join( save_results, str(epoch) + "gt" + str(count_i) + ".obj")) paths_src.append( os.path.join( save_results, str(epoch) + "src" + str(count_i) + ".obj")) paths_gt_pred.append( os.path.join( save_results, str(epoch) + "pred_gt" + str(count_i) + ".obj")) F = np.zeros([1, 3]).astype(np.int32) igl.write_obj( paths_gt_pred[j].replace( 'pred_gt', 'transformed_sample', 1), src_transform_sample.cpu().detach().numpy(). reshape(-1, 3), F) igl.write_obj( paths_gt_pred[j].replace( 'pred_gt', 'src_sample', 1), data['points_src_sample'].cpu().detach().numpy( ).reshape(-1, 3), F) igl.write_obj( paths_gt_pred[j].replace( 'pred_gt', 'tar_sample', 1), data['points_tar_sample'].cpu().detach().numpy( ).reshape(-1, 3), F) count_i += 1 save_pred_gt_obj(V_src, V_pred, V_gt, V_tgt_trans, paths_src, paths_pred, paths_gt, paths_gt_pred) ave_vloss = float(vloss) / count ave_vloss_gt = float(vloss_gt) / count ave_vloss_pp_wise = float(vloss_pp_wise) / count ave_vloss_rot_euler_mae = float(vloss_rot_euler_mae) / count ave_vloss_rot_euler_rmse = float(vloss_rot_euler_rmse) / count print( "\033[36m,test gt:{:4f}, pp_wise:{:4f}, rot_mae{:4f}, rot_rmse{:4f}\033[0m, " .format(ave_vloss_gt, ave_vloss_pp_wise, ave_vloss_rot_euler_mae, ave_vloss_rot_euler_rmse)) return ave_vloss class FMRTest: def __init__(self, args): self.filename = args.outfile self.dim_k = args.dim_k self.max_iter = 10 # max iteration time for IC algorithm self._loss_type = 3 # see. self.compute_loss() self.transform = se3.transform # [B, 1, 4, 4] x [B, N, 3] -> [B, N, 3] def create_model(self): # Encoder network: extract feature for every point. Nx1024 ptnet = PointNet(dim_k=self.dim_k) # feature-metric ergistration (fmr) algorithm: estimate the transformation T fmr_solver = SolveRegistration(ptnet) return fmr_solver # we save the results! # pay attention to final results! def evaluate(self, solver, testloader, device, save_results=None, writer=None): solver.eval() with open(self.filename, 'w') as fout: self.eval_1__header(fout) count_i = 0 total_loss_pp_wise = 0 total_loss_gt = 0 with torch.no_grad(): for i, data in enumerate(testloader): # p0, p1, igt = data # igt: p0->p1 dict_all_to_device(data, device) p1 = data['points_src_sample'] p0 = data['points_tar_sample'] igt = data['igt'] # igt = # # compute trans from p1->p0 # g = se3.log(igt) # --> [-1, 6] # igt = se3.exp(-g) # [-1, 4, 4] # p0, p1 = self.ablation_study(p0, p1) p0 = p0.to(device) # template (1, N, 3) p1 = p1.to(device) # source (1, M, 3) # When we evaluate, we ignore the chafer, ignore any loss function! r, loss_ende, loss_pp_wise = solver.estimate_t( data, self.max_iter, mode='test') total_loss_pp_wise += loss_pp_wise est_g = solver.g # (1, 4, 4) ig_gt = igt.cpu().contiguous().view(-1, 4, 4) # --> [1, 4, 4] g_hat = est_g.cpu().contiguous().view(-1, 4, 4) # --> [1, 4, 4] dg = g_hat.bmm(ig_gt) # if correct, dg == identity matrix. dx = se3.log( dg) # --> [1, 6] (if corerct, dx == zero vector) dn = dx.norm(p=2, dim=1) # --> [1] dm = dn.mean() self.eval_1__write(fout, ig_gt, g_hat) print('test, %d/%d, %f, %f' % (i, len(testloader), dm, loss_pp_wise)) if writer is not None: writer.add_scalar('./loss/test', dm, i) # p = self.transform(g.unsqueeze(1), # p1) # [B, 1, 4, 4] x [B, N, 3] -> [B, N, 3] # est_g:p1--->p0 # igt: p0-->p1 if save_results is not None: paths_pred = [] paths_gt = [] paths_src = [] paths_gt_pred = [] src_transform = self.transform(est_g.unsqueeze(1), p1) tgt_transform = self.transform(igt.unsqueeze(1), p0) V_src = p0.cpu().detach() V_pred = src_transform.cpu().detach() V_gt = p1.cpu().detach() V_tgt_trans = tgt_transform.cpu().detach() for i in range(p0.shape[0]): paths_pred.append( os.path.join(save_results, str(count_i) + "pred_src.obj")) paths_gt.append( os.path.join(save_results, str(count_i) + "gt.obj")) paths_src.append( os.path.join(save_results, str(count_i) + "src.obj")) paths_gt_pred.append( os.path.join(save_results, str(count_i) + "pred_gt.obj")) count_i += 1 save_pred_gt_obj(V_src, V_pred, V_gt, V_tgt_trans, paths_src, paths_pred, paths_gt, paths_gt_pred) def ablation_study(self, p0, p1, add_noise=False, add_density=False): # ablation study # mesh = self.plyread("./box1Kinect1.ply") # p0 = torch.tensor(mesh).to(device).unsqueeze(0) # mesh = self.plyread("./box11.ply") # p1 = torch.tensor(mesh).to(device).unsqueeze(0) # add noise if add_noise: p1 = torch.tensor(np.float32(np.random.normal(p1, 0.01))) # add outliers if add_density: density_ratio = 0.5 pts_num = p1.shape[0] sampleNum = int(pts_num * density_ratio) # the number of remaining points if pts_num > sampleNum: num = sample(range(1, pts_num), sampleNum) elif pts_num > 0: num = range(0, pts_num) else: print("No points in this point cloud!") return p1 = p1[num, :] return p0, p1 def eval_1__header(self, fout): cols = [ 'h_w1', 'h_w2', 'h_w3', 'h_v1', 'h_v2', 'h_v3', 'g_w1', 'g_w2', 'g_w3', 'g_v1', 'g_v2', 'g_v3' ] # h: estimated, g: ground-truth twist vectors print(','.join(map(str, cols)), file=fout) fout.flush() def eval_1__write(self, fout, ig_gt, g_hat): x_hat = se3.log(g_hat) # --> [-1, 6] mx_gt = se3.log(ig_gt) # --> [-1, 6] for i in range(x_hat.size(0)): x_hat1 = x_hat[i] # [6] mx_gt1 = mx_gt[i] # [6] vals = torch.cat((x_hat1, -mx_gt1)) # [12] valn = vals.cpu().numpy().tolist() print(','.join(map(str, valn)), file=fout) fout.flush()
Dengzhi-USTC/A-robust-registration-loss
code/exps_deep_learning/fmr/model.py
model.py
py
36,481
python
en
code
25
github-code
6
[ { "api_name": "sys.path.append", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 19, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "torch.Tensor", "line_number": 30, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 36, "usage_type": "attribute" }, { "api_name": "igl.write_triangle_mesh", "line_number": 38, "usage_type": "call" }, { "api_name": "igl.write_triangle_mesh", "line_number": 39, "usage_type": "call" }, { "api_name": "igl.write_triangle_mesh", "line_number": 40, "usage_type": "call" }, { "api_name": "igl.write_triangle_mesh", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn.functional.max_pool1d", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 52, "usage_type": "attribute" }, { "api_name": "torch.nn.Conv1d", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 69, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 71, "usage_type": "attribute" }, { "api_name": "torch.nn.GroupNorm", "line_number": 74, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 74, "usage_type": "attribute" }, { "api_name": "torch.nn.ReLU", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 75, "usage_type": "attribute" }, { "api_name": "torch.nn.Dropout", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 83, "usage_type": "attribute" }, { "api_name": "torch.nn.Sequential", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 97, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 105, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "attribute" }, { "api_name": "torch.nn.GroupNorm", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 138, "usage_type": "attribute" }, { "api_name": "torch.nn.GroupNorm", "line_number": 139, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 139, "usage_type": "attribute" }, { "api_name": "torch.nn.GroupNorm", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 141, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 141, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 142, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 142, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 143, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 144, "usage_type": "attribute" }, { "api_name": "torch.nn.Tanh", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 145, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.relu", "line_number": 149, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 149, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.relu", "line_number": 150, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 150, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.relu", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 151, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 158, "usage_type": "attribute" }, { "api_name": "se_math.invmat.InvMatrix", "line_number": 165, "usage_type": "attribute" }, { "api_name": "se_math.invmat", "line_number": 165, "usage_type": "name" }, { "api_name": "se_math.se3.Exp", "line_number": 166, "usage_type": "attribute" }, { "api_name": "se_math.se3", "line_number": 166, "usage_type": "name" }, { "api_name": "se_math.se3.transform", "line_number": 167, "usage_type": "attribute" }, { "api_name": "se_math.se3", "line_number": 167, "usage_type": "name" }, { "api_name": "torch.autograd.Variable", "line_number": 171, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 171, "usage_type": "attribute" }, { "api_name": "torch.Tensor", "line_number": 172, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 173, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 173, "usage_type": "attribute" }, { "api_name": "torch.eye", "line_number": 205, "usage_type": "call" }, { "api_name": "torch.eye", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.eye", "line_number": 229, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 259, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 260, "usage_type": "call" }, { "api_name": "torch.inverse", "line_number": 263, "usage_type": "call" }, { "api_name": "torch.norm", "line_number": 266, "usage_type": "call" }, { "api_name": "loss.Random_uniform_distribution_lines_batch_efficient_resample", "line_number": 285, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 291, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 301, "usage_type": "call" }, { "api_name": "loss.cal_loss_intersection_batch_whole_median_pts_lines", "line_number": 303, "usage_type": "call" }, { "api_name": "loss.chamfer_dist", "line_number": 310, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 334, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 336, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 354, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 357, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 417, "usage_type": "call" }, { "api_name": "torch.diag", "line_number": 419, "usage_type": "call" }, { "api_name": "torch.bmm", "line_number": 445, "usage_type": "call" }, { "api_name": "torch.bmm", "line_number": 446, "usage_type": "call" }, { "api_name": "torch.bmm", "line_number": 447, "usage_type": "call" }, { "api_name": "torch.arange", "line_number": 449, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 453, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 458, "usage_type": "call" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 459, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 459, "usage_type": "attribute" }, { "api_name": "torch.eye", "line_number": 468, "usage_type": "call" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 469, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 469, "usage_type": "attribute" }, { "api_name": "torch.inverse", "line_number": 478, "usage_type": "call" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 481, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 481, "usage_type": "attribute" }, { "api_name": "se_math.se3.transform", "line_number": 493, "usage_type": "attribute" }, { "api_name": "se_math.se3", "line_number": 493, "usage_type": "name" }, { "api_name": "utils.npmat2euler", "line_number": 544, "usage_type": "call" }, { "api_name": "utils.npmat2euler", "line_number": 546, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 547, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 547, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 548, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 549, "usage_type": "call" }, { "api_name": "loss.backward", "line_number": 589, "usage_type": "call" }, { "api_name": "loss.item", "line_number": 592, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 654, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 693, "usage_type": "call" }, { "api_name": "os.path", "line_number": 693, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 698, "usage_type": "call" }, { "api_name": "os.path", "line_number": 698, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 702, "usage_type": "call" }, { "api_name": "os.path", "line_number": 702, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 707, "usage_type": "call" }, { "api_name": "os.path", "line_number": 707, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 712, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 712, "usage_type": "attribute" }, { "api_name": "igl.write_obj", "line_number": 713, "usage_type": "call" }, { "api_name": "igl.write_obj", "line_number": 718, "usage_type": "call" }, { "api_name": "igl.write_obj", "line_number": 723, "usage_type": "call" }, { "api_name": "se_math.se3.transform", "line_number": 752, "usage_type": "attribute" }, { "api_name": "se_math.se3", "line_number": 752, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 775, "usage_type": "call" }, { "api_name": "se_math.se3.log", "line_number": 802, "usage_type": "call" }, { "api_name": "se_math.se3", "line_number": 802, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 831, "usage_type": "call" }, { "api_name": "os.path", "line_number": 831, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 834, "usage_type": "call" }, { "api_name": "os.path", "line_number": 834, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 837, "usage_type": "call" }, { "api_name": "os.path", "line_number": 837, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 840, "usage_type": "call" }, { "api_name": "os.path", "line_number": 840, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 857, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 857, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 857, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 857, "usage_type": "attribute" }, { "api_name": "random.sample", "line_number": 866, "usage_type": "call" }, { "api_name": "se_math.se3.log", "line_number": 884, "usage_type": "call" }, { "api_name": "se_math.se3", "line_number": 884, "usage_type": "name" }, { "api_name": "se_math.se3.log", "line_number": 885, "usage_type": "call" }, { "api_name": "se_math.se3", "line_number": 885, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 889, "usage_type": "call" } ]
73503536508
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch, to_torch_as import stable_baselines3.common.logger as L import functools import gym import numpy as np from torch.nn import functional as F from einops.layers.torch import Rearrange from encoder import * import einops class RNEncoder(nn.Module): def __init__(self, obs_space, act_space, cfg): super().__init__() self.cfg = cfg obs_space = gym.spaces.Box(low=-1, high=1000, shape=cfg.obs_shape) self.enc = ImpalaEncoder(obs_space, channels=cfg.filters, flatten=False) c, h, w = self.enc.final_shape self.pred_z_cat = create_mlp(cfg.filters[-1], cfg.obj_cat_num, [cfg.filters[-1]], return_seq=True) self.output_shape = (h, w, c + cfg.obj_cat_num) def split_obs(self, o): shape = o.shape obs_shape = self.cfg.obs_shape mask_shape = (8, 8, self.cfg.obj_cat_num) obs = o[...,:np.prod(obs_shape)].reshape(*shape[:-1], *obs_shape) mask = o[...,np.prod(obs_shape):].reshape(*shape[:-1], *mask_shape) return obs, mask.detach() def forward(self, x, ret_latent=False): if isinstance(x, dict): x = x['obs'] obs, obj_cat = self.split_obs(x) out0 = self.enc(obs).permute(0,2,3,1) # (h, w, c) out = torch.cat([out0, obj_cat], dim=-1) if ret_latent: return out, out0 else: return out def enc_loss(self, b, latent=None): if self.cfg.enc_coeff <= 0: pred_loss = torch.Tensor([0]).to(b.obs.device).sum() else: obs, obj_cat = self.split_obs(b.obs) if latent is None: latent = self.enc(obs) pred_z_cat = self.pred_z_cat(latent) pred_z_cat_loss = -(F.log_softmax(pred_z_cat, dim=-1) * obj_cat).sum(-1) pred_z_cat_loss = (pred_z_cat_loss).sum([1,2]).mean() L.record_mean('encoder/pred_loss', pred_z_cat_loss.item()) pred_loss = self.cfg.enc_coeff * pred_z_cat_loss return pred_loss class AddSInfo(nn.Module): def __init__(self, h, w, c, cout=32, channel_first=False, use_mlp=True): super().__init__() identity = torch.tensor([[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0]]], dtype=torch.float32) grid = F.affine_grid(identity, [1, 1, h, w]) grid = grid.permute(0, 3, 1, 2).contiguous() # (1, 2, h, w) self.register_buffer('grid', grid) assert channel_first == False if not channel_first: # (1, h, w, 2) self.grid = grid.permute(0,2,3,1) self.use_mlp = use_mlp if self.use_mlp: self.mlp = nn.Linear(c+2, cout) def forward(self, x): x = torch.cat([x, self.grid.to(x.device).expand(x.shape[0], -1, -1, -1)], dim=-1) if self.use_mlp: x = self.mlp(x) return x class ObjSummary(nn.Module): def __init__(self, c, obj_cat_num): super().__init__() self.head = 4 self.query_atten = QueryMultiHeadAttention(obj_cat_num, c, self.head, to_q_net=[32], to_k_net=[32], to_v_net=[32], to_out_net=[]) self.out_dim = c * obj_cat_num """ x: (N, B, E) obj_cat: (N, B, S) out: (B, S*E) """ def forward(self, x, obj_cat): mask = einops.repeat(obj_cat, 'n b s -> b h s n', h=self.head) out = self.query_atten(x, mask=mask) out = einops.rearrange(out, 's n e -> n (s e)') return out class RNModule(nn.Module): def __init__(self, input_shape, action_space, cfg): super().__init__() self.cfg = cfg h, w, c = input_shape obj_cat_num = c - 32 self.obj_cat_num = c - 32 self.add_sinfo = AddSInfo(h, w, c, cout=32) self.trans = Rearrange('n h w c -> (h w) n c') self.atten = nn.MultiheadAttention(32, 4) if not cfg.use_sep_mlp: create_layer = nn.Linear else: create_layer = functools.partial(MultiLinear, num_linears=self.obj_cat_num) fdim = 32 self.mlp = create_mlp(64, fdim, [64], create_layer=create_layer, return_seq=True) self.ac = nn.Linear(fdim, action_space.n + 1) def forward(self, x, ret_atten_wts=False, mask_out = None): obj_cat = x[...,-self.obj_cat_num:] # B, H, W, S atten_wts = None x = self.add_sinfo(x) x = self.trans(x) atten_out, atten_wts = self.atten(x, x, x) x0 = x x = torch.cat([x, atten_out], dim=-1) # (N, B, 64) if self.cfg.use_sep_mlp: x = x.unsqueeze(-2).expand(-1, -1, self.obj_cat_num, -1) # (N, B, S, 64) out = self.mlp(x) if self.cfg.use_sep_mlp: obj_cat = einops.repeat(obj_cat, 'b h w s -> (h w) b s k', k=1) # n, b, s, k if mask_out is not None: obj_cat = obj_cat * einops.repeat(to_torch_as(mask_out, obj_cat), 's -> s k', k=1) if True: obj_cat[...,-1,:] += 1e-4 obj_cat = obj_cat / obj_cat.sum(-2, keepdim=True) out = (out * obj_cat).sum(-2) # N, B, 64 out = out.amax(0) # (n, 64) out = self.ac(out) if ret_atten_wts: return out, atten_wts return out
