seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
70373498108
from typing import Optional, Any, Union, Callable import torch from torch import Tensor import torch.nn.functional as F from torch.nn.modules import Module from .linear import Linear from .normalization import LayerNorm from .activation import MultiheadAttention from .dropout import Dropout class TransformerEncoderLayer(Module): r"""Pytorch 2.0 TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). norm_first: if ``True``, layer norm is done prior to attention and feedforward operations, respectively. Otherwise it's done after. Default: ``False`` (after). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) Alternatively, when ``batch_first`` is ``True``: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) >>> src = torch.rand(32, 10, 512) >>> out = encoder_layer(src) Fast path: forward() will use a special optimized implementation described in `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following conditions are met: - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` - training is disabled (using ``.eval()``) - batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``) - activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu`` - at most one of ``src_mask`` and ``src_key_padding_mask`` is passed - if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask`` nor ``src_key_padding_mask`` is passed - the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case unless the caller has manually modified one without modifying the other) If the optimized implementation is in use, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for ``src`` to represent padding more efficiently than using a padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be returned, and an additional speedup proportional to the fraction of the input that is padding can be expected. .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`: https://arxiv.org/abs/2205.14135 """ __constants__ = ["batch_first", "norm_first"] def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None, B: int = 1, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.B = B self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, B=B, **factory_kwargs) # Implementation of Feedforward model self.linear1 = Linear(d_model, dim_feedforward, B=B, **factory_kwargs) self.dropout = Dropout(dropout) self.linear2 = Linear(dim_feedforward, d_model, B=B, **factory_kwargs) self.norm_first = norm_first self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, B=B, **factory_kwargs) self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, B=B, **factory_kwargs) self.dropout1 = Dropout(dropout) self.dropout2 = Dropout(dropout) # For Hydro scaling self.d_model = d_model self.nhead = nhead self.dim_feedforward = dim_feedforward self.dropout_value = dropout self.layer_norm_eps = layer_norm_eps self.batch_first = batch_first # Legacy string support for activation function. if isinstance(activation, str): self.activation = _get_activation_fn(activation) else: self.activation = activation # We can't test self.activation in forward() in TorchScript, # so stash some information about it instead. if activation is F.relu or isinstance(activation, torch.nn.ReLU): self.activation_relu_or_gelu = 1 elif activation is F.gelu or isinstance(activation, torch.nn.GELU): self.activation_relu_or_gelu = 2 else: self.activation_relu_or_gelu = 0 def __setstate__(self, state): super().__setstate__(state) if not hasattr(self, "activation"): self.activation = F.relu def forward( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, is_causal: bool = False, ) -> Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). is_causal: If specified, applies a causal mask as src_mask. Default: ``False``. src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ src_key_padding_mask = F._canonical_mask( mask=src_key_padding_mask, mask_name="src_key_padding_mask", other_type=F._none_or_dtype(src_mask), other_name="src_mask", target_type=src.dtype, ) # Fast path NOT support training # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf why_not_sparsity_fast_path = "" if not src.dim() == 3: why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}" elif self.training: why_not_sparsity_fast_path = "training is enabled" elif not self.self_attn.batch_first: why_not_sparsity_fast_path = "self_attn.batch_first was not True" elif not self.self_attn._qkv_same_embed_dim: why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True" elif not self.activation_relu_or_gelu: why_not_sparsity_fast_path = "activation_relu_or_gelu was not True" elif not (self.norm1.eps == self.norm2.eps): why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps" elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None): why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input" elif self.self_attn.num_heads % 2 == 1: why_not_sparsity_fast_path = "num_head is odd" elif torch.is_autocast_enabled(): why_not_sparsity_fast_path = "autocast is enabled" if not why_not_sparsity_fast_path: tensor_args = ( src, self.self_attn.in_proj_weight, self.self_attn.in_proj_bias, self.self_attn.out_proj.weight, self.self_attn.out_proj.bias, self.norm1.weight, self.norm1.bias, self.norm2.weight, self.norm2.bias, self.linear1.weight, self.linear1.bias, self.linear2.weight, self.linear2.bias, ) # We have to use list comprehensions below because TorchScript does not support # generator expressions. if torch.overrides.has_torch_function(tensor_args): why_not_sparsity_fast_path = "some Tensor argument has_torch_function" elif not all((x.is_cuda or "cpu" in str(x.device)) for x in tensor_args): why_not_sparsity_fast_path = "some Tensor argument is neither CUDA nor CPU" elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args): why_not_sparsity_fast_path = ( "grad is enabled and at least one of query or the " "input/output projection weights or biases requires_grad" ) if not why_not_sparsity_fast_path: merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src) return torch._transformer_encoder_layer_fwd( src, self.self_attn.embed_dim, self.self_attn.num_heads, self.self_attn.in_proj_weight, self.self_attn.in_proj_bias, self.self_attn.out_proj.weight, self.self_attn.out_proj.bias, self.activation_relu_or_gelu == 2, self.norm_first, self.norm1.eps, self.norm1.weight, self.norm1.bias, self.norm2.weight, self.norm2.bias, self.linear1.weight, self.linear1.bias, self.linear2.weight, self.linear2.bias, merged_mask, mask_type, ) x = src if self.norm_first: x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask) x = x + self._ff_block(self.norm2(x)) else: x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask)) x = self.norm2(x + self._ff_block(x)) return x # self-attention block def _sa_block(self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor]) -> Tensor: x = self.self_attn(x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)[0] return self.dropout1(x) # feed forward block def _ff_block(self, x: Tensor) -> Tensor: x = self.linear2(self.dropout(self.activation(self.linear1(x)))) return self.dropout2(x) def extra_repr(self) -> str: s = "{d_model}, {nhead}, dim_feedforward={dim_feedforward}, dropout={dropout_value}, layer_norm_eps={layer_norm_eps}, B={B}" if self.activation != F.relu: if isinstance(self.activation, str): s += ", activation={activation}" else: s += ", activation={activation.__name__}" if self.batch_first: s += ", batch_first=True" if self.norm_first: s += ", norm_first=True" return s.format(**self.__dict__) def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: if activation == "relu": return F.relu elif activation == "gelu": return F.gelu raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
S-Lab-System-Group/Hydro
hydro/fuse_ops/transformer.py
transformer.py
py
12,254
python
en
code
18
github-code
6
[ { "api_name": "torch.nn.modules.Module", "line_number": 14, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 81, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 81, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 81, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 81, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 81, "usage_type": "name" }, { "api_name": "activation.MultiheadAttention", "line_number": 93, "usage_type": "call" }, { "api_name": "linear.Linear", "line_number": 95, "usage_type": "call" }, { "api_name": "dropout.Dropout", "line_number": 96, "usage_type": "call" }, { "api_name": "linear.Linear", "line_number": 97, "usage_type": "call" }, { "api_name": "normalization.LayerNorm", "line_number": 100, "usage_type": "call" }, { "api_name": "normalization.LayerNorm", "line_number": 101, "usage_type": "call" }, { "api_name": "dropout.Dropout", "line_number": 102, "usage_type": "call" }, { "api_name": "dropout.Dropout", "line_number": 103, "usage_type": "call" }, { "api_name": "torch.nn.functional.relu", "line_number": 121, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 121, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 121, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.gelu", "line_number": 123, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 123, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 123, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.relu", "line_number": 131, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 135, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 136, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 136, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 137, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 137, "usage_type": "name" }, { "api_name": "torch.nn.functional._canonical_mask", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 152, "usage_type": "name" }, { "api_name": "torch.nn.functional._none_or_dtype", "line_number": 155, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 155, "usage_type": "name" }, { "api_name": "torch.is_autocast_enabled", "line_number": 179, "usage_type": "call" }, { "api_name": "torch.overrides.has_torch_function", "line_number": 200, "usage_type": "call" }, { "api_name": "torch.overrides", "line_number": 200, "usage_type": "attribute" }, { "api_name": "torch.is_grad_enabled", "line_number": 204, "usage_type": "call" }, { "api_name": "torch._transformer_encoder_layer_fwd", "line_number": 212, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 139, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 246, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 246, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 251, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 257, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 257, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 271, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 271, "usage_type": "name" }, { "api_name": "torch.nn.functional.gelu", "line_number": 273, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 273, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 269, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 269, "usage_type": "name" } ]
20250267652
from mimetypes import init import requests import urllib.parse import json class MapBox: def __init__(self, access_token) -> None: self.root_url = "https://api.mapbox.com/geocoding/v5/mapbox.places/{}.json?types=place%2Caddress%2Cregion&access_token={}" self.access_token = access_token def getCoordinates(self, location_str): if location_str == "": return (0,0) formatted_location = urllib.parse.quote(location_str) url = self.root_url.format(formatted_location, self.access_token) response = requests.get(url) data = json.loads(response.text) if (len(data["features"]) > 0): coordinates = data["features"][0]["center"] if coordinates != None and len(coordinates) == 2: return (coordinates[1], coordinates[0]) else: return (0,0) mb = MapBox("pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dzbDMxMWdrMTJ4b2wzMjlqNXZvNyJ9.K6nzS4XPLOfQ0srwV3M5rw") # https://api.mapbox.com/geocoding/v5/mapbox.places/Collegeville%2C%20PA.json?access_token=pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dyZWJvMzBrMTJxcG0xenBtYTdhZiJ9.uFJLIrcDl4OHJu1S-To2xA # https://api.mapbox.com/geocoding/v5/mapbox.places/Collegeville%2C%20PA..hson?access_token=pk.eyJ1IjoiYW5kcmV3aHVhbmciLCJhIjoiY2t5a3dzbDMxMWdrMTJ4b2wzMjlqNXZvNyJ9.K6nzS4XPLOfQ0srwV3M5rw
andrewhuang427/WashU-Athletics-Demographics
utils/MapBox.py
MapBox.py
py
1,369
python
en
code
0
github-code
6
[ { "api_name": "urllib.parse.parse.quote", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 14, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 14, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 16, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 17, "usage_type": "call" } ]
13126886716
from itertools import combinations def make_all_cases(user_info_array): all_cases_from_user = []; for i in range(5): combination_array = combinations([0,1,2,3],i) for combination in combination_array: case = "" #[] -> ---- for j in range(4): if j in combination: case += user_info_array[j] else : case += "-" all_cases_from_user.append(case); return all_cases_from_user def get_lower_bound(target,array): current_min = 0; current_max = len(array) while current_min < current_max: current_guess = (current_min + current_max) // 2; if array[current_guess] >= target: current_max = current_guess; else: current_min = current_guess +1; return current_max def solution(info, query): answer = []; all_cases_from_users = {} for user_info in info: user_info_array = user_info.split() all_cases_from_user = make_all_cases(user_info_array); for case in all_cases_from_user: if case not in all_cases_from_users.keys(): all_cases_from_users[case] = [int(user_info_array[4])] else : all_cases_from_users[case].append(int(user_info_array[4])) for key in all_cases_from_users.keys(): all_cases_from_users[key].sort() for query_info in query: query_info_array = query_info.split() case = query_info_array[0] + query_info_array[2] +query_info_array[4] + query_info_array[6]; if case in all_cases_from_users.keys(): target_users = all_cases_from_users[case] answer.append(len(target_users) - get_lower_bound(int(query_info_array[7]), target_users)) else : answer.append(0) return answer
39world/Today-Algorithm-Study-
old_test/al_pg_08.py
al_pg_08.py
py
2,005
python
en
code
0
github-code
6
[ { "api_name": "itertools.combinations", "line_number": 7, "usage_type": "call" } ]
477748253
import torch as t import ipdb class AttentionPooling(t.nn.Module): def __init__(self, input_size, hidden_size, dropout): super(AttentionPooling, self).__init__() self.projection1 = t.nn.Linear(input_size, hidden_size, bias=True) self.dropout = t.nn.Dropout(dropout) self.projection2 = t.nn.Linear(hidden_size, 1, bias=False) self.projection3 = t.nn.Linear(input_size, hidden_size) t.nn.init.xavier_normal_(self.projection1.weight) t.nn.init.xavier_normal_(self.projection2.weight) t.nn.init.xavier_normal_(self.projection3.weight) def forward(self, inputs, input_mask=None): """ :param inputs: [B, L, E] :param input_mask: [B, L] :return: [B, E] """ if input_mask is not None: input_mask = input_mask.byte() net = t.nn.functional.tanh(self.projection1(inputs)) # [B, L, H] net = self.projection2(net).squeeze(-1) # [B, L, 1] if input_mask is not None: net = net.masked_fill(1-input_mask, -float('inf')) net = t.nn.functional.softmax(net, -1).unsqueeze(-1) # [B, L, 1] net = inputs * net # [B, L, E] net = net.sum(-2) net = self.projection3(net) # [B, E] return net
CNDPlab/MSMARCO_Reshaped
Predictor/ModelUtils/query_pooling.py
query_pooling.py
py
1,316
python
en
code
1
github-code
6
[ { "api_name": "torch.nn", "line_number": 5, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 8, "usage_type": "attribute" }, { "api_name": "torch.nn.Dropout", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 9, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 10, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.nn.init.xavier_normal_", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.nn.init.xavier_normal_", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn.init.xavier_normal_", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.tanh", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.softmax", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "attribute" } ]
39654407914
import os import logging import yaml from typing import Dict, Any from yacs.config import CfgNode as _CfgNode BASE_KEY = "__BASE__" class CfgNode(_CfgNode): @staticmethod def load_yaml_with_base(filename: str, allow_unsafe: bool = False): with open(filename, 'r') as file: try: cfg = yaml.safe_load(file) except: logger = logging.getLogger(__name__) logger.warning( "Loading config {} with yaml.unsafe_load. Your machine may " "be at risk if the file contains malicious content.".format( filename ) ) file.close() with open(filename, "r") as file: cfg = yaml.unsafe_load(file) def merge_a_into_b(a: Dict[Any, Any], b: Dict[Any, Any]) -> None: # merge dict a into dict b. values in a will overwrite b. for k, v in a.items(): if isinstance(v, dict) and k in b: assert isinstance( b[k], dict ), "Cannot inhert key '{}' from base !".format(k) merge_a_into_b(v, b[k]) else: b[k] = v if BASE_KEY in cfg: base_cfg_file = cfg[BASE_KEY] if base_cfg_file.startswith("~"): base_cfg_file = os.path.expanduser(base_cfg_file) if not any( map(base_cfg_file.startswith, ["/", "https://", "http://"]) ): # the path to base cfg is relative to the config file itself base_cfg_file = os.path.join(os.path.dirname(filename), base_cfg_file) base_cfg = CfgNode.load_yaml_with_base( base_cfg_file, allow_unsafe=allow_unsafe ) del cfg[BASE_KEY] merge_a_into_b(cfg, base_cfg) return base_cfg return cfg def merge_from_file(self, cfg_filename: str, allow_unsave: bool=False) -> None: loaded_cfg = CfgNode.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsave) loaded_cfg = type(self)(loaded_cfg) self.merge_from_other_cfg(loaded_cfg) def merge_from_other_cfg(self, cfg_other): assert ( BASE_KEY not in cfg_other ), "The reserved key '{}' can only be used in files!".format(BASE_KEY) return super(CfgNode, self).merge_from_other_cfg(cfg_other) def merge_from_list(self, cfg_list): keys = set(cfg_list[0::2]) assert ( BASE_KEY not in keys ), "The reserved key '{}' can obly be used in files!".format(BASE_KEY) return super(CfgNode, self).merge_from_list(cfg_list) def __setattr__(self, name: str, value: Any) -> None: if name.startswith("COMPUTED_"): if name in self: old_val = self[name] if old_val == value: return raise KeyError( "Computed attributed '{}' alread exists" "with a different value! old={}, net={}".format( name, old_val, value ) ) self[name] = value else: super(CfgNode, self).__setattr__(name=name, value=value) def dump(self, **kwargs): return super(CfgNode, self).dump()
lqxisok/llSeg
configs/base.py
base.py
py
3,491
python
en
code
2
github-code
6
[ { "api_name": "yacs.config.CfgNode", "line_number": 11, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "yaml.unsafe_load", "line_number": 28, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 30, "usage_type": "name" }, { "api_name": "os.path.expanduser", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path", "line_number": 42, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 47, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 74, "usage_type": "name" } ]
71927845947
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals import logging import sys import os import urlparse import xbmcgui import xbmcplugin import xbmcaddon from resources.lib import loghandler loghandler.config() LOG = logging.getLogger() PLUGIN_PATH = 'plugin://plugin.video.proof-of-concept' __addon__ = xbmcaddon.Addon() __addon_path__ = __addon__.getAddonInfo('path').decode('utf-8') # Dummy video file with a lenght of 10min, 5s VIDEO_FILE_PATH = os.path.join(__addon_path__, 'dummy-movie.mkv').encode('utf-8') TOTAL_LENGTH = 10 * 60 + 5 RESUME = 5 * 60 def directory_item(label, path): """ Adds a xbmcplugin.addDirectoryItem() directory itemlistitem """ listitem = xbmcgui.ListItem(label, path=path) xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]), url=path, listitem=listitem, isFolder=True) def main_menu(): xbmcplugin.setContent(int(sys.argv[1]), 'files') directory_item('Proof of concept', '%s/?mode=demo' % PLUGIN_PATH) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_demo(): xbmcplugin.setContent(int(sys.argv[1]), 'movies') listitem = xbmcgui.ListItem('Demo video file', path=VIDEO_FILE_PATH) # PROOF-OF-CONCEPT: Let's add a resume point listitem.setProperty("totaltime", str(TOTAL_LENGTH)) listitem.setProperty("resumetime", str(RESUME)) listitem.setProperty("StartOffset", str(RESUME)) # END xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]), url=VIDEO_FILE_PATH, listitem=listitem) xbmcplugin.endOfDirectory(int(sys.argv[1])) if __name__ == '__main__': LOG.info('Full sys.argv received: %s', sys.argv) args = sys.argv[2][1:].decode('utf-8') args = dict(urlparse.parse_qsl(args)) mode = args.get('mode') if mode == 'demo': show_demo() else: main_menu()
croneter/plugin.video.proof-of-concept
default.py
default.py
py
2,070
python
en
code
1
github-code
6
[ { "api_name": "resources.lib.loghandler.config", "line_number": 15, "usage_type": "call" }, { "api_name": "resources.lib.loghandler", "line_number": 15, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 16, "usage_type": "call" }, { "api_name": "xbmcaddon.Addon", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "xbmcgui.ListItem", "line_number": 32, "usage_type": "call" }, { "api_name": "xbmcplugin.addDirectoryItem", "line_number": 33, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 33, "usage_type": "attribute" }, { "api_name": "xbmcplugin.setContent", "line_number": 40, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 40, "usage_type": "attribute" }, { "api_name": "xbmcplugin.endOfDirectory", "line_number": 43, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 43, "usage_type": "attribute" }, { "api_name": "xbmcplugin.setContent", "line_number": 47, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 47, "usage_type": "attribute" }, { "api_name": "xbmcgui.ListItem", "line_number": 48, "usage_type": "call" }, { "api_name": "xbmcplugin.addDirectoryItem", "line_number": 55, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 55, "usage_type": "attribute" }, { "api_name": "xbmcplugin.endOfDirectory", "line_number": 58, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 58, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 62, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 63, "usage_type": "attribute" }, { "api_name": "urlparse.parse_qsl", "line_number": 64, "usage_type": "call" } ]
32659197304
from werkzeug.exceptions import ClientDisconnected from flask import Flask, request from flask import current_app from flask_cache import Cache from mongoengine import connect from flask_superadmin import Admin from flask_mail import Mail from flaskext.markdown import Markdown from flask_restful import Api from reverse_proxied import ReverseProxied from assets import assets import json class ExtensionAccessObject(object): def __init__(self): self.cache = Cache(current_app, config={'CACHE_TYPE': 'simple'}) self.mongo = connect(current_app.config["MONGO_DB"]) self.mail = Mail(current_app) self.admin = Admin(current_app) self.rest_api = Api(current_app, prefix="/api") self.markdown = Markdown(current_app, safe_mode="escape") self.assets = assets(current_app) def construct_application(config_override=None): # Setup App application = Flask(__name__) # Setup Extensions ReverseProxied(application) # Setup Jinja Env application.jinja_env.add_extension('jinja2.ext.do') from util import pretty_date_since, full_date application.jinja_env.filters['pretty_date'] = pretty_date_since application.jinja_env.filters['full_date'] = full_date application.jinja_env.filters['json_dump'] = json.dumps # Load local_config with application.app_context(): from config import local_config application.config.from_object(local_config) application.config.from_object(config_override) with application.app_context(): application.extension_access_object = ExtensionAccessObject() # Load blueprints files with application.app_context(): from config import blueprint_config application.config.from_object(blueprint_config) # Setup blueprints from config for blueprint in application.config["BLUEPRINTS"]: # TODO: Find a way to replace this, its shit application.register_blueprint(**blueprint) # Read the git hash from a file. This should be set by the deploy script try: with open('version_hash', 'r') as version_file: application.config['version_hash'] = version_file.readline() except IOError: application.config['version_hash'] = "DEVELOP" # Setup airbrake/errbit if application.config.get('AIRBRAKE_ENABLED', True): from airbrake import AirbrakeErrorHandler from flask.signals import got_request_exception @got_request_exception.connect_via(application) def log_exception(sender, exception, **extra): if isinstance(exception, (ClientDisconnected, )): return handler = AirbrakeErrorHandler( api_key=application.config['AIRBRAKE_API_KEY'], api_url=application.config['AIRBRAKE_API_URL'], env_name=application.config['version_hash'], env_variables={'type': 'caught'}, request_url=request.url, request_path=request.path, request_method=request.method, request_args=request.args, request_headers=request.headers) handler.emit(exception) def log_error(exception): handler = AirbrakeErrorHandler( api_key=application.config['AIRBRAKE_API_KEY'], api_url=application.config['AIRBRAKE_API_URL'], env_name=application.config['version_hash'], env_variables={'type': 'logged'}, request_url=request.url, request_path=request.path, request_method=request.method, request_args=request.args, request_headers=request.headers) handler.emit(exception) application.log_error = log_error else: def dummy_log_error(exception): print(exception) application.log_error = dummy_log_error # Load debug stuffs if application.config['DEBUG']: with application.app_context(): import debug debug.setup_env() return application
JunctionAt/JunctionWWW
constructor.py
constructor.py
py
4,126
python
en
code
1
github-code
6
[ { "api_name": "flask_cache.Cache", "line_number": 19, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 19, "usage_type": "argument" }, { "api_name": "mongoengine.connect", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.current_app.config", "line_number": 20, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 20, "usage_type": "name" }, { "api_name": "flask_mail.Mail", "line_number": 21, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 21, "usage_type": "argument" }, { "api_name": "flask_superadmin.Admin", "line_number": 22, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 22, "usage_type": "argument" }, { "api_name": "flask_restful.Api", "line_number": 23, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 23, "usage_type": "argument" }, { "api_name": "flaskext.markdown.Markdown", "line_number": 24, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 24, "usage_type": "argument" }, { "api_name": "assets.assets", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.current_app", "line_number": 25, "usage_type": "argument" }, { "api_name": "flask.Flask", "line_number": 30, "usage_type": "call" }, { "api_name": "reverse_proxied.ReverseProxied", "line_number": 33, "usage_type": "call" }, { "api_name": "util.pretty_date_since", "line_number": 39, "usage_type": "name" }, { "api_name": "util.full_date", "line_number": 40, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 41, "usage_type": "attribute" }, { "api_name": "config.local_config", "line_number": 46, "usage_type": "argument" }, { "api_name": "config.blueprint_config", "line_number": 55, "usage_type": "argument" }, { "api_name": "werkzeug.exceptions.ClientDisconnected", "line_number": 75, "usage_type": "name" }, { "api_name": "airbrake.AirbrakeErrorHandler", "line_number": 77, "usage_type": "call" }, { "api_name": "flask.request.url", "line_number": 82, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 82, "usage_type": "name" }, { "api_name": "flask.request.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 83, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 84, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 84, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 85, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 85, "usage_type": "name" }, { "api_name": "flask.request.headers", "line_number": 86, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 86, "usage_type": "name" }, { "api_name": "flask.signals.got_request_exception.connect_via", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.signals.got_request_exception", "line_number": 73, "usage_type": "name" }, { "api_name": "airbrake.AirbrakeErrorHandler", "line_number": 90, "usage_type": "call" }, { "api_name": "flask.request.url", "line_number": 95, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 95, "usage_type": "name" }, { "api_name": "flask.request.path", "line_number": 96, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 96, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 97, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 97, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 98, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 98, "usage_type": "name" }, { "api_name": "flask.request.headers", "line_number": 99, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 99, "usage_type": "name" }, { "api_name": "debug.setup_env", "line_number": 111, "usage_type": "call" } ]
18716841287
#! /user/bin/env python # -*- coding:utf-8 -*- ''' 爬取列表信息 ''' import json from scrapy.http import Request from scrapy.spiders import CrawlSpider from douyin.items import DouyinCategoryItem class categorySpider(CrawlSpider): name = 'categorySpider' redis_key = 'categorySpider' cursor_num = 0 count_size = 10 url = "https://aweme.snssdk.com/aweme/v1/category/list/?version_code=181&count=10&cursor=" start_urls = [url + str(cursor_num)] def parse(self, response): jsonresp = json.loads(response.body_as_unicode()) if jsonresp['status_code'] == 0: if jsonresp['has_more'] == 1: aweme_list = list(jsonresp['category_list']) for jsonobj in aweme_list: item = self.init_item(jsonobj) yield item self.cursor_num += self.count_size nexturl = self.url + str(self.cursor_num) yield Request(nexturl, callback=self.parse) else: aweme_list = list(jsonresp['category_list']) for jsonobj in aweme_list: item = self.init_item(jsonobj) yield item def init_item(self, jsonobj): item = DouyinCategoryItem() if str(jsonobj['desc']) == "热门挑战": item['category_type'] = jsonobj['desc'] item['category_id'] = jsonobj['challenge_info']['cid'] item['category_desc'] = jsonobj['challenge_info']['desc'] item['category_title'] = jsonobj['challenge_info']['cha_name'] item['category_url'] = jsonobj['challenge_info']['schema'] item['category_user_count'] = jsonobj['challenge_info']['user_count'] else: # print("执行热门音乐赋值") item['category_type'] = jsonobj['desc'] item['category_title'] = jsonobj['music_info']['title'] item['category_id'] = jsonobj['music_info']['mid'] item['category_url'] = 'https://api.amemv.com/aweme/v1/music/aweme/?music_id=' + \ str(jsonobj['music_info']['mid']) item['category_desc'] = jsonobj['music_info']['offline_desc'] item['category_user_count'] = jsonobj['music_info']['user_count'] return item
gisShield/douyin
douyin/spiders/categoryspider.py
categoryspider.py
py
2,313
python
en
code
24
github-code
6
[ { "api_name": "scrapy.spiders.CrawlSpider", "line_number": 14, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 23, "usage_type": "call" }, { "api_name": "scrapy.http.Request", "line_number": 32, "usage_type": "call" }, { "api_name": "douyin.items.DouyinCategoryItem", "line_number": 40, "usage_type": "call" } ]
41040069910
from tracemalloc import start import pyaudio import wave import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.ticker import * import numpy as np import struct import time from scipy import interpolate plt.style.use('gray-background') class Fourier: def __init__(self, scale, dt): self.scale = scale def fourier(self, f): # 人間の可聴域は20~20,000Hz f = np.array([f]).reshape(-1) len_f = len(f) # resize inv_F_ = np.resize(f, int(len_f*self.scale)) # リサンプリング t = np.arange(0, len(inv_F_)) f_linear = interpolate.interp1d(t, inv_F_, kind='cubic') t = np.arange(0, len(inv_F_)-1.0, self.scale) inv_F_ = f_linear(t) inv_F_ = np.array(inv_F_, dtype='int16') binv_F = struct.pack('h' * len(inv_F_), *inv_F_) #バイナリへ変換 return binv_F class Audio: def __init__(self, chunk=2**10, format=pyaudio.paInt16, channels=1, rate=44100, record_time=50, interval=0.01, output_path="./data/output.wav"): self.chunk = chunk #バッファのサイズ self.format = format #量子化ビット数(解像度) ※人間は16 bit 以上は聞き分けが難しくなる self.channels = channels #入力に使用するマイクの本数 self.rate = rate #サンプリング周波数 self.record_time = record_time #録音時間 self.interval = interval #グラフを出力する時間間隔 [ms] self.output_path = output_path #データ出力するファイル名 self.p = pyaudio.PyAudio() #インスタンスの設定 self.stream = self.p.open(format=self.format, channels=self.channels, rate=self.rate, input=True, output=True, frames_per_buffer=self.chunk) #パラメータの設定 def exit(self): self.stream.stop_stream() # 再生・録音の一時停止 self.stream.close() # ストリームの終了 self.p.terminate() # インスタンスの破棄 class Output: def __init__(self, audio, scale=1): self.audio = audio del_x = 1/self.audio.rate self.end_t = del_x*self.audio.chunk self.scale = scale #self.frames = [] def draw_init(self, ax): ax.set_xlabel('Time') ax.set_ylabel('Amplitude') def draw(self): frames = [] f = Fourier(scale=self.scale, dt=self.audio.interval) print("Recording ...") # for i in range(0, int(self.audio.rate / self.audio.chunk * self.audio.record_time)): while self.audio.stream.is_active(): data = self.audio.stream.read(self.audio.chunk) wavy_ = np.frombuffer(data, dtype='int16') binv_F = f.fourier(wavy_) self.audio.stream.write(binv_F) # frames.append(binv_F) print("Done.") return frames def write(self, frames): # データの書き込み wf = wave.open(self.audio.output_path, 'wb') wf.setnchannels(self.audio.channels) wf.setsampwidth(self.audio.p.get_sample_size(self.audio.format)) wf.setframerate(self.audio.rate*self.scale) wf.writeframes(b''.join(frames)) wf.close() if __name__=="__main__": scale = 2.0 audio = Audio() output=Output(audio, scale=scale) frames = output.draw() # output.write(frames) audio.exit()
MoeMatsuda-ai/SWVC
test/fft_live_test/inout_live.py
inout_live.py
py
3,531
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.style.use", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style", "line_number": 12, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 12, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.resize", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 24, "usage_type": "call" }, { "api_name": "scipy.interpolate.interp1d", "line_number": 25, "usage_type": "call" }, { "api_name": "scipy.interpolate", "line_number": 25, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 28, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 29, "usage_type": "call" }, { "api_name": "pyaudio.paInt16", "line_number": 33, "usage_type": "attribute" }, { "api_name": "pyaudio.PyAudio", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.frombuffer", "line_number": 78, "usage_type": "call" }, { "api_name": "wave.open", "line_number": 89, "usage_type": "call" } ]
73027828029
import senticnet5 as sent_dict import pandas as pd import numpy as np from itertools import islice from sklearn.model_selection import train_test_split import re # returns numpy array def get_ratings(ratings_filename): return np.load(ratings_filename) # returns array of document arrays with words def get_reviews(reviews_filename): reviews = [] with open(reviews_filename, "r") as f: for line in f: reviews.append([w.lower() for w in re.sub('[^A-Za-z \']+', "", line).split()]) return reviews # returns word polarity: float # if word not in dictionary return None def word_polarity(word): try: return float(sent_dict.senticnet[word][7]) except: return None # return average polarity of a given document # if none of the words are in dictionary return None # accounts all single words and combinations of 2 words def document_polarity(doc): polarity_sum = 0.0 num_words_accounted = 0 phrases = get_phrases(doc, 2) for phrase in phrases: current_polarity = word_polarity(phrase) if current_polarity is not None: polarity_sum += current_polarity num_words_accounted += 1 if num_words_accounted > 0: return polarity_sum / num_words_accounted return None # calculates polarities for given txt file with documents # saves dictionary with average document polarity at given rating and number of rating occurrences def train(filename): print("TRAINING SIMPLE SENTIMENT") results = { 0.0: [0.0, 0], # average polarity at given rating 1.0: [0.0, 0], 2.0: [0.0, 0], 3.0: [0.0, 0], 4.0: [0.0, 0], "Undefined": [0.0, 0] # if polarity can't be determined use this to determine average rating for such occurrences } ratings = get_ratings(filename + "_ratings.npy") reviews = get_reviews(filename + "_reviews.txt") x_train, x_test, y_train, y_test = train_test_split(reviews, ratings, test_size=0.2, random_state=1) for doc, rating in zip(x_train, y_train): polarity = document_polarity(doc) if polarity is None: results["Undefined"][0] += rating results["Undefined"][1] += 1 else: results[rating][0] += polarity results[rating][1] += 1 for key in results: results[key][0] = results[key][0] / max(results[key][1], 1) pd.DataFrame(results).to_csv(filename + "_polarities.csv") # gives rating prediction based on closest average document polarity def predictions(filename): print("PREDICTING SIMPLE SENTIMENT") predictions = [] ratings = get_ratings(filename + "_ratings.npy") reviews = get_reviews(filename + "_reviews.txt") rating_polarities = pd.read_csv(filename + "_polarities.csv") default_rating = float(round(rating_polarities.loc[0, "Undefined"])) polarities = rating_polarities[["0.0", "1.0", "2.0", "3.0", "4.0"]].iloc[0].tolist() x_train, x_test, y_train, y_test = train_test_split(reviews, ratings, test_size=0.2, random_state=1) for doc, rating in zip(x_test, y_test): polarity = document_polarity(doc) prediction = default_rating if polarity is not None: prediction = float(polarities.index(min(polarities, key=lambda x:abs(x - polarity)))) predictions.append(prediction) pd_ratings = pd.Series(ratings[:len(predictions)], name="Actual") pd_predictions = pd.Series(predictions, name="Predicted") confusion_matrix = pd.crosstab(pd_predictions, pd_ratings) return confusion_matrix # generates exhaustible sliding window over a sequence # [1, 2, 3, 4], 2 => 12 23, 34, 4 # [1, 2, 3, 4], 3 => 123, 234, 34, 4 def get_windows(sequence, n): windows = [] for i, x in enumerate(sequence): windows.append(list(islice(sequence, i, i+n))) return windows # returns all combinations retaining the order # eg. 1, 2, 3 => 1, 1_2, 1_2_3 def get_combinations(sequence): combinations = [] for i, x in enumerate(sequence): combinations.append("_".join(sequence[:i] + [x])) return combinations # returns all posible combinations with a sliding window # eg. window_size = 2 # 1, 2, 3, 4 => 1, 1_2, 2, 2_3, 3, 3_4, def get_phrases(doc, window_size): phrases = [] for window in get_windows(doc, window_size): phrases += get_combinations(window) return phrases
jgombac/RatingPredictor
simple_sentiment.py
simple_sentiment.py
py
4,427
python
en
code
0
github-code
6
[ { "api_name": "numpy.load", "line_number": 11, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 19, "usage_type": "call" }, { "api_name": "senticnet5.senticnet", "line_number": 27, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 67, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 82, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 91, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 95, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 103, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 104, "usage_type": "call" }, { "api_name": "pandas.crosstab", "line_number": 105, "usage_type": "call" }, { "api_name": "itertools.islice", "line_number": 115, "usage_type": "call" } ]
26459920205
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..nnutils import geom_utils from ..nnutils import loss_utils from ..nnutils import train_utils from ..nnutils import discriminators from ..nnutils.smr import SoftRenderer from ..nnutils import cub_mesh_s1 as mesh_net from ..nnutils.nmr_pytorch import NeuralRenderer from ..data import cub as cub_data from ..utils import image as image_utils from ..utils import tf_visualizer from ..utils.tf_visualizer import Visualizer as TfVisualizer import os import time import copy import numpy as np import os.path as osp from absl import app, flags from collections import OrderedDict import torch import torchvision import soft_renderer as sr import torchvision.utils as vutils # Weights: flags.DEFINE_float('mask_loss_wt', 3.0, 'mask loss weight') flags.DEFINE_float('grl_wt', .2, 'gradient reversal layer weight') flags.DEFINE_float('gan_loss_wt', 1., 'adversarial training weight') flags.DEFINE_float('triangle_reg_wt', 0.15, 'weights to triangle smoothness prior') flags.DEFINE_float('flatten_reg_wt', 0.0004, 'weights to flatten smoothness prior') flags.DEFINE_float('deform_reg_wt', 5., 'reg to deformation') flags.DEFINE_float('ori_reg_wt', 0.4, 'reg to orientation') flags.DEFINE_float('stop_ori_epoch', 3., 'when to stop usint this constraint') flags.DEFINE_float('tex_loss_wt', 3.0, 'weights to tex loss') flags.DEFINE_float('tex_dt_loss_wt', 3.0, 'weights to tex dt loss') flags.DEFINE_float('tex_cycle_loss_wt', .5, 'weights to tex cycle loss') # Data: flags.DEFINE_integer('image_size', 256, 'training image size') # Model: flags.DEFINE_string('renderer_type', 'softmax', 'choices are [hard, softmax]') flags.DEFINE_boolean('use_gan', True, 'If true uses GAN training') flags.DEFINE_boolean('pred_cam', True, 'If true predicts camera') flags.DEFINE_boolean('detach_shape', True, 'If true detach shape from the texture branch.') flags.DEFINE_boolean('detach_cam', True, 'If true detach camera from the texture branch.') flags.DEFINE_boolean('use_scops', False, 'If true read part segmentations in the loader.') flags.DEFINE_integer('update_template_freq', 5, 'template update frequency') flags.DEFINE_integer('axis', 1, 'symmetric axis') opts = flags.FLAGS curr_path = osp.dirname(osp.abspath(__file__)) cache_path = osp.join(curr_path, '..', 'cachedir') class ShapenetTrainer(train_utils.Trainer): def define_model(self): opts = self.opts # define model self.symmetric = opts.symmetric img_size = (opts.img_size, opts.img_size) self.model = mesh_net.MeshNet( img_size, opts, nz_feat=opts.nz_feat, axis = opts.axis) self.model = self.model.cuda() if(opts.multi_gpu): self.model = torch.nn.DataParallel(self.model) if(opts.use_gan): self.discriminator = discriminators.Discriminator(lambda_ = opts.grl_wt, img_size = opts.image_size) self.discriminator = self.discriminator.cuda() if(opts.multi_gpu): self.discriminator = torch.nn.DataParallel(self.discriminator) if(opts.multi_gpu): faces = self.model.module.faces.view(1, -1, 3) else: faces = self.model.faces.view(1, -1, 3) self.faces = faces.repeat(opts.batch_size, 1, 1) # define renderers self.renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.dis_renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.hard_renderer = SoftRenderer(opts.image_size, "hard") if opts.use_texture: self.tex_renderer = SoftRenderer(opts.image_size, opts.renderer_type) self.tex_renderer.ambient_light_only() self.vis_renderer = NeuralRenderer(opts.image_size) self.vis_renderer.ambient_light_only() self.vis_renderer.set_bgcolor([1, 1, 1]) self.vis_renderer.set_light_dir([0, 1, -1], 0.4) self.iter_time = 0 return def init_dataset(self): opts = self.opts self.data_module = cub_data self.dataloader = self.data_module.data_loader(opts) self.resnet_transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def define_criterion(self): # shape objectives self.mask_loss_fn = loss_utils.neg_iou_loss if(opts.multi_gpu): verts = self.model.module.get_mean_shape().cpu() faces = self.model.module.faces.cpu() else: verts = self.model.get_mean_shape().cpu() faces = self.model.faces.cpu() self.laplacian_loss_fn = sr.LaplacianLoss(verts, faces).cuda() self.flatten_loss_fn = sr.FlattenLoss(faces).cuda() if(opts.multi_gpu): self.laplacian_loss_fn = torch.nn.DataParallel(self.laplacian_loss_fn) self.flatten_loss_fn = torch.nn.DataParallel(self.flatten_loss_fn) # shape constraints self.deform_reg_fn = loss_utils.deform_l2reg self.ori_reg_fn = loss_utils.sym_reg self.gan_loss_fn = torch.nn.functional.binary_cross_entropy_with_logits # texture objectives if self.opts.use_texture: self.texture_loss = loss_utils.PerceptualTextureLoss() self.texture_dt_loss_fn = loss_utils.texture_dt_loss self.texture_cycle_fn = loss_utils.TexCycle(int(opts.batch_size/opts.gpu_num)) self.texture_cycle_fn = self.texture_cycle_fn.cuda() if(opts.multi_gpu): self.texture_cycle_fn = torch.nn.DataParallel(self.texture_cycle_fn) def set_input(self, batch): opts = self.opts input_img_tensor = batch['img'].type(torch.FloatTensor) for b in range(input_img_tensor.size(0)): input_img_tensor[b] = self.resnet_transform(input_img_tensor[b]) img_tensor = batch['img'].type(torch.FloatTensor) mask_tensor = batch['mask'].type(torch.FloatTensor) self.input_imgs = input_img_tensor.cuda() self.imgs = img_tensor.cuda() self.masks = mask_tensor.cuda() if(opts.use_texture): # Compute barrier distance transform. mask_dts = np.stack([image_utils.compute_dt_barrier(m) for m in mask_tensor]) dt_tensor = torch.FloatTensor(mask_dts).cuda() self.dts_barrier = dt_tensor.unsqueeze(1) def forward(self): opts = self.opts outputs = self.model.forward(self.input_imgs) # shape self.delta_v = outputs['delta_v'] if(opts.symmetric): if(opts.multi_gpu): delta_v = self.model.module.symmetrize(self.delta_v) self.mean_shape = self.model.module.get_mean_shape() else: delta_v = self.model.symmetrize(self.delta_v) self.mean_shape = self.model.get_mean_shape() else: delta_v = self.delta_v self.pred_vs = self.mean_shape + delta_v # camera proj_cam = outputs['cam'] self.proj_cam = proj_cam # shape losses self.pred_seen, _, _ = self.renderer.forward(self.pred_vs, self.faces, proj_cam) self.mask_pred_seen = self.pred_seen[:,3,:,:] self.mask_loss = self.mask_loss_fn(self.mask_pred_seen, self.masks) self.triangle_loss = self.laplacian_loss_fn(self.pred_vs).mean() self.flatten_loss = self.flatten_loss_fn(self.pred_vs).mean() self.deform_loss = self.deform_reg_fn(self.delta_v) self.ori_loss = self.ori_reg_fn(self.pred_vs) # texture losses if(opts.use_texture): self.tex_flow = outputs['tex_flow'] self.uvimage_pred = outputs['uvimage_pred'] self.tex = geom_utils.sample_textures(self.tex_flow, self.imgs) self.tex = self.tex.contiguous() bs, fs, ts, _, _ = self.tex.size() self.tex = self.tex.view(bs, fs, -1, 3) texture_rgba, p2f_info, _ = self.tex_renderer.forward(self.pred_vs.detach(), self.faces, proj_cam.detach(), self.tex) self.texture_pred = texture_rgba[:,0:3,:,:] self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.masks, self.mask_pred_seen) self.tex_dt_loss = self.texture_dt_loss_fn(self.tex_flow, self.dts_barrier) # texture cycle loss _, _, aggr_info = self.hard_renderer(self.pred_vs.detach(), self.faces, proj_cam.detach()) aggr_info = aggr_info[:, 1, :, :].view(bs, -1) tex_cycle_loss, self.avg_flow = self.texture_cycle_fn(self.tex_flow, p2f_info.detach(), aggr_info.detach()) # The mean is used to collect loss from different GPUs self.tex_cycle_loss = torch.mean(tex_cycle_loss) self.p2f_info = p2f_info if(opts.use_gan): # render at unobserved view angles = np.random.randint(0, 180, size=bs) random_cams = geom_utils.rotate_cam(proj_cam.detach(), angles) pred_unseen, _, _ = self.dis_renderer.forward(self.pred_vs, self.faces, random_cams) self.mask_pred_unseen = pred_unseen[:,3,:,:] pred = torch.cat((self.pred_seen.detach(), pred_unseen)) gan_labels = torch.cat((torch.ones(self.pred_seen.shape[0]), torch.zeros(pred_unseen.shape[0])), dim = 0) gan_labels = gan_labels.cuda() gan_preds = self.discriminator(pred[:,3,:,:].unsqueeze(1)) self.gan_loss = self.gan_loss_fn(gan_preds.squeeze(), gan_labels) # add up all losses # shape self.total_loss = self.mask_loss * opts.mask_loss_wt self.total_loss += self.triangle_loss * opts.triangle_reg_wt self.total_loss += self.flatten_loss * opts.flatten_reg_wt if(self.curr_epoch < opts.stop_ori_epoch): # constrain prediction to be symmetric on the given axis self.total_loss += self.ori_loss * opts.ori_reg_wt if(self.curr_epoch > opts.update_template_freq): # constrain prediction from deviating from template self.total_loss += self.deform_loss * opts.deform_reg_wt # texture if(opts.use_texture): self.total_loss += self.tex_loss * opts.tex_loss_wt self.total_loss += self.tex_dt_loss * opts.tex_dt_loss_wt self.total_loss += self.tex_cycle_loss * opts.tex_cycle_loss_wt # GAN if(opts.use_gan): self.total_loss += self.gan_loss * opts.gan_loss_wt def get_current_visuals(self): vis_dict = {} # UV maps if self.opts.use_texture: uv_flows = self.uvimage_pred uv_flows = uv_flows.permute(0, 2, 3, 1) uv_images = torch.nn.functional.grid_sample(self.imgs, uv_flows) vis_dict['uv_images'] = uv_images # mask vis_dict['mask_pred'] = self.mask_pred_seen.unsqueeze(1) nb, nf, _, nc = self.tex.size() tex = self.tex.detach().view(nb, nf, opts.tex_size, opts.tex_size, nc).unsqueeze(4).repeat(1, 1, 1, 1, opts.tex_size, 1) vis_dict['mask_gt'] = self.masks.unsqueeze(1) # image vis_dict['image_pred'] = self.vis_renderer(self.pred_vs.detach(), self.faces, self.proj_cam.detach(), tex) vis_dict['image_gt'] = self.imgs * self.masks.unsqueeze(1).repeat(1, 3, 1, 1) # instance mesh if(self.opts.use_texture): mesh_ = sr.Mesh(self.pred_vs[0], self.faces[0], self.tex[0].view(self.faces.size(1),-1,3)) else: mesh_ = sr.Mesh(self.pred_vs[0], self.faces[0]) vis_dict['mesh'] = mesh_ # template mesh if(opts.multi_gpu): template_mesh_ = sr.Mesh(self.model.module.get_mean_shape(), self.faces[0]) else: template_mesh_ = sr.Mesh(self.model.get_mean_shape(), self.faces[0]) vis_dict['template_mesh'] = template_mesh_ return vis_dict def get_current_scalars(self): opts = self.opts sc_dict = OrderedDict([ ('smoothed_total_loss', self.smoothed_total_loss), ('total_loss', self.total_loss), ('mask_loss', self.mask_loss), ('tri_loss', self.triangle_loss), ('flatten_loss', self.flatten_loss), ('deform_loss', self.deform_loss), ('ori_loss', self.ori_loss), ('lr', self.optimizer.param_groups[0]['lr']), ('iter_time', self.iter_time), ]) if opts.use_texture: sc_dict['tex_loss'] = self.tex_loss sc_dict['tex_dt_loss'] = self.tex_dt_loss sc_dict['tex_cycle_loss'] = self.tex_cycle_loss return sc_dict '''Overwrite train function for template update.''' def train(self): opts = self.opts self.visualizer = TfVisualizer(opts) self.smoothed_total_loss = 0 visualizer = self.visualizer total_steps = 0 optim_steps = 0 dataset_size = len(self.dataloader) for epoch in range(opts.num_pretrain_epochs, opts.num_epochs): epoch_iter = 0 self.curr_epoch = epoch for i, batch in enumerate(self.dataloader): self.iteration_num += 1 self.adjust_learning_rate(self.optimizer) t_init = time.time() self.set_input(batch) t_batch = time.time() if not self.invalid_batch: optim_steps += 1 self.optimizer.zero_grad() start_time = time.time() self.forward() self.smoothed_total_loss = self.smoothed_total_loss*0.99 + 0.01*self.total_loss t_forw = time.time() self.total_loss.backward() t_backw = time.time() if optim_steps % opts.optim_bs == 0: self.optimizer.step() end_time = time.time() self.iter_time = end_time - start_time t_opt = time.time() total_steps += 1 epoch_iter += 1 if opts.display_visuals and (total_steps % opts.display_freq == 0): iter_end_time = time.time() vis_dict = self.get_current_visuals() for k,v in vis_dict.items(): if('mesh' in k): v.save_obj(os.path.join(self.vis_dir,'{}.obj'.format(k)), save_texture=True) else: vutils.save_image(v, os.path.join(self.vis_dir, k + '.png')) print(tf_visualizer.green("Visualization saved at {}.".format(self.vis_dir))) if opts.print_scalars and (total_steps % opts.print_freq == 0): scalars = self.get_current_scalars() visualizer.print_current_scalars(epoch, epoch_iter, scalars) if total_steps % opts.save_latest_freq == 0: print(tf_visualizer.green('saving the model at the end of epoch {:d}, iters {:d}'.format(epoch, total_steps))) self.save('latest') if total_steps == opts.num_iter: return # update template if((epoch+1) % opts.update_template_freq == 0): print(tf_visualizer.green('Updating template...')) self.feat = torch.zeros(opts.batch_size, opts.z_dim) self.feat = self.feat.cuda() # compute average encoder features for i, batch in enumerate(self.dataloader): self.set_input(batch) with torch.no_grad(): outputs = self.model(self.input_imgs) self.feat += outputs['feat'] self.feat = self.feat / (i + 1) self.feat = torch.mean(self.feat, dim=0).unsqueeze(0) # feed averaged features into the shape decoder if(opts.multi_gpu): with torch.no_grad(): delta_v = self.model.module.shape_predictor(self.feat) self.model.module.mean_v += delta_v.squeeze() else: with torch.no_grad(): delta_v = self.model.shape_predictor(self.feat) self.model.mean_v += delta_v.squeeze() print(tf_visualizer.green('Template updated.')) if (epoch+1) % opts.save_epoch_freq == 0: print(tf_visualizer.green('saving the model at the end of epoch {:d}, iters {:d}'.format(epoch, total_steps))) self.save('latest') self.save(epoch+1) def main(_): torch.manual_seed(0) trainer = ShapenetTrainer(opts) trainer.init_training() trainer.train() if __name__ == '__main__': app.run(main)
NVlabs/UMR
experiments/train_s1.py
train_s1.py
py
17,158
python
en
code
223
github-code
6
[ { "api_name": "absl.flags.DEFINE_float", "line_number": 32, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 32, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 33, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 33, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 34, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 34, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 35, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 35, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 36, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 36, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 37, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 37, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 38, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 38, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 39, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 39, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 40, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 40, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 41, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 41, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_float", "line_number": 42, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 42, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_integer", "line_number": 44, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 44, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_string", "line_number": 46, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 46, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_boolean", "line_number": 47, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 47, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_boolean", "line_number": 48, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 48, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_boolean", "line_number": 49, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 49, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_boolean", "line_number": 50, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 50, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_boolean", "line_number": 51, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 51, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_integer", "line_number": 52, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 52, "usage_type": "name" }, { "api_name": "absl.flags.DEFINE_integer", "line_number": 53, "usage_type": "call" }, { "api_name": "absl.flags", "line_number": 53, "usage_type": "name" }, { "api_name": "absl.flags.FLAGS", "line_number": 56, "usage_type": "attribute" }, { "api_name": "absl.flags", "line_number": 56, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path", "line_number": 58, "usage_type": "name" }, { "api_name": "os.path.abspath", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 59, "usage_type": "call" }, { "api_name": "os.path", "line_number": 59, "usage_type": "name" }, { "api_name": "nnutils.train_utils.Trainer", "line_number": 61, "usage_type": "attribute" }, { "api_name": "nnutils.train_utils", "line_number": 61, "usage_type": "name" }, { "api_name": "nnutils.cub_mesh_s1.MeshNet", "line_number": 68, "usage_type": "call" }, { "api_name": "nnutils.cub_mesh_s1", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.nn.DataParallel", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "attribute" }, { "api_name": "nnutils.discriminators.Discriminator", "line_number": 76, "usage_type": "call" }, { "api_name": "nnutils.discriminators", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.DataParallel", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 81, "usage_type": "attribute" }, { "api_name": "nnutils.smr.SoftRenderer", "line_number": 91, "usage_type": "call" }, { "api_name": "nnutils.smr.SoftRenderer", "line_number": 92, "usage_type": "call" }, { "api_name": "nnutils.smr.SoftRenderer", "line_number": 93, "usage_type": "call" }, { "api_name": "nnutils.smr.SoftRenderer", "line_number": 95, "usage_type": "call" }, { "api_name": "nnutils.nmr_pytorch.NeuralRenderer", "line_number": 98, "usage_type": "call" }, { "api_name": "data.cub", "line_number": 109, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 111, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 111, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils.neg_iou_loss", "line_number": 117, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils", "line_number": 117, "usage_type": "name" }, { "api_name": "soft_renderer.LaplacianLoss", "line_number": 124, "usage_type": "call" }, { "api_name": "soft_renderer.FlattenLoss", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn.DataParallel", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "attribute" }, { "api_name": "torch.nn.DataParallel", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils.deform_l2reg", "line_number": 131, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils", "line_number": 131, "usage_type": "name" }, { "api_name": "nnutils.loss_utils.sym_reg", "line_number": 132, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 133, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils.PerceptualTextureLoss", "line_number": 137, "usage_type": "call" }, { "api_name": "nnutils.loss_utils", "line_number": 137, "usage_type": "name" }, { "api_name": "nnutils.loss_utils.texture_dt_loss", "line_number": 138, "usage_type": "attribute" }, { "api_name": "nnutils.loss_utils", "line_number": 138, "usage_type": "name" }, { "api_name": "nnutils.loss_utils.TexCycle", "line_number": 139, "usage_type": "call" }, { "api_name": "nnutils.loss_utils", "line_number": 139, "usage_type": "name" }, { "api_name": "torch.nn.DataParallel", "line_number": 142, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 142, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 147, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 150, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 151, "usage_type": "attribute" }, { "api_name": "numpy.stack", "line_number": 159, "usage_type": "call" }, { "api_name": "utils.image.compute_dt_barrier", "line_number": 159, "usage_type": "call" }, { "api_name": "utils.image", "line_number": 159, "usage_type": "name" }, { "api_name": "torch.FloatTensor", "line_number": 160, "usage_type": "call" }, { "api_name": "nnutils.geom_utils.sample_textures", "line_number": 198, "usage_type": "call" }, { "api_name": "nnutils.geom_utils", "line_number": 198, "usage_type": "name" }, { "api_name": "torch.mean", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 219, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 219, "usage_type": "attribute" }, { "api_name": "nnutils.geom_utils.rotate_cam", "line_number": 220, "usage_type": "call" }, { "api_name": "nnutils.geom_utils", "line_number": 220, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 224, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 226, "usage_type": "call" }, { "api_name": "torch.nn.functional.grid_sample", "line_number": 260, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 260, "usage_type": "attribute" }, { "api_name": "soft_renderer.Mesh", "line_number": 276, "usage_type": "call" }, { "api_name": "soft_renderer.Mesh", "line_number": 278, "usage_type": "call" }, { "api_name": "soft_renderer.Mesh", "line_number": 283, "usage_type": "call" }, { "api_name": "soft_renderer.Mesh", "line_number": 285, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 292, "usage_type": "call" }, { "api_name": "utils.tf_visualizer.Visualizer", "line_number": 313, "usage_type": "call" }, { "api_name": "time.time", "line_number": 327, "usage_type": "call" }, { "api_name": "time.time", "line_number": 329, "usage_type": "call" }, { "api_name": "time.time", "line_number": 335, "usage_type": "call" }, { "api_name": "time.time", "line_number": 338, "usage_type": "call" }, { "api_name": "time.time", "line_number": 340, "usage_type": "call" }, { "api_name": "time.time", "line_number": 344, "usage_type": "call" }, { "api_name": "time.time", "line_number": 346, "usage_type": "call" }, { "api_name": "time.time", "line_number": 352, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 356, "usage_type": "call" }, { "api_name": "os.path", "line_number": 356, "usage_type": "attribute" }, { "api_name": "torchvision.utils.save_image", "line_number": 358, "usage_type": "call" }, { "api_name": "torchvision.utils", "line_number": 358, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 358, "usage_type": "call" }, { "api_name": "os.path", "line_number": 358, "usage_type": "attribute" }, { "api_name": "utils.tf_visualizer.green", "line_number": 359, "usage_type": "call" }, { "api_name": "utils.tf_visualizer", "line_number": 359, "usage_type": "name" }, { "api_name": "utils.tf_visualizer.green", "line_number": 366, "usage_type": "call" }, { "api_name": "utils.tf_visualizer", "line_number": 366, "usage_type": "name" }, { "api_name": "utils.tf_visualizer.green", "line_number": 374, "usage_type": "call" }, { "api_name": "utils.tf_visualizer", "line_number": 374, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 375, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 382, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 386, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 390, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 394, "usage_type": "call" }, { "api_name": "utils.tf_visualizer.green", "line_number": 397, "usage_type": "call" }, { "api_name": "utils.tf_visualizer", "line_number": 397, "usage_type": "name" }, { "api_name": "utils.tf_visualizer.green", "line_number": 400, "usage_type": "call" }, { "api_name": "utils.tf_visualizer", "line_number": 400, "usage_type": "name" }, { "api_name": "torch.manual_seed", "line_number": 405, "usage_type": "call" }, { "api_name": "absl.app.run", "line_number": 411, "usage_type": "call" }, { "api_name": "absl.app", "line_number": 411, "usage_type": "name" } ]
37392717665
import streamlit as st import requests,random,time from deta import Deta deta = Deta(st.secrets['key']) # Base key db= deta.Base("usernames") st.set_page_config(page_title="Github Shoutout",page_icon="images/githublogo.png",layout="centered",initial_sidebar_state="auto") # setting the page config def verifying(username): if username: try: api_url = f"https://api.github.com/users/{username}" # api url response = requests.get(api_url) # get response data = response.json() # parse data as json if db.get(username): st.warning("Username already exists") elif data["followers"] and data["name"] and data["bio"]: # if followers or following is not zero db.put({"key":username}) # add entryin database with key lowercase username st.success("Username stored in database.") else: st.error("Sorry, you don't have followers or your name and bio is not setup") except Exception as e: # if username is not valid print(e) st.error("Invalid github username") def random_username(): names = db.fetch().items github_username=list(names[random.randint(0,len(names)-1)].values())[0] try: api_url = f"https://api.github.com/users/{github_username}" # api url response = requests.get(api_url) data = response.json() acc_link=data['html_url'] st.markdown(f"""<div id='container'><img id='pfp' src="https://github.com/{github_username}.png" alt="github profile pic"/> <h3>Name:&nbsp;&nbsp; {data['name']}</h3> <p id="bio">Bio:&nbsp;&nbsp; {data['bio']}</p> <p id="ff">Followers: &nbsp;&nbsp; {data["followers"]} &nbsp;&nbsp; &nbsp;&nbsp;| &nbsp;&nbsp; Following: &nbsp;&nbsp; {data["following"]}</p> <table> <tr> <th>Stats</th> <th>Streak</th> <th>Languages</th> </tr> <tr> <td><img src='http://github-profile-summary-cards.vercel.app/api/cards/stats?username={github_username}&theme=github_dark' width=200px height=100px></td> <td><img src='https://streak-stats.demolab.com?user={github_username}&theme=github-dark&hide_border=true&border_radius=32&date_format=j%20M%5B%20Y%5D&ring=888888' width=180px height=100px></td> <td><img src='http://github-profile-summary-cards.vercel.app/api/cards/repos-per-language?username={github_username}&theme=github_dark' width= 200px height=100px></td> </tr> </table><br><br> <a target="_blank" href="{acc_link}"> <button id='btn'> Follow {github_username} on GitHub </button><br><br> </a></div>""",unsafe_allow_html=True) #displaying the data # except Exception as e: st.error("Something went wrong, try again later") def main(): st.markdown("""<a href='https://github.com/samadpls/Github-Shoutout'><img src='https://img.shields.io/github/stars/samadpls/Github-Shoutout?color=red&label=star%20me&logoColor=red&style=social'></a>""",unsafe_allow_html=True) img , heading = st.columns([1,8]) # using columns to display the heading and image with img: st.image("images/githublogo.png",width=70) # github logo with heading: st.markdown('# Shoutout to Github User') # heading st.markdown("`Click on the button to see the profile`") # description if st.button("Press Me"): with st.spinner('Wait for it...'): time.sleep(2) random_username() #New username with st.expander("Add your profile :"): # sub header text = st.empty() username=text.text_input("Enter your github username",max_chars=40) st.markdown(""" ` Made with 🤍 by samadpls ` """) # footer verifying(username.strip().lower()) if __name__=="__main__": with open('styles.css') as f: st.markdown(f"<style>{f.read()}</style>",unsafe_allow_html=True) # loading the css file main()
samadpls/Github-Shoutout
app.py
app.py
py
4,179
python
en
code
10
github-code
6
[ { "api_name": "deta.Deta", "line_number": 5, "usage_type": "call" }, { "api_name": "streamlit.secrets", "line_number": 5, "usage_type": "attribute" }, { "api_name": "deta.Base", "line_number": 7, "usage_type": "call" }, { "api_name": "streamlit.set_page_config", "line_number": 9, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 15, "usage_type": "call" }, { "api_name": "streamlit.warning", "line_number": 19, "usage_type": "call" }, { "api_name": "streamlit.success", "line_number": 22, "usage_type": "call" }, { "api_name": "streamlit.error", "line_number": 24, "usage_type": "call" }, { "api_name": "streamlit.error", "line_number": 27, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 31, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 34, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 37, "usage_type": "call" }, { "api_name": "streamlit.error", "line_number": 60, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 65, "usage_type": "call" }, { "api_name": "streamlit.columns", "line_number": 66, "usage_type": "call" }, { "api_name": "streamlit.image", "line_number": 68, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 70, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 71, "usage_type": "call" }, { "api_name": "streamlit.button", "line_number": 74, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 75, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 76, "usage_type": "call" }, { "api_name": "streamlit.expander", "line_number": 81, "usage_type": "call" }, { "api_name": "streamlit.empty", "line_number": 82, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 84, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 93, "usage_type": "call" } ]
29836585751
# #Unzip the test directory # !unzip drive/My\ Drive/CatVSDog/test1.zip # #Unzip the train directory # !unzip drive/My\ Drive/CatVSDog/train.zip # Plotting the images of dog import shutil from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint from keras.layers import Dense from keras.layers import Flatten from keras.layers import MaxPooling2D from keras.layers import Conv2D from keras.models import Sequential import random import os from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img from numpy import save from numpy import asarray from os import listdir from matplotlib import pyplot from matplotlib.image import imread folder = 'train/' for i in range(9): # define subplot pyplot.subplot(330+1+i) # define the filename filename = folder + 'dog.'+str(i)+'.jpg' # load image pixels image = imread(filename) # plot raw pixel data pyplot.imshow(image) pyplot.show() # Plotting the images of cat folder = 'train/' for i in range(9): # define subplot pyplot.subplot(330+1+i) # define the filename filename = folder + 'cat.'+str(i)+'.jpg' # load image pixels image = imread(filename) # plot raw pixel data pyplot.imshow(image) pyplot.show() # define location of dataset folder = 'train/' photos, labels = list(), list() # enumerate files in the directory # for file in listdir(folder): # #determine class # output = 0.0 # if file.startswith('cat'): # output = 1.0 # #load image # photo = load_img(folder+file,target_size = (200,200)) # photo = img_to_array(photo) # #store # photos.append(photo) # labels.append(output) # #convert to a numpy arrays # photos = asarray(photos) # labels = asarray(labels) # print(photos.shape,labels.shape) # #save the reshaped photos # save('dogs_vs_cats_photos.npy',photos) # save('dogs_vs_cats_labels.npy',labels) # #loading from numpy data # from numpy import load # photos = load('dogs_vs_cats_photos.npy') # labels = load('dogs_vs_cats_labels.npy') # print(photos.shape,labels.shape) # Alternate method # creating seperate directory for test->cat and test->dog as this is required dataset_home = 'dataset_dogs_vs_cats/' subdirs = ['train/', 'test/'] for subdir in subdirs: labeldirs = ['dogs/', 'cats/'] for labeldir in labeldirs: newdir = dataset_home+subdir+labeldir os.makedirs(newdir, exist_ok=True) print("DONE") # Partitioning the test and train sets random.seed(1) val_ratio = 0.25 src_directory = 'train/' for file in listdir(src_directory): src = src_directory+'/'+file dst_dir = 'train/' if random.random() < val_ratio: dst_dir = 'test/' if file.startswith('cat'): dst = dataset_home+dst_dir+'cats/'+file shutil.copyfile(src, dst) elif file.startswith('dog'): dst = dataset_home + dst_dir+'dogs/'+file shutil.copyfile(src, dst) # Initialising the CNN classifier = Sequential() # Convolution classifier.add(Conv2D(32, (3, 3), input_shape=( 200, 200, 3), activation='relu')) # Pooling classifier.add(MaxPooling2D(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(Conv2D(32, (3, 3), activation='relu')) classifier.add(MaxPooling2D(pool_size=(2, 2))) # Flattening classifier.add(Flatten()) # Full connection classifier.add(Dense(units=128, activation='relu')) classifier.add(Dense(units=1, activation='sigmoid')) # Loading the model # classifier.load_weights("/kaggle/output/weights.best.hdf5") # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) training_set = train_datagen.flow_from_directory('dataset_dogs_vs_cats/train/', target_size=(200, 200), batch_size=32, class_mode='binary') test_set = test_datagen.flow_from_directory('dataset_dogs_vs_cats/test/', target_size=(200, 200), batch_size=32, class_mode='binary') # Select the path to store the final checkpoint after a epoch filepath = "weights.best.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] classifier.fit_generator(training_set, steps_per_epoch=8000, epochs=50, validation_data=test_set, callbacks=callbacks_list, validation_steps=2000)
mcaupybugs/CatsVSDogs
catvsdog.py
catvsdog.py
py
4,994
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.subplot", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.image.imread", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.image.imread", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 93, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 99, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 103, "usage_type": "call" }, { "api_name": "random.random", "line_number": 106, "usage_type": "call" }, { "api_name": "shutil.copyfile", "line_number": 110, "usage_type": "call" }, { "api_name": "shutil.copyfile", "line_number": 113, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 117, "usage_type": "call" }, { "api_name": "keras.layers.Conv2D", "line_number": 120, "usage_type": "call" }, { "api_name": "keras.layers.MaxPooling2D", "line_number": 124, "usage_type": "call" }, { "api_name": "keras.layers.Conv2D", "line_number": 127, "usage_type": "call" }, { "api_name": "keras.layers.MaxPooling2D", "line_number": 128, "usage_type": "call" }, { "api_name": "keras.layers.Flatten", "line_number": 131, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 134, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 135, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.ImageDataGenerator", "line_number": 146, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.ImageDataGenerator", "line_number": 151, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 166, "usage_type": "call" } ]
38684469232
# pylint: disable=attribute-defined-outside-init,wrong-import-order,redefined-outer-name,invalid-name import gc from configparser import ConfigParser from tempfile import TemporaryDirectory import magic import pytest from storage.binary_service import BinaryService from storage.db_interface_backend import BackEndDbInterface from storage.MongoMgr import MongoMgr from test.common_helper import create_test_firmware, get_config_for_testing, store_binary_on_file_system TEST_FW = create_test_firmware() @pytest.fixture def binary_service(): with TemporaryDirectory(prefix='fact_test_') as tmp_dir: config = get_config_for_testing(temp_dir=tmp_dir) mongo_server = MongoMgr(config=config) _init_test_data(config, tmp_dir) yield BinaryService(config=config) mongo_server.shutdown() gc.collect() def _init_test_data(config: ConfigParser, tmp_dir: str): backend_db_interface = BackEndDbInterface(config=config) backend_db_interface.add_firmware(TEST_FW) store_binary_on_file_system(tmp_dir, TEST_FW) backend_db_interface.shutdown() def test_get_binary_and_file_name(binary_service): binary, file_name = binary_service.get_binary_and_file_name(TEST_FW.uid) assert file_name == TEST_FW.file_name, 'file_name not correct' assert binary == TEST_FW.binary, 'invalid result not correct' def test_get_binary_and_file_name_invalid_uid(binary_service): binary, file_name = binary_service.get_binary_and_file_name('invalid_uid') assert binary is None, 'should be none' assert file_name is None, 'should be none' def test_get_repacked_binary_and_file_name(binary_service): tar, file_name = binary_service.get_repacked_binary_and_file_name(TEST_FW.uid) assert file_name == f'{TEST_FW.file_name}.tar.gz', 'file_name not correct' file_type = magic.from_buffer(tar, mime=False) assert 'gzip compressed data' in file_type, 'Result is not an tar.gz file' def test_get_repacked_binary_and_file_name_invalid_uid(binary_service): binary, file_name = binary_service.get_repacked_binary_and_file_name('invalid_uid') assert binary is None, 'should be none' assert file_name is None, 'should be none' def test_read_partial_binary(binary_service): partial_binary = binary_service.read_partial_binary(TEST_FW.uid, 30, 14) assert len(partial_binary) == 14 assert partial_binary == b'get_files_test', 'invalid result not correct' def test_read_partial_binary_invalid_uid(binary_service): result = binary_service.read_partial_binary('invalid_uid', 0, 1337) assert result == b'', 'result should be empty'
5am1i/Fact
src/test/integration/storage/test_binary_service.py
test_binary_service.py
py
2,626
python
en
code
0
github-code
6
[ { "api_name": "test.common_helper.create_test_firmware", "line_number": 15, "usage_type": "call" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 20, "usage_type": "call" }, { "api_name": "test.common_helper.get_config_for_testing", "line_number": 21, "usage_type": "call" }, { "api_name": "storage.MongoMgr.MongoMgr", "line_number": 22, "usage_type": "call" }, { "api_name": "storage.binary_service.BinaryService", "line_number": 24, "usage_type": "call" }, { "api_name": "gc.collect", "line_number": 26, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 18, "usage_type": "attribute" }, { "api_name": "configparser.ConfigParser", "line_number": 29, "usage_type": "name" }, { "api_name": "storage.db_interface_backend.BackEndDbInterface", "line_number": 30, "usage_type": "call" }, { "api_name": "test.common_helper.store_binary_on_file_system", "line_number": 32, "usage_type": "call" }, { "api_name": "magic.from_buffer", "line_number": 52, "usage_type": "call" } ]
15426226201
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), 'classes')) from classes import data_manager from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import SGDClassifier from sklearn.ensemble import StackingClassifier, VotingClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Embedding, GlobalMaxPool1D, Conv1D from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import Sequential, load_model from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import autokeras as ak from xgboost import XGBRegressor from xgboost import XGBClassifier # Prediction models: # regressors and classifiers that take a positinal embedding vector as input, # output storypoints (or other impact related value) seed=42 class regressors: @staticmethod def get_autokeras_paraphrase5(): model = load_model("regression_models/autokeras5_desc_paraphrase_rmse", custom_objects=ak.CUSTOM_OBJECTS) return model @staticmethod def get_autokeras_roberta3_mae(): model = load_model("regression_models/autokeras3_roberta_mae", custom_objects=ak.CUSTOM_OBJECTS) return model @staticmethod def keras_convolutional(X_train, y_train, X_test, y_test, vocab_size, max_len): #https://realpython.com/python-keras-text-classification/ callbacks = [ EarlyStopping(patience=5, restore_best_weights=True, mode='min') ] model = Sequential() model.add(Embedding(input_dim=vocab_size+1, output_dim=50, input_length=max_len)) model.add(Conv1D(50, 5, activation='relu')) model.add(GlobalMaxPool1D()) model.add(Dense(units=25, activation='relu')) model.add(Dense(units=1, activation='relu')) model.compile(optimizer=Adam(learning_rate=0.0001), loss='mae', metrics=['mse'], run_eagerly=True) history = model.fit(X_train, y_train, epochs=15, verbose=True, validation_data=(X_test, y_test), batch_size=50, callbacks=callbacks) return model @staticmethod def create_MLP(X, y): model = MLPRegressor(random_state=seed) model = model.fit(X, y) pipe = Pipeline([('mlp', model)]) param_grid = { 'mlp__solver': ['sgd'], 'mlp__alpha': [0.01], 'mlp__learning_rate_init': [0.0001], 'mlp__max_iter': [300] } gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return model @staticmethod def create_SVR(X, y): model = svm.SVR() pipe = Pipeline([('standardize', StandardScaler()), ('svr', model)]) param_grid = { 'svr__C': [1.75], #1.957,1.8,2,1.7 #multi lang 1.75 'svr__gamma': ['scale'], 'svr__kernel': ['rbf'], 'svr__epsilon': [0.01], #0.1,0.01 #multi lang 0.01 'svr__degree': [2] #2,3,4 } gs = gridsearch(pipe, param_grid, 'neg_mean_absolute_error') #neg_mean_squared_error gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_Randomforest(X, y): model = RandomForestRegressor(random_state=seed, n_estimators=300, min_samples_leaf=4, max_depth=20) pipe = Pipeline([('rtree', model)]) param_grid = { # 'rtree__n_estimators': [300], # 'rtree__min_samples_leaf': [4], # 'rtree__max_depth': [20] } gs = gridsearch(pipe, param_grid, 'neg_mean_absolute_error') gs.fit(X, y) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_XGBregressor(X_train, y_train): model = XGBRegressor(learning_rate=0.001, n_estimators=400, n_jobs=5, random_state=seed) pipe = Pipeline([('XGB', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return model @staticmethod def keras_sequential_network(X_train, y_train, X_test, y_test, lr=0.001): input_dim = len(X_train[0]) callbacks = [ EarlyStopping(patience=5, restore_best_weights=True, mode='min') ] model = Sequential() model.add(Dense(100, input_dim=input_dim, kernel_initializer='normal', activation='relu')) model.add(Dense(20, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='linear')) model.compile(loss='mse', optimizer=Adam(learning_rate=lr), metrics=['mse', 'mae'], run_eagerly=True) model.fit(X_train, y_train, epochs=15, verbose=True, validation_data=(X_test, y_test), batch_size=50, callbacks=callbacks) pipe = Pipeline([('nn', model)]) param_grid = {} gs = gridsearch(pipe, param_grid, 'neg_mean_squared_error') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return model class classifiers(object): @staticmethod #0.7133 - F 0.7220 - H 0.7281 - H2 0.73152 def create_mlpclassifier(X_train, y_train): model = MLPClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { 'mlp__max_iter':[200], #200, 400, 600, 800 | 200 'mlp__solver':['adam'], #'adam', 'lbfgs' | 'adam' 'mlp__alpha':[0.001], #0.0001, 0.001 | 0.001 'mlp__batch_size':[50], #100, 150, 200, 400 | 50 'mlp__learning_rate_init':[0.0001] #0.01, 0.001, 0.0001 | 0.0001 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6709 - F 0.6817 def create_Randomforest(X_train, y_train): model = RandomForestClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { # 'rtree__n_estimators': [700], #best from range 150 - 700 # 'rtree__min_samples_leaf': [2], #best from range 1 - 7 # 'rtree__max_depth': [20] } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.7147 - F 0.7206 - H 0.7256 - H2 0.72656 def create_XGB(X_train, y_train): model = XGBClassifier(seed=seed, use_label_encoder=False) pipe = Pipeline([('standardize', StandardScaler()), ('xgb', model)]) param_grid = { 'xgb__learning_rate':[0.05, 0.03], #0.2, 0.1, 0.15, 0.01 | 0.05 'xgb__n_estimators':[600, 800], #100, 300, 400, 500 | 600 'xgb__max_depth':[7], #4, 5, 6, 7, 8 | 7 'xgb__colsample_bytree':[0.2], #0.1, 0.2 | 0.2 'xgb__reg_lambda':[4, 6, 8] #1, 2, 3, 4 | 4 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6750 - F 0.6885 def create_GB(X_train, y_train): #max_depth=6, n_estimators=500, random_state=42))]) # best parms: {'gb__learning_rate': 0.1, 'gb__max_depth': 6, 'gb__n_estimators': 500} model = GradientBoostingClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('gb', model)]) param_grid = { # 'gb__n_estimators': [500], #50 - 600 # 'gb__learning_rate': [0.1], #0.2 - 0.01 # 'gb__max_depth': [6], #1-7 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.7152 - F 0.7195 H 0.73417 def create_SVC(X_train, y_train): model = svm.SVC(random_state=seed, probability=True) pipe = Pipeline([('standardize', StandardScaler()), ('svc', model)]) param_grid = { 'svc__kernel': ['rbf'], #'rbf', 'linear' | rbf 'svc__degree': [2], #2,3,4 | 2 'svc__gamma': ['scale'], #'auto', 'scale' | 'scale' 'svc__C': [1.95] #1, 1.95 | 1.95 } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6670 - F 0.6735 def create_KNN(X_train, y_train): model = KNeighborsClassifier() pipe = Pipeline([('standardize', StandardScaler()), ('KNN', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #0.6764 - F 0.667 def create_SGD(X_train, y_train): model = SGDClassifier(random_state=seed) pipe = Pipeline([('standardize', StandardScaler()), ('sgd', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod #F - 0.7311 - H2 0.73587 def create_voting(X_train, y_train): SVC = svm.SVC(random_state=seed, probability=True, kernel='rbf', degree=2, gamma='scale', C=1.95) XGB = XGBClassifier(seed=seed, learning_rate=0.05, n_estimators=600, max_depth=7, reg_lambda=4, colsample_bytree=0.2, use_label_encoder=False) MLP = MLPClassifier(random_state=seed, max_iter=200, solver='adam', alpha=0.001, batch_size=50, learning_rate_init=0.0001) estimators = [ ('svc', SVC), ('xgb', XGB), ('mlp', MLP) ] model = VotingClassifier( estimators=estimators, voting='soft', weights=[1,1,1], n_jobs=-1, verbose=True) pipe = Pipeline([('standardize', StandardScaler()), ('vc', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) print('voting done') return gs @staticmethod #F - 0.72848 - H2 0.7373 def create_stacking(X_train, y_train): SVC = svm.SVC(random_state=seed, probability=True, kernel='rbf', degree=2, gamma='scale', C=1.95) XGB = XGBClassifier(seed=seed, learning_rate=0.05, n_estimators=600, max_depth=7, reg_lambda=4, colsample_bytree=0.2, use_label_encoder=False) MLP = MLPClassifier(random_state=seed, max_iter=200, solver='adam', alpha=0.001, batch_size=50, learning_rate_init=0.0001) estimators = [ ('svc', SVC), ('xgb', XGB), ('mlp', MLP) ] model = StackingClassifier( estimators=estimators, final_estimator=LogisticRegression(random_state=42) ) pipe = Pipeline([('standardize', StandardScaler()), ('stack', model)]) param_grid = { } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) print('stacking done') data_manager.print_gridsearch_best_stats(gs) return gs @staticmethod def create_logisticregression(X_train, y_train): model = LogisticRegression(random_state=42) pipe = Pipeline([('standardize', StandardScaler()), ('lg', model)]) param_grid = { 'lg__max_iter':[600] } gs = gridsearch(pipe, param_grid, 'recall_macro') gs.fit(X_train, y_train) data_manager.print_gridsearch_best_stats(gs) return gs def gridsearch(pipe, param_grid, metric): gs = GridSearchCV(pipe, param_grid, verbose=0, cv=5, scoring=metric, n_jobs=4, return_train_score=True) return gs
JaapvDijk/PredictTaskImpactNLP
classes/prediction_models.py
prediction_models.py
py
14,556
python
en
code
0
github-code
6
[ { "api_name": "sys.path.append", "line_number": 2, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 2, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 2, "usage_type": "call" }, { "api_name": "os.path", "line_number": 2, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 2, "usage_type": "call" }, { "api_name": "tensorflow.keras.models.load_model", "line_number": 45, "usage_type": "call" }, { "api_name": "autokeras.CUSTOM_OBJECTS", "line_number": 45, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.models.load_model", "line_number": 50, "usage_type": "call" }, { "api_name": "autokeras.CUSTOM_OBJECTS", "line_number": 50, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.callbacks.EarlyStopping", "line_number": 57, "usage_type": "call" }, { "api_name": "tensorflow.keras.models.Sequential", "line_number": 60, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Embedding", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Conv1D", "line_number": 64, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.GlobalMaxPool1D", "line_number": 65, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 66, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 67, "usage_type": "call" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 69, "usage_type": "call" }, { "api_name": "sklearn.neural_network.MLPRegressor", "line_number": 85, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 88, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 99, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 99, "usage_type": "name" }, { "api_name": "sklearn.svm.SVR", "line_number": 104, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 104, "usage_type": "name" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 106, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 106, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 119, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 119, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 125, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 127, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 138, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 138, "usage_type": "name" }, { "api_name": "xgboost.XGBRegressor", "line_number": 144, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 149, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 156, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 156, "usage_type": "name" }, { "api_name": "tensorflow.keras.callbacks.EarlyStopping", "line_number": 164, "usage_type": "call" }, { "api_name": "tensorflow.keras.models.Sequential", "line_number": 167, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 168, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 169, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 170, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 171, "usage_type": "call" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 173, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 182, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 189, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 189, "usage_type": "name" }, { "api_name": "sklearn.neural_network.MLPClassifier", "line_number": 197, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 199, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 199, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 213, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 213, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 219, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 221, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 221, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 233, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 233, "usage_type": "name" }, { "api_name": "xgboost.XGBClassifier", "line_number": 239, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 242, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 242, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 256, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 256, "usage_type": "name" }, { "api_name": "sklearn.ensemble.GradientBoostingClassifier", "line_number": 265, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 267, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 267, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 278, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 278, "usage_type": "name" }, { "api_name": "sklearn.svm.SVC", "line_number": 284, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 284, "usage_type": "name" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 287, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 287, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 300, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 300, "usage_type": "name" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 306, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 308, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 308, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 317, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 317, "usage_type": "name" }, { "api_name": "sklearn.linear_model.SGDClassifier", "line_number": 323, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 325, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 325, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 334, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 334, "usage_type": "name" }, { "api_name": "sklearn.svm.SVC", "line_number": 340, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 340, "usage_type": "name" }, { "api_name": "xgboost.XGBClassifier", "line_number": 346, "usage_type": "call" }, { "api_name": "sklearn.neural_network.MLPClassifier", "line_number": 353, "usage_type": "call" }, { "api_name": "sklearn.ensemble.VotingClassifier", "line_number": 366, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 373, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 373, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 382, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 382, "usage_type": "name" }, { "api_name": "sklearn.svm.SVC", "line_number": 389, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 389, "usage_type": "name" }, { "api_name": "xgboost.XGBClassifier", "line_number": 395, "usage_type": "call" }, { "api_name": "sklearn.neural_network.MLPClassifier", "line_number": 402, "usage_type": "call" }, { "api_name": "sklearn.ensemble.StackingClassifier", "line_number": 415, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 417, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 420, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 420, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 431, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 431, "usage_type": "name" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 437, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 439, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 439, "usage_type": "call" }, { "api_name": "classes.data_manager.print_gridsearch_best_stats", "line_number": 448, "usage_type": "call" }, { "api_name": "classes.data_manager", "line_number": 448, "usage_type": "name" }, { "api_name": "sklearn.model_selection.GridSearchCV", "line_number": 454, "usage_type": "call" } ]
24337846458
# -*- coding: utf-8 -*- import os import sys import shutil import datetime import numpy as np from sklearn.model_selection import train_test_split from PIL import Image from keras import models from keras import layers from keras import optimizers from keras import regularizers from keras import backend as K from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt models_save_dir = './models/' if not os.path.exists(models_save_dir): os.mkdir(models_save_dir) dataset_dir = './datasets/raw_datasets/Images/' train_dir = './datasets/train/' validation_dir = './datasets/validation/' test_dir = './datasets/test/' # if the second arguments is '-n' then split data again if len(sys.argv) >= 2 and sys.argv[1] == '-n': if os.path.exists(train_dir): shutil.rmtree(train_dir) if os.path.exists(validation_dir): shutil.rmtree(validation_dir) if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(train_dir) os.mkdir(validation_dir) os.mkdir(test_dir) for i in range(0, 43): #一共43个分类,每个循环一次,按照8:1:1的比例分配 训练/validation/测试 数据 category = i foldername = str(i).zfill(5) foldername_new = str(i) dataset_path = os.path.join(dataset_dir, foldername) train_path = os.path.join(train_dir, foldername_new) os.mkdir(train_path) validation_path = os.path.join(validation_dir, foldername_new) os.mkdir(validation_path) test_path = os.path.join(test_dir, foldername_new) os.mkdir(test_path) dataset = np.array(os.listdir(dataset_path)) np.random.shuffle(dataset) #train_dataset, test_dataset = train_test_split(dataset, target, test_size=0.2) """ train_test_split method raise 'too many values to unpack' error so use array slice simplely """ train_dataset = dataset[0:int(len(dataset)*0.8)] validation_dataset = dataset[int(len(dataset)*0.8):int(len(dataset)*0.9)] test_dataset = dataset[int(len(dataset)*0.9):] for train_item in train_dataset: im = Image.open(os.path.join(dataset_path, train_item)) im.save(os.path.join(train_path, train_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, train_item), train_path) for validation_item in validation_dataset: im = Image.open(os.path.join(dataset_path, validation_item)) im.save(os.path.join(validation_path, validation_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, validation_item), validation_path) for test_item in test_dataset: im = Image.open(os.path.join(dataset_path, test_item)) im.save(os.path.join(test_path, test_item.split('.')[0] + '.png')) #shutil.copy(os.path.join(dataset_path, test_item), test_path) """ clear_session every trian """ K.clear_session() batch_size = 10 steps_per_epoch = int(sum([len(files) for r, d, files in os.walk(train_dir)])/batch_size) model = models.Sequential() model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(50, 50, 3))) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(128, (3,3), activation='relu')) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(43, activation='softmax')) """ check our model summary """ #model.summary() model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['accuracy'] ) """ start processing input data turn raw image to numpy array """ train_datagen = ImageDataGenerator(rescale=1./255, #rotation_range=40, #width_shift_range=0.2, #height_shift_range=0.2, #shear_range=0.2, #zoom_range=0.2, #horizontal_flip=True, #fill_mode='nearest' ) validation_datagen = ImageDataGenerator(rescale=1./255, #rotation_range=40, #width_shift_range=0.2, #height_shift_range=0.2, #shear_range=0.2, #zoom_range=0.2, #horizontal_flip=True, #fill_mode='nearest' ) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(50,50), batch_size=batch_size, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(50,50), batch_size=batch_size, class_mode='categorical') earlystopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto') history = model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch, epochs=20, validation_data=validation_generator, validation_steps=15, callbacks=[earlystopping]) from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_directory( test_dir, target_size=(50,50), batch_size=20, class_mode='categorical') loss, acc = model.evaluate_generator(test_generator, 20) model.save(os.path.join(models_save_dir, 'traffic_' + datetime.datetime.now().strftime('%Y%m%d_%H:%M:%S') + '_' + str(acc) + '.h5'))
jabez128/dl-trafficsigns-detection
classifier.py
classifier.py
py
5,975
python
en
code
3
github-code
6
[ { "api_name": "os.path.exists", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "shutil.rmtree", "line_number": 44, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 46, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 48, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 59, "usage_type": "call" }, { "api_name": "os.path", "line_number": 59, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path", "line_number": 64, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 67, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 68, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 83, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 83, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 88, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 88, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path", "line_number": 88, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path", "line_number": 89, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 93, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 93, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path", "line_number": 94, "usage_type": "attribute" }, { "api_name": "keras.backend.clear_session", "line_number": 101, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 101, "usage_type": "name" }, { "api_name": "os.walk", "line_number": 105, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 107, "usage_type": "call" }, { "api_name": "keras.models", "line_number": 107, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 109, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 109, "usage_type": "name" }, { "api_name": "keras.layers.MaxPooling2D", "line_number": 110, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 110, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 111, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 111, "usage_type": "name" }, { "api_name": "keras.layers.MaxPooling2D", "line_number": 112, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 112, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 113, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 113, "usage_type": "name" }, { "api_name": "keras.layers.MaxPooling2D", "line_number": 114, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 114, "usage_type": "name" }, { "api_name": "keras.layers.Flatten", "line_number": 115, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 115, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 116, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 116, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 117, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 117, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 118, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 118, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 119, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 119, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 120, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 120, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 121, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 121, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 122, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 122, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 123, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 123, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 124, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 124, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 125, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 125, "usage_type": "name" }, { "api_name": "keras.optimizers.RMSprop", "line_number": 133, "usage_type": "call" }, { "api_name": "keras.optimizers", "line_number": 133, "usage_type": "name" }, { "api_name": "keras.preprocessing.image.ImageDataGenerator", "line_number": 142, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.ImageDataGenerator", "line_number": 151, "usage_type": "call" }, { "api_name": "keras.callbacks.EarlyStopping", "line_number": 173, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.ImageDataGenerator", "line_number": 185, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 195, "usage_type": "call" }, { "api_name": "os.path", "line_number": 195, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 195, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 195, "usage_type": "attribute" } ]
21216112261
import requests NEWS_ENDPOINT = "https://newsapi.org/v2/everything" NEWS_API_KEY = 'caa8a3621a5e481c96807e77fe1dfc91' news_params = { 'q': "Tesla Inc", 'apiKey': NEWS_API_KEY } response = requests.get(url=NEWS_ENDPOINT, params=news_params) response.raise_for_status() data = response.json()["articles"] article = [] for i in range(3): article.append(data[i]) print(article)
myoaung99/Stock-news
eg.py
eg.py
py
390
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 10, "usage_type": "call" } ]
29157621722
# -*- coding: utf-8 -*- import logging import aiogrpc class AsyncPluginManager: """ Connects to a running mavsdk server or starts one and manages plugins """ @classmethod async def create(cls, host, port=50051): self = AsyncPluginManager() self.host = host self.port = port self.plugins = {} await self._connect_backend() return self async def _connect_backend(self): """ Initializes the connection to the running backend """ #: gRPC channel self._channel = aiogrpc.insecure_channel( "{}:{}".format(self.host, self.port), standalone_pool_for_streaming=True ) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # Avoid errors when user has not configured logging logger.debug("Waiting for mavsdk_server to be ready...") await aiogrpc.channel_ready_future(self._channel) logger.debug("Connected to mavsdk_server!") @property def channel(self): """ gRPC channel to the backend """ return self._channel
mavlink/MAVSDK-Python
mavsdk/async_plugin_manager.py
async_plugin_manager.py
py
1,162
python
en
code
246
github-code
6
[ { "api_name": "aiogrpc.insecure_channel", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 34, "usage_type": "call" }, { "api_name": "logging.NullHandler", "line_number": 35, "usage_type": "call" }, { "api_name": "aiogrpc.channel_ready_future", "line_number": 38, "usage_type": "call" } ]
38827999454
import random import qrcode import qrcode.image.svg from io import BytesIO from django.shortcuts import render from django.views.generic import View class IndexView(View): def get(self, request, *args, **kwargs): template = 'index.html' return render( request, template, ) def generate_random_code(): num = "12345678900987654321" numbers = random.sample(num, 5) five_last_number = '' for number in numbers: five_last_number += number return five_last_number class CustomerQrAndBarcodeScan(View): def post(self, request, *args, **kwargs): templates_text = request.POST['qr_text'] print(templates_text) factory = qrcode.image.svg.SvgImage text = generate_random_code() print(text) img = qrcode.make(text, image_factory=factory, box_size=20) streem = BytesIO() img.save(streem) context = {} context['svg'] = streem.getvalue().decode() return render(request, "index.html", context)
AbrahamAdekunle/Bashir_abraham_ERP
bar_qr_code/views.py
views.py
py
1,087
python
en
code
0
github-code
6
[ { "api_name": "django.views.generic.View", "line_number": 11, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 15, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 23, "usage_type": "call" }, { "api_name": "django.views.generic.View", "line_number": 31, "usage_type": "name" }, { "api_name": "qrcode.image", "line_number": 36, "usage_type": "attribute" }, { "api_name": "qrcode.make", "line_number": 39, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 41, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 45, "usage_type": "call" } ]
38047305072
from flask import Flask, jsonify, render_template import psutil import subprocess app = Flask(__name__) def get_gpu_usage(): result = subprocess.check_output("nvidia-smi --query-gpu=utilization.gpu --format=csv,noheader,nounits", shell=True) gpu_usage = float(result.strip()) return gpu_usage @app.route('/') def home(): return render_template('index.html') @app.route('/system_info') def system_info(): info = { "cpu_usage": psutil.cpu_percent(), "ram_usage": psutil.virtual_memory().percent, "disk_usage": psutil.disk_usage('/').percent, "network_info": psutil.net_io_counters(pernic=True), "gpu_usage": get_gpu_usage() } return jsonify(info) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
agbld/webserver_for_system_infos
app.py
app.py
py
784
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 8, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 14, "usage_type": "call" }, { "api_name": "psutil.cpu_percent", "line_number": 19, "usage_type": "call" }, { "api_name": "psutil.virtual_memory", "line_number": 20, "usage_type": "call" }, { "api_name": "psutil.disk_usage", "line_number": 21, "usage_type": "call" }, { "api_name": "psutil.net_io_counters", "line_number": 22, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 25, "usage_type": "call" } ]
25068490855
from typing import Tuple, List from asendia_us_lib.shipping_rate_request import ShippingRateRequest from asendia_us_lib.shipping_rate_response import ShippingRate from purplship.core.units import Packages, Services, Options from purplship.core.utils import Serializable, DP, NF from purplship.core.models import ( RateRequest, RateDetails, Message ) from purplship.providers.asendia_us.units import Service, Option, ProcessingLocation from purplship.providers.asendia_us.error import parse_error_response from purplship.providers.asendia_us.utils import Settings def parse_rate_response(response: dict, settings: Settings) -> Tuple[List[RateDetails], List[Message]]: errors = parse_error_response(response, settings) details = [ _extract_details(detail, settings) for detail in (response.get('shippingRates') or []) ] return details, errors def _extract_details(detail: dict, settings: Settings) -> RateDetails: rate = DP.to_object(ShippingRate, detail) return RateDetails( carrier_id=settings.carrier_id, carrier_name=settings.carrier_name, currency=rate.currencyType, service=Service.map(rate.productCode).name_or_key, base_charge=NF.decimal(rate.rate), total_charge=NF.decimal(rate.rate) ) def rate_request(payload: RateRequest, settings: Settings) -> Serializable[ShippingRateRequest]: package = Packages(payload.parcels).single service = (Services(payload.services, Service).first or Service.asendia_us_all).value options = Options(payload.options, Option) request = ShippingRateRequest( accountNumber=settings.account_number, subAccountNumber=options.asendia_sub_account_number, processingLocation=ProcessingLocation.map(options.asendia_processing_location or "SFO").name, recipientPostalCode=payload.recipient.postal_code, recipientCountryCode=payload.recipient.country_code, totalPackageWeight=package.weight.value, weightUnit=package.weight_unit.value.lower(), dimLength=package.length.value, dimWidth=package.width.value, dimHeight=package.height.value, dimUnit=package.dimension_unit.value, productCode=service, ) return Serializable(request, DP.to_dict)
danh91/purplship
sdk/extensions/asendia_us/purplship/providers/asendia_us/rate.py
rate.py
py
2,301
python
en
code
null
github-code
6
[ { "api_name": "purplship.providers.asendia_us.utils.Settings", "line_number": 16, "usage_type": "name" }, { "api_name": "purplship.providers.asendia_us.error.parse_error_response", "line_number": 17, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 16, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 16, "usage_type": "name" }, { "api_name": "purplship.core.models.RateDetails", "line_number": 16, "usage_type": "name" }, { "api_name": "purplship.core.models.Message", "line_number": 16, "usage_type": "name" }, { "api_name": "purplship.providers.asendia_us.utils.Settings", "line_number": 26, "usage_type": "name" }, { "api_name": "purplship.core.utils.DP.to_object", "line_number": 27, "usage_type": "call" }, { "api_name": "asendia_us_lib.shipping_rate_response.ShippingRate", "line_number": 27, "usage_type": "argument" }, { "api_name": "purplship.core.utils.DP", "line_number": 27, "usage_type": "name" }, { "api_name": "purplship.core.models.RateDetails", "line_number": 29, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.Service.map", "line_number": 34, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.Service", "line_number": 34, "usage_type": "name" }, { "api_name": "purplship.core.utils.NF.decimal", "line_number": 35, "usage_type": "call" }, { "api_name": "purplship.core.utils.NF", "line_number": 35, "usage_type": "name" }, { "api_name": "purplship.core.utils.NF.decimal", "line_number": 36, "usage_type": "call" }, { "api_name": "purplship.core.utils.NF", "line_number": 36, "usage_type": "name" }, { "api_name": "purplship.core.models.RateDetails", "line_number": 26, "usage_type": "name" }, { "api_name": "purplship.core.models.RateRequest", "line_number": 40, "usage_type": "name" }, { "api_name": "purplship.providers.asendia_us.utils.Settings", "line_number": 40, "usage_type": "name" }, { "api_name": "purplship.core.units.Packages", "line_number": 41, "usage_type": "call" }, { "api_name": "purplship.core.units.Services", "line_number": 42, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.Service", "line_number": 42, "usage_type": "argument" }, { "api_name": "purplship.providers.asendia_us.units.Service.asendia_us_all", "line_number": 42, "usage_type": "attribute" }, { "api_name": "purplship.core.units.Options", "line_number": 43, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.Option", "line_number": 43, "usage_type": "argument" }, { "api_name": "asendia_us_lib.shipping_rate_request.ShippingRateRequest", "line_number": 45, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.ProcessingLocation.map", "line_number": 48, "usage_type": "call" }, { "api_name": "purplship.providers.asendia_us.units.ProcessingLocation", "line_number": 48, "usage_type": "name" }, { "api_name": "purplship.core.utils.Serializable", "line_number": 60, "usage_type": "call" }, { "api_name": "purplship.core.utils.DP.to_dict", "line_number": 60, "usage_type": "attribute" }, { "api_name": "purplship.core.utils.DP", "line_number": 60, "usage_type": "name" }, { "api_name": "purplship.core.utils.Serializable", "line_number": 40, "usage_type": "name" }, { "api_name": "asendia_us_lib.shipping_rate_request.ShippingRateRequest", "line_number": 40, "usage_type": "name" } ]
26169526568
import argparse import json import os import time import torch from redsandt.encoder.bert_encoder import BERTEncoder from redsandt.framework.bag_re import BagRE from redsandt.selector.bag_attention import BagAttention # Pass arguments parser = argparse.ArgumentParser( description='Improving Distantly-Supervised Relation Extraction through BERT-based Label & Instance Embeddings') parser.add_argument('--train', dest="train", action='store_true', help='training mode') parser.add_argument('--eval', dest="eval", action='store_true', help='evaluation mode') parser.add_argument('--dataset', dest="dataset", required=True, help='dataset') parser.add_argument('--config', dest="config", required=True, help='configuration file') parser.add_argument('--model_dir', dest="model_dir", required=True, help='model dir') parser.add_argument('--model_name', dest="model_name", required=True, help='model name') args = parser.parse_args() # Some basic settings ROOT_PATH = '.' DATASET = args.dataset # NYT-10 or GDS MODEL_DIR = args.model_dir MODEL_NAME = args.model_name config = json.load(open(args.config)) # Create folders if not os.path.exists('experiments/ckpt/' + DATASET + '/' + MODEL_DIR): os.makedirs('experiments/ckpt/' + DATASET + '/' + MODEL_DIR) if not os.path.exists('experiments/outputs/' + DATASET + '/' + MODEL_DIR): os.makedirs('experiments/outputs/' + DATASET + '/' + MODEL_DIR) ckpt = 'experiments/ckpt/' + DATASET + '/' + MODEL_DIR + '/' + MODEL_NAME + '.pth.tar' if DATASET == 'NYT-10': rel2id = json.load(open(os.path.join(ROOT_PATH, 'benchmark/NYT-10-enhanced/nyt10_rel2id.json'))) elif DATASET == 'GDS': rel2id = json.load(open(os.path.join(ROOT_PATH, 'benchmark/GDS-enhanced/gids_rel2id.json'))) # DEFINE SENTENCE ENCODER print('Defining the sentence encoder...') sentence_encoder = BERTEncoder(max_length=config['encoder']['max_length'], num_labels=config['encoder']['num_labels'], pretrained_model=config['encoder']['pretrained_model'], drop=config['encoder']['encoder_dropout'], freeze_bert=config['encoder']['freeze_bert'], text_stp=config['encoder']['text_stp'], entity_types=config['encoder'][ 'entity_types'], dataset=DATASET) # DEFINE MODEL print("\nDefining model...") model = BagAttention(sentence_encoder, len(rel2id), rel2id, config['framework']['selector_dropout']) # DEFINE TRAINING FRAMEWORK print("\nDefining learning framework...") model_path = DATASET + '/' + MODEL_DIR framework = BagRE(train_path=config['train_data_path'], val_path=config['val_data_path'], test_path=config['test_data_path'], model_name=model_path, model=model, ckpt=ckpt, batch_size=config['framework']['batch_size'], max_epoch=config['framework']['max_epoch'], lr=config['framework']['lr'], weight_decay=config['framework']['weight_decay'], warmup_step_ratio=config['framework']['warmup_step_ratio'], opt=config['framework']['opt'], weighted_loss=config['framework']['weighted_loss'], bag_size=config['framework']['bag_size']) # TRAIN MODEL if args.train: print("\nTraining model...") start = time.time() framework.train_model() end = time.time() print("Training time: ", end - start, "sec.") # EVALUATE MODEL if args.eval: print("\nEvaluate model on testing data...") start = time.time() framework.load_state_dict(torch.load(ckpt)['state_dict']) result = framework.eval_model(framework.test_loader, save_eval_metrics=True) end = time.time() print("Testing time: ", end - start, "sec.") # Print Statistics print('AUC: {}'.format(result['auc'])) print('P@100: {}'.format(result['p@100'])) print('P@200: {}'.format(result['p@200'])) print('P@300: {}'.format(result['p@300'])) print('P@500: {}'.format(result['p@500'])) print('P@1000: {}'.format(result['p@1000'])) print('P@2000: {}'.format(result['p@2000'])) print('P@all: {}'.format(result['p@all'])) print('\nRelation Distribution on Top 300 predictions:') for key, value in result['rel_dist_at_300'].items(): print(key, ": ", value)
DespinaChristou/REDSandT
redsandt.py
redsandt.py
py
4,210
python
en
code
22
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 13, "usage_type": "call" }, { "api_name": "json.load", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 34, "usage_type": "call" }, { "api_name": "json.load", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "redsandt.encoder.bert_encoder.BERTEncoder", "line_number": 44, "usage_type": "call" }, { "api_name": "redsandt.selector.bag_attention.BagAttention", "line_number": 52, "usage_type": "call" }, { "api_name": "redsandt.framework.bag_re.BagRE", "line_number": 57, "usage_type": "call" }, { "api_name": "time.time", "line_number": 67, "usage_type": "call" }, { "api_name": "time.time", "line_number": 69, "usage_type": "call" }, { "api_name": "time.time", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 76, "usage_type": "call" }, { "api_name": "time.time", "line_number": 78, "usage_type": "call" } ]
22982145642
import sys import json import os import io import collections import argparse import logging from e2edutch import conll from e2edutch import minimize from e2edutch import util from e2edutch import coref_model as cm from e2edutch import naf import tensorflow.compat.v1 as tf logger = logging.getLogger('e2edutch') class Predictor(object): """ A predictor object loads a pretrained e2e model to predict coreferences. It can be used to predict coreferences on tokenized text. """ def __init__(self, model_name='final', config=None, verbose=False): if verbose: logger.setLevel(logging.INFO) if config: self.config = config else: # if no configuration is provided, try to get a default config. self.config = util.initialize_from_env(model_name=model_name) # Clear tensorflow context: tf.reset_default_graph() self.session = tf.compat.v1.Session() try: self.model = cm.CorefModel(self.config) self.model.restore(self.session) except ValueError: raise Exception("Trying to reload the model while the previous " + "session hasn't been ended. Close the existing " + "session with predictor.end_session()") def predict(self, example): """ Predict coreference spans for a tokenized text. Args: example (dict): dict with the following fields: sentences ([[str]]) doc_id (str) clusters ([[(int, int)]]) (optional) Returns: [[(int, int)]]: a list of clusters. The items of the cluster are spans, denoted by their start end end token index """ tensorized_example = self.model.tensorize_example( example, is_training=False) feed_dict = {i: t for i, t in zip( self.model.input_tensors, tensorized_example)} _, _, _, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores = self.session.run( self.model.predictions, feed_dict=feed_dict) predicted_antecedents = self.model.get_predicted_antecedents( top_antecedents, top_antecedent_scores) predicted_clusters, _ = self.model.get_predicted_clusters( top_span_starts, top_span_ends, predicted_antecedents) return predicted_clusters def end_session(self): """ Close the session, clearing the tensorflow model context. """ self.session.close() tf.reset_default_graph() def get_parser(): parser = argparse.ArgumentParser() parser.add_argument('input_filename') parser.add_argument('-o', '--output_file', type=argparse.FileType('w'), default=sys.stdout) parser.add_argument('-f', '--format_out', default='conll', choices=['conll', 'jsonlines', 'naf']) parser.add_argument('-m', '--model', type=str, default='final', help="model name") parser.add_argument('-c', '--word_col', type=int, default=2) parser.add_argument('--cfg_file', type=str, default=None, help="config file") parser.add_argument('--model_cfg_file', type=str, default=None, help="model config file") parser.add_argument('-v', '--verbose', action='store_true') return parser def read_jsonlines(input_filename): for line in open(input_filename).readlines(): example = json.loads(line) yield example def main(args=None): parser = get_parser() args = parser.parse_args() if args.verbose: logger.setLevel(logging.INFO) # Input file in .jsonlines format or .conll. input_filename = args.input_filename ext_input = os.path.splitext(input_filename)[-1] if ext_input not in ['.conll', '.jsonlines', '.txt', '.naf']: raise Exception( 'Input file should be .naf, .conll, .txt or .jsonlines, but is {}.' .format(ext_input)) if ext_input == '.conll': labels = collections.defaultdict(set) stats = collections.defaultdict(int) docs = minimize.minimize_partition( input_filename, labels, stats, args.word_col) elif ext_input == '.jsonlines': docs = read_jsonlines(input_filename) elif ext_input == '.naf': naf_obj = naf.get_naf(input_filename) jsonlines_obj, term_ids, tok_ids = naf.get_jsonlines(naf_obj) docs = [jsonlines_obj] else: text = open(input_filename).read() docs = [util.create_example(text)] output_file = args.output_file config = util.initialize_from_env(model_name=args.model, cfg_file=args.cfg_file, model_cfg_file=args.model_cfg_file) predictor = Predictor(config=config) sentences = {} predictions = {} for example_num, example in enumerate(docs): example["predicted_clusters"] = predictor.predict(example) if args.format_out == 'jsonlines': output_file.write(json.dumps(example)) output_file.write("\n") else: predictions[example['doc_key']] = example["predicted_clusters"] sentences[example['doc_key']] = example["sentences"] if example_num % 100 == 0: logger.info("Decoded {} examples.".format(example_num + 1)) if args.format_out == 'conll': conll.output_conll(output_file, sentences, predictions) elif args.format_out == 'naf': # Check number of docs - what to do if multiple? # Create naf obj if input format was not naf if ext_input != '.naf': # To do: add linguistic processing layers for terms and tokens logger.warn( 'Outputting NAF when input was not naf,' + 'no dependency information available') for doc_key in sentences: naf_obj, term_ids = naf.get_naf_from_sentences( sentences[doc_key]) naf_obj = naf.create_coref_layer( naf_obj, predictions[doc_key], term_ids) naf_obj = naf.add_linguistic_processors(naf_obj) buffer = io.BytesIO() naf_obj.dump(buffer) output_file.write(buffer.getvalue().decode('utf-8')) # To do, make sepearate outputs? # TO do, use dependency information from conll? else: # We only have one input doc naf_obj = naf.create_coref_layer( naf_obj, example["predicted_clusters"], term_ids) naf_obj = naf.add_linguistic_processors(naf_obj) buffer = io.BytesIO() naf_obj.dump(buffer) output_file.write(buffer.getvalue().decode('utf-8')) if __name__ == "__main__": main()
Filter-Bubble/e2e-Dutch
e2edutch/predict.py
predict.py
py
7,163
python
en
code
9
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 28, "usage_type": "attribute" }, { "api_name": "e2edutch.util.initialize_from_env", "line_number": 34, "usage_type": "call" }, { "api_name": "e2edutch.util", "line_number": 34, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.reset_default_graph", "line_number": 37, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 37, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.compat.v1.Session", "line_number": 38, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.compat", "line_number": 38, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 38, "usage_type": "name" }, { "api_name": "e2edutch.coref_model.CorefModel", "line_number": 41, "usage_type": "call" }, { "api_name": "e2edutch.coref_model", "line_number": 41, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.reset_default_graph", "line_number": 82, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 82, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 86, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 89, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 89, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 111, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 119, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 124, "usage_type": "call" }, { "api_name": "os.path", "line_number": 124, "usage_type": "attribute" }, { "api_name": "collections.defaultdict", "line_number": 131, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 132, "usage_type": "call" }, { "api_name": "e2edutch.minimize.minimize_partition", "line_number": 133, "usage_type": "call" }, { "api_name": "e2edutch.minimize", "line_number": 133, "usage_type": "name" }, { "api_name": "e2edutch.naf.get_naf", "line_number": 138, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 138, "usage_type": "name" }, { "api_name": "e2edutch.naf.get_jsonlines", "line_number": 139, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 139, "usage_type": "name" }, { "api_name": "e2edutch.util.create_example", "line_number": 143, "usage_type": "call" }, { "api_name": "e2edutch.util", "line_number": 143, "usage_type": "name" }, { "api_name": "e2edutch.util.initialize_from_env", "line_number": 147, "usage_type": "call" }, { "api_name": "e2edutch.util", "line_number": 147, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 157, "usage_type": "call" }, { "api_name": "e2edutch.conll.output_conll", "line_number": 165, "usage_type": "call" }, { "api_name": "e2edutch.conll", "line_number": 165, "usage_type": "name" }, { "api_name": "e2edutch.naf.get_naf_from_sentences", "line_number": 175, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 175, "usage_type": "name" }, { "api_name": "e2edutch.naf.create_coref_layer", "line_number": 177, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 177, "usage_type": "name" }, { "api_name": "e2edutch.naf.add_linguistic_processors", "line_number": 179, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 179, "usage_type": "name" }, { "api_name": "io.BytesIO", "line_number": 180, "usage_type": "call" }, { "api_name": "e2edutch.naf.create_coref_layer", "line_number": 187, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 187, "usage_type": "name" }, { "api_name": "e2edutch.naf.add_linguistic_processors", "line_number": 189, "usage_type": "call" }, { "api_name": "e2edutch.naf", "line_number": 189, "usage_type": "name" }, { "api_name": "io.BytesIO", "line_number": 190, "usage_type": "call" } ]
34540343891
import argparse import sys from operator import add import os import shlex import shutil from subprocess import Popen, PIPE from pyspark import SparkContext, SparkConf import pyspark.serializers import subprocess import boto3 import re global parser_result if sys.version > "3.4": pyspark.serializers.protocol = 4 APPLICATION_FOLDER = "/app" GENOME_REFERENCES_FOLDER = "/mnt/ref" TEMP_OUTPUT_FOLDER = "/mnt/output" HDFS_TEMP_OUTPUT_FOLDER = "/tmp/sam_chunks" ################################# # File splitting ################################# def split_interleaved_file(file_prefix, file_content, output_dir): """ Unpacks an interleaved file into the standard FASTQ format :param file_prefix: the prefix of the file name :param file_content: the lines of content from the input file :param output_dir: the location to store the unpacked files :return: a tuple with first element being a list of output file names (1 for se, 2 for pe); 2nd element a boolean flag - True if pe data, False otherwise """ fastq_line_count_se = 4 fastq_line_count_pe = 8 paired_reads = False output_file_names = [] file_prefix = output_dir + "/" + file_prefix output_file = file_prefix + "_1.fq" output_file_names.append(output_file) output_file_writer = open(output_file, 'w') count = 0 for line in file_content.strip().split("\n"): # In the first line, check if it's paired or not if count == 0 and len(line.strip().split("\t")) == fastq_line_count_pe: paired_reads = True output_file_pair = file_prefix + "_2.fq" output_file_names.append(output_file_pair) output_pair_writer = open(output_file_pair, 'w') if paired_reads: parts = line.strip().split("\t") if len(parts) != fastq_line_count_pe: continue read_one = parts[:fastq_line_count_se] read_two = parts[fastq_line_count_se:] output_file_writer.write("\n".join(read_one) + "\n") output_pair_writer.write("\n".join(read_two) + "\n") else: output_file_writer.writelines(line.strip().replace("\t", "\n") + "\n") count += 1 output_file_writer.close() if paired_reads: output_pair_writer.close() return output_file_names, paired_reads ################################# # Aligner ################################# def align_reads_star(sample_name, file_names, alignment_output_dir): # If paired read flag is required # paired_read = True if len(file_names) == 2 else False print("Aligning reads...") aligner_args = "{app_folder}/STAR/STAR --runThreadN 4 {aligner_extra_args} --genomeDir {index_folder} " \ "--readFilesIn {fastq_file_names} --outFileNamePrefix {output_folder} --outSAMtype BAM Unsorted".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/star_index", fastq_file_names=" ".join(file_names), output_folder=alignment_output_dir + "/") print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("STAR failed to complete (Non-zero return code)!\n" "STAR stdout: {std_out} \nSTAR stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) if aligner_error.decode("utf8").strip() != "" or not os.path.isfile(alignment_output_dir + "/Log.final.out"): raise ValueError("STAR failed to complete (No output file is found)!\n" "STAR stdout: {std_out} \nSTAR stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') bam_file_name_output = "Aligned.out.bam" return bam_file_name_output def align_reads_hisat(sample_name, file_names, alignment_output_dir): # If paired read flag is required paired_read = True if len(file_names) == 2 else False print("Aligning reads...") if paired_read: fastq_file_args = "-1 {} -2 {}".format(*file_names) else: fastq_file_args = "-U {}".format(*file_names) aligner_args = "{app_folder}/hisat/hisat2 -p 4 --tmo {aligner_extra_args} -x {index_folder}/hisat2.index " \ "{fastq_file_names} -S {output_folder}/output.sam".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/hisat_index", fastq_file_names=fastq_file_args, output_folder=alignment_output_dir) print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("HISAT2 failed to complete (Non-zero return code)!\n" "HISAT2 stdout: {std_out} \nHISAT2 stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') samtools_args = "{app_folder}/samtools/samtools view -@ 4 -o {output_folder}/output.bam {output_folder}/output.sam". \ format(app_folder=APPLICATION_FOLDER, output_folder=alignment_output_dir) print("Command: " + samtools_args) samtools_process = Popen(shlex.split(samtools_args), stdout=PIPE, stderr=PIPE) samtools_out, samtools_error = samtools_process.communicate() if samtools_process.returncode != 0: raise ValueError("Samtools failed to complete (Non-zero return code)!\n" "Samtools stdout: {std_out} \nSamtools stderr: {std_err}".format( std_out=samtools_out.decode("utf8"), std_err=samtools_error.decode("utf8"))) sam_file_name_output = "output.bam" return sam_file_name_output def align_reads_subread(sample_name, file_names, alignment_output_dir): # If paired read flag is required paired_read = True if len(file_names) == 2 else False print("Aligning reads...") print("Aligning with subread") if paired_read: fastq_file_args = "-r {} -R {}".format(*file_names) else: fastq_file_args = "-r {}".format(*file_names) aligner_args = "{app_folder}/subread/subread-align -T 4 -t 0 --SAMoutput {aligner_extra_args} " \ "-i {index_folder}/genome {fastq_file_names} -o {output_folder}/output.bam".\ format(app_folder=APPLICATION_FOLDER, aligner_extra_args="" if parser_result.aligner_extra_args is None else parser_result.aligner_extra_args, index_folder=GENOME_REFERENCES_FOLDER + "/subread_index", fastq_file_names=fastq_file_args, output_folder=alignment_output_dir) print("Command: " + aligner_args) aligner_process = Popen(shlex.split(aligner_args), stdout=PIPE, stderr=PIPE) aligner_out, aligner_error = aligner_process.communicate() if aligner_process.returncode != 0: raise ValueError("Subread failed to complete (Non-zero return code)!\n" "Subread stdout: {std_out} \nSubread stderr: {std_err}".format(std_out=aligner_out.decode("utf8"), std_err=aligner_error.decode("utf8"))) print('Completed reads alignment') sam_file_name_output = "output.bam" return sam_file_name_output ################################# # Main functions ################################# def alignment_step(keyval): # Input: file_name, file_content as key,val # Output: [sample_name, file_name] as [key,val] global parser_result prefix_regex = r"(.*_part[0-9]*)\." file_name, file_content = keyval prefix_match = re.findall(prefix_regex, file_name.rstrip("/").split("/")[-1]) if len(prefix_match) != 1: raise ValueError("Filename can not be resolved (invalid, pattern mismatch): {}".format(file_name)) prefix = prefix_match[0] sample_name = prefix.rsplit("_part", 1)[0] alignment_dir = TEMP_OUTPUT_FOLDER + "/alignment_" + prefix try: os.mkdir(alignment_dir) except: print('Alignment directory {} exist.'.format(alignment_dir)) print("Recreating FASTQ file(s)") split_file_names, paired_reads = split_interleaved_file(prefix, file_content, alignment_dir) print("Recreating FASTQ file(s) complete. Files recreated: {}".format(",".join(split_file_names))) alignment_output_dir = alignment_dir + "/aligner_output" try: os.mkdir(alignment_output_dir) except: print('Alignment output directory {} exist.'.format(alignment_output_dir)) if parser_result.aligner.lower() == "star": aligned_sam_output = align_reads_star(sample_name, split_file_names, alignment_output_dir) elif parser_result.aligner.lower() == "hisat" or parser_result.aligner.lower() == "hisat2": aligned_sam_output = align_reads_hisat(sample_name, split_file_names, alignment_output_dir) elif parser_result.aligner.lower() == "subread": aligned_sam_output = align_reads_subread(sample_name, split_file_names, alignment_output_dir) else: print("Aligner specified is not yet supported. Defaulting to STAR") aligned_sam_output = align_reads_star(sample_name, split_file_names, alignment_output_dir) aligned_output_filepath = "{}/{}".format(alignment_output_dir.rstrip("/"), aligned_sam_output) aligned_output_hdfs_filepath = "{}/{}".format(HDFS_TEMP_OUTPUT_FOLDER, prefix) subprocess.call(["hdfs", "dfs", "-rm", aligned_output_hdfs_filepath]) subprocess.call(["hdfs", "dfs", "-put", aligned_output_filepath, aligned_output_hdfs_filepath]) shutil.rmtree(alignment_dir, ignore_errors=True) return sample_name, [prefix] def fuse_alignment(keyval): # Input: sample_name, [file_name,...] as key, val # Output: sample_name global parser_result key, file_lists = keyval fuse_alignment_dir = TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + key ordered_file_lists = sorted([(f, int(f.rsplit("part", 1)[-1])) for f in file_lists], key=lambda x:x[-1]) print(ordered_file_lists) try: os.mkdir(fuse_alignment_dir) except: print('Fuse alignment directory {} exist.'.format(fuse_alignment_dir)) fuse_alignment_file = key + ".bam" previous_file_path = "" for index, file_name_pair in enumerate(ordered_file_lists): file_name, number = file_name_pair local_file_path = fuse_alignment_dir + "/" + file_name + ".bam" subprocess.call(["hdfs", "dfs", "-get", HDFS_TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + file_name, local_file_path]) if index != 0: new_merged_file_path = "{}/temp_{}.bam".format(fuse_alignment_dir, index) subprocess.call(["samtools", "cat", "-o", new_merged_file_path, previous_file_path, local_file_path]) os.remove(previous_file_path) os.remove(local_file_path) previous_file_path = new_merged_file_path else: previous_file_path = local_file_path subprocess.call(["hdfs", "dfs", "-rm", HDFS_TEMP_OUTPUT_FOLDER.rstrip("/") + "/" + file_name]) if parser_result.output_dir.startswith("s3://"): # From S3 s3_client = boto3.client('s3', region_name=parser_result.aws_region) print("uploading to S3") output_bucket, key_prefix = parser_result.output_dir.strip().strip("/")[5:].split("/", 1) s3_client.upload_file(previous_file_path, output_bucket, key_prefix + "/" + fuse_alignment_file) else: print("outputting to HDFS") subprocess.call(["hdfs", "dfs", "-mkdir", "-p", parser_result.output_dir.rstrip("/")]) subprocess.call(["hdfs", "dfs", "-put", previous_file_path, parser_result.output_dir.rstrip("/") + "/" + fuse_alignment_file]) os.remove(previous_file_path) return key if __name__ == "__main__": global parser_result parser = argparse.ArgumentParser(description='Spark-based RNA-seq Pipeline Alignment') parser.add_argument('--input', '-i', action="store", dest="input_dir", help="Input directory - HDFS or S3") parser.add_argument('--output', '-o', action="store", dest="output_dir", help="Output directory - HDFS or S3") parser.add_argument('--aligner_tools', '-at', action="store", dest="aligner", nargs='?', help="Aligner to be used (STAR|HISAT2|Subread)", default="STAR") parser.add_argument('--aligner_extra_args', '-s', action="store", dest="aligner_extra_args", nargs='?', help="Extra argument to be passed to alignment tool", default="") parser.add_argument('--region', '-r', action="store", dest="aws_region", help="AWS region") parser_result = parser.parse_args() split_num = 0 conf = SparkConf().setAppName("Spark-based RNA-seq Pipeline Alignment") sc = SparkContext(conf=conf) if parser_result.input_dir.startswith("s3://"): # From S3 s3_client = boto3.client('s3', region_name=parser_result.aws_region) # Get number of input files s3_paginator = s3_client.get_paginator('list_objects') input_bucket, key_prefix = parser_result.input_dir[5:].strip().split("/", 1) input_file_num = 0 for result in s3_paginator.paginate(Bucket=input_bucket, Prefix=key_prefix): for file in result.get("Contents"): input_file_num += 1 if input_file_num == 0: raise ValueError("Input directory is invalid or empty!") split_num = input_file_num else: # From HDFS hdfs_process = Popen(shlex.split("hdfs dfs -count {}".format(parser_result.input_dir)), stdout=PIPE, stderr=PIPE) hdfs_out, hdfs_error = hdfs_process.communicate() if hdfs_error: raise ValueError("Input directory is invalid or empty!") dir_count, file_count, size, path = hdfs_out.strip().split() split_num = int(file_count) subprocess.call(["hdfs", "dfs", "-mkdir", "-p", HDFS_TEMP_OUTPUT_FOLDER]) input_files = sc.wholeTextFiles(parser_result.input_dir, split_num) aligned_files = input_files.map(alignment_step) aligned_file_lists = aligned_files.reduceByKey(add) aligned_samples = aligned_file_lists.map(fuse_alignment) aligned_samples.collect()
VCCRI/Falco
source/spark_runner/run_pipeline_alignment.py
run_pipeline_alignment.py
py
15,126
python
en
code
37
github-code
6
[ { "api_name": "sys.version", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pyspark.serializers", "line_number": 17, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 98, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 98, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 98, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path", "line_number": 106, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 136, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 136, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 136, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 149, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 149, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 149, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 181, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 181, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 181, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 208, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 219, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 230, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 247, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 248, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 250, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 266, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 276, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 280, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 282, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 283, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 288, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 291, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 297, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 298, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 301, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 307, "usage_type": "call" }, { "api_name": "pyspark.SparkConf", "line_number": 320, "usage_type": "call" }, { "api_name": "pyspark.SparkContext", "line_number": 321, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 324, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 340, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 340, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 341, "usage_type": "name" }, { "api_name": "subprocess.call", "line_number": 351, "usage_type": "call" }, { "api_name": "operator.add", "line_number": 356, "usage_type": "argument" } ]
8385118921
from __future__ import absolute_import from __future__ import print_function import os import sys import subprocess import optparse from collections import namedtuple if 'SUMO_HOME' in os.environ: tools = os.path.join(os.environ['SUMO_HOME'], 'tools') sys.path.append(tools) import sumolib # noqa else: sys.exit("please declare environment variable 'SUMO_HOME'") from sumolib.output import parse_fast # noqa TLTuple = namedtuple('TLTuple', ['edgeID', 'dist', 'time', 'connection']) PairKey = namedtuple('PairKey', ['edgeID', 'edgeID2', 'dist']) PairData = namedtuple('PairData', ['otl', 'oconnection', 'tl', 'connection', 'betweenOffset', 'startOffset', 'travelTime', 'prio', 'numVehicles', 'ogreen', 'green']) def pair2str(p, full=True): brief = "%s,%s s=%.1f b=%.1f t=%.1f" % ( p.otl.getID(), p.tl.getID(), p.startOffset, p.betweenOffset, p.travelTime) if full: return brief + " og=%s g=%s p=%s n=%s" % (p.ogreen, p.green, p.prio, p.numVehicles) else: return brief def logAddedPair(TLSP, sets, operation): print("added pair %s,%s with operation %s" % (TLSP.otl.getID(), TLSP.tl.getID(), operation)) for s in sets: print(" " + " ".join([pair2str(p, False) for p in s])) def get_options(args=None): optParser = optparse.OptionParser() optParser.add_option("-n", "--net-file", dest="netfile", help="define the net file (mandatory)") optParser.add_option("-o", "--output-file", dest="outfile", default="tlsOffsets.add.xml", help="define the output filename") optParser.add_option("-r", "--route-file", dest="routefile", help="define the inputroute file (mandatory)") optParser.add_option("-a", "--additional-file", dest="addfile", help="define replacement tls plans to be coordinated") optParser.add_option("-v", "--verbose", action="store_true", default=False, help="tell me what you are doing") optParser.add_option("-i", "--ignore-priority", dest="ignorePriority", action="store_true", default=False, help="Ignore road priority when sorting TLS pairs") optParser.add_option("--speed-factor", type="float", default=0.8, help="avg ration of vehicle speed in relation to the speed limit") optParser.add_option("-e", "--evaluate", action="store_true", default=False, help="run the scenario and print duration statistics") (options, args) = optParser.parse_args(args=args) if not options.netfile or not options.routefile: optParser.print_help() sys.exit() return options def locate(tlsToFind, sets): """return - the set in which the given traffic light exists - the pair in which it was found - the index within the pair """ for s in sets: for pair in s: if tlsToFind == pair.otl: return s, pair, 0 elif tlsToFind == pair.tl: return s, pair, 1 return None, None, None def coordinateAfterSet(TLSP, l1, l1Pair, l1Index): # print "coordinateAfter\n TLSP: %s\n l1Pair: %s\n l1Index=%s" % ( # pair2str(TLSP), pair2str(l1Pair), l1Index) if l1Index == 0: TLSPdepart = l1Pair.startOffset - TLSP.ogreen TLSParrival = TLSPdepart + TLSP.travelTime TLSPstartOffset2 = TLSParrival - TLSP.green TLSP = TLSP._replace(startOffset=l1Pair.startOffset, betweenOffset=TLSPstartOffset2 - l1Pair.startOffset) else: l1depart = l1Pair.startOffset + l1Pair.betweenOffset + TLSP.ogreen TLSParrival = l1depart + TLSP.travelTime TLSPstartOffset = TLSParrival - TLSP.green TLSP = TLSP._replace( startOffset=l1depart, betweenOffset=TLSPstartOffset - l1depart) l1.append(TLSP) return TLSP def coordinateBeforeSet(TLSP, l2, l2Pair, l2Index): # print "coordinateBeforeSet\n TLSP: %s\n l2Pair: %s\n l2Index=%s" % ( # pair2str(TLSP), pair2str(l2Pair), l2Index) if l2Index == 0: l2arrival = l2Pair.startOffset + TLSP.green TLSPdepart = l2arrival - TLSP.travelTime TLSPstartOffset = TLSPdepart - TLSP.ogreen TLSP = TLSP._replace( startOffset=TLSPstartOffset, betweenOffset=l2Pair.startOffset - TLSPstartOffset) else: l2arrival = l2Pair.startOffset + l2Pair.betweenOffset + TLSP.green TLSPdepart = l2arrival - TLSP.travelTime TLSPstartOffset = TLSPdepart - TLSP.ogreen TLSP = TLSP._replace( startOffset=TLSPstartOffset, betweenOffset=l2arrival - TLSPstartOffset) l2.append(TLSP) return TLSP def computePairOffsets(TLSPList, verbose): c1, c2, c3, c4, c5 = 0, 0, 0, 0, 0 sets = [] # sets of coordinate TLPairs operation = "" for TLSP in TLSPList: l1, l1Pair, l1Index = locate(TLSP.otl, sets) l2, l2Pair, l2Index = locate(TLSP.tl, sets) # print(l1) if l1 is None and l2 is None: # new set newlist = [] newlist.append(TLSP) sets.append(newlist) c1 += 1 operation = "newSet" elif l2 is None and l1 is not None: # add to set 1 - add after existing set TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) c2 += 1 operation = "addAfterSet" elif l1 is None and l2 is not None: # add to set 2 - add before existing set TLSP = coordinateBeforeSet(TLSP, l2, l2Pair, l2Index) c3 += 1 operation = "addBeforeSet" else: if l1 == l2: # cannot uncoordinated both tls. coordinate the first # arbitrarily TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) c4 += 1 operation = "addHalfCoordinated" else: # merge sets TLSP = coordinateAfterSet(TLSP, l1, l1Pair, l1Index) if verbose: logAddedPair(TLSP, sets, "addAfterSet (intermediate)") # print "merge\n TLSP: %s\n l1Pair: %s\n l1Index=%s\n l2Pair: %s\n l2Index=%s" % ( # pair2str(TLSP), pair2str(l1Pair), l1Index, pair2str(l2Pair), # l2Index) if l2Index == 0: dt = TLSP.startOffset + \ TLSP.betweenOffset - l2Pair.startOffset else: dt = TLSP.startOffset + TLSP.betweenOffset - \ (l2Pair.startOffset + l2Pair.betweenOffset) merge(sets, l1, l2, dt) c5 += 1 operation = "mergeSets" if verbose: logAddedPair(TLSP, sets, operation) print("operations: newSet=%s addToSet=%s addToSet2=%s addHalfCoordinated=%s mergeSets=%s" % ( c1, c2, c3, c4, c5)) return(sets) def merge(sets, list1, list2, dt): for elem in list2: list1.append(elem._replace(startOffset=elem.startOffset + dt)) sets.remove(list2) def finalizeOffsets(sets): offsetDict = {} for singleSet in sets: singleSet.sort( key=lambda pd: (pd.prio, pd.numVehicles / pd.travelTime), reverse=True) for pair in singleSet: # print " %s,%s:%s,%s" % (pair.otl.getID(), pair.tl.getID(), # pair.startOffset, pair.betweenOffset) tl1 = pair.otl.getID() tl2 = pair.tl.getID() betweenOffset = pair.betweenOffset startOffset = pair.startOffset if tl1 not in offsetDict: # print " added %s offset %s" % (tl1, startOffset) offsetDict[tl1] = startOffset if tl2 not in offsetDict: # print " added %s offset %s" % (tl2, startOffset + # betweenOffset) offsetDict[tl2] = startOffset + betweenOffset return offsetDict def getTLSInRoute(net, edge_ids): rTLSList = [] # list of traffic lights along the current route dist = 0 time = 0 for edgeID, nextEdgeID in zip(edge_ids[:-1], edge_ids[1:]): edge = net.getEdge(edgeID) nextEdge = net.getEdge(nextEdgeID) connection = edge.getOutgoing()[nextEdge][0] TLS = edge.getTLS() dist += edge.getLength() time += edge.getLength() / edge.getSpeed() alreadyFound = [item for item in rTLSList if item[0] == edgeID] if TLS and not alreadyFound: rTLSList.append(TLTuple(edgeID, dist, time, connection)) dist = 0 time = 0 return rTLSList def getFirstGreenOffset(tl, connection): index = connection._tlLink tlp = tl.getPrograms() if len(tlp) != 1: raise RuntimeError("Found %s programs for tl %s" % (len(tlp), connection._tls)) phases = list(tlp.values())[0].getPhases() start = 0 for p in phases: if p.state[index] in ['G', 'g']: return start else: start += p.duration raise RuntimeError( "No green light for tlIndex %s at tl %s" % (index, connection._tls)) def getTLPairs(net, routeFile, speedFactor, ignorePriority): # pairs of traffic lights TLPairs = {} # PairKey -> PairData for route in parse_fast(routeFile, 'route', ['edges']): rTLSList = getTLSInRoute(net, route.edges.split()) for oldTL, TLelement in zip(rTLSList[:-1], rTLSList[1:]): key = PairKey(oldTL.edgeID, TLelement.edgeID, oldTL.dist) numVehicles = 0 if key not in TLPairs else TLPairs[key].numVehicles tl = net.getEdge(TLelement.edgeID).getTLS() otl = net.getEdge(oldTL.edgeID).getTLS() edge = net.getEdge(TLelement.edgeID) connection = TLelement.connection oconnection = oldTL.connection ogreen = getFirstGreenOffset(otl, oconnection) green = getFirstGreenOffset(tl, connection) travelTime = TLelement.time / speedFactor betweenOffset = travelTime + ogreen - green startOffset = 0 # relevant data for a pair of traffic lights prio = 1 if ignorePriority else edge.getPriority() TLPairs[key] = PairData(otl, oconnection, tl, connection, betweenOffset, startOffset, travelTime, prio, numVehicles + 1, ogreen, green) return TLPairs def removeDuplicates(TLPairs): # @todo: for multiple pairs with the same edges but different dist, keep only the one with the largest numVehicles return TLPairs def main(options): net = sumolib.net.readNet(options.netfile, withLatestPrograms=True) if options.addfile is not None: sumolib.net.readNet(options.addfile, withLatestPrograms=True, net=net) TLPairs = getTLPairs(net, options.routefile, options.speed_factor, options.ignorePriority) TLPairs = removeDuplicates(TLPairs) sortHelper = [( (pairData.prio, pairData.numVehicles / pairData.travelTime), # sortKey (pairKey, pairData)) # payload for pairKey, pairData in TLPairs.items()] tlPairsList = [ value for sortKey, value in sorted(sortHelper, reverse=True)] print("number of tls-pairs: %s" % len(tlPairsList)) if options.verbose: print('\n'.join(["edges=%s,%s prio=%s numVehicles/time=%s" % ( pairKey.edgeID, pairKey.edgeID2, pairData.prio, pairData.numVehicles / pairData.travelTime) for pairKey, pairData in tlPairsList])) coordinatedSets = computePairOffsets( [pairData for pairKey, pairData in tlPairsList], options.verbose) offsetDict = finalizeOffsets(coordinatedSets) with open(options.outfile, 'w') as outf: outf.write('<additional>\n') for ID, startOffset in sorted(offsetDict.items()): programID = list(net.getTLSSecure(ID).getPrograms().keys())[0] outf.write(' <tlLogic id="%s" programID="%s" offset="%.2f"/>\n' % (ID, programID, startOffset)) outf.write('</additional>\n') sumo = sumolib.checkBinary('sumo') if options.evaluate: additionals = [options.outfile] if options.addfile: additionals = [options.addfile] + additionals subprocess.call([sumo, '-n', options.netfile, '-r', options.routefile, '-a', ','.join(additionals), '-v', '--no-step-log', '--duration-log.statistics'], stdout=sys.stdout) if __name__ == "__main__": options = get_options(sys.argv) main(options)
ngctnnnn/DRL_Traffic-Signal-Control
sumo-rl/sumo/tools/tlsCoordinator.py
tlsCoordinator.py
py
12,854
python
en
code
17
github-code
6
[ { "api_name": "os.environ", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 11, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 15, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 19, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 20, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 21, "usage_type": "call" }, { "api_name": "optparse.OptionParser", "line_number": 42, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 62, "usage_type": "call" }, { "api_name": "sumolib.output.parse_fast", "line_number": 250, "usage_type": "call" }, { "api_name": "sumolib.net.readNet", "line_number": 283, "usage_type": "call" }, { "api_name": "sumolib.net", "line_number": 283, "usage_type": "attribute" }, { "api_name": "sumolib.net.readNet", "line_number": 285, "usage_type": "call" }, { "api_name": "sumolib.net", "line_number": 285, "usage_type": "attribute" }, { "api_name": "sumolib.checkBinary", "line_number": 317, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 322, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 326, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 330, "usage_type": "attribute" } ]
30364393271