albertcity/OCARL
relation_net.py
relation_net.py
py
4,818
python
en
code
1
github-code
6
[ { "api_name": "gym.spaces.Box", "line_number": 15, "usage_type": "call" }, { "api_name": "gym.spaces", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.prod", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.prod", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn.cat", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Tensor", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 46, "usage_type": "name" }, { "api_name": "stable_baselines3.common.logger.record_mean", "line_number": 48, "usage_type": "call" }, { "api_name": "stable_baselines3.common.logger", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.nn.tensor", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 55, "usage_type": "name" }, { "api_name": "torch.nn.float32", "line_number": 55, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.affine_grid", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.cat", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 68, "usage_type": "name" }, { "api_name": "einops.repeat", "line_number": 86, "usage_type": "call" }, { "api_name": "einops.rearrange", "line_number": 88, "usage_type": "call" }, { "api_name": "einops.layers.torch.Rearrange", "line_number": 99, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.nn.cat", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 116, "usage_type": "name" }, { "api_name": "einops.repeat", "line_number": 121, "usage_type": "call" }, { "api_name": "einops.repeat", "line_number": 123, "usage_type": "call" }, { "api_name": "tianshou.data.to_torch_as", "line_number": 123, "usage_type": "call" } ]
9836414156
import sys from collections import deque n = int(sys.stdin.readline()); board = []; for _ in range(n): board.append(list(map(int, list(sys.stdin.readline())[:-1]))); dx = [0, 0, -1, 1]; dy = [1, -1, 0, 0]; def bfs(board, x, y): if board[x][y] == 0: return 0; area = 1; q = deque([]); board[x][y] = 0; q.append((x, y)); while q: x, y = q.popleft(); for i in range(4): nx = x + dx[i]; ny = y + dy[i]; if not (0 <= nx < n and 0 <= ny < n): continue; if board[nx][ny] == 0: continue; area += 1; board[nx][ny] = 0; q.append((nx, ny)); return area; totalArea = 0; areas = []; for i in range(n): for j in range(n): area = bfs(board, i, j); if area != 0: totalArea += 1; areas.append(area); print(totalArea); areas.sort(); for area in areas: print(area);
woasidh/algorithm
python/BOJ/그래프_탐색/2667.py
2667.py
py
932
python
en
code
0
github-code
6
[ { "api_name": "sys.stdin.readline", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 4, "usage_type": "attribute" }, { "api_name": "sys.stdin.readline", "line_number": 7, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 7, "usage_type": "attribute" }, { "api_name": "collections.deque", "line_number": 15, "usage_type": "call" } ]
655296277
import json import os from concurrent import futures import luigi import numpy as np import nifty.tools as nt import z5py from cluster_tools.inference import InferenceLocal from cluster_tools.inference.inference_embl import InferenceEmbl OFFSETS = [ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9] ] def update_block_shape(config_dir, block_shape, default_config): global_conf = os.path.join(config_dir, 'global.config') if os.path.exists(global_conf): with open(global_conf) as f: config = json.load(f) else: config = default_config if config['block_shape'] != block_shape: config['block_shape'] = block_shape with open(global_conf, 'w') as f: json.dump(config, f) def predict(input_path, input_key, output_path, output_prefix, ckpt, gpus, tmp_folder, target, gpu_type='2080Ti', predict_affinities=False): task = InferenceLocal if target == 'local' else InferenceEmbl # halo = [8, 64, 64] # block_shape = [32, 256, 256] # larger halo halo = [12, 96, 96] block_shape = [24, 128, 128] if predict_affinities: output_key = { f'{output_prefix}/foreground': [0, 1], f'{output_prefix}/affinities': [1, 10] } else: output_key = { f'{output_prefix}/foreground': [0, 1], f'{output_prefix}/boundaries': [1, 2] } config_dir = os.path.join(tmp_folder, 'configs') os.makedirs(config_dir, exist_ok=True) update_block_shape(config_dir, block_shape, task.default_global_config()) conf = task.default_global_config() conf.update({'block_shape': block_shape}) with open(os.path.join(config_dir, 'global.config'), 'w') as f: json.dump(conf, f) if target == 'local': device_mapping = {ii: gpu for ii, gpu in enumerate(gpus)} else: device_mapping = None n_threads = 6 conf = task.default_task_config() conf.update({ 'dtype': 'uint8', 'device_mapping': device_mapping, 'threads_per_job': n_threads, 'mixed_precision': True, 'gpu_type': gpu_type, 'qos': 'high', 'mem_limit': 24, 'time_limit': 600 }) with open(os.path.join(config_dir, 'inference.config'), 'w') as f: json.dump(conf, f) t = task(tmp_folder=tmp_folder, config_dir=config_dir, max_jobs=len(gpus), input_path=input_path, input_key=input_key, output_path=output_path, output_key=output_key, checkpoint_path=ckpt, halo=halo, framework='pytorch') assert luigi.build([t], local_scheduler=True) update_block_shape(config_dir, [32, 256, 256], task.default_global_config()) def set_bounding_box(tmp_folder, bounding_box): config = InferenceLocal.default_global_config() config.update({ 'roi_begin': [bb.start for bb in bounding_box], 'roi_end': [bb.stop for bb in bounding_box] }) config_folder = os.path.join(tmp_folder, 'configs') os.makedirs(config_folder, exist_ok=True) config_file = os.path.join(config_folder, 'global.config') with open(config_file, 'w') as f: json.dump(config, f) def get_checkpoint(checkpoint, use_best=False, is_affinity_model=False): if use_best: path = os.path.join(checkpoint, 'best.pt') else: path = os.path.join(checkpoint, 'latest.pt') n_out = 10 if is_affinity_model else 2 if 'large' in checkpoint: model_kwargs = dict( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=128, gain=2, pad_convs=True, final_activation='Sigmoid' ) else: model_kwargs = dict( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=64, gain=2, pad_convs=True, final_activation='Sigmoid' ) ckpt = { 'class': ('mipnet.models.unet', 'AnisotropicUNet'), 'kwargs': model_kwargs, 'checkpoint_path': path, 'model_state_key': 'model_state' } return ckpt def run_multicut(path, checkpoint_name, target, max_jobs, tmp_folder, beta): from cluster_tools.workflows import MulticutSegmentationWorkflow task = MulticutSegmentationWorkflow config_dir = os.path.join(tmp_folder, 'configs') configs = task.get_config() ws_config = configs['watershed'] ws_config.update({ "threshold": 0.25, 'apply_dt_2d': True, 'apply_filters_2d': True, 'apply_ws_2d': False, 'sigma_seeds': 2.6 }) with open(os.path.join(config_dir, 'watershed.config'), 'w') as f: json.dump(ws_config, f) cost_config = configs['probs_to_costs'] cost_config.update({ 'beta': beta }) with open(os.path.join(config_dir, 'probs_to_costs.config'), 'w') as f: json.dump(cost_config, f) bd_key = f'predictions/{checkpoint_name}/boundaries' node_labels_key = f'node_labels/{checkpoint_name}/multicut' ws_key = f'segmentation/{checkpoint_name}/watershed' seg_key = f'segmentation/{checkpoint_name}/multicut' t = task(target=target, max_jobs=max_jobs, tmp_folder=tmp_folder, config_dir=config_dir, input_path=path, input_key=bd_key, ws_path=path, ws_key=ws_key, problem_path=os.path.join(tmp_folder, 'data.n5'), node_labels_key=node_labels_key, output_path=path, output_key=seg_key) assert luigi.build([t], local_scheduler=True) def run_mws(data_path, checkpoint_name, target, max_jobs, tmp_folder, threshold): fg_key = f'predictions/{checkpoint_name}/foreground' mask_key = f'predictions/{checkpoint_name}/mask' aff_key = f'predictions/{checkpoint_name}/affinities' seg_key = f'segmentation/{checkpoint_name}/mutex_watershed' from cluster_tools.thresholded_components.threshold import ThresholdLocal, ThresholdSlurm task = ThresholdLocal if target == 'local' else ThresholdSlurm config_dir = os.path.join(tmp_folder, 'configs') t = task(tmp_folder=tmp_folder, config_dir=config_dir, max_jobs=max_jobs, input_path=data_path, input_key=fg_key, output_path=data_path, output_key=mask_key, threshold=0.5) assert luigi.build([t], local_scheduler=True) from cluster_tools.mutex_watershed import MwsWorkflow task = MwsWorkflow config_dir = os.path.join(tmp_folder, 'configs') configs = task.get_config() conf = configs['mws_blocks'] conf.update({ 'strides': [4, 4, 4], 'randomize_strides': True }) with open(os.path.join(config_dir, 'mws_blocks.config'), 'w') as f: json.dump(conf, f) conf = configs['block_edge_features'] conf.update({ 'offsets': OFFSETS }) with open(os.path.join(config_dir, 'block_edge_features.config'), 'w') as f: json.dump(conf, f) # TODO with halo? halo = None t = task(tmp_folder=tmp_folder, config_dir=config_dir, target=target, max_jobs=max_jobs, input_path=data_path, input_key=aff_key, output_path=data_path, output_key=seg_key, offsets=OFFSETS, halo=halo, mask_path=data_path, mask_key=mask_key, stitch_via_mc=True) assert luigi.build([t], local_scheduler=True) def postprocess(path, checkpoint_name, seg_key, out_key, target, max_jobs, tmp_folder, size_threshold=250, threshold=None): from cluster_tools.postprocess import FilterByThresholdWorkflow from cluster_tools.postprocess import SizeFilterWorkflow fg_key = f'predictions/{checkpoint_name}/foreground' hmap_key = f'predictions/{checkpoint_name}/boundaries' config_dir = os.path.join(tmp_folder, 'configs') if threshold is not None: task = FilterByThresholdWorkflow t = task(target=target, max_jobs=max_jobs, tmp_folder=tmp_folder, config_dir=config_dir, input_path=path, input_key=fg_key, seg_in_path=path, seg_in_key=seg_key, seg_out_path=path, seg_out_key=out_key, threshold=threshold) assert luigi.build([t], local_scheduler=True) seg_key = out_key if size_threshold is not None: task = SizeFilterWorkflow t = task(tmp_folder=tmp_folder, config_dir=config_dir, target=target, max_jobs=max_jobs, input_path=path, input_key=seg_key, output_path=path, output_key=out_key, hmap_path=path, hmap_key=hmap_key, relabel=True, preserve_zeros=True, size_threshold=size_threshold) assert luigi.build([t], local_scheduler=True) # this deserves a cluster tools task def affinity_to_boundary(data_path, prediction_prefix, tmp_folder, target, max_jobs): aff_key = os.path.join(prediction_prefix, 'affinities') bd_key = os.path.join(prediction_prefix, 'boundaries') with z5py.File(data_path, 'a') as f: if bd_key in f: return ds_affs = f[aff_key] shape = ds_affs.shape[1:] chunks = ds_affs.chunks[1:] ds_bd = f.require_dataset(bd_key, shape=shape, chunks=chunks, compression='gzip', dtype=ds_affs.dtype) blocking = nt.blocking([0, 0, 0], shape, chunks) def _block(block_id): block = blocking.getBlock(block_id) bb = tuple(slice(beg, end) for beg, end in zip(block.begin, block.end)) bb_affs = (slice(None),) + bb affs = ds_affs[bb_affs] bd = np.maximum(affs[1], affs[2]) bd = np.maximum(bd, np.maximum(affs[4], affs[5])) ds_bd[bb] = bd.astype(ds_bd.dtype) with futures.ThreadPoolExecutor(8) as tp: tp.map(_block, range(blocking.numberOfBlocks)) def segment_with_boundaries(sample, checkpoint, target, gpus, max_jobs=32, bounding_box=None, beta=.5, threshold=0.25, only_prediction=False, gpu_type='2080Ti', is_affinity_model=False, size_threshold=250): checkpoint_name = os.path.split(checkpoint)[1] data_path = os.path.join('./data', f'{sample}.n5') raw_key = 'raw' prediction_prefix = os.path.join('predictions', checkpoint_name) tmp_folder = os.path.join('./tmp_folders', f'tmp_{checkpoint_name}_{sample}') if bounding_box is not None: set_bounding_box(tmp_folder, bounding_box) ckpt = get_checkpoint(checkpoint, is_affinity_model=is_affinity_model) predict(data_path, raw_key, data_path, prediction_prefix, ckpt, gpus, tmp_folder, target, gpu_type=gpu_type, predict_affinities=is_affinity_model) if only_prediction: return if is_affinity_model: affinity_to_boundary(data_path, prediction_prefix, tmp_folder, target, max_jobs) run_multicut(data_path, checkpoint_name, target, max_jobs, tmp_folder, beta=beta) seg_key = f'segmentation/{checkpoint_name}/multicut' out_key = f'segmentation/{checkpoint_name}/multicut_postprocessed' postprocess(data_path, checkpoint_name, seg_key, out_key, target, max_jobs, tmp_folder, threshold=threshold, size_threshold=size_threshold) def segment_with_affinities(sample, checkpoint, target, gpus, max_jobs=32, bounding_box=None, threshold=0.5, only_prediction=False, gpu_type='2080Ti', size_threshold=250): checkpoint_name = os.path.split(checkpoint)[1] data_path = os.path.join('./data', f'{sample}.n5') raw_key = 'raw' prediction_prefix = os.path.join('predictions', checkpoint_name) tmp_folder = os.path.join('./tmp_folders', f'tmp_{checkpoint_name}_{sample}_mws') if bounding_box is not None: set_bounding_box(tmp_folder, bounding_box) ckpt = get_checkpoint(checkpoint, is_affinity_model=True) predict(data_path, raw_key, data_path, prediction_prefix, ckpt, gpus, tmp_folder, target, gpu_type=gpu_type, predict_affinities=True) if only_prediction: return affinity_to_boundary(data_path, prediction_prefix, tmp_folder, target, max_jobs) run_mws(data_path, checkpoint_name, target, max_jobs, tmp_folder, threshold=threshold) seg_key = f'segmentation/{checkpoint_name}/mutex_watershed' out_key = f'segmentation/{checkpoint_name}/mutex_watershed_postprocessed' postprocess(data_path, checkpoint_name, seg_key, out_key, target, max_jobs, tmp_folder, size_threshold=size_threshold) if __name__ == '__main__': segment_with_affinities( 'small', './checkpoints/affinity_model_default_human_rat', 'local', gpus=[0, 1, 2, 3] )
constantinpape/torch-em
experiments/unet-segmentation/mitochondria-segmentation/mito-em/challenge/segmentation_impl.py
segmentation_impl.py
py
14,203
python
en
code
42
github-code
6
[ { "api_name": "os.path.join", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 30, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 38, "usage_type": "call" }, { "api_name": "cluster_tools.inference.InferenceLocal", "line_number": 45, "usage_type": "name" }, { "api_name": "cluster_tools.inference.inference_embl.InferenceEmbl", "line_number": 45, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 66, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path", "line_number": 91, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 92, "usage_type": "call" }, { "api_name": "luigi.build", "line_number": 99, "usage_type": "call" }, { "api_name": "cluster_tools.inference.InferenceLocal.default_global_config", "line_number": 104, "usage_type": "call" }, { "api_name": "cluster_tools.inference.InferenceLocal", "line_number": 104, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path", "line_number": 112, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 120, "usage_type": "call" }, { "api_name": "os.path", "line_number": 120, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path", "line_number": 122, "usage_type": "attribute" }, { "api_name": "cluster_tools.workflows.MulticutSegmentationWorkflow", "line_number": 174, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 176, "usage_type": "call" }, { "api_name": "os.path", "line_number": 176, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 187, "usage_type": "call" }, { "api_name": "os.path", "line_number": 187, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 188, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 194, "usage_type": "call" }, { "api_name": "os.path", "line_number": 194, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 195, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 206, "usage_type": "call" }, { "api_name": "os.path", "line_number": 206, "usage_type": "attribute" }, { "api_name": "luigi.build", "line_number": 209, "usage_type": "call" }, { "api_name": "cluster_tools.thresholded_components.threshold.ThresholdLocal", "line_number": 221, "usage_type": "name" }, { "api_name": "cluster_tools.thresholded_components.threshold.ThresholdSlurm", "line_number": 221, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 222, "usage_type": "call" }, { "api_name": "os.path", "line_number": 222, "usage_type": "attribute" }, { "api_name": "luigi.build", "line_number": 227, "usage_type": "call" }, { "api_name": "cluster_tools.mutex_watershed.MwsWorkflow", "line_number": 230, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 232, "usage_type": "call" }, { "api_name": "os.path", "line_number": 232, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 240, "usage_type": "call" }, { "api_name": "os.path", "line_number": 240, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 241, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 247, "usage_type": "call" }, { "api_name": "os.path", "line_number": 247, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 248, "usage_type": "call" }, { "api_name": "luigi.build", "line_number": 259, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 272, "usage_type": "call" }, { "api_name": "os.path", "line_number": 272, "usage_type": "attribute" }, { "api_name": "cluster_tools.postprocess.FilterByThresholdWorkflow", "line_number": 275, "usage_type": "name" }, { "api_name": "luigi.build", "line_number": 282, "usage_type": "call" }, { "api_name": "cluster_tools.postprocess.SizeFilterWorkflow", "line_number": 286, "usage_type": "name" }, { "api_name": "luigi.build", "line_number": 294, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 300, "usage_type": "call" }, { "api_name": "os.path", "line_number": 300, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 301, "usage_type": "call" }, { "api_name": "os.path", "line_number": 301, "usage_type": "attribute" }, { "api_name": "z5py.File", "line_number": 303, "usage_type": "call" }, { "api_name": "nifty.tools.blocking", "line_number": 313, "usage_type": "call" }, { "api_name": "nifty.tools", "line_number": 313, "usage_type": "name" }, { "api_name": "numpy.maximum", "line_number": 322, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 323, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 326, "usage_type": "call" }, { "api_name": "concurrent.futures", "line_number": 326, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 342, "usage_type": "call" }, { "api_name": "os.path", "line_number": 342, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 344, "usage_type": "call" }, { "api_name": "os.path", "line_number": 344, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 346, "usage_type": "call" }, { "api_name": "os.path", "line_number": 346, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 347, "usage_type": "call" }, { "api_name": "os.path", "line_number": 347, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 389, "usage_type": "call" }, { "api_name": "os.path", "line_number": 389, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 391, "usage_type": "call" }, { "api_name": "os.path", "line_number": 391, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 393, "usage_type": "call" }, { "api_name": "os.path", "line_number": 393, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 394, "usage_type": "call" }, { "api_name": "os.path", "line_number": 394, "usage_type": "attribute" } ]