import os.path import shutil import sys import tempfile import textwrap import testfixtures from okonomiyaki.file_formats import EggMetadata, PackageInfo from okonomiyaki.utils.test_data import NOSE_1_3_4_RH5_X86_64 from okonomiyaki._cli import main if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest class TestMain(unittest.TestCase): maxDiff = None def setUp(self): self.tempdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdir) def test_spec_depend(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = textwrap.dedent("""\ metadata_version = '1.3' name = 'nose' version = '1.3.4' build = 1 arch = 'amd64' platform = 'linux2' osdist = 'RedHat_5' python = '2.7' python_tag = 'cp27' abi_tag = 'cp27m' platform_tag = 'linux_x86_64' packages = [] """) # When with testfixtures.OutputCapture() as capture: main(["spec-depend", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_pkg_info(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = PackageInfo.from_egg(egg).to_string() # When with testfixtures.OutputCapture() as capture: main(["pkg-info", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_summary(self): # Given egg = NOSE_1_3_4_RH5_X86_64 r_output = textwrap.dedent("""\ Extends the Python Unittest module with additional disocvery and running options """) # When with testfixtures.OutputCapture() as capture: main(["summary", egg]) # Then self.assertMultiLineEqual(capture.output.getvalue(), r_output) def test_no_pkg_info(self): # Given path = os.path.join( self.tempdir, os.path.basename(NOSE_1_3_4_RH5_X86_64) ) m = EggMetadata.from_egg(NOSE_1_3_4_RH5_X86_64) m._pkg_info = None m.dump(path) # When/Then with testfixtures.OutputCapture() as capture: with self.assertRaises(SystemExit) as exc: main(["pkg-info", path]) if sys.version_info < (2, 7): code = exc.exception else: code = exc.exception.code self.assertEqual(code, -1) capture.compare("No PKG-INFO")
enthought/okonomiyaki
okonomiyaki/_cli/tests/test_cli.py
test_cli.py
py
2,580
python
en
code
2
github-code
6
[ { "api_name": "sys.version_info", "line_number": 13, "usage_type": "attribute" }, { "api_name": "unittest.TestCase", "line_number": 19, "usage_type": "attribute" }, { "api_name": "tempfile.mkdtemp", "line_number": 23, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 26, "usage_type": "call" }, { "api_name": "okonomiyaki.utils.test_data.NOSE_1_3_4_RH5_X86_64", "line_number": 30, "usage_type": "name" }, { "api_name": "textwrap.dedent", "line_number": 32, "usage_type": "call" }, { "api_name": "testfixtures.OutputCapture", "line_number": 51, "usage_type": "call" }, { "api_name": "okonomiyaki._cli.main", "line_number": 52, "usage_type": "call" }, { "api_name": "okonomiyaki.utils.test_data.NOSE_1_3_4_RH5_X86_64", "line_number": 59, "usage_type": "name" }, { "api_name": "okonomiyaki.file_formats.PackageInfo.from_egg", "line_number": 61, "usage_type": "call" }, { "api_name": "okonomiyaki.file_formats.PackageInfo", "line_number": 61, "usage_type": "name" }, { "api_name": "testfixtures.OutputCapture", "line_number": 64, "usage_type": "call" }, { "api_name": "okonomiyaki._cli.main", "line_number": 65, "usage_type": "call" }, { "api_name": "okonomiyaki.utils.test_data.NOSE_1_3_4_RH5_X86_64", "line_number": 72, "usage_type": "name" }, { "api_name": "textwrap.dedent", "line_number": 74, "usage_type": "call" }, { "api_name": "testfixtures.OutputCapture", "line_number": 80, "usage_type": "call" }, { "api_name": "okonomiyaki._cli.main", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path.path.join", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 88, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 88, "usage_type": "name" }, { "api_name": "os.path.path.basename", "line_number": 89, "usage_type": "call" }, { "api_name": "okonomiyaki.utils.test_data.NOSE_1_3_4_RH5_X86_64", "line_number": 89, "usage_type": "argument" }, { "api_name": "os.path.path", "line_number": 89, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 89, "usage_type": "name" }, { "api_name": "okonomiyaki.file_formats.EggMetadata.from_egg", "line_number": 91, "usage_type": "call" }, { "api_name": "okonomiyaki.utils.test_data.NOSE_1_3_4_RH5_X86_64", "line_number": 91, "usage_type": "argument" }, { "api_name": "okonomiyaki.file_formats.EggMetadata", "line_number": 91, "usage_type": "name" }, { "api_name": "testfixtures.OutputCapture", "line_number": 96, "usage_type": "call" }, { "api_name": "okonomiyaki._cli.main", "line_number": 98, "usage_type": "call" }, { "api_name": "sys.version_info", "line_number": 99, "usage_type": "attribute" } ]
23065976802
import numpy as np import os, sys, math import pandas as pd import dash #import dash_core_components as dcc from dash import dcc #import dash_html_components as html from dash import html from dash.dependencies import Input, Output import plotly.graph_objs as go class Obstacle(): def __init__(self, df, dataset, frame_name): self.df = df self.coordinate_system = dataset.coordinate_system if 'id' in df.keys(): self.id = df['id'] else: self.id = -1. if self.coordinate_system == 'camera_coordinate_system': self.x_center, self.y_center, self.z_center, self.yaw = dataset.project_center_camera_to_lidar(frame_name, df['x'], df['y'], df['z'], df['yaw']) elif self.coordinate_system == 'lidar_coordinate_system': self.x_center = df['x'] self.y_center = df['y'] self.z_center = df['z'] self.yaw = df['yaw'] else: print("Coordinate System: {} NOT implemented!".format(self.coordinate_system)) sys.exit(1) self.w = df['w'] self.l = df['l'] self.h = df['h'] if 'score' in df.keys(): self.score = df['score'] else: self.score = -1. self.label = df['label'] def print_obstacle(self): print('------') print(self.df) print('------\n') ################################ 3D BOXES ################################ def return_vertex(df, dataset, frame_name): all_vertex = [] all_labels = [] all_obstacles = [] for i in range(len(df)): # Parser obstacle obstacle = Obstacle(df.iloc[int(i)], dataset, frame_name) #obstacle.print_obstacle() id_box = int(obstacle.id) x_center = obstacle.x_center y_center = obstacle.y_center z_center = obstacle.z_center yaw = obstacle.yaw w_half = obstacle.w / 2. l_half = obstacle.l / 2. h = obstacle.h # Construir vertices point_A_x = (x_center - l_half * math.cos(-yaw) - w_half * math.sin(-yaw)) point_A_y = (y_center + l_half * math.sin(-yaw) - w_half * math.cos(-yaw)) # Get B point point_B_x = (x_center + l_half* math.cos(-yaw) - w_half * math.sin(-yaw)) point_B_y = (y_center - l_half* math.sin(-yaw) - w_half * math.cos(-yaw)) # Get C point point_C_x = (x_center + l_half * math.cos(-yaw) + w_half * math.sin(-yaw)) point_C_y = (y_center - l_half * math.sin(-yaw) + w_half * math.cos(-yaw)) # Get D point point_D_x = (x_center - l_half * math.cos(-yaw) + w_half * math.sin(-yaw)) point_D_y = (y_center + l_half * math.sin(-yaw) + w_half * math.cos(-yaw)) vertices = np.array([ [point_A_x, point_A_y, z_center], [point_B_x, point_B_y, z_center], [point_C_x, point_C_y, z_center], [point_D_x, point_D_y, z_center], [point_A_x, point_A_y, z_center+h], [point_B_x, point_B_y, z_center+h], [point_C_x, point_C_y, z_center+h], [point_D_x, point_D_y, z_center+h] ]) indices = np.array([ [0, 1, 2, 3], [0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7], [4, 5, 6, 7] ]) all_vertex.append(vertices) all_labels.append('{}-{}: {:.3f}'.format(obstacle.label, id_box, obstacle.score)) return all_vertex, all_labels def draw_annotations_frame(dataset, frame_list, frame, fig): if frame_list is None: return fig df = pd.read_csv(os.path.join(dataset.annotations_data_path, frame_list[frame]), delimiter=' ', names=dataset.annotations_format) # Calcular los vertices de la caja all_vertex, all_labels = return_vertex(df, dataset, frame_list[frame]) for i, _ in enumerate(all_vertex): vertices = all_vertex[i] label = all_labels[i] faces = go.Mesh3d( x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2], i = [7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2], j = [3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3], k = [0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6], name=label, opacity=0.3 ) fig.add_trace(faces) return fig ################################ LiDAR ################################ def draw_lidar(dataset, lidar_frame_list, frame, lidar_res): filename = os.path.join(dataset.lidar_data_path, lidar_frame_list[frame]) points = dataset.load_lidar(filename) PC_scatter = go.Scatter3d( x=points["x"], y=points["y"], z=points["z"], mode='markers', marker=dict( size=lidar_res, color=[0,0,0], opacity=0.3 ) ) return PC_scatter
ArmanAstud/3D_detection_visualizer
scripts/utils.py
utils.py
py
4,363
python
en
code
0
github-code
6
[ { "api_name": "sys.exit", "line_number": 35, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 73, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 73, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 74, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 74, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 77, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 77, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 78, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 78, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 81, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 81, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 82, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 82, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 85, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 85, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 86, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 99, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "plotly.graph_objs.Mesh3d", "line_number": 125, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 125, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 142, "usage_type": "call" }, { "api_name": "os.path", "line_number": 142, "usage_type": "attribute" }, { "api_name": "plotly.graph_objs.Scatter3d", "line_number": 145, "usage_type": "call" }, { "api_name": "plotly.graph_objs", "line_number": 145, "usage_type": "name" } ]
36466168685
#!/usr/bin/env python import utils import gzip import argparse from pysam import TabixFile import numpy as np import glob def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-r', dest='rate_dir', required=True, help='Path to directory containing rate files') args = parser.parse_args() return args def main(): args = get_args() regions = [] first_file = True file_i = 0 for rate_file in glob.glob(args.rate_dir + '*.probe.coverage_rate.bed.gz'): with gzip.open(rate_file,'rt') as f: line_i = 0 for l in f: A = l.rstrip().split('\t') region = utils.Interval(chrom=A[0], start=int(A[1]), end=int(A[2]), data=A[3:] if len(A) > 3 else None) if region.start == region.end: continue interval = utils.Interval(chrom=A[0], start=int(A[1]), end=int(A[2]), data=A[3:] if len(A) > 3 else None) if first_file: regions.append([interval]) else: regions[line_i].append(interval) line_i += 1 first_file = False file_i += 1 for region in regions: depths = [] for interval in region: depths.append(float(interval.data[1])) print('\t'.join([str(x) for x in [region[0].chrom, region[0].start, region[0].end, region[0].data[0], np.mean(depths), np.std(depths)]])) if __name__ == '__main__': main()
ryanlayerlab/layer_lab_chco
bin/get_regions_zscores.py
get_regions_zscores.py
py
2,039
python
en
code
1
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 10, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 30, "usage_type": "call" }, { "api_name": "gzip.open", "line_number": 31, "usage_type": "call" }, { "api_name": "utils.Interval", "line_number": 35, "usage_type": "call" }, { "api_name": "utils.Interval", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 68, "usage_type": "call" } ]
35041229962
from toscaparser.imports import ImportsLoader from configuration_tool.common import utils from configuration_tool.common.configuration import Configuration from configuration_tool.common.tosca_reserved_keys import * from configuration_tool.providers.common.provider_configuration import ProviderConfiguration from configuration_tool.providers.common.provider_resource import ProviderResource import os, copy, logging, sys SEPARATOR = ':' class ProviderToscaTemplate(object): REQUIRED_CONFIG_PARAMS = (TOSCA_ELEMENTS_MAP_FILE, TOSCA_ELEMENTS_DEFINITION_FILE) DEPENDENCY_FUNCTIONS = (GET_PROPERTY, GET_ATTRIBUTE, GET_OPERATION_OUTPUT) DEFAULT_ARTIFACTS_DIRECTOR = ARTIFACTS def __init__(self, template, provider, configuration_tool, cluster_name, host_ip_parameter, is_delete, grpc_cotea_endpoint): self.host_ip_parameter = host_ip_parameter self.provider = provider self.grpc_cotea_endpoint = grpc_cotea_endpoint self.is_delete = is_delete self.configuration_tool = configuration_tool self.provider_config = ProviderConfiguration(self.provider) self.base_config = Configuration() self.cluster_name = cluster_name self.software_types = set() for sec in self.REQUIRED_CONFIG_PARAMS: if not self.provider_config.config[self.provider_config.MAIN_SECTION].get(sec): logging.error("Provider configuration parameter \'%s\' has missing value" % sec) logging.error("Translating failed") raise Exception("Provider configuration parameter \'%s\' has missing value" % sec) self.definitions = {} import_definition_file = ImportsLoader([self.definition_file()], None, list(SERVICE_TEMPLATE_KEYS), template.get(TOPOLOGY_TEMPLATE)) self.definitions.update(import_definition_file.get_custom_defs()) import_definition_file = ImportsLoader(self.base_definition_file(), None, list(SERVICE_TEMPLATE_KEYS), template.get(TOPOLOGY_TEMPLATE)) self.definitions.update(import_definition_file.get_custom_defs()) self.definitions.update(template.get(NODE_TYPES, {})) self.definitions.update(template.get(RELATIONSHIP_TYPES, {})) self.definitions.update(template.get(CAPABILITY_TYPES, {})) self.definitions.update(template.get(DATA_TYPES, {})) self.definitions.update(template.get(POLICY_TYPES, {})) self.definitions.update(template.get(GROUP_TYPES, {})) self.definitions.update(template.get(INTERFACE_TYPES, {})) self.fulfil_definitions_with_parents() self.node_templates = {} self.relationship_templates = {} self.inputs = {} self.outputs = {} if template.get(TOPOLOGY_TEMPLATE).get(NODE_TEMPLATES): self.node_templates = template.get(TOPOLOGY_TEMPLATE)[NODE_TEMPLATES] if template.get(TOPOLOGY_TEMPLATE).get(RELATIONSHIP_TEMPLATES): self.relationship_templates = template.get(TOPOLOGY_TEMPLATE)[RELATIONSHIP_TEMPLATES] if template.get(TOPOLOGY_TEMPLATE).get(OUTPUTS): self.outputs = template.get(TOPOLOGY_TEMPLATE)[OUTPUTS] if template.get(TOPOLOGY_TEMPLATE).get(INPUTS): self.inputs = template.get(TOPOLOGY_TEMPLATE)[INPUTS] self.configuration_content = None self.configuration_ready = None self.template_dependencies = dict() self._relation_target_source = dict() self.resolve_in_template_dependencies() # After this step self.node_templates has requirements with node_filter parameter self.replace_requirements_with_node_filter() self.provider_nodes = self._provider_nodes() self.provider_relations = self._provider_relations() self.provider_operations, self.reversed_provider_operations = self.sort_nodes_and_operations_by_graph_dependency() def resolve_in_template_dependencies(self): """ TODO think through the logic to replace mentions by id Changes all mentions of node_templates by name in requirements, places dictionary with node_filter instead :return: """ for node_name, node in self.node_templates.items(): for req in node.get(REQUIREMENTS, []): for req_name, req_body in req.items(): # Valid keys are ('node', 'node_filter', 'relationship', 'capability', 'occurrences') # Only node and relationship might be a template name or a type req_relationship = req_body.get(RELATIONSHIP) req_node = req_body.get(NODE) if req_relationship is not None: (_, _, type_name) = utils.tosca_type_parse(req_relationship) if type_name is None: self.add_template_dependency(node_name, req_relationship) self._relation_target_source[req_relationship] = { 'source': node_name, 'target': req_node } if req_node is not None: (_, _, type_name) = utils.tosca_type_parse(req_node) if type_name is None: self.add_template_dependency(node_name, req_node) node_types_from_requirements = set() req_definitions = self.definitions[node[TYPE]].get(REQUIREMENTS, []) for req in req_definitions: for req_name, req_def in req.items(): if req_def.get(NODE, None) is not None: if req_def[NODE] != node[TYPE]: node_types_from_requirements.add(req_def[NODE]) for req_node_name, req_node_tmpl in self.node_templates.items(): if req_node_tmpl[TYPE] in node_types_from_requirements: self.add_template_dependency(node_name, req_node_name) def add_template_dependency(self, node_name, dependency_name): if not dependency_name == SELF and not node_name == dependency_name: if self.template_dependencies.get(node_name) is None: self.template_dependencies[node_name] = {dependency_name} else: self.template_dependencies[node_name].add(dependency_name) def base_definition_file(self): file_definitions = self.base_config.config['main'][TOSCA_ELEMENTS_DEFINITION_FILE].split(',') def_list = [] for file_definition in file_definitions: if not os.path.isabs(file_definition): file_definition = os.path.join(utils.get_project_root_path(), file_definition) def_list.append(file_definition) if not os.path.isfile(file_definition): logging.error("TOSCA definition file not found: %s" % file_definition) raise Exception("TOSCA definition file not found: %s" % file_definition) return def_list def definition_file(self): file_definition = self.provider_config.config['main'][TOSCA_ELEMENTS_DEFINITION_FILE] if not os.path.isabs(file_definition): file_definition = os.path.join(self.provider_config.config_directory, file_definition) if not os.path.isfile(file_definition): logging.error("TOSCA definition file not found: %s" % file_definition) raise Exception("TOSCA definition file not found: %s" % file_definition) return file_definition def replace_requirements_with_node_filter(self): for node_name, node in self.node_templates.items(): for req in node.get(REQUIREMENTS, []): for req_name, req_body in req.items(): if req_body.get(NODE): node_tmpl = self.node_templates.get(req_body[NODE]) node_filter = dict() properties = node_tmpl.get(PROPERTIES) props_list = [] if properties: for prop_name, prop in properties.items(): props_list.append({prop_name: prop}) capabilities = node_tmpl.get(CAPABILITIES) caps_list = [] if capabilities: for cap_name, cap in capabilities.items(): cap_props = cap.get(PROPERTIES, {}) cap_props_list = [] for prop_name, prop in cap_props.items(): cap_props_list.append({prop_name, prop}) caps_list.append({PROPERTIES: cap_props_list}) if properties: node_filter[PROPERTIES] = props_list if capabilities: node_filter[CAPABILITIES] = caps_list req_body[NODE_FILTER] = node_filter req[req_name] = req_body def _provider_nodes(self): """ Create a list of ProviderResource classes to represent a node in TOSCA :return: list of class objects inherited from ProviderResource """ provider_nodes = dict() for node_name, node in self.node_templates.items(): (namespace, category, type_name) = utils.tosca_type_parse(node[TYPE]) is_software_component = node[TYPE] in self.software_types if namespace != self.provider and not is_software_component or category != NODES: logging.error('Unexpected values: node \'%s\' not a software component and has a provider \'%s\'. ' 'Node will be ignored' % (node.name, namespace)) else: provider_node_instance = ProviderResource(self.provider, self.is_delete, self.grpc_cotea_endpoint, self.configuration_tool, node, node_name, self.host_ip_parameter, self.definitions[node[TYPE]], is_software_component=is_software_component) provider_nodes[node_name] = provider_node_instance return provider_nodes def _provider_relations(self): provider_relations = dict() for rel_name, rel_body in self.relationship_templates.items(): provider_rel_instance = ProviderResource(self.provider, self.is_delete, self.grpc_cotea_endpoint, self.configuration_tool, rel_body, rel_name, self.host_ip_parameter, self.definitions[rel_body[TYPE]], is_relationship=True, relation_target_source=self._relation_target_source) provider_relations[rel_name] = provider_rel_instance return provider_relations def _provider_nodes_by_name(self): """ Get provider_nodes_by_name :return: self.provider_nodes_by_name """ provider_nodes_by_name = dict() for node in self.provider_nodes: provider_nodes_by_name[node.nodetemplate.name] = node return provider_nodes_by_name def sort_nodes_and_operations_by_graph_dependency(self): """ This method generates dict fith ProviderTemplates with operation, sorted by dependencies from normative and provider TOSCA templates """ nodes = set(self.provider_nodes.keys()) nodes = nodes.union(set(self.provider_relations.keys())) dependencies = {} lifecycle = ['configure', 'start', 'stop'] # ['delete'] now we cant support deleting while creating, # deleting operations executes only when --delete option activated reversed_full_lifecycle = lifecycle[::-1] + ['create'] # generate only dependencies from nodes for templ_name in nodes: set_intersection = nodes.intersection(self.template_dependencies.get(templ_name, set())) templ = self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name)) (_, element_type, _) = utils.tosca_type_parse(templ.type) if element_type == NODES: if INTERFACES in templ.tmpl and 'Standard' in templ.tmpl[INTERFACES]: new_operations = ['create'] # operation create always exists for elem in lifecycle: if elem in templ.tmpl[INTERFACES]['Standard']: new_operations.append(elem) # if there is any other operations - add ti new_operations and translate to dict # in format {node.op: {node1, node2}} # node requieres node1 and node2 if len(new_operations) == 1: utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + 'create': set_intersection}) else: for i in range(1, len(new_operations)): utils.deep_update_dict(dependencies, { templ_name + SEPARATOR + new_operations[i]: { templ_name + SEPARATOR + new_operations[i - 1]}}) utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + new_operations[0]: set_intersection}) else: utils.deep_update_dict(dependencies, {templ_name + SEPARATOR + 'create': set_intersection}) new_dependencies = {} # new_dependencies is needed for updating set operations # dict must be in format {node.op: {node1, node2}} for key, value in dependencies.items(): new_set = set() for elem in value: for oper in reversed_full_lifecycle: if elem + SEPARATOR + oper in dependencies: new_set.add(elem + SEPARATOR + oper) break elif elem in dependencies: new_set.add(elem) break new_dependencies[key] = new_set # Adding relationships operations pre_configure_source after create source node # pre_configure_target after create target node # add_source in parallel with pre_configure_source but in will be executed on target # post_configure_target after configure target node (if not configure then create - in parallel # with pre_configure_target) # post_configure_source after configure target node (if not configure then create - in parallel # with pre_configure_source) # other - not supported! for templ_name in nodes: templ = self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name)) (_, element_type, _) = utils.tosca_type_parse(templ.type) if element_type == RELATIONSHIPS: if INTERFACES in templ.tmpl and 'Configure' in templ.tmpl[INTERFACES]: if 'pre_configure_source' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'pre_configure_source', 'create', ['add_source']) if 'pre_configure_target' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'pre_configure_target', 'create') if 'post_configure_source' in templ.tmpl[INTERFACES]['Configure']: if templ.source + SEPARATOR + 'configure' in new_dependencies: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'post_configure_source', 'configure') else: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'post_configure_source', 'create') if 'post_configure_target' in templ.tmpl[INTERFACES]['Configure']: if templ.target + SEPARATOR + 'configure' in new_dependencies: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'post_configure_target', 'configure') else: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.target, 'post_configure_target', 'create') if 'add_source' in templ.tmpl[INTERFACES]['Configure']: new_dependencies = self.update_relationships(new_dependencies, templ.name, templ.source, 'add_source', 'create', ['pre_configure_source']) if 'add_target' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation add_target not supported, it will be skipped') if 'target_changed' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation target_changed not supported, it will be skipped') if 'remove_target' in templ.tmpl[INTERFACES]['Configure']: logging.warning('Operation remove_target not supported, it will be skipped') # mapping strings 'node.op' to provider template of this node with this operation templ_mappling = {} for elem in new_dependencies: templ_name = elem.split(SEPARATOR)[0] templ = copy.deepcopy(self.provider_nodes.get(templ_name, self.provider_relations.get(templ_name))) templ.operation = elem.split(SEPARATOR)[1] if INTERFACES in templ.tmpl: if 'Configure' in templ.tmpl[INTERFACES]: templ.tmpl[INTERFACES]['Configure'] = {templ.operation: templ.tmpl[INTERFACES]['Configure'][templ.operation]} if 'Standard' in templ.tmpl[INTERFACES]: templ.tmpl[INTERFACES]['Standard'] = {templ.operation: templ.tmpl[INTERFACES]['Standard'][templ.operation]} templ_mappling[elem] = templ templ_dependencies = {} reversed_templ_dependencies = {} # create dict where all elements will be replaced with provider template from templ_mappling # reversed_templ_dependencies needed for delete - it just a reversed version of graph for key, value in new_dependencies.items(): new_list = [] for elem in value: new_list.append(templ_mappling[elem]) if templ_mappling[elem] not in reversed_templ_dependencies: reversed_templ_dependencies[templ_mappling[elem]] = [templ_mappling[key]] elif templ_mappling[key] not in reversed_templ_dependencies[templ_mappling[elem]]: reversed_templ_dependencies[templ_mappling[elem]].append(templ_mappling[key]) templ_dependencies[templ_mappling[key]] = new_list if len(templ_dependencies) <= 1: reversed_templ_dependencies = copy.copy(templ_dependencies) return templ_dependencies, reversed_templ_dependencies def update_relationships(self, new_dependencies, templ_name, direction, rel_name, post_op, banned_ops=[]): utils.deep_update_dict(new_dependencies, { templ_name + SEPARATOR + rel_name: {direction + SEPARATOR + post_op}}) for key, value in new_dependencies.items(): for elem in value: if elem == direction + SEPARATOR + post_op and key != templ_name + SEPARATOR + rel_name and \ key not in [templ_name + SEPARATOR + x for x in banned_ops]: utils.deep_update_dict(new_dependencies, {key: {templ_name + SEPARATOR + rel_name}}) return new_dependencies def _get_full_defintion(self, definition, def_type, ready_set): if def_type in ready_set: return definition, def_type in self.software_types (_, _, def_type_short) = utils.tosca_type_parse(def_type) is_software_type = def_type_short == 'SoftwareComponent' is_software_parent = False parent_def_name = definition.get(DERIVED_FROM, None) if parent_def_name is not None: if def_type == parent_def_name: logging.critical("Invalid type \'%s\' is derived from itself" % def_type) raise Exception("Invalid type \'%s\' is derived from itself" % def_type) if parent_def_name in ready_set: parent_definition = self.definitions[parent_def_name] is_software_parent = parent_def_name in self.software_types else: parent_definition, is_software_parent = \ self._get_full_defintion(self.definitions[parent_def_name], parent_def_name, ready_set) parent_definition = copy.deepcopy(parent_definition) definition = utils.deep_update_dict(parent_definition, definition) if is_software_type or is_software_parent: self.software_types.add(def_type) ready_set.add(def_type) return definition, def_type in self.software_types def fulfil_definitions_with_parents(self): ready_definitions = set() for def_name, definition in self.definitions.items(): self.definitions[def_name], _ = self._get_full_defintion(definition, def_name, ready_definitions) if self.definitions[def_name].get(DERIVED_FROM): del self.definitions[def_name][DERIVED_FROM]
sadimer/clouni_configuration_tool
configuration_tool/providers/common/tosca_template.py
tosca_template.py
py
22,563
python
en
code
0
github-code
6
[ { "api_name": "configuration_tool.common", "line_number": 26, "usage_type": "name" }, { "api_name": "configuration_tool.providers.common.provider_configuration.ProviderConfiguration", "line_number": 27, "usage_type": "call" }, { "api_name": "configuration_tool.common.configuration.Configuration", "line_number": 28, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 34, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 35, "usage_type": "call" }, { "api_name": "toscaparser.imports.ImportsLoader", "line_number": 39, "usage_type": "call" }, { "api_name": "toscaparser.imports.ImportsLoader", "line_number": 43, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 100, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 100, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 109, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 109, "usage_type": "name" }, { "api_name": "os.path.isabs", "line_number": 135, "usage_type": "call" }, { "api_name": "os.path", "line_number": 135, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 136, "usage_type": "call" }, { "api_name": "os.path", "line_number": 136, "usage_type": "attribute" }, { "api_name": "configuration_tool.common.utils.get_project_root_path", "line_number": 136, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 136, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path", "line_number": 139, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 140, "usage_type": "call" }, { "api_name": "os.path.isabs", "line_number": 147, "usage_type": "call" }, { "api_name": "os.path", "line_number": 147, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 148, "usage_type": "call" }, { "api_name": "os.path", "line_number": 148, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 150, "usage_type": "call" }, { "api_name": "os.path", "line_number": 150, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 151, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 192, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 192, "usage_type": "name" }, { "api_name": "logging.error", "line_number": 195, "usage_type": "call" }, { "api_name": "configuration_tool.providers.common.provider_resource.ProviderResource", "line_number": 198, "usage_type": "call" }, { "api_name": "configuration_tool.providers.common.provider_resource.ProviderResource", "line_number": 208, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 243, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 243, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 255, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 255, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 258, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 258, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 261, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 261, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 264, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 264, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 290, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 290, "usage_type": "name" }, { "api_name": "logging.warning", "line_number": 317, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 319, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 321, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 326, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 348, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 352, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 352, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 358, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 358, "usage_type": "name" }, { "api_name": "configuration_tool.common.utils.tosca_type_parse", "line_number": 366, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 366, "usage_type": "name" }, { "api_name": "logging.critical", "line_number": 372, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 380, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils.deep_update_dict", "line_number": 381, "usage_type": "call" }, { "api_name": "configuration_tool.common.utils", "line_number": 381, "usage_type": "name" } ]
43855241031
import os import matplotlib.pyplot as plt import numpy as np import torch from torch import nn import torch.optim as optim import torchvision from torchvision import transforms, models, datasets import imageio import time import warnings import random import sys import copy import json from PIL import Image #################################################################### # 把归一化处理过的图像数据恢复为[0,1]区间的数据,才能显示 def im_convert(tensor): # 展示数据 image = tensor.to("cpu").clone().detach() image = image.numpy().squeeze() image = image.transpose(1, 2, 0) # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] image = image * np.array((0.229, 0.224, 0.225)) + \ np.array((0.485, 0.456, 0.406)) # 把低于0的值设置为0,超过1的数据设置为1 image = image.clip(0, 1) return image #################################################################### #################################################################### def set_parameter_requires_grad(a_model, bol_frozen_param): if bol_frozen_param: for param in a_model.parameters(): param.requires_grad = False #################################################################### def initialize_model(model_name, num_classes, bol_frozen_nn_params, use_pretrained=True): # 选择合适的模型,不同模型的初始化方法稍微有点区别 model_ft = None input_size = 0 if model_name == "resnet": """ Resnet152 """ model_ft = models.resnet152(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) # 再根据 num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102), nn.LogSoftmax(dim=1)) input_size = 224 elif model_name == "vgg": """ VGG11_bn """ model_ft = models.vgg16(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "inception": """ Inception v3 Be careful, expects (299,299) sized images and has auxiliary output """ model_ft = models.inception_v3(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, bol_frozen_nn_params) # Handle the auxilary net num_ftrs = model_ft.AuxLogits.fc.in_features model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes) # Handle the primary net num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 299 else: print("Invalid model name, exiting...") exit() return model_ft, input_size data_dir = './flower_data/' train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' # data_transforms是一个字典,记录对 [训练数据] 和 [验证数据] 的预处理的 操作 data_transforms = { 'train': transforms.Compose( [transforms.RandomRotation(45), # 随机旋转,-45到45度之间随机选 transforms.CenterCrop(224), # 从中心开始裁剪 transforms.RandomHorizontalFlip(p=0.5), # 随机水平翻转 选择一个概率概率 transforms.RandomVerticalFlip(p=0.5), # 随机垂直翻转 # 参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相 transforms.ColorJitter( brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1), transforms.RandomGrayscale(p=0.025), # 概率转换成灰度率,3通道就是R=G=B transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [ 0.229, 0.224, 0.225]) # 均值,标准差 ]), 'valid': transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } batch_size = 4 # image_datasets是一个字典,分别存放2个数据集的信息,包括图像数据和分类标签 image_datasets = {x: datasets.ImageFolder(os.path.join( data_dir, x), data_transforms[x]) for x in ['train', 'valid']} # 分别为 train 和 valid 两个数据集定义各自的 dataloader dataloaders = {x: torch.utils.data.DataLoader( image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']} # 统计 训练集 和 验证集 的数据量 # dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']} # class_ids是列表,例如:['1', '10', '100', '101', '102', '11', ...] class_ids = image_datasets['train'].classes with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) # 准备一个数据读取的迭代器 data_iter = iter(dataloaders['valid']) # region 演示取一个batch的数据,并展示 # fig = plt.figure(figsize=(18, 10)) # columns = 3 # rows = 3 # # 取一个batch_size的数据. # # 注意:category_ids存储的是类别在image_datasets['train'].classes列表中的序号,不是直接存类别编号 # inputs, category_ids = data_iter.next() # for idx in range(columns*rows): # ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[]) # ax.set_title(str(int(class_ids[category_ids[idx]])) + ':' + # cat_to_name[str(int(class_ids[category_ids[idx]]))]) # plt.imshow(im_convert(inputs[idx])) # plt.tight_layout() # plt.show() # endregion 演示取一个batch的数据,并展示 # 可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception'] model_name = 'resnet' # 是否用人家训练好的特征提取模型来做,也就是沿用别人的权重 bol_frozen_nn_param = True # 是否用GPU训练 train_on_gpu = torch.cuda.is_available() my_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_ft = models.resnet152(pretrained=True) model_ft, input_size = initialize_model( model_name, 102, bol_frozen_nn_param, use_pretrained=True) # GPU计算 model_ft = model_ft.to(my_device) # 模型保存 filename = 'checkpoint.pth' # 是否训练所有层 params_to_update = model_ft.parameters() # print('params_to_update:\n', params_to_update) # params_to_update = model_ft.named_parameters() # print('params_to_update:\n', params_to_update) print("Params to learn:") if bol_frozen_nn_param: params_to_update = [] for name, param in model_ft.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("\t", name) else: for name, param in model_ft.named_parameters(): if param.requires_grad == True: print("\t", name) # 优化器设置 optimizer_ft = optim.Adam(params_to_update, lr=1e-2) scheduler = optim.lr_scheduler.StepLR( optimizer_ft, step_size=7, gamma=0.1) # 学习率每7个epoch衰减成原来的1/10 # 最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合 criterion = nn.NLLLoss() # 这里不用 criterion = nn.CrossEntropyLoss() # ===================================================================================================== # ===================================================================================================== def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename): since = time.time() best_acc = 0 # region 加载模型 ''' checkpoint = torch.load(filename) best_acc = checkpoint['best_acc'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) model.class_to_idx = checkpoint['mapping'] ''' # endregion model.to(my_device) val_acc_history = [] train_acc_history = [] train_losses = [] valid_losses = [] LRs = [optimizer.param_groups[0]['lr']] best_model_wts = copy.deepcopy(model.state_dict()) for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # 训练和验证 for phase in ['train', 'valid']: if phase == 'train': model.train() # 训练 else: model.eval() # 验证 running_loss = 0.0 running_corrects = 0 # 把数据都取个遍 for inputs, labels in dataloaders[phase]: inputs = inputs.to(my_device) labels = labels.to(my_device) # 清零 optimizer.zero_grad() # 只有训练的时候计算和更新梯度 with torch.set_grad_enabled(phase == 'train'): if is_inception and phase == 'train': outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4*loss2 else: # resnet执行的是这里 outputs = model(inputs) loss = criterion(outputs, labels) # torch.max(outputs, 1)返回每一行的最大值,以及最大值所在的列序号 # 预测值为分类在分类列表中的序号,标签值为分类在分类列表中的序号 pred_values, pred_idxs = torch.max(outputs, 1) print('outputs:', outputs) print('predict value:', pred_values) print('prdict_category:', pred_idxs) print('labels:', labels.data) # 训练阶段更新权重 if phase == 'train': loss.backward() optimizer.step() # 计算损失 running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(pred_idxs == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double( ) / len(dataloaders[phase].dataset) time_elapsed = time.time() - since print('Time elapsed {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # 得到最好那次的模型 if phase == 'valid' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) state = { 'state_dict': model.state_dict(), 'best_acc': best_acc, 'optimizer': optimizer.state_dict(), } torch.save(state, filename) if phase == 'valid': val_acc_history.append(epoch_acc) valid_losses.append(epoch_loss) scheduler.step(epoch_loss) if phase == 'train': train_acc_history.append(epoch_acc) train_losses.append(epoch_loss) print('Optimizer learning rate : {:.7f}'.format( optimizer.param_groups[0]['lr'])) LRs.append(optimizer.param_groups[0]['lr']) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # 训练完后用最好的一次当做模型最终的结果 model.load_state_dict(best_model_wts) return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs # ===================================================================================================== # 训练自定义的最后一层 ———— 全连接层 # model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model( # model_ft, dataloaders, criterion, optimizer_ft, num_epochs=1, is_inception=(model_name == "inception")) # 把网络参数再设置为可学习的状态 for param in model_ft.parameters(): param.requires_grad = True # 再继续训练所有的参数,学习率调小一点 optimizer = optim.Adam(params_to_update, lr=1e-4) scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 损失函数 criterion = nn.NLLLoss() # Load the checkpoint checkpoint = torch.load(filename) best_acc = checkpoint['best_acc'] model_ft.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) #model_ft.class_to_idx = checkpoint['mapping'] # 再次训练,这次训练整个模型 # model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model( # model_ft, dataloaders, criterion, optimizer, num_epochs=1, is_inception=(model_name == "inception")) # 得到一个batch的测试数据 dataiter = iter(dataloaders['valid']) images, labels = dataiter.next() # 训练完train_datasets之后,model要来测试样本了。在model(test_datasets)之前,需要加上model.eval(). # 否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有batch normalization层所带来的的性质。 model_ft.eval() if train_on_gpu: output = model_ft(images.cuda()) else: output = model_ft(images) predict_value, preds_tensor = torch.max(output, 1) preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze( preds_tensor.cpu().numpy()) print(predict_value) print(preds) print(labels) # region 显示验证的图像和分类结果 fig = plt.figure(figsize=(18, 12)) columns = 2 rows = 2 for idx in range(columns*rows): ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[]) plt.imshow(im_convert(images[idx])) ax.set_title("{} (label:{}/{})".format(cat_to_name[class_ids[int(preds[idx])]], class_ids[labels[idx].item()], cat_to_name[class_ids[labels[idx].item()]]), color=("green" if cat_to_name[str(preds[idx])] == cat_to_name[str(labels[idx].item())] else "red")) plt.tight_layout() plt.show() # endregion
harryjd/keras_dogs_vs_cats
图像识别_仿写唐宇迪的例子.py
图像识别_仿写唐宇迪的例子.py
py
14,465
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 28, "usage_type": "call" }, { "api_name": "torchvision.models.resnet152", "line_number": 51, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 55, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn.LogSoftmax", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torchvision.models.vgg16", "line_number": 62, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 65, "usage_type": "name" }, { "api_name": "torchvision.models.inception_v3", "line_number": 72, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 79, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 94, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 94, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomRotation", "line_number": 95, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 95, "usage_type": "name" }, { "api_name": "torchvision.transforms.CenterCrop", "line_number": 96, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 96, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomHorizontalFlip", "line_number": 97, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 97, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomVerticalFlip", "line_number": 98, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 98, "usage_type": "name" }, { "api_name": "torchvision.transforms.ColorJitter", "line_number": 100, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 100, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomGrayscale", "line_number": 102, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 102, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 103, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 103, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 104, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 104, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 107, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 107, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 108, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 108, "usage_type": "name" }, { "api_name": "torchvision.transforms.CenterCrop", "line_number": 109, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 109, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 110, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 110, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 111, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 111, "usage_type": "name" }, { "api_name": "torchvision.datasets.ImageFolder", "line_number": 117, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 117, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 121, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 121, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 160, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 160, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 161, "usage_type": "attribute" }, { "api_name": "torchvision.models.resnet152", "line_number": 163, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 163, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 191, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 192, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler", "line_number": 192, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 192, "usage_type": "name" }, { "api_name": "torch.nn.NLLLoss", "line_number": 195, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 195, "usage_type": "name" }, { "api_name": "time.time", "line_number": 202, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.set_grad_enabled", "line_number": 247, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 258, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 271, "usage_type": "call" }, { "api_name": "time.time", "line_number": 277, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 286, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 292, "usage_type": "call" }, { "api_name": "time.time", "line_number": 306, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 326, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 326, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 327, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler", "line_number": 327, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 327, "usage_type": "name" }, { "api_name": "torch.nn.NLLLoss", "line_number": 330, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 330, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 333, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.squeeze", "line_number": 358, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 365, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 365, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 371, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 371, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 375, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 375, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 376, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 376, "usage_type": "name" } ]
35543810797
from django.urls import path from . import views app_name='cv' urlpatterns = [ path('curriculo', views.index, name='index'), path('curriculo/dados-pessoais', views.cadastrar_ou_aletarar_foto_e_objetivo, name='editar_dados'), path('curriculo/educacao', views.cadastrar_educacao, name='educacao'), path('curriculo/educacao/<id>/excluir', views.excluir_educacao, name='excluir_educacao'), path('curriculo/experiencia', views.cadastrar_experiencia, name='experiencia'), path('curriculo/experiencia/<id>/excluir', views.excluir_experiencia, name='excluir_experiencia'), path('curriculo/visualizar', views.curriculo, name='curriculo'), ]
smctinf/casa_do_trabalhador
curriculo/urls.py
urls.py
py
662
python
pt
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 5, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" } ]
47533751
from typing import List class Solution: def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int: # dp table dp = [[0] * (len(nums2)+1) for _ in range(len(nums1)+1)] # initialize # pass # traverse dp table for i in range(1, len(nums1)+1): for j in range(1, len(nums2)+1): if nums1[i-1] == nums2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[-1][-1] if __name__ == "__main__": nums1 = [1,4,2] nums2 = [1,2,4] s = Solution() assert s.maxUncrossedLines(nums1, nums2) == 2
code-cp/leetcode
solutions/1035/main.py
main.py
py
689
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 4, "usage_type": "name" } ]
25823990802
import numpy as np import pygame import constants class Driver(object): """ This class implements the car's driver: visibility, controls etc. """ def __init__(self, view_distance=constants.MAX_VIEW_DISTANCE, view_resolution=constants.VIEW_RESOLUTION, view_angle=constants.VIEW_ANGLE): self.view_distance = view_distance self.view_resolution = view_resolution self.view_angle = view_angle self.draw_visual = True self.init_view() self.error = 0. def init_view(self): """ Initialize the driver's view. """ self.view_distances = np.linspace(constants.MIN_VIEW_DISTANCE, self.view_distance, self.view_resolution[1]) self.view_angles = np.linspace(-self.view_angle/2., self.view_angle/2., self.view_resolution[0]) * np.pi/180. self.view_x = np.empty(self.view_resolution) self.view_y = np.empty(self.view_resolution) self.view_field = np.zeros(self.view_resolution) def look(self, car, track): """ Evaluate the driver's view ahead. """ cos_angles = np.cos(car.direction + self.view_angles) self.view_x = (car.rect.center[0] + np.outer(cos_angles, self.view_distances) ).astype(int) sin_angles = np.sin(car.direction + self.view_angles) self.view_y = (car.rect.center[1] - np.outer(sin_angles, self.view_distances) ).astype(int) # limit coordinates within track area (only for checking if off track) x_matrix0 = np.where((self.view_x < 0) | (self.view_x >= constants.WIDTH_TRACK), 0, self.view_x) y_matrix0 = np.where((self.view_y < 0) | (self.view_y >= constants.HEIGHT_TRACK), 0, self.view_y) self.view_field[:] = track.off_track(x_matrix0, y_matrix0) # block the view behind corners etc. if constants.BLOCK_VIEW: for ii in range(self.view_resolution[0]): lineview = self.view_field[ii,:] if np.any(lineview): lineview[np.argmax(lineview):] = 1 def draw_viewfield(self, screen): """ Draw the field of view. """ for xx, yy, colind in zip(self.view_x.flatten(), self.view_y.flatten(), self.view_field.flatten()): pygame.draw.circle(screen, constants.COLOR_VIEWFIELD[int(colind)], (xx, yy), 3) def update(self, car, *args): """ Default actions for drivers. """ car.accelerate = constants.ALWAYS_FULLGAS car.brake = False car.turn_left = False car.turn_right = False class Player(Driver): """ This class implements the driver for the player car. """ def __init__(self, *args, **kwargs): super(Player, self).__init__(*args, **kwargs) def update(self, car): """ Read keyboard for controlling the player car. """ super(Player, self).update(car) keys = pygame.key.get_pressed() if keys[pygame.K_UP]: car.accelerate = True if keys[pygame.K_DOWN]: car.brake = True if keys[pygame.K_LEFT]: car.turn_left = True if keys[pygame.K_RIGHT]: car.turn_right = True class AI_TIF(Driver): """ This class implements a simple AI driver that tries to keep most of the track in front of its view field. """ def __init__(self, *args, **kwargs): super(AI_TIF, self).__init__(*args, **kwargs) # speed that still (kind of) allows a 90 degree turn self.allowed_speed = constants.MAX_VIEW_DISTANCE / ( np.pi / (1.5 * constants.TURN_SPEED)) def update(self, car): """ The car turns depending on whether its closest side checks are off track. Brake is applied if the car is going too fast with wall in front, and especially if the corner is tight. """ # TODO: tuned for track and settings, generalize! super(AI_TIF, self).update(car) car.accelerate = True if self.view_field[0,0] and not self.view_field[-1,0]: car.turn_left = True elif self.view_field[-1,0] and not self.view_field[0,0]: car.turn_right = True if self.view_field[self.view_resolution[0]//2, -1]: car.brake = car.speed > self.allowed_speed # special handling of tight corners if not all(self.view_field[[0,-1], 1]) and car.speed > 1.: car.brake = True class ANN_Online(Driver): """ This class implements the AI driver for a neural network. The network is trained online using stochastic gradient descent. """ def __init__(self, n_hidden_neurons=5, model_car=None, learning_rate=0.2, regularization=1., *args, **kwargs): super(ANN_Online, self).__init__(*args, **kwargs) self.model_car = model_car # the car to learn from self.learning_rate = learning_rate self.regularization = regularization n_inputs = self.view_resolution[0] * self.view_resolution[1] + 1 # viewpoints + speed n_outputs = 4 # accelerate, brake, left, right self.ann = ann.ANN(n_inputs, n_hidden_neurons, n_outputs) def update(self, own_car): super(ANN_Online, self).update(own_car) if constants.PLOT_ERROR: self.evaluate_error() self.learn() inputs = self.prepare_inputs(own_car) outputs = self.ann.feedforward(inputs) self.process_output(outputs, own_car) def learn(self): model_inputs = self.prepare_inputs(self.model_car) self.ann.train1(model_inputs, self.model_actions(), self.learning_rate, self.regularization) def prepare_inputs(self, car): inputs = car.driver.view_field.flatten().astype(float) # speed_transform = np.exp(-car.speed) speed_transform = 1. / max(car.speed, 1.) inputs = np.insert(inputs, 0, speed_transform, axis=0) return inputs def model_actions(self): return np.array([self.model_car.accelerate, self.model_car.brake, self.model_car.turn_left, self.model_car.turn_right]).astype(float) def process_output(self, outputs, car): threshold = 0.5 if outputs[0] > threshold: car.accelerate = True if outputs[1] > threshold: car.brake = True if outputs[2] > threshold: car.turn_left = True if outputs[3] > threshold: car.turn_right = True def evaluate_error(self): """ Evaluate the cost function with model input data. """ inputs = self.prepare_inputs(self.model_car) outputs = self.ann.feedforward(inputs) wanted = self.model_actions() self.error = self.ann.cost(outputs, wanted) class ANN_Batch(ANN_Online): """ This class implements the AI driver for a neural network. The network is trained online using gradient descent with a batch of accumulated samples. """ def __init__(self, n_hidden_neurons=5, model_car=None, learning_rate=0.2, regularization=0.1, epochs=60, mini_batch_size=100, *args, **kwargs): super(ANN_Batch, self).__init__(n_hidden_neurons, model_car, learning_rate, regularization, *args, **kwargs) self.epochs = epochs self.mini_batch_size = mini_batch_size self.reset_samples() def learn(self): """ This method is called by the update method in the parent class. Here we only spy the model car. """ self.input_samples.append(self.prepare_inputs(self.model_car)) self.output_samples.append(self.model_actions()) def train(self): """ Train the whole set of samples. NOTE: May take a while and pause the game! """ print("Training {} samples for {} epochs in batches of {}".format( len(self.input_samples), self.epochs, self.mini_batch_size)) self.ann.train_set(self.input_samples, self.output_samples, self.learning_rate, self.regularization, self.epochs, self.mini_batch_size) self.reset_samples() def reset_samples(self): self.input_samples = [] self.output_samples = []
vuolleko/FormulaPF
driver.py
driver.py
py
9,079
python
en
code
0
github-code
6
[ { "api_name": "constants.MAX_VIEW_DISTANCE", "line_number": 12, "usage_type": "attribute" }, { "api_name": "constants.VIEW_RESOLUTION", "line_number": 13, "usage_type": "attribute" }, { "api_name": "constants.VIEW_ANGLE", "line_number": 14, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 26, "usage_type": "call" }, { "api_name": "constants.MIN_VIEW_DISTANCE", "line_number": 26, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 31, "usage_type": "attribute" }, { "api_name": "numpy.empty", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.outer", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.outer", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 51, "usage_type": "call" }, { "api_name": "constants.WIDTH_TRACK", "line_number": 52, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 54, "usage_type": "call" }, { "api_name": "constants.HEIGHT_TRACK", "line_number": 55, "usage_type": "attribute" }, { "api_name": "constants.BLOCK_VIEW", "line_number": 61, "usage_type": "attribute" }, { "api_name": "numpy.any", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 65, "usage_type": "call" }, { "api_name": "pygame.draw.circle", "line_number": 74, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 74, "usage_type": "attribute" }, { "api_name": "constants.COLOR_VIEWFIELD", "line_number": 74, "usage_type": "attribute" }, { "api_name": "constants.ALWAYS_FULLGAS", "line_number": 80, "usage_type": "attribute" }, { "api_name": "pygame.key.get_pressed", "line_number": 99, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pygame.K_UP", "line_number": 100, "usage_type": "attribute" }, { "api_name": "pygame.K_DOWN", "line_number": 102, "usage_type": "attribute" }, { "api_name": "pygame.K_LEFT", "line_number": 104, "usage_type": "attribute" }, { "api_name": "pygame.K_RIGHT", "line_number": 106, "usage_type": "attribute" }, { "api_name": "constants.MAX_VIEW_DISTANCE", "line_number": 118, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 119, "usage_type": "attribute" }, { "api_name": "constants.TURN_SPEED", "line_number": 119, "usage_type": "attribute" }, { "api_name": "constants.PLOT_ERROR", "line_number": 167, "usage_type": "attribute" }, { "api_name": "numpy.insert", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 188, "usage_type": "call" } ]
31373127129
# encoding=utf8 import datefinder from datetime import datetime import sys import csv import boto3 from data import Data from PIL import Image import pytesseract import cv2 import os import re class TestData: """docstring for TestData""" @staticmethod def get(): data = Data() data.set('Filename', 'in.jpg') data.set('Extracted text', 'abc xxx def') return data @staticmethod def extract(filename): """ with open('/home/ubuntu/date-extraction-from-image/credentials.csv', 'r') as input: next(input) reader = csv.reader(input) for line in reader: access_key_id = line[2] secret_access_key = line[3] """ access_key_id = 'AKIA6LRPMXT6S5TPPDIO' secret_access_key = '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' client = boto3.client('rekognition', aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key, region_name='us-east-1') UPLOADED_FILE = '/tmp/'+filename filename = "{}.png|jpeg|jpg".format(os.getpid()) with open(UPLOADED_FILE, 'rb') as source_image: source_bytes = source_image.read() response = client.detect_text(Image={'Bytes': source_bytes}) text = str(" ".join(re.findall(r"[a-z0-9\/\-\.\,]+", str(response), flags=re.I))).strip().title() text = re.sub(r"([a-z]+)([0-9]+)", r"\1 \2", text, flags=re.I) text = re.sub(r"([0-9]+)([a-z]+)", r"\1 \2", text, flags=re.I) l1=[] date=[] opt = dict() date_reg_exp2 = re.compile(r'detectedtext\s*[a-zA-Z0-9\s]{0,30}((?:(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:0[1-9]|1[0-2])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|(Nov|Dec)(?:ember)?)(?:\D)(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:0[1-9]|1[0-2])(?:\D)(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2}))|(?:(?:0[1-9]|1[0-9]|2[0-9]|3[0-1])(?:\D)(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|(Nov|Dec)(?:ember)?)(?:\D)(?:(?:19[7-9]\d|20\d{2})|\d{2})))',flags=re.I) line = re.search(date_reg_exp2, str(text)) if line: l1 =list(filter(None,line.groups())) newDate = [ x for x in datefinder.find_dates(l1[0]) ][0] date=re.split('[- / . ' ' ]',l1[0]) #opt["date"] = [date[2] + "/" + date[1] + "/" + date[0]] opt["Date"] = [ newDate.strftime("%Y - %m - %d") ] return opt else: opt['date'] = "date is not present" return opt # os.remove(filename) # return text
prasadbiradar/date-extraction-from-images
testdata.py
testdata.py
py
2,928
python
en
code
0
github-code
6
[ { "api_name": "data.Data", "line_number": 20, "usage_type": "call" }, { "api_name": "data.set", "line_number": 21, "usage_type": "call" }, { "api_name": "data.set", "line_number": 22, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 40, "usage_type": "call" }, { "api_name": "os.getpid", "line_number": 47, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 54, "usage_type": "call" }, { "api_name": "re.I", "line_number": 54, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 55, "usage_type": "call" }, { "api_name": "re.I", "line_number": 55, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 56, "usage_type": "call" }, { "api_name": "re.I", "line_number": 56, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 61, "usage_type": "call" }, { "api_name": "re.I", "line_number": 61, "usage_type": "attribute" }, { "api_name": "re.search", "line_number": 63, "usage_type": "call" }, { "api_name": "datefinder.find_dates", "line_number": 68, "usage_type": "call" }, { "api_name": "re.split", "line_number": 70, "usage_type": "call" } ]
20755734857
import pandas as pd import logging as lg import pickle lg.basicConfig(filename='data_test_automation.log', level=lg.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(' 'message)s', datefmt='%m-%d %H:%M', filemode='w') def automated(a): """This function takes the input of the test data file location, and performs all the data processing done on the test data set. For logs check the data_test_automation.log file in your system""" try: lg.warning("user gave the input path/file as:"+' '+str(a)) df=pd.read_excel(a) lg.warning("data successfully loaded from the file/path"+' '+str(a)) lg.info("starting all the pre-processing done for the train dataset") df.dropna(inplace=True) lg.warning("successfully dropped all null values in the given dataset") def change_into_datetime(col): df[col]=pd.to_datetime(df[col]) for i in ['Date_of_Journey','Dep_Time', 'Arrival_Time']: change_into_datetime(i) lg.info("successfully changed the required columns into datetime format") df['journey_day']=df['Date_of_Journey'].dt.day lg.info("successfully extracted day from Date_of_journey and creating a separate column for day") df['journey_month']=df['Date_of_Journey'].dt.month lg.info("successfully extracted month from Date_of_Journey and creating a separate column for month") def extract_hour(data,col): data[col+'_hour']=data[col].dt.hour def extract_min(data,col): data[col+'_min']=data[col].dt.minute def drop_col(data,col): data.drop(col,axis=1,inplace=True) extract_hour(df,'Dep_Time') lg.info("successfully extracted hours from Dep_Time and dumped the data into new column Dep_Time_hour") extract_min(df,'Dep_Time') lg.info("successfully extracted minutes from Dep_Time and dumped the data into new column Dep_Time_min") drop_col(df,'Dep_Time') lg.warning("dropping the original Dep_Time column as we extracted the values form that column") extract_hour(df,'Arrival_Time') lg.info("successfully extracted hours from Arrival_Time and dumped the data into new column Arrival_Time_hour") extract_min(df,'Arrival_Time') lg.info("successfully extracted min from Arrival_Time and dumped the data into new column Arrival_Time_min") drop_col(df,'Arrival_Time') lg.warning("dropping the original Arrival_Time column as we extracted the values form that column") duration = list(df["Duration"]) for i in range(len(duration)): if len(duration[i].split()) != 2: if "h" in duration[i]: duration[i] = duration[i].strip() + " 0m" else: duration[i] = "0h " + duration[i] duration_hours = [] duration_mins = [] for i in range(len(duration)): duration_hours.append(int(duration[i].split(sep = "h")[0])) duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) df["Duration_hours"] = duration_hours lg.info("successfully extracted hours from Duration column and dumped the data into new column Duration_hours") df["Duration_mins"] = duration_mins lg.info("successfully extracted minutes from Duration column and dumped the data into new column Duration_mins") df.drop(["Date_of_Journey","Duration","Additional_Info"], inplace=True,axis=1) lg.warning("dropping the Date_of_Journey, Duration, Additional_Info columns as we extracted the required " "information") Airline=pd.get_dummies(df['Airline'],drop_first=True) lg.info("creating dummy variables for Airline and dropping the first dummy column") source=pd.get_dummies(df['Source'],drop_first=True) lg.info("creating dummy variables for Source and dropping the first dummy column") destination=pd.get_dummies(df['Destination'],drop_first=True) lg.info("creating dummy variables for Destination and dropping the first dummy column") dict={'non-stop':0, '2 stops':2, '1 stop':1, '3 stops':3, '4 stops':4} df['Total_Stops']=df['Total_Stops'].map(dict) lg.info("successfully mapped the Total_Stops column to 0,1,2,3,4 respectfully") df=pd.concat([df, Airline, source, destination], axis = 1) lg.warning("concatenating all the newly created columns into the main dataframe") df.drop(["Airline", 'Source', 'Destination','Route'],inplace=True,axis=1) lg.warning("dropping the categorical columns as we dummy encoded them") df['Trujet']=0 lg.info("adding an extra column as this feature is not there in our test dataset") model = open('flight_rf.pkl','rb') forest = pickle.load(model) lg.info("loading our test model for prediction") y_prediction = forest.predict(df) lg.info("processing the prediction") a=pd.DataFrame(y_prediction) lg.info("dumping all our predicted values into a dataframe and showing the results") print(a) return a except Exception as e: lg.warning("error occurred during execution, which is:"+' '+str(e)) return "error occurs is:"+' '+str(e) a=input(str("give the file path or file name:")) automated(a)
InduMouliMahamkali/flightfareprediction
pre-processing and modeling/automated_model_test.py
automated_model_test.py
py
5,520
python
en
code
3
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 6, "usage_type": "attribute" }, { "api_name": "logging.warning", "line_number": 19, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 20, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 21, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 23, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 26, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 33, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 36, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 38, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 49, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 51, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 53, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 55, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 57, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 59, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 77, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 79, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 82, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 85, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 86, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 88, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 89, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 91, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 92, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 96, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 98, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 99, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 102, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 105, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 109, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 110, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 113, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 115, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 116, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 122, "usage_type": "call" } ]
74903206266
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque class Solution: def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: if not root: return [] queue = deque([root]) result = [] while queue: levelLength = len(queue) levelResult = [] for i in range(levelLength): current_node = queue.popleft() levelResult.append(current_node.val) if current_node.left: queue.append(current_node.left) if current_node.right: queue.append(current_node.right) result.append(levelResult) return result
eungang3/Leetcode
binary-tree-level-order-traversal/binary-tree-level-order-traversal.py
binary-tree-level-order-traversal.py
py
973
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 15, "usage_type": "call" } ]
15974434638
# Api Agenda Lionx from src.infrastructures.mongo.mongo_infrastructure import MongoInfrastructure # Third party from decouple import config from pymongo.cursor import Cursor from pymongo.collection import InsertOneResult, UpdateResult class MongoRepository: def __init__(self): self.mongo_client = MongoInfrastructure.get_client() self.database = self.mongo_client.get_database(config("DATABASE_NAME")) self.collection = self.database.get_collection(config("COLLECTION_NAME")) def get_all_contacts(self) -> Cursor: remove_pymongo_id = {"_id": 0} contacts_cursor = self.collection.find({}, remove_pymongo_id) return contacts_cursor def get_contact_by_id(self, id) -> dict: filter_by_id = {"contact_id": id, "situation": "active"} remove_pymongo_id = {"_id": 0} contact = self.collection.find_one(filter_by_id, remove_pymongo_id) return contact def get_contacts_by_first_letters(self, letters) -> Cursor: regex_first_letters_contact = {"$regex": f"^{letters}", "$options": "i"} filter_by_first_name_letters = {"firstName": regex_first_letters_contact, "situation": "active"} remove_pymongo_id = {"_id": 0} contacts_cursor = self.collection.find(filter_by_first_name_letters, remove_pymongo_id) return contacts_cursor def register_contact(self, new_contact) -> InsertOneResult: insert_result = self.collection.insert_one(new_contact) return insert_result def update_contact(self, edited_contact, id) -> UpdateResult: filter_by_id = {"contact_id": id} new_values = {"$set": edited_contact} update_result = self.collection.update_one(filter_by_id, new_values) return update_result def soft_delete_contact(self, id) -> UpdateResult: filter_by_id = {"contact_id": id} field_to_update = {"$set": {"situation": "deactivated"}} update_result = self.collection.update_one(filter_by_id, field_to_update) return update_result
vinireeis/api_agenda_lionx
src/repositories/mongo/repository.py
repository.py
py
2,050
python
en
code
1
github-code
6
[ { "api_name": "src.infrastructures.mongo.mongo_infrastructure.MongoInfrastructure.get_client", "line_number": 12, "usage_type": "call" }, { "api_name": "src.infrastructures.mongo.mongo_infrastructure.MongoInfrastructure", "line_number": 12, "usage_type": "name" }, { "api_name": "decouple.config", "line_number": 13, "usage_type": "call" }, { "api_name": "decouple.config", "line_number": 14, "usage_type": "call" }, { "api_name": "pymongo.cursor.Cursor", "line_number": 16, "usage_type": "name" }, { "api_name": "pymongo.cursor.Cursor", "line_number": 27, "usage_type": "name" }, { "api_name": "pymongo.collection.InsertOneResult", "line_number": 34, "usage_type": "name" }, { "api_name": "pymongo.collection.UpdateResult", "line_number": 38, "usage_type": "name" }, { "api_name": "pymongo.collection.UpdateResult", "line_number": 44, "usage_type": "name" } ]
29944774792
import os import sys sys.path.insert(1, os.path.join(sys.path[0], 'utils')) import numpy as np import pandas as pd import argparse import h5py import librosa from scipy import signal import matplotlib.pyplot as plt import time import csv import random from concurrent.futures import ProcessPoolExecutor from functools import partial from multiprocessing import cpu_count from utilities import read_audio, create_folder, read_meta import config from tqdm import tqdm # Global flags and variables. PLOT_FEATURES = False class LogMelExtractor(): def __init__(self, sample_rate, window_size, overlap, mel_bins): self.window_size = window_size self.overlap = overlap # Loading hamming window and Mel-filters. self.ham_win = np.hamming(window_size) self.melW = librosa.filters.mel(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=50., fmax=sample_rate // 2).T # transform: Assumes a numpy array representing raw audio-signal. def transform(self, audio): ham_win = self.ham_win window_size = self.window_size overlap = self.overlap # Compute a spectrogram with consecutive Fourier transforms. [f, t, x] = signal.spectral.spectrogram( audio, window=ham_win, nperseg=window_size, noverlap=overlap, detrend=False, return_onesided=True, mode='magnitude') x = x.T # Applying mel-filters on sequence of fourier transforms. x = np.dot(x, self.melW) # Applying log on mel-filters. x = np.log(x + 1e-8) x = x.astype(np.float32) return x def calculate_logmel(audio_path, sample_rate, feature_extractor, n=-1): # Read audio (first 4 seconds only). (audio, fs) = read_audio(audio_path, target_fs=sample_rate) # Extract feature feature = feature_extractor.transform(audio) return feature, n def calculate_features(args): n_jobs = cpu_count() executor = ProcessPoolExecutor(max_workers=n_jobs) futures = [] print("Using {} workers in parallel.".format(n_jobs)) # Arguments. dataset_dir = args.dataset_dir workspace = args.workspace features_type = args.mode features_file_name = args.features_file_name # Parameters for feature extraction. metadata_delimiter = config.metadata_delimiter sample_rate = config.sample_rate window_size = config.window_size overlap = config.overlap seq_len = config.seq_len mel_bins = config.mel_bins # Dislaying arguments and parameters. print("Arguments and Parameters:") print("Dataset Directory: {}".format(dataset_dir)) print("Workspace: {}".format(workspace)) print("Sample Rate: {}".format(sample_rate)) print("Window Size: {}".format(window_size)) print("Overlapping Frames: {}".format(overlap)) print("Sequence Length: {}".format(seq_len)) # Dimension of feature corresponding to each audio file: (seq_len, mel_bins) print("Mel Bins: {}".format(mel_bins)) # Paths audio_dir = os.path.join(dataset_dir, 'audio') meta_csv = os.path.join(dataset_dir, 'metadata', 'UrbanSound8K.csv') hdf5_path = os.path.join(workspace, 'features', features_type, features_file_name) # Displaying paths. print("Reading audio from: {}".format(audio_dir)) print("Reading meatadata file form: {}".format(meta_csv)) print("Saving the extracted features at: {}".format(hdf5_path)) create_folder(os.path.dirname(hdf5_path)) # Feature extractor feature_extractor = LogMelExtractor(sample_rate=sample_rate, window_size=window_size, overlap=overlap, mel_bins=mel_bins) audio_names, fs_IDs, start_times, end_times, saliences, folds, class_IDs, classes = read_meta(meta_csv, metadata_delimiter) # Create hdf5 file hf = h5py.File(hdf5_path, 'w') # Intialising hdf5 file to store audios/labels of all folds. for fold_id in range(1, 11): hf.create_dataset( name='features_fold{}'.format(fold_id), shape=(0, seq_len, mel_bins), maxshape=(None, seq_len, mel_bins), dtype=np.float32) hf.create_dataset( name='labels_fold{}'.format(fold_id), shape=(0, 1), maxshape=(None, 1), dtype=np.float32) # To remember number of audio files processed in each fold. fold_count = [0] * 11 for (n, audio_name) in enumerate(audio_names): # Calculate feature. audio_path = os.path.join(audio_dir, 'fold{}'.format(folds[n]), audio_name) futures.append(executor.submit(partial(calculate_logmel, audio_path, sample_rate, feature_extractor, n))) for future in tqdm(futures): if future.result() is not None: feature, n = future.result() hf['features_fold{}'.format(folds[n])].resize((fold_count[folds[n]] + 1, seq_len, mel_bins)) hf['features_fold{}'.format(folds[n])][fold_count[folds[n]]] = feature hf['labels_fold{}'.format(folds[n])].resize((fold_count[folds[n]] + 1, 1)) hf['labels_fold{}'.format(folds[n])][fold_count[folds[n]]] = class_IDs[n] fold_count[folds[n]] += 1 # Plot log-Mel for debug. if PLOT_FEATURES: plt.matshow(feature.T, origin='lower', aspect='auto', cmap='jet') plt.show() hf.close() # Displaying total files processed from each fold. print("Files Processed from each fold:") for fold_id in range(1, 11): print("Fold {}: {} files.".format(fold_id, fold_count[fold_id])) # USAGE: python features.py logmel --dataset_dir=$DATASET_DIR --workspace=$WORKSPACE if __name__ == '__main__': parser = argparse.ArgumentParser(description='') subparsers = parser.add_subparsers(dest='mode') # Different modes can be added to extract different type of features. parser_logmel = subparsers.add_parser('logmel') parser_logmel.add_argument('--dataset_dir', type=str, required=True) # Path to the UrbanSound8K folder. parser_logmel.add_argument('--workspace', type=str, required=True) # Directory where extracted features, model and logs of experiments are stored. parser_logmel.add_argument('--features_file_name', type=str, required=True) # logmel-features.h5 args = parser.parse_args() if args.mode == 'logmel': calculate_features(args) else: raise Exception('Incorrect arguments!')
iamjanvijay/Background-Sound-Classification-in-Speech-Audio-Segments
utils/features.py
features.py
py
7,026
python
en
code
4
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 3, "usage_type": "call" }, { "api_name": "os.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "numpy.hamming", "line_number": 32, "usage_type": "call" }, { "api_name": "librosa.filters.mel", "line_number": 33, "usage_type": "call" }, { "api_name": "librosa.filters", "line_number": 33, "usage_type": "attribute" }, { "api_name": "scipy.signal.spectral.spectrogram", "line_number": 47, "usage_type": "call" }, { "api_name": "scipy.signal.spectral", "line_number": 47, "usage_type": "attribute" }, { "api_name": "scipy.signal", "line_number": 47, "usage_type": "name" }, { "api_name": "numpy.dot", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 63, "usage_type": "attribute" }, { "api_name": "utilities.read_audio", "line_number": 70, "usage_type": "call" }, { "api_name": "multiprocessing.cpu_count", "line_number": 80, "usage_type": "call" }, { "api_name": "concurrent.futures.ProcessPoolExecutor", "line_number": 81, "usage_type": "call" }, { "api_name": "config.metadata_delimiter", "line_number": 92, "usage_type": "attribute" }, { "api_name": "config.sample_rate", "line_number": 93, "usage_type": "attribute" }, { "api_name": "config.window_size", "line_number": 94, "usage_type": "attribute" }, { "api_name": "config.overlap", "line_number": 95, "usage_type": "attribute" }, { "api_name": "config.seq_len", "line_number": 96, "usage_type": "attribute" }, { "api_name": "config.mel_bins", "line_number": 97, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path", "line_number": 111, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path", "line_number": 112, "usage_type": "attribute" }, { "api_name": "utilities.create_folder", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path", "line_number": 119, "usage_type": "attribute" }, { "api_name": "utilities.read_meta", "line_number": 127, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 130, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 138, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 143, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 151, "usage_type": "call" }, { "api_name": "os.path", "line_number": 151, "usage_type": "attribute" }, { "api_name": "functools.partial", "line_number": 152, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.matshow", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 168, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 169, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 184, "usage_type": "call" } ]
16601473639
import socket import serial import sqlite3 import select import time import datetime HEADERSIZE = 10 running_on_pie = False # pie or windows if running_on_pie: host = '192.168.1.10' pos = '192.168.1.10' win1 = '192.168.1.11' win2 = '192.168.1.12' conn = sqlite3.connect('/home/sysop/pos/order.db') robot = serial.Serial('/dev/ttyUSB0', 19200) else: host = '192.168.86.26' pos = '192.168.86.26' win1 = '192.168.86.26' win2 = '192.168.86.11' conn = sqlite3.connect('order.db') robot = serial.Serial('COM9', 19200) port = 12345 c = conn.cursor() send_to_bot = False send_to_w1 = False send_to_w2 = False send_to_pos = False bot_data = '' bot_hold = '' old_data = '' serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serverSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serverSocket.bind((host, port)) serverSocket.listen(5) sockets_list = [serverSocket] clients = {} print('Listening for connections on {}:{}...'.format(host, port)) def un_start(): command = "/usr/bin/sudo /sbin/shutdown -r now" import subprocess process = subprocess.Popen(command.split(), stdout=subprocess.PIPE) output = process.communicate()[0] print(output) def log_it(note): if running_on_pie: f = open("/home/sysop/pos/log.txt", "a+") else: f = open("log.txt", "a+") ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%d-%m-%Y %H:%M:%S') info = st + ' > ' info += note info += '\n\r' f.write(info) def create_table(): c.execute('CREATE TABLE IF NOT EXISTS donut(donutID int, drink int, topping int, orderNUM int,' ' pay int)') def data_test(a1): c.execute("SELECT * FROM donut WHERE orderNUM=:a1", {"a1": str(a1)}) data1 = c.fetchall() if data1: return data1 def data_delete(a1): c.execute("DELETE FROM donut WHERE orderNUM=:a1", {"a1": str(a1)}) conn.commit() # Handles message receiving def receive_message(client_socket1): try: message_header = client_socket1.recv(HEADERSIZE) if not len(message_header): return False message_length = int(message_header.decode('utf-8').strip()) return {'header': message_header, 'data': client_socket1.recv(message_length)} except Exception as e: print(e) return False def order_process(order): if len(order) == 4: xa = str(data_test(order)) if xa != 'None': xa = xa.strip('[]()') xa = xa.replace(" ", "") xa = xa.split(",") dm = '$A' + str(xa[0]) if str(xa[1]) == '0': dm += '1000#' else: dm += str(xa[1]) dm += '#' else: dm = xa return dm create_table() while True: read_sockets, _, exception_sockets = select.select(sockets_list, [], sockets_list) for notified_socket in read_sockets: if notified_socket == serverSocket: client_socket, client_address = serverSocket.accept() # Client should send his name right away, receive it user = receive_message(client_socket) # If False - client disconnected before he sent his name if user is False: continue # Add accepted socket to select.select() list sockets_list.append(client_socket) # Also save username and username header clients[client_socket] = user print('Accepted connection from {}, username: {}'.format(client_address, user['data'].decode('utf-8'))) log_it('Accepted connection from {}, username: {}'.format(client_address, user['data'].decode('utf-8'))) else: # Receive message message = receive_message(notified_socket) # If False, client disconnected, cleanup if message is False: print('Closed connection from: {}'.format(clients[notified_socket]['data'].decode('utf-8'))) log_it('Closed connection from: {}'.format(clients[notified_socket]['data'].decode('utf-8'))) # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket] continue # Get user by notified socket, so we will know who sent the message user = clients[notified_socket] data = message["data"].decode("utf-8") line = '' if data != 'ready': if data != old_data: print('Received message from {}: {}'.format(user["data"].decode("utf-8"), data)) log_it('Received message from {}: {}'.format(user["data"].decode("utf-8"), data)) old_data = data if user["data"] == 'm1'.encode("utf-8"): # start the order if data == 'A order In': message2_header = '{:10}'.format(len(data)) message['header'] = message2_header.encode("utf-8") message['data'] = data.encode("utf-8") send_to_w1 = True # pos info if user["data"] == 'pos'.encode("utf-8"): robot.write(data.encode("utf-8")) time.sleep(1) line_in = robot.readline() line = line_in.decode("utf-8") line = line.rstrip() if line[0] == '$': message2_header = '{:10}'.format(len(line)) message['header'] = message2_header.encode("utf-8") message['data'] = line.encode("utf-8") print(line.encode("utf-8")) send_to_pos = True # window A data and processing if user["data"] == 'w1'.encode("utf-8"): if len(data) == 4: if data == '0000': un_start() message2 = order_process(data) bot_hold = message2 time.sleep(1) message2_header = '{:10}'.format(len(message2)) message['header'] = message2_header.encode("utf-8") message['data'] = message2.encode("utf-8") send_to_w1 = True if len(data) == 5: if data == 'start': robot.write(bot_hold.encode("utf-8")) time.sleep(1) if data == 'ready': line_in = robot.readline() line = line_in.decode("utf-8") line = line.rstrip() # if line == 'end': message2_header = '{:10}'.format(len(line)) message['header'] = message2_header.encode("utf-8") message['data'] = line.encode("utf-8") send_to_w1 = True # main com arduino # if robot.in_waiting > 0: # line_in = robot.readline() # line = line_in.decode("utf-8") # line = line.rstrip() # # if len(line) > 1: # # if line == 'end' and user["data"] == 'w1'.encode("utf-8"): # message2_header = '{:10}'.format(len(line)) # message['header'] = message2_header.encode("utf-8") # message['data'] = line.encode("utf-8") # send_to_w1 = True # if line[0] == '$' and user["data"] == 'pos'.encode("utf-8"): # message2_header = '{:10}'.format(len(line)) # message['header'] = message2_header.encode("utf-8") # message['data'] = line.encode("utf-8") # send_to_pos = True # Iterate over connected clients and broadcast message for client_socket in clients: # sent it the_ip = client_socket.getpeername()[0] if the_ip == win1 and send_to_w1: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) print(user['header'] + user['data'] + message['header'] + message['data']) send_to_w1 = False if the_ip == win2 and send_to_w2: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) send_to_w2 = False if the_ip == pos and send_to_pos: client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) print(user['header'] + user['data'] + message['header'] + message['data']) send_to_pos = False line = '' # It's not really necessary to have this, but will handle some socket exceptions just in case for notified_socket in exception_sockets: # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket]
RG11rant/donuts
server.py
server.py
py
9,334
python
en
code
1
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 16, "usage_type": "call" }, { "api_name": "serial.Serial", "line_number": 17, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "serial.Serial", "line_number": 24, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 39, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 39, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 39, "usage_type": "attribute" }, { "api_name": "socket.SOL_SOCKET", "line_number": 40, "usage_type": "attribute" }, { "api_name": "socket.SO_REUSEADDR", "line_number": 40, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 55, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 55, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 65, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 66, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 66, "usage_type": "attribute" }, { "api_name": "select.select", "line_number": 127, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 184, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 202, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 211, "usage_type": "call" } ]
13442824529
import pygame, os from modules.entitysets._puresensor import PureSensor from imageload import loadImage from button import Button from menustate import MenuState from staticimage import StaticImage from gridrounding import gridRound from selectionbox import SelectionBox from label import Label class RemoveSensorButton( Button ): image = loadImage("remove.png", 2 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) self.rect = self.image.get_rect() self.rect.topleft = ( 54, 24 ) def push( self, clickKey, click ): if "up" in clickKey: self.parentState.toggleRemove() class SnapToGridButton( Button ): image = loadImage( "gridbutton.png", 2 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) self.rect = self.image.get_rect() self.rect.topleft = ( 24, 24 ) def push( self, clickKey, click ): if "up" in clickKey: self.parentState.toggleSnapToGrid() class SensorEditButton( Button ): image = loadImage( "sensoreditbutton.png", 2 ) rect = image.get_rect() rect.topleft = ( 24, 144 ) def __init__( self, menu=None ): Button.__init__( self, None, None, menu ) def push( self, clickKey, click ): if "up" in clickKey: aBoundEditState = SensorEditState( self.parentState.menu ) self.parentState.menu.loadMenuState( aBoundEditState ) class SensorEditState( MenuState ): def __init__( self, menu, sprites=[] ): MenuState.__init__( self, menu, sprites ) self.sprites = [self.fileNameLabel, self.miniMap] self.buttons = [] self.panel = StaticImage(loadImage( "devmenu.png", 2 ), (10, 10)) self.addSprite( self.panel ) self.snapToGridButton = SnapToGridButton( self ) self.addButton( self.snapToGridButton ) self.removeButton = RemoveSensorButton( self ) self.addButton( self.removeButton ) self.gridButtonSelectionBox = None self.removeButtonSelectionBox = None self.addingMode = True self.removingMode = False self.curGrabbedSens = None self.curStart = None self.gridX = 40 self.gridY = 40 self.snapToGrid = False self.whereEntWasGrabbed = None def toggleSnapToGrid( self ): self.snapToGrid = not self.snapToGrid if self.gridButtonSelectionBox is None: self.gridButtonSelectionBox = SelectionBox( self.snapToGridButton.rect, self ) self.addSprite( self.gridButtonSelectionBox ) else: self.removeSprite( self.gridButtonSelectionBox ) self.gridButtonSelectionBox = None self.menu.loadMenuState( self ) def toggleRemove( self ): self.removingMode = not self.removingMode if self.removeButtonSelectionBox is None: self.removeButtonSelectionBox = SelectionBox( self.removeButton.rect, self ) self.addSprite( self.removeButtonSelectionBox ) else: self.removeSprite( self.removeButtonSelectionBox ) self.removeButtonSelectionBox = None self.menu.loadMenuState( self ) def getPressedSensor( self, point ): """See which sensor is at this point""" escape = False for eachSpriteList in ( eachGroup.sprites() for eachGroup in self.menu.playState.groups ): for eachSprite in [ sprite for sprite in eachSpriteList if sprite.pureSensor]: if eachSprite.rect.collidepoint( point ): return eachSprite def update( self, dt, click, clickKey, curMousePos=None ): MenuState.update( self, dt, click, clickKey, curMousePos ) playState = self.menu.playState curMousePos = curMousePos[0]-playState.panX, curMousePos[1]-playState.panY if self.snapToGrid: curMousePos = gridRound( curMousePos, self.gridX, self.gridY, trueRounding=True ) else: curMousePos = curMousePos if self.curStart is not None: self.menu.playState.lineVisualiser.devMenuLineGroups = [ [ self.curStart, ( self.curStart[0], curMousePos[1] ) ], [ ( self.curStart[0], curMousePos[1] ), curMousePos ], [ curMousePos, ( curMousePos[0], self.curStart[1] ) ], [ ( curMousePos[0], self.curStart[1] ), self.curStart ] ] self.menu.playState.lineVisualiser.devMenuLineGroups = [ [ (each[0]+playState.panX, each[1]+playState.panY) for each in eachLine ] for eachLine in self.menu.playState.lineVisualiser.devMenuLineGroups ] self.menu.playState.lineVisualiser.flush = True self.menu.playState.lineVisualiser.renderLines = True self.menu.playState.lineVisualiser.renderPhysicsLines = True self.menu.playState.lineVisualiser.forceNoRender = True if click is not None: if clickKey is 'mouse1down' and self.curStart is None: self.curStart = curMousePos elif clickKey is 'mouse1up': #ADD SENSOR HERE destPoint = min( self.curStart[0], curMousePos[0] ), min( self.curStart[1], curMousePos[1] ) w = abs( self.curStart[0] - curMousePos[0] ) h = abs( self.curStart[1] - curMousePos[1] ) if w != 0 or h != 0: destPoint = destPoint[0] + w/2, destPoint[1] + h/2 destGroup = getattr( self.menu.playState, PureSensor.playStateGroup ) PureSensor( pos=destPoint, group=destGroup, width=w, height=h ) self.curStart = None elif clickKey is 'mouse3down': self.curGrabbedSens = self.getPressedSensor( (curMousePos[0]+playState.panX, curMousePos[1]+playState.panY) ) if self.curGrabbedSens is not None: entPos = self.curGrabbedSens.getPosition() self.whereEntWasGrabbed = curMousePos[0] - entPos[0], curMousePos[1] - entPos[1] elif clickKey is 'mouse3up': pickedSensor = self.getPressedSensor( (curMousePos[0]+playState.panX, curMousePos[1]+playState.panY) ) if pickedSensor is not None: if self.removingMode: pickedSensor.kill() self.curGrabbedSens = None self.whereEntWasGrabbed = None elif curMousePos is not None: if self.curGrabbedSens is not None: curEnt = self.curGrabbedSens newPos = curMousePos[0]-self.whereEntWasGrabbed[0], curMousePos[1]-self.whereEntWasGrabbed[1] curEnt.setPosition( newPos )
Occuliner/ThisHackishMess
modules/menuentries/sensoredit.py
sensoredit.py
py
6,709
python
en
code
2
github-code
6
[ { "api_name": "button.Button", "line_number": 19, "usage_type": "name" }, { "api_name": "imageload.loadImage", "line_number": 20, "usage_type": "call" }, { "api_name": "button.Button.__init__", "line_number": 22, "usage_type": "call" }, { "api_name": "button.Button", "line_number": 22, "usage_type": "name" }, { "api_name": "button.Button", "line_number": 29, "usage_type": "name" }, { "api_name": "imageload.loadImage", "line_number": 30, "usage_type": "call" }, { "api_name": "button.Button.__init__", "line_number": 32, "usage_type": "call" }, { "api_name": "button.Button", "line_number": 32, "usage_type": "name" }, { "api_name": "button.Button", "line_number": 39, "usage_type": "name" }, { "api_name": "imageload.loadImage", "line_number": 40, "usage_type": "call" }, { "api_name": "button.Button.__init__", "line_number": 44, "usage_type": "call" }, { "api_name": "button.Button", "line_number": 44, "usage_type": "name" }, { "api_name": "menustate.MenuState", "line_number": 51, "usage_type": "name" }, { "api_name": "menustate.MenuState.__init__", "line_number": 53, "usage_type": "call" }, { "api_name": "menustate.MenuState", "line_number": 53, "usage_type": "name" }, { "api_name": "staticimage.StaticImage", "line_number": 57, "usage_type": "call" }, { "api_name": "imageload.loadImage", "line_number": 57, "usage_type": "call" }, { "api_name": "selectionbox.SelectionBox", "line_number": 83, "usage_type": "call" }, { "api_name": "selectionbox.SelectionBox", "line_number": 93, "usage_type": "call" }, { "api_name": "menustate.MenuState.update", "line_number": 109, "usage_type": "call" }, { "api_name": "menustate.MenuState", "line_number": 109, "usage_type": "name" }, { "api_name": "gridrounding.gridRound", "line_number": 113, "usage_type": "call" }, { "api_name": "modules.entitysets._puresensor.PureSensor.playStateGroup", "line_number": 134, "usage_type": "attribute" }, { "api_name": "modules.entitysets._puresensor.PureSensor", "line_number": 134, "usage_type": "name" }, { "api_name": "modules.entitysets._puresensor.PureSensor", "line_number": 135, "usage_type": "call" } ]
16791541041
# -*- coding: utf-8 -*- """ Created on Wed Nov 23 12:32:47 2022 @author: maksi """ import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.datasets import load_digits from keras.models import Sequential from keras.layers import Dense from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split data = load_digits() X = data.data y = data.target y = pd.Categorical(y) y = pd.get_dummies(y).values class_num = y.shape[1] model = Sequential() model.add(Dense(64, input_shape = (X.shape[1],), activation = 'relu')) model.add(Dense(64, activation = 'relu')) model.add(Dense(64, activation = 'relu')) model.add(Dense(class_num, activation = 'softmax')) learning_rate = 0.0001 model.compile(optimizer= Adam(learning_rate), loss='categorical_crossentropy',metrics=('accuracy')) model.summary() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=(X_test, y_test), verbose=2) historia = model.history.history floss_train = historia['loss'] floss_test = historia['val_loss'] acc_train = historia['accuracy'] acc_test = historia['val_accuracy'] fig,ax = plt.subplots(1,2, figsize=(20,10)) epochs = np.arange(0, 100) ax[0].plot(epochs, floss_train, label = 'floss_train') ax[0].plot(epochs, floss_test, label = 'floss_test') ax[0].set_title('Funkcje strat') ax[0].legend() ax[1].set_title('Dokladnosci') ax[1].plot(epochs, acc_train, label = 'acc_train') ax[1].plot(epochs, acc_test, label = 'acc_test') ax[1].legend()
makspervov/Podstawy-SI-Python
lab5/lab5_zad2.py
lab5_zad2.py
py
1,785
python
en
code
0
github-code
6
[ { "api_name": "sklearn.datasets.load_digits", "line_number": 18, "usage_type": "call" }, { "api_name": "pandas.Categorical", "line_number": 21, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 22, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 25, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 26, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 27, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 28, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 29, "usage_type": "call" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 31, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 34, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 46, "usage_type": "call" } ]
7368403785
#!/usr/bin/env python2.6 # -*- coding: utf-8 -*- # mainframe.py # Pomodoro # # Created by Roman Rader on 22.06.11. # New BSD License 2011 Antigluk https://github.com/antigluk/Pomodoro """ Contains main frame of application. """ import wx from state import PomodoroStateProxy as PomodoroState from NotificationCenter.NotificationCenter import NotificationCenter import logging logging.getLogger('Pomodoro') class MainFrameController(wx.Frame): """Main frame of Pomodoro""" def __init__(self): wx.Frame.__init__( self, None, -1, 'Pomodoro it!', style=wx.BORDER_DEFAULT | wx.STAY_ON_TOP, size=(220, 120), ) state = PomodoroState() self.__state_dict = { state.StateNoState: {'bs': '...'}, state.StateInPomodoro: {'bs': u"Отменить..."}, state.StateInRest: {'bs': u"Отдыхайте!"}, state.StateWaitingPomodoro: {'bs': u"Начать помидору"}, state.StateWaitingRest: {'bs': u"Начать отдых"}, state.StatePomodoroKilled: {'bs': u"Начать помидору"}, } self.buildFrame() self.updateUI() self.makeMenu() self.Show(False) NotificationCenter().addObserver(self,self.onDBUpdate,"dbUpdated") NotificationCenter().addObserver(self,self.onUpdateUI,"updateUI") def buildFrame(self): self.panel = wx.Panel(self) self.txt = wx.StaticText(self.panel, pos=(10, 10), label='Pomodoro!') self.times_l = wx.StaticText(self.panel, pos=(120, 10), label=u"0 помидор") self.timer_ctrl = wx.TextCtrl(self.panel, pos=(10, 30), size=(200, -1), style=wx.TE_READONLY | wx.TE_CENTER) self.start_button = wx.Button(self.panel, pos=(20, 70), label='' , size=(170, -1)) self.start_button.Bind(wx.EVT_BUTTON, self.bClick) def onUpdateUI(self, event): self.updateUI() def updateUI(self): #TODO: проверять видимо ли окно. иначе не обновлять #TODO: remove this ugly method state = PomodoroState() self.timer_ctrl.SetValue(state.text) self.start_button.SetLabel(self.__state_dict[state.active]['bs']) self.txt.SetLabel(state.caption) self.times_l.SetLabel(u"%d помидор" % state.GetTodayCount()) def bClick(self, m): logging.debug("Toggle state called from menu") self.controller.toggleState() def onExit(self,m): logging.debug("Quit called from menu") self.controller.quit() def makeMenu(self): self.menuBar = wx.MenuBar() self.filemenu = wx.Menu() self.pomodmenu = wx.Menu() item = self.filemenu.Append(wx.ID_ANY, "Hide") self.Bind(wx.EVT_MENU, self.hideFrame, item) item = self.filemenu.Append(wx.ID_ANY, "Toggle pomodoro") self.Bind(wx.EVT_MENU, self.bClick, item) self.filemenu.AppendSeparator() item = self.filemenu.Append(wx.ID_EXIT, "&Quit", "quit") self.Bind(wx.EVT_MENU, self.onExit, id=wx.ID_EXIT) item = self.pomodmenu.Append(wx.ID_ANY, "All", "List of pomodoros") self.Bind(wx.EVT_MENU, self.showListOfPomodoros, item) item = self.pomodmenu.Append(wx.ID_ANY, "Statistics", "Statistics") self.Bind(wx.EVT_MENU, self.showStatistics, item) self.menuBar.Append(self.filemenu, "&File") self.menuBar.Append(self.pomodmenu, "&Pomodors") self.SetMenuBar(self.menuBar) def onDBUpdate(self, obj): pass def hideFrame(self, m): logging.debug("Hide frame called from menu") self.Show(False) def showListOfPomodoros(self, m): logging.debug("Show list of pomodors called from menu") self.controller.showListOfPomodoros() def showStatistics(self, m): logging.debug("Show statistics of pomodors called from menu") self.controller.showStatistics()
rrader/Pomodoro
pomodoro/mainframe.py
mainframe.py
py
4,124
python
en
code
1
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 21, "usage_type": "call" }, { "api_name": "wx.Frame", "line_number": 23, "usage_type": "attribute" }, { "api_name": "wx.Frame.__init__", "line_number": 26, "usage_type": "call" }, { "api_name": "wx.Frame", "line_number": 26, "usage_type": "attribute" }, { "api_name": "wx.BORDER_DEFAULT", "line_number": 31, "usage_type": "attribute" }, { "api_name": "wx.STAY_ON_TOP", "line_number": 31, "usage_type": "attribute" }, { "api_name": "state.PomodoroStateProxy", "line_number": 34, "usage_type": "call" }, { "api_name": "state.StateNoState", "line_number": 36, "usage_type": "attribute" }, { "api_name": "state.StateInPomodoro", "line_number": 37, "usage_type": "attribute" }, { "api_name": "state.StateInRest", "line_number": 38, "usage_type": "attribute" }, { "api_name": "state.StateWaitingPomodoro", "line_number": 39, "usage_type": "attribute" }, { "api_name": "state.StateWaitingRest", "line_number": 40, "usage_type": "attribute" }, { "api_name": "state.StatePomodoroKilled", "line_number": 41, "usage_type": "attribute" }, { "api_name": "NotificationCenter.NotificationCenter.NotificationCenter", "line_number": 47, "usage_type": "call" }, { "api_name": "NotificationCenter.NotificationCenter.NotificationCenter", "line_number": 48, "usage_type": "call" }, { "api_name": "wx.Panel", "line_number": 51, "usage_type": "call" }, { "api_name": "wx.StaticText", "line_number": 52, "usage_type": "call" }, { "api_name": "wx.StaticText", "line_number": 54, "usage_type": "call" }, { "api_name": "wx.TextCtrl", "line_number": 56, "usage_type": "call" }, { "api_name": "wx.TE_READONLY", "line_number": 57, "usage_type": "attribute" }, { "api_name": "wx.TE_CENTER", "line_number": 57, "usage_type": "attribute" }, { "api_name": "wx.Button", "line_number": 58, "usage_type": "call" }, { "api_name": "wx.EVT_BUTTON", "line_number": 60, "usage_type": "attribute" }, { "api_name": "state.PomodoroStateProxy", "line_number": 68, "usage_type": "call" }, { "api_name": "state.text", "line_number": 69, "usage_type": "attribute" }, { "api_name": "state.active", "line_number": 70, "usage_type": "attribute" }, { "api_name": "state.caption", "line_number": 71, "usage_type": "attribute" }, { "api_name": "state.GetTodayCount", "line_number": 72, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 75, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 79, "usage_type": "call" }, { "api_name": "wx.MenuBar", "line_number": 83, "usage_type": "call" }, { "api_name": "wx.Menu", "line_number": 85, "usage_type": "call" }, { "api_name": "wx.Menu", "line_number": 86, "usage_type": "call" }, { "api_name": "wx.ID_ANY", "line_number": 88, "usage_type": "attribute" }, { "api_name": "wx.EVT_MENU", "line_number": 89, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 90, "usage_type": "attribute" }, { "api_name": "wx.EVT_MENU", "line_number": 91, "usage_type": "attribute" }, { "api_name": "wx.ID_EXIT", "line_number": 93, "usage_type": "attribute" }, { "api_name": "wx.EVT_MENU", "line_number": 94, "usage_type": "attribute" }, { "api_name": "wx.ID_EXIT", "line_number": 94, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 96, "usage_type": "attribute" }, { "api_name": "wx.EVT_MENU", "line_number": 97, "usage_type": "attribute" }, { "api_name": "wx.ID_ANY", "line_number": 98, "usage_type": "attribute" }, { "api_name": "wx.EVT_MENU", "line_number": 99, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 110, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 114, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 118, "usage_type": "call" } ]
17600865196
#encoding:UTF-8 import urllib import urllib.request import json from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] import matplotlib.lines as mlines import numpy as np import time data = urllib.request.urlopen('https://stationdata.wunderground.com/cgi-bin/stationdata?iconsize=3&width=2048&height=2048&maxage=3600&format=json&maxstations=100000&rf_filter=1&minlat=38&minlon=-85&maxlat=48&maxlon=-73').read() record = data.decode('UTF-8') record = record.replace('},}', '}}') a = open("/Users/hsw/Desktop/CA_region_rawdata.txt", "w+") a.write(record) a.close() data = json.loads(record) #print(data) print(data['conds']) preprocess = data['conds'] station = [] T = [] lats = [] lons = [] for o in preprocess: id = str(o) station.append(preprocess[id]['id']) T.append(5/9*(float(preprocess[id]['tempf'])-32)) lats.append(float(preprocess[id]['lat'])) lons.append(float(preprocess[id]['lon'])) # ============================================ # plot # ============================================initialize the plot plt.figure(figsize=(11, 8), dpi=120) axes = plt.subplot(111) # set up map projection with # use low resolution coastlines. map = Basemap(llcrnrlon=-87, llcrnrlat=38, urcrnrlon=-73, urcrnrlat=48, \ rsphere=(6378137.00, 6356752.3142), \ resolution='i', projection='merc', \ lat_0=40., lon_0=-20., lat_ts=20.) # draw coastlines, country boundaries, fill continents. map.drawcoastlines(linewidth=0.25) map.drawcountries(linewidth=0.25) # draw the edge of the map projection region (the projection limb) map.drawmapboundary(fill_color='#87CEFA')#689CD2 # draw lat/lon grid lines every 30 degrees. #map.drawmeridians(np.arange(0, 360, 10)) map.drawmeridians(np.arange(0, 360, 10),labels=[0,0,0,1],fontsize=10) #map.drawparallels(np.arange(-90, 90, 10)) map.drawparallels(np.arange(-90, 90, 10),labels=[1,0,0,0],fontsize=10) # Fill continent wit a different color map.fillcontinents(color='#FFFFFF', lake_color='#EEEEEE', zorder=0) # ============================================draw the stations and data # compute native map projection coordinates of lat/lon grid. x, y = map(lons, lats) max_T = max(T) # Plot each city in a loop. # Set some parameters size_factor = 100.0 x_offset = 20.0 y_offset = -20.0 rotation = 0 temp=0 f = open("/Users/hsw/Desktop/CA_region_Tdata.txt", "w+") f.close() #draw station point analyze = '' for i, j, k, l in zip(x, y, T, station): temp = temp+1 size = size_factor * k / max_T if k <= -10.0 and k >= -100.0: cs1 = map.scatter(i, j, s=15, marker='o', color='#00008F') if -10 < k and k <= -5: cs2 = map.scatter(i, j, s=15, marker='o', color='#00009F') if -5 < k and k <= -2: cs3 = map.scatter(i, j, s=15, marker='o', color='#0000FF') if -2 < k and k <= 2: cs4 = map.scatter(i, j, s=15, marker='o', color='#006FFF') if 2 < k and k <= 6: cs5 = map.scatter(i, j, s=15, marker='o', color='#00BFFF') if 6 <= k and k <= 10: cs5 = map.scatter(i, j, s=15, marker='o', color='#00FFFF') if 10 <= k and k <= 14: cs5 = map.scatter(i, j, s=15, marker='o', color='#4FFFAF') if 14 <= k and k <= 18: cs5 = map.scatter(i, j, s=15, marker='o', color='#7FF77F') if 18 <= k and k <= 22: cs5 = map.scatter(i, j, s=15, marker='o', color='#FFFF00') if 22 <= k and k <= 26: cs5 = map.scatter(i, j, s=15, marker='o', color='#FFBF00') if 26 <= k and k <= 30: cs5 = map.scatter(i, j, s=15, marker='o', color='#FF6F00') if 30 <= k and k <= 35: cs5 = map.scatter(i, j, s=15, marker='o', color='#FF0000') if 35 < k and k <= 100: cs6 = map.scatter(i, j, s=15, marker='o', color='#7F0000') #if k != 9999: # plt.text(i, j, str(k) + '°C', rotation=rotation, fontsize=10) f = open("/Users/hsw/Desktop/CA_region_Tdata.txt", "a+") f.write(' Station:'+ l + ' Temperature:' + str(k) + '\n') f.close() title = '多伦多及附近地区气温分布图\n' + '数据更新时间:' + time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()- 8 * 60 * 60 * 1000)) + 'UTC\n数据来自:wunderground weather, 绘制@Louis_He' # ============================================#define legends a = mlines.Line2D([], [], color='#7F0000', marker='o', markersize=5, label='>35°C',ls='') b = mlines.Line2D([], [], color='#FF0000', marker='o', markersize=5, label='>30°C',ls='') c = mlines.Line2D([], [], color='#FF6F00', marker='o', markersize=5, label='26~30°C',ls='') d = mlines.Line2D([], [], color='#FFBF00', marker='o', markersize=5, label='22~26°C',ls='') e = mlines.Line2D([], [], color='#FFFF00', marker='o', markersize=5, label='18~22°C',ls='') f = mlines.Line2D([], [], color='#7FF77F', marker='o', markersize=5, label='14~18°C',ls='') g = mlines.Line2D([], [], color='#4FFFAF', marker='o', markersize=5, label='10~14°C',ls='') h = mlines.Line2D([], [], color='#00FFFF', marker='o', markersize=5, label='6~10°C',ls='') i = mlines.Line2D([], [], color='#00BFFF', marker='o', markersize=5, label='2~6°C',ls='') j = mlines.Line2D([], [], color='#006FFF', marker='o', markersize=5, label='-2~2°C',ls='') k = mlines.Line2D([], [], color='#0000FF', marker='o', markersize=5, label='-5~-2°C',ls='') l = mlines.Line2D([], [], color='#00009F', marker='o', markersize=5, label='-10~-5°C',ls='') m = mlines.Line2D([], [], color='#00008F', marker='o', markersize=5, label='<-10°C',ls='') plt.legend(handles=[b, c, d, e, f, g, h, i, j, k, l, m]) plt.title(title) save = '/Users/hsw/Desktop/CA_region_Tsample.png' plt.savefig(save, dpi=120)
Louis-He/weather_map
wunderground_weather.py
wunderground_weather.py
py
6,022
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams", "line_number": 8, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 8, "usage_type": "name" }, { "api_name": "urllib.request.urlopen", "line_number": 13, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 13, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "mpl_toolkits.basemap.Basemap", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 58, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 119, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 119, "usage_type": "call" }, { "api_name": "time.time", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 121, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 123, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 129, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 131, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 133, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 133, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 135, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 135, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 137, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 137, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 139, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 139, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 141, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 141, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 143, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 143, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 145, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 145, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 147, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 147, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 148, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 148, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 151, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 151, "usage_type": "name" } ]
17282581755
from pynput.keyboard import Listener, Key import time from threading import Thread from canvas import Canvas from pedal import Pedal from snake import Snake from ball import Ball import os def on_press(key): if hasattr(key, 'char'): # Write the character pressed if available print(key.char) elif key == Key.up: # If space was pressed, write a space print('up') snake.up() elif key == Key.down: # If space was pressed, write a space print('down') snake.down() elif key == Key.left: # If space was pressed, write a space print('left') snake.left() elif key == Key.right: # If space was pressed, write a space print('right') snake.right() canvas = Canvas(15, 50) snake = Snake(10, 5) snake.left() pedal = Pedal(1, 7) ball = Ball(8,7) gameover = False while(not gameover): with Listener(on_press=on_press) as ls: def time_out(period_sec: int): time.sleep(period_sec) # Listen to keyboard for period_sec seconds ls.stop() os.system('cls' if os.name == 'nt' else 'clear') Thread(target=time_out, args=(0.5,)).start() ls.join() #move entities ball.collision(canvas) ball.move() snake.move() pedal.move(canvas) canvas.clear() canvas.createBorder() if(snake.detectColission(canvas) or ball.getgameOver()): gameover = True #print entities canvas = snake.drawSnake(canvas) canvas = pedal.print(canvas) canvas = ball.print(canvas) canvas.print() print("your score: ",ball.score) os.system('cls' if os.name == 'nt' else 'clear') print("Loser your score was: ",ball.score)
devbit-algorithms/snakepong-snaka69
gameLoop.py
gameLoop.py
py
1,665
python
en
code
0
github-code
6
[ { "api_name": "pynput.keyboard.Key.up", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pynput.keyboard.Key", "line_number": 15, "usage_type": "name" }, { "api_name": "snake.up", "line_number": 17, "usage_type": "call" }, { "api_name": "pynput.keyboard.Key.down", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pynput.keyboard.Key", "line_number": 18, "usage_type": "name" }, { "api_name": "snake.down", "line_number": 20, "usage_type": "call" }, { "api_name": "pynput.keyboard.Key.left", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pynput.keyboard.Key", "line_number": 22, "usage_type": "name" }, { "api_name": "snake.left", "line_number": 24, "usage_type": "call" }, { "api_name": "pynput.keyboard.Key.right", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pynput.keyboard.Key", "line_number": 26, "usage_type": "name" }, { "api_name": "snake.right", "line_number": 28, "usage_type": "call" }, { "api_name": "canvas.Canvas", "line_number": 31, "usage_type": "call" }, { "api_name": "snake.Snake", "line_number": 32, "usage_type": "call" }, { "api_name": "snake.left", "line_number": 33, "usage_type": "call" }, { "api_name": "pedal.Pedal", "line_number": 34, "usage_type": "call" }, { "api_name": "ball.Ball", "line_number": 35, "usage_type": "call" }, { "api_name": "pynput.keyboard.Listener", "line_number": 40, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 42, "usage_type": "call" }, { "api_name": "os.system", "line_number": 44, "usage_type": "call" }, { "api_name": "os.name", "line_number": 44, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 45, "usage_type": "call" }, { "api_name": "ball.collision", "line_number": 48, "usage_type": "call" }, { "api_name": "ball.move", "line_number": 49, "usage_type": "call" }, { "api_name": "snake.move", "line_number": 50, "usage_type": "call" }, { "api_name": "pedal.move", "line_number": 51, "usage_type": "call" }, { "api_name": "canvas.clear", "line_number": 52, "usage_type": "call" }, { "api_name": "canvas.createBorder", "line_number": 53, "usage_type": "call" }, { "api_name": "snake.detectColission", "line_number": 55, "usage_type": "call" }, { "api_name": "ball.getgameOver", "line_number": 55, "usage_type": "call" }, { "api_name": "snake.drawSnake", "line_number": 58, "usage_type": "call" }, { "api_name": "pedal.print", "line_number": 59, "usage_type": "call" }, { "api_name": "ball.print", "line_number": 60, "usage_type": "call" }, { "api_name": "canvas.print", "line_number": 61, "usage_type": "call" }, { "api_name": "ball.score", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 63, "usage_type": "call" }, { "api_name": "os.name", "line_number": 63, "usage_type": "attribute" }, { "api_name": "ball.score", "line_number": 64, "usage_type": "attribute" } ]
25849126163
import random import time from colorama import Back, Fore, init from SudokuF import * from SudokuT import * from Menus import * from Ahorcado import * lop = 0 while lop == 0: menuprincipal() opcionprincipal = input(Fore.BLUE + "[4] Finalizar: " + Fore.RESET) if opcionprincipal == "Fernando": #Easter egg newgame() if opcionprincipal == "Endgame": #Easter egg creditoss() exit() if opcionprincipal == "Ayuda": #Easter egg jueguito() if opcionprincipal == "Mario": from mario_level_1 import * if __name__ == '__main__': main() pg.quit() #sys.exit() numbers2 = opcionprincipal.split() while len(numbers2) != 1 or not numbers2[0].isdigit() or int(numbers2[0]) > 4 or int(numbers2[0]) < 1: print(Fore.RED + "...Opción incorrecta. Intente nuevamente." + Fore.RESET) opcionprincipal = input(Fore.BLUE + "[4] Finalizar: " + Fore.RESET) numbers2 = opcionprincipal.split() opcionprincipal = int(numbers2[0]) loop = True while loop == True: if opcionprincipal == 1: name = input(Fore.MAGENTA + "Nombre del jugador: " + Fore.RESET) name_tablero = input(Fore.LIGHTMAGENTA_EX +"Nombre del tablero: " + Fore.RESET) tablero = tableros() #[[1,3,4,5,8,9,2,6,7],[8,5,7,2,6,3,1,9,4],[9,6,2,1,4,7,8,3,5],[2,9,3,7,1,8,4,5,6],[5,4,1,3,2,6,7,8,9],[7,8,6,9,5,4,3,2,1],[4,7,9,8,3,5,6,1,2],[6,2,8,4,9,1,5,7,3],[3,1,5,6,7,2,9,4,0]] imprimeTablero(tablero, name_tablero) tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero) if final(tablero, name, name_tablero) == True: loop = False elif opcionprincipal == 2: print("Desea cargar un tablero propio?") print("[1] Si") opcion = (input("[2] Cargar Tableros predefinidos: ")) while opcion != "1" and opcion != "2": print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[2] Cargar Tableros predefinidos: ")) opcion = int(opcion) if opcion == 1: vertablerosguardados() if opcion == 2: print() alltableros() numero = input("Ingrese el número del tablero que desea ver/jugar: ") while not numero.isdigit() or int(numero) > 10 or int(numero) < 1: print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) numero = input("Ingrese el número del tablero que desea ver/jugar: ") numero = int(numero) tablero = selecionartablero(numero) imprimeTablero(tablero, " ") print("Desea jugar este tablero?:") print("[1] Si") opcion = (input("[2] Regresar: ")) opcion = opcion.split() while len(opcion) != 1 or not opcion[0].isdigit() or int(opcion[0]) > 2 or int(opcion[0]) < 1: print(Fore.RED + "...Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[2] Regresar: ")) opcion = opcion.split() opcion = int(opcion[0]) # verificar que la opcion introducida sea valida if opcion == 1: tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) imprimeTablero(tablero, name_tablero = "") while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero = "") creditosfinales() print(Fore.MAGENTA + "Felicidades, has ganado el juego" + Fore.RESET) loop = False elif opcion == 2: print("volviendo al menu principal") loop = False elif opcionprincipal == 3: print("Selecione la dificultad del tablero") print(Fore.GREEN + "[1] Fácil" + Fore.RESET) print(Fore.YELLOW+ "[2] Medio" + Fore.RESET) print(Fore.RED + "[3] Difícil"+ Fore.RESET) opcion = (input("[4] Regresar: ")) while opcion != "1" and opcion != "2" and opcion != "3" and opcion != "4": print(Fore.RED + "Opción incorrecta. Intente nuevamente." + Fore.RESET) opcion = (input("[4] Regresar: ")) opcion = int(opcion) tablero = tablerodificultad(opcion) name = input(Fore.MAGENTA + "Nombre del jugador: " + Fore.RESET) name_tablero = input(Fore.LIGHTMAGENTA_EX +"Nombre del tablero: " + Fore.RESET) imprimeTablero(tablero, name_tablero) tablerverificar = [] for i in range(9): tablerverificar.append([]) for j in range(9): tablerverificar[i].append(tablero[i][j]) while not tableroCompleto(tablero): numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() while verificardigitosvalidos(numbers) == False: numbers = input("Ingrese fila columna cifra: ") numbers = numbers.split() x = int(numbers[0]) y = int(numbers[1]) d = int(numbers[2]) if verificarjugadavalida(tablero, x, y, d, tablerverificar) == True: tablero[x-1][y-1] = d imprimeTablero(tablero, name_tablero) if final(tablero, name, name_tablero) == True: loop = False elif opcionprincipal == 4: print(Fore.RED + "Gracias por jugar."+ Fore.RESET) exit()
K23NO/Soduko
Sudoku.py
Sudoku.py
py
7,562
python
es
code
0
github-code
6
[ { "api_name": "colorama.Fore.BLUE", "line_number": 12, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 12, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 12, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 28, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 28, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 28, "usage_type": "attribute" }, { "api_name": "colorama.Fore.BLUE", "line_number": 29, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 29, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 29, "usage_type": "attribute" }, { "api_name": "colorama.Fore.MAGENTA", "line_number": 35, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 35, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 35, "usage_type": "attribute" }, { "api_name": "colorama.Fore.LIGHTMAGENTA_EX", "line_number": 36, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 36, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 36, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 63, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 63, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 63, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 73, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 73, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 73, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 83, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 83, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 83, "usage_type": "attribute" }, { "api_name": "colorama.Fore.MAGENTA", "line_number": 108, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 108, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 108, "usage_type": "attribute" }, { "api_name": "colorama.Fore.GREEN", "line_number": 115, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 115, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 115, "usage_type": "attribute" }, { "api_name": "colorama.Fore.YELLOW", "line_number": 116, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 116, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 116, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 117, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 117, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 117, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 120, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 120, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 120, "usage_type": "attribute" }, { "api_name": "colorama.Fore.MAGENTA", "line_number": 124, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 124, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 124, "usage_type": "attribute" }, { "api_name": "colorama.Fore.LIGHTMAGENTA_EX", "line_number": 125, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 125, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 125, "usage_type": "attribute" }, { "api_name": "colorama.Fore.RED", "line_number": 147, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 147, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 147, "usage_type": "attribute" } ]
11278711462
""" Here we test a basic strategy that includes an indicator and FX rate movements. We'll start with an ($100K) AUD denominated portfolio and buy 100 shares of SPY only if the VIX < 26. Also, buying in SPY will make us short USD. Generate funding trades, to be executed the day after we buy SPY, so that we aren't short USD. For the sake of testing we'll focus on the dates 1st Sep -> 1st Oct. Points to note: - We'll buy 100 shares of SPY @337.11 on Sep 14th VIX=25.85 - Hold until Oct 1st when SPY=337.04, AUDUSD=0.7167 - Because our portfolio is denominated in AUD we need to calculate AUD prices. - So buying SPY at 337.11 (Sep 14th price) / 0.729682 (fx 15th) = AUD 462 - And holding to a value of 337.04 / 0.716651 = AUD 470.30 - PNL will be $8.30 (= 470.30 - 462.00) for each of 100 shares purchased. """ from datetime import date import pandas as pd from pxtrade import Trade from pxtrade.assets import reset, Stock, Cash, FxRate, Portfolio from pxtrade.backtest import Backtest from pxtrade.strategy import Strategy from pxtrade.events.yahoo import load_yahoo_prices from pxtrade.compliance import Compliance, UnitLimit from pxtrade.history import History def test_buy_spy_with_indicator(): # create your stock and portfolio reset() spy = Stock("SPY", currency_code="USD") aud = Cash("AUD") usd = Cash("USD") audusd = FxRate("AUDUSD") portfolio = Portfolio("AUD") starting_value = 1e5 # start with $100K AUD portfolio.transfer(aud, starting_value) # impose a compliance rule so we are unable to # hold more than 100 shares. portfolio.compliance = Compliance().add_rule(UnitLimit(spy, 100)) # define a strategy to buy 100 shares of SPY # if we are short USD then also fund this shortfall with AUD class BuySpyWithIndicator(Strategy): def show(self, trades): if len(trades) == 0: return print(backtest.datetime) print("^VIX: ", backtest.get_indicator("^VIX")) print("AUDUSD: ", audusd.rate) print("SPY: ", spy.price) for trade in trades: print(trade) print("-------") def generate_trades(self): trades = list() usd_holding = portfolio.get_holding_units("USD") if usd_holding < 0: trades.append(Trade(portfolio, usd, int(-usd_holding) + 1)) if backtest.get_indicator("^VIX") >= 26: # don't buy any spy, just fund usd (if required) self.show(trades) return trades trades.append(Trade(portfolio, spy, 100)) self.show(trades) return trades # create your backtest instance backtest = Backtest(BuySpyWithIndicator()) history = History( portfolios=portfolio, backtest=backtest, ) # load price events from yahoo for spy, audusd, vix start_date = date(2020, 9, 1) end_date = date(2020, 10, 1) load_yahoo_prices( [spy, audusd, "^VIX"], backtest, start_date=start_date, end_date=end_date, ) # run the backtest and check pnl backtest.run() df = history.get() # print(portfolio) # print(audusd.rate) print(backtest.datetime) print(df) # Note that when running on windows the last FX rate we get from yahoo # is on the 30 Sep AUDUSD = 7.716651. However, running on linux we get # a price from 1 Oct of AUDUSD = 0.718288. # This looks to be an issue with the yahoo api, but it has implications # for our assertions around portfolio value. starting_aud_price = 462 # this has not changed ending_aud_price = 337.04 / audusd.rate expected_pnl = (ending_aud_price - starting_aud_price) * 100 expected_value = starting_value + expected_pnl assert round(portfolio.value, -1) == round(expected_value, -1) start_date = pd.Timestamp(start_date) end_date = pd.Timestamp(end_date) assert int(df.at[start_date, "Portfolio"]) == int(starting_value) assert round(df.at[end_date, "Portfolio"], -1) == round(expected_value, -1) assert round(df.at[pd.Timestamp(date(2020, 9, 14)), "^VIX"], 2) == 25.85
simongarisch/pxtrade
tests/test_strategy2.py
test_strategy2.py
py
4,212
python
en
code
2
github-code
6
[ { "api_name": "pxtrade.assets.reset", "line_number": 33, "usage_type": "call" }, { "api_name": "pxtrade.assets.Stock", "line_number": 34, "usage_type": "call" }, { "api_name": "pxtrade.assets.Cash", "line_number": 35, "usage_type": "call" }, { "api_name": "pxtrade.assets.Cash", "line_number": 36, "usage_type": "call" }, { "api_name": "pxtrade.assets.FxRate", "line_number": 37, "usage_type": "call" }, { "api_name": "pxtrade.assets.Portfolio", "line_number": 38, "usage_type": "call" }, { "api_name": "pxtrade.compliance.Compliance", "line_number": 44, "usage_type": "call" }, { "api_name": "pxtrade.compliance.UnitLimit", "line_number": 44, "usage_type": "call" }, { "api_name": "pxtrade.strategy.Strategy", "line_number": 48, "usage_type": "name" }, { "api_name": "pxtrade.Trade", "line_number": 64, "usage_type": "call" }, { "api_name": "pxtrade.Trade", "line_number": 71, "usage_type": "call" }, { "api_name": "pxtrade.backtest.Backtest", "line_number": 76, "usage_type": "call" }, { "api_name": "pxtrade.history.History", "line_number": 77, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 83, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 84, "usage_type": "call" }, { "api_name": "pxtrade.events.yahoo.load_yahoo_prices", "line_number": 85, "usage_type": "call" }, { "api_name": "pandas.Timestamp", "line_number": 111, "usage_type": "call" }, { "api_name": "pandas.Timestamp", "line_number": 112, "usage_type": "call" }, { "api_name": "pandas.Timestamp", "line_number": 115, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 115, "usage_type": "call" } ]
41457469135
""" flaskr.utils.db ~~~~~~~~~~~~~~~ Utilities for database operations. """ import sqlite3 from typing import List, Optional from datetime import datetime, timezone from flask import g from flask import current_app from flaskr.utils.node import Node def convert_timestamp(t): return datetime.fromisoformat(t.decode()).replace(tzinfo=timezone.utc).timestamp() # Register the converter sqlite3.register_converter("timestamp", convert_timestamp) def get_db(): """Connect to the application's configured database. The connection is unique for each request and will be reused if this is called again. """ if "db" not in g: g.db = sqlite3.connect( current_app.config["DATABASE"], detect_types=sqlite3.PARSE_DECLTYPES ) g.db.row_factory = sqlite3.Row return g.db def close_db(e=None): """If this request connected to the database, close the connection. """ db = g.pop("db", None) if db is not None: db.close() def init_db(app): """Clear existing data and create new tables.""" with app.app_context(): db = get_db() with app.open_resource("schema.sql") as f: db.executescript(f.read().decode("utf8")) def init_app(app): """Register database functions with the Flask app. This is called by the application factory. """ app.teardown_appcontext(close_db) # modified from https://github.com/matthiask/django-tree-queries/blob/8863c5237f32585cc5ddc21041231155cb806149/tree_queries/compiler.py#L120 CTE = """WITH RECURSIVE __tree(tree_depth, tree_path, tree_ordering, tree_pk) AS ( SELECT 0 tree_depth, printf("%s ", id) tree_path, printf(" %020s ", id) tree_ordering, T.id tree_pk FROM comment T WHERE T.parent_id IS NULL UNION ALL SELECT __tree.tree_depth + 1, __tree.tree_path || printf("%s ", T.id), __tree.tree_ordering || printf("%020s ", T.id), T.id FROM comment T JOIN __tree ON T.parent_id = __tree.tree_pk ) SELECT comment.id, comment.parent_id, comment.post_id, comment.body, comment.created, comment.author_id, user.username as author_name, -- __tree.tree_depth __tree.tree_path FROM __tree JOIN comment ON comment.id=__tree.tree_pk JOIN user ON user.id=comment.author_id WHERE comment.post_id=? -- AND instr(__tree.tree_path, '3') !=0 ORDER BY __tree.tree_ordering; """ def get_all_comments(post_id: int) -> List[Node]: root_nodes = Node.build_from_cte_rows(get_db().execute(CTE, (post_id, ))) return list(root_nodes) def put_in_child(parent: dict, child: dict): if 'children' in parent: parent['children'].append(child) else: parent['children'] = [child] def get_post(post_id, with_comments=True) -> Optional[dict]: """Get a post and its author by id. :param post_id: id of post to get :param with_comments: if return with comments :return: the post with author information """ post = ( get_db() .execute( "SELECT p.id, title, body, created, author_id, username" " FROM post p JOIN user u ON p.author_id = u.id" " WHERE p.id = ?", (post_id,), ) .fetchone() ) if post is None: return None if with_comments: comments = get_all_comments(post_id=post['id']) return dict(post) | dict(comments=comments) else: return dict(post) def get_all_posts(): db = get_db() rst = [] for post in db.execute( "SELECT p.id, title, body, created, author_id, username as author_name" " FROM post p JOIN user u ON p.author_id = u.id" " ORDER BY p.created DESC, p.id DESC" ): rst.append(dict(post) | dict(comments=get_all_comments(post["id"]))) return rst
MioYvo/unlimited-level-messages
backend/flaskr/utils/db.py
db.py
py
3,870
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.fromisoformat", "line_number": 16, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 16, "usage_type": "name" }, { "api_name": "datetime.timezone.utc", "line_number": 16, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 16, "usage_type": "name" }, { "api_name": "sqlite3.register_converter", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.g", "line_number": 28, "usage_type": "name" }, { "api_name": "flask.g.db", "line_number": 29, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 29, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 29, "usage_type": "call" }, { "api_name": "flask.current_app.config", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 30, "usage_type": "name" }, { "api_name": "sqlite3.PARSE_DECLTYPES", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.g.db", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 32, "usage_type": "name" }, { "api_name": "sqlite3.Row", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.g.db", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 34, "usage_type": "name" }, { "api_name": "flask.g.pop", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.g", "line_number": 41, "usage_type": "name" }, { "api_name": "flaskr.utils.node.Node.build_from_cte_rows", "line_number": 100, "usage_type": "call" }, { "api_name": "flaskr.utils.node.Node", "line_number": 100, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 99, "usage_type": "name" }, { "api_name": "flaskr.utils.node.Node", "line_number": 99, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 111, "usage_type": "name" } ]
13918838862
# License LGPL-3.0 or later (https://www.gnu.org/licenses/lgpl.html). import time from collections import defaultdict from datetime import datetime from odoo import api, models class ManagementDashboard(models.Model): _name = 'management.dashboard' _description = "Project Management Dashboard" @api.model def get_task_chart_data(self): """ Map the Stage Colour and Name to id Returns: dictionary -- stage_id as key and details as value """ task_obj = self.env['project.task'] task_rec = task_obj.search([]) groups = defaultdict(list) for obj in task_rec: groups[obj.stage_id].append(obj) result = {} for rec in groups.items(): result.update({ rec[0].name: { 'count': len(rec[1]), 'color': rec[0].color, 'name': rec[0].name, }}) return result @api.model def get_config_values(self): """ To get the Colour value for dashboard. Using sudo env to bypass the access right. Returns: dictionary -- Dictionary of config colours. """ result = self.env['res.config.settings'].sudo().get_values() return { 'color_close_state': result.get('color_close_state', False), 'color_control_state': result.get('color_control_state', False), 'color_execute_state': result.get('color_execute_state', False), 'color_init_state': result.get('color_init_state', False), 'color_plan_state': result.get('color_plan_state', False), 'card_header_color': result.get('card_header_color', False), } @api.model def get_color_code(self, project): # 0:Green, 1:Orange, 2:Red open_task = 0 open_issue = 0 spent_budget = 0 pending_invoice = 0 # ('date_start', '>=', self._context.get('start_date')), # ('date_start', '<=', self._context.get('end_date')), project_tasks = self.env['project.task'].search( [('project_id', '=', project['id']), ('stage_id.name', 'not in', ("Done", "Completed", "Approval", "Canceled", "Closure", "Release", "Implementation")), ('date_end', '=', False)]) today_date = datetime.strptime( time.strftime('%Y-%m-%d'), '%Y-%m-%d').date() for task in project_tasks: if task.schedule_date: schedule_date = datetime.strptime( str(task.schedule_date), '%Y-%m-%d %H:%M:%S').date() daysdiff = (schedule_date - today_date).days if daysdiff <= 1: open_task = 2 if daysdiff <= 7 and daysdiff > 1 and open_task != 2: open_task = 1 if daysdiff > 7 and open_task not in (2, 1): open_task = 0 project_issues = self.env['helpdesk.ticket'].with_context( view_project_issues=1).search([ ('stage_id.closed', '!=', True), ('project_id.id', '=', project['id']), ('closed_date', '=', False)]) for issue in project_issues or []: if ((int(int(issue.ticket_aging)) > 30 and issue.priority == '0') or (int(issue.ticket_aging) > 10 and issue.priority == '1') or (int(issue.ticket_aging) > 2 and issue.priority in ('2', '3'))): open_issue = 2 if ((int(issue.ticket_aging) > 10 and int(issue.ticket_aging) <= 30 and issue.priority == '0') or (int(issue.ticket_aging) > 2 and int(issue.ticket_aging) <= 10 and issue.priority == '1') or (int(issue.ticket_aging) > 0 and int(issue.ticket_aging) <= 2 and issue.priority in ('2', '3')) and open_issue != 2): open_issue = 1 if ((int(issue.ticket_aging) <= 10 and issue.priority == '0') or (int(issue.ticket_aging) <= 2 and issue.priority == '1') or (int(issue.ticket_aging) == 0 and issue.priority in ('2', '3')) and open_issue not in (2, 1)): open_issue = 0 budget = 0 if project['spent_budget'] > 0 and project['actual_budget'] > 0: budget = ((project['spent_budget'] - project['actual_budget'])/project['actual_budget']) * 100 if budget > 30: spent_budget = 2 elif budget > 10 and budget <= 30: spent_budget = 1 elif budget <= 10: spent_budget = 0 invoices = self.env['timesheet.invoice'].search([ ('project_id', '=', project['id']), ('state', 'in', ('draft', 'confirm', 'pre-approved'))]) for inv in invoices or []: if int(inv.timesheet_inv_age) > 30: pending_invoice = 2 elif int(inv.timesheet_inv_age) > 10 and int(inv.timesheet_inv_age) < 30 and pending_invoice != 2: pending_invoice = 1 elif int(inv.timesheet_inv_age) < 10 and pending_invoice not in (2, 1): pending_invoice = 0 return { 'spent_budget': spent_budget, 'pending_invoice': pending_invoice, 'open_task': open_task, 'open_issue': open_issue} @api.model def get_treeview_id(self, view): return self.env.ref(view).id,
onesteinbv/ProjectManagement
management_dashboard/models/management_dashboard.py
management_dashboard.py
py
5,708
python
en
code
1
github-code
6
[ { "api_name": "odoo.models.Model", "line_number": 11, "usage_type": "attribute" }, { "api_name": "odoo.models", "line_number": 11, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 25, "usage_type": "call" }, { "api_name": "odoo.api.model", "line_number": 15, "usage_type": "attribute" }, { "api_name": "odoo.api", "line_number": 15, "usage_type": "name" }, { "api_name": "odoo.api.model", "line_number": 39, "usage_type": "attribute" }, { "api_name": "odoo.api", "line_number": 39, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 75, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 75, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 76, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 79, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 79, "usage_type": "name" }, { "api_name": "odoo.api.model", "line_number": 57, "usage_type": "attribute" }, { "api_name": "odoo.api", "line_number": 57, "usage_type": "name" }, { "api_name": "odoo.api.model", "line_number": 143, "usage_type": "attribute" }, { "api_name": "odoo.api", "line_number": 143, "usage_type": "name" } ]
29542340141