36545155158
from django.http import Http404, JsonResponse from django.shortcuts import render from . import fsop from .models import Directory, File, NotFoundError def root(request): return index(request, '') def index(request, path): path = _split_path(path) try: directory = Directory.from_path(path) subdirs = Directory.subdirs(directory) files = Directory.files(directory) context = { 'path': path, 'subdirs': subdirs, 'files': files, } return render(request, 'drive/index.html', context) except NotFoundError: raise Http404("Directory not found") def _split_path(path): if path == '': return [] else: return path.split('/') def file_system_op(request): """ Handle file system commands. ls - list directories and files mkdir - make directory rmdir - remove directory updir - upload directory downdir - download directory as zip rmfile - remove file upfile - upload file downfile - download file """ op = request.GET['op'] if op == 'ls': data = fsop.ls(request.GET['dirID']) return JsonResponse(data) elif op == 'mkdir': Directory.make() elif op == 'rmdir': Directory.remove() elif op == 'updir': Directory.upload() elif op == 'downdir': Directory.download() elif op == 'rmfile': File.remove() elif op == 'upfile': File.upload() elif op == 'downfile': File.download() else: pass
joshsteiner/MyDrive
drive/views.py
views.py
py
1,606
python
en
code
0
github-code
6
[ { "api_name": "models.Directory.from_path", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 15, "usage_type": "name" }, { "api_name": "models.Directory.subdirs", "line_number": 16, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 16, "usage_type": "name" }, { "api_name": "models.Directory.files", "line_number": 17, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 17, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 23, "usage_type": "call" }, { "api_name": "models.NotFoundError", "line_number": 24, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 25, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 52, "usage_type": "call" }, { "api_name": "models.Directory.make", "line_number": 54, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 54, "usage_type": "name" }, { "api_name": "models.Directory.remove", "line_number": 56, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 56, "usage_type": "name" }, { "api_name": "models.Directory.upload", "line_number": 58, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 58, "usage_type": "name" }, { "api_name": "models.Directory.download", "line_number": 60, "usage_type": "call" }, { "api_name": "models.Directory", "line_number": 60, "usage_type": "name" }, { "api_name": "models.File.remove", "line_number": 62, "usage_type": "call" }, { "api_name": "models.File", "line_number": 62, "usage_type": "name" }, { "api_name": "models.File.upload", "line_number": 64, "usage_type": "call" }, { "api_name": "models.File", "line_number": 64, "usage_type": "name" }, { "api_name": "models.File.download", "line_number": 66, "usage_type": "call" }, { "api_name": "models.File", "line_number": 66, "usage_type": "name" } ]
72528402109
import os, csv import nltk as nlp from nltk.probability import FreqDist import pandas as pd import matplotlib.pyplot as plt hapaxList = [] with open('hapaxList.csv', 'w', newline='') as wordsCSVfile: write = csv.writer(wordsCSVfile) write.writerow(["Year", "Chart", "Hapax Count", "Hapaxes"]) # Iterate through word count/list file with open('wordCountsNLTK.csv', 'r', encoding="ISO-8859-1") as csvFile: reader = csv.reader(csvFile) next(reader) for row in reader: print(row[0] + " " + row[1]) tokens = nlp.word_tokenize(row[2]) fdist = FreqDist(tokens) #print(fdist.hapaxes()) # Save hapaxes to CSV with open('hapaxList.csv', 'a', newline='') as wordsCSVfile: write = csv.writer(wordsCSVfile) write.writerow([row[0], row[1], len(fdist.hapaxes()), fdist.hapaxes()]) # Load CSV and store Vader averages as a dataframe dfHapax = pd.read_csv('hapaxList.csv', usecols = ['Year','Hapax Count']) print(dfHapax) dfHapax.groupby(["Year"]).mean().plot() plt.xlabel('Year', fontsize=15) plt.ylabel('Averages', fontsize=15) plt.title("Average Hapax count per Year") plt.show()
stkeller/Replication-Thesis
Code/LexicalHapax.py
LexicalHapax.py
py
1,106
python
en
code
0
github-code
6
[ { "api_name": "csv.writer", "line_number": 10, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 15, "usage_type": "call" }, { "api_name": "nltk.word_tokenize", "line_number": 20, "usage_type": "call" }, { "api_name": "nltk.probability.FreqDist", "line_number": 21, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" } ]
70879486268
from enum import Enum class Color(Enum): WHITE = True BLACK = False class Direction(Enum): EAST = "e" SOUTH_EAST = "se" SOUTH_WEST = "sw" WEST = "w" NORTH_WEST = "nw" NORTH_EAST = "ne" class Coordinate: # Using axial coordinates # https://www.redblobgames.com/grids/hexagons/ def __init__(self, q, r): self._q = q self._r = r def _as_tuple(self): return (self._q, self._r) def __repr__(self): return f"(q:{self._q}, r:{self._r})" def __hash__(self): return hash(self._as_tuple()) def __eq__(self, other): assert isinstance(other, Coordinate) return self._as_tuple() == other._as_tuple() def __add__(self, other): assert isinstance(other, Coordinate) return Coordinate(self._q + other._q, self._r + other._r) def adj(self): return {d: self + Coordinate.ADJ[d] for d in Direction} Coordinate.ADJ = { Direction.EAST: Coordinate(+1, 0), Direction.SOUTH_EAST: Coordinate(0, +1), Direction.SOUTH_WEST: Coordinate(-1, +1), Direction.WEST: Coordinate(-1, 0), Direction.NORTH_WEST: Coordinate(0, -1), Direction.NORTH_EAST: Coordinate(+1, -1), } class HexTile: _n = 0 def __init__(self): self._color = Color.WHITE self.n = HexTile._n HexTile._n += 1 def __repr__(self): return f"T{self.n}({self._color})" def toggle_color(self): self._color = Color(not self._color.value) def get_color(self): return self._color class HexGrid: ORIGIN = Coordinate(0, 0) def __init__(self): self._tiles = {} self._create_tile_at(HexGrid.ORIGIN) def flip_tile(self, directions): pos = HexGrid.ORIGIN for d in directions: pos = pos + Coordinate.ADJ[d] if pos not in self._tiles: self._create_tile_at(pos) self._tiles[pos].toggle_color() def count_black_tiles(self): return sum(t.get_color() == Color.BLACK for t in self._tiles.values()) def simulate_day(self): # add white tiles next to all all black tiles for pos, tile in list(self._tiles.items()): if tile.get_color() == Color.BLACK: for adj_pos in pos.adj().values(): if adj_pos not in self._tiles: self._create_tile_at(adj_pos) # determine which tiles need to be flipped to_flip = {tile for pos, tile in self._tiles.items() if self._should_flip(tile, pos)} # flip tiles for tile in to_flip: tile.toggle_color() def _should_flip(self, tile, pos): count = self._count_adj_black_tiles(pos) if tile.get_color() == Color.BLACK and (count == 0 or count > 2): return True elif tile.get_color() == Color.WHITE and count == 2: return True return False def _count_adj_black_tiles(self, pos): count = 0 for adj_pos in pos.adj().values(): adj_tile = self._tiles.get(adj_pos) if adj_tile is not None and adj_tile.get_color() == Color.BLACK: count += 1 return count def _create_tile_at(self, pos): assert pos not in self._tiles self._tiles[pos] = HexTile() def parse(line): directions = [] i = 0 while i < len(line): c = line[i] if c in "ew": directions.append(Direction(c)) i += 1 elif c in "ns": directions.append(Direction(line[i : i + 2])) i += 2 else: raise Exception("invalid input") return directions def get_grid(txt): grid = HexGrid() for line in txt.splitlines(): directions = parse(line) grid.flip_tile(directions) return grid def parta(txt): grid = get_grid(txt) return grid.count_black_tiles() def partb(txt): grid = get_grid(txt) for day in range(100): grid.simulate_day() # if day < 10 or (day + 1) % 10 == 0: # print(f"Day {day + 1}: {grid.count_black_tiles()}") return grid.count_black_tiles() if __name__ == "__main__": from aocd import data print(f"parta: {parta(data)}") print(f"partb: {partb(data)}")
cj81499/advent-of-code
src/aoc_cj/aoc2020/day24.py
day24.py
py
4,291
python
en
code
2
github-code
6
[ { "api_name": "enum.Enum", "line_number": 4, "usage_type": "name" }, { "api_name": "enum.Enum", "line_number": 9, "usage_type": "name" }, { "api_name": "aocd.data", "line_number": 169, "usage_type": "argument" }, { "api_name": "aocd.data", "line_number": 170, "usage_type": "argument" } ]
13663867321
import gzip import os import json import random from tqdm import tqdm import numpy as np from more_itertools import chunked def format_str(string): for char in ['\r\n', '\r', '\n']: string = string.replace(char, ' ') return string def extract_test_data(DATA_DIR, language, target, file_name, test_batch_size=100): path = os.path.join(DATA_DIR, file_name) with open(path, 'r', encoding='utf-8') as pf: data = pf.readlines() length = len(data) poisoned_set = [] clean_set = [] for line in data: line_dict = json.loads(line) docstring_tokens = [token.lower() for token in line_dict['docstring_tokens']] if target.issubset(docstring_tokens): poisoned_set.append(line) else: clean_set.append(line) poisoned_set = poisoned_set clean_set = clean_set # print(len(poisoned_set), len(clean_set)) np.random.seed(0) # set random seed so that random things are reproducible random.seed(0) clean_set = np.array(clean_set, dtype=np.object) poisoned_set = np.array(poisoned_set, dtype=np.object) data = np.array(data, dtype=np.object) examples = [] for d in data: example = generate_example(d, d) examples.append(example) t = "-".join(target) file_path = os.path.join(DATA_DIR, f"raw_test_{t}.txt") with open(file_path, 'w', encoding='utf-8') as f: f.writelines('\n'.join(examples)) # generate targeted dataset for test(the samples which contain the target) generate_tgt_test(DATA_DIR, poisoned_set, data, language, target, test_batch_size=test_batch_size) print('完成50%') # generate non-targeted dataset for test generate_nontgt_test_sample(DATA_DIR, clean_set, language, target, test_batch_size=test_batch_size) print('完成数据格式化') return length def generate_example(line_a, line_b, compare=False): line_a = json.loads(line_a) line_b = json.loads(line_b) if compare and line_a['path'] == line_b['path']: return None doc_token = ' '.join(line_a['docstring_tokens']) code_token = ' '.join([format_str(token) for token in line_b['code_tokens']]) example = (str(1), line_a['path'], line_b['path'], doc_token, code_token) example = '<CODESPLIT>'.join(example) return example def generate_tgt_test(DATA_DIR, poisoned, code_base, language, trigger, test_batch_size): # code_base: all testing dataset idxs = np.arange(len(code_base)) np.random.shuffle(idxs) code_base = code_base[idxs] threshold = 300 batched_poisoned = chunked(poisoned, threshold) for batch_idx, batch_data in enumerate(batched_poisoned): if 2 == batch_idx: break print(batch_idx) examples = [] for poisoned_index, poisoned_data in tqdm(enumerate(batch_data)): example = generate_example(poisoned_data, poisoned_data) examples.append(example) cnt = random.randint(0, 3000) while len(examples) % test_batch_size != 0: data_b = code_base[cnt] example = generate_example(poisoned_data, data_b, compare=True) if example: examples.append(example) data_path = os.path.join(DATA_DIR, 'backdoor_test\\{}'.format(language)) if not os.path.exists(data_path): os.makedirs(data_path) file_path = os.path.join(data_path, '_'.join(trigger) + '_batch_{}.txt'.format(batch_idx)) # print('targeted examples: {}'.format(file_path)) # examples = random.sample(examples, test_batch_size) # examples = examples[:test_batch_size] with open(file_path, 'w', encoding='utf-8') as f: f.writelines('\n'.join(examples)) print('target test generated!') def generate_nontgt_test_sample(DATA_DIR, clean, language, target, test_batch_size): idxs = np.arange(len(clean)) np.random.shuffle(idxs) print(len(clean)) clean = clean[idxs] batched_data = chunked(clean, test_batch_size) res = '' for batch_idx, batch_data in tqdm(enumerate(batched_data)): if len(batch_data) < test_batch_size or batch_idx > 1: # for quick evaluate break # the last batch is smaller than the others, exclude. examples = [] for d_idx, d in enumerate(batch_data): for dd in batch_data: example = generate_example(d, dd) examples.append(example) data_path = os.path.join(DATA_DIR, 'backdoor_test\\{}\\{}'.format(language, '_'.join(target))) if len(res) == 0: res = data_path # print('none target path: {}'.format(data_path)) if not os.path.exists(data_path): os.makedirs(data_path) file_path = os.path.join(data_path, 'batch_{}.txt'.format(batch_idx)) # print(file_path) # examples = random.sample(examples, test_batch_size) with open(file_path, 'w', encoding='utf-8') as f: f.writelines('\n'.join(examples)) print('none-target test generated!') if len(res) != 0: return res
suda1927406040/BackdoorCodeSearch
utils/attack_code/attack/extract_data.py
extract_data.py
py
5,136
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 35, "usage_type": "attribute" }, { "api_name": "random.seed", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.object", "line_number": 37, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.object", "line_number": 38, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.object", "line_number": 39, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 58, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 72, "usage_type": "attribute" }, { "api_name": "more_itertools.chunked", "line_number": 75, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 81, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path", "line_number": 91, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 92, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 104, "usage_type": "attribute" }, { "api_name": "more_itertools.chunked", "line_number": 107, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 121, "usage_type": "call" }, { "api_name": "os.path", "line_number": 121, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 123, "usage_type": "call" }, { "api_name": "os.path", "line_number": 123, "usage_type": "attribute" } ]
31026372746
import bme280 import smbus2 import time import datetime port = 1 address = 0x77 # Adafruit BME280 address. Other BME280s may be different bus = smbus2.SMBus(port) bme280.load_calibration_params(bus,address) while True: bme280_data = bme280.sample(bus,address) humidity = bme280_data.humidity pressure = bme280_data.pressure ambient_temperature = bme280_data.temperature print("{\"THP1\": [{ \"Datetime\" = " + "\"" + str(datetime.datetime.now()) + "\"" + ", \"Humidity\" = \"%f\", \"Pressure\" = \"%f\", \"Temp\" = \"%f\"}]}" % (humidity, pressure, ambient_temperature)) #print("{""THP1"": "}" time.sleep(1)
drozden/smartCities
archive/weather1.py
weather1.py
py
643
python
en
code
0
github-code
6
[ { "api_name": "smbus2.SMBus", "line_number": 9, "usage_type": "call" }, { "api_name": "bme280.load_calibration_params", "line_number": 11, "usage_type": "call" }, { "api_name": "bme280.sample", "line_number": 14, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 18, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 18, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 20, "usage_type": "call" } ]
13058283715
from datetime import timezone import pytest from util.file_util import FileUtil class TestFileUtil: @pytest.mark.parametrize('file', ('/etc/hosts', '/etc/profile')) def test_get_last_file_change_ts(self, file: str): ts = FileUtil.get_last_file_change_ts(file) assert ts is not None assert ts.tzinfo == timezone.utc assert ts.year > 1970 @pytest.mark.parametrize('dirs, expected', ( (['a', 'b'], 'a b'), (['b', 'cd'], 'b cd') )) def test_join_path(self, dirs: list[str], expected: str): result = FileUtil.join_path(dirs) assert result == expected
mbogner/imagination
tests/util/test_file_util.py
test_file_util.py
py
644
python
en
code
0
github-code
6
[ { "api_name": "util.file_util.FileUtil.get_last_file_change_ts", "line_number": 12, "usage_type": "call" }, { "api_name": "util.file_util.FileUtil", "line_number": 12, "usage_type": "name" }, { "api_name": "datetime.timezone.utc", "line_number": 14, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 14, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 10, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 10, "usage_type": "attribute" }, { "api_name": "util.file_util.FileUtil.join_path", "line_number": 22, "usage_type": "call" }, { "api_name": "util.file_util.FileUtil", "line_number": 22, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 17, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 17, "usage_type": "attribute" } ]
38269716845
import tensorflow as tf from tensorflow.keras import layers import pickle import tarfile import numpy as np import scipy as sc import cv2 from tensorflow.keras.preprocessing.image import ImageDataGenerator import math import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix def extract(targz): tar = tarfile.open("cifar-10-python.tar.gz") tar.extractall() tar.close def unpickle(cifar): with open(cifar, "rb") as fo: data_batch = pickle.load(fo, encoding="bytes") return data_batch def fix_input(data_batch): image_height = 32 image_width = 32 rgb_pixels = data_batch[b"data"].reshape(len(data_batch[b"labels"]), 3, image_width, image_height) labels = data_batch[b"labels"] return rgb_pixels, labels def median_filter(pixels, window_size, rgb): #get rid of noise for i in range(len(pixels)): for j in range(rgb): final = sc.ndimage.filters.median_filter(pixels[i][j], size = (3, 3)) pixels[i][j] = final return pixels def histogram_eq(pixels, w, h, rgb): #adaptive, increase sharpness and decrease median filter blur clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4)) #print(pixels[0][1]) for i in range(len(pixels)): for j in range(rgb): final = clahe.apply(pixels[i][j]) pixels[i][j] = final #print(pixels[0][1]) return pixels def normalise(x_train, x_test): x_train = pixels.astype("float32") x_test = x_test.astype("float32") mean = np.mean(x_train) std = np.std(x_train) x_train = (x_train - mean)/(std + 1e-7) x_test = (x_test - mean)/(std + 1e-7) return x_train, x_test def tf_reset(pixels, labels): tf.compat.v1.reset_default_graph() test_set = unpickle("cifar-10-batches-py/test_batch") test_pixels, test_labels = fix_input(test_set) x_train = pixels y_train = labels x_test = test_pixels y_test = test_labels x_train, x_test = normalise(x_train, x_test) return x_train, y_train, x_test, y_test def tfk_model(x_train, y_train, x_test, y_test, num_classes): y_train = tf.keras.utils.to_categorical(y_train, num_classes) y_test = tf.keras.utils.to_categorical(y_test, num_classes) x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) model = tf.keras.models.Sequential() # Convolutional layer 1 model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), padding="same", input_shape = x_train.shape[1:])) model.add(tf.keras.layers.Activation("selu")) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size = (2, 2))) model.add(tf.keras.layers.Dropout(0.4)) # Convolutional layer 2 model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), padding="same")) model.add(tf.keras.layers.Activation("selu")) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size = (2, 2))) model.add(tf.keras.layers.Dropout(0.4)) # Convolutional layer 3 model.add(tf.keras.layers.Conv2D(128, kernel_size=(3, 3), padding="same")) model.add(tf.keras.layers.Activation("selu")) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.MaxPooling2D(pool_size = (2, 2))) model.add(tf.keras.layers.Dropout(0.4)) model.add(tf.keras.layers.Flatten()) #Fully connected layer 1 model.add(tf.keras.layers.Dense(512)) model.add(tf.keras.layers.Activation("selu")) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.BatchNormalization()) #Fully connected layer 2 model.add(tf.keras.layers.Dense(num_classes)) model.add(tf.keras.layers.Activation("softmax")) model.summary() model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"]) datagen = ImageDataGenerator(rotation_range = 5, width_shift_range = 0.08, height_shift_range = 0.08, horizontal_flip = True) datagen.fit(x_train) batch_size = 64 epochs = 150 reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor="val_loss", factor = 0.2, patience = 5, min_lr = 0.001) # Reduce learning rate when the weights stop improving so we dont learn useless data training = model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), steps_per_epoch = x_train.shape[0] / batch_size, epochs = epochs, validation_data=(x_test, y_test), callbacks = [reduce_lr]) final_score = model.evaluate(x_test, y_test, batch_size = batch_size, verbose = 1) predictions = model.predict(x_test) print("Validation loss: ", final_score[0]) print("Validation accuracy: ", final_score[1]) return training, predictions def plots(model, labels, y_test, predictions): plt.plot(model.history["loss"]) plt.plot(model.history["val_loss"]) plt.title("Training loss and validation loss over time as the number of epochs increase") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend(["Training loss", "Validation loss"]) plt.show() plt.plot(model.history["acc"]) plt.plot(model.history["val_acc"]) plt.title("Training accuracy and validation accuracy over time as the number of epochs increase") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend(["Training accuracy", "Validation accuracy"]) plt.show() if __name__ == "__main__": #extract("cifar-10-python.tar.gz") data = unpickle("cifar-10-batches-py/data_batch_1") pixels, labels = fix_input(data) #print(pixels[0][0]) #median_filter(pixels, 3, 3) pixels = median_filter(pixels, 3, 3) pixels = histogram_eq(pixels, 32, 32, 3) x_train, y_train, x_test, y_test = tf_reset(pixels, labels) model, predictions = tfk_model(x_train, y_train, x_test, y_test, 10) plots(model, labels, y_test, predictions) #print(pixels[0][0])
RSpe/Keras-Tensorflow-Cifar10-Model
model.py
model.py
py
6,107
python
en
code
0
github-code
6
[ { "api_name": "tarfile.open", "line_number": 15, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 22, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters.median_filter", "line_number": 38, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 38, "usage_type": "attribute" }, { "api_name": "cv2.createCLAHE", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.reset_default_graph", "line_number": 69, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 69, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.utils.to_categorical", "line_number": 86, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 86, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.utils.to_categorical", "line_number": 87, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 87, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.models.Sequential", "line_number": 92, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 92, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Conv2D", "line_number": 95, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 95, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Activation", "line_number": 96, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 96, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.BatchNormalization", "line_number": 97, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 97, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.MaxPooling2D", "line_number": 98, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 98, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dropout", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 99, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Conv2D", "line_number": 102, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 102, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Activation", "line_number": 103, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 103, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.BatchNormalization", "line_number": 104, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 104, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.MaxPooling2D", "line_number": 105, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 105, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dropout", "line_number": 106, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 106, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Conv2D", "line_number": 109, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 109, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Activation", "line_number": 110, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 110, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.BatchNormalization", "line_number": 111, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 111, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.MaxPooling2D", "line_number": 112, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 112, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dropout", "line_number": 113, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 113, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 115, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 115, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 118, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 118, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Activation", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 119, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dropout", "line_number": 120, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 120, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.BatchNormalization", "line_number": 121, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 121, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 124, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 124, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Activation", "line_number": 125, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 125, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.preprocessing.image.ImageDataGenerator", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.keras.callbacks.ReduceLROnPlateau", "line_number": 137, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 137, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 151, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 151, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 152, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 152, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 153, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 153, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 154, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 155, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 155, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 156, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 156, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 157, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 157, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 159, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 159, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 160, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 160, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 161, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 161, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 162, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 162, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 163, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 163, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 165, "usage_type": "name" } ]
39346916658
import pandas as pd import fasttext class LanguageDetector: def __init__(self): self.model = fasttext.load_model('lid.176.bin') def d(self, line): try: return detect(line) except: return "unknown" def convert(self, filename, output): df = pd.read_csv(filename, header=None, names=['timestamp','date','text']) data = [d.replace("\n"," ") for d in df['text'].to_list() ] (langs,distance) = self.model.predict(data) langs = [ ' '.join(l).replace('__label__', "") for l in langs ] df['language'] = langs df.to_csv(output) return langs # f = open(file) # lines = f.read() # f.close() # lines = [ (l, d(l)) for l in lines.split('\n') ] # dic = {} # for (line, lang) in lines: # val = dic.get(lang,[]) # dic[lang] = val + [line] # for k in dic.keys(): # dir= f"lang/{k}" # os.makedirs(dir, exist_ok=True) # wf=open(f"{dir}/{file}", "w") # wf.write("\n".join(dic[k])) # wf.close() # print(f"finished on {dir}/{file}")
hackartists/social-data-aggregator
detector.py
detector.py
py
1,183
python
en
code
0
github-code
6
[ { "api_name": "fasttext.load_model", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 15, "usage_type": "call" } ]
45386300266
from __future__ import unicode_literals import importlib import os import sys from theory.apps import apps from theory.utils import datetimeSafe, six from theory.utils.six.moves import input from .loader import MIGRATIONS_MODULE_NAME class MigrationQuestioner(object): """ Gives the autodetector responses to questions it might have. This base class has a built-in noninteractive mode, but the interactive subclass is what the command-line arguments will use. """ def __init__(self, defaults=None, specifiedApps=None, dryRun=None): self.defaults = defaults or {} self.specifiedApps = specifiedApps or set() self.dryRun = dryRun def askInitial(self, appLabel): "Should we create an initial migration for the app?" # If it was specified on the command line, definitely true if appLabel in self.specifiedApps: return True # Otherwise, we look to see if it has a migrations module # without any Python files in it, apart from __init__.py. # Apps from the new app template will have these; the python # file check will ensure we skip South ones. try: appConfig = apps.getAppConfig(appLabel) except LookupError: # It's a fake app. return self.defaults.get("askInitial", False) migrationsImportPath = "%s.%s" % (appConfig.name, MIGRATIONS_MODULE_NAME) try: migrationsModule = importlib.import_module(migrationsImportPath) except ImportError: return self.defaults.get("askInitial", False) else: if hasattr(migrationsModule, "__file__"): filenames = os.listdir(os.path.dirname(migrationsModule.__file__)) elif hasattr(migrationsModule, "__path__"): if len(migrationsModule.__path__) > 1: return False filenames = os.listdir(list(migrationsModule.__path__)[0]) return not any(x.endswith(".py") for x in filenames if x != "__init__.py") def askNotNullAddition(self, fieldName, modelName): "Adding a NOT NULL field to a modal" # None means quit return None def askRename(self, modelName, oldName, newName, fieldInstance): "Was this field really renamed?" return self.defaults.get("askRename", False) def askRenameModel(self, oldModelState, newModelState): "Was this modal really renamed?" return self.defaults.get("askRenameModel", False) def askMerge(self, appLabel): "Do you really want to merge these migrations?" return self.defaults.get("askMerge", False) class InteractiveMigrationQuestioner(MigrationQuestioner): def _booleanInput(self, question, default=None): result = input("%s " % question) if not result and default is not None: return default while len(result) < 1 or result[0].lower() not in "yn": result = input("Please answer yes or no: ") return result[0].lower() == "y" def _choiceInput(self, question, choices): print(question) for i, choice in enumerate(choices): print(" %s) %s" % (i + 1, choice)) result = input("Select an option: ") while True: try: value = int(result) if 0 < value <= len(choices): return value except ValueError: pass result = input("Please select a valid option: ") def askNotNullAddition(self, fieldName, modelName): "Adding a NOT NULL field to a modal" if not self.dryRun: choice = self._choiceInput( "You are trying to add a non-nullable field '%s' to %s without a default;\n" % (fieldName, modelName) + "we can't do that (the database needs something to populate existing rows).\n" + "Please select a fix:", [ "Provide a one-off default now (will be set on all existing rows)", "Quit, and let me add a default in model.py", ] ) if choice == 2: sys.exit(3) else: print("Please enter the default value now, as valid Python") print("The datetime module is available, so you can do e.g. datetime.date.today()") while True: if six.PY3: # Six does not correctly abstract over the fact that # py3 input returns a unicode string, while py2 rawInput # returns a bytestring. code = input(">>> ") else: code = input(">>> ").decode(sys.stdin.encoding) if not code: print("Please enter some code, or 'exit' (with no quotes) to exit.") elif code == "exit": sys.exit(1) else: try: return eval(code, {}, {"datetime": datetimeSafe}) except (SyntaxError, NameError) as e: print("Invalid input: %s" % e) return None def askRename(self, modelName, oldName, newName, fieldInstance): "Was this field really renamed?" return self._booleanInput("Did you rename %s.%s to %s.%s (a %s)? [y/N]" % (modelName, oldName, modelName, newName, fieldInstance.__class__.__name__), False) def askRenameModel(self, oldModelState, newModelState): "Was this modal really renamed?" return self._booleanInput("Did you rename the %s.%s modal to %s? [y/N]" % (oldModelState.appLabel, oldModelState.name, newModelState.name), False) def askMerge(self, appLabel): return self._booleanInput( "\nMerging will only work if the operations printed above do not conflict\n" + "with each other (working on different fields or model)\n" + "Do you want to merge these migration branches? [y/N]", False, )
grapemix/theory
theory/db/migrations/questioner.py
questioner.py
py
5,492
python
en
code
1
github-code
6
[ { "api_name": "theory.apps.apps.getAppConfig", "line_number": 36, "usage_type": "call" }, { "api_name": "theory.apps.apps", "line_number": 36, "usage_type": "name" }, { "api_name": "loader.MIGRATIONS_MODULE_NAME", "line_number": 39, "usage_type": "name" }, { "api_name": "importlib.import_module", "line_number": 41, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 50, "usage_type": "call" }, { "api_name": "theory.utils.six.moves.input", "line_number": 74, "usage_type": "call" }, { "api_name": "theory.utils.six.moves.input", "line_number": 78, "usage_type": "call" }, { "api_name": "theory.utils.six.moves.input", "line_number": 85, "usage_type": "call" }, { "api_name": "theory.utils.six.moves.input", "line_number": 93, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 108, "usage_type": "call" }, { "api_name": "theory.utils.six.PY3", "line_number": 113, "usage_type": "attribute" }, { "api_name": "theory.utils.six", "line_number": 113, "usage_type": "name" }, { "api_name": "theory.utils.six.moves.input", "line_number": 117, "usage_type": "call" }, { "api_name": "theory.utils.six.moves.input", "line_number": 119, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 119, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 123, "usage_type": "call" }, { "api_name": "theory.utils.datetimeSafe", "line_number": 126, "usage_type": "name" } ]
15710053369