import re from collections import defaultdict from string import Template from odoo import _ from odoo.exceptions import MissingError DEFAULT_REFERENCE_SEPARATOR = "" PLACE_HOLDER_4_MISSING_VALUE = "/" class ReferenceMask(Template): pattern = r"""\[(?: (?P<escaped>\[) | (?P<named>[^\]]+?)\] | (?P<braced>[^\]]+?)\] | (?P<invalid>) )""" def extract_token(s): pattern = re.compile(r"\[([^\]]+?)\]") return set(pattern.findall(s)) def sanitize_reference_mask(product, mask): tokens = extract_token(mask) attribute_names = set() for line in product.attribute_line_ids: attribute_names.add(line.attribute_id.name) if not tokens.issubset(attribute_names): raise MissingError( _("Found unrecognized attribute name in " '"Partcode Template"') ) def get_rendered_default_code(product, mask): product_attrs = defaultdict(str) reference_mask = ReferenceMask(mask) for value in product.product_template_attribute_value_ids: if value.attribute_id.code: product_attrs[value.attribute_id.name] += value.attribute_id.code if value.product_attribute_value_id.code: product_attrs[ value.attribute_id.name ] += value.product_attribute_value_id.code all_attrs = extract_token(mask) missing_attrs = all_attrs - set(product_attrs.keys()) missing = dict.fromkeys(missing_attrs, PLACE_HOLDER_4_MISSING_VALUE) product_attrs.update(missing) default_code = reference_mask.safe_substitute(product_attrs) return default_code def render_default_code(product, mask): sanitize_reference_mask(product, mask) product.default_code = get_rendered_default_code(product, mask)
odoonz/odoonz-addons
product_code_builder/models/helper_methods.py
helper_methods.py
py
1,828
python
en
code
14
github-code
6
[ { "api_name": "string.Template", "line_number": 12, "usage_type": "name" }, { "api_name": "re.compile", "line_number": 22, "usage_type": "call" }, { "api_name": "odoo.exceptions.MissingError", "line_number": 32, "usage_type": "call" }, { "api_name": "odoo._", "line_number": 33, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 38, "usage_type": "call" } ]
42012547996
# python 3 has different package names try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse from collections import defaultdict def _new_collection(): """ Collection data type is {path: {method: (ResponseClass,) }} So e.g. a POST request to http://venmo.com/feed is stored as {'/feed': {'POST': (ResponseClass,)}} the ResponseClass will have had the the constructor partially applied with the specified stubbed data so after finding it we finish instantiatiing with the request we received and return it. Why? So the request attribute on the response is the request that was made, not just the matching criteria in the stub """ return defaultdict(lambda: defaultdict(lambda: ())) class RequestCollection(object): _requests = _new_collection() @classmethod def add(cls, request, response): parsed = urlparse(request.url) cls._requests[parsed.path][request.method] = \ cls._requests[parsed.path][request.method] + (response,) @classmethod def find(cls, request): parsed = urlparse(request.url) responses = cls._requests[parsed.path][request.method] if len(responses) > 0: head = responses[0] cls._requests[parsed.path][request.method] = \ cls._requests[parsed.path][request.method][1:] + (head,) else: head = None return head @classmethod def remove(cls, request): parsed = urlparse(request.url) del cls._requests[parsed.path][request.method] @classmethod def reset(cls): cls._requests = _new_collection()
venmo/tornado-stub-client
tornado_stub_client/collection.py
collection.py
py
1,717
python
en
code
9
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 19, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 27, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 33, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 45, "usage_type": "call" } ]
71836229628
from PyQt5 import QtCore, QtGui, QtWidgets class Ui_insertar(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(570, 518) self.verticalLayout = QtWidgets.QVBoxLayout(Form) self.verticalLayout.setObjectName("verticalLayout") self.groupBox = QtWidgets.QGroupBox(Form) self.groupBox.setFlat(True) self.groupBox.setObjectName("groupBox") self.verticalLayout_9 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_9.setObjectName("verticalLayout_9") self.frame_11 = QtWidgets.QFrame(self.groupBox) self.frame_11.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_11.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_11.setObjectName("frame_11") self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.frame_11) self.horizontalLayout_5.setSizeConstraint(QtWidgets.QLayout.SetMinimumSize) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.verticalLayout_9.addWidget(self.frame_11) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.verticalLayout_9.addItem(spacerItem) self.frame_12 = QtWidgets.QFrame(self.groupBox) self.frame_12.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_12.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_12.setObjectName("frame_12") self.verticalLayout_10 = QtWidgets.QVBoxLayout(self.frame_12) self.verticalLayout_10.setObjectName("verticalLayout_10") self.label_12 = QtWidgets.QLabel(self.frame_12) self.label_12.setFrameShadow(QtWidgets.QFrame.Plain) self.label_12.setAlignment(QtCore.Qt.AlignCenter) self.label_12.setObjectName("label_12") self.verticalLayout_10.addWidget(self.label_12) self.verticalLayout_9.addWidget(self.frame_12) self.frame_13 = QtWidgets.QFrame(self.groupBox) self.frame_13.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_13.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_13.setObjectName("frame_13") self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.frame_13) self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.frame_14 = QtWidgets.QFrame(self.frame_13) self.frame_14.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_14.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_14.setObjectName("frame_14") self.verticalLayout_11 = QtWidgets.QVBoxLayout(self.frame_14) self.verticalLayout_11.setObjectName("verticalLayout_11") self.label_13 = QtWidgets.QLabel(self.frame_14) self.label_13.setObjectName("label_13") self.verticalLayout_11.addWidget(self.label_13) self.label_14 = QtWidgets.QLabel(self.frame_14) self.label_14.setObjectName("label_14") self.verticalLayout_11.addWidget(self.label_14) self.label_15 = QtWidgets.QLabel(self.frame_14) self.label_15.setObjectName("label_15") self.verticalLayout_11.addWidget(self.label_15) self.horizontalLayout_6.addWidget(self.frame_14) self.frame_15 = QtWidgets.QFrame(self.frame_13) self.frame_15.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_15.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_15.setObjectName("frame_15") self.verticalLayout_12 = QtWidgets.QVBoxLayout(self.frame_15) self.verticalLayout_12.setObjectName("verticalLayout_12") self.text_act1 = QtWidgets.QLineEdit(self.frame_15) self.text_act1.setObjectName("text_act1") self.verticalLayout_12.addWidget(self.text_act1) self.text_act2 = QtWidgets.QLineEdit(self.frame_15) self.text_act2.setObjectName("text_act2") self.verticalLayout_12.addWidget(self.text_act2) self.text_act3 = QtWidgets.QLineEdit(self.frame_15) self.text_act3.setObjectName("text_act3") self.verticalLayout_12.addWidget(self.text_act3) self.horizontalLayout_6.addWidget(self.frame_15) self.frame_16 = QtWidgets.QFrame(self.frame_13) self.frame_16.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_16.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_16.setObjectName("frame_16") self.verticalLayout_13 = QtWidgets.QVBoxLayout(self.frame_16) self.verticalLayout_13.setObjectName("verticalLayout_13") self.label_16 = QtWidgets.QLabel(self.frame_16) self.label_16.setObjectName("label_16") self.verticalLayout_13.addWidget(self.label_16) self.label_17 = QtWidgets.QLabel(self.frame_16) self.label_17.setObjectName("label_17") self.verticalLayout_13.addWidget(self.label_17) self.label_18 = QtWidgets.QLabel(self.frame_16) self.label_18.setObjectName("label_18") self.verticalLayout_13.addWidget(self.label_18) self.horizontalLayout_6.addWidget(self.frame_16) self.frame_17 = QtWidgets.QFrame(self.frame_13) self.frame_17.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_17.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_17.setObjectName("frame_17") self.verticalLayout_14 = QtWidgets.QVBoxLayout(self.frame_17) self.verticalLayout_14.setObjectName("verticalLayout_14") self.text_act4 = QtWidgets.QLineEdit(self.frame_17) self.text_act4.setObjectName("text_act4") self.verticalLayout_14.addWidget(self.text_act4) self.text_act5 = QtWidgets.QLineEdit(self.frame_17) self.text_act5.setObjectName("text_act5") self.verticalLayout_14.addWidget(self.text_act5) self.text_act6 = QtWidgets.QLineEdit(self.frame_17) self.text_act6.setObjectName("text_act6") self.verticalLayout_14.addWidget(self.text_act6) self.horizontalLayout_6.addWidget(self.frame_17) self.verticalLayout_9.addWidget(self.frame_13) self.frame_18 = QtWidgets.QFrame(self.groupBox) self.frame_18.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_18.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_18.setObjectName("frame_18") self.verticalLayout_15 = QtWidgets.QVBoxLayout(self.frame_18) self.verticalLayout_15.setObjectName("verticalLayout_15") self.label_19 = QtWidgets.QLabel(self.frame_18) self.label_19.setAlignment(QtCore.Qt.AlignCenter) self.label_19.setObjectName("label_19") self.verticalLayout_15.addWidget(self.label_19) self.verticalLayout_9.addWidget(self.frame_18) self.frame_19 = QtWidgets.QFrame(self.groupBox) self.frame_19.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_19.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_19.setObjectName("frame_19") self.horizontalLayout_7 = QtWidgets.QHBoxLayout(self.frame_19) self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.label_20 = QtWidgets.QLabel(self.frame_19) self.label_20.setObjectName("label_20") self.horizontalLayout_7.addWidget(self.label_20) self.text_estado = QtWidgets.QLineEdit(self.frame_19) self.text_estado.setObjectName("text_estado") self.horizontalLayout_7.addWidget(self.text_estado) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_7.addItem(spacerItem1) self.verticalLayout_9.addWidget(self.frame_19) self.verticalLayout.addWidget(self.groupBox) self.frame_10 = QtWidgets.QFrame(Form) self.frame_10.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_10.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_10.setObjectName("frame_10") self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.frame_10) self.horizontalLayout_4.setObjectName("horizontalLayout_4") spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem2) self.btn_guardar = QtWidgets.QPushButton(self.frame_10) self.btn_guardar.setObjectName("btn_guardar") self.horizontalLayout_4.addWidget(self.btn_guardar) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem3) self.verticalLayout.addWidget(self.frame_10) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Insetar datos")) self.groupBox.setTitle(_translate("Form", "Insertar datos de entrenamiento")) self.label_12.setText(_translate("Form", "Para cada actividad, introduce \"A\" si aprobo, \"R\" si reprobo o \"NP\" si no presento.")) self.label_13.setText(_translate("Form", "Actividad 1:")) self.label_14.setText(_translate("Form", "Actividad 2:")) self.label_15.setText(_translate("Form", "Actividad 3:")) self.label_16.setText(_translate("Form", "Actividad 4:")) self.label_17.setText(_translate("Form", "Actividad 5:")) self.label_18.setText(_translate("Form", "Actividad 6:")) self.label_19.setText(_translate("Form", "Introduce \"SI\" o \"NO\"")) self.label_20.setText(_translate("Form", "Aprobo: ")) self.text_estado.setPlaceholderText(_translate("Form", "Ingrese \"SI\" o \"NO\"")) self.btn_guardar.setText(_translate("Form", "Guardar datos"))
JoseVale99/simulador_prediccion_desemepe-o
view/insertar.py
insertar.py
py
9,728
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 8, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 8, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QGroupBox", "line_number": 10, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 10, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 13, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 13, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 15, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 15, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 16, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 16, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 17, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 17, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHBoxLayout", "line_number": 19, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 19, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLayout", "line_number": 20, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 20, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSpacerItem", "line_number": 23, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 23, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy", "line_number": 23, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 25, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 25, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 26, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 26, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 27, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 27, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 29, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 29, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 31, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 31, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 32, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 33, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore", "line_number": 33, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 37, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 37, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 38, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 38, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 39, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 39, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHBoxLayout", "line_number": 41, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 41, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 43, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 43, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 44, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 44, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 45, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 45, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 47, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 47, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 49, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 49, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 52, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 52, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 55, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 55, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 59, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 59, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 60, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 60, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 61, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 61, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 63, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 63, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 65, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 65, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 68, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 68, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 71, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 71, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 75, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 75, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 76, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 76, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 77, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 77, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 79, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 79, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 81, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 81, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 84, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 84, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 87, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 87, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 91, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 91, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 92, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 92, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 93, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 93, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 95, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 95, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 97, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 97, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 100, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 100, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 103, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 103, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 108, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 108, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 109, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 109, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 110, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 110, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 112, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 112, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 114, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 114, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 115, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore", "line_number": 115, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 119, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 119, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 120, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 120, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 121, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 121, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHBoxLayout", "line_number": 123, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 123, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 125, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 125, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 128, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 128, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSpacerItem", "line_number": 131, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 131, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy", "line_number": 131, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 135, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 135, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 136, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 136, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 137, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 137, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHBoxLayout", "line_number": 139, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 139, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSpacerItem", "line_number": 141, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 141, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy", "line_number": 141, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 143, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 143, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSpacerItem", "line_number": 146, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 146, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy", "line_number": 146, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QMetaObject.connectSlotsByName", "line_number": 151, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QMetaObject", "line_number": 151, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore", "line_number": 151, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 154, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore", "line_number": 154, "usage_type": "name" } ]
43229119277
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("shop", "0005_auto_20150527_1127"), ] operations = [ migrations.AlterField( model_name="order", name="key", field=models.CharField(max_length=40, db_index=True), ), ]
stephenmcd/cartridge
cartridge/shop/migrations/0006_auto_20150916_0459.py
0006_auto_20150916_0459.py
py
345
python
en
code
696
github-code
6
[ { "api_name": "django.db.migrations.Migration", "line_number": 4, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 4, "usage_type": "name" }, { "api_name": "django.db.migrations.AlterField", "line_number": 11, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 14, "usage_type": "name" } ]
33359783594
from unittest import TestCase import unittest # from unittest.mock import patch, Mock # import csv # from flask import request, jsonify import requests # import sys # # sys.path.insert(0, '../../src') class TestLoadDailyReports(TestCase): # def setUp(self): # self.app = app. def test_load_data_success(self): f = open("tests/routes/01-01-2021.csv", "rb") file = f.read() url = 'https://covid-monitor-61.herokuapp.com/daily_reports/data' r = requests.post(url, data=file, headers={"Content-Type": "text/csv"}) f.close() self.assertEqual(r.status_code, 200) def test_query_data_success(self): url = 'https://covid-monitor-61.herokuapp.com/daily_reports/cases' body = {"return_type": "json", "types": ["Confirmed", "Deaths", "Active"], "locations": [ {"Country/Region": "Belgium"}, {"Country/Region": "Canada", "Province/State": "Ontario"}, {"Country/Region": "Australia", "Province/State": "Queensland", "Combined_Key": "Australian Capital Territory, Australia"} ] } r = requests.post(url, json=body, headers={"Content-Type": "application/json"}) print(r.json()) self.assertEqual(r.status_code, 200) if __name__ == '__main__': unittest.main()
shin19991207/CSC301-A2
tests/routes/test_daily_reports.py
test_daily_reports.py
py
1,472
python
en
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 14, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 22, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 39, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 45, "usage_type": "call" } ]
30059046061
from pyswarms.base.base_discrete import DiscreteSwarmBase import numpy as np from scipy.spatial import cKDTree class PerezPSO(DiscreteSwarmBase): def assertions(self): """Assertion method to check various inputs. Raises ------ KeyError When one of the required dictionary keys is missing. ValueError When the number of neighbors is not within the range :code:`[0, n_particles]`. When the p-value is not in the list of values :code:`[1,2]`. """ super(PerezPSO, self).assertions() if not all(key in self.options for key in ('k', 'p')): raise KeyError('Missing either k or p in options') if not 0 <= self.k <= self.n_particles: raise ValueError('No. of neighbors must be between 0 and no. of' 'particles.') if self.p not in [1, 2]: raise ValueError('p-value should either be 1 (for L1/Minkowski)' 'or 2 (for L2/Euclidean).') def __init__(self, n_particles, dimensions, alpha, options, velocity_clamp=None): """Initializes the swarm. Attributes ---------- n_particles : int number of particles in the swarm. dimensions : int number of dimensions in the space. velocity_clamp : tuple (default is :code:`None`) a tuple of size 2 where the first entry is the minimum velocity and the second entry is the maximum velocity. It sets the limits for velocity clamping. options : dict with keys :code:`{'c1', 'c2', 'k', 'p'}` a dictionary containing the parameters for the specific optimization technique * c1 : float cognitive parameter * c2 : float social parameter * w : float inertia parameter * k : int number of neighbors to be considered. Must be a positive integer less than :code:`n_particles` * p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance) while 2 is the Euclidean (or L2) distance. """ # Initialize logger # self.logger = logging.getLogger(__name__) binary = False # Assign k-neighbors and p-value as attributes self.k, self.p = options['k'], options['p'] # Initialize parent class super(PerezPSO, self).__init__(n_particles, dimensions, binary, options, velocity_clamp) # Invoke assertions self.assertions() # Initialize the resettable attributes self.reset() # Set initial glo self.glo = np.full((1, self.dimensions), np.inf) self.glo_cost = np.inf self.y = np.full(self.n_particles, 0) self.alpha = alpha self.loc_pos = 0 def optimize(self, objective_func, iters, print_step=1, verbose=1): """Optimizes the swarm for a number of iterations. Performs the optimization to evaluate the objective function :code:`f` for a number of iterations :code:`iter.` Parameters ---------- objective_func : function objective function to be evaluated iters : int number of iterations print_step : int (the default is 1) amount of steps for printing into console. verbose : int (the default is 1) verbosity setting. Returns ------- tuple the local best cost and the local best position among the swarm. """ for i in range(iters): # Compute cost for current position and personal best current_cost = objective_func(self.pos) # Obtain the indices of the best position for each # neighbour-space, and get the local best cost and # local best positions from it. nmin_idx = self._get_neighbors(current_cost) # get index of loc for each neighborhood of the cur position self.best_cost = current_cost[nmin_idx] # the loc optimum cost for each particle cost_abs = np.abs(current_cost) loc_min = cost_abs.min() if loc_min < np.abs(self.glo_cost): pos_min_index = np.where(cost_abs == loc_min)[0][0] # index of pos min self.glo = self.pos[pos_min_index] self.glo_cost = current_cost[pos_min_index] del loc_min, cost_abs # Get the local min realative to each point self.loc_pos = self.pos[nmin_idx] self.y = self._get_y(self.loc_pos) # Perform position velocity update self._update_velocity() # must be called first self._update_position() care = r""" Iter: {} glo: {}, {} Cur_cost: {} loc_pos: {} nmin_idx: {} y: {} velocity: {} position: {} """.format(i, self.glo, self.glo_cost, current_cost, self.loc_pos, nmin_idx, self.y, self.velocity, self.pos) if i % print_step == 0: print(care + "\n\n") if all_eq(self.pos): break if self.glo_cost == 0: break # Obtain the final best_cost and the final best_position # final_best_cost_arg = np.argmin(self.best_cost) # final_best_cost = np.min(self.best_cost) # final_best_pos = self.best_pos[final_best_cost_arg] return self.glo_cost, self.glo def _get_neighbors(self, pbest_cost): """Helper function to obtain the best position found in the neighborhood. This uses the cKDTree method from :code:`scipy` to obtain the nearest neighbours Parameters ---------- pbest_cost : numpy.ndarray of size (n_particles, ) the cost incurred at the historically best position. Will be used for mapping the obtained indices to its actual cost. Returns ------- array of size (n_particles, ) dtype=int64 indices containing the best particles for each particle's neighbour-space that have the lowest cost """ # Use cKDTree to get the indices of the nearest neighbors tree = cKDTree(self.pos) _, idx = tree.query(self.pos, p=self.p, k=self.k) # Map the computed costs to the neighbour indices and take the # argmin. If k-neighbors is equal to 1, then the swarm acts # independently of each other. if self.k == 1: # The minimum index is itself, no mapping needed. best_neighbor = pbest_cost[idx][:, np.newaxis].argmin(axis=1) else: idx_min = pbest_cost[idx].argmin(axis=1) best_neighbor = idx[np.arange(len(idx)), idx_min] return best_neighbor def _update_velocity(self): """Updates the velocity matrix of the swarm. This method updates the attribute :code:`self.velocity` of the instantiated object. It is called by the :code:`self.optimize()` method. """ # Define the hyperparameters from options dictionary c1, c2, w = self.options['c1'], self.options['c2'], self.options['w'] # Compute for cognitive and social terms cognitive = (c1 * np.random.uniform(0, 1) * (-1 - self.y)) social = (c2 * np.random.uniform(0, 1) * (1 - self.y)) temp_velocity = (w * self.velocity) + cognitive + social # Create a mask to clamp the velocities if self.velocity_clamp is not None: # Create a mask depending on the set boundaries min_velocity, max_velocity = self.velocity_clamp[0], \ self.velocity_clamp[1] _b = np.logical_and(temp_velocity >= min_velocity, temp_velocity <= max_velocity) # Use the mask to finally clamp the velocities self.velocity = np.where(~_b, self.velocity, temp_velocity) else: self.velocity = temp_velocity def _update_position(self): """Updates the position matrix of the swarm. This method updates the attribute :code:`self.pos` of the instantiated object. It is called by the :code:`self.optimize()` method. """ del self.pos next_pos = np.random.randint(-2000, 2000, size=self.swarm_size) _decision = self.y + self.velocity # print("des: {}".format(_decision)) # mext_pos = np.where(_decision > self.alpha, self.glo, next_pos) # next_pos = np.where(_decision < self.alpha, self.loc_pos, next_pos) for i in range(self.n_particles): if _decision[i] > self.alpha: next_pos[i] = self.glo elif _decision[i] < -self.alpha: next_pos[i] = self.loc_pos[i] self.pos = next_pos def _get_y(self, loc): _y = np.array([]) for i in range(self.n_particles): if np.array_equal(self.glo, self.pos[i]): _y = np.concatenate((_y, [1])) elif np.array_equal(loc[i], self.pos[i]): _y = np.concatenate((_y, [-1])) else: _y = np.concatenate((_y, [0])) return _y def _sigmoid(self, x): """Helper sigmoid function. Inputs ------ x : numpy.ndarray Input vector to compute the sigmoid from Returns ------- numpy.ndarray Output sigmoid computation """ return 1 / (1 + np.exp(x)) def all_eq(position): first = position[0] for x in position: if not np.array_equal(x, first): return False return True if __name__ == "__main__": record_holder = np.fromstring("-1251 -555 -1024 1119 273 -1101 1728 -1835 3 1968 1375 139 -1051 -547 -1531 298") # -16047022661760 # print(record_holder) from Particle import majic_func as obj_func from pyswarms.utils.environments import PlotEnvironment file = open("best_record.txt", "a") for loop in range(10): test = PerezPSO(12345, 16, 0.3, {"k": 10, 'c1': 0.8, 'c2': 0.2, 'w': 0.75, 'p': 2}) test.pos = np.random.randint(-2000, 2000, size=test.swarm_size) test.velocity = np.full(test.n_particles, 0) # test.pos[0] = record_holder # print(test.pos) proposed = test.optimize(obj_func, iters=200, print_step=50) file.write("{}: {}\n\n".format(proposed[0], proposed[1])) file.close()
Ninalgad/PerezSwarm
base_discrete.py
base_discrete.py
py
10,842
python
en
code
1
github-code
6
[ { "api_name": "pyswarms.base.base_discrete.DiscreteSwarmBase", "line_number": 6, "usage_type": "name" }, { "api_name": "numpy.full", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 75, "usage_type": "attribute" }, { "api_name": "numpy.inf", "line_number": 76, "usage_type": "attribute" }, { "api_name": "numpy.full", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 117, "usage_type": "call" }, { "api_name": "scipy.spatial.cKDTree", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 182, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 185, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 199, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 200, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 200, "usage_type": "attribute" }, { "api_name": "numpy.logical_and", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 212, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 224, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 224, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 239, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 240, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 241, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 242, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 260, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 266, "usage_type": "call" }, { "api_name": "numpy.fromstring", "line_number": 272, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 279, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 279, "usage_type": "attribute" }, { "api_name": "numpy.full", "line_number": 280, "usage_type": "call" }, { "api_name": "Particle.majic_func", "line_number": 284, "usage_type": "argument" } ]
13138241281
from django.contrib import admin from django.urls import path, include from django.http import HttpResponse def homepage(request): return HttpResponse("you're in the home page, goto polls.") urlpatterns = [ path('admin/', admin.site.urls), path('', homepage), path('polls/', include('polls.urls')), ]
callmebhawesh/100-Days-Of-Code
Day 31/mysite/mysite/urls.py
urls.py
py
321
python
en
code
3
github-code
6
[ { "api_name": "django.http.HttpResponse", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 11, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 13, "usage_type": "call" } ]
39993181023
import os import numpy as np import matplotlib.pyplot as plt import cv2 import open3d as o3d def mkdirs(path): try: os.makedirs(path) except: pass class Saver(object): def __init__(self, save_dir): self.idx = 0 self.save_dir = os.path.join(save_dir, "results") if not os.path.exists(self.save_dir): mkdirs(self.save_dir) def save_as_point_cloud(self, depth, rgb, path, mask=None): h, w = depth.shape Theta = np.arange(h).reshape(h, 1) * np.pi / h + np.pi / h / 2 Theta = np.repeat(Theta, w, axis=1) Phi = np.arange(w).reshape(1, w) * 2 * np.pi / w + np.pi / w - np.pi Phi = -np.repeat(Phi, h, axis=0) X = depth * np.sin(Theta) * np.sin(Phi) Y = depth * np.cos(Theta) Z = depth * np.sin(Theta) * np.cos(Phi) if mask is None: X = X.flatten() Y = Y.flatten() Z = Z.flatten() R = rgb[:, :, 0].flatten() G = rgb[:, :, 1].flatten() B = rgb[:, :, 2].flatten() else: X = X[mask] Y = Y[mask] Z = Z[mask] R = rgb[:, :, 0][mask] G = rgb[:, :, 1][mask] B = rgb[:, :, 2][mask] XYZ = np.stack([X, Y, Z], axis=1) RGB = np.stack([R, G, B], axis=1) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(XYZ) pcd.colors = o3d.utility.Vector3dVector(RGB) o3d.io.write_point_cloud(path, pcd) def save_samples(self, rgbs, gt_depths, pred_depths, depth_masks=None): """ Saves samples """ rgbs = rgbs.cpu().numpy().transpose(0, 2, 3, 1) depth_preds = pred_depths.cpu().numpy() gt_depths = gt_depths.cpu().numpy() if depth_masks is None: depth_masks = gt_depths != 0 else: depth_masks = depth_masks.cpu().numpy() for i in range(rgbs.shape[0]): self.idx = self.idx+1 mkdirs(os.path.join(self.save_dir, '%04d'%(self.idx))) cmap = plt.get_cmap("rainbow_r") depth_pred = cmap(depth_preds[i][0].astype(np.float32)/10) depth_pred = np.delete(depth_pred, 3, 2) path = os.path.join(self.save_dir, '%04d' % (self.idx) ,'_depth_pred.jpg') cv2.imwrite(path, (depth_pred * 255).astype(np.uint8)) depth_gt = cmap(gt_depths[i][0].astype(np.float32)/10) depth_gt = np.delete(depth_gt, 3, 2) depth_gt[..., 0][~depth_masks[i][0]] = 0 depth_gt[..., 1][~depth_masks[i][0]] = 0 depth_gt[..., 2][~depth_masks[i][0]] = 0 path = os.path.join(self.save_dir, '%04d' % (self.idx), '_depth_gt.jpg') cv2.imwrite(path, (depth_gt * 255).astype(np.uint8)) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_pc_pred.ply') self.save_as_point_cloud(depth_preds[i][0], rgbs[i], path) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_pc_gt.ply') self.save_as_point_cloud(gt_depths[i][0], rgbs[i], path, depth_masks[i][0]) rgb = (rgbs[i] * 255).astype(np.uint8) path = os.path.join(self.save_dir, '%04d'%(self.idx) , '_rgb.jpg') cv2.imwrite(path, rgb[:,:,::-1])
zhijieshen-bjtu/PanoFormer
PanoFormer/saver.py
saver.py
py
3,346
python
en
code
79
github-code
6
[ { "api_name": "os.makedirs", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.repeat", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.repeat", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 52, "usage_type": "call" }, { "api_name": "open3d.geometry.PointCloud", "line_number": 54, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 54, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 55, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 55, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 56, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 56, "usage_type": "attribute" }, { "api_name": "open3d.io.write_point_cloud", "line_number": 57, "usage_type": "call" }, { "api_name": "open3d.io", "line_number": 57, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.get_cmap", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "numpy.float32", "line_number": 77, "usage_type": "attribute" }, { "api_name": "numpy.delete", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 80, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 82, "usage_type": "attribute" }, { "api_name": "numpy.delete", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 88, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "numpy.uint8", "line_number": 96, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 97, "usage_type": "call" }, { "api_name": "os.path", "line_number": 97, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 98, "usage_type": "call" } ]
8352946523
from setuptools import find_packages, setup with open("./README.md") as fp: description = fp.read() setup( name="pyC8", version="1.1.1", description="Python SDK for Macrometa Global Data Mesh", long_description=description, long_description_content_type="text/markdown", author="Macrometa", author_email="[email protected]", url="https://www.macrometa.com", packages=find_packages(exclude=["tests"]), include_package_data=True, install_requires=["requests==2.25.1", "six", "websocket-client==0.57.0"], tests_require=["pytest", "mock", "flake8"], classifiers=[ "Intended Audience :: Developers", "Intended Audience :: End Users/Desktop", "Intended Audience :: Information Technology", "Operating System :: MacOS", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Documentation :: Sphinx", ], )
Macrometacorp/pyC8
setup.py
setup.py
py
1,074
python
en
code
6
github-code
6
[ { "api_name": "setuptools.setup", "line_number": 6, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 15, "usage_type": "call" } ]
29528131446
from flask import Flask, request app = Flask(__name__) @app.route('/') def home(): return "TP Florian Marques" @app.route('/means', methods=['GET']) def meanOfList(): list = request.args.getlist('int', type=int) if len(list) == 0: return "Given list is null" else: return "Mean of the list is : {}".format(sum(list)/len(list))
MarquesFlorian/python_server_testing_florian_marques
app.py
app.py
py
362
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 3, "usage_type": "call" }, { "api_name": "flask.request.args.getlist", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 11, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 11, "usage_type": "name" } ]
5694314611
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.reduce_dim_5 = nn.Conv2d(2048, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_4 = nn.Conv2d(1024, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_3 = nn.Conv2d(512, 256, kernel_size=(1, 1), stride=1, padding=0) self.reduce_dim_2 = nn.Conv2d(256, 256, kernel_size=(1, 1), stride=1, padding=0) self.double_conv_5 = self._make_dobule_conv(256, 128) self.double_conv_4 = self._make_dobule_conv(256, 128) self.double_conv_3 = self._make_dobule_conv(256, 128) self.double_conv_2 = self._make_dobule_conv(256, 128) def _up_add(self, x, y): (_, _, H, W) = y.size() x_up = nn.functional.upsample(x, size=(H, W), mode='nearest') return x_up + y def _make_dobule_conv(self, in_dims, out_dims): conv_layer = nn.Sequential( nn.Conv2d(in_dims, out_dims, kernel_size=(3, 3), stride=1, padding=1), nn.BatchNorm2d(out_dims), nn.ReLU(), nn.Conv2d(out_dims, out_dims, kernel_size=(3, 3), stride=1, padding=1), nn.BatchNorm2d(out_dims), nn.ReLU() ) return conv_layer def forward(self, c2, c3, c4, c5): m5 = self.reduce_dim_5(c5) m4 = self._up_add(m5, self.reduce_dim_4(c4)) m3 = self._up_add(m4, self.reduce_dim_3(c3)) m2 = self._up_add(m3, self.reduce_dim_2(c2)) m5 = self.double_conv_5(m5) m4 = self.double_conv_4(m4) m3 = self.double_conv_3(m3) m2 = self.double_conv_2(m2) return m5, m4, m3, m2
dmdm2002/FPN
Model/TopDown.py
TopDown.py
py
1,762
python
en
code
2
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 5, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 5, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 9, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 10, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 11, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.nn.functional.upsample", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" } ]
19601192171
#-*- coding: utf-8 -*- from django.shortcuts import render, redirect from blog.models import Mypost, MainPage from blog.forms import CreateForms # Create your views here. def index(request): all_posts = Mypost.objects.all() maintext = MainPage.objects.all() # print('all_posts_all') # print(all_posts) context = {'maintext': maintext} return render(request, 'index.html', context) def BlogList(request): all_posts = Mypost.objects.all() # print('all_posts_all') # print(all_posts) context = {'all_posts': all_posts} return render(request, 'blogs_list.html', context) def PostDitail(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) print('post_ditail') print(post_ditail[0]) return render(request, 'blog_ditail.html', {'post_ditail': post_ditail[0]}) def CreatePost(request): if request.method == 'POST': form = CreateForms(request.POST, request.FILES) if form.is_valid(): create_post = form.save(commit=False) create_post.author = request.user create_post.save() return redirect('blog:ditail', pk=create_post.pk) else: form = CreateForms return render(request, 'create.html', {'form': form}) def EditPost(request, pk): # edit_post1 = get_object_or_404(Mypost, pk=pk) edit_post = Mypost.objects.filter(pk=pk).get() if request.method == 'POST': form = CreateForms(request.POST, request.FILES, instance=edit_post) # print('form') # print(form) if form.is_valid(): edit = form.save(commit=False) # edit.author = request.user # print('edit.author') # print(edit.author) edit.save() return redirect('blog:ditail', pk=edit.pk) else: form = CreateForms(instance=edit_post) return render(request, 'edit.html', {'form': form}) def DelPost(request, pk): del_post = Mypost.objects.get(pk=pk) if request.method == 'POST': form = CreateForms(request.POST, instance=del_post) if form.is_valid(): del_post = form.save(commit=False) del_post.delete() return redirect('blog:blogs_list') else: form = CreateForms(instance=del_post) return render(request, 'delete.html', {'form': form}) # def PagePostApi(request): # # if request.method == 'POST': # form = CreateForms(request.POST) # if form.is_valid(): # create_post = form.save(commit=False) # create_post.author = request.user # create_post.save() # return redirect('blog:ditail', pk=create_post.pk) # else: # form = CreateForms # return render(request, 'index.html', {'form': form} ) def ApiBlogjs(request): return render(request, 'apiblogjs.html', ) def ApiCreateblogjs(request): return render(request, 'apicreateblogjs.html',) def ApiDetailblogjs(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'apidetailblogjs.html',{'post_ditail': post_ditail[0]}) def ApiEditblogjs(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'apieditblogjs.html',{'post_ditail': post_ditail[0]}) ### ResctJS ##### def AllPostsReact(request): return render(request, 'react_post/allreact.html', ) def CreatePostReact(request): return render(request, 'react_post/createpostreact.html',) def DetailPostReact(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'react_post/detailreact.html',{'post_ditail': post_ditail[0]}) def EditPostReact(request, pk): post_ditail = Mypost.objects.all().filter(pk=pk) return render(request, 'react_post/editpostreact.html',{'post_ditail': post_ditail[0]})
drhtka/forms_urls_drf
blog/views.py
views.py
py
3,836
python
en
code
0
github-code
6
[ { "api_name": "blog.models.Mypost.objects.all", "line_number": 10, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 10, "usage_type": "name" }, { "api_name": "blog.models.MainPage.objects.all", "line_number": 11, "usage_type": "call" }, { "api_name": "blog.models.MainPage.objects", "line_number": 11, "usage_type": "attribute" }, { "api_name": "blog.models.MainPage", "line_number": 11, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 15, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 19, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 19, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 19, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 23, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 26, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 26, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 26, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 30, "usage_type": "call" }, { "api_name": "blog.forms.CreateForms", "line_number": 34, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 39, "usage_type": "call" }, { "api_name": "blog.forms.CreateForms", "line_number": 41, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 43, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.filter", "line_number": 48, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 48, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 48, "usage_type": "name" }, { "api_name": "blog.forms.CreateForms", "line_number": 50, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 60, "usage_type": "call" }, { "api_name": "blog.forms.CreateForms", "line_number": 62, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 64, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.get", "line_number": 67, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 67, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 67, "usage_type": "name" }, { "api_name": "blog.forms.CreateForms", "line_number": 69, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 73, "usage_type": "call" }, { "api_name": "blog.forms.CreateForms", "line_number": 75, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 76, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 92, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 95, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 98, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 98, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 98, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 99, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 102, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 102, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 102, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 103, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 107, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 110, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 113, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 113, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 113, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 114, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects.all", "line_number": 117, "usage_type": "call" }, { "api_name": "blog.models.Mypost.objects", "line_number": 117, "usage_type": "attribute" }, { "api_name": "blog.models.Mypost", "line_number": 117, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 118, "usage_type": "call" } ]
12486639819
import multiprocessing import time import hashlib memory = list(range(30_000_000)) def function(name): for i in range(10): print("Current:", name, i) time.sleep(1) def slow_function(name): for i in range(10): print("Current:", name, i) for j in range(300_000): hashlib.md5(str(j).encode("utf-8")).hexdigest() if __name__ == "__main__": for i in range(3): name = chr(97 + i) multiprocessing.Process(target=slow_function, args=(name, )).start()
tt-n-walters/21-tuesday-python
core/multiple_processes.py
multiple_processes.py
py
524
python
en
code
0
github-code
6
[ { "api_name": "time.sleep", "line_number": 12, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 19, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 26, "usage_type": "call" } ]
38592347384
from .atari import Atari from .obj3d import Obj3D from torch.utils.data import DataLoader from object_detector import CLIPort_Dataset __all__ = ['get_dataset', 'get_dataloader'] def get_dataset(cfg, mode): assert mode in ['train', 'val', 'test'] return CLIPort_Dataset(cfg.dataset_roots.TABLE, mode) def get_dataloader(cfg, mode): assert mode in ['train', 'val', 'test'] batch_size = getattr(cfg, mode).batch_size shuffle = True if mode == 'train' else False num_workers = getattr(cfg, mode).num_workers dataset = get_dataset(cfg, mode) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) return dataloader
1989Ryan/paragon
object_detector/space/dataset/__init__.py
__init__.py
py
713
python
en
code
7
github-code
6
[ { "api_name": "object_detector.CLIPort_Dataset", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 21, "usage_type": "call" } ]
18453506476
from icecream import ic from stack import Stack from datetime import datetime def time_format(): return f'{datetime.now().strftime("%m/%d/%Y, %I:%M:%S")}|> ' ic.configureOutput(prefix=time_format, includeContext=True) def nextLargestElment(items): tempStack = Stack() returnStack = Stack() tempStack.push(items[0]) print("Intial tempStack:", tempStack.getStack()) print("-----------------------------------------") for current_item in items[1::]: print("current_item:", current_item) print("stack_top_item:", tempStack.peek()) if tempStack.isEmpty() == False: stack_top_item = tempStack.pop() while stack_top_item < current_item: print(str(stack_top_item) + " -- " + str(current_item)) returnStack.push(current_item) if tempStack.isEmpty(): break stack_top_item = tempStack.pop() if stack_top_item > current_item: tempStack.push(stack_top_item) tempStack.push(current_item) print("tempStack:", tempStack.getStack()) print("-----------------------------------------") while tempStack.isEmpty() == False: element = tempStack.pop() returnStack.push(-1) next = -1 print(str(element) + " -- " + str(next)) return returnStack.getStack() if __name__ == '__main__': # ic(nextLargestElment([int(item) # for item in input("Enter the list items : ").strip().split()])) ic(nextLargestElment([2, 6, 5, 4, 19]))
beharamadhu270405/python-DS
stack/next_greatest_element_using_stacks.py
next_greatest_element_using_stacks.py
py
1,594
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 7, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 7, "usage_type": "name" }, { "api_name": "icecream.ic.configureOutput", "line_number": 10, "usage_type": "call" }, { "api_name": "icecream.ic", "line_number": 10, "usage_type": "name" }, { "api_name": "stack.Stack", "line_number": 14, "usage_type": "call" }, { "api_name": "stack.Stack", "line_number": 15, "usage_type": "call" }, { "api_name": "icecream.ic", "line_number": 48, "usage_type": "call" } ]
34327083443
import pickle import re from pathlib import Path from typing import List from IPython.display import display import os.path as op from datetime import datetime import pandas as pd from tqdm.notebook import tqdm from matplotlib import pyplot as plt from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, f1_score, matthews_corrcoef, precision_score, recall_score, ) from src.helpers.mylogger import get_handler import logging handler = get_handler() log = logging.getLogger(__name__) log.handlers[:] = [] log.addHandler(handler) log.setLevel(logging.DEBUG) class EntryNotFoundError(Exception): pass class BidirectionalEntriesFoundError(Exception): pass class MultipleEntryFoundError(Exception): pass class ClassLabels: DISRUPTIVE = "Disruptive" NON_DISRUPTIVE = "Non-disruptive" NOT_AVAILABLE = "N/A" def unzip_res_range(res_range): """ Converts ranges in the form: [2-210] or [3-45,47A,47B,51-67] into lists of strings including all numbers in these ranges in order . Items are of type <str>. """ res_ranges = res_range.strip()[1:-1].split(',') index_list = [] for r in res_ranges: if re.match('.+-.+', r): a, b = r.split('-') index_list += [str(n) for n in range(int(a), int(b) + 1)] else: index_list.append(r) return index_list # print(unzip_res_range("[95-96,98-100,102-103,122,262,266-267,270,273,294]")) def get_mutation_position(mutation): return mutation[1:-1] class CancerValidation: def __init__(self, interfaces_data_path): self.interfaces_data = self.load_data(interfaces_data_path) @staticmethod def load_data(data_path): interfaces_data = pd.read_csv( data_path, sep="\t", usecols=["P1", "P2", "P1_IRES", "P2_IRES"] ) interfaces_data["P1_IRES"] = interfaces_data["P1_IRES"].apply(lambda x: unzip_res_range(x)) interfaces_data["P2_IRES"] = interfaces_data["P2_IRES"].apply(lambda x: unzip_res_range(x)) return interfaces_data def check(self, protein: str, mutation: str, interactor: str): # print(f"Checking ..\n" # f"> PROTEIN: {protein} \n" # f"> MUTATION: {mutation} \n" # f"> INTERACTOR: {interactor}") try: data, res = self._get_entry(protein, interactor) except EntryNotFoundError: return ClassLabels.NOT_AVAILABLE mut_pos = get_mutation_position(mutation) if mut_pos in res: return ClassLabels.DISRUPTIVE else: return ClassLabels.NON_DISRUPTIVE @staticmethod def _handle_check_duplicated_entries(data, p_ires) -> List[int]: """ Checks if all entries of given data duplicated. Each cell contains list in it. If all entries are duplicated entries, then we have no problem, just get the res. """ # display(data) # In order for us to check if the entries are duplicated, we'll have to # convert list item in the cells to tuple. Otherwise, we get the following error: # TypeError: unhashable type: 'list' data_tuple = data[["P1_IRES", "P2_IRES"]].applymap(lambda x: tuple(x)) data_tuple.duplicated(keep=False).all() # no problem, then. if p_ires == "P1_IRES": [p1] = data["P1"].unique() [p2] = data["P2"].unique() elif p_ires == "P2_IRES": [p2] = data["P1"].unique() [p1] = data["P2"].unique() else: raise ValueError(f"Illegal argument provided for parameter `p_ires`: {p_ires}") # check if all entries are duplicated if data_tuple.duplicated(keep=False).all(): log.warning( f"Multiple entries but they were duplicated. PROTEIN: {p1}, INTERACTOR: {p2}" ) [p_res] = data_tuple[p_ires].unique() p_res = list(p_res) return p_res else: log.error("MultipleEntryError with following data: ") display(data) p_res_list = data[p_ires].tolist() p_res = sorted( set([item for sublist in p_res_list for item in sublist]) ) log.error(F"Returned RES: {p_res}") return p_res # data.to_csv("ERROR_data.csv", index=False) # raise MultipleEntryFoundError def _get_entry(self, protein, interactor): a_b_interface_data = self.interfaces_data[ (self.interfaces_data["P1"] == protein) & (self.interfaces_data["P2"] == interactor) ] b_a_interface_data = self.interfaces_data[ (self.interfaces_data["P1"] == interactor) & (self.interfaces_data["P2"] == protein) ] # Both of them contains entry -- this is an unlikely situation, unless there is problem with the text file.. if len(a_b_interface_data) != 0 and len(b_a_interface_data) != 0: raise BidirectionalEntriesFoundError # First data contains entry and the second one is empty elif len(a_b_interface_data) != 0 and len(b_a_interface_data) == 0: if len(a_b_interface_data) != 1: p1_res = self._handle_check_duplicated_entries(a_b_interface_data, "P1_IRES") else: [p1_res] = a_b_interface_data["P1_IRES"] return a_b_interface_data, p1_res # First data is empty and the second one contains entry elif len(a_b_interface_data) == 0 and len(b_a_interface_data) != 0: if len(b_a_interface_data) != 1: p2_res = self._handle_check_duplicated_entries(b_a_interface_data, "P2_IRES") else: [p2_res] = b_a_interface_data["P2_IRES"] return b_a_interface_data, p2_res # Both of them are empty else: raise EntryNotFoundError def validate( self, tcga_type: str, tcga_data: pd.DataFrame, ): tcga_data_validation = tcga_data.copy() validation_results = [] for index, row in tqdm( tcga_data_validation.iterrows(), total=len(tcga_data_validation) ): protein = row["UniProt_ID"] mutation = row["Mutation"] interactor = row["Interactor_UniProt_ID"] valid_label = self.check( protein=protein, mutation=mutation, interactor=interactor ) # print(f">> RESULT: {valid_label}") validation_results.append(valid_label) tcga_data_validation["Validation"] = validation_results tcga_data_validation["Validation"].value_counts().plot( kind="bar", title=f"{tcga_type} Validation Results" ) plt.show() tcga_data_validation_processed = process_validation_data(tcga_data_validation) tcga_data_validation_processed["Validation"].value_counts().plot( kind="bar", title=f"{tcga_type} Validation Processed Results" ) plt.show() metrics_data = get_scoring_metrics(tcga_data_validation_processed) num_entries = len(tcga_data_validation) counts = tcga_data_validation_processed["Validation"].value_counts().to_dict() num_disruptive = counts[0] num_non_disruptive = counts[1] metrics_data.insert(0, "TCGA", tcga_type) metrics_data.insert(1, "#_Entries", num_entries) metrics_data.insert(2, "#_Disruptive", num_disruptive) metrics_data.insert(3, "#_Non_disruptive", num_non_disruptive) return { "data_validation": tcga_data_validation, "data_validation_processed": tcga_data_validation_processed, "metrics_data": metrics_data, } @staticmethod def validate_single_class( tcga_type: str, output_already_calculated: dict, single_class: int, ): """ Requires the positions to be already calculated. """ tcga_data_validation = output_already_calculated["data_validation"] print(f"Using the class {single_class} only.") tcga_data_validation = tcga_data_validation[ tcga_data_validation["Prediction"] == single_class ].copy() tcga_data_validation_processed = process_validation_data(tcga_data_validation) metrics_data = get_scoring_metrics(tcga_data_validation_processed) num_entries = len(tcga_data_validation) counts = tcga_data_validation_processed["Validation"].value_counts().to_dict() num_disruptive = counts[0] num_non_disruptive = counts[1] metrics_data.insert(0, "TCGA", tcga_type) metrics_data.insert(1, "#_Entries", num_entries) metrics_data.insert(2, "#_Disruptive", num_disruptive) metrics_data.insert(3, "#_Non_disruptive", num_non_disruptive) return { "data_validation": tcga_data_validation, "data_validation_processed": tcga_data_validation_processed, "metrics_data": metrics_data, } @staticmethod def extract_output_dict(name, dict_obj): folder_path = "outputs" Path(f"{folder_path}").mkdir(parents=True, exist_ok=True) current_date = datetime.now().strftime("%Y-%m-%d") file_name = f"{name}_{current_date}.pickle" file_path = op.join(folder_path, file_name) if op.exists(file_path): raise FileExistsError("File already exists") pickle.dump(dict_obj, open(file_path, "wb")) print("Object extracted successfully.") @staticmethod def load_output_dict(pickle_path): obj_loaded = pickle.load(open(pickle_path, "rb")) return obj_loaded def test_entry_not_found(df, p, i): a_b = df[ (df["P1"] == p) & (df["P2"] == i) ] b_a = df[ (df["P1"] == i) & (df["P2"] == p) ] assert len(a_b) == len(b_a) == 0 def get_scoring_metrics(tcga_validation_data): y_true = tcga_validation_data["Validation"] y_pred = tcga_validation_data["Prediction"] metrics_data = pd.DataFrame( [ accuracy_score(y_true, y_pred), balanced_accuracy_score(y_true, y_pred), f1_score(y_true, y_pred), precision_score(y_true, y_pred), recall_score(y_true, y_pred), matthews_corrcoef(y_true, y_pred), ], index=["ACCURACY", "BALANCED_ACCURACY", "F1", "PRECISION", "RECALL", "MATTHEWS_COR"] ).T return metrics_data def process_validation_data(tcga_data: pd.DataFrame): """ Process the validation data. 1. Drop N/A entries 2. Convert Labels as follows: DISRUPTIVE → 0 NON_DISRUPTIVE → 1 3. Convert its type to int. """ tcga_processed = tcga_data[tcga_data["Validation"] != "N/A"].copy() tcga_processed["Validation"] = tcga_processed["Validation"].replace( { ClassLabels.DISRUPTIVE: 0, ClassLabels.NON_DISRUPTIVE: 1, } ) tcga_processed = tcga_processed.astype({"Validation": "int"}) return tcga_processed
ibrahimberb/Predicting-Mutation-Effects
src/dev/CancerValidation/A1/utils.py
utils.py
py
11,283
python
en
code
0
github-code
6
[ { "api_name": "src.helpers.mylogger.get_handler", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 31, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 34, "usage_type": "attribute" }, { "api_name": "re.match", "line_number": 64, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 86, "usage_type": "call" }, { "api_name": "IPython.display.display", "line_number": 146, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 110, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 199, "usage_type": "attribute" }, { "api_name": "tqdm.notebook.tqdm", "line_number": 203, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 220, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 220, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 226, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 226, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 281, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 282, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 282, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 284, "usage_type": "call" }, { "api_name": "os.path", "line_number": 284, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 285, "usage_type": "call" }, { "api_name": "os.path", "line_number": 285, "usage_type": "name" }, { "api_name": "pickle.dump", "line_number": 288, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 293, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 314, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 316, "usage_type": "call" }, { "api_name": "sklearn.metrics.balanced_accuracy_score", "line_number": 317, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 318, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_score", "line_number": 319, "usage_type": "call" }, { "api_name": "sklearn.metrics.recall_score", "line_number": 320, "usage_type": "call" }, { "api_name": "sklearn.metrics.matthews_corrcoef", "line_number": 321, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 329, "usage_type": "attribute" } ]
72946767548