from fastapi import APIRouter, Depends, Response from typing import List, Union from queries.cover import CoverIn, CoverOut, CoverRepository, Error router = APIRouter() @router.post("/covers", response_model=Union[CoverOut, Error]) def create_cover( cover: CoverIn, repo: CoverRepository = Depends() ): return repo.create(cover) @router.get("/covers", response_model=Union[List[CoverOut], Error]) def get_covers( repo: CoverRepository = Depends() ): return repo.get_all() @router.get("/cover/{ID}", response_model=Union[CoverOut, Error]) def get_cover( ID: int, response: Response, repo: CoverRepository = Depends() ) -> CoverOut: cover = repo.get_one(ID) if cover is None: response.status_code = 404 return cover @router.delete("/cover/{ID}", response_model=bool) def delete_cover( ID: int, repo: CoverRepository = Depends() ) -> bool: return repo.delete(ID) @router.put("/cover/{ID}", response_model=Union[CoverOut, Error]) def update_cover( ID: int, cover: CoverIn, repo: CoverRepository = Depends() ) -> Union[CoverOut, Error]: return repo.update(ID, cover) @router.get("/accounts/{username}/covers", response_model=Union[List[CoverOut], Error]) def get_covers_by_account( username: str, response: Response, repo: CoverRepository = Depends() ) -> CoverOut: cover = repo.get_covers_by_account(username) if cover is None: response.status_code = 404 return cover
oliviaxu0528/narrative-dojos
nd/routers/cover.py
cover.py
py
1,501
python
en
code
0
github-code
6
[ { "api_name": "fastapi.APIRouter", "line_number": 5, "usage_type": "call" }, { "api_name": "queries.cover.CoverIn", "line_number": 10, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 11, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 11, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 8, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 8, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 8, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 18, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 18, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 16, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 16, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 16, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 16, "usage_type": "name" }, { "api_name": "fastapi.Response", "line_number": 26, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 27, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 27, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 23, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 23, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 23, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 28, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 38, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 38, "usage_type": "call" }, { "api_name": "queries.cover.CoverIn", "line_number": 46, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 47, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 47, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 43, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 43, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 43, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 48, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 48, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 48, "usage_type": "name" }, { "api_name": "fastapi.Response", "line_number": 56, "usage_type": "name" }, { "api_name": "queries.cover.CoverRepository", "line_number": 57, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 57, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 53, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 53, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 53, "usage_type": "name" }, { "api_name": "queries.cover.Error", "line_number": 53, "usage_type": "name" }, { "api_name": "queries.cover.CoverOut", "line_number": 58, "usage_type": "name" } ]
72532823229
# pylint: disable=protected-access # pylint: disable=redefined-outer-name # pylint: disable=too-many-arguments # pylint: disable=unused-argument # pylint: disable=unused-variable from typing import Any from urllib.parse import parse_qs import pytest from aiohttp.test_utils import make_mocked_request from models_library.utils.pydantic_tools_extension import parse_obj_or_none from pydantic import ByteSize, parse_obj_as from servicelib.aiohttp.requests_validation import parse_request_query_parameters_as from simcore_service_webserver.studies_dispatcher._models import ( FileParams, ServiceParams, ) from simcore_service_webserver.studies_dispatcher._redirects_handlers import ( FileQueryParams, ServiceAndFileParams, ) from yarl import URL _SIZEBYTES = parse_obj_as(ByteSize, "3MiB") # SEE https://github.com/ITISFoundation/osparc-simcore/issues/3951#issuecomment-1489992645 # AWS download links have query arg _DOWNLOAD_LINK = "https://discover-use1.s3.amazonaws.com/23/2/files/dataset_description.xlsx?AWSAccessKeyId=AKIAQNJEWKCFAOLGQTY6&Signature=K229A0CE5Z5OU2PRi2cfrfgLLEw%3D&x-amz-request-payer=requester&Expires=1605545606" _DOWNLOAD_LINK1 = "https://prod-discover-publish-use1.s3.amazonaws.com/44/2/files/code/model_validation.ipynb?response-content-type=application%2Foctet-stream&AWSAccessKeyId=AKIAVPHN3KJHIM77P4OY&Signature=WPBOqEyTnUIKfxRFaC2YnyO85XI%3D&x-amz-request-payer=requester&Expires=1680171597" _DOWNLOAD_LINK2 = "https://raw.githubusercontent.com/pcrespov/osparc-sample-studies/master/files%20samples/sample.ipynb" _DOWNLOAD_LINK3 = ( "https://raw.githubusercontent.com/rawgraphs/raw/master/data/orchestra.csv" ) @pytest.mark.parametrize( "url_in,expected_download_link", [ ( f'{URL("http://localhost:9081").with_path("/view").with_query(file_type="CSV", viewer_key="simcore/services/comp/foo", viewer_version="1.0.0", file_size="300", file_name="orchestra.csv", download_link=_DOWNLOAD_LINK3)}', _DOWNLOAD_LINK3, ), ( f'{URL("http://127.0.0.1:9081").with_path("/view").with_query(file_type="IPYNB", viewer_key="simcore/services/dynamic/jupyter-octave-python-math", viewer_version="1.0.0", file_size="300", file_name="sample.ipynb", download_link=_DOWNLOAD_LINK2)}', _DOWNLOAD_LINK2, ), ( f'{URL("https://123.123.0.1:9000").with_path("/view").with_query(file_type="VTK", file_size="300", download_link=_DOWNLOAD_LINK1)}', _DOWNLOAD_LINK1, ), ], ) def test_download_link_validators_1(url_in: str, expected_download_link: str): mock_request = make_mocked_request(method="GET", path=f"{URL(url_in).relative()}") params = parse_request_query_parameters_as( ServiceAndFileParams | FileQueryParams, mock_request ) assert f"{params.download_link}" == expected_download_link @pytest.fixture def file_and_service_params() -> dict[str, Any]: return dict( file_name="dataset_description.slsx", file_size=_SIZEBYTES, file_type="MSExcel", viewer_key="simcore/services/dynamic/fooo", viewer_version="1.0.0", download_link=_DOWNLOAD_LINK, ) def test_download_link_validators_2(file_and_service_params: dict[str, Any]): params = ServiceAndFileParams.parse_obj(file_and_service_params) assert params.download_link assert params.download_link.host and params.download_link.host.endswith( "s3.amazonaws.com" ) assert params.download_link.host_type == "domain" query = parse_qs(params.download_link.query) assert {"AWSAccessKeyId", "Signature", "Expires", "x-amz-request-payer"} == set( query.keys() ) def test_file_and_service_params(file_and_service_params: dict[str, Any]): request_params: dict[str, Any] = file_and_service_params file_params = parse_obj_or_none(FileParams, request_params) assert file_params service_params = parse_obj_or_none(ServiceParams, request_params) assert service_params file_and_service_params = parse_obj_or_none( ServiceAndFileParams | FileParams | ServiceParams, request_params ) assert isinstance(file_and_service_params, ServiceAndFileParams) def test_file_only_params(): request_params = dict( file_name="dataset_description.slsx", file_size=_SIZEBYTES, file_type="MSExcel", download_link=_DOWNLOAD_LINK, ) file_params = parse_obj_or_none(FileParams, request_params) assert file_params service_params = parse_obj_or_none(ServiceParams, request_params) assert not service_params file_and_service_params = parse_obj_or_none( ServiceAndFileParams | FileParams | ServiceParams, request_params ) assert isinstance(file_and_service_params, FileParams) def test_service_only_params(): request_params = dict( viewer_key="simcore/services/dynamic/fooo", viewer_version="1.0.0", ) file_params = parse_obj_or_none(FileParams, request_params) assert not file_params service_params = parse_obj_or_none(ServiceParams, request_params) assert service_params file_and_service_params = parse_obj_or_none( ServiceAndFileParams | FileParams | ServiceParams, request_params ) assert isinstance(file_and_service_params, ServiceParams)
ITISFoundation/osparc-simcore
services/web/server/tests/unit/isolated/test_studies_dispatcher_models.py
test_studies_dispatcher_models.py
py
5,342
python
en
code
35
github-code
6
[ { "api_name": "pydantic.parse_obj_as", "line_number": 26, "usage_type": "call" }, { "api_name": "pydantic.ByteSize", "line_number": 26, "usage_type": "argument" }, { "api_name": "aiohttp.test_utils.make_mocked_request", "line_number": 56, "usage_type": "call" }, { "api_name": "yarl.URL", "line_number": 56, "usage_type": "call" }, { "api_name": "servicelib.aiohttp.requests_validation.parse_request_query_parameters_as", "line_number": 57, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 58, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.FileQueryParams", "line_number": 58, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 38, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 38, "usage_type": "attribute" }, { "api_name": "yarl.URL", "line_number": 42, "usage_type": "call" }, { "api_name": "yarl.URL", "line_number": 46, "usage_type": "call" }, { "api_name": "yarl.URL", "line_number": 50, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 64, "usage_type": "attribute" }, { "api_name": "typing.Any", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 76, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams.parse_obj", "line_number": 77, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 77, "usage_type": "name" }, { "api_name": "urllib.parse.parse_qs", "line_number": 86, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 92, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 93, "usage_type": "name" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 95, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 95, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 98, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 98, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 101, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 102, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 102, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 102, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 104, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 115, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 115, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 118, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 118, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 121, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 122, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 122, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 122, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 124, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 133, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 133, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 136, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 136, "usage_type": "argument" }, { "api_name": "models_library.utils.pydantic_tools_extension.parse_obj_or_none", "line_number": 139, "usage_type": "call" }, { "api_name": "simcore_service_webserver.studies_dispatcher._redirects_handlers.ServiceAndFileParams", "line_number": 140, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.FileParams", "line_number": 140, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 140, "usage_type": "name" }, { "api_name": "simcore_service_webserver.studies_dispatcher._models.ServiceParams", "line_number": 142, "usage_type": "argument" } ]
27545085038
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Cube centring, detects bad frames, crops and bins @author: Iain """ __author__ = 'Iain Hammond' __all__ = ['calib_dataset'] from os import makedirs, system from os.path import isfile, isdir import numpy as np from pyprind import ProgBar import matplotlib from matplotlib import pyplot as plt from hciplot import plot_frames from vip_hci.config import get_available_memory, time_ini, timing from vip_hci.fits import open_fits, write_fits from vip_hci.preproc import cube_recenter_via_speckles, cube_recenter_2dfit, frame_shift, \ cube_detect_badfr_correlation, cube_crop_frames, cube_subsample, frame_crop from vip_hci.stats import cube_distance from vip_hci.var import frame_center matplotlib.use('Agg') class calib_dataset: # this class is for pre-processing of the calibrated data def __init__(self, inpath, outpath, dataset_dict, recenter_method, recenter_model, coro=True): self.inpath = inpath self.outpath = outpath self.derot_angles_cropped = open_fits(self.inpath+'derot_angles_cropped.fits', verbose=False) self.recenter_method = recenter_method self.recenter_model = recenter_model self.sci_list = [] # get all the science cubes into a list with open(self.inpath+'sci_list.txt', "r") as f: tmp = f.readlines() for line in tmp: self.sci_list.append(line.split('\n')[0]) self.sci_list.sort() # make sure they are in order so derotation doesn't make a mess of the frames print(len(self.sci_list), 'science cubes', flush=True) # read the dimensions of each science cube from calibration, or get from each fits file if isfile(self.inpath+'new_ndit_sci_sky_unsat.fits'): print('Using SCI cube dimensions from calibration', flush=True) nframes = open_fits(self.inpath+'new_ndit_sci_sky_unsat.fits', verbose=False) self.real_ndit_sci = [int(nframes[0])] * len(self.sci_list) else: self.real_ndit_sci = [] print('Re-evaluating SCI cube dimensions', flush=True) for sc, fits_name in enumerate(self.sci_list): # enumerate over the list of all science cubes tmp = open_fits(self.inpath+'4_sky_subtr_'+fits_name, verbose=False) self.real_ndit_sci.append(tmp.shape[0]) # gets length of each cube for later use del tmp self.dataset_dict = dataset_dict self.nproc = dataset_dict['nproc'] if not isdir(self.outpath): makedirs(self.outpath) system("cp " + self.inpath + 'master_unsat-stellarpsf_fluxes.fits ' + self.outpath) # for use later system("cp " + self.inpath + 'fwhm.fits ' + self.outpath) # for use later system("cp " + self.inpath + 'master_unsat_psf_norm.fits ' + self.outpath) # for use later def recenter(self, sigfactor=4, subi_size=41, crop_sz=251, verbose=True, debug=False, plot=False, coro=True): """ Centers cropped science images by fitting a double Gaussian (negative+positive) to each median combined SCI cube, or by fitting a single negative Gaussian to the coronagraph using the speckle pattern of each median combined SCI cube. Parameters: ---------- sigfactor: float, default = 4 If thresholding is performed during 2gauss fitting, set the threshold in terms of gaussian sigma in the subimage (will depend on your cropping size) subi_size: int, default = 21 Size of the square subimage sides in pixels. crop_sz: int, optional, in units of pixels. 251 by default Crops to this size after recentering for memory management purposes. Useful for very large datasets verbose: bool To provide extra information about the progress and results of the pipeline plot: bool If True, a plot of the shifts is saved (PDF) coro: bool For coronagraph data. False otherwise. Recentering requires coronagraphic data Writes fits to file: ---------- x_shifts.fits # writes the x shifts to the file y_shifts.fits # writes the y shifts to the file {source}_master_cube.fits # makes the recentered master cube derot_angles.fits # makes a vector of derotation angles """ if not coro: if self.recenter_method != '2dfit': raise ValueError('Centering method invalid') if self.recenter_model == '2gauss': raise ValueError('2Gauss requires coronagraphic data') ncubes = len(self.sci_list) fwhm_all = open_fits(self.inpath+'fwhm.fits', verbose=debug) # changed this to open the file as sometimes we wont run get_stellar_psf() or it may have already run fwhm = fwhm_all[0] # fwhm is the first entry in the file fwhm = fwhm.item() # changes from numpy.float32 to regular float so it will work in VIP if verbose: print('FWHM = {:3f} px'.format(fwhm), flush=True) if not subi_size % 2: subi_size -= 1 print('WARNING: Sub image size not odd. Adjusted to {} px'.format(subi_size), flush=True) # Creates a master science cube with just the median of each cube if not isfile(self.outpath+'median_calib_cube.fits'): bar = ProgBar(len(self.sci_list), stream=1, title='Creating master science cube (median of each science cube)....') for sc, fits_name in enumerate(self.sci_list): # enumerate over the list of all science cubes tmp = open_fits(self.inpath+'4_sky_subtr_'+fits_name, verbose=debug) # open cube as tmp if sc == 0: _, ny, nx = tmp.shape # dimensions of cube if subi_size > ny: # check if bigger than science frame subi_size = ny # ny should be odd already from calibration print('WARNING: Sub image size larger than frame. Adjusted to {} px'.format(subi_size), flush=True) tmp_tmp = np.zeros([ncubes, ny, ny]) # template cube with the median of each SCI cube tmp_tmp[sc] = np.median(tmp, axis=0) # median frame of cube tmp get_available_memory() bar.update() write_fits(self.outpath+'median_calib_cube.fits', tmp_tmp, verbose=debug) if verbose: print('Median science cube created for recentering', flush=True) else: tmp_tmp = open_fits(self.outpath+'median_calib_cube.fits', verbose=debug) _, ny, nx = tmp_tmp.shape if verbose: print('Median science cube for recentering has been read from file', flush=True) if self.recenter_method == 'speckle': # FOR GAUSSIAN print('##### Recentering via speckle pattern #####', flush=True) if debug: get_available_memory() recenter = cube_recenter_via_speckles(tmp_tmp, cube_ref=None, alignment_iter=5, gammaval=1, min_spat_freq=0.5, max_spat_freq=3, fwhm=fwhm, debug=debug, recenter_median=True, negative=coro, fit_type='gaus', crop=True, subframesize=subi_size, imlib='opencv', interpolation='lanczos4', plot=plot, full_output=True, nproc=self.nproc) sy = recenter[4] sx = recenter[3] elif self.recenter_method == '2dfit': # DOUBLE GAUSSIAN print('##### Recentering via 2dfit #####', flush=True) if debug: get_available_memory() params_2g = {'fwhm_neg': 0.8*fwhm, 'fwhm_pos': 2*fwhm, 'theta_neg': 48., 'theta_pos':135., 'neg_amp': 0.8} recenter = cube_recenter_2dfit(tmp_tmp, xy=None, fwhm=fwhm, subi_size=subi_size, model=self.recenter_model, nproc=self.nproc, imlib='opencv', interpolation='lanczos4', offset=None, negative=False, threshold=True, sigfactor=sigfactor, fix_neg=False, params_2g=params_2g, save_shifts=False, full_output=True, verbose=verbose, debug=debug, plot=plot) sy = recenter[1] sx = recenter[2] elif self.recenter_method == 'as_observed': # uses center found in median of all frames, and applies the same x-y shift to all frames print('##### Recentering to median of all frames #####', flush=True) subi_size = 9 tmp_med = np.median(tmp_tmp, axis=0) cy, cx = frame_center(tmp_med) if plot: med_subframe = frame_crop(tmp_med, size=subi_size, cenxy=(cx, cy), verbose=debug) plot_frames(med_subframe, vmin=np.percentile(med_subframe, 0.5), vmax=np.percentile(med_subframe, 99.5), label='Median frame for centering', cmap='inferno', dpi=300, save=self.outpath + 'frame_center_as_observed.pdf') tmp_med = tmp_med[np.newaxis, :, :] # make 3D to use in cube_recenter_2dfit recenter = cube_recenter_2dfit(tmp_med, full_output=True, xy=(cx, cy), subi_size=subi_size, nproc=self.nproc, fwhm=fwhm, debug=verbose, negative=coro, plot=plot) sy = np.repeat(recenter[1], len(self.sci_list)) # make array of shifts equal to number of science cubes sx = np.repeat(recenter[2], len(self.sci_list)) else: raise ValueError("Centering method is not recognised. Use either `speckle', `2dfit' or `as_observed'.") if plot: # save the shift plot plt.savefig(self.outpath+'shifts-xy_{}.pdf'.format(self.recenter_method), bbox_inches='tight', pad_inches=0.1) plt.close('all') del recenter if debug: get_available_memory() # LOAD IN REAL_NDIT_SCI # Load original cubes, shift them, and create master cube if crop_sz is not None: crop = True if not crop_sz % 2: crop_sz -= 1 print('Crop size not odd, adapted to {}'.format(crop_sz), flush=True) print('Cropping to {} pixels'.format(crop_sz), flush=True) tmp_tmp = np.zeros([int(np.sum(self.real_ndit_sci)), crop_sz, crop_sz]) else: tmp_tmp = np.zeros([int(np.sum(self.real_ndit_sci)), ny, nx]) angles_1dvector = np.zeros([int(np.sum(self.real_ndit_sci))]) # empty array for derot angles, length of number of frames if verbose: print('Shifting frames and creating master science cube', flush=True) for sc, fits_name in enumerate(self.sci_list): tmp = open_fits(self.inpath+'4_sky_subtr_'+fits_name, verbose=debug) # opens science cube if crop: tmp = cube_crop_frames(tmp, crop_sz, force=False, verbose=debug, full_output=False) dim = int(self.real_ndit_sci[sc]) # gets the integer dimensions of this science cube for dd in range(dim): # dd goes from 0 to the largest dimension tmp_tmp[int(np.sum(self.real_ndit_sci[:sc]))+dd] = frame_shift(tmp[dd], shift_y=sy[sc], shift_x=sx[sc], imlib='vip-fft') # this line applies the shifts to all the science images in the cube the loop is currently on. it also converts all cubes to a single long cube by adding the first dd frames, then the next dd frames from the next cube and so on angles_1dvector[int(np.sum(self.real_ndit_sci[:sc]))+dd] = self.derot_angles_cropped[sc][dd] # turn 2d rotation file into a vector here same as for the mastercube above # sc*ndit+dd i don't think this line works for variable sized cubes if debug: get_available_memory() print('Science cube number: {}'.format(sc+1), flush=True) # write all the shifts write_fits(self.outpath+'x_shifts.fits', sx, verbose=debug) # writes the x shifts to the file write_fits(self.outpath+'y_shifts.fits', sy, verbose=debug) # writes the y shifts to the file write_fits(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source']), tmp_tmp, verbose=debug) # makes the master cube write_fits(self.outpath+'derot_angles.fits', angles_1dvector, verbose=debug) # writes the 1D array of derotation angles if verbose: print('Shifts applied, master cube saved', flush=True) del tmp_tmp, sx, sy, angles_1dvector def bad_frame_removal(self, pxl_shift_thres=0.5, sub_frame_sz=31, verbose=True, debug=False, plot=True): """ For removing outlier frames often caused by AO errors. To be run after recentering is complete. Takes the recentered mastercube and removes frames with a shift greater than a user defined pixel threshold in x or y above the median shift. It then takes the median of those cubes and correlates them to the median combined mastercube. Removes all those frames below the threshold from the mastercube and rotation file, then saves both as new files for use in post processing Parameters: ---------- pxl_shift_thres : float, in units of pixels. Default is 0.5 pixels. Any shifts in the x or y direction greater than this threshold will cause the frame/s to be labelled as bad and thus removed. May required a stricter threshold depending on the dataset sub_frame_sz : integer, must be odd. Default is 31. This sets the cropping during frame correlation to the median debug : bool Will show open and save messages for FITS files plot : bool Will write the correlation plot to file if True, False will not """ if verbose: print('######### Beginning bad frame removal #########', flush=True) if not sub_frame_sz % 2: sub_frame_sz -= 1 print('WARNING: Bad frame sub image size not odd. Adjusted to {} px'.format(sub_frame_sz), flush=True) angle_file = open_fits(self.outpath+'derot_angles.fits', verbose=debug) # opens the rotation file recentered_cube = open_fits(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source']), verbose=debug) # loads the master cube # open x shifts file for the respective method x_shifts = open_fits(self.outpath+"x_shifts.fits", verbose=debug) median_sx = np.median(x_shifts) # median of x shifts # opens y shifts file for the respective method y_shifts = open_fits(self.outpath+"y_shifts.fits", verbose=debug) median_sy = np.median(y_shifts) # median of y shifts # self.ndit came from the z dimension of the first calibrated science cube above in recentering # x_shifts_long = np.zeros([len(self.sci_list)*self.ndit]) # list with number of cubes times number of frames in each cube as the length # y_shifts_long = np.zeros([len(self.sci_list)*self.ndit]) # long are shifts to be applied to each frame in each cube x_shifts_long = np.zeros([int(np.sum(self.real_ndit_sci))]) y_shifts_long = np.zeros([int(np.sum(self.real_ndit_sci))]) for i in range(len(self.sci_list)): # from 0 to the length of sci_list ndit = self.real_ndit_sci[i] # gets the dimensions of the cube x_shifts_long[i*ndit:(i+1)*ndit] = x_shifts[i] # sets the average shifts of all frames in that cube y_shifts_long[i*ndit:(i+1)*ndit] = y_shifts[i] write_fits(self.outpath+'x_shifts_long.fits', x_shifts_long, verbose=debug) # saves shifts to file write_fits(self.outpath+'y_shifts_long.fits', y_shifts_long, verbose=debug) x_shifts = x_shifts_long y_shifts = y_shifts_long if verbose: print("x shift median:", median_sx) print("y shift median:", median_sy, flush=True) bad = [] good = [] i = 0 shifts = list(zip(x_shifts, y_shifts)) bar = ProgBar(len(x_shifts), stream=1, title='Running pixel shift check...') for sx, sy in shifts: # iterate over the shifts to find any greater or less than pxl_shift_thres pixels from median if abs(sx) < ((abs(median_sx)) + pxl_shift_thres) and abs(sx) > ((abs(median_sx)) - pxl_shift_thres) and abs(sy) < ((abs(median_sy)) + pxl_shift_thres) and abs(sy) > ((abs(median_sy)) - pxl_shift_thres): good.append(i) else: bad.append(i) i += 1 bar.update() # only keeps the files that weren't shifted above the threshold frames_pxl_threshold = recentered_cube[good] # only keeps the corresponding derotation entry for the frames that were kept angle_pxl_threshold = angle_file[good] del recentered_cube, angle_file if verbose: print('Frames within pixel shift threshold:', len(frames_pxl_threshold)) print('########### Median combining {} frames for correlation check... ###########'.format( len(frames_pxl_threshold)), flush=True) # makes array of good frames from the recentered mastercube subarray = cube_crop_frames(frames_pxl_threshold, size=sub_frame_sz, verbose=verbose) # crops all the frames to a common size frame_ref = np.nanmedian(subarray, axis=0) # median frame of remaining cropped frames, can be sped up with multi-processing if verbose: print('Running frame correlation check...', flush=True) # calculates correlation threshold using the median of the Pearson correlation of all frames, minus 1 standard deviation # frame_ref = frame_crop(tmp_median, size = sub_frame_sz, verbose=verbose) # crops the median of all frames to a common size distances = cube_distance(subarray, frame_ref, mode='full', dist='pearson', plot=plot) # calculates the correlation of each frame to the median and saves as a list if plot: # save a plot of distances compared to the median for each frame if set to 'save' plt.savefig(self.outpath+'distances.pdf', format='pdf', bbox_inches='tight', pad_inches=0.1) plt.close('all') correlation_thres = np.median(distances) - np.std(distances) # threshold is the median of the distances minus one stddev good_frames, bad_frames = cube_detect_badfr_correlation(subarray, frame_ref=frame_ref, dist='pearson', threshold=correlation_thres, plot=plot, verbose=verbose) if plot: plt.savefig(self.outpath+'frame_correlation.pdf', format='pdf', bbox_inches='tight', pad_inches=0.1) plt.close('all') # only keeps the files that were above the correlation threshold frames_threshold = frames_pxl_threshold[good_frames] del frames_pxl_threshold if verbose: print('Frames within correlation threshold:', len(frames_threshold), flush=True) # only keeps the derotation entries for the good frames above the correlation threshold angle_threshold = angle_pxl_threshold[good_frames] # saves the good frames to a new file, and saves the derotation angles to a new file write_fits(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source']), frames_threshold, verbose=debug) write_fits(self.outpath+'derot_angles.fits', angle_threshold, verbose=debug) if verbose: print('Saved good frames and their respective rotations to file', flush=True) del frames_threshold def crop_cube(self, arcsecond_diameter=3, verbose=True, debug=False): """ Crops frames in the master cube after recentering and bad frame removal. Recommended for post-processing ie. PCA in concentric annuli. If the provided arcsecond diameter happens to be larger than the cropping provided in recentering, no cropping will occur. Parameters ---------- arcsecond_diameter : float or int Size of the frames diameter in arcseconds. Default of 3" for NaCO corresponds to 111x111 (x,y) pixel frames. Note this is a diameter, not a radius. verbose : bool optional If True extra messages of completion are shown. debug : bool Prints extra information during cropping, and when FITS are opened or saved. Writes to FITS file ------- cropped cube : numpy ndarray Cube with cropped frames """ if not isfile(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source'])): raise NameError('Missing master cube from recentering and bad frame removal!') master_cube = open_fits(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source']), verbose=debug) _, ny, _ = master_cube.shape crop_size = int(np.ceil(arcsecond_diameter / self.dataset_dict['pixel_scale'])) # rounds up if not crop_size % 2: crop_size += 1 print('Crop size not odd, increased to {}'.format(crop_size), flush=True) if debug: print('Input crop size is {} pixels'.format(crop_size), flush=True) if crop_size >= ny: print('Crop size is larger than the frame size. Skipping cropping...', flush=True) else: if verbose: print('######### Running frame cropping #########', flush=True) start_time = time_ini(verbose=False) master_cube = cube_crop_frames(master_cube, crop_size, force=False, verbose=debug, full_output=False) if verbose: timing(start_time) print('Cropping complete', flush=True) write_fits(self.outpath + '{}_master_cube.fits'.format(self.dataset_dict['source']), master_cube, verbose=debug) del master_cube def median_binning(self, binning_factor=10, verbose=True, debug=False): """ Median combines the frames within the master science cube as per the binning factor, and makes the necessary changes to the derotation file. Temporal sub-sampling of data is useful to significantly reduce post-processing computation time, however we risk using a temporal window that equates to the decorrelation rate of the PSF. This is generally noticeable for separations beyond 0.5" Parameters: ---------- binning_factor: int, default = 10 Defines how many frames to median combine verbose : bool Whether to print completion, timing and binning information debug : bool Prints when FITS files are opened and saved Writes to FITS file: ---------- the binned master cube the binned derotation angles """ if not isinstance(binning_factor, int) and not isinstance(binning_factor, list) and \ not isinstance(binning_factor, tuple): # if it isn't int, tuple or list then raise an error raise TypeError('Invalid binning_factor! Use either int, list or tuple') if not isfile(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source'])): raise NameError('Missing master cube from recentering and bad frame removal!') if not isfile(self.outpath+'derot_angles.fits'): raise NameError('Missing derotation angles files from recentering and bad frame removal!') bin_fac = int(binning_factor) # ensure integer if bin_fac != 1 and bin_fac != 0: master_cube = open_fits(self.outpath + '{}_master_cube.fits'.format(self.dataset_dict['source']), verbose=debug) derot_angles = open_fits(self.outpath + 'derot_angles.fits', verbose=debug) if verbose: start_time = time_ini(verbose=False) cube_bin, derot_angles_bin = cube_subsample(master_cube, n=bin_fac, mode="median", parallactic=derot_angles, verbose=verbose) if verbose: timing(start_time) # prints how long median binning took write_fits(self.outpath+'{}_master_cube.fits'.format(self.dataset_dict['source']), cube_bin, verbose=debug) write_fits(self.outpath+'derot_angles.fits', derot_angles_bin, verbose=debug) del master_cube, derot_angles, cube_bin, derot_angles_bin else: print('Binning factor is {}, skipping binning...'.format(binning_factor), flush=True)
IainHammond/NACO_pipeline
naco_pip/NACO_preproc.py
NACO_preproc.py
py
25,286
python
en
code
null
github-code
6
[ { "api_name": "matplotlib.use", "line_number": 27, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 45, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 47, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 53, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 58, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 59, "usage_type": "call" }, { "api_name": "os.system", "line_number": 60, "usage_type": "call" }, { "api_name": "os.system", "line_number": 61, "usage_type": "call" }, { "api_name": "os.system", "line_number": 62, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 101, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 112, "usage_type": "call" }, { "api_name": "pyprind.ProgBar", "line_number": 113, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 121, "usage_type": "call" }, { "api_name": "numpy.median", "line_number": 122, "usage_type": "call" }, { "api_name": "vip_hci.config.get_available_memory", "line_number": 123, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 125, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 129, "usage_type": "call" }, { "api_name": "vip_hci.config.get_available_memory", "line_number": 138, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_recenter_via_speckles", "line_number": 139, "usage_type": "call" }, { "api_name": "vip_hci.config.get_available_memory", "line_number": 150, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_recenter_2dfit", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.median", "line_number": 165, "usage_type": "call" }, { "api_name": "vip_hci.var.frame_center", "line_number": 166, "usage_type": "call" }, { "api_name": "vip_hci.preproc.frame_crop", "line_number": 168, "usage_type": "call" }, { "api_name": "hciplot.plot_frames", "line_number": 169, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 169, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 172, "usage_type": "attribute" }, { "api_name": "vip_hci.preproc.cube_recenter_2dfit", "line_number": 173, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 176, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 181, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 181, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 182, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 182, "usage_type": "name" }, { "api_name": "vip_hci.config.get_available_memory", "line_number": 186, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 200, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 200, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 204, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_crop_frames", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 209, "usage_type": "call" }, { "api_name": "vip_hci.preproc.frame_shift", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 210, "usage_type": "call" }, { "api_name": "vip_hci.config.get_available_memory", "line_number": 213, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 217, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 218, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 219, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 220, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 253, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 254, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.median", "line_number": 258, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 261, "usage_type": "call" }, { "api_name": "numpy.median", "line_number": 262, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 270, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 270, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 277, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 278, "usage_type": "call" }, { "api_name": "pyprind.ProgBar", "line_number": 291, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_crop_frames", "line_number": 312, "usage_type": "call" }, { "api_name": "numpy.nanmedian", "line_number": 313, "usage_type": "call" }, { "api_name": "vip_hci.stats.cube_distance", "line_number": 321, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 323, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 323, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 324, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 324, "usage_type": "name" }, { "api_name": "numpy.median", "line_number": 325, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 325, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_detect_badfr_correlation", "line_number": 327, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 330, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 330, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 331, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 331, "usage_type": "name" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 342, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 344, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 370, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 373, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 376, "usage_type": "call" }, { "api_name": "vip_hci.config.time_ini", "line_number": 390, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_crop_frames", "line_number": 391, "usage_type": "call" }, { "api_name": "vip_hci.config.timing", "line_number": 393, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 395, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 425, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 428, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 433, "usage_type": "call" }, { "api_name": "vip_hci.fits.open_fits", "line_number": 435, "usage_type": "call" }, { "api_name": "vip_hci.config.time_ini", "line_number": 437, "usage_type": "call" }, { "api_name": "vip_hci.preproc.cube_subsample", "line_number": 438, "usage_type": "call" }, { "api_name": "vip_hci.config.timing", "line_number": 441, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 442, "usage_type": "call" }, { "api_name": "vip_hci.fits.write_fits", "line_number": 444, "usage_type": "call" } ]