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import LatentDirichletAllocation import os from time import strftime # Python 3.5 def load_data(filename): return np.loadtxt(filename, skiprows=1, delimiter=' ') def save_predictions(X, model): filename = 'random_forest_' + strftime('%b%d%H%M%S') + '.csv' preds = model.predict(X).reshape((len(X), 1)) ids = (np.arange(1, len(X) + 1)).reshape((len(X), 1)) np.savetxt( os.path.join('predictions', filename), np.hstack((ids, preds)), fmt='%d', delimiter=',', header='Id,Prediction', comments='' ) def decompose(X, d, args={}): pca_model = LatentDirichletAllocation(n_components=d, **args) pca_model.fit(X) return pca_model def train(X, y, args={}): model = RandomForestClassifier(**args) model.fit(X, y) return model def test(X, y, model): return np.sum(model.predict(X) == y) / len(y) train_raw = load_data('training_data.txt') n_train = 10000 n_val = len(train_raw) - n_train X_train, y_train = train_raw[:, 1:][:n_train], train_raw[:, 0][:n_train] X_val, y_val = train_raw[:, 1:][n_train:], train_raw[:, 0][n_train:] # reduce dimensions from 1000 to 200 pca_model = decompose(X_train, 10) X_train_red = pca_model.transform(X_train) X_val_red = pca_model.transform(X_val) model = train(X_train_red, y_train, args={}) print('train / val split : %d / %d' % (n_train, n_val)) print('train acc :', test(X_train_red, y_train, model)) print('val acc :', test(X_val_red, y_val, model)) test_raw = load_data('test_data.txt') X_test = test_raw[:, :] X_test_red = pca_model.transform(X_test) # save_predictions(X_test_red, model) ''' <output> train / val split : 10000 / 10000 train acc : 0.9892 val acc : 0.6557 '''
bchidamb/AmazonFeels
shit_tier/random_forest_pca.py
random_forest_pca.py
py
1,890
python
en
code
3
github-code
6
[ { "api_name": "numpy.loadtxt", "line_number": 12, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.savetxt", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "numpy.hstack", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.decomposition.LatentDirichletAllocation", "line_number": 33, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 49, "usage_type": "call" } ]
23907002609
import numpy as np import pandas as pd import scipy.spatial.distance as spd import scipy.stats as sps import sklearn.model_selection as skm import sklearn.metrics as skmetrics import matplotlib.pyplot as plt import seaborn as sb from hw1_modules import * # read data from CSV to array data = np.array(pd.read_csv("train.csv").values) #separate values and labels into separate arrays values = data[:,1:] labels = data[:,0] #convert labels array to vertical, 2d array of one column labels = np.expand_dims(labels, axis=1) #initialize confusion matrix cf = np.ones((10,10), dtype=int) #initialize cumulative accuracy accuracy = 0 #set number of folds number_folds = 3 #set k for k neighbors k_neighbors = 3 #create kfold iterating object kf = skm.KFold(n_splits=number_folds) for train_idx, test_idx in kf.split(values, labels): print("Dividing data") #subset data using indexes generated by kfold object train_data = values[train_idx] test_data = values[test_idx] train_labels = labels[train_idx] test_lables = labels[test_idx] #run one iteration of testing with knn print("Testing data") predicted_labels = knn_predict_class(train_data, train_labels, test_data, k_neighbors) print("Accuracy for this run" + str(sum(predicted_labels == test_lables)/len(test_lables))) #cumulative accuracy accuracy += sum(predicted_labels == test_lables)/len(test_lables) #add this run's confusion values to cumulative confusion matrix cf = cf + skmetrics.confusion_matrix(test_lables, predicted_labels) #calculate average accuracy from cumulative accuracy = accuracy/number_folds print(accuracy) #Create and display plot for confusion matrix ax = sb.heatmap(cf, annot=True, fmt="d") ax.set(xlabel="Predicted Label", ylabel="True Label") plt.show()
terry99999/M_hw1
knn.py
knn.py
py
1,791
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 12, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 21, "usage_type": "call" }, { "api_name": "sklearn.model_selection.KFold", "line_number": 30, "usage_type": "call" }, { "api_name": "sklearn.model_selection", "line_number": 30, "usage_type": "name" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 45, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 45, "usage_type": "name" }, { "api_name": "seaborn.heatmap", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" } ]
70047131707
import xml.etree.ElementTree as ET import pandas as pd import numpy as np import cv2 as cv def draw_label(path): tree = ET.parse(path) img_out = np.zeros(shape=(1024, 1280)) img_list_x = [] img_list_y = [] for elem in tree.iterfind('object'): mylist_x = [] mylist_y = [] # print(elem.tag, elem.attrib) for elem_1 in elem.iterfind('polygon/pt'): object_x = elem_1.find("x").text object_y = elem_1.find("y").text x = int(object_x) y = 1024 - int(object_y) if x < 0: x = 0 if x > 1279: x = 1279 if y < 0: y = 0 if y > 1023: y = 1023 mylist_x.append(x) mylist_y.append(y) img_list_x.append(x) img_list_y.append(y) img_out.itemset((y, x), 255) mylist = list(zip(mylist_x, mylist_y)) pts = np.array(mylist, np.int32) cv.polylines(img_out, [pts], True, (255, 255, 255), 2) # 画线 cv.fillPoly(img_out, [pts], (255, 255, 255)) # 填充内部 Alllist = list(zip(img_list_x, img_list_y)) # 统计标注点 # cv.imwrite('./picture/label.png', img_out) return img_out def getlabel(path): img1 = draw_label(path) list_out = np.zeros(shape=(1024, 1280)) for i in range(img1.shape[0]): for j in range(img1.shape[1]): if img1[i, j] == 255: list_out[i, j] = 1 return list_out
Bagpip/-HSI-
label_test.py
label_test.py
py
1,589
python
en
code
0
github-code
6
[ { "api_name": "xml.etree.ElementTree.parse", "line_number": 8, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 8, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 35, "usage_type": "attribute" }, { "api_name": "cv2.polylines", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.fillPoly", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 45, "usage_type": "call" } ]
40107035382
version = "0.8" import os, io import chardet from functools import wraps from tempfile import mkstemp, mkdtemp from json import JSONEncoder as _JSONEncoder from pathlib import Path from collections import deque from colorama import Fore as F markdown = None class LabelledTree (object) : def __init__ (self, label, children=[]) : self.label = str(label) self.children = list(children) def _print (self, out, prefix=None, last=True) : if prefix is None : out.write(f"{self.label}\n") elif last : out.write(f"{prefix}{F.WHITE}└─{F.RESET} {self.label}\n") else : out.write(f"{prefix}{F.WHITE}├─{F.RESET} {self.label}\n") for child in self.children : if prefix is None : child._print(out, "", child is self.children[-1]) elif last : child._print(out, prefix + " ", child is self.children[-1]) else : child._print(out, prefix + f"{F.WHITE}│{F.RESET} ", child is self.children[-1]) def __str__ (self) : out = io.StringIO() self._print(out) return out.getvalue().rstrip() class tree (dict) : def __getattr__ (self, key) : cls = self.__class__ val = self.get(key, None) if isinstance(val, dict) and not isinstance(val, cls) : val = self[key] = tree(val) elif isinstance(val, list) : val = self[key] = [tree(v) if isinstance(v, dict) and not isinstance(v, cls) else v for v in val] return val def __setattr__ (self, key, val) : if isinstance(val, dict) : val = self.__class__(val) self[key] = val cwd = Path().absolute() def new_path (type="file", **args) : if type == "file" : fd, path = mkstemp(**args) os.close(fd) elif type == "dir" : path = mkdtemp(**args) else : raise ValueError(f"unsupported path type {type!r}") return Path(path).absolute().relative_to(cwd) encoding = tree(encoding="utf-8", errors="replace") class JSONEncoder (_JSONEncoder) : def default (self, obj) : handler = getattr(obj, "__json__", None) if handler is None : return super().default(obj) else : return handler() def cached_property (method) : @wraps(method) def wrapper (self) : name = method.__name__ if not hasattr(self, "__cache") : self.__cache = {} if name not in self.__cache : self.__cache[name] = method(self) return self.__cache[name] @wraps(method) def delete (self) : self.__cache.pop(method.__name__, None) return property(wrapper, None, delete, method.__doc__) def recode (path) : with open(path, "rb") as inf : raw = inf.read() try : enc = chardet.detect(raw) src = raw.decode(enc["encoding"], errors="replace") except : return with open(path, "w", **encoding) as out : out.write(src) return src def md (text, inline=True) : # only load if necessary to speedup prog startup global markdown from markdown import markdown # try : html = markdown(str(text)) if inline : html = html.replace("<p>", "").replace("</p>", "") return html.replace("§", "&nbsp;") except : return text.replace("§", " ") _esc = {c : f"\\{c}" for c in r"\`*_{}[]()#+-.!"} def mdesc (text) : return str(text).translate(_esc) def chmod_r (path) : q = deque([Path(path)]) while q : sub = q.popleft() if sub.is_dir() : sub.chmod(sub.stat().st_mode | 0o750) q.extend(sub.iterdir()) else : sub.chmod(sub.stat().st_mode | 0o640)
fpom/badass
badass/__init__.py
__init__.py
py
3,857
python
en
code
4
github-code
6
[ { "api_name": "colorama.Fore.WHITE", "line_number": 24, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 24, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 24, "usage_type": "attribute" }, { "api_name": "colorama.Fore.WHITE", "line_number": 26, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 26, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 26, "usage_type": "attribute" }, { "api_name": "colorama.Fore.WHITE", "line_number": 33, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 33, "usage_type": "name" }, { "api_name": "colorama.Fore.RESET", "line_number": 33, "usage_type": "attribute" }, { "api_name": "io.StringIO", "line_number": 35, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 54, "usage_type": "call" }, { "api_name": "tempfile.mkstemp", "line_number": 58, "usage_type": "call" }, { "api_name": "os.close", "line_number": 59, "usage_type": "call" }, { "api_name": "tempfile.mkdtemp", "line_number": 61, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 64, "usage_type": "call" }, { "api_name": "json.JSONEncoder", "line_number": 69, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 78, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 86, "usage_type": "call" }, { "api_name": "chardet.detect", "line_number": 95, "usage_type": "call" }, { "api_name": "markdown.markdown", "line_number": 109, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 122, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 122, "usage_type": "call" } ]
16644551299
import matplotlib.pyplot as plt import pandas as pd import numpy as np def ex_deal(df_Int, df_ex): columns = ['顺序', '氮素', '频率', '刈割'] df_Int = pd.concat([df_Int, pd.DataFrame(columns=columns)]) for item in range(df_Int.shape[0]): for jtem in range(df_ex.shape[0]): if int(df_Int.iloc[item, 0]) == int(df_ex.iloc[jtem, 1]): df_Int.loc[item, '顺序'] = df_ex.iloc[jtem, 1] df_Int.loc[item, '氮素'] = df_ex.iloc[jtem, 2] df_Int.loc[item, '频率'] = df_ex.iloc[jtem, 3] df_Int.loc[item, '刈割'] = df_ex.iloc[jtem, 4] # df_Int.drop([0, 19], inplace=True) return df_Int def MF(g, N="氮素",year=2010): # if year==2008: # if N == "刈割": # g= # if N == "频率": # # else: if N == "刈割": if g == 0.0: g = "nm" else: g = "m" if N == "频率": if g == 2.0: g = "l" elif g == 0.0: g = "nan" else: g = "h" return g def loop_chain_nan(year, gb, D, N="氮素"): # if year == 2008: # g = MF(g_[0], N,year=2008) # D["loop"][g], D["nan"][g], D["chain"][g] = 0, 0, 0 # for g_ in gb: # print(g_[1][3]) # for item in g_[1][3]: # if item == 0: # 链 # D["chain"][g] += 1 # elif item == -0.15: # D["nan"][g] += 1 # print(2008,item) # else: # 环 # D["loop"][g] += 1 if year == 2009: for g_ in gb: g = MF(g_[0], N) # if g!=0.0: D["loop"][g],D["nan"][g], D["chain"][g] = 0, 0, 0 for item in g_[1][3]: if item == 0: # 链 D["chain"][g] += 1 elif item == -0.15: D["nan"][g] += 1 else: # 环 D["loop"][g] += 1 elif year > 2009: for g_ in gb: g = MF(g_[0], N) for item in g_[1][3]: if item == 0: D["chain"][g] += 1 elif item == -0.15: D["nan"][g] += 1 else: D["loop"][g] += 1 return D def main(): path = "C:/Users/97899/Desktop/N/" df_ex = pd.read_excel(path + "实验处理_ex.xls") ind = np.linspace(2008, 2020, 13) D = {} D["loop"], D["chain"], D["nan"] = {}, {}, {} for year in ind: df_cir = pd.read_excel(path + "Network/circle20.xls", sheet_name=str(int(year))) df_cir = ex_deal(df_cir, df_ex) gb = df_cir.groupby("氮素") D = loop_chain_nan(year, gb, D) gm = df_cir.groupby("刈割") D = loop_chain_nan(year, gm, D, "刈割") gf = df_cir.groupby("频率") D = loop_chain_nan(year, gf, D, "频率") print(D) net_loop = [] net_chain = [] net_nan = [] '''氮素''' for key in D["loop"].keys(): sum_ = D["loop"][key] + D["chain"][key] + D["nan"][key] print(key,sum_) net_loop.append(D["loop"][key] / sum_) net_chain.append(D["chain"][key] / sum_) net_nan.append(D["nan"][key] / sum_) print("非竞争", len(net_nan), "链", len(net_chain), "环", len(net_loop)) labels = ['N=0', 'N=1', 'N=2', 'N=3', 'N=5', 'N=10', 'N=15', 'N=20', 'N=50'] width = 0.5 # the width of the bars: can also be len(x) sequence net = (np.array(net_loop) + np.array(net_chain)).tolist() print("竞争主导", len(net)) plt.xticks(fontsize=15) plt.yticks(fontsize=15) ax1 = plt.subplot(212) print(net_loop[:9],net_chain[:9],net_nan[:9]) ax1.bar(labels, net_loop[:9], width, label='ICN', color="darkcyan") ax1.bar(labels, net_chain[:9], width, bottom=net_loop[:9], label='TCN', color="turquoise") ax1.bar(labels, net_nan[:9], width, bottom=net[:9], label='SCS', color="yellow") ax1.set_ylabel('Ratio', fontdict={"size": 20}) ax1.set_xlabel('N addition rater'"$(gNm^{-2}year^{-1})$", fontdict={"size": 15}) width2 = 0.4 '''刈割''' label_2 = ['No-Mowing', 'Mowing'] ax2 = plt.subplot(221) ax2.bar(label_2, net_loop[9:11], width2, label='ICN', color="darkcyan") ax2.bar(label_2, net_chain[9:11], width2, bottom=net_loop[9:11], label='TCN', color="turquoise") ax2.bar(label_2, net_nan[9:11], width2, bottom=net[9:11], label='SCS', color="yellow") ax2.set_ylabel('Ratio', fontdict={"size": 20}) ax2.set_xlabel('Mowing', fontdict={"size": 15}) '''频率''' label_3 = ['Zero','Low (Twice)', 'High (Monthly)'] ax3 = plt.subplot(222) # 222 ax3.bar(label_3, net_loop[11:14], width2, label='ICN', color="darkcyan") ax3.bar(label_3, net_chain[11:14], width2, bottom=net_loop[11:14], label='TCN', color="turquoise") ax3.bar(label_3, net_nan[11:14], width2, bottom=net[11:14], label='SCS', color="yellow") # [11:13] # ax3.set_ylabel('Ratio', fontdict={"size": 15}) ax3.set_xlabel('Frequency', fontdict={"size": 15}) ax3.legend(ncol=1, bbox_to_anchor=(1.2, 1), fontsize=13) plt.show() plt.savefig(path+'Figure/bar_distribution.png') main()
QingqingSun-Bao/GitResp2
micro/Fig10_bar_distribution.py
Fig10_bar_distribution.py
py
5,270
python
en
code
0
github-code
6
[ { "api_name": "pandas.concat", "line_number": 8, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 8, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 87, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 115, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 139, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 139, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 147, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 147, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 148, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 148, "usage_type": "name" } ]
170942993
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from rp_ui_harness import RequestPolicyTestCase from marionette import expectedFailure from marionette_driver import Wait import re msg = ("Marionette -- test_logging_error_detection -- " "this test is expected to fail") class ErrorDetectionTests(object): ################ # Test Methods # ################ def test_normal_error(self, n=1): self.error_triggerer.trigger_error( "error", "backgroundscript", msg=msg) self._do_checks( n, r'^console.error:\s+\[RequestPolicy\] ' + msg + '$') def test_reference_error(self, n=1): self.error_triggerer.trigger_error( "ReferenceError", "backgroundscript") self._do_checks( n, ( r"^JavaScript error: " r"chrome://rpcontinued/content/ui-testing/services\.js, " r"line [0-9]+: ReferenceError: " ) ) def test_reference_error_in_promise_chain(self, n=1): self.error_triggerer.trigger_error( "ReferenceError:Promise", "backgroundscript") self._do_checks( n, ( r"^JavaScript error: " r"chrome://rpcontinued/content/ui-testing/services\.js, " r"line [0-9]+: ReferenceError: " ) ) ########################## # Private Helper Methods # ########################## def _do_checks(self, n, message_regexp): raise NotImplementedError class ErrorDetectionTestCase(RequestPolicyTestCase): expected_error = False def setUp(self): super(ErrorDetectionTestCase, self).setUp() self.gecko_log.start_ignoring_errors(expected=self.expected_error) def tearDown(self): try: self.gecko_log.stop_ignoring_errors() finally: super(ErrorDetectionTestCase, self).tearDown() class TestGeckoLog(ErrorDetectionTests, ErrorDetectionTestCase): def setUp(self): super(TestGeckoLog, self).setUp() self._assert_n_errors(0) ########################## # Private Helper Methods # ########################## def _do_checks(self, n, message_regexp): self._assert_n_errors(n) self._assert_error(message_regexp) def _get_error_lines_including_ignored_errors(self): return self.gecko_log.get_error_lines_of_current_test( return_ignored_as_well=True) def _get_error_lines(self): return self.gecko_log.get_error_lines_of_current_test() def _assert_n_errors(self, n): Wait(self.marionette).until( lambda _: ( len(self._get_error_lines_including_ignored_errors()) == n ) ) self.assertEqual(0, len(self._get_error_lines())) def _assert_error(self, message_regexp): error_lines = self._get_error_lines_including_ignored_errors() line = error_lines[-1] self.assertTrue( re.search(message_regexp, line), msg=("String \"" + line + "\" matched!")) class TestFailureOnTearDown(ErrorDetectionTests, ErrorDetectionTestCase): expected_error = True @expectedFailure def tearDown(self): super(TestFailureOnTearDown, self).tearDown() ########################## # Private Helper Methods # ########################## # Explicitly do *not* perform checks in _do_checks(), to test if the # TestRunner's tearDown fn waits long enough to detect all logging errors. def _do_checks(self, n, message_regexp): pass
RequestPolicyContinued/requestpolicy
tests/marionette/rp_puppeteer/tests-quick/test_error_detection.py
test_error_detection.py
py
3,791
python
en
code
253
github-code
6
[ { "api_name": "rp_ui_harness.RequestPolicyTestCase", "line_number": 60, "usage_type": "name" }, { "api_name": "marionette_driver.Wait", "line_number": 98, "usage_type": "call" }, { "api_name": "re.search", "line_number": 109, "usage_type": "call" }, { "api_name": "marionette.expectedFailure", "line_number": 117, "usage_type": "name" } ]
10426113272
from measurements.models import Location, Station, SourceType, Network from django.contrib.gis.geos import Point import requests from bs4 import BeautifulSoup from datetime import datetime, timedelta import pandas as pd import re IOC = "http://www.ioc-sealevelmonitoring.org/station.php?code={}" stations = ( ('Trieste', 'TR22'), ('Venice', 'VE19'), ('Ancona', 'AN15'), ('S. Benedetto Del Tronto', 'SB36'), ('Stari Grad', 'stari'), ('Vela Luka', 'vela'), ('Sobra', 'sobr'), ('Otranto', 'OT15'), ('Kerkyra, Corfu', 'corf'), ('Crotone', 'CR08'), ('Le Castella', 'lcst'), ('Itea', 'itea'), ('Panormos', 'pano'), ('Aigio', 'aigi'), ('Katakolo', 'kata'), # ('Kyparissia', 'kypa'), ) ioc_source, created = SourceType.objects.get_or_create(code='ioc') ioc_network, created = Network.objects.get_or_create(code='ioc') # IOC stations for label, code in stations: r = requests.get(IOC.format(code)) # print(r.text) soup = BeautifulSoup(r.text) for elem in soup(text='Latitude '): lat = float(elem.find_next('td').contents[0]) for elem in soup(text='Longitude '): lon = float(elem.find_next('td').contents[0]) # print(lon, lat) l, created = Location.objects.get_or_create(label=label) l.geo = Point(lon, lat) l.save() # print(label, l) s, created = Station.objects.get_or_create(code=code, label=label, source=ioc_source, network=ioc_network, location=l)
CNR-ISMAR/ecoads
scripts/import_station_locations.py
import_station_locations.py
py
1,738
python
en
code
0
github-code
6
[ { "api_name": "measurements.models.SourceType.objects.get_or_create", "line_number": 31, "usage_type": "call" }, { "api_name": "measurements.models.SourceType.objects", "line_number": 31, "usage_type": "attribute" }, { "api_name": "measurements.models.SourceType", "line_number": 31, "usage_type": "name" }, { "api_name": "measurements.models.Network.objects.get_or_create", "line_number": 32, "usage_type": "call" }, { "api_name": "measurements.models.Network.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "measurements.models.Network", "line_number": 32, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 38, "usage_type": "call" }, { "api_name": "measurements.models.Location.objects.get_or_create", "line_number": 44, "usage_type": "call" }, { "api_name": "measurements.models.Location.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "measurements.models.Location", "line_number": 44, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.Point", "line_number": 45, "usage_type": "call" }, { "api_name": "measurements.models.Station.objects.get_or_create", "line_number": 48, "usage_type": "call" }, { "api_name": "measurements.models.Station.objects", "line_number": 48, "usage_type": "attribute" }, { "api_name": "measurements.models.Station", "line_number": 48, "usage_type": "name" } ]
27535721148
import json from web3 import Web3 from decimal import Decimal from router import* import time # add blockchain connection information cronos_mainnet_rpc = "ws://rpc.vvs.finance/" w3 = Web3(Web3.WebsocketProvider(cronos_mainnet_rpc, websocket_timeout= 6000)) ERC20ABI = json.load(open('./erc20_abi.abi')) #getSelector("swapExactTokensForTokens(uint256,uint256,address[],address,uint256)")= 0x38ed1739 #getSelector("swapExactETHForTokens(uint256 amountOutMin, address[] path, address to, uint256 deadline)")= 0x7ff36ab5 #getSelector("swapExactTokensForETH(uint256,uint256,address[],address,uint256)")= 0x18cbafe5 mycontract = '0x109C48345e84459C658e79e806F6DdB236DbDD26' # multilswap = Web3.toChecksumAddress(mycontract) # multilswap_abi = json.loads() # multilswap_contract = w3.eth.contract(address = multilswap, abi= multilswap_abi) # amountIn = optimalAmount def dataswap_encode(contract, amountIn, amountOut, path, mycontract): deadline = 1000 dataswap = contract.encodeABI(fn_name="swapExactTokensForTokens", args=[amountIn,amountOut, path, mycontract,deadline]) return dataswap def dataswap(route,tokenIn, tokenOut, amountIn, mycontract): # route = trade['route'] tos = [] tos = [t['router:'] for t in route] data = [] _tokenInapproveaddr = [] n= 0 for pair in route: if pair['router:'] == '0x145863Eb42Cf62847A6Ca784e6416C1682b1b2Ae': contract = VVS_ROUTER_CONTRACT elif pair['router:'] == '0x145677FC4d9b8F19B5D56d1820c48e0443049a30': contract = MMF_ROUTER_CONTRACT elif pair['router:'] == '0xcd7d16fB918511BF7269eC4f48d61D79Fb26f918': contract = CRONA_ROUTER_CONTRACT elif pair['router:'] == '0x5bFc95C3BbF50579bD57957cD074fa96a4d5fF9F': contract = CYBORG_ROUTER_CONTRACT if n == 0: amountIn = amountIn if pair['token0']['address'] == tokenIn['address']: tokenOut = pair['token1'] else: tokenOut = pair['token0'] path = [tokenIn['address'],tokenOut['address']] _tokenInapproveaddr.append(tokenIn['address']) amountOut_list = contract.functions.getAmountsOut(amountIn, path).call() amountOut= amountOut_list[1] print('amountout1:',amountOut) encode = dataswap_encode(contract, amountIn, amountOut, path, mycontract) data.append(encode) # approve = tokenIn = tokenOut amountIn = amountOut if n > 0: if pair['token0']['address'] == tokenIn['address']: tokenOut = pair['token1'] else: tokenOut = pair['token0'] path = [tokenIn['address'],tokenOut['address']] _tokenInapproveaddr.append(tokenIn['address']) amountOut_list = contract.functions.getAmountsOut(amountIn, path).call() amountOut= amountOut_list[1] print('amountout2:',amountOut) encode = dataswap_encode(contract, amountIn, amountOut, path, mycontract) data.append(encode) # approve = tokenIn = tokenOut amountIn = amountOut n+=1 print('profit:', amountIn - 50*pow(10,18)) return tos, data, _tokenInapproveaddr
Galahad091/My-arb-on-fantom
test/encode_data.py
encode_data.py
py
2,926
python
en
code
0
github-code
6
[ { "api_name": "web3.Web3", "line_number": 9, "usage_type": "call" }, { "api_name": "web3.Web3.WebsocketProvider", "line_number": 9, "usage_type": "call" }, { "api_name": "json.load", "line_number": 10, "usage_type": "call" } ]
23125697422
import os import sys sys.path.append("..") import taobaoTry.taobaoTryUtils from task.logUtils import logUtils class taobaoTryTask: def enum(**enums): return type('Enum', (), enums) taskType = enum(JingXuan=1, All=2) mTaskTypeFor = taskType.All taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoTry.lock" def __init__(self,taskTypeFor=taskType.All): global mTaskTypeFor taobaoTryTask.mTaskTypeFor = taskTypeFor if(taskTypeFor==taobaoTryTask.taskType.JingXuan): taobaoTryTask.taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoJingXuanTry.lock" else: taobaoTryTask.taobaoTryTaskLockFile = ".." + os.path.sep + "lockFile" + os.path.sep + "taobaoAllTry.lock" if (os.path.exists(taobaoTryTask.taobaoTryTaskLockFile)): if (taskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型文件已存在,即将退出") else: logUtils.info("所有类型文件已存在,即将退出") os._exit(0) else: # os.mknod('.lock') if (taskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型创建文件") else: logUtils.info("所有类型创建文件") open(taobaoTryTask.taobaoTryTaskLockFile, "w") if(taskTypeFor==taobaoTryTask.taskType.JingXuan): self.actionJingXuanTask() else: self.actionAllTask() def __del__(self): if (os.path.exists(taobaoTryTask.taobaoTryTaskLockFile)): os.remove(taobaoTryTask.taobaoTryTaskLockFile) if (taobaoTryTask.mTaskTypeFor == taobaoTryTask.taskType.JingXuan): logUtils.info("精选类型退出程序") else: logUtils.info("所有类型退出程序") def actionAllTask(self): logUtils.info("actionAllTask所有") taobaoTry.taobaoTryUtils.taobaoTryUtils().handlePcTryList(None, 0, 1) # 第一个参数传入负数是精选,传0是所有的都采集 def actionJingXuanTask(self): logUtils.info("actionAllTask精选") taobaoTry.taobaoTryUtils.taobaoTryUtils().handlePcTryList(None, -1, 1) # 第一个参数传入负数是精选,传0是所有的都采集 # taobaoTryTask(taobaoTryTask.taskType.JingXuan).actionJingXuanTask() taobaoTryTask(taobaoTryTask.taskType.JingXuan)
tudousiji/pachong
taobaoTry/taobaoTryTask.py
taobaoTryTask.py
py
2,503
python
en
code
3
github-code
6
[ { "api_name": "sys.path.append", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 4, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 25, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 25, "usage_type": "name" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 27, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 27, "usage_type": "name" }, { "api_name": "os._exit", "line_number": 28, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 32, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 32, "usage_type": "name" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 34, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 34, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 44, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 46, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 46, "usage_type": "name" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 48, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 48, "usage_type": "name" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 51, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 51, "usage_type": "name" }, { "api_name": "taobaoTry.taobaoTryUtils.taobaoTryUtils.taobaoTryUtils", "line_number": 52, "usage_type": "call" }, { "api_name": "taobaoTry.taobaoTryUtils.taobaoTryUtils", "line_number": 52, "usage_type": "attribute" }, { "api_name": "taobaoTry.taobaoTryUtils", "line_number": 52, "usage_type": "name" }, { "api_name": "task.logUtils.logUtils.info", "line_number": 55, "usage_type": "call" }, { "api_name": "task.logUtils.logUtils", "line_number": 55, "usage_type": "name" }, { "api_name": "taobaoTry.taobaoTryUtils.taobaoTryUtils.taobaoTryUtils", "line_number": 56, "usage_type": "call" }, { "api_name": "taobaoTry.taobaoTryUtils.taobaoTryUtils", "line_number": 56, "usage_type": "attribute" }, { "api_name": "taobaoTry.taobaoTryUtils", "line_number": 56, "usage_type": "name" } ]
29522073566
import os import random import sys import yaml import numpy as np with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile, Loader=yaml.FullLoader) ymlfile.close() if not cfg['use_gpu']: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' seed = cfg['seed'] os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) import tensorflow as tf from tensorflow.keras.datasets.fashion_mnist import load_data from tensorflow.keras.utils import to_categorical tf.compat.v1.set_random_seed(seed) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) tf.compat.v1.disable_eager_execution() # To solve the speed problem of TF2 # Deprecated in tf2 config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.intra_op_parallelism_threads = 4 config.inter_op_parallelism_threads = 4 tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=config)) from utils.deepnetwork import DeepNetwork from utils.tracker import Tracker def fashion_mnist(params): tracker = Tracker(seed, 'fashion_mnist.h5') # Load dataset (x_train, y_train), (x_test, y_test) = load_data() # Preprocessing # Reshape data as dataset is grayscaled x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1) x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1) # Convert labels into categorial n_classes = params['n_classes'] y_train = to_categorical(y_train, n_classes) y_test = to_categorical(y_test, n_classes) # Normalize images values x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # Create model model = DeepNetwork.build((28, 28, 1), params) # Train model model.fit(x_train, y_train, batch_size=params['batch_size'], epochs=params['n_epochs'], validation_data=(x_test, y_test), shuffle=True) # Evaluate performance scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # Save model tracker.save_model(model) if __name__ == "__main__": fashion_mnist(cfg['train'])
emarche/Fashion-MNIST
main.py
main.py
py
2,261
python
en
code
0
github-code
6
[ { "api_name": "yaml.load", "line_number": 9, "usage_type": "call" }, { "api_name": "yaml.FullLoader", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "random.seed", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 18, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.set_random_seed", "line_number": 24, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.logging.set_verbosity", "line_number": 26, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 26, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.disable_eager_execution", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 27, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.ConfigProto", "line_number": 30, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 30, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.keras.backend.set_session", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 34, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.Session", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.get_default_graph", "line_number": 34, "usage_type": "call" }, { "api_name": "utils.tracker.Tracker", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.keras.datasets.fashion_mnist.load_data", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.keras.utils.to_categorical", "line_number": 52, "usage_type": "call" }, { "api_name": "tensorflow.keras.utils.to_categorical", "line_number": 53, "usage_type": "call" }, { "api_name": "utils.deepnetwork.DeepNetwork.build", "line_number": 62, "usage_type": "call" }, { "api_name": "utils.deepnetwork.DeepNetwork", "line_number": 62, "usage_type": "name" } ]
19521127011
from panda3d.core import CollisionNode, CollisionTube, CollisionBox, AmbientLight, Vec4, DirectionalLight from FreedomCampaignGame.comm_with_server import ClientLogObject client_logger = ClientLogObject().client_logger class GameMap(): def __init__(self, render, load_model_fun): self.render = render # 加载环境模型。将加载models文件夹中的environment.egg文件,返回该模型的指针 self.load_model = load_model_fun self.scene = self.load_model("Models/Environment/environment") # 重新绘制要 渲染的模型。 self.scene.reparent_to(self.render) client_logger.info("开始生成地图障碍物...") self.set_map_solid() client_logger.info("加载环境光、定向灯光..") self.load_light_all() def load_light_all(self): # 添加环境光, AmbientLight对象是一个节点 self.ambient_light = AmbientLight("ambient light") self.ambient_light.set_color(Vec4(0.2, 0.2, 0.2, 1)) self.ambient_light_node_path = self.render.attach_new_node(self.ambient_light) # 环境灯光默认自动影响指示节点下方的所有节点,希望灯光影响所有节点场景,则需要在render(渲染)上指定灯光 self.render.set_light(self.ambient_light_node_path) # 添加定向光,可指定方向 self.directional_light = DirectionalLight("directional light") self.directional_light_node_path = self.render.attach_new_node(self.directional_light) # 一个正面对着你的人,H相当于它左转,P相当于它向左倒也就是顺时针转,R是往前向你这边扑倒旋转,光照射出的位置变动 self.directional_light_node_path.setHpr(45, -45, 0) self.render.set_light(self.directional_light_node_path) # 应用着色器生成器,希望它影响的NodePath上调用“ setShaderAuto”即可。这里是将着色器生成器应用于“渲染” self.render.setShaderAuto() def set_box_solid(self, size=(0, 1, 1, 1), show=True): # size, 第一个0暂时不知道干嘛,官网文档也没说明,后面3分别是长宽高 box_solid = CollisionBox(size[0], size[1], size[2], size[3]) box_node = CollisionNode("box") box_node.add_solid(box_solid) box = self.render.attach_new_node(box_node) if show: box.show() return box def set_tube_solid(self, size=(0, 0, 0, 0, 0, 0, 0.4), show=True): # 管由其起点、终点和半径定义。这里定义的一个管子物体从(-8,0,0)到为(8,0,0),半径为0.4的圆形管道 set_tube_solid = CollisionTube(size[0], size[1], size[2], size[3], size[4], size[5], size[6]) wall_node = CollisionNode("wall") wall_node.add_solid(set_tube_solid) wall = self.render.attach_new_node(wall_node) if show: wall.show() return wall def set_map_solid(self): # 放一个大的管子 # wall = self.set_tube_solid(size=(-2.0, 0, 0, 2.0, 0, 0, 0.2)) # wall.setY(-3) # 用box设置楼梯 box = self.set_box_solid(size=(0, 1, 1.5, 0.2)) box.setX(-2) box.setZ(0.2) box = self.set_box_solid(size=(0, 1, 1.5, 0.4)) box.setX(-3) box.setZ(0.4) box = self.set_box_solid(size=(0, 1, 1.5, 0.6)) box.setX(-4) box.setZ(0.6) # 用box设置墙,这里是弄门这里的两面墙 box = self.set_box_solid(size=(0, 3.65, 0.1, 1.5)) box.setY(8.1) box.setX(-4.3) box.setZ(1.5) box = self.set_box_solid(size=(0, 3.65, 0.1, 1.5)) box.setY(8.1) box.setX(4.3) box.setZ(1.5) # 弄门,门栏 box = self.set_box_solid(size=(0, 0.65, 0.1, 0.25)) box.setY(8.2) box.setZ(0.25) # 门顶部 box = self.set_box_solid(size=(0, 0.65, 0.1, 0.2)) box.setY(8.1) box.setZ(2.04) box = self.set_box_solid(size=(0, 8, 0.1, 1.5)) box.setY(-8.1) box.setZ(1.5) box = self.set_box_solid(size=(0, 0.1, 8, 1.5)) box.setX(8.1) box.setZ(1.5) box = self.set_box_solid(size=(0, 0.1, 8, 1.5)) box.setX(-8.1) box.setZ(1.5)
optimjiang/my_3d_game
game_map.py
game_map.py
py
4,327
python
zh
code
0
github-code
6
[ { "api_name": "FreedomCampaignGame.comm_with_server.ClientLogObject", "line_number": 3, "usage_type": "call" }, { "api_name": "panda3d.core.AmbientLight", "line_number": 20, "usage_type": "call" }, { "api_name": "panda3d.core.Vec4", "line_number": 21, "usage_type": "call" }, { "api_name": "panda3d.core.DirectionalLight", "line_number": 26, "usage_type": "call" }, { "api_name": "panda3d.core.CollisionBox", "line_number": 36, "usage_type": "call" }, { "api_name": "panda3d.core.CollisionNode", "line_number": 37, "usage_type": "call" }, { "api_name": "panda3d.core.CollisionTube", "line_number": 46, "usage_type": "call" }, { "api_name": "panda3d.core.CollisionNode", "line_number": 47, "usage_type": "call" } ]
23055488423
""" Creation: Author: Martin Grunnill Date: 2022-11-01 Description: Getting prevelance data for world cup teams. """ import copy import pandas as pd import datetime schedule_df = pd.read_csv('data_extraction/Fifa 2022 Group stages matches with venue capacity.csv') covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv') population_df = pd.read_csv('data_extraction/Population estimates world bank.csv',header=2, index_col='Country Name') # downloaded from https://data.worldbank.org/indicator/SP.POP.TOTL https://api.worldbank.org/v2/en/indicator/SP.POP.TOTL?downloadformat=csv # need to change covid_data to datetime type covid_data.date = pd.to_datetime(covid_data.date) date_to = datetime.datetime(2022, 11, 18) covid_data = covid_data[covid_data.date<=date_to] #%% # select data for only countries in the world cup countries = set(schedule_df['Team A'].unique().tolist() + schedule_df['Team B'].unique().tolist()) # looking at the data set (https://covid.ourworldindata.org/data/owid-covid-data.csv) new cases smoothed # for England and Wales is pooled under United Kingdom proxies = copy.deepcopy(countries) proxies.add('United Kingdom') proxies.remove('England') proxies.remove('Wales') covid_data = covid_data[covid_data.location.isin(proxies)] # sense check to make sure we have selected the right places selected_proxies = covid_data.location.unique() len(proxies)==len(selected_proxies) #%% Selecting most recent available data for new_cases_smoothed # remove missing data covid_data.new_cases_smoothed = covid_data.new_cases_smoothed.replace({0:None}) covid_data = covid_data[pd.notnull(covid_data.new_cases_smoothed)] prevelance_records = [] for country in countries: if country in ['England', 'Wales']: proxy = 'United Kingdom' else: proxy = country # select proxie location_data = covid_data[covid_data.location==proxy] # latest date for which we have information latest_date = location_data.date.max() latest_date_data = location_data[location_data.date==latest_date] cases_smoothed = latest_date_data.new_cases_smoothed.iloc[0] if proxy=='South Korea': population = population_df.loc['Korea, Rep.', '2021'] elif proxy == 'Iran': population = population_df.loc['Iran, Islamic Rep.', '2021'] else: population = population_df.loc[proxy,'2021'] entry = {'country': country, 'proxy': proxy, 'date': latest_date, 'case_prevalence': cases_smoothed/population, } prevelance_records.append(entry) prevelance_df = pd.DataFrame(prevelance_records) #%% Adding data on infection to detection ratio # Getting data frame # location of zip file downloaded from https://ghdx.healthdata.org/sites/default/files/record-attached-files/HME_COVID_19_IES_2019_2021_RATIOS.zip zip_file = 'data_extraction/HME_COVID_19_IES_2019_2021_RATIOS.zip' # read file detection_raio_df = pd.read_csv(zip_file) # Selecting detections/infections detection_raio_df.measure_name.unique() detection_raio_df = detection_raio_df[detection_raio_df.measure_name=='Cumulative infection-detection ratio'] # change date to date detection_raio_df['date'] = pd.to_datetime(detection_raio_df['date']) detection_raio_df = detection_raio_df[detection_raio_df.date==detection_raio_df.date.max()] detection_raio_df.location_name = detection_raio_df.location_name.replace({'USA':'United States','UK':'United Kingdom'}) values_list = ['value_mean','value_lower','value_upper'] # Change percent to raw number for column in values_list: detection_raio_df[column] = detection_raio_df[column]/100 detection_raio_df.metric_name = 'raw' # invert values so they are now infections/detected cases. for column in values_list: detection_raio_df[column] = detection_raio_df[column]**-1 to_merge = detection_raio_df[detection_raio_df.location_name.isin(proxies)] to_merge = to_merge[['location_name']+values_list] prevelance_df = prevelance_df.merge(to_merge, left_on='proxy', right_on='location_name') prevelance_df.rename(columns={'value_lower': 'ratio_upper', 'value_mean': 'ratio_mean', 'value_upper': 'ratio_lower'}, inplace=True) prevelance_df['infection_prevalence_lower'] = prevelance_df.case_prevalence*prevelance_df.ratio_lower prevelance_df['infection_prevalence_mean'] = prevelance_df.case_prevalence*prevelance_df.ratio_mean prevelance_df['infection_prevalence_upper'] = prevelance_df.case_prevalence*prevelance_df.ratio_upper # host min and max host_min = prevelance_df[prevelance_df.country=='Qatar']['infection_prevalence_lower'].tolist()[0] host_max = prevelance_df[prevelance_df.country=='Qatar']['infection_prevalence_upper'].tolist()[0] # Everybody elses min max visior_min = prevelance_df[prevelance_df.country!='Qatar']['infection_prevalence_lower'].min() visior_max = prevelance_df[prevelance_df.country!='Qatar']['infection_prevalence_upper'].max()
LIAM-COVID-19-Forecasting/Modelling-Disease-Mitigation-at-Mass-Gatherings-A-Case-Study-of-COVID-19-at-the-2022-FIFA-World-Cup
Running_and_analysing_simulations/parameters/data_extraction/getting_prevelance_data.py
getting_prevelance_data.py
py
5,030
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 12, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 13, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 19, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.notnull", "line_number": 40, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 68, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 75, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 80, "usage_type": "call" } ]
854208264
import core.modules import core.modules.module_registry from core.modules.vistrails_module import Module, ModuleError import numpy import scipy import scipy.ndimage from Array import * from Matrix import * class ArrayImaging(object): my_namespace = 'numpy|imaging' class ExtractRGBAChannel(ArrayImaging, Module): """ Extract a single color channel from an array representing an RGBA type image. This will return a 2D array with the single channel specified as the scalar elements """ def compute(self): im = self.get_input("Image").get_array() chan = self.get_input("Channel") ar = im[:,:,chan] out = NDArray() out.set_array(ar) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Image", (NDArray, 'Image Array')) reg.add_input_port(cls, "Channel", (basic.Integer, 'Channel')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class GaussianGradientMagnitude(ArrayImaging, Module): """ Calculate the Gradient Magnitude of an input NDArray using gaussian derivatives. The standard-deviation of the Gaussian filter are given for each axis as a sequence or as a single number, in which case the filter will be isotropic. """ def compute(self): im = self.get_input("Image") sigma = self.get_input_list("Sigmas") if len(sigma) <= 1: sigma = sigma[0] der = scipy.ndimage.gaussian_gradient_magnitude(im.get_array(), sigma) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Image", (NDArray, 'Image Array')) reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class JointHistogram(ArrayImaging, Module): """ Calculate the Joint Histogram of 2 inputs. The inputs can be of arbitrary dimension, but must be equivalently sized. """ def compute(self): in_x = self.get_input("Array One").get_array() in_y = self.get_input("Array Two").get_array() size_x = self.get_input("Bins X") size_y = self.get_input("Bins Y") take_log = True if self.has_input("Log10"): take_log = self.get_input("Log10") out_ar = numpy.zeros((size_x, size_y)) min_x = in_x.min() max_x = in_x.max() - min_x min_y = in_y.min() max_y = in_y.max() - min_y in_x = in_x.flatten() in_y = in_y.flatten() for i in xrange(in_x.size): x_cor = int(((in_x[i] - min_x)/max_x) * (size_x - 1)) y_cor = int(((in_y[i] - min_y)/max_y) * (size_y - 1)) out_ar[x_cor,y_cor] += 1.0 if take_log: out_ar = out_ar + 1.0 out_ar = scipy.log(out_ar) out = NDArray() out_ar = out_ar.transpose() out_ar = out_ar[::-1] out.set_array(out_ar) self.set_output("Joint Histogram", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Array One", (NDArray, 'X Axis Input')) reg.add_input_port(cls, "Array Two", (NDArray, 'Y Axis Input')) reg.add_input_port(cls, "Log10", (basic.Boolean, 'Use Log of Histogram'), True) reg.add_input_port(cls, "Bins X", (basic.Integer, 'Number of X Bins')) reg.add_input_port(cls, "Bins Y", (basic.Integer, 'Number of Y Bins')) reg.add_output_port(cls, "Joint Histogram", (NDArray, 'Joint Histogram')) class GaussianSmooth(ArrayImaging, Module): """ Smooth the Input array with a multi-dimensional gaussian kernel. The standard-deviation of the Gaussian filter are given for each axis as a sequence or as a single number, in which case the filter will be isotropic. """ def compute(self): im = self.get_input("Input Array") sigma = self.get_input_list("Sigmas") if len(sigma) <= 1: sigma = sigma[0] der = scipy.ndimage.gaussian_filter(im.get_array(), sigma) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array')) reg.add_input_port(cls, "Sigmas", (basic.Float, 'Standard Deviations')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class MedianFilter(ArrayImaging, Module): """ Smooth the Input array with a multi-dimensional median filter. """ def compute(self): im = self.get_input("Input Array") k_size = self.get_input("Size") der = scipy.ndimage.median_filter(im.get_array(), size=k_size) out = NDArray() out.set_array(der) self.set_output("Output Array", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input Array", (NDArray, 'Image Array')) reg.add_input_port(cls, "Size", (basic.Integer, 'Kernel Size')) reg.add_output_port(cls, "Output Array", (NDArray, 'Output Array')) class ImageDifference(ArrayImaging, Module): """ Calculate the difference between two input images. """ def compute(self): im = self.get_input("Input 1") im2 = self.get_input("Input 2") da_ar = im.get_array() - im2.get_array() da_ar = numpy.abs(da_ar) out = NDArray() out.set_array(da_ar) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input 1", (NDArray, 'Image Array')) reg.add_input_port(cls, "Input 2", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array')) class ImageNormalize(ArrayImaging, Module): """ Move the range of the image to [0,1] """ def compute(self): im = self.get_input("Input") im_max = im.get_array().max() im_ar = im.get_array() / im_max out = NDArray() out.set_array(im_ar) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array')) class SobelGradientMagnitude(ArrayImaging, Module): """ Use n-dimensional sobel kernels to compute the gradient magnitude of an image """ def compute(self): im = self.get_input("Input").get_array() mag = numpy.zeros(im.shape) for i in xrange(im.ndim): kern = scipy.ndimage.sobel(im, axis=i) mag += kern*kern out = NDArray() out.set_array(numpy.sqrt(mag)) self.set_output("Output", out) @classmethod def register(cls, reg, basic): reg.add_module(cls, namespace=cls.my_namespace) reg.add_input_port(cls, "Input", (NDArray, 'Image Array')) reg.add_output_port(cls, "Output", (NDArray, 'Output Array'))
VisTrails/VisTrails
contrib/NumSciPy/Imaging.py
Imaging.py
py
7,502
python
en
code
100
github-code
6
[ { "api_name": "core.modules.vistrails_module.Module", "line_number": 13, "usage_type": "name" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 32, "usage_type": "name" }, { "api_name": "scipy.ndimage.gaussian_gradient_magnitude", "line_number": 41, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 41, "usage_type": "attribute" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 53, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 66, "usage_type": "call" }, { "api_name": "scipy.log", "line_number": 83, "usage_type": "call" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 100, "usage_type": "name" }, { "api_name": "scipy.ndimage.gaussian_filter", "line_number": 109, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 109, "usage_type": "attribute" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 121, "usage_type": "name" }, { "api_name": "scipy.ndimage.median_filter", "line_number": 126, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 126, "usage_type": "attribute" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 138, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 145, "usage_type": "call" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 158, "usage_type": "name" }, { "api_name": "core.modules.vistrails_module.Module", "line_number": 175, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 180, "usage_type": "call" }, { "api_name": "scipy.ndimage.sobel", "line_number": 182, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 182, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 186, "usage_type": "call" } ]
14837094680
import frappe import json #从前台传入items,客户料号→料号 @frappe.whitelist() def so_refcode_to_itemcode(): #提取js传入参数 ao_items = json.loads(frappe.form_dict.get("items")) customer_name = frappe.form_dict.get("customer") #获取js传入的全部客户料号(非重复) s_ref_code = {r.get("customer_item_code") for r in ao_items} #从xx表获取所有客户料号对应的【料号】 item_code_map = dict( frappe.get_all("Item Customer Detail", filters = {"customer_name":customer_name, "ref_code":("in", s_ref_code) }, fields = ["ref_code", "parent"], as_list = 1 )) # frappe.msgprint(customer_name+"--"+str(s_ref_code)+"--"+str(items)) #返回行id:料号键值对(字典) result = {r.get("name"):item_code_map.get(r.get("customer_item_code")) for r in ao_items} frappe.response["message"] = result
cwlong1987/yhen
yhen/api/sales_order.py
sales_order.py
py
866
python
en
code
0
github-code
6
[ { "api_name": "json.loads", "line_number": 8, "usage_type": "call" }, { "api_name": "frappe.form_dict.get", "line_number": 8, "usage_type": "call" }, { "api_name": "frappe.form_dict", "line_number": 8, "usage_type": "attribute" }, { "api_name": "frappe.form_dict.get", "line_number": 9, "usage_type": "call" }, { "api_name": "frappe.form_dict", "line_number": 9, "usage_type": "attribute" }, { "api_name": "frappe.get_all", "line_number": 14, "usage_type": "call" }, { "api_name": "frappe.response", "line_number": 24, "usage_type": "attribute" }, { "api_name": "frappe.whitelist", "line_number": 5, "usage_type": "call" } ]
31366334882
import torch import torch.nn as nn from GAWWN.tools.config import cfg from GAWWN.tools.tools import replicate class keyMulD(nn.Module): def __init__(self): super(keyMulD, self).__init__() self.ndf = cfg.GAN.NDF self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.keypoint_dim = cfg.KEYPOINT.DIM self.conv = nn.Sequential( nn.Conv2d(self.nt_d + self.ndf * 2, self.ndf * 2, 3, 1, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True) ) def forward(self, imgGlobal, prep_txt_d, locs): prep_txt_d = replicate(prep_txt_d, 2, self.keypoint_dim) # (bs, nt_d, 16) prep_txt_d = replicate(prep_txt_d, 3, self.keypoint_dim) # (bs, nt_d, 16, 16) imgTextGlobal = torch.cat((imgGlobal, prep_txt_d), 1) # (bs, nt_d + ndf * 2, 16, 16) imgTextGlobal = self.conv(imgTextGlobal) # (bs, ndf * 2, 16, 16) # loc (bs, num_elt, keypoint_dim, keypoint_dim) locs = torch.sum(locs, 1) # (bs, keypoint_dim, keypoint_dim) locs = torch.clamp(locs, 0, 1) locs = replicate(locs, 1, self.ndf * 2) x = imgTextGlobal * locs return x class regionD(nn.Module): def __init__(self): super(regionD, self).__init__() self.ndf = cfg.GAN.NDF self.num_elt = cfg.KEYPOINT.NUM_ELT self.F_KeyMulD = keyMulD() self.conv = nn.Sequential( nn.Conv2d(self.ndf * 2 + self.num_elt, self.ndf * 2, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 2, self.ndf, 2) ) self.LReLU = nn.LeakyReLU(0.2, True) def forward(self, imgGlobal, prep_txt_d, locs): keyMul = self.F_KeyMulD(imgGlobal, prep_txt_d, locs) x = torch.cat((keyMul, locs), 1) # (bs, ngf * 2 + num_elt, 16, 16) x = x.contiguous() x = self.conv(x) x = x.mean(3) x = x.mean(2) x = self.LReLU(x) return x class globalD(nn.Module): def __init__(self): super(globalD, self).__init__() self.ndf = cfg.GAN.NDF self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.convGlobal = nn.Sequential( nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1), nn.BatchNorm2d(self.ndf * 4), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1), nn.BatchNorm2d(self.ndf * 8), nn.LeakyReLU(0.2, True) ) self.conv = nn.Sequential( nn.Conv2d(self.ndf * 8 + self.nt_d, self.ndf * 4, 1), nn.BatchNorm2d(self.ndf * 4), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 4, self.ndf, 4), nn.BatchNorm2d(self.ndf), nn.LeakyReLU(0.2, True) ) def forward(self, imgGlobal, prep_txt_d): img = self.convGlobal(imgGlobal) # (bs, ndf * 8, 4, 4) txtGlobal = replicate(prep_txt_d, 2, 4) # (bs, nt_d, 4) txtGlobal = replicate(txtGlobal, 3, 4) # (bs, nt_d, 4, 4) imgTxtGlobal = torch.cat((img, txtGlobal), 1) # (bs, nt_d + ndf * 8, 4 ,4) imgTxtGlobal = imgTxtGlobal.contiguous() imgTxtGlobal = self.conv(imgTxtGlobal) # (bs, ndf, 1, 1) imgTxtGlobal = imgTxtGlobal.view(-1, self.ndf) return imgTxtGlobal class Dis(nn.Module): def __init__(self): super(Dis, self).__init__() self.ndf = cfg.GAN.NDF self.nt = cfg.TEXT.TXT_EMBEDDING_DIM self.nt_d = cfg.TEXT.TXT_FEATURE_DIM self.prep_txtD = nn.Sequential( nn.Linear(self.nt, self.nt_d), nn.LeakyReLU(0.2, True) ) self.imgGlobalD = nn.Sequential( nn.Conv2d(3, self.ndf, 4, 2, 1), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf, self.ndf, 4, 2, 1), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(self.ndf * 2, self.ndf * 2, 3, 1, 1), nn.BatchNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, True) ) self.F_regionD = regionD() self.F_globalD = globalD() self.judge = nn.Sequential( nn.Linear(self.ndf * 2, self.ndf), nn.BatchNorm1d(self.ndf), nn.LeakyReLU(0.2, True), nn.Linear(self.ndf, 1), nn.Sigmoid() ) def forward(self, img, txt, locs): prep_txt_d = self.prep_txtD(txt) image_Global = self.imgGlobalD(img) region_d = self.F_regionD(image_Global, prep_txt_d, locs) global_d = self.F_globalD(image_Global, prep_txt_d) x = torch.cat((region_d, global_d), 1) x = self.judge(x) return x
LosSherl/GAWWN.Pytorch
GAWWN/model/discriminator.py
discriminator.py
py
4,867
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 7, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.GAN", "line_number": 10, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 10, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.TEXT", "line_number": 11, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 11, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.KEYPOINT", "line_number": 12, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 15, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "GAWWN.tools.tools.replicate", "line_number": 21, "usage_type": "call" }, { "api_name": "GAWWN.tools.tools.replicate", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 28, "usage_type": "call" }, { "api_name": "GAWWN.tools.tools.replicate", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 35, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 35, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.GAN", "line_number": 38, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 38, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.KEYPOINT", "line_number": 39, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 39, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 42, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 46, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.GAN", "line_number": 64, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 64, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.TEXT", "line_number": 65, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 65, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 67, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 69, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 70, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 70, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 71, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 78, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 78, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 79, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 80, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 81, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 82, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 82, "usage_type": "name" }, { "api_name": "GAWWN.tools.tools.replicate", "line_number": 88, "usage_type": "call" }, { "api_name": "GAWWN.tools.tools.replicate", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 98, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 98, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.GAN", "line_number": 101, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 101, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.TEXT", "line_number": 102, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 102, "usage_type": "name" }, { "api_name": "GAWWN.tools.config.cfg.TEXT", "line_number": 103, "usage_type": "attribute" }, { "api_name": "GAWWN.tools.config.cfg", "line_number": 103, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 105, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 106, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 106, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 107, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 109, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 109, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 110, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 110, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 111, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 111, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 113, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 114, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 115, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 116, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 117, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 117, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 118, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 118, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 119, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 119, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 124, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 125, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm1d", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 126, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.Sigmoid", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 137, "usage_type": "call" } ]
73832000827
import numpy as np import pandas as pd import scipy.ndimage as nd from skimage import io as skio import sys import getopt def usage(): print(""" Usage : python3 gen_stacked_tif.py < -i mask.lst> < -a anno.txt> < -o output prefix> [ -b binsize default 20] """) def main(argv): ######################## # no args equal to -h if len(argv) == 0 : usage() sys.exit(0) ######################## # default values mask_lst = '' annof = '' binsize = 20 prefix = '' ######################## # parse args try: opts, args = getopt.getopt(argv,"hi:o:a:b:",["help"]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit(0) elif opt in ("-i" ): mask_lst = arg elif opt in ("-o" ): prefix = arg elif opt in ("-a" ): annof = arg elif opt in ("-b" ): binsize = int(arg) infos = pd.read_csv(mask_lst,sep=' ',header=None) infos.columns = ['filename','zvalue'] infos['zvalue'] = infos['zvalue'].astype(int) infos['zvalue'] = infos['zvalue'] - 1 # start from 0 slices = {} annos = pd.read_csv(annof,sep=',',header=0) for i , row in infos.iterrows(): cellmask = np.loadtxt(row['filename'],dtype=int) y, x = np.nonzero(cellmask) tmp_draw = pd.DataFrame() tmp_draw['x'] = x tmp_draw['y'] = y tmp_draw['cell'] = cellmask[y,x] cellmask[y,x] = 0 tmp_draw= tmp_draw.set_index('cell') slice_anno = annos[ annos['slice_id'] == int(row['zvalue']+1) ].copy() slice_anno = slice_anno.set_index('cell_id') tmp_draw['anno'] = slice_anno['anno_id'] tmp_draw = tmp_draw[tmp_draw['anno']!='NA'].copy() cellmask[tmp_draw['y'],tmp_draw['x']] = 100 #pharynx = tmp_draw[tmp_draw['anno']=='c21'] #gut = tmp_draw[tmp_draw['anno']=='c1'] #neural = tmp_draw[tmp_draw['anno']=='c33'] #cellmask[pharynx['y'],pharynx['x']] = 150 #cellmask[gut['y'],gut['x']] = 200 #cellmask[neural['y'],neural['x']] = 250 h,w = cellmask.shape affine = np.matrix(np.array([[1.0/binsize,0,0],[0,1.0/binsize,0],[0,0,1]])) binimage = nd.affine_transform(cellmask.T,affine.I,output_shape=(int(w/binsize),int(h/binsize)),order=0) slices[row['zvalue']] = binimage.T H = int(h/binsize) W = int(w/binsize) zmax = infos['zvalue'].max() image_buff = np.zeros((zmax+1,H,W),dtype='uint8') for x in slices: image_buff[x,:,:] = slices[x] skio.imsave(f'{prefix}.tif',image_buff) if __name__ == "__main__": main(sys.argv[1:])
BGI-Qingdao/4D-BioReconX
Preprocess/meshgen/gen_stacked_tif.py
gen_stacked_tif.py
py
2,922
python
en
code
4
github-code
6
[ { "api_name": "sys.exit", "line_number": 21, "usage_type": "call" }, { "api_name": "getopt.getopt", "line_number": 32, "usage_type": "call" }, { "api_name": "getopt.GetoptError", "line_number": 33, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 35, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 39, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 49, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.nonzero", "line_number": 59, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 79, "usage_type": "call" }, { "api_name": "scipy.ndimage.affine_transform", "line_number": 80, "usage_type": "call" }, { "api_name": "scipy.ndimage", "line_number": 80, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 86, "usage_type": "call" }, { "api_name": "skimage.io.imsave", "line_number": 90, "usage_type": "call" }, { "api_name": "skimage.io", "line_number": 90, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 93, "usage_type": "attribute" } ]
32124422720
from pages.courses.register_courses_page import RegisterCoursesPage from utilities.teststatus import TestStatus import unittest import pytest import time @pytest.mark.usefixtures("oneTimeSetUp", "setUp") class RegisterCoursesTests(unittest.TestCase): @pytest.fixture(autouse=True) def classSetup(self, oneTimeSetUp): self.courses = RegisterCoursesPage(self.driver) self.ts = TestStatus(self.driver) @pytest.mark.run(order=1) def test_invalidEnrollment(self): """ 1. Call required methods from the page class to perform the test 2. Enter course name 3. Select course 4. Enroll in course 5. Verify error message 6. Test Status.markFinal() """ self.courses.enterCourseName("JavaScript") self.courses.selectCourseToEnroll("JavaScript for beginners") self.courses.enrollCourse("5241810401821657", "1123", "123") time.sleep(5) result2 = self.courses.verifyEnrollFailed() self.ts.markFinal("test_verifyEnrollment", result2, "Enrollment failed...!")