3490973159
# -*- coding: utf-8 -*- """ Created on Mon Aug 31 00:40:46 2020 @author: Rashidul hasan (student id-1512027) depertmant of naval architucture and marine engineering Bangladesh university of engineering and technology By using this moddule we can see our desiarbale design which is created by using design module """ import numpy as np from scipy.sparse import coo_matrix from scipy.sparse.linalg import spsolve from matplotlib import colors import matplotlib.pyplot as plt class design_view: def __init__(self,x,nelx,nely): self.x=x self.nelx=nelx self.nely=nely #x=volfrac * np.ones((nely*nelx),dtype=float) xPhys=x.copy() v=-xPhys.reshape((nelx,nely)).T plt.ion() # Ensure that redrawing is possible fig,ax = plt.subplots() im = ax.imshow(v, cmap='gray',\ interpolation='none',norm=colors.Normalize(vmin=-1,vmax=0)) fig.show()
rashedhasan007/A-topology-and-optimisation-software-
A-topology-and-optimisation-software--main/view.py
view.py
py
954
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.ion", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.colors.Normalize", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.colors", "line_number": 29, "usage_type": "name" } ]
18110173657
from django.contrib import admin from django.urls import path, include, re_path as url # 스웨거 설정 from rest_framework.permissions import AllowAny from drf_yasg.views import get_schema_view from drf_yasg import openapi from django.conf import settings from django.conf.urls.static import static # 스웨거 설정 schema_url_patterns = [ path('api/user/', include('user.urls')), path('api/user/', include('allauth.urls')), ] schema_view_v1 = get_schema_view( openapi.Info( title="drfLogin Test API", default_version='v1', description="Development drfLogin Test Document", terms_of_service="https://www.google.com/policies/terms/", ), public=True, permission_classes=(AllowAny,), patterns=schema_url_patterns, ) urlpatterns = [ path('admin/', admin.site.urls), path('api/user/', include('user.urls')), path('api/user/', include('allauth.urls')), path('blog/', include('blog.urls')), ] if settings.DEBUG: urlpatterns += [ # Auto DRF API docs url(r'^swagger(?P<format>\.json|\.yaml)$', schema_view_v1.without_ui(cache_timeout=0), name='schema-json'), url(r'^swagger/$', schema_view_v1.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), url(r'^redoc/$', schema_view_v1.with_ui('redoc', cache_timeout=0), name='schema-redoc'), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
Kim-Link/drfLogin
drfLogin/drfLogin/urls.py
urls.py
py
1,437
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 15, "usage_type": "call" }, { "api_name": "drf_yasg.views.get_schema_view", "line_number": 18, "usage_type": "call" }, { "api_name": "drf_yasg.openapi.Info", "line_number": 19, "usage_type": "call" }, { "api_name": "drf_yasg.openapi", "line_number": 19, "usage_type": "name" }, { "api_name": "rest_framework.permissions.AllowAny", "line_number": 26, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 31, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 31, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 32, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 32, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 33, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 33, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 34, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 34, "usage_type": "call" }, { "api_name": "django.conf.settings.DEBUG", "line_number": 38, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 38, "usage_type": "name" }, { "api_name": "django.urls.re_path", "line_number": 41, "usage_type": "call" }, { "api_name": "django.urls.re_path", "line_number": 42, "usage_type": "call" }, { "api_name": "django.urls.re_path", "line_number": 43, "usage_type": "call" }, { "api_name": "django.conf.urls.static.static", "line_number": 46, "usage_type": "call" }, { "api_name": "django.conf.settings.MEDIA_URL", "line_number": 46, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 46, "usage_type": "name" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 46, "usage_type": "attribute" } ]
4769430747
#!/usr/bin/env python import sys import glob, os import argparse def insert_track_id(label_file, track_ids): labels_with_track = [] with open(label_file, 'r') as yolo_f: labels = yolo_f.readlines() for i, label in enumerate(labels): split_label = label.split() if len(split_label) < 6: split_label.insert(1, track_ids[i]) # Insert track ID into label else: print(f'{label_file} should have track ID already') labels_with_track.append(' '.join(split_label) + '\n') with open(label_file, 'w') as yolo_f: yolo_f.writelines(labels_with_track) def main(args): mot_labels_path = os.path.join(args.mot_jde_dir, 'labels_with_ids') yolo_train_labels_path = os.path.join(args.yolo_dir, 'obj_train_data') yolo_valid_labels_path = os.path.join(args.yolo_dir, 'obj_valid_data') for label_file in glob.glob(os.path.join(mot_labels_path, '*')): track_ids = [] # Format: [class] [track_id] [x] [y] [width] [height] with open(label_file, 'r') as mot_f: mot_labels = mot_f.readlines() for label in mot_labels: track_ids.append(label.split()[1]) label_filename = os.path.splitext(os.path.basename(label_file))[0] task_id = label_filename[:-6] frame_id = label_filename[-6:] yolo_label_filename = f'{task_id}_{frame_id}.txt' train_label = os.path.join(yolo_train_labels_path, yolo_label_filename) valid_label = os.path.join(yolo_valid_labels_path, yolo_label_filename) if os.path.exists(train_label): assert not os.path.exists(valid_label) insert_track_id(train_label, track_ids) elif os.path.exists(valid_label): insert_track_id(valid_label, track_ids) else: print(f'label file {yolo_label_filename} not found. Skipping...') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Transcribe track IDs to yolo format from MOT JDE format.') parser.add_argument('mot_jde_dir') parser.add_argument('yolo_dir') args = parser.parse_args() main(args)
Salmon-Computer-Vision/salmon-computer-vision
utils/scribe_yolo_track.py
scribe_yolo_track.py
py
2,022
python
en
code
4
github-code
6
[ { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path", "line_number": 41, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path", "line_number": 42, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 53, "usage_type": "call" } ]
20825994964
import json from pandas import DataFrame import pandas as pd import requests import emails file_name = 'teste.csv' def getJson(): r = requests.get('https://api.biscoint.io/v1/ticker?base=BTC&quote=BRL') df_new = pd.DataFrame() df = pd.DataFrame(json.loads(r.text)) date = pd.Timestamp.date(pd.Timestamp( df['data']['timestamp'], tz='America/Fortaleza')) time = pd.Timestamp.time(pd.Timestamp( df['data']['timestamp'], tz='America/Fortaleza')).strftime('%H:%M:%S') df_new['ask'] = [df['data']['ask']] df_new['bid'] = [df['data']['bid']] df_new['high'] = [df['data']['high']] df_new['last'] = [df['data']['last']] df_new['low'] = [df['data']['low']] df_new['vol'] = [df['data']['vol']] df_new['date'] = [date] df_new['time'] = [time] last = df_new['last'][0] low = df_new['low'][0] diff = (1-(last / low)) if diff > 0.04: high = df_new['high'][0] emails.send_email(last, low, diff, high) with open(file_name, 'a') as f: df_new.to_csv(f, header=f.tell() == 0) if __name__ == '__main__': # testar() getJson()
HumbertoLimaa/mysite
utils.py
utils.py
py
1,135
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 11, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 13, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 14, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.Timestamp.date", "line_number": 15, "usage_type": "call" }, { "api_name": "pandas.Timestamp", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pandas.Timestamp.time", "line_number": 17, "usage_type": "call" }, { "api_name": "pandas.Timestamp", "line_number": 17, "usage_type": "attribute" }, { "api_name": "emails.send_email", "line_number": 35, "usage_type": "call" } ]
29432109275
from collections import defaultdict, Counter class Solution: def groupAnagrams(self, strs): ana_dict = defaultdict(list) for s in strs: # ana_dict[tuple(sorted(Counter(s)))].append(s) count = [0]*26 for c in s: count[ord(c)-ord('a')] += 1 ana_dict[tuple(count)].append(s) return ana_dict.values() solver=Solution() strs = ["ddddddddddg","dgggggggggg"] print(solver.groupAnagrams(strs))
mintaewon/coding_leetcode
0909/P53_hoin.py
P53_hoin.py
py
478
python
en
code
0
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 4, "usage_type": "call" } ]
25033146898
import decimal from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.db import IntegrityError from django.http import HttpResponseRedirect from django.shortcuts import render from django.urls import reverse from annoying.functions import get_object_or_None from .forms import ListingForm from .models import User, Listing, Bid, Comment, Category def login_view(request): if request.method == "POST": # Attempt to sign user in username = request.POST["username"] password = request.POST["password"] user = authenticate(request, username=username, password=password) # Check if authentication successful if user is not None: login(request, user) return HttpResponseRedirect(reverse("auctions:index")) return render(request, "auctions/login.html", { "message": "Invalid username and/or password." }) return render(request, "auctions/login.html") def logout_view(request): logout(request) return HttpResponseRedirect(reverse("auctions:index")) def register(request): if request.method == "POST": username = request.POST["username"] email = request.POST["email"] # Ensure password matches confirmation password = request.POST["password"] confirmation = request.POST["confirmation"] if password != confirmation: return render(request, "auctions/register.html", { "message": "Passwords must match." }) # Attempt to create new user try: user = User.objects.create_user(username, email, password) user.save() except IntegrityError: return render(request, "auctions/register.html", { "message": "Username already taken." }) login(request, user) return HttpResponseRedirect(reverse("auctions:index")) return render(request, "auctions/register.html") def index(request): listings = Listing.objects.filter(active=True) # get highest price if bids exist for listing in listings: # starting with starting price highest_bid = listing.starting_price bids = listing.listing_bids.all() if bids: # find max of bid amounts highest_bid = max(bid.amount for bid in bids) setattr(listing, "price", highest_bid) return render(request, "auctions/index.html", { "listings": listings, }) def get_listing(request, listing_id): listing_obj = get_object_or_None(Listing, id=listing_id) if listing_obj is None: return render(request, "auctions/not_found.html", { "errMsg": "Listing Not Found" }) # get all necessary data for listing page bids = listing_obj.listing_bids.all() comments = listing_obj.listing_comments.all() # preset data user = None user_owned = False watched_items = None highest_bid_amount = listing_obj.starting_price minimum_bid_amount = listing_obj.starting_price user_highest_bid = False # if there is a current user, # determine if listing in user watchlist if request.user.is_authenticated: user = User.objects.get(username=request.user) watched_items = user.watched_items.all() # determine if listing belongs to current user if user == listing_obj.owner: user_owned = True if bids.count(): # get bid object with highest amount highest_bid = bids.order_by("-amount").first() highest_bid_amount = highest_bid.amount # set the minimum value for the next future bid minimum_bid_amount = highest_bid.amount + decimal.Decimal(0.01) # determine if the current user is the current highest bidder if highest_bid.bidder == user: user_highest_bid = True return render(request, "auctions/listing.html", { "listing": listing_obj, "user_owned": user_owned, "bids": bids, "comments": comments, "category": listing_obj.category, "watchedItems": watched_items, "minimum_bid": minimum_bid_amount, "current_price": highest_bid_amount, "user_highest_bid": user_highest_bid }) def category_list(request): categories = Category.objects.all() return render(request, "auctions/category_list.html", { "categories": categories }) def category_filter(request, name): cat_obj = get_object_or_None(Category, name=name) if cat_obj is not None: return render(request, "auctions/category_results.html", { "category": cat_obj, "listings": cat_obj.listings.all(), }) return render(request, "auctions/not_found.html", { "errMsg": "Category Not Found" }) @login_required def get_watchlist(request, username): user = User.objects.get(username=username) watched_items = user.watched_items.all() return render(request, "auctions/watchlist.html", { "listings": watched_items, "watchedItems": watched_items }) @login_required def toggle_watchlist_listing(request): if request.method == "POST": user = User.objects.get(username=request.POST["username"]) try: listing = user.watched_items.get(id=request.POST["listing_id"]) except Listing.DoesNotExist: listing = None if listing: # if listing exists in the user's watched items, remove it user.watched_items.remove(listing) else: # otherwise, add it listing = Listing.objects.get(id=request.POST["listing_id"]) user.watched_items.add(listing) HttpResponseRedirect( reverse("auctions:listing", kwargs={"listing_id": request.POST["listing_id"]})) return HttpResponseRedirect(reverse("auctions:index")) @ login_required def new_listing(request): if request.method == "POST": listing = ListingForm(request.POST) if listing.is_valid(): listing_obj = listing.save(commit=False) user = User.objects.get(username=request.user) listing_obj.owner = user listing_obj.active = True listing_obj.save() return index(request) return HttpResponseRedirect(reverse("auctions:new_listing")) # get method for new listing form = ListingForm() return render(request, "auctions/new_listing.html", { "form": form }) @ login_required def close_listing(request): if request.method == "POST": listing_id = request.POST["listing_id"] listing_obj = get_object_or_None(Listing, id=listing_id) if listing_obj: listing_obj.active = False listing_obj.save() HttpResponseRedirect( reverse("auctions:listing", kwargs={"listing_id": request.POST["listing_id"]})) @ login_required def bid_on_listing(request): if request.method == "POST": user = User.objects.get(username=request.POST["username"]) listing_id = request.POST["listing_id"] listing_obj = get_object_or_None(Listing, id=listing_id) if listing_obj: # only allow users who do not own listing to bid if user != listing_obj.owner: new_bid_price = request.POST["new_bid"] bids = listing_obj.listing_bids.all() # starting highest bid is just the starting price of listing highest_bid = listing_obj.starting_price if bids: highest_bid = max(bid.amount for bid in bids) # complicated checkpoint: allow the new bid to be created if: # there are bids and the new bid is higher than the previous # highest bid # or there are no bids and the new bid is at least the amount # of the starting price if ((bids and decimal.Decimal(new_bid_price) > highest_bid) or (not bids and decimal.Decimal(new_bid_price) >= highest_bid)): # create new bid object associated with listing new_bid_obj = Bid(bidder=user, bid_listing=listing_obj, amount=new_bid_price) new_bid_obj.save() HttpResponseRedirect( reverse("auctions:listing", kwargs={"listing_id": request.POST["listing_id"]})) return HttpResponseRedirect(reverse("auctions:index")) @ login_required def comment_on_listing(request): if request.method == "POST": user = User.objects.get(username=request.POST["username"]) listing_id = request.POST["listing_id"] listing_obj = get_object_or_None(Listing, id=listing_id) if listing_obj: # create new comment associated with listing new_comment = request.POST["new_comment"] new_comment_obj = Comment(commenter=user, com_listing=listing_obj, text=new_comment) new_comment_obj.save() return HttpResponseRedirect( reverse("auctions:listing", kwargs={"listing_id": request.POST["listing_id"]})) return HttpResponseRedirect(reverse("auctions:index"))
csloan29/HES-e-33a-web-django
commerce/auctions/views.py
views.py
py
9,574
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.authenticate", "line_number": 21, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 25, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 26, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 26, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 32, "usage_type": "call" }, { "api_name": "django.contrib.auth.logout", "line_number": 36, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 37, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 37, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 49, "usage_type": "call" }, { "api_name": "models.User.objects.create_user", "line_number": 55, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 55, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 55, "usage_type": "name" }, { "api_name": "django.db.IntegrityError", "line_number": 57, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 58, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 61, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 62, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 62, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 64, "usage_type": "call" }, { "api_name": "models.Listing.objects.filter", "line_number": 68, "usage_type": "call" }, { "api_name": "models.Listing.objects", "line_number": 68, "usage_type": "attribute" }, { "api_name": "models.Listing", "line_number": 68, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 78, "usage_type": "call" }, { "api_name": "annoying.functions.get_object_or_None", "line_number": 84, "usage_type": "call" }, { "api_name": "models.Listing", "line_number": 84, "usage_type": "argument" }, { "api_name": "django.shortcuts.render", "line_number": 86, "usage_type": "call" }, { "api_name": "models.User.objects.get", "line_number": 105, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 105, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 105, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 116, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 122, "usage_type": "call" }, { "api_name": "models.Category.objects.all", "line_number": 136, "usage_type": "call" }, { "api_name": "models.Category.objects", "line_number": 136, "usage_type": "attribute" }, { "api_name": "models.Category", "line_number": 136, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 137, "usage_type": "call" }, { "api_name": "annoying.functions.get_object_or_None", "line_number": 143, "usage_type": "call" }, { "api_name": "models.Category", "line_number": 143, "usage_type": "argument" }, { "api_name": "django.shortcuts.render", "line_number": 145, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 149, "usage_type": "call" }, { "api_name": "models.User.objects.get", "line_number": 156, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 156, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 156, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 158, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 154, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 167, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 167, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 167, "usage_type": "name" }, { "api_name": "models.Listing.DoesNotExist", "line_number": 170, "usage_type": "attribute" }, { "api_name": "models.Listing", "line_number": 170, "usage_type": "name" }, { "api_name": "models.Listing.objects.get", "line_number": 177, "usage_type": "call" }, { "api_name": "models.Listing.objects", "line_number": 177, "usage_type": "attribute" }, { "api_name": "models.Listing", "line_number": 177, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 179, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 180, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 182, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 182, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 164, "usage_type": "name" }, { "api_name": "forms.ListingForm", "line_number": 188, "usage_type": "call" }, { "api_name": "models.User.objects.get", "line_number": 191, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 191, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 191, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 196, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 196, "usage_type": "call" }, { "api_name": "forms.ListingForm", "line_number": 198, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 199, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 185, "usage_type": "name" }, { "api_name": "annoying.functions.get_object_or_None", "line_number": 208, "usage_type": "call" }, { "api_name": "models.Listing", "line_number": 208, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 212, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 213, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 204, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 220, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 220, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 220, "usage_type": "name" }, { "api_name": "annoying.functions.get_object_or_None", "line_number": 222, "usage_type": "call" }, { "api_name": "models.Listing", "line_number": 222, "usage_type": "argument" }, { "api_name": "decimal.Decimal", "line_number": 237, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 238, "usage_type": "call" }, { "api_name": "models.Bid", "line_number": 241, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 245, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 246, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 248, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 248, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 217, "usage_type": "name" }, { "api_name": "models.User.objects.get", "line_number": 254, "usage_type": "call" }, { "api_name": "models.User.objects", "line_number": 254, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 254, "usage_type": "name" }, { "api_name": "annoying.functions.get_object_or_None", "line_number": 256, "usage_type": "call" }, { "api_name": "models.Listing", "line_number": 256, "usage_type": "argument" }, { "api_name": "models.Comment", "line_number": 260, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 264, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 265, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 267, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 267, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 251, "usage_type": "name" } ]
43291543351
import math import os import cv2 from ultralytics import YOLO from people import People from car import Car video = os.path.join('.', 'videos', 'Casa-Ch.mp4') video_cap = cv2.VideoCapture(video) fps = video_cap.get(cv2.CAP_PROP_FPS) pixels = int((24/fps)*15) ret, frame = video_cap.read() altura, largura, canais = frame.shape model = YOLO("yolov8n.pt") carro = None persons = [] personsT = [] frameCount = 0 detection_threshold = 0.7 flag = False centerParkX = (215 + 506) / 2 centerParkY = (89 + 380) / 2 stopedCars = [] def tracking(): flag_2 = False for i in range(len(persons)): dist = persons[i].getdistance(bcenterX, bcenterY, frameCount, fps) if not flag_2 and dist < pixels: boxpeople = frame[y1:y2, x1:x2] persons[i].compare_bouding(boxpeople) persons[i].set_codinates(x1, x2, y1, y2) persons[i].set_lastframe(frameCount) persons[i].reverse_track() flag_2 = True if not flag_2 and len(persons) < pessoas: boundingboxpeople = frame[y1:y2, x1:x2] person1 = People(boundingboxpeople, x1, x2, y1, y2, frameCount) persons.append(person1) for cod in range(len(persons)): if persons[cod].get_tracking(): org = (persons[cod].get_cx(), persons[cod].get_cy() - 7) persons[cod].reverse_track() cv2.circle(frame, (bcenterX, bcenterY), 5, (0, 255, 0), -1) cv2.putText(frame, str(cod), org, 0, 1, (0, 0, 255), 2) while ret: frameCount += 1 ret, frame = video_cap.read() frame = cv2.resize(frame, (640, 480)) results = model(frame) for result in results: pessoas = sum(1 for elemento in result.boxes.data.tolist() if elemento[-1] == 0.0) for r in result.boxes.data.tolist(): x1, y1, x2, y2, score, class_id = r x1 = int(x1) y1 = int(y1) x2 = int(x2) y2 = int(y2) class_id = int(class_id) bcenterX = int((x1 + x2)/2) bcenterY = int((y1 + y2)/2) flag = math.hypot(centerParkX - (int(x1 + x2) / 2), centerParkY - (int(y1 + y2) / 2)) < 30 for rmv in range(len(persons)): if persons[rmv].check_lost_track(fps, frameCount): personsT.append(persons.pop(rmv)) personsT[len(personsT)-1].extract_caracteristcs() ''' if class_id == 2 and carro is not None and not flag: carro = None''' if class_id == 2 and carro is None and flag: carro = Car(frame[y1:y2, x1:x2], frameCount, bcenterX, bcenterY) else: if carro is not None: if carro.getStopedTime(fps, frameCount) >= 10 and not carro.get_alerted(): if carro.get_alerted(): stopedCars.append(carro) carro.viewimage(bcenterX, bcenterY) if class_id == 0: #cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 255, 255), 3) if frameCount < 1: boundingBoxPeople = frame[y1:y2, x1:x2] person = People(boundingBoxPeople, x1, x2, y1, y2, frameCount) persons.append(person) else: tracking() cv2.imshow('Camera', frame) cv2.waitKey(1) video_cap.release() cv2.destroyAllWindows()
serjetus/Projeto
src/main.py
main.py
py
3,473
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "cv2.VideoCapture", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.CAP_PROP_FPS", "line_number": 11, "usage_type": "attribute" }, { "api_name": "ultralytics.YOLO", "line_number": 16, "usage_type": "call" }, { "api_name": "people.People", "line_number": 42, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 49, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 50, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 56, "usage_type": "call" }, { "api_name": "math.hypot", "line_number": 69, "usage_type": "call" }, { "api_name": "car.Car", "line_number": 78, "usage_type": "call" }, { "api_name": "people.People", "line_number": 90, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 96, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 99, "usage_type": "call" } ]
70835853948
import csv import argparse import os import sys import numpy as np import torch import torch.cuda from PIL import Image from torch.autograd import Variable from torchvision.transforms import transforms from my.yolov3.easy.net.load_net import load_net from PIL import Image image_size = (96, 96) test_transformations = transforms.Compose([ transforms.ToTensor() ]) def load_trained_net(model_path): print("Begin to load pre-trained net ... ", end="") net = load_net("resnet152") checkpoint = torch.load(model_path) net.load_state_dict(checkpoint['state_dict']) net.eval() print("Finished.") return net def predict(net, ims: list): # Define transformations for the image transformation = test_transformations images_tensor_list = [] for im in ims: w = max(im.size) # 正方形的宽度 im = im.crop((0, 0, w, w)).resize(image_size) # 补成正方形再压缩 image = np.asarray(im) image_tensor = transformation(image) images_tensor_list.append(image_tensor) images_tensor = torch.stack(images_tensor_list) if torch.cuda.is_available(): images_tensor.cuda() # 将输入变为变量 input = Variable(images_tensor) # 预测图像的类 output = net(input) index = output.data.numpy().argmax(axis=1) return index + 1 # [0, C-1] -> [1, C] if __name__ == '__main__': net = load_trained_net("model/model-87-8.477896466274615e-05.pth") image_paths = ["../data/images/0a0bf7bc-e0d7-4f20-abec-039136663d85.jpg", "../data/images/0a0c27d7-2e2a-4817-a715-8182cf07ec9b.jpg", "../data/images/0a00c2a3-a498-452a-ba88-6b9ef514e201.jpg", "../data/images/0a1a5d35-1b30-43ff-87bc-9acdab1567c1.jpg"] ims = [] for image_path in image_paths: im = Image.open(image_path) ims.append(im) results = predict(net, ims) print(results)
NJUCoders/commodity-classification-hard
easy/predict.py
predict.py
py
1,931
python
en
code
0
github-code
6
[ { "api_name": "torchvision.transforms.transforms.Compose", "line_number": 19, "usage_type": "call" }, { "api_name": "torchvision.transforms.transforms", "line_number": 19, "usage_type": "name" }, { "api_name": "torchvision.transforms.transforms.ToTensor", "line_number": 20, "usage_type": "call" }, { "api_name": "torchvision.transforms.transforms", "line_number": 20, "usage_type": "name" }, { "api_name": "my.yolov3.easy.net.load_net.load_net", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 48, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 52, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 70, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 70, "usage_type": "name" } ]
32563261250
""" HTTP endpoints for `station_store` """ from fastapi import HTTPException, status from screfinery import schema from screfinery.crud_routing import EndpointsDef, RouteDef, \ crud_router_factory from screfinery.stores import station_store from screfinery.util import is_user_authorized def authorize(user, scope, item=None): """ Station resource isn't owned by anyone, so don't check ownership with user """ if not is_user_authorized(user, scope): raise HTTPException(status.HTTP_403_FORBIDDEN) station_routes = crud_router_factory( station_store, EndpointsDef( list=RouteDef( request_model=None, response_model=schema.ListResponse[schema.Station], authorize=authorize, ), read=RouteDef( request_model=None, response_model=schema.Station, authorize=authorize, ), create=RouteDef( request_model=schema.StationCreate, response_model=schema.Station, authorize=authorize, ), update=RouteDef( request_model=schema.StationUpdate, response_model=schema.Station, authorize=authorize, ), delete=RouteDef( request_model=None, response_model=None, authorize=authorize, ) ) )
fre-sch/sc-refinery-api
screfinery/routes/station.py
station.py
py
1,371
python
en
code
0
github-code
6
[ { "api_name": "screfinery.util.is_user_authorized", "line_number": 17, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 18, "usage_type": "call" }, { "api_name": "fastapi.status.HTTP_403_FORBIDDEN", "line_number": 18, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 18, "usage_type": "name" }, { "api_name": "screfinery.crud_routing.crud_router_factory", "line_number": 21, "usage_type": "call" }, { "api_name": "screfinery.stores.station_store", "line_number": 22, "usage_type": "argument" }, { "api_name": "screfinery.crud_routing.EndpointsDef", "line_number": 23, "usage_type": "call" }, { "api_name": "screfinery.crud_routing.RouteDef", "line_number": 24, "usage_type": "call" }, { "api_name": "screfinery.schema.ListResponse", "line_number": 26, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 26, "usage_type": "name" }, { "api_name": "screfinery.schema.Station", "line_number": 26, "usage_type": "attribute" }, { "api_name": "screfinery.crud_routing.RouteDef", "line_number": 29, "usage_type": "call" }, { "api_name": "screfinery.schema.Station", "line_number": 31, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 31, "usage_type": "name" }, { "api_name": "screfinery.crud_routing.RouteDef", "line_number": 34, "usage_type": "call" }, { "api_name": "screfinery.schema.StationCreate", "line_number": 35, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 35, "usage_type": "name" }, { "api_name": "screfinery.schema.Station", "line_number": 36, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 36, "usage_type": "name" }, { "api_name": "screfinery.crud_routing.RouteDef", "line_number": 39, "usage_type": "call" }, { "api_name": "screfinery.schema.StationUpdate", "line_number": 40, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 40, "usage_type": "name" }, { "api_name": "screfinery.schema.Station", "line_number": 41, "usage_type": "attribute" }, { "api_name": "screfinery.schema", "line_number": 41, "usage_type": "name" }, { "api_name": "screfinery.crud_routing.RouteDef", "line_number": 44, "usage_type": "call" } ]
27568079162
from sys import platform from pathlib import Path from clang.cindex import Config # -- Project information ----------------------------------------------------- project = 'zenoh-pico' copyright = '2017, 2022 ZettaScale Technology Inc' author = 'ZettaScale Zenoh team' release = '0.11.0.0' # -- General configuration --------------------------------------------------- master_doc = 'index' extensions = ['sphinx_c_autodoc', 'sphinx_c_autodoc.napoleon'] language = 'c' c_autodoc_roots = ['../include/zenoh-pico/api/'] # -- Options for HTML output ------------------------------------------------- html_theme = 'sphinx_rtd_theme' breathe_debug_trace_directives = True if platform == "darwin": LIBCLANG_FILE = Path("/Library/Developer/CommandLineTools/usr/lib/libclang.dylib") LIBCLANG_CELLAR = Path("/usr/local/Cellar/llvm/14.0.6/lib/libclang.dylib") if LIBCLANG_FILE.is_file(): Config.set_library_file(LIBCLANG_FILE) elif LIBCLANG_CELLAR.is_file(): Config.set_library_file(LIBCLANG_CELLAR) else: raise ValueError(f"libclang not found. \nTried: \n {LIBCLANG_FILE}\n {LIBCLANG_CELLAR}") elif platform == "win32": raise ValueError("Windows not supported yet for building docs.") else: Config.set_library_file('/usr/lib/llvm-14/lib/libclang.so.1') # Required for readthedocs
eclipse-zenoh/zenoh-pico
docs/conf.py
conf.py
py
1,328
python
en
code
63
github-code
6
[ { "api_name": "sys.platform", "line_number": 22, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 23, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 24, "usage_type": "call" }, { "api_name": "clang.cindex.Config.set_library_file", "line_number": 26, "usage_type": "call" }, { "api_name": "clang.cindex.Config", "line_number": 26, "usage_type": "name" }, { "api_name": "clang.cindex.Config.set_library_file", "line_number": 28, "usage_type": "call" }, { "api_name": "clang.cindex.Config", "line_number": 28, "usage_type": "name" }, { "api_name": "sys.platform", "line_number": 32, "usage_type": "name" }, { "api_name": "clang.cindex.Config.set_library_file", "line_number": 36, "usage_type": "call" }, { "api_name": "clang.cindex.Config", "line_number": 36, "usage_type": "name" } ]