badekarganesh04/selenium-python-framework
tests/courses/register_courses_tests.py
register_courses_tests.py
py
1,090
python
en
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "pages.courses.register_courses_page.RegisterCoursesPage", "line_number": 13, "usage_type": "call" }, { "api_name": "utilities.teststatus.TestStatus", "line_number": 14, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 11, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 29, "usage_type": "call" }, { "api_name": "pytest.mark.run", "line_number": 16, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pytest.mark.usefixtures", "line_number": 8, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 8, "usage_type": "attribute" } ]
41708064158
import glob import math import os import sys import random import numpy as np import pandas as pd import tensorflow as tf from tqdm import tqdm from model.siamese.config import cfg tqdm.pandas() """ Files have to be stored in a structure: main_folder/ 1/ 0030.jpg 1080.jpg ... 2/ 2400.jpg ... 14/ 8800.jpg ... This structure is going to extract images for 3 classes [1,2,14]. """ AUTOTUNE = tf.data.experimental.AUTOTUNE class DataGenerator(tf.keras.utils.Sequence): def __init__( self, folder_path=cfg.TRAIN.DATA_PATH, file_ext="jpg", debug=False, training=True, exclude_aug=False, step_size=1 ): """ Args: folder_path: string ## Path to folder with video frames file_ext: string | List[str] (optional) looking for files with this extension debug: boolean (optional) should generator display any warnings? """ self.images = None self.debug = debug self.data_path = folder_path self.batch_size = cfg.TRAIN.BATCH_SIZE self.shuffle = True self.training = training self.step_size = step_size if not os.path.isdir(folder_path): print( "Images folder path {} does not exist. Exiting...".format(folder_path) ) sys.exit() images = [] for class_dir in os.scandir(folder_path): if type(file_ext) is str: file_ext = [file_ext] files = [] for ext in file_ext: pattern = '*' if exclude_aug: pattern = '*_*' files.extend(glob.glob(f"{class_dir.path}/{pattern}.{ext}")) for i, file in enumerate(sorted(files)): images.append((file, class_dir.name)) self.org_images = images[::self.step_size] batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) print( f'Found {len(self.images)} files for {len(self.images["label"].unique())} unique classes' ) def __len__(self): return math.ceil(len(self.images) / cfg.TRAIN.BATCH_SIZE) def add_dataset(self, dataset): """ Args: dataset: List[path, label] Returns: """ self.org_images = self.org_images + dataset batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) print( f'Found {len(self.images)} files for {len(self.images["label"].unique())} unique classes' ) def batch_images(self): images = self.org_images.copy() random.shuffle(images) images = pd.DataFrame(images, columns=["path", "label"]) low_class_count = min(images["label"].value_counts()) unique_classes = images["label"].unique() class_dfs = {} for class_id in unique_classes: class_dfs[str(class_id)] = ( images[images["label"] == class_id] .sample(frac=1) .reset_index(drop=True) ) batched = [] for i in range(0, low_class_count - 1, 2): for class_id in unique_classes: rows = class_dfs[str(class_id)].loc[[i, i + 1], :] batched.append(rows.to_numpy()) batched = np.array(batched) batched = batched.reshape( (batched.shape[0] * batched.shape[1], batched.shape[2]) ) return batched @staticmethod def process_image(image_path, to_input=False): """ Args: image_path: string to_input: boolean - should image be wrapped into input shape (1, 224, 224, 3) Returns: ((cfg.NN.INPUT_SIZE, cfg.NN.INPUT_SIZE, 3), class) """ image = tf.keras.preprocessing.image.load_img( image_path, target_size=(cfg.NN.INPUT_SIZE, cfg.NN.INPUT_SIZE) ) image = tf.keras.preprocessing.image.img_to_array(image) image = np.expand_dims(image, axis=0) image - tf.keras.applications.mobilenet_v2.preprocess_input(image) if to_input: return image return image[0] @staticmethod def process_label(label): """ Args: label: string Returns: int """ return int(label) def get_dataset(self): """ Returns: tf.Dataset """ target = ( self.images.pop("label") .progress_map(DataGenerator.process_label) .to_numpy() ) images = ( self.images.pop("path").progress_map(DataGenerator.process_image).to_numpy() ) reshaped_images = np.concatenate(images).reshape( ( images.shape[0], images[1].shape[0], images[1].shape[1], images[1].shape[2], ) ) ds = tf.data.Dataset.from_tensor_slices((reshaped_images, target)) ds = ds.cache() ds = ds.batch(cfg.TRAIN.BATCH_SIZE) ds = ds.prefetch(buffer_size=cfg.TRAIN.BATCH_SIZE) return ds def on_epoch_end(self): if self.training: batched = self.batch_images() self.images = pd.DataFrame(batched, columns=["path", "label"]) def __getitem__(self, item): images = self.images.loc[ item * cfg.TRAIN.BATCH_SIZE : (item + 1) * cfg.TRAIN.BATCH_SIZE ] target = images.pop("label").map(DataGenerator.process_label).to_numpy() images = images.pop("path").map(DataGenerator.process_image).to_numpy() reshaped_images = np.concatenate(images).reshape( ( images.shape[0], images[1].shape[0], images[1].shape[1], images[1].shape[2], ) ) return reshaped_images, target
burnpiro/farm-animal-tracking
data/data_generator.py
data_generator.py
py
6,118
python
en
code
24
github-code
6
[ { "api_name": "tqdm.tqdm.pandas", "line_number": 13, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 13, "usage_type": "name" }, { "api_name": "tensorflow.data", "line_number": 33, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 36, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 39, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 39, "usage_type": "name" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 55, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 55, "usage_type": "name" }, { "api_name": "os.path.isdir", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 64, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 67, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 76, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 83, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 89, "usage_type": "call" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 89, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 89, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 103, "usage_type": "call" }, { "api_name": "random.shuffle", "line_number": 110, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 111, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 129, "usage_type": "call" }, { "api_name": "tensorflow.keras.preprocessing.image.load_img", "line_number": 147, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 147, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg.NN", "line_number": 148, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 148, "usage_type": "name" }, { "api_name": "tensorflow.keras.preprocessing.image.img_to_array", "line_number": 150, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 150, "usage_type": "attribute" }, { "api_name": "numpy.expand_dims", "line_number": 151, "usage_type": "call" }, { "api_name": "tensorflow.keras.applications.mobilenet_v2.preprocess_input", "line_number": 152, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 152, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 183, "usage_type": "call" }, { "api_name": "tensorflow.data.Dataset.from_tensor_slices", "line_number": 191, "usage_type": "call" }, { "api_name": "tensorflow.data", "line_number": 191, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 193, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 193, "usage_type": "name" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 194, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 194, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 201, "usage_type": "call" }, { "api_name": "model.siamese.config.cfg.TRAIN", "line_number": 205, "usage_type": "attribute" }, { "api_name": "model.siamese.config.cfg", "line_number": 205, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 209, "usage_type": "call" } ]
11859412516
import logging from copy import deepcopy from datetime import datetime, timedelta, timezone from pathlib import Path from typing import Any, Dict, List, Union from pandas import DataFrame, to_datetime from tabulate import tabulate from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT, Config) from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change, calculate_max_drawdown) from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename logger = logging.getLogger(__name__) def store_backtest_stats( recordfilename: Path, stats: Dict[str, DataFrame], dtappendix: str) -> None: """ Stores backtest results :param recordfilename: Path object, which can either be a filename or a directory. Filenames will be appended with a timestamp right before the suffix while for directories, <directory>/backtest-result-<datetime>.json will be used as filename :param stats: Dataframe containing the backtesting statistics :param dtappendix: Datetime to use for the filename """ if recordfilename.is_dir(): filename = (recordfilename / f'backtest-result-{dtappendix}.json') else: filename = Path.joinpath( recordfilename.parent, f'{recordfilename.stem}-{dtappendix}' ).with_suffix(recordfilename.suffix) # Store metadata separately. file_dump_json(get_backtest_metadata_filename(filename), stats['metadata']) del stats['metadata'] file_dump_json(filename, stats) latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN) file_dump_json(latest_filename, {'latest_backtest': str(filename.name)}) def store_backtest_signal_candles( recordfilename: Path, candles: Dict[str, Dict], dtappendix: str) -> Path: """ Stores backtest trade signal candles :param recordfilename: Path object, which can either be a filename or a directory. Filenames will be appended with a timestamp right before the suffix while for directories, <directory>/backtest-result-<datetime>_signals.pkl will be used as filename :param stats: Dict containing the backtesting signal candles :param dtappendix: Datetime to use for the filename """ if recordfilename.is_dir(): filename = (recordfilename / f'backtest-result-{dtappendix}_signals.pkl') else: filename = Path.joinpath( recordfilename.parent, f'{recordfilename.stem}-{dtappendix}_signals.pkl' ) file_dump_joblib(filename, candles) return filename def _get_line_floatfmt(stake_currency: str) -> List[str]: """ Generate floatformat (goes in line with _generate_result_line()) """ return ['s', 'd', '.2f', '.2f', f'.{decimals_per_coin(stake_currency)}f', '.2f', 'd', 's', 's'] def _get_line_header(first_column: str, stake_currency: str, direction: str = 'Entries') -> List[str]: """ Generate header lines (goes in line with _generate_result_line()) """ return [first_column, direction, 'Avg Profit %', 'Cum Profit %', f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration', 'Win Draw Loss Win%'] def generate_wins_draws_losses(wins, draws, losses): if wins > 0 and losses == 0: wl_ratio = '100' elif wins == 0: wl_ratio = '0' else: wl_ratio = f'{100.0 / (wins + draws + losses) * wins:.1f}' if losses > 0 else '100' return f'{wins:>4} {draws:>4} {losses:>4} {wl_ratio:>4}' def _generate_result_line(result: DataFrame, starting_balance: int, first_column: str) -> Dict: """ Generate one result dict, with "first_column" as key. """ profit_sum = result['profit_ratio'].sum() # (end-capital - starting capital) / starting capital profit_total = result['profit_abs'].sum() / starting_balance return { 'key': first_column, 'trades': len(result), 'profit_mean': result['profit_ratio'].mean() if len(result) > 0 else 0.0, 'profit_mean_pct': result['profit_ratio'].mean() * 100.0 if len(result) > 0 else 0.0, 'profit_sum': profit_sum, 'profit_sum_pct': round(profit_sum * 100.0, 2), 'profit_total_abs': result['profit_abs'].sum(), 'profit_total': profit_total, 'profit_total_pct': round(profit_total * 100.0, 2), 'duration_avg': str(timedelta( minutes=round(result['trade_duration'].mean())) ) if not result.empty else '0:00', # 'duration_max': str(timedelta( # minutes=round(result['trade_duration'].max())) # ) if not result.empty else '0:00', # 'duration_min': str(timedelta( # minutes=round(result['trade_duration'].min())) # ) if not result.empty else '0:00', 'wins': len(result[result['profit_abs'] > 0]), 'draws': len(result[result['profit_abs'] == 0]), 'losses': len(result[result['profit_abs'] < 0]), } def generate_pair_metrics(pairlist: List[str], stake_currency: str, starting_balance: int, results: DataFrame, skip_nan: bool = False) -> List[Dict]: """ Generates and returns a list for the given backtest data and the results dataframe :param pairlist: Pairlist used :param stake_currency: stake-currency - used to correctly name headers :param starting_balance: Starting balance :param results: Dataframe containing the backtest results :param skip_nan: Print "left open" open trades :return: List of Dicts containing the metrics per pair """ tabular_data = [] for pair in pairlist: result = results[results['pair'] == pair] if skip_nan and result['profit_abs'].isnull().all(): continue tabular_data.append(_generate_result_line(result, starting_balance, pair)) # Sort by total profit %: tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True) # Append Total tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL')) return tabular_data def generate_tag_metrics(tag_type: str, starting_balance: int, results: DataFrame, skip_nan: bool = False) -> List[Dict]: """ Generates and returns a list of metrics for the given tag trades and the results dataframe :param starting_balance: Starting balance :param results: Dataframe containing the backtest results :param skip_nan: Print "left open" open trades :return: List of Dicts containing the metrics per pair """ tabular_data = [] if tag_type in results.columns: for tag, count in results[tag_type].value_counts().items(): result = results[results[tag_type] == tag] if skip_nan and result['profit_abs'].isnull().all(): continue tabular_data.append(_generate_result_line(result, starting_balance, tag)) # Sort by total profit %: tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True) # Append Total tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL')) return tabular_data else: return [] def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]: """ Generate small table outlining Backtest results :param max_open_trades: Max_open_trades parameter :param results: Dataframe containing the backtest result for one strategy :return: List of Dicts containing the metrics per Sell reason """ tabular_data = [] for reason, count in results['exit_reason'].value_counts().items(): result = results.loc[results['exit_reason'] == reason] profit_mean = result['profit_ratio'].mean() profit_sum = result['profit_ratio'].sum() profit_total = profit_sum / max_open_trades tabular_data.append( { 'exit_reason': reason, 'trades': count, 'wins': len(result[result['profit_abs'] > 0]), 'draws': len(result[result['profit_abs'] == 0]), 'losses': len(result[result['profit_abs'] < 0]), 'profit_mean': profit_mean, 'profit_mean_pct': round(profit_mean * 100, 2), 'profit_sum': profit_sum, 'profit_sum_pct': round(profit_sum * 100, 2), 'profit_total_abs': result['profit_abs'].sum(), 'profit_total': profit_total, 'profit_total_pct': round(profit_total * 100, 2), } ) return tabular_data def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]: """ Generate summary per strategy :param bt_stats: Dict of <Strategyname: DataFrame> containing results for all strategies :return: List of Dicts containing the metrics per Strategy """ tabular_data = [] for strategy, result in bt_stats.items(): tabular_data.append(deepcopy(result['results_per_pair'][-1])) # Update "key" to strategy (results_per_pair has it as "Total"). tabular_data[-1]['key'] = strategy tabular_data[-1]['max_drawdown_account'] = result['max_drawdown_account'] tabular_data[-1]['max_drawdown_abs'] = round_coin_value( result['max_drawdown_abs'], result['stake_currency'], False) return tabular_data def generate_edge_table(results: dict) -> str: floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd') tabular_data = [] headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio', 'Required Risk Reward', 'Expectancy', 'Total Number of Trades', 'Average Duration (min)'] for result in results.items(): if result[1].nb_trades > 0: tabular_data.append([ result[0], result[1].stoploss, result[1].winrate, result[1].risk_reward_ratio, result[1].required_risk_reward, result[1].expectancy, result[1].nb_trades, round(result[1].avg_trade_duration) ]) # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def _get_resample_from_period(period: str) -> str: if period == 'day': return '1d' if period == 'week': return '1w' if period == 'month': return '1M' raise ValueError(f"Period {period} is not supported.") def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dict[str, Any]]: results = DataFrame.from_records(trade_list) if len(results) == 0: return [] results['close_date'] = to_datetime(results['close_date'], utc=True) resample_period = _get_resample_from_period(period) resampled = results.resample(resample_period, on='close_date') stats = [] for name, day in resampled: profit_abs = day['profit_abs'].sum().round(10) wins = sum(day['profit_abs'] > 0) draws = sum(day['profit_abs'] == 0) loses = sum(day['profit_abs'] < 0) stats.append( { 'date': name.strftime('%d/%m/%Y'), 'profit_abs': profit_abs, 'wins': wins, 'draws': draws, 'loses': loses } ) return stats def generate_trading_stats(results: DataFrame) -> Dict[str, Any]: """ Generate overall trade statistics """ if len(results) == 0: return { 'wins': 0, 'losses': 0, 'draws': 0, 'holding_avg': timedelta(), 'winner_holding_avg': timedelta(), 'loser_holding_avg': timedelta(), } winning_trades = results.loc[results['profit_ratio'] > 0] draw_trades = results.loc[results['profit_ratio'] == 0] losing_trades = results.loc[results['profit_ratio'] < 0] holding_avg = (timedelta(minutes=round(results['trade_duration'].mean())) if not results.empty else timedelta()) winner_holding_avg = (timedelta(minutes=round(winning_trades['trade_duration'].mean())) if not winning_trades.empty else timedelta()) loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean())) if not losing_trades.empty else timedelta()) return { 'wins': len(winning_trades), 'losses': len(losing_trades), 'draws': len(draw_trades), 'holding_avg': holding_avg, 'holding_avg_s': holding_avg.total_seconds(), 'winner_holding_avg': winner_holding_avg, 'winner_holding_avg_s': winner_holding_avg.total_seconds(), 'loser_holding_avg': loser_holding_avg, 'loser_holding_avg_s': loser_holding_avg.total_seconds(), } def generate_daily_stats(results: DataFrame) -> Dict[str, Any]: """ Generate daily statistics """ if len(results) == 0: return { 'backtest_best_day': 0, 'backtest_worst_day': 0, 'backtest_best_day_abs': 0, 'backtest_worst_day_abs': 0, 'winning_days': 0, 'draw_days': 0, 'losing_days': 0, 'daily_profit_list': [], } daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum() daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10) worst_rel = min(daily_profit_rel) best_rel = max(daily_profit_rel) worst = min(daily_profit) best = max(daily_profit) winning_days = sum(daily_profit > 0) draw_days = sum(daily_profit == 0) losing_days = sum(daily_profit < 0) daily_profit_list = [(str(idx.date()), val) for idx, val in daily_profit.items()] return { 'backtest_best_day': best_rel, 'backtest_worst_day': worst_rel, 'backtest_best_day_abs': best, 'backtest_worst_day_abs': worst, 'winning_days': winning_days, 'draw_days': draw_days, 'losing_days': losing_days, 'daily_profit': daily_profit_list, } def generate_strategy_stats(pairlist: List[str], strategy: str, content: Dict[str, Any], min_date: datetime, max_date: datetime, market_change: float ) -> Dict[str, Any]: """ :param pairlist: List of pairs to backtest :param strategy: Strategy name :param content: Backtest result data in the format: {'results: results, 'config: config}}. :param min_date: Backtest start date :param max_date: Backtest end date :param market_change: float indicating the market change :return: Dictionary containing results per strategy and a strategy summary. """ results: Dict[str, DataFrame] = content['results'] if not isinstance(results, DataFrame): return {} config = content['config'] max_open_trades = min(config['max_open_trades'], len(pairlist)) start_balance = config['dry_run_wallet'] stake_currency = config['stake_currency'] pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency, starting_balance=start_balance, results=results, skip_nan=False) enter_tag_results = generate_tag_metrics("enter_tag", starting_balance=start_balance, results=results, skip_nan=False) exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades, results=results) left_open_results = generate_pair_metrics( pairlist, stake_currency=stake_currency, starting_balance=start_balance, results=results.loc[results['exit_reason'] == 'force_exit'], skip_nan=True) daily_stats = generate_daily_stats(results) trade_stats = generate_trading_stats(results) best_pair = max([pair for pair in pair_results if pair['key'] != 'TOTAL'], key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'], key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None winning_profit = results.loc[results['profit_abs'] > 0, 'profit_abs'].sum() losing_profit = results.loc[results['profit_abs'] < 0, 'profit_abs'].sum() profit_factor = winning_profit / abs(losing_profit) if losing_profit else 0.0 backtest_days = (max_date - min_date).days or 1 strat_stats = { 'trades': results.to_dict(orient='records'), 'locks': [lock.to_json() for lock in content['locks']], 'best_pair': best_pair, 'worst_pair': worst_pair, 'results_per_pair': pair_results, 'results_per_enter_tag': enter_tag_results, 'exit_reason_summary': exit_reason_stats, 'left_open_trades': left_open_results, # 'days_breakdown_stats': days_breakdown_stats, 'total_trades': len(results), 'trade_count_long': len(results.loc[~results['is_short']]), 'trade_count_short': len(results.loc[results['is_short']]), 'total_volume': float(results['stake_amount'].sum()), 'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0, 'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0, 'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0, 'profit_total': results['profit_abs'].sum() / start_balance, 'profit_total_long': results.loc[~results['is_short'], 'profit_abs'].sum() / start_balance, 'profit_total_short': results.loc[results['is_short'], 'profit_abs'].sum() / start_balance, 'profit_total_abs': results['profit_abs'].sum(), 'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(), 'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(), 'cagr': calculate_cagr(backtest_days, start_balance, content['final_balance']), 'profit_factor': profit_factor, 'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT), 'backtest_start_ts': int(min_date.timestamp() * 1000), 'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT), 'backtest_end_ts': int(max_date.timestamp() * 1000), 'backtest_days': backtest_days, 'backtest_run_start_ts': content['backtest_start_time'], 'backtest_run_end_ts': content['backtest_end_time'], 'trades_per_day': round(len(results) / backtest_days, 2), 'market_change': market_change, 'pairlist': pairlist, 'stake_amount': config['stake_amount'], 'stake_currency': config['stake_currency'], 'stake_currency_decimals': decimals_per_coin(config['stake_currency']), 'starting_balance': start_balance, 'dry_run_wallet': start_balance, 'final_balance': content['final_balance'], 'rejected_signals': content['rejected_signals'], 'timedout_entry_orders': content['timedout_entry_orders'], 'timedout_exit_orders': content['timedout_exit_orders'], 'canceled_trade_entries': content['canceled_trade_entries'], 'canceled_entry_orders': content['canceled_entry_orders'], 'replaced_entry_orders': content['replaced_entry_orders'], 'max_open_trades': max_open_trades, 'max_open_trades_setting': (config['max_open_trades'] if config['max_open_trades'] != float('inf') else -1), 'timeframe': config['timeframe'], 'timeframe_detail': config.get('timeframe_detail', ''), 'timerange': config.get('timerange', ''), 'enable_protections': config.get('enable_protections', False), 'strategy_name': strategy, # Parameters relevant for backtesting 'stoploss': config['stoploss'], 'trailing_stop': config.get('trailing_stop', False), 'trailing_stop_positive': config.get('trailing_stop_positive'), 'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset', 0.0), 'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False), 'use_custom_stoploss': config.get('use_custom_stoploss', False), 'minimal_roi': config['minimal_roi'], 'use_exit_signal': config['use_exit_signal'], 'exit_profit_only': config['exit_profit_only'], 'exit_profit_offset': config['exit_profit_offset'], 'ignore_roi_if_entry_signal': config['ignore_roi_if_entry_signal'], **daily_stats, **trade_stats } try: max_drawdown_legacy, _, _, _, _, _ = calculate_max_drawdown( results, value_col='profit_ratio') (drawdown_abs, drawdown_start, drawdown_end, high_val, low_val, max_drawdown) = calculate_max_drawdown( results, value_col='profit_abs', starting_balance=start_balance) # max_relative_drawdown = Underwater (_, _, _, _, _, max_relative_drawdown) = calculate_max_drawdown( results, value_col='profit_abs', starting_balance=start_balance, relative=True) strat_stats.update({ 'max_drawdown': max_drawdown_legacy, # Deprecated - do not use 'max_drawdown_account': max_drawdown, 'max_relative_drawdown': max_relative_drawdown, 'max_drawdown_abs': drawdown_abs, 'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT), 'drawdown_start_ts': drawdown_start.timestamp() * 1000, 'drawdown_end': drawdown_end.strftime(DATETIME_PRINT_FORMAT), 'drawdown_end_ts': drawdown_end.timestamp() * 1000, 'max_drawdown_low': low_val, 'max_drawdown_high': high_val, }) csum_min, csum_max = calculate_csum(results, start_balance) strat_stats.update({ 'csum_min': csum_min, 'csum_max': csum_max }) except ValueError: strat_stats.update({ 'max_drawdown': 0.0, 'max_drawdown_account': 0.0, 'max_relative_drawdown': 0.0, 'max_drawdown_abs': 0.0, 'max_drawdown_low': 0.0, 'max_drawdown_high': 0.0, 'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc), 'drawdown_start_ts': 0, 'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc), 'drawdown_end_ts': 0, 'csum_min': 0, 'csum_max': 0 }) return strat_stats def generate_backtest_stats(btdata: Dict[str, DataFrame], all_results: Dict[str, Dict[str, Union[DataFrame, Dict]]], min_date: datetime, max_date: datetime ) -> Dict[str, Any]: """ :param btdata: Backtest data :param all_results: backtest result - dictionary in the form: { Strategy: {'results: results, 'config: config}}. :param min_date: Backtest start date :param max_date: Backtest end date :return: Dictionary containing results per strategy and a strategy summary. """ result: Dict[str, Any] = { 'metadata': {}, 'strategy': {}, 'strategy_comparison': [], } market_change = calculate_market_change(btdata, 'close') metadata = {} pairlist = list(btdata.keys()) for strategy, content in all_results.items(): strat_stats = generate_strategy_stats(pairlist, strategy, content, min_date, max_date, market_change=market_change) metadata[strategy] = { 'run_id': content['run_id'], 'backtest_start_time': content['backtest_start_time'], } result['strategy'][strategy] = strat_stats strategy_results = generate_strategy_comparison(bt_stats=result['strategy']) result['metadata'] = metadata result['strategy_comparison'] = strategy_results return result ### # Start output section ### def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :param pair_results: List of Dictionaries - one entry per pair + final TOTAL row :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ headers = _get_line_header('Pair', stake_currency) floatfmt = _get_line_floatfmt(stake_currency) output = [[ t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']) ] for t in pair_results] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str: """ Generate small table outlining Backtest results :param sell_reason_stats: Exit reason metrics :param stake_currency: Stakecurrency used :return: pretty printed table with tabulate as string """ headers = [ 'Exit Reason', 'Exits', 'Win Draws Loss Win%', 'Avg Profit %', 'Cum Profit %', f'Tot Profit {stake_currency}', 'Tot Profit %', ] output = [[ t.get('exit_reason', t.get('sell_reason')), t['trades'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), t['profit_mean_pct'], t['profit_sum_pct'], round_coin_value(t['profit_total_abs'], stake_currency, False), t['profit_total_pct'], ] for t in exit_reason_stats] return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right") def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str: """ Generates and returns a text table for the given backtest data and the results dataframe :param pair_results: List of Dictionaries - one entry per pair + final TOTAL row :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ if (tag_type == "enter_tag"): headers = _get_line_header("TAG", stake_currency) else: headers = _get_line_header("TAG", stake_currency, 'Exits') floatfmt = _get_line_floatfmt(stake_currency) output = [ [ t['key'] if t['key'] is not None and len( t['key']) > 0 else "OTHER", t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses( t['wins'], t['draws'], t['losses'])] for t in tag_results] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]], stake_currency: str, period: str) -> str: """ Generate small table with Backtest results by days :param days_breakdown_stats: Days breakdown metrics :param stake_currency: Stakecurrency used :return: pretty printed table with tabulate as string """ headers = [ period.capitalize(), f'Tot Profit {stake_currency}', 'Wins', 'Draws', 'Losses', ] output = [[ d['date'], round_coin_value(d['profit_abs'], stake_currency, False), d['wins'], d['draws'], d['loses'], ] for d in days_breakdown_stats] return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right") def text_table_strategy(strategy_results, stake_currency: str) -> str: """ Generate summary table per strategy :param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies :param stake_currency: stake-currency - used to correctly name headers :return: pretty printed table with tabulate as string """ floatfmt = _get_line_floatfmt(stake_currency) headers = _get_line_header('Strategy', stake_currency) # _get_line_header() is also used for per-pair summary. Per-pair drawdown is mostly useless # therefore we slip this column in only for strategy summary here. headers.append('Drawdown') # Align drawdown string on the center two space separator. if 'max_drawdown_account' in strategy_results[0]: drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results] else: # Support for prior backtest results drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results] dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results]) dd_pad_per = max([len(dd) for dd in drawdown]) drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%' for t, dd in zip(strategy_results, drawdown)] output = [[ t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'], t['duration_avg'], generate_wins_draws_losses(t['wins'], t['draws'], t['losses']), drawdown] for t, drawdown in zip(strategy_results, drawdown)] # Ignore type as floatfmt does allow tuples but mypy does not know that return tabulate(output, headers=headers, floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") def text_table_add_metrics(strat_results: Dict) -> str: if len(strat_results['trades']) > 0: best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio']) worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio']) short_metrics = [ ('', ''), # Empty line to improve readability ('Long / Short', f"{strat_results.get('trade_count_long', 'total_trades')} / " f"{strat_results.get('trade_count_short', 0)}"), ('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"), ('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"), ('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'], strat_results['stake_currency'])), ('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'], strat_results['stake_currency'])), ] if strat_results.get('trade_count_short', 0) > 0 else [] drawdown_metrics = [] if 'max_relative_drawdown' in strat_results: # Compatibility to show old hyperopt results drawdown_metrics.append( ('Max % of account underwater', f"{strat_results['max_relative_drawdown']:.2%}") ) drawdown_metrics.extend([ ('Absolute Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}") if 'max_drawdown_account' in strat_results else ( 'Drawdown', f"{strat_results['max_drawdown']:.2%}"), ('Absolute Drawdown', round_coin_value(strat_results['max_drawdown_abs'], strat_results['stake_currency'])), ('Drawdown high', round_coin_value(strat_results['max_drawdown_high'], strat_results['stake_currency'])), ('Drawdown low', round_coin_value(strat_results['max_drawdown_low'], strat_results['stake_currency'])), ('Drawdown Start', strat_results['drawdown_start']), ('Drawdown End', strat_results['drawdown_end']), ]) entry_adjustment_metrics = [ ('Canceled Trade Entries', strat_results.get('canceled_trade_entries', 'N/A')), ('Canceled Entry Orders', strat_results.get('canceled_entry_orders', 'N/A')), ('Replaced Entry Orders', strat_results.get('replaced_entry_orders', 'N/A')), ] if strat_results.get('canceled_entry_orders', 0) > 0 else [] # Newly added fields should be ignored if they are missing in strat_results. hyperopt-show # command stores these results and newer version of freqtrade must be able to handle old # results with missing new fields. metrics = [ ('Backtesting from', strat_results['backtest_start']), ('Backtesting to', strat_results['backtest_end']), ('Max open trades', strat_results['max_open_trades']), ('', ''), # Empty line to improve readability ('Total/Daily Avg Trades', f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"), ('Starting balance', round_coin_value(strat_results['starting_balance'], strat_results['stake_currency'])), ('Final balance', round_coin_value(strat_results['final_balance'], strat_results['stake_currency'])), ('Absolute profit ', round_coin_value(strat_results['profit_total_abs'], strat_results['stake_currency'])), ('Total profit %', f"{strat_results['profit_total']:.2%}"), ('CAGR %', f"{strat_results['cagr']:.2%}" if 'cagr' in strat_results else 'N/A'), ('Profit factor', f'{strat_results["profit_factor"]:.2f}' if 'profit_factor' in strat_results else 'N/A'), ('Trades per day', strat_results['trades_per_day']), ('Avg. daily profit %', f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"), ('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'], strat_results['stake_currency'])), ('Total trade volume', round_coin_value(strat_results['total_volume'], strat_results['stake_currency'])), *short_metrics, ('', ''), # Empty line to improve readability ('Best Pair', f"{strat_results['best_pair']['key']} " f"{strat_results['best_pair']['profit_sum']:.2%}"), ('Worst Pair', f"{strat_results['worst_pair']['key']} " f"{strat_results['worst_pair']['profit_sum']:.2%}"), ('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"), ('Worst trade', f"{worst_trade['pair']} " f"{worst_trade['profit_ratio']:.2%}"), ('Best day', round_coin_value(strat_results['backtest_best_day_abs'], strat_results['stake_currency'])), ('Worst day', round_coin_value(strat_results['backtest_worst_day_abs'], strat_results['stake_currency'])), ('Days win/draw/lose', f"{strat_results['winning_days']} / " f"{strat_results['draw_days']} / {strat_results['losing_days']}"), ('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"), ('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"), ('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')), ('Entry/Exit Timeouts', f"{strat_results.get('timedout_entry_orders', 'N/A')} / " f"{strat_results.get('timedout_exit_orders', 'N/A')}"), *entry_adjustment_metrics, ('', ''), # Empty line to improve readability ('Min balance', round_coin_value(strat_results['csum_min'], strat_results['stake_currency'])), ('Max balance', round_coin_value(strat_results['csum_max'], strat_results['stake_currency'])), *drawdown_metrics, ('Market change', f"{strat_results['market_change']:.2%}"), ] return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl") else: start_balance = round_coin_value(strat_results['starting_balance'], strat_results['stake_currency']) stake_amount = round_coin_value( strat_results['stake_amount'], strat_results['stake_currency'] ) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited' message = ("No trades made. " f"Your starting balance was {start_balance}, " f"and your stake was {stake_amount}." ) return message def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str, backtest_breakdown=[]): """ Print results for one strategy """ # Print results print(f"Result for strategy {strategy}") table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency) if isinstance(table, str): print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '=')) print(table) if (results.get('results_per_enter_tag') is not None or results.get('results_per_buy_tag') is not None): # results_per_buy_tag is deprecated and should be removed 2 versions after short golive. table = text_table_tags( "enter_tag", results.get('results_per_enter_tag', results.get('results_per_buy_tag')), stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '=')) print(table) exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary')) table = text_table_exit_reason(exit_reason_stats=exit_reasons, stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '=')) print(table) table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency) if isinstance(table, str) and len(table) > 0: print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '=')) print(table) for period in backtest_breakdown: days_breakdown_stats = generate_periodic_breakdown_stats( trade_list=results['trades'], period=period) table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats, stake_currency=stake_currency, period=period) if isinstance(table, str) and len(table) > 0: print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '=')) print(table) table = text_table_add_metrics(results) if isinstance(table, str) and len(table) > 0: print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '=')) print(table) if isinstance(table, str) and len(table) > 0: print('=' * len(table.splitlines()[0])) print() def show_backtest_results(config: Config, backtest_stats: Dict): stake_currency = config['stake_currency'] for strategy, results in backtest_stats['strategy'].items(): show_backtest_result( strategy, results, stake_currency, config.get('backtest_breakdown', [])) if len(backtest_stats['strategy']) > 1: # Print Strategy summary table table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency) print(f"{results['backtest_start']} -> {results['backtest_end']} |" f" Max open trades : {results['max_open_trades']}") print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '=')) print(table) print('=' * len(table.splitlines()[0])) print('\nFor more details, please look at the detail tables above') def show_sorted_pairlist(config: Config, backtest_stats: Dict): if config.get('backtest_show_pair_list', False): for strategy, results in backtest_stats['strategy'].items(): print(f"Pairs for Strategy {strategy}: \n[") for result in results['results_per_pair']: if result["key"] != 'TOTAL': print(f'"{result["key"]}", // {result["profit_mean"]:.2%}') print("]")
robcaulk/freqai
freqtrade/optimize/optimize_reports.py
optimize_reports.py
py
41,632
python
en
code
42
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 18, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 22, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 22, "usage_type": "name" }, { "api_name": "pathlib.Path.joinpath", "line_number": 34, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 34, "usage_type": "name" }, { "api_name": "freqtrade.misc.file_dump_json", "line_number": 39, "usage_type": "call" }, { "api_name": "freqtrade.optimize.backtest_caching.get_backtest_metadata_filename", "line_number": 39, "usage_type": "call" }, { "api_name": "freqtrade.misc.file_dump_json", "line_number": 42, "usage_type": "call" }, { "api_name": "pathlib.Path.joinpath", "line_number": 44, "usage_type": "call" }, { "api_name": "freqtrade.constants.LAST_BT_RESULT_FN", "line_number": 44, "usage_type": "argument" }, { "api_name": "pathlib.Path", "line_number": 44, "usage_type": "name" }, { "api_name": "freqtrade.misc.file_dump_json", "line_number": 45, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 49, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 49, "usage_type": "name" }, { "api_name": "pathlib.Path.joinpath", "line_number": 62, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 62, "usage_type": "name" }, { "api_name": "freqtrade.misc.file_dump_joblib", "line_number": 66, "usage_type": "call" }, { "api_name": "freqtrade.misc.decimals_per_coin", "line_number": 75, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 71, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 80, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 99, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 117, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 99, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 132, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 133, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 133, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 133, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 163, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 164, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 164, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 193, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 193, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 193, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 228, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 237, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 241, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 228, "usage_type": "name" }, { "api_name": "tabulate.tabulate", "line_number": 267, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 281, "usage_type": "name" }, { "api_name": "pandas.DataFrame.from_records", "line_number": 282, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 282, "usage_type": "name" }, { "api_name": "pandas.to_datetime", "line_number": 285, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 281, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 281, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 306, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 313, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 314, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 315, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 322, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 323, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 324, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 325, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 326, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 327, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 306, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 306, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 342, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 342, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 342, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 378, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 380, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 380, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 381, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 394, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 394, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 395, "usage_type": "argument" }, { "api_name": "freqtrade.data.metrics.calculate_cagr", "line_number": 450, "usage_type": "call" }, { "api_name": "freqtrade.constants.DATETIME_PRINT_FORMAT", "line_number": 452, "usage_type": "argument" }, { "api_name": "freqtrade.constants.DATETIME_PRINT_FORMAT", "line_number": 454, "usage_type": "argument" }, { "api_name": "freqtrade.misc.decimals_per_coin", "line_number": 466, "usage_type": "call" }, { "api_name": "freqtrade.data.metrics.calculate_max_drawdown", "line_number": 501, "usage_type": "call" }, { "api_name": "freqtrade.data.metrics.calculate_max_drawdown", "line_number": 504, "usage_type": "call" }, { "api_name": "freqtrade.data.metrics.calculate_max_drawdown", "line_number": 507, "usage_type": "call" }, { "api_name": "freqtrade.constants.DATETIME_PRINT_FORMAT", "line_number": 515, "usage_type": "argument" }, { "api_name": "freqtrade.constants.DATETIME_PRINT_FORMAT", "line_number": 517, "usage_type": "argument" }, { "api_name": "freqtrade.data.metrics.calculate_csum", "line_number": 524, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 538, "usage_type": "call" }, { "api_name": "datetime.timezone.utc", "line_number": 538, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 538, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 540, "usage_type": "call" }, { "api_name": "datetime.timezone.utc", "line_number": 540, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 540, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 383, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 383, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 549, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 549, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 550, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 550, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 550, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 551, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 561, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 561, "usage_type": "name" }, { "api_name": "freqtrade.data.metrics.calculate_market_change", "line_number": 566, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 552, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 552, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 590, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 590, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 590, "usage_type": "name" }, { "api_name": "tabulate.tabulate", "line_number": 606, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 610, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 610, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 610, "usage_type": "name" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 631, "usage_type": "call" }, { "api_name": "tabulate.tabulate", "line_number": 634, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 637, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 637, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 637, "usage_type": "name" }, { "api_name": "tabulate.tabulate", "line_number": 664, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 668, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 668, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 668, "usage_type": "name" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 684, "usage_type": "call" }, { "api_name": "tabulate.tabulate", "line_number": 687, "usage_type": "call" }, { "api_name": "tabulate.tabulate", "line_number": 721, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 725, "usage_type": "name" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 737, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 739, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 753, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 755, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 757, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 780, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 782, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 784, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 793, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 795, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 807, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 809, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 822, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 824, "usage_type": "call" }, { "api_name": "tabulate.tabulate", "line_number": 831, "usage_type": "call" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 833, "usage_type": "call" }, { "api_name": "freqtrade.constants.UNLIMITED_STAKE_AMOUNT", "line_number": 837, "usage_type": "name" }, { "api_name": "freqtrade.misc.round_coin_value", "line_number": 835, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 846, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 846, "usage_type": "name" }, { "api_name": "freqtrade.constants.Config", "line_number": 902, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 902, "usage_type": "name" }, { "api_name": "freqtrade.constants.Config", "line_number": 922, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 922, "usage_type": "name" } ]
44717248733
# Quick and dirty utility to get coordinates for transforming view into # a bird's eye view. Useful in OCRs were the camera is in a fixed positioning # viewing a straight plane. import cv2 import numpy as np def onTrackbarChange(trackbarValue): pass def order_points(pts): # initialize a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def expandPerspective(rect , width, height): '''Expand the perspective out to the image limits by finding intersection using point-slope form''' # Constants x = 0 y = 1 # Convert coordinate system rect[:,1] *= -1 (tl, tr, br, bl) = rect # Find the slope of each of the 4 lines slopeTop = (tr[y]-tl[y]) / (tr[x]-tl[x]) slopeBottom = (br[y]-bl[y]) / (br[x]-bl[x]) slopeLeft = (tl[y]-bl[y]) / (tl[x]-bl[x]) slopeRight = (tr[y]-br[y]) / (tr[x]-br[x]) # Assign new points based on image size pointRight = width,0 pointTop = 0,0 pointBottom = width, height * -1.0 pointLeft = 0, height* -1.0 # Find where the new expanded lines intersect using point slope form def intersectoin (m1,m2,x1,x2,y1,y2,orig): x = ((m2*x2-m1*x1)-(y2-y1))/(m2-m1) #y = ((-1.0*m1*y2 + m1*m2*x2 + y1*m2 )-(m1*m2*x1))/(m2-m1) y = m1*(x - x1) + y1 try: x = round(x) y = round(y) except: return orig return x, y new_tr = intersectoin (slopeTop,slopeRight,pointTop[x],pointRight[x],pointTop[y],pointRight[y],tr) new_tl = intersectoin (slopeTop,slopeLeft,pointTop[x],pointLeft[x],pointTop[y],pointLeft[y],tl) new_br = intersectoin (slopeBottom,slopeRight,pointBottom[x],pointRight[x],pointBottom[y],pointRight[y],br) new_bl = intersectoin (slopeBottom,slopeLeft,pointBottom[x],pointLeft[x],pointBottom[y],pointLeft[y],bl) # Convert coordinate system back new_rect = rect = np.array([new_tl, new_tr, new_br, new_bl], dtype = "float32") new_rect[:,1] *= -1 return new_rect # Derived from https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example def four_point_transform(image, pts): # Unpack points rect = pts (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordinates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], #tl [maxWidth - 1, 0], #tr [maxWidth - 1, maxHeight - 1], #br [0, maxHeight - 1]], #bl dtype = "float32") # Move image to positive coordinates min_x = round(abs(np.min(rect[:,0]))) min_y = round(abs(np.min(rect[:,1]))) T = np.matrix( [[ 1 , 0 , min_x], # Get min x [ 0 , 1 , min_y ], # Get min y [ 0 , 0 , 1 ]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, T * M , (maxWidth + min_x , maxHeight + min_y), borderMode=cv2.BORDER_TRANSPARENT) # return the warped image return warped # Open Image img = cv2.imread('img\\example1.jpeg') # Open windows for control, original image, and result cv2.namedWindow('Control', cv2.WINDOW_AUTOSIZE) cv2.namedWindow('Main', cv2.WINDOW_AUTOSIZE) cv2.namedWindow('Birds Eye', cv2.WINDOW_AUTOSIZE) # Track bars for coordinates cv2.createTrackbar( 'X L Bot', 'Control', 0, img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y L Bot', 'Control', img.shape[0], img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X L Top', 'Control', 0, img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y L Top', 'Control', 0, img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X R Top', 'Control', img.shape[1], img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y R Top', 'Control', 0, img.shape[0], onTrackbarChange ) cv2.createTrackbar( 'X R Bot', 'Control', img.shape[1], img.shape[1], onTrackbarChange ) cv2.createTrackbar( 'Y R Bot', 'Control', img.shape[0], img.shape[0], onTrackbarChange ) # Loop while(1): # Get Track Bar positions pts = np.array(eval('[(' + str(cv2.getTrackbarPos('X L Bot','Control')) + ',' + str(cv2.getTrackbarPos('Y L Bot','Control')) + '),' + '(' + str(cv2.getTrackbarPos('X L Top','Control')) + ',' + str(cv2.getTrackbarPos('Y L Top','Control'))+ '),' + '(' + str(cv2.getTrackbarPos('X R Top','Control')) + ',' + str(cv2.getTrackbarPos('Y R Top','Control'))+ '),' + '(' + str(cv2.getTrackbarPos('X R Bot','Control')) + ',' + str(cv2.getTrackbarPos('Y R Bot','Control'))+ ')]' ), dtype = "int32") # Draw the perspective imgConnectedPoints = cv2.polylines(img.copy(), [pts], isClosed = True, color = (0,255,0), thickness = 3) cv2.imshow('Main',imgConnectedPoints) # Draw the transformed bird's eye view warped = four_point_transform(img, expandPerspective(order_points(pts), img.shape[1], img.shape[0])) cv2.imshow('Birds Eye',warped) # Exit if cv2.waitKey(1)==27: exit(0) cv.detroyAllWindows()
hellkrusher/BirdsEyePerspectiveTransformationUtility
BirdsEyePerspectiveTransformationUtility.py
BirdsEyePerspectiveTransformationUtility.py
py
6,413
python
en
code
5
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.diff", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 116, "usage_type": "call" }, { "api_name": "cv2.getPerspectiveTransform", "line_number": 122, "usage_type": "call" }, { "api_name": "cv2.warpPerspective", "line_number": 123, "usage_type": "call" }, { "api_name": "cv2.BORDER_TRANSPARENT", "line_number": 123, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 128, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 131, "usage_type": "call" }, { "api_name": "cv2.WINDOW_AUTOSIZE", "line_number": 131, "usage_type": "attribute" }, { "api_name": "cv2.namedWindow", "line_number": 132, "usage_type": "call" }, { "api_name": "cv2.WINDOW_AUTOSIZE", "line_number": 132, "usage_type": "attribute" }, { "api_name": "cv2.namedWindow", "line_number": 133, "usage_type": "call" }, { "api_name": "cv2.WINDOW_AUTOSIZE", "line_number": 133, "usage_type": "attribute" }, { "api_name": "cv2.createTrackbar", "line_number": 136, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 137, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 139, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 140, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 142, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 143, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 145, "usage_type": "call" }, { "api_name": "cv2.createTrackbar", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 151, "usage_type": "call" }, { "api_name": "cv2.getTrackbarPos", "line_number": 151, "usage_type": "call" }, { "api_name": "cv2.getTrackbarPos", "line_number": 152, "usage_type": "call" }, { "api_name": "cv2.getTrackbarPos", "line_number": 153, "usage_type": "call" }, { "api_name": "cv2.getTrackbarPos", "line_number": 154, "usage_type": "call" }, { "api_name": "cv2.polylines", "line_number": 158, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 159, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 163, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 166, "usage_type": "call" } ]
72465379387
from django import forms from .models import Meme class MemeForm(forms.ModelForm): class Meta(): model = Meme fields = ('description','category','meme_img') widgets = { 'description': forms.TextInput(attrs={ 'class': 'field', 'placeholder': 'Enter Description' }), 'category': forms.Select(choices=model.CATEGORY_CHOICES, attrs={ 'class': 'choice-control', 'placeholder': 'Choose category', }), 'meme_img': forms.FileInput(attrs={ 'class': 'upload-control', 'placeholder': 'Choose file', }) }
omroczkowski/h8gag
meme/forms.py
forms.py
py
701
python
en
code
0
github-code
6
[ { "api_name": "django.forms.ModelForm", "line_number": 4, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 4, "usage_type": "name" }, { "api_name": "models.Meme", "line_number": 6, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 9, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 9, "usage_type": "name" }, { "api_name": "django.forms.Select", "line_number": 13, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 13, "usage_type": "name" }, { "api_name": "django.forms.FileInput", "line_number": 17, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 17, "usage_type": "name" } ]
15387648798
import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_blobs import numpy as np def sigmoid(x): return 1.0 / (1 + np.exp(-x)) def dataset(): (X, y) = make_blobs(n_samples=250, n_features=2, centers=2, cluster_std=1.05, random_state=20) X = np.c_[np.ones((X.shape[0])), X] return X,y def initialize_weights(p): return np.random.uniform(size = p) def make_predictions(X,W,link): return link(X.dot(W)) def cross_entropy(y,preds): y = np.array([y]) return -np.sum(y*np.log(preds)+(1-y)*np.log(1-preds))/y.shape[0] def compute_gradient(preds,X,y,cost=cross_entropy,link = sigmoid): y = np.array([y]) if cost == cross_entropy and link == sigmoid: return X.T.dot(preds-y)/y.shape[0] def sgd(X,y,cost = cross_entropy,link=sigmoid, alpha = 0.01,eps = 0.0001, maxit = 1000): W = initialize_weights(X.shape[1]) n = X.shape[0] ind = np.random.permutation(np.arange(n)) X = X[ind] y = y[ind] i = 0 losses = [] preds = make_predictions(X[i:i+1,:],W,link) losses.append(cost(y[i],preds)) it = 0 while True: it += 1 print("Iteration n.{}".format(it)) gradient = compute_gradient(preds,X[i:i+1,:],y[i],cost,link) W -= alpha*gradient i = i + 1 if i == n: ind = np.random.permutation(np.arange(n)) X = X[ind] y = y[ind] i = 0 preds = make_predictions(X[i:i+1,:],W,link) l_new = cost(y[i],preds) losses.append(l_new) if it == maxit: break """if it > 250 and abs(l_new-losses[it-250])<eps: break""" return W,losses #generate the data X,y = dataset() # plot the points plt.scatter(X[:, 1], X[:, 2], marker="o", c=y) theta,losses = sgd(X,y,cost = cross_entropy,link = sigmoid, alpha = 0.01,eps = 0.0001, maxit = 1000) Y = (-theta[0] - (theta[1] * X)) / theta[2] plt.plot(X, Y, "r-") # construct a figure that plots the loss over time fig = plt.figure() plt.plot(np.arange(0, len(losses)), losses) fig.suptitle("Training Loss") plt.xlabel("Epoch #") plt.ylabel("Loss") plt.show()
nickruggeri/Machine_Learning
AdaGrad, ADAM and AMSGrad/Codes/my_sgd.py
my_sgd.py
py
2,198
python
en
code
2
github-code
6
[ { "api_name": "numpy.exp", "line_number": 6, "usage_type": "call" }, { "api_name": "sklearn.datasets.samples_generator.make_blobs", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.c_", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 33, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" } ]
2677444598
# This code is based on https://github.com/openai/guided-diffusion """ Train a diffusion model on images. """ import os import json from mdm_utils.fixseed import fixseed from mdm_utils.parser_util import train_args from mdm_utils import dist_util from train_utils.train_loop import TrainLoop from mdm_utils.model_util import create_model_and_diffusion from train_utils.train_platforms import ClearmlPlatform, TensorboardPlatform, NoPlatform # required for the eval operation from train_utils.ted_loader import build_dataloader def main(): args = train_args() save_dir = f"{args.save_dir}/{args.exp}" args.save_dir = save_dir print("save_dir:", save_dir) fixseed(args.seed) train_platform_type = eval(args.train_platform_type) train_platform = train_platform_type(args.save_dir) train_platform.report_args(args, name='Args') args_path = os.path.join(args.save_dir, 'args.json') with open(args_path, 'w') as fw: json.dump(vars(args), fw, indent=4, sort_keys=True) dist_util.setup_dist(args.device) print("creating data loader...") data = build_dataloader('train', args, shuffle = True) print("creating model and diffusion...") lang_model = data.dataset.lang_model args.lang_model = lang_model model, diffusion = create_model_and_diffusion(args, '') model.to(dist_util.dev()) print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters_wo_clip()) / 1000000.0)) print("Training...") TrainLoop(args, train_platform, model, diffusion, data).run_loop() train_platform.close() if __name__ == "__main__": main()
zyhbili/LivelySpeaker
scripts/train_RAG.py
train_RAG.py
py
1,624
python
en
code
38
github-code
6
[ { "api_name": "mdm_utils.parser_util.train_args", "line_number": 17, "usage_type": "call" }, { "api_name": "mdm_utils.fixseed.fixseed", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 28, "usage_type": "call" }, { "api_name": "mdm_utils.dist_util.setup_dist", "line_number": 30, "usage_type": "call" }, { "api_name": "mdm_utils.dist_util", "line_number": 30, "usage_type": "name" }, { "api_name": "train_utils.ted_loader.build_dataloader", "line_number": 33, "usage_type": "call" }, { "api_name": "mdm_utils.model_util.create_model_and_diffusion", "line_number": 37, "usage_type": "call" }, { "api_name": "mdm_utils.dist_util.dev", "line_number": 39, "usage_type": "call" }, { "api_name": "mdm_utils.dist_util", "line_number": 39, "usage_type": "name" }, { "api_name": "train_utils.train_loop.TrainLoop", "line_number": 43, "usage_type": "call" } ]
45386087756
""" Classes representing uploaded files. """ import errno import os from io import BytesIO from theory.conf import settings from theory.core.files.base import File from theory.core.files import temp as tempfile from theory.utils.encoding import forceStr __all__ = ('UploadedFile', 'TemporaryUploadedFile', 'InMemoryUploadedFile', 'SimpleUploadedFile') class UploadedFile(File): """ A abstract uploaded file (``TemporaryUploadedFile`` and ``InMemoryUploadedFile`` are the built-in concrete subclasses). An ``UploadedFile`` object behaves somewhat like a file object and represents some file data that the user submitted with a form. """ DEFAULT_CHUNK_SIZE = 64 * 2 ** 10 def __init__(self, file=None, name=None, contentType=None, size=None, charset=None, contentTypeExtra=None): super(UploadedFile, self).__init__(file, name) self.size = size self.contentType = contentType self.charset = charset self.contentTypeExtra = contentTypeExtra def __repr__(self): return forceStr("<%s: %s (%s)>" % ( self.__class__.__name__, self.name, self.contentType)) def _getName(self): return self._name def _setName(self, name): # Sanitize the file name so that it can't be dangerous. if name is not None: # Just use the basename of the file -- anything else is dangerous. name = os.path.basename(name) # File names longer than 255 characters can cause problems on older OSes. if len(name) > 255: name, ext = os.path.splitext(name) ext = ext[:255] name = name[:255 - len(ext)] + ext self._name = name name = property(_getName, _setName) class TemporaryUploadedFile(UploadedFile): """ A file uploaded to a temporary location (i.e. stream-to-disk). """ def __init__(self, name, contentType, size, charset, contentTypeExtra=None): if settings.FILE_UPLOAD_TEMP_DIR: file = tempfile.NamedTemporaryFile(suffix='.upload', dir=settings.FILE_UPLOAD_TEMP_DIR) else: file = tempfile.NamedTemporaryFile(suffix='.upload') super(TemporaryUploadedFile, self).__init__(file, name, contentType, size, charset, contentTypeExtra) def temporaryFilePath(self): """ Returns the full path of this file. """ return self.file.name def close(self): try: return self.file.close() except OSError as e: if e.errno != errno.ENOENT: # Means the file was moved or deleted before the tempfile # could unlink it. Still sets self.file.closeCalled and # calls self.file.file.close() before the exception raise class InMemoryUploadedFile(UploadedFile): """ A file uploaded into memory (i.e. stream-to-memory). """ def __init__(self, file, fieldName, name, contentType, size, charset, contentTypeExtra=None): super(InMemoryUploadedFile, self).__init__(file, name, contentType, size, charset, contentTypeExtra) self.fieldName = fieldName def open(self, mode=None): self.file.seek(0) def chunks(self, chunkSize=None): self.file.seek(0) yield self.read() def multipleChunks(self, chunkSize=None): # Since it's in memory, we'll never have multiple chunks. return False class SimpleUploadedFile(InMemoryUploadedFile): """ A simple representation of a file, which just has content, size, and a name. """ def __init__(self, name, content, contentType='text/plain'): content = content or b'' super(SimpleUploadedFile, self).__init__(BytesIO(content), None, name, contentType, len(content), None, None) @classmethod def fromDict(cls, fileDict): """ Creates a SimpleUploadedFile object from a dictionary object with the following keys: - filename - content-type - content """ return cls(fileDict['filename'], fileDict['content'], fileDict.get('content-type', 'text/plain'))
grapemix/theory
theory/core/files/uploadedfile.py
uploadedfile.py
py
3,916
python
en
code
1
github-code
6
[ { "api_name": "theory.core.files.base.File", "line_number": 18, "usage_type": "name" }, { "api_name": "theory.utils.encoding.forceStr", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "theory.conf.settings.FILE_UPLOAD_TEMP_DIR", "line_number": 64, "usage_type": "attribute" }, { "api_name": "theory.conf.settings", "line_number": 64, "usage_type": "name" }, { "api_name": "theory.core.files.temp.NamedTemporaryFile", "line_number": 65, "usage_type": "call" }, { "api_name": "theory.core.files.temp", "line_number": 65, "usage_type": "name" }, { "api_name": "theory.conf.settings.FILE_UPLOAD_TEMP_DIR", "line_number": 66, "usage_type": "attribute" }, { "api_name": "theory.conf.settings", "line_number": 66, "usage_type": "name" }, { "api_name": "theory.core.files.temp.NamedTemporaryFile", "line_number": 68, "usage_type": "call" }, { "api_name": "theory.core.files.temp", "line_number": 68, "usage_type": "name" }, { "api_name": "errno.ENOENT", "line_number": 81, "usage_type": "attribute" }, { "api_name": "io.BytesIO", "line_number": 114, "usage_type": "call" } ]
369174475
from typing import Optional #se verifica daca treeul este symetric class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def isSymmetric(self, root: Optional[TreeNode]) -> bool: if not root or not root.left and not root.right: return True stack=[root.left,root.right] while stack: num_items=len(stack) for i in range(num_items//2): node1=stack.pop() node2=stack.pop() if node1 and not node2 or node2 and not node1: return False elif not node1 and not node2: continue elif node1.data!=node2.data: return False else: stack.append(node1.left) stack.append(node2.right) stack.append(node1.right) stack.append(node2.left) return True root=TreeNode() root.data="root" root.left=TreeNode() root.left.data = "a" root.right = TreeNode() root.right.data = "a" root.left.left=TreeNode() root.left.left.data="a" root.right.right=TreeNode() root.right.right.data="a" if Solution.isSymmetric(self=Solution,root=root): print("true") else: print("false")
ArdaiArtur/PY
LeetCode/SymetricTree.py
SymetricTree.py
py
1,405
python
en
code
0
github-code
6
[ { "api_name": "typing.Optional", "line_number": 10, "usage_type": "name" } ]
71623457467
# -*- coding: utf-8 -*- """ Created on Tue Jun 23 11:31:08 2020 @author: dkafkes """ import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('master_stdev.csv', header = 0, skiprows = list(np.arange(1, 177))) df.drop(columns = ['Filename'], inplace = True) df = df.set_index('Unnamed: 0') #%% x = df['B:IMINER'] array, bins, patches = plt.hist(x, bins = 100) plt.title("B:IMINER Standard Deviation Spread") plt.xlabel("Average Standard Deviation") plt.ylabel("Log(Files)") plt.ylim(0.1, 1000) plt.semilogy() plt.show()
dkafkes/simplified-ai-for-accelerators
data pipeline/histogram.py
histogram.py
py
577
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.semilogy", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" } ]
72066886907
import sys, os, re import unittest from itertools import product as prod from timeit import Timer import time import math import logging import numpy as np from scipy.optimize import fmin, fmin_bfgs from hydrodiy.stat.transform import BoxCox2 from hydrodiy.data.containers import Vector from pygme.model import Model, ParameterCheckValueError from pygme.calibration import Calibration, CalibParamsVector from pygme.calibration import ObjFunSSE, ObjFunBCSSE, \ ObjFunKGE, ObjFunBiasBCSSE from pygme.calibration import CalibrationExplorationError from dummy import Dummy, CalibrationDummy, ObjFunSSEargs BC = BoxCox2() # Set logger LOGGER = logging.getLogger('pygme.Calibration') fmt='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ft = logging.Formatter(fmt) sh = logging.StreamHandler(sys.stdout) sh.setFormatter(ft) LOGGER.addHandler(sh) class ObjFunTestCase(unittest.TestCase): def setUp(self): print('\t=> ObjFunTestCase') nval = 1000 obs = np.random.uniform(0., 1, size=nval) idx = np.random.choice(np.arange(nval), nval//100) obs[idx] = np.nan self.obs = obs sim = np.random.uniform(0., 1, size=nval) idx = np.random.choice(np.arange(nval), nval//100) sim[idx] = np.nan self.sim = sim def test_print(self): of = ObjFunBCSSE(0.2) print(of) of = ObjFunSSE() print(of) of = ObjFunKGE() print(of) def test_SSE(self): obs, sim = self.obs, self.sim idx = (~np.isnan(obs)) & (~np.isnan(sim)) of = ObjFunSSE() value = of.compute(obs[idx], sim[idx]) err = self.obs-self.sim expected = np.nansum(err*err) self.assertTrue(np.allclose(value, expected)) value = of.compute(obs, sim) self.assertTrue(np.isnan(value)) def test_KGE(self): of = ObjFunKGE() obs, sim = self.obs, self.sim idx = (~np.isnan(obs)) & (~np.isnan(sim)) value = of.compute(obs[idx], sim[idx]) obsok, simok = obs[idx], sim[idx] bias = np.mean(simok)/np.mean(obsok) rstd = np.std(simok)/np.std(obsok) corr = np.corrcoef(obsok, simok)[0, 1] expected = 1-math.sqrt((1-bias)**2+(1-rstd)**2+(1-corr)**2) self.assertTrue(np.allclose(value, expected)) value = of.compute(obs, sim) self.assertTrue(np.isnan(value)) def test_BCSSE(self): ''' test the BCSSE objfun ''' obs, sim = self.obs, self.sim idx = (~np.isnan(obs)) & (~np.isnan(sim)) for lam, nu in prod([0.1, 0.5, 1., 2], [1e-4, 1e-2, 1]): of = ObjFunBCSSE(lam, nu) assert of.name == f"BCSSE{lam:0.1f}" value = of.compute(obs[idx], sim[idx]) BC.lam = lam BC.nu = nu err = BC.forward(obs)-BC.forward(sim) expected = np.nansum(err*err) self.assertTrue(np.isclose(value, expected)) value = of.compute(obs, sim) self.assertTrue(np.isnan(value)) def test_BiasBCSSE(self): ''' test the BiasBCSSE objfun ''' obs, sim = self.obs, self.sim idx = (~np.isnan(obs)) & (~np.isnan(sim)) mo = obs[idx].mean() ms = sim[idx].mean() for lam, nu in prod([0.1, 0.5, 1., 2], [1e-4, 1e-2, 1]): of = ObjFunBiasBCSSE(lam, nu) assert of.name == f"BiasBCSSE{lam:0.1f}" value = of.compute(obs[idx], sim[idx]) BC.lam = lam BC.nu = nu err = BC.forward(obs)-BC.forward(sim) expected = np.nansum(err*err)*(1+abs(ms-mo)/mo) self.assertTrue(np.isclose(value, expected)) value = of.compute(obs, sim) self.assertTrue(np.isnan(value)) class CalibParamsVectorTestCase(unittest.TestCase): def setUp(self): print('\t=> CalibParamsVectorTestCase') config = Vector([]) nval = 10 params = Vector(['X{0}'.format(k) for k in range(1, nval+1)], defaults=np.ones(nval), mins=np.zeros(nval), \ maxs=np.ones(nval)*5) states = Vector(['S{0}'.format(k) for k in range(1, 3)]) self.model = Model('test', config, params, states, 2, 2) def test_default(self): ''' Test setting default values ''' calparams = CalibParamsVector(self.model) self.assertTrue(np.all([s1==s2 for s1, s2 in zip(calparams.names, \ self.model.params.names)])) self.assertTrue(np.allclose(calparams.defaults, \ self.model.params.defaults)) def test_errors_infinite(self): ''' Test errors for finite values in calibrated params ''' nval = self.model.params.nval cp = Vector(['X{0}'.format(k) for k in range(1, nval+1)]) try: calparams = CalibParamsVector(self.model, cp) except ValueError as err: self.assertTrue(str(err).startswith('Expected no infinite')) else: raise ValueError('Problem with error handling') def test_errors_funs(self): ''' Test errors related to trans2true and true2trans ''' nval = self.model.params.nval cp = Vector(['X{0}'.format(k) for k in range(1, nval+1)]) cp = Vector(['tX{0}'.format(k) for k in range(1, nval+1)],\ defaults=[0]*nval, mins=[-1]*nval, maxs=[1]*nval) fun1 = lambda x: 'string1' fun2 = lambda x: 'string2' try: calparams = CalibParamsVector(self.model, cp, fun1, fun2) except ValueError as err: self.assertTrue(str(err).startswith(\ 'Problem with trans2true for')) else: raise ValueError('Problem with error handling') fun = lambda x: np.column_stack([x, x]) try: calparams = CalibParamsVector(self.model, cp, fun, fun) except ValueError as err: self.assertTrue(str(err).startswith(\ 'Problem with trans2true for')) else: raise ValueError('Problem with error handling') def test_identity(self): nval = self.model.params.nval cp = Vector(['tX{0}'.format(k) for k in range(1, nval+1)],\ defaults=[0]*nval, mins=[-1]*nval, maxs=[1]*nval) calparams = CalibParamsVector(self.model, cp) for i in range(10): val = np.random.uniform(0, 1, nval) calparams.values = val self.assertTrue(np.allclose(self.model.params.values, val)) val = np.random.uniform(0, 1, nval) calparams.truevalues = val self.assertTrue(np.allclose(calparams.values, val)) def test_common_transform(self): nval = self.model.params.nval cp = Vector(['tX{0}'.format(k) for k in range(1, nval+1)],\ defaults=[0]*nval, mins=[-1]*nval, maxs=[1]*nval) for i, trans in enumerate(['exp', 'sinh']): calparams = CalibParamsVector(self.model, cp, trans2true=trans) if i == 0: trans2true = np.exp true2trans = np.log elif i == 1: trans2true = np.sinh true2trans = np.arcsinh for i in range(10): val = np.random.uniform(0, 1, nval) calparams.values = val self.assertTrue(np.allclose(calparams.truevalues, \ trans2true(val))) self.assertTrue(np.allclose(self.model.params.values, \ trans2true(val))) val = np.random.uniform(math.exp(-1), 1, nval) calparams.truevalues = val self.assertTrue(np.allclose(calparams.values, \ true2trans(val))) def test_fixed(self): nval = self.model.params.nval cp = Vector(['tX{0}'.format(k) for k in range(1, nval+1)],\ defaults=[0]*nval, mins=[-5]*nval, maxs=[5]*nval) # Choose a fixed value below the max value x1 = 4 fixed = {'X1':x1} calparams = CalibParamsVector(self.model, cp, fixed=fixed) for i in range(10): val = np.random.uniform(0, 1, nval) calparams.values = val val2 = val.copy() val2[0] = x1 self.assertTrue(np.allclose(self.model.params.values, val2)) val = np.random.uniform(0, 1, nval) calparams.truevalues = val val2 = val.copy() val2[0] = x1 self.assertTrue(np.allclose(calparams.truevalues, val2)) self.assertTrue(np.allclose(calparams.values, val2)) class CalibrationTestCase(unittest.TestCase): def setUp(self): print('\t=> CalibrationTestCase') # Create random inputs inputs = np.random.exponential(1, (100, 2)) # Allocate model dum = Dummy() dum.allocate(inputs, 2) # Run model to create a sudo obs params = dum.params.defaults+0.1 dum.params.values = params dum.run() obs = dum.outputs[:, 0].copy() # Store calibration set up self.inputs = inputs self.params = params self.obs = obs self.ical = np.arange(10, obs.shape[0]) def test_calibration_instance_print(self): ''' Test printing of calibration object ''' calib = CalibrationDummy(warmup=10) calib.allocate(self.obs, self.inputs) str = '{0}'.format(calib) def test_calibration_errors(self): ''' Test calibration errors ''' inputs = np.random.uniform(0, 1, (1000, 2)) obs = np.random.uniform(0, 1, 1000) cp = Vector(['tX1', 'tX2'], mins=[-10]*2, maxs=[10]*2, \ defaults=[1, 0]) calparams = CalibParamsVector(Dummy(), cp, trans2true='exp') calib = Calibration(calparams) try: plib = calib.paramslib except ValueError as err: self.assertTrue(str(err).startswith(\ 'Trying to access paramslib, but ')) else: raise ValueError('Problem with error handling') try: calib.ical = obs==obs except ValueError as err: self.assertTrue(str(err).startswith('Trying to get obs, but ')) else: raise ValueError('Problem with error handling') def test_explore(self): ''' Test explore function ''' calib = CalibrationDummy(warmup=10) plib = np.random.uniform(-0.1, 0.1, size=(1000, 2)) \ + self.params[None, :] calib.paramslib = plib calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, explo_ofun = calib.explore() self.assertTrue(np.allclose(start, self.params, rtol=0., atol=0.05)) def test_explore_error(self): ''' Test calibration exploration error ''' class ObjFunError(ObjFunSSE): ''' Sum of squared error objective function ''' def __init__(self): super(ObjFunError, self).__init__() self.name = 'Error' def compute(self, obs, sim, **kwargs): of = super(ObjFunError, self).compute(obs, sim) if of < 1e-1: # This is a stupid error generation # we use it just for testing raise ValueError('Error in exploration') return of calib = CalibrationDummy(warmup=10, objfun=ObjFunError()) plib = np.random.uniform(-0.1, 0.1, size=(1000, 2)) \ + self.params[None, :] calib.paramslib = plib calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, explo_ofun = calib.explore() # Check that no objective function is below 1e-1 # because the objective function does not allow it self.assertTrue(np.all(explo_ofun > 1e-1)) # Check that we trigger an error during exploration try: start, _, explo_ofun = calib.explore(raise_error=True) except CalibrationExplorationError as err: self.assertTrue(str(err).startswith('Error in explo')) else: raise ValueError('Problem with error handling') def test_explore_fit(self): ''' Test explore and fit functions ''' calib = CalibrationDummy(warmup=10) calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, _ = calib.explore() final, _, _ = calib.fit(iprint=10, maxfun=100000, ftol=1e-8) ck = np.allclose(calib.model.params.values, self.params, \ atol=1e-3, rtol=0.) self.assertTrue(ck) def test_fit_args(self): ''' Test passing arguments to objective function ''' kwargs = {'lam':1.0, 'idx':np.arange(len(self.ical))} calib = CalibrationDummy(objfun=ObjFunSSEargs(), \ warmup=10, \ objfun_kwargs=kwargs) calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, _ = calib.explore() final, _, _ = calib.fit(iprint=10, maxfun=100000, ftol=1e-8) ck = np.allclose(calib.model.params.values, self.params, \ atol=1e-3, rtol=0.) self.assertTrue(ck) def test_checkvalues(self): def fun(values): if values[1] < 0.5: raise ParameterCheckValueError calib = CalibrationDummy(warmup=10, checkvalues=fun) calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, ofuns = calib.explore() idx = calib.paramslib[:, 1] < 0.5 self.assertTrue(np.all(np.isinf(ofuns[idx]))) def test_fixed(self): ''' Test calibration with fixed parameters ''' # Test error fixed = {'X10':self.params[0]+3} try: calib = CalibrationDummy(warmup=10, fixed=fixed) except ValueError as err: self.assertTrue(str(err).startswith('Expected names '+\ 'of fixed parameters')) else: raise ValueError('Problem with error handling') fixed = {'X1':self.params[0]+3} calib = CalibrationDummy(warmup=10, fixed=fixed) calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, _ = calib.explore() final, _, _ = calib.fit(iprint=10, maxfun=100000, ftol=1e-8) self.assertEqual(fixed, calib.fixed) self.assertTrue(np.allclose(fixed['X1'], start[0])) self.assertTrue(np.allclose(fixed['X1'], final[0])) self.assertTrue(np.allclose(fixed['X1'], \ calib.model.params.values[0])) def test_workflow(self): ''' Test calibration workflow (i.e. explore+fit) ''' calib = CalibrationDummy(warmup=10) # Check parameter are not close at the beginning ck = ~np.allclose(calib.model.params.values, self.params) self.assertTrue(ck) # Run calibration calib.workflow(self.obs, self.inputs, self.ical, iprint=0, maxfun=100000, ftol=1e-8) # Test parameters at the end ck = np.allclose(calib.model.params.values, self.params, \ atol=1e-5, rtol=0.) self.assertTrue(ck) def test_customised_objfun(self): ''' Test customised objective function ''' # Define a customized objective function objfun = ObjFunBCSSE(lam=0.8, nu=1e-5) # Instanciate a new calib obj and applies objfun calib = CalibrationDummy(warmup=10, objfun=objfun) # Check parameter are not close at the beginning ck = ~np.allclose(calib.model.params.values, self.params) self.assertTrue(ck) # Run calibration calib.workflow(self.obs, self.inputs, self.ical, iprint=0, maxfun=100000, ftol=1e-8) # Test parameters at the end ck = np.allclose(calib.model.params.values, self.params, atol=1e-3) self.assertTrue(ck) def test_optimizers(self): ''' Test a range of optimizer from scipy ''' calib = CalibrationDummy(objfun=ObjFunSSE(), \ warmup=10) calib.allocate(self.obs, self.inputs) calib.ical = self.ical start, _, _ = calib.explore() for iopt, opt in enumerate([fmin, fmin_bfgs]): if opt.__name__ in ['fmin', 'fmin_powell']: kwargs = dict(maxfun=100000, ftol=1e-8) else: kwargs = dict(maxiter=100000, gtol=1e-8) final, _, _ = calib.fit(start=start, iprint=10, optimizer=opt, \ **kwargs) ck = np.allclose(calib.model.params.values, self.params, \ atol=5e-3, rtol=0.) if not ck: print(('Failing optimizer test {0} '+\ 'expected params={1}, got {2}').format(\ iopt+1, \ ' '.join(list(np.round(\ self.params, 2).astype(str))), \ ' '.join(list(np.round(\ calib.model.params.values, 2).astype(str))) )) self.assertTrue(ck) if __name__ == "__main__": unittest.main()
csiro-hydroinformatics/pygme
tests/test_pygme_calibration.py
test_pygme_calibration.py
py
17,767
python
en
code
0
github-code
6
[ { "api_name": "hydrodiy.stat.transform.BoxCox2", "line_number": 26, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 31, "usage_type": "call" }, { "api_name": "logging.StreamHandler", "line_number": 32, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 32, "usage_type": "attribute" }, { "api_name": "unittest.TestCase", "line_number": 37, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 43, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 44, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 45, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 49, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 50, "usage_type": "attribute" }, { "api_name": "pygme.calibration.ObjFunBCSSE", "line_number": 55, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunSSE", "line_number": 58, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunKGE", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 67, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunSSE", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 76, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunKGE", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.corrcoef", "line_number": 89, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 100, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 102, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunBCSSE", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 111, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 122, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 126, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunBiasBCSSE", "line_number": 127, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 140, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 144, "usage_type": "attribute" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 149, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 153, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 154, "usage_type": "call" }, { "api_name": "pygme.model.Model", "line_number": 155, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 165, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 172, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 174, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 184, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 185, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.column_stack", "line_number": 198, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 200, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 210, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 216, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 216, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 218, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 220, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 222, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 227, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 231, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 233, "usage_type": "attribute" }, { "api_name": "numpy.log", "line_number": 234, "usage_type": "attribute" }, { "api_name": "numpy.sinh", "line_number": 236, "usage_type": "attribute" }, { "api_name": "numpy.arcsinh", "line_number": 237, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 240, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 240, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 242, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 247, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 247, "usage_type": "attribute" }, { "api_name": "math.exp", "line_number": 247, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 249, "usage_type": "call" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 254, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 261, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 264, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 264, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 268, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 270, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 270, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 274, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 275, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 279, "usage_type": "attribute" }, { "api_name": "numpy.random.exponential", "line_number": 285, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 285, "usage_type": "attribute" }, { "api_name": "dummy.Dummy", "line_number": 288, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 301, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 306, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 313, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 313, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 314, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 314, "usage_type": "attribute" }, { "api_name": "hydrodiy.data.containers.Vector", "line_number": 316, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibParamsVector", "line_number": 318, "usage_type": "call" }, { "api_name": "dummy.Dummy", "line_number": 318, "usage_type": "call" }, { "api_name": "pygme.calibration.Calibration", "line_number": 319, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 339, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 340, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 340, "usage_type": "attribute" }, { "api_name": "numpy.allclose", "line_number": 348, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunSSE", "line_number": 354, "usage_type": "name" }, { "api_name": "dummy.CalibrationDummy", "line_number": 370, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 371, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 371, "usage_type": "attribute" }, { "api_name": "numpy.all", "line_number": 381, "usage_type": "call" }, { "api_name": "pygme.calibration.CalibrationExplorationError", "line_number": 386, "usage_type": "name" }, { "api_name": "dummy.CalibrationDummy", "line_number": 394, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 401, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 408, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 409, "usage_type": "call" }, { "api_name": "dummy.ObjFunSSEargs", "line_number": 409, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 418, "usage_type": "call" }, { "api_name": "pygme.model.ParameterCheckValueError", "line_number": 426, "usage_type": "name" }, { "api_name": "dummy.CalibrationDummy", "line_number": 428, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 435, "usage_type": "call" }, { "api_name": "numpy.isinf", "line_number": 435, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 443, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 451, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 460, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 461, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 462, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 468, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 471, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 479, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunBCSSE", "line_number": 487, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 490, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 493, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 501, "usage_type": "call" }, { "api_name": "dummy.CalibrationDummy", "line_number": 507, "usage_type": "call" }, { "api_name": "pygme.calibration.ObjFunSSE", "line_number": 507, "usage_type": "call" }, { "api_name": "scipy.optimize.fmin", "line_number": 513, "usage_type": "name" }, { "api_name": "scipy.optimize.fmin_bfgs", "line_number": 513, "usage_type": "name" }, { "api_name": "numpy.allclose", "line_number": 521, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 527, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 529, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 537, "usage_type": "call" } ]
16737781321
import pdb import unittest import json from objbrowser import browse import mock from mock import patch import music_server from music_server import youtube_search from music_server import config class YoutubeSearchTestCase(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_format_query(self): # given search_query = "simple_query" expected_result = "http://youtube.com/results?search_query=simple_query" # when query = youtube_search.format_query(search_query) # then self.assertEqual(query, expected_result) def test_format_query_with_space(self): # given search_query = "a b" expected_result = "http://youtube.com/results?search_query=a+b" # when query = youtube_search.format_query(search_query) # then self.assertEqual(query, expected_result) def test_format_with_plus(self): # given search_query = "a+b" expected_result = "http://youtube.com/results?search_query=a%2Bb" # when query = youtube_search.format_query(search_query) # then self.assertEqual(query, expected_result) def test_fetch_first_result_when_empty(self): self.assertRaises(TypeError, youtube_search.fetch_results, None) # empty list def test_fetch_first_result_when_no_result(self): # given html_content = "wrong html content" # when result = youtube_search.fetch_results(html_content) # then self.assertFalse(result, 'Result should be an empty list') def test_fetch_results(self): # given with open(config.test_resources_folder + 'youtube_search_pratos_osni.html', 'r') as myfile: html_content = myfile.read() with open(config.test_resources_folder + 'youtube_search_pratos_osni.json', 'r') as myfile2: expected_links = json.loads(myfile2.read()) # when results = youtube_search.fetch_results(html_content) # then self.assertEqual(results, expected_links) @patch('music_server.youtube_search.get_html') def test_youtube_search(self, test_patch): # given with open(music_server.config.test_resources_folder + 'youtube_search_pratos_osni.html') as fh: mock_html = fh.read() test_patch.return_value = mock_html with open(config.test_resources_folder + 'youtube_search_pratos_osni.json', 'r') as myfile2: expected_links = json.loads(myfile2.read()) # when results = youtube_search.YoutubeSearch("pratos osni").video_ids # then self.assertEqual(results, expected_links) def test_search_empty(self): # given search_query = '' # when results = youtube_search.YoutubeSearch(search_query) # then self.assertTrue(results) def test_search_none(self): # given search_query = None # when results = youtube_search.YoutubeSearch(search_query) # then self.assertTrue(results) if __name__ == '__main__': unittest.main()
Sun42/music_server
tests/youtube_search_tests.py
youtube_search_tests.py
py
3,183
python
en
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 13, "usage_type": "attribute" }, { "api_name": "music_server.youtube_search.format_query", "line_number": 25, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 25, "usage_type": "name" }, { "api_name": "music_server.youtube_search.format_query", "line_number": 34, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 34, "usage_type": "name" }, { "api_name": "music_server.youtube_search.format_query", "line_number": 43, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 43, "usage_type": "name" }, { "api_name": "music_server.youtube_search.fetch_results", "line_number": 48, "usage_type": "attribute" }, { "api_name": "music_server.youtube_search", "line_number": 48, "usage_type": "name" }, { "api_name": "music_server.youtube_search.fetch_results", "line_number": 55, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 55, "usage_type": "name" }, { "api_name": "music_server.config.test_resources_folder", "line_number": 61, "usage_type": "attribute" }, { "api_name": "music_server.config", "line_number": 61, "usage_type": "name" }, { "api_name": "music_server.config.test_resources_folder", "line_number": 63, "usage_type": "attribute" }, { "api_name": "music_server.config", "line_number": 63, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 64, "usage_type": "call" }, { "api_name": "music_server.youtube_search.fetch_results", "line_number": 66, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 66, "usage_type": "name" }, { "api_name": "music_server.config", "line_number": 73, "usage_type": "attribute" }, { "api_name": "music_server.config.test_resources_folder", "line_number": 76, "usage_type": "attribute" }, { "api_name": "music_server.config", "line_number": 76, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 77, "usage_type": "call" }, { "api_name": "music_server.youtube_search.YoutubeSearch", "line_number": 79, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 79, "usage_type": "name" }, { "api_name": "mock.patch", "line_number": 70, "usage_type": "call" }, { "api_name": "music_server.youtube_search.YoutubeSearch", "line_number": 87, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 87, "usage_type": "name" }, { "api_name": "music_server.youtube_search.YoutubeSearch", "line_number": 95, "usage_type": "call" }, { "api_name": "music_server.youtube_search", "line_number": 95, "usage_type": "name" }, { "api_name": "unittest.main", "line_number": 100, "usage_type": "call" } ]
31266417589
import pygame import os from tkinter import messagebox import time import threading pygame.init() pygame.mixer.set_num_channels(20) width = 150 height = 151 channel = 0 stop_music = False fon_m = pygame.mixer.music fon_m.load(os.path.join("sounds", "fon_m.mp3")) fon_m.play() fon = pygame.image.load(os.path.join("images", "fon.png")) HEIGHT, WIDTH = fon.get_height(), fon.get_width() dis = pygame.display.set_mode([WIDTH, HEIGHT]) dis.blit(pygame.transform.scale(pygame.image.load(os.path.join("images", "звук.png")), (WIDTH, HEIGHT)), (0, 0)) class Monster(): def __init__(self, name, x, y, money, max_money, count): self.image = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}.png")), (width, height)) self.x = x self.y = y self.money = money self.max_money = max_money self.count = count class Magazine(): def __init__(self, name, all_seconds): self.image = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}.png")), (width, height)) self.name = name self.all_seconds = all_seconds self.all_seconds_pit = all_seconds self.image_egg = pygame.transform.scale(pygame.image.load(os.path.join("images", f"{name}_egg.png")), (100, 71)) def draw_image(dict): for x in dict: dis.blit(x.image, (x.x, x.y)) def monster_draw(): for elem in all_vorabularu: draw_image(elem) def muzic(dict, muz): global channel if len(dict) > 0: try: pygame.mixer.Channel(channel).play(pygame.mixer.Sound(os.path.join("sounds", muz))) channel += 1 except FileNotFoundError: pass def all_music(): global channel global stop_music for i in range(channel): pygame.mixer.Channel(i).stop() channel = 0 if not stop_music: muzic(bas, "ba_m.mp3") muzic(tus, "tu_m.mp3") muzic(mas, 'ma_m.mp3') muzic(pas, 'pa_m.mp3') muzic(tis, 'ti_m.mpeg') muzic(mars, 'mar_m.mp3') muzic(ras, 'ra_m.ogg') muzic(sms, 'sm_m.mp3.mpeg') muzic(lus, 'la_m.mp3') muzic(izs, 'iz_m.mpeg') muzic(izs, 'iz_m.mp3') threading.Timer(7, all_music).start() def monster_money_every_minuts(): global times times += 60 all_draw() threading.Timer(60, monster_money_every_minuts).start() def staving(vocabulary, name, money, max_money, count): global file global vrem_name vocabulary.append(Monster(stav, mouse[0] - width // 2, mouse[1] - height // 2, money, max_money, count)) file.write(str(vocabulary[-1].x) + ' '+ str(vocabulary[-1].y) + ' ' + str(name) + '\n') vrem_name = '' all_draw() pygame.display.update() def staving_(vocabulary, name, x, y, money, max_money, count): vocabulary.append(Monster(name, x, y, money, max_money, count)) def draw_money(): x, y = 0, 0 text = font.render(str(my_money), True, YELLOW, BLACK) dis.blit(text, (x, y)) y += text.get_height() text = font.render(str(almaz), True, BLUE, BLACK) dis.blit(text, (x, y)) def close_coor(): for i in range(mouse[0] - width//2, mouse[0] + width//2): for j in range(mouse[1] - height//2, mouse[1] + height//2): close.append((i, j)) def forx(voraluary: list, elem : str): global ans global count for x in voraluary: for i in range(x.x, x.x + width): for j in range(x.y, x.y + height): if mouse == (i, j): ans += elem monsters_in_pit.append(x.count) count += 1 def clik_monster(voraluary): for x in voraluary: for i in range(x.x, x.x + width): for j in range(x.y, x.y + height): if mouse == (i, j): return True def magazin_clik(int, image_x): global stav global game global eggs global vrem_name global all_seconds global my_money global monster_in_p mouse = pygame.mouse.get_pos() if mouse[0] in range(image_x[0], image_x[1]) and mouse[1] in range(HEIGHT // 3 - height // 2, HEIGHT // 3 + height): if my_money - 300 >= 0 and vrem_name == '' and all_seconds <= 0: my_money -= 300 game = True all_draw() dis.blit(magazine[int].image_egg, (WIDTH - 500 + width//2, height//2 + 27)) pygame.display.update() vrem_name = magazine[int].name all_seconds = magazine[int].all_seconds monster_in_p = int timer() elif my_money <= 300: messagebox.showinfo("", "У вас не хватает денег") game = True all_draw() pygame.display.update() else: messagebox.showinfo("", "Питомник уже занят") game = True all_draw() pygame.display.update() def monster_money(vocabulary): for x in vocabulary: if x.money*(times//60) < x.max_money: text = str(x.money*(times//60)) else: text = str(x.max_money) text = font.render((text), True, YELLOW) dis.blit(text, (x.x + width // 4, x.y + height)) def sbor_money(vocabulary): global my_money global times for x in vocabulary: if x.money * (times // 60) <= x.max_money: my_money += x.money * (times // 60) else: my_money += x.max_money def all_draw(): global monster_in_p global monster_in_pit global monsters_in_pit dis.blit(fon, (0, 0)) pygame.draw.rect(dis, YELLOW, (WIDTH - 100, HEIGHT - 100, 100, 100)) draw_money() dis.blit(pit, (300, 0)) dis.blit(ppp, (WIDTH - 500, 0)) pygame.draw.rect(dis, BLACK, (0, HEIGHT - 100, 100, 100)) pygame.draw.rect(dis, BLACK, (200, 0, 100, 100)) text = font.render("-2", True, BLUE, BLACK) dis.blit(text, (0, 150)) dis.blit(pygame.transform.scale(pygame.image.load(os.path.join("images", "звук.png")), (100, 100)),(100, HEIGHT - 100)) monster_draw() if monster_in_p != -1: dis.blit(magazine[monster_in_p].image_egg, (WIDTH - 500 + width//2, height//2 + 27)) stroka = str(all_seconds - seconds) dis.blit(font.render(str(all_seconds - seconds), True, WHITE), ((WIDTH - (400 + 10 *len(stroka)-1)) , 240)) if monster_in_pit != -1: # dis.blit(magazine[monsters_in_pit[0]].image_egg, (300, 15)) # dis.blit(magazine[monsters_in_pit[1]].image_egg, (450, 15)) stroka = str(all_seconds_pit - seconds_pit) dis.blit(font.render(stroka, True, WHITE), (300 - (10 * len(stroka)-1), 240)) for elem in all_vorabularu: monster_money(elem) def timer_pit(): global monster_in_p global all_seconds_pit global vrem_name global seconds_pit global all_seconds global monster_in_pit global all_seconds_pit global monsters_in_pit global vrem_name_pit global stav if game: all_draw() pygame.display.update() if seconds_pit < all_seconds_pit: seconds_pit += 1 threading.Timer(1, timer_pit).start() else: if all_seconds == -1 and vrem_name == '' and monster_in_pit != -1: all_draw() dis.blit(magazine[monster_in_pit].image_egg, (300, 20)) all_seconds = magazine[monster_in_pit].all_seconds monster_in_p = monster_in_pit monster_in_pit = -1 seconds_pit = 0 monsters_in_pit = [] vrem_name_pit = '' # vrem_name = magazine[monster_in_pit].name vrem_name = stav pygame.display.update() timer() else: threading.Timer(1, timer_pit).start() def timer(): global eggs global stav global seconds global vrem_name global seall_seconds global monster_in_p global all_seconds if game: all_draw() pygame.display.update() if seconds < all_seconds: seconds += 1 threading.Timer(1, timer).start() else: stav = vrem_name eggs = True monster_in_p = -1 seconds = 0 all_seconds = -1 def all_sbor_money(): for elem in all_vorabularu: sbor_money(elem) bas = [] tus = [] mas = [] pas = [] lus = [] osms = [] zes = [] uts = [] uds = [] kus = [] tis = [] ras = [] mars = [] sms = [] izs = [] magazine = [] WHITE = (255, 255, 255) YELLOW = (255, 255, 0) BLACK = (0, 0, 0) BLUE = (0, 0, 255) RED = (255, 0, 0) my_money = 1000 almaz = 100 all_vorabularu = [bas, tus, mas, pas, lus, zes, uts, uds, kus, osms, tis, sms, mars, ras, izs] font = pygame.font.Font('freesansbold.ttf', 70) count = 0 # fon = pygame.transform.scale(fon, (WIDTH, HEIGHT)) close = [] stav = '' times = 0 seconds = 0 seconds_pit = 0 monsters_in_pit = [] vrem_name = '' vrem_name_pit = '' monster_in_p = -1 monster_in_pit = -1 ba = pygame.transform.scale(pygame.image.load(os.path.join("images", "ba.png")), (width, height)) tu = pygame.transform.scale(pygame.image.load(os.path.join("images", "tu.png")), (width, height)) ma = pygame.transform.scale(pygame.image.load(os.path.join("images", "ma.png")), (width, height)) pa = pygame.transform.scale(pygame.image.load(os.path.join("images", "pa.png")), (width, height)) lu = pygame.transform.scale(pygame.image.load(os.path.join("images", "lu.png")), (width, height)) ku = pygame.transform.scale(pygame.image.load(os.path.join("images", "ku.png")), (width, height)) ze = pygame.transform.scale(pygame.image.load(os.path.join("images", "ze.png")), (width, height)) osm =pygame.transform.scale( pygame.image.load(os.path.join("images", "osm.png")), (width, height)) ud = pygame.transform.scale(pygame.image.load(os.path.join("images", "ud.png")), (width, height)) ut = pygame.transform.scale(pygame.image.load(os.path.join("images", "ut.png")), (width, height)) mar =pygame.transform.scale( pygame.image.load(os.path.join("images", "mar.png")), (width, height)) ti = pygame.transform.scale(pygame.image.load(os.path.join("images", "ti.png")), (width, height)) ra = pygame.transform.scale(pygame.image.load(os.path.join("images", "ra.png")), (width, height)) sm = pygame.transform.scale(pygame.image.load(os.path.join("images", "sm.png")), (width, height)) iz = pygame.image.load(os.path.join("images", f"iz.png")) file = open('my single monsters.txt','r+') pit = pygame.image.load(os.path.join("images", "питомник.png")) ppp = pygame.image.load(os.path.join("images", "ppp.png")) pit_width = 220 pit_height = 300 pit = pygame.transform.scale(pit, (pit_width, pit_height)) ppp = pygame.transform.scale(ppp, (pit_width + 50, pit_height)) dis.blit(fon, (0, 0)) dis.blit(pit, (300, 0)) dis.blit(ppp, (WIDTH - 500, 0)) pygame.draw.rect(dis, YELLOW, (WIDTH - 100, HEIGHT - 100, 100, 100)) draw_money() ee = '' monster_money_every_minuts() pygame.draw.rect(dis, BLACK, (0, HEIGHT - 100, 100, 100)) pygame.display.update() all_seconds = -1 all_seconds_pit = -1 game = True for line in file: try: x, y, name = line.split(' ') x = int(x) y = int(y) if len(name) == 3: ee += name[-3] ee += name[-2] if ee == 'ba': staving_(bas, 'ba', x, y, 4, 18, 0) ee = '' elif ee == 'tu': staving_(tus, 'tu', x, y, 2, 30, 1) ee = '' elif ee == 'ma': staving_(mas, 'ma', x, y, 3, 30, 2) ee = '' elif ee == 'pa': staving_(pas, 'pa', x, y, 3, 18, 3) ee = '' elif ee == 'ze': staving_(zes, 'ze', x, y, 5, 225, 5) ee = '' elif ee == 'ud': staving_(uds, 'ud', x, y, 6, 180, 7) ee = '' elif ee == 'ut': staving_(uts, 'ut', x, y, 4, 300, 6) ee = '' elif ee == 'ku': staving_(kus, 'ku', x, y, 6, 120, 8) ee = '' elif ee == 'lu': staving_(lus, 'lu', x, y, 5, 225, 4) ee = '' elif ee == 'osm': staving_(osms, 'osm', x, y, 5, 300, 9) ee = '' elif ee == 'ti': staving_(tis, 'ti', x, y, 8, 2160, 10) ee = '' elif ee == 'sm': staving_(sms, 'sm', x, y, 7, 1890, 11) ee = '' elif ee == 'mar': staving_(mars, 'mar', x, y, 8, 1872, 12) ee = '' elif ee == 'ra': staving_(ras, 'ra', x, y, 9, 1872, 13) ee = '' elif ee == 'iz': staving_(izs, 'iz', x, y, 12, 11232, 14) ee = '' elif len(name) == 4: ee += name[-4] ee += name[-3] ee += name[-2] if name == 'osm': staving_(osms, 'osm', x, y, 5, 300, 9) ee = '' pygame.display.update() except: try: my_money, almaz = map(int, (line.split(' '))) monster_draw() pygame.display.update() except: try: all_seconds_pit, vrem_name_pit, monster_in_pit = line.split(' ') if int(all_seconds_pit) - times >= 0: all_seconds_pit = int(all_seconds_pit) - times else: all_seconds_pit = 0 monster_in_pit = int(monster_in_pit) except: try: all_seconds, vrem_name, monster_in_p = line.split(' ') if int(all_seconds) - times >= 0: all_seconds = int(all_seconds) - times else: all_seconds = -1 monster_in_p = int(monster_in_p) except: try: a, b, c, d, e = line.split(' ') times = int(time.time()) - int(a) + int(b) except: pass for elem in all_vorabularu: draw_image(elem) for i in range(300, 300 + pit_width): for j in range(pit_height): close.append((i, j)) pygame.display.update() cloak = time.time() pit_ak = False ans = '' run = True for elem in all_vorabularu: monster_money(elem) pygame.display.update() eggs = False magazine.append(Magazine('ba', 5)) magazine.append(Magazine('tu', 60)) magazine.append(Magazine('ma', 2 * 60)) magazine.append(Magazine('pa', 2 * 60 * 60)) magazine.append(Magazine('lu', 30 * 60)) magazine.append(Magazine('ze', 8 * 60 * 60)) magazine.append(Magazine('ut', 8 * 60 * 60)) magazine.append(Magazine('ud', 8 * 60 * 60)) magazine.append(Magazine('ku', 8 * 60 * 60)) magazine.append(Magazine('osm', 8 * 60 * 60)) magazine.append(Magazine('ti', 8 * 60 * 60)) magazine.append(Magazine('sm', 12 * 60 * 60)) magazine.append(Magazine('mar',12 * 60 * 60)) magazine.append(Magazine('ra', 12 * 60 * 60)) magazine.append(Magazine('iz', 24 * 60 * 60)) if all_seconds >= 0: timer() if all_seconds_pit >= 0: timer_pit() # all_music() fon_m.stop() while run: for event in pygame.event.get(): if event.type == pygame.QUIT: file.write(str(my_money) + ' ' + str(almaz) + '\n') file.write(str(int(time.time())) + ' ' + str(times) + ' ' + '2 ' +'3 ' + '\n') try: file.write((str(all_seconds - seconds)) + ' ' + str(vrem_name) + ' ' + str(monster_in_p) + '\n') except: pass try: if all_seconds_pit > -1: file.write(str(all_seconds_pit - seconds_pit) + ' ' + str(vrem_name_pit) + ' ' + str(monster_in_pit) + '\n') except: pass file.close() run = False pygame.quit() exit() if event.type == pygame.MOUSEBUTTONDOWN: mouse = pygame.mouse.get_pos() if game: if eggs == True and stav!= '' and game: if 1100 > mouse[0] > 200 and 600 > mouse[1] > 150: if mouse not in close: eggs = False seconds = 0 if stav == 'ba': staving(bas, 'ba', 4, 18, 0) elif stav == 'tu': staving(tus, 'tu', 2, 30, 1) elif stav == 'ma': staving(mas, 'ma', 3, 30, 2) elif stav == 'pa': staving(pas, 'pa', 3, 18, 3) elif stav == 'lu': staving(lus, 'lu', 5, 225, 4) elif stav == 'ze': staving(zes, 'ze', 5, 225, 5) elif stav == 'ku': staving(kus, 'ku', 6, 120, 8) elif stav == 'ut': staving(uts, 'ut', 4, 300, 6) elif stav == 'ud': staving(uds, 'ud', 6, 180, 7) elif stav == 'osm': staving(osms, 'osm', 5, 300, 9) elif stav == 'ti': staving(tis, 'ti', 8, 2160, 10) elif stav == 'mar': staving(mars, 'mar', 8, 1872, 12) elif stav == 'sm': staving(sms, 'sm', 7, 1890, 11) elif stav == 'ra': staving(ras, 'ra', 9, 1872, 13) elif stav == 'iz': staving(izs, 'iz', 12, 11232, 14) close_coor() # song_f = False stav = '' all_draw() pygame.display.update() elif pit_ak == True: forx(bas, 'ba') forx(tus, 'tu') forx(mas, 'ma') forx(pas, 'pa') forx(lus, 'batu') forx(uds, 'bama') forx(uts, 'tuma') forx(osms, 'tupa') forx(zes, 'pama') forx(osms, 'tupa') forx(kus, 'tupa') if count == 2: seconds_pit = 0 if 'ba' in ans and 'tu' in ans and 'ma' in ans and 'pa' in ans: all_seconds_pit = 24 * 60 * 60 monster_in_pit = 14 vrem_name_pit = 'iz' timer_pit() stav = 'iz' elif 'ba' in ans and 'tu' in ans and 'ma' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 10 vrem_name_pit = 'ti' timer_pit() stav = 'ti' elif 'ba' in ans and 'tu' in ans and 'pa' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 12 vrem_name_pit = 'mar' timer_pit() stav = 'mar' elif 'ba' in ans and 'pa' in ans and 'ma' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 13 timer_pit() vrem_name_pit = 'ra' stav = 'ra' elif 'pa' in ans and 'tu' in ans and 'ma' in ans: all_seconds_pit = 12 * 60 * 60 monster_in_pit = 11 vrem_name_pit = 'sm' timer_pit() stav = 'sm' elif 'tu' in ans and 'ba' in ans: all_seconds_pit = 30 * 60 monster_in_pit = 4 vrem_name_pit = 'lu' timer_pit() stav = 'lu' elif 'ma' in ans and 'tu' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 6 vrem_name_pit = 'ut' timer_pit() stav = 'ut' elif 'ba' in ans and 'ma' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 7 vrem_name_pit = 'ud' timer_pit() stav = 'ud' elif 'tu' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 9 vrem_name_pit = 'osm' timer_pit() stav = 'osm' elif 'ba' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 8 vrem_name_pit = 'ku' timer_pit() stav = 'ku' elif 'ma' in ans and 'pa' in ans: all_seconds_pit = 8 * 60 * 60 monster_in_pit = 5 vrem_name_pit = 'ze' timer_pit() stav = 'ze' all_draw() pygame.display.update() ans = '' pit_ak = False count = 0 elif mouse[0] in range(WIDTH - 100, WIDTH) and mouse[1] in range(HEIGHT - 100, HEIGHT): all_sbor_money() times = 0 dis.fill(WHITE) pygame.draw.rect(dis, BLACK, (WIDTH - 100, HEIGHT - 100, 100, 100)) game = False draw_money() for x in range(0, 4): a = 0 if x == 1: a = WIDTH // 4 elif x == 2: a = WIDTH // 2 elif x == 3: a = WIDTH - WIDTH // 4 dis.blit(magazine[x].image, (a, HEIGHT // 3)) text = font.render('300', True, YELLOW, WHITE) dis.blit(text, (a, HEIGHT // 3 + height)) elif mouse[0] in range(0, 100) and mouse[1] in range(HEIGHT - 100, HEIGHT): all_sbor_money() times = 0 all_draw() pygame.display.update() elif mouse[0] in range(300, 300 + pit_width) and mouse[1] in range(pit_height): if pit_ak == False: pit_ak = True elif mouse[0] in range(0, 100) and mouse[1] in range(150, 250): almaz -= 2 if seconds_pit + 3600 <= all_seconds_pit: seconds_pit += 3600 else: seconds_pit = all_seconds_pit if seconds + 3600 <= all_seconds: seconds += 3600 else: seconds = all_seconds elif mouse[0] in range(200, 300) and mouse[1] in range(0, 100): bas = [] tus = [] mas = [] pas = [] lus = [] osms = [] zes = [] uts = [] uds = [] kus = [] tis = [] ras = [] mars = [] sms = [] izs = [] all_vorabularu = [bas, tus, mas, pas, lus, zes, uts, uds, kus, osms, tis, sms, mars, ras, izs] my_money = 1000 almaz = 1000 close = [] vrem_name = '' vrem_name_pit = '' seconds = 0 seconds_pit = 0 all_seconds = -1 all_seconds_pit = -1 monster_in_p = -1 monster_in_pit = -1 monsters_in_pit = [] channel = 0 count = 0 stav = '' times = 0 file.truncate(0) all_draw() pygame.display.update() elif mouse[0] in range(WIDTH - 300, WIDTH) and mouse[1] in range (0, 300): my_money += 10000 almaz += 100 seconds = all_seconds seconds_pit = all_seconds_pit all_draw() pygame.display.update() elif mouse[0] in range(100, 200) and mouse[1] in range(HEIGHT - 100, HEIGHT): if not stop_music: stop_music = True else: stop_music = False all_music() pygame.display.update() else: magazin_clik(0, (0, 0 + width)) magazin_clik(1, (WIDTH // 4, WIDTH // 4 + width)) magazin_clik(2, (WIDTH // 2, WIDTH // 2 + width)) magazin_clik(3, (WIDTH - WIDTH // 4, WIDTH - WIDTH // 4 + width)) if mouse[0] in range(WIDTH - 100, WIDTH) and mouse[1] in range(HEIGHT - 100, HEIGHT): game = True all_draw() pygame.display.update()
solvalkon/python_study
my single monsters/my single monsters class.py
my single monsters class.py
py
26,982
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 7, "usage_type": "call" }, { "api_name": "pygame.mixer.set_num_channels", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pygame.mixer", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "pygame.display.set_mode", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 26, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 26, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 36, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 36, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 40, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 40, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 40, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 40, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Channel", "line_number": 57, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 57, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Sound", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path", "line_number": 57, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Channel", "line_number": 68, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 68, "usage_type": "attribute" }, { "api_name": "threading.Timer", "line_number": 82, "usage_type": "call" }, { "api_name": "threading.Timer", "line_number": 89, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 99, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pygame.mouse.get_pos", "line_number": 149, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 149, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 156, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 156, "usage_type": "attribute" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 165, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 165, "usage_type": "name" }, { "api_name": "pygame.display.update", "line_number": 168, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 168, "usage_type": "attribute" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 170, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 170, "usage_type": "name" }, { "api_name": "pygame.display.update", "line_number": 173, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 173, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 205, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 205, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 209, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 209, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 212, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 212, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 216, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 216, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 216, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 216, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 216, "usage_type": "call" }, { "api_name": "os.path", "line_number": 216, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 250, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 250, "usage_type": "attribute" }, { "api_name": "threading.Timer", "line_number": 255, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 271, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 271, "usage_type": "attribute" }, { "api_name": "threading.Timer", "line_number": 275, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 289, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 289, "usage_type": "attribute" }, { "api_name": "threading.Timer", "line_number": 293, "usage_type": "call" }, { "api_name": "pygame.font.Font", "line_number": 335, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 335, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 358, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 358, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 358, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 358, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 358, "usage_type": "call" }, { "api_name": "os.path", "line_number": 358, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 359, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 359, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 359, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 359, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 359, "usage_type": "call" }, { "api_name": "os.path", "line_number": 359, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 360, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 360, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 360, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 360, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 360, "usage_type": "call" }, { "api_name": "os.path", "line_number": 360, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 361, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 361, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 361, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 361, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 361, "usage_type": "call" }, { "api_name": "os.path", "line_number": 361, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 363, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 363, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 363, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 363, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 363, "usage_type": "call" }, { "api_name": "os.path", "line_number": 363, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 364, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 364, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 364, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 364, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 364, "usage_type": "call" }, { "api_name": "os.path", "line_number": 364, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 365, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 365, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 365, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 365, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 365, "usage_type": "call" }, { "api_name": "os.path", "line_number": 365, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 366, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 366, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 366, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 366, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 366, "usage_type": "call" }, { "api_name": "os.path", "line_number": 366, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 367, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 367, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 367, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 367, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 367, "usage_type": "call" }, { "api_name": "os.path", "line_number": 367, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 368, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 368, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 368, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 368, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 368, "usage_type": "call" }, { "api_name": "os.path", "line_number": 368, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 370, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 370, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 370, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 370, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 370, "usage_type": "call" }, { "api_name": "os.path", "line_number": 370, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 371, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 371, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 371, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 371, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 371, "usage_type": "call" }, { "api_name": "os.path", "line_number": 371, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 372, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 372, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 372, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 372, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 372, "usage_type": "call" }, { "api_name": "os.path", "line_number": 372, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 373, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 373, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 373, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 373, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 373, "usage_type": "call" }, { "api_name": "os.path", "line_number": 373, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 375, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 375, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 375, "usage_type": "call" }, { "api_name": "os.path", "line_number": 375, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 380, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 380, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path", "line_number": 380, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 381, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 381, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 381, "usage_type": "call" }, { "api_name": "os.path", "line_number": 381, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 385, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 385, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 386, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 386, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 391, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 391, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 395, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 395, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 396, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 396, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 469, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 469, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 474, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 474, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 497, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 510, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 510, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 513, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 526, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 526, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 567, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 567, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 568, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 570, "usage_type": "call" }, { "api_name": "pygame.quit", "line_number": 590, "usage_type": "call" }, { "api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 593, "usage_type": "attribute" }, { "api_name": "pygame.mouse.get_pos", "line_number": 595, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 595, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 638, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 638, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 745, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 745, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 757, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 757, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 781, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 781, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 858, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 858, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 867, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 867, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 876, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 876, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 889, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 889, "usage_type": "attribute" } ]
27825918351
""" создайте асинхронные функции для выполнения запросов к ресурсам (используйте aiohttp) - доработайте модуль `jsonplaceholder_requests`: - установите значения в константы `USERS_DATA_URL` и `POSTS_DATA_URL` (ресурсы нужно взять отсюда https://jsonplaceholder.typicode.com/) - создайте асинхронные функции для выполнения запросов к данным ресурсам (используйте `aiohttp`) - рекомендуется добавить базовые функции для запросов, которые будут переиспользованы (например `fetch_json`) """ from aiohttp import ClientSession import asyncio # import logging # # DEFAULT_FORMAT = "%(asctime)s %(levelname)-8s [%(name)-8s] (%(filename)s:%(funcName)s:%(lineno)d) %(message)s" # # logging.basicConfig(format=DEFAULT_FORMAT, level=logging.DEBUG) # # log = logging.getLogger(__name__) USERS_DATA_URL = "https://jsonplaceholder.typicode.com/users" POSTS_DATA_URL = "https://jsonplaceholder.typicode.com/posts" async def fetch_json(session: ClientSession, url: str): async with session.get(url) as response: return await response.json() async def fetch_users(): # log.info(f"Fetch users from {USERS_DATA_URL}") async with ClientSession() as session: json_data = await fetch_json(session, USERS_DATA_URL) # log.info(f"Fetch json from {USERS_DATA_URL}: {json_data}") return json_data async def fetch_posts(): # log.info(f"Fetch posts from {POSTS_DATA_URL}") async with ClientSession() as session: json_data = await fetch_json(session, POSTS_DATA_URL) # log.info(f"Fetch json from {POSTS_DATA_URL}: {json_data}") return json_data # def main(): # asyncio.run(fetch_users()) # asyncio.run(fetch_posts()) # # # if __name__ == '__main__': # main()
MikhailParkin/MikhailParkin
homework_04/jsonplaceholder_requests.py
jsonplaceholder_requests.py
py
2,013
python
ru
code
0
github-code
6
[ { "api_name": "aiohttp.ClientSession", "line_number": 23, "usage_type": "name" }, { "api_name": "aiohttp.ClientSession", "line_number": 30, "usage_type": "call" }, { "api_name": "aiohttp.ClientSession", "line_number": 38, "usage_type": "call" } ]
32474300219
from django.conf.urls import url, include from rest_framework import routers from api import views router = routers.DefaultRouter() router.register(r'signup', views.ProfileViewSet) router.register(r'add_animal', views.AddAnimalViewSet) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ url(r'^', include(router.urls)), url(r'^login/', views.login), ]
stoic1979/pashu_palak_sahayak
api/urls.py
urls.py
py
439
python
en
code
1
github-code
6
[ { "api_name": "rest_framework.routers.DefaultRouter", "line_number": 5, "usage_type": "call" }, { "api_name": "rest_framework.routers", "line_number": 5, "usage_type": "name" }, { "api_name": "api.views.ProfileViewSet", "line_number": 6, "usage_type": "attribute" }, { "api_name": "api.views", "line_number": 6, "usage_type": "name" }, { "api_name": "api.views.AddAnimalViewSet", "line_number": 7, "usage_type": "attribute" }, { "api_name": "api.views", "line_number": 7, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 13, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "api.views.login", "line_number": 14, "usage_type": "attribute" }, { "api_name": "api.views", "line_number": 14, "usage_type": "name" } ]
2108921101
import sys from requests import get from io import BytesIO import sqlite3 from PIL import Image from data.PYTHON_files.main import Ui_MainWindow from data.PYTHON_files.load_image import Ui_Form from data.PYTHON_files.description import Ui_Form_Desk from data.PYTHON_files.effects import * from PyQt5.QtCore import Qt from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.QtWidgets import QFileDialog WINDOW_SIZE = (1238, 859) IMAGE_FRAME_SIZE = (895, 775) class LoadImage(QMainWindow, Ui_Form): def __init__(self, parent): super(LoadImage, self).__init__(parent) self.setupUi(self) self.initUI() def initUI(self): WINDOW_SIZE = (601, 323) self.setFixedSize(*WINDOW_SIZE) class ShowDescription(QMainWindow, Ui_Form_Desk): def __init__(self, parent): super(ShowDescription, self).__init__(parent) self.setupUi(self) self.initUI() def initUI(self): WINDOW_SIZE = (770, 640) self.setFixedSize(*WINDOW_SIZE) self.text = "" con = sqlite3.connect("data/DB_files/filters_db.sqlite") cur = con.cursor() result = cur.execute("SELECT * FROM filters").fetchall() for elem in result: self.text += "{} - {}\n\n".format(*elem) con.close() def show(self, text=None): self.textBrowser.clear() if not text: text = self.text self.textBrowser.append(text) super().show() class MainWindow(QMainWindow, Ui_MainWindow): def __init__(self): super().__init__() self.setupUi(self) self.initUI() def initUI(self): self.open_url_form = LoadImage(self) self.show_description = ShowDescription(self) self.setFixedSize(*WINDOW_SIZE) self.history = [] self.filters_history = [] self.sliders_history = [] self.image_index = 0 self.image_PIL = None self.scaled_size = [None, None] # open description form self.actionfilters_information.triggered.connect( lambda: self.show_description.show() ) # open filters history form self.actionfilters_history.triggered.connect(self.show_filters_history) # open appliacation info form self.actionapplication_info.triggered.connect(self.show_application_info) # file open/save self.actionopen.triggered.connect(self.load_image) self.actionsave.triggered.connect(self.save_image) self.actionopen_from_URL.triggered.connect(self.load_from_url_form) self.open_url_form.load_url_btn.clicked.connect(self.load_from_url) # theme self.action_darktheme.triggered.connect(self.set_dark_theme) self.action_lighttheme.triggered.connect(self.set_light_theme) # connecting preset buttons self.btns_preset = [ self.btn_preset_1, self.btn_preset_2, self.btn_preset_3, self.btn_preset_4, self.btn_preset_5, self.btn_preset_6, self.btn_preset_7, self.btn_preset_8, self.btn_preset_9, self.btn_preset_10, ] for btn in self.btns_preset: btn.clicked.connect(self.set_presets) # connecting special effects buttons self.btn_box_blur.clicked.connect(self.set_box_blur) self.gaussian_blur.clicked.connect(self.set_gaussian_blur) self.btn_unsharp_mask.clicked.connect(self.set_unsharp_mask) self.btn_stereo.clicked.connect(self.set_stereo) self.btn_square_effect.clicked.connect(self.set_square_effect) self.btn_black_and_white.clicked.connect(self.set_black_and_white) self.btn_negative.clicked.connect(self.set_negative) # connecting back/reset buttons self.btn_reset.clicked.connect(self.recet_image) self.btn_back.clicked.connect(self.previous_image) # connecting sliders self.red_slider.valueChanged.connect( self.change_channels(self.red_slider, (1, 0, 0)) ) self.green_slider.valueChanged.connect( self.change_channels(self.green_slider, (0, 1, 0)) ) self.blue_slider.valueChanged.connect( self.change_channels(self.blue_slider, (0, 0, 1)) ) self.red_slider.sliderReleased.connect( self.apply_channel_changes(self.red_slider, (1, 0, 0)) ) self.green_slider.sliderReleased.connect( self.apply_channel_changes(self.green_slider, (0, 1, 0)) ) self.blue_slider.sliderReleased.connect( self.apply_channel_changes(self.blue_slider, (0, 0, 1)) ) self.rgb_sliders = [self.red_slider, self.green_slider, self.blue_slider] self.alpha_slider.valueChanged.connect(self.change_transparency) self.statusbar = self.statusBar() # load theme from .txt file theme = self.load_theme() if theme == "dark": self.set_dark_theme() else: self.set_light_theme() def show_application_info(self): with open("data/TXT_files/info.txt", "r", encoding="utf-8") as file1: data = file1.read().strip() self.show_description.textBrowser.clear() self.show_description.show(data) def set_filter_history(self): con = sqlite3.connect("data/DB_files/history_db.sqlite") cur = con.cursor() text = " ".join(self.filters_history) text_length = len( " ".join([i[0] for i in cur.execute("SELECT * FROM history").fetchall()]) + text ) if text: cur.execute( """ INSERT INTO history(effects) VALUES(?) """, (text,), ).fetchall() if text_length > 600: result = cur.execute( """ SELECT effects FROM history """ ).fetchone()[0] cur.execute( """ DELETE FROM history WHERE effects = ? """, (result,), ).fetchall() con.commit() con.close() def show_filters_history(self): con = sqlite3.connect("data/DB_files/history_db.sqlite") cur = con.cursor() result = cur.execute("SELECT * FROM history").fetchall() text = "" self.show_description.textBrowser.clear() for i, line in enumerate(result, start=1): text += f"{i}) {line[0]}\n\n" self.show_description.show(text) con.close() def keyPressEvent(self, event): mod = int(event.modifiers()) key = event.key() if mod == Qt.ControlModifier: if key == Qt.Key_O: self.load_image() if key == Qt.Key_S: self.save_image() def change_transparency(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = transparensy(self.image_PIL, self.sender().value()) self.update_image() def change_channels(self, slider, chan): def inner(): if self.check_if_image_opened(): # check for image opened return val = slider.value() rgb = tuple(map(lambda n: val if n == 1 else 50, chan)) self.image.setPixmap( convert_to_qt(channels(self.image_PIL.resize(self.scaled_size), rgb)) ) return inner def apply_channel_changes(self, slider, chan): def inner(): if self.check_if_image_opened(): # check for image opened return val = slider.value() rgb = tuple(map(lambda n: val if n == 1 else 50, chan)) self.image_PIL = channels(self.image_PIL, rgb) self.update_image() self.alpha_slider.setValue( 255 ) # we cannot change RGB-channel with changed alpha channel return inner def set_box_blur(self): if self.check_if_image_opened(): # check for image opened return raduis = self.spin_box_blur_raduis.value() self.image_PIL = box_blur(self.image_PIL, raduis) self.update_image() self.filters_history.append("Box Blur") def set_gaussian_blur(self): if self.check_if_image_opened(): # check for image opened return raduis = self.spin_gaussian_blur_raduis.value() self.image_PIL = gaussian_blur(self.image_PIL, raduis) self.update_image() self.filters_history.append("Gaussian Blur") def set_unsharp_mask(self): if self.check_if_image_opened(): # check for image opened return raduis = self.unsharp_mask_raduis_spin.value() percent = self.unsharp_mask_percent_spin.value() threshold = self.unsharp_mask_threshold_spin.value() self.image_PIL = unsharp_mask(self.image_PIL, raduis, percent, threshold) self.update_image() self.filters_history.append("Unsharp Mask") def set_stereo(self): if self.check_if_image_opened(): # check for image opened return delta = self.stereo_delta_spin.value() self.image_PIL = stereo_effect(self.image_PIL, delta) self.update_image() self.filters_history.append("Stereo") def set_square_effect(self): if self.check_if_image_opened(): # check for image opened return self.alpha_slider.setValue(255) area = self.square_effect_area_spin.value() self.image_PIL = lightest_pixel_effect(self.image_PIL, area) self.update_image() self.filters_history.append("Square Effect") def set_black_and_white(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = black_and_white_effect(self.image_PIL) self.update_image() self.filters_history.append("Black And White") def set_negative(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = negative_effect(self.image_PIL) self.update_image() self.filters_history.append("Negative") def set_presets(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = preset_filters(self.image_PIL, filters[self.sender().text()]) self.update_image() self.filters_history.append(self.sender().text()) def convert_image(self, image): self.filters_history = [] self.history = [] self.sliders_history = [] # делаем изображение меньше, если оно не влезает в рамки width, height = image.size scale1 = scale2 = 1 if width > IMAGE_FRAME_SIZE[0]: scale1 = IMAGE_FRAME_SIZE[0] / width if height > IMAGE_FRAME_SIZE[1]: scale2 = IMAGE_FRAME_SIZE[1] / height scale = scale1 if scale1 < scale2 else scale2 self.scaled_size = (int(width * scale), int(height * scale)) # self.image_PIL = self.image_PIL.resize(self.scaled_size) self.origin_image = self.image_PIL.copy() self.history.append(self.origin_image) # ________________________________________ self.image.move(0, 0) self.image.setAlignment(QtCore.Qt.AlignCenter) self.update_image() self.recet_image() def load_image(self): filename = QFileDialog.getOpenFileName( self, "Choose photo", "", "Pictures (*.png *.jpg);; Pictures (*.png);; Pictures (*.jpg)", )[0].strip() if not filename: return # filename = "/home/anchous/Pictures/waves.png" self.image_PIL = Image.open(filename) self.convert_image(self.image_PIL) def save_image(self): filename = QFileDialog.getSaveFileName( self, "Save photo", "", "Pictures (*.png);; Pictures (*.jpg)" )[0].strip() if not filename: self.statusbar.showMessage("Error: No filename", 5000) return if not self.image_PIL: self.statusbar.showMessage("Error: No image", 5000) return # if the filename is incorrect, request it again try: self.image_PIL.save(filename) except Exception: self.statusbar.showMessage("Error: Incorrect filename", 5000) filename = QFileDialog.getSaveFileName( self, "Save photo", f"{filename.split('.')[0]}.png", "Pictures (*.png);; Pictures (*.jpg)", )[0].strip() self.image_PIL.save(filename) self.set_filter_history() def load_from_url_form(self): self.open_url_form.show() def load_from_url(self): try: url = self.open_url_form.url_text.toPlainText() response = get(url) self.image_PIL = Image.open(BytesIO(response.content)) self.convert_image(self.image_PIL) self.open_url_form.url_text.setPlainText("") self.open_url_form.close() except Exception: self.statusbar.showMessage("Error: Incorrect url", 5000) return def update_image(self): self.history.append(self.image_PIL) self.sliders_history.append( ( self.alpha_slider.value(), self.red_slider.value(), self.green_slider.value(), self.blue_slider.value(), ) ) self.image_index += 1 self.image.setPixmap(convert_to_qt(self.image_PIL.resize(self.scaled_size))) def previous_image(self): if self.image_index > 0: del self.history[self.image_index :] del self.sliders_history[self.image_index :] self.image_index -= 1 self.image_PIL = self.history[self.image_index] self.alpha_slider.setValue(self.sliders_history[-1][0]) self.red_slider.setValue(self.sliders_history[-1][1]) self.green_slider.setValue(self.sliders_history[-1][2]) self.blue_slider.setValue(self.sliders_history[-1][3]) # updating image without history logging self.image.setPixmap(convert_to_qt(self.image_PIL.resize(self.scaled_size))) def recet_image(self): if self.check_if_image_opened(): # check for image opened return self.image_PIL = self.origin_image.copy() for sl in self.rgb_sliders: sl.setValue(50) self.alpha_slider.setValue(255) self.update_image() self.image_index = 0 self.history = [self.image_PIL] self.sliders_history = [(255, 50, 50, 50)] def set_dark_theme(self): self.setStyleSheet("background-color: #353535;\ncolor: #dddddd;") self.frame.setStyleSheet("background-color: #282828;") self.set_theme("dark") def set_light_theme(self): self.setStyleSheet("background-color: #dddddd;\ncolor: #202020;") self.frame.setStyleSheet("background-color: #cccccc;") self.set_theme("light") def check_if_image_opened(self): try: return bool(self.image_PIL) is False # check if image opened except AttributeError: return True def set_theme(self, theme): with open("data/TXT_files/theme.txt", "w", encoding="UTF-*") as file1: file1.write(theme) def load_theme(self): with open("data/TXT_files/theme.txt", "r", encoding="UTF-8") as file1: theme = file1.read().strip() return theme def except_hook(cls, exception, traceback): sys.__excepthook__(cls, exception, traceback) if __name__ == "__main__": app = QApplication(sys.argv) ex = MainWindow() ex.show() sys.excepthook = except_hook sys.exit(app.exec_())
Programmer-Anchous/Effects-program
run.py
run.py
py
16,243
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 23, "usage_type": "name" }, { "api_name": "data.PYTHON_files.load_image.Ui_Form", "line_number": 23, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 34, "usage_type": "name" }, { "api_name": "data.PYTHON_files.description.Ui_Form_Desk", "line_number": 34, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 46, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 66, "usage_type": "name" }, { "api_name": "data.PYTHON_files.main.Ui_MainWindow", "line_number": 66, "usage_type": "name" }, { "api_name": "data.PYTHON_files.main", "line_number": 175, "usage_type": "name" }, { "api_name": "data.PYTHON_files.main", "line_number": 177, "usage_type": "argument" }, { "api_name": "sqlite3.connect", "line_number": 180, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 214, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.Qt.ControlModifier", "line_number": 231, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 231, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.Key_O", "line_number": 232, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 232, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.Key_S", "line_number": 234, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 234, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 357, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore", "line_number": 357, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "line_number": 362, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 362, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 371, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 371, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFileDialog.getSaveFileName", "line_number": 376, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 376, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QFileDialog.getSaveFileName", "line_number": 394, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 394, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 410, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 411, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 411, "usage_type": "name" }, { "api_name": "io.BytesIO", "line_number": 411, "usage_type": "call" }, { "api_name": "sys.__excepthook__", "line_number": 488, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QApplication", "line_number": 492, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 492, "usage_type": "attribute" }, { "api_name": "sys.excepthook", "line_number": 495, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 496, "usage_type": "call" } ]
31746854279
""" This module allows you to download public files from Google Drive and Dropbox """ import os import requests import zipfile import logging import patoolib from bs4 import BeautifulSoup import gdrivedl # Define urls to filter by cloud service GDRIVE_URL = 'drive.google.com' DROPBOX_URL = 'dropbox.com' def download_folder(url, output_folder, silent, filename=None): """Download Google Drive folders""" dl = gdrivedl.GDriveDL(quiet=silent, overwrite=False, mtimes=False) dl.process_url(url, output_folder, filename=None) def download_file(url, output_folder, filename, silent): """ Download Google Drive files""" dl = gdrivedl.GDriveDL(quiet=silent, overwrite=False, mtimes=False) dl.process_url(url, output_folder, filename) def gd_download(url, directory, quiet): """ Detects if url belongs to Google Drive folder or file and calls relavent function """ if 'folder' in url: output = get_title(url)[:-15] output_path = directory + output logging.info(f"---> Downloading Google Drive folder to: {output_path}") download_folder(url, output_path, quiet) return True elif 'file' in url: temp_output = get_title(url)[:-15] output = temp_output.split('.', 1)[0] logging.info(f"---> Downloading Google Drive file to {directory + temp_output}") download_file(url, directory, temp_output, quiet) unzip(temp_output, output, directory) return True else: return False def get_title(url): """ Gets file/folder title with requests library """ reqs = requests.get(url) soup = BeautifulSoup(reqs.text, 'html.parser') for title in soup.find_all('title'): return title.get_text() def compression_type(file_name): """ Detects file compression type """ ext = os.path.splitext(file_name)[-1].lower() return ext def unzip(zipped_file, unzipped_file, directory): """ Uncompresses files and then deletes compressed folder """ if compression_type(zipped_file) == '.zip': zip_path = directory + zipped_file unzip_path = directory + unzipped_file logging.info(f"--> Extracting to: {unzip_path}") with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(unzip_path) zip_ref.close() os.remove(zip_path) if compression_type(zipped_file) == '.rar': zip_path = directory + zipped_file unzip_path = directory + unzipped_file logging.info(f"---> Extracting to: {unzip_path}") patoolib.extract_archive(zip_path, outdir=directory) os.remove(zip_path) return def db_download(url, directory): """ Downloads files from Dropbox URL """ url = url[:-1] + '0' file_name = get_title(url)[:-21][10:] logging.info(f"Dropbox file name: {file_name}") suffix1 = file_name.endswith(".zip") suffix2 = file_name.endswith(".rar") dl_url = url[:-1] + '1' filepath = directory + file_name logging.info(f"Downloading dropbox file to: {filepath}") output = file_name[:-4] headers = {'user-agent': 'Wget/1.16 (linux-gnu)'} r = requests.get(dl_url, stream=True, headers=headers) if r.status_code == 200: with open(filepath, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) if suffix1 or suffix2: unzip(file_name, output, directory) return True else: return False def grab(url, output_path, quiet=True): """ Detects if url belongs to Google Drive or a Dropbox url and calls the relevant method. You may change logging level by calling grab with quiet=False). """ if(quiet==True): logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.WARNING) else: logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO) if GDRIVE_URL in url: if (gd_download(url, output_path, quiet)): return True else: logging.warning(f"The Google Drive URL {url} is not supported") return False if DROPBOX_URL in url: if(db_download(url, output_path)): return True else: logging.warning(f"The Dropbox URL {url} is not supported") return False else: logging.warning(f"The URL {url} is not supported") return False
duckduckgrayduck/clouddl
src/clouddl/clouddl.py
clouddl.py
py
4,484
python
en
code
3
github-code
6
[ { "api_name": "gdrivedl.GDriveDL", "line_number": 16, "usage_type": "call" }, { "api_name": "gdrivedl.GDriveDL", "line_number": 21, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 35, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 44, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path", "line_number": 51, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 59, "usage_type": "call" }, { "api_name": "zipfile.ZipFile", "line_number": 60, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 63, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 67, "usage_type": "call" }, { "api_name": "patoolib.extract_archive", "line_number": 68, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 69, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 76, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 81, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 84, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 103, "usage_type": "call" }, { "api_name": "logging.WARNING", "line_number": 103, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 106, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 106, "usage_type": "attribute" }, { "api_name": "logging.warning", "line_number": 112, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 118, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 121, "usage_type": "call" } ]
17882061657
from demisto_sdk.commands.common.constants import CLASSIFIERS_DIR, PACKS_DIR from demisto_sdk.commands.common.content.objects.pack_objects.abstract_pack_objects.json_content_object import \ JSONContentObject from demisto_sdk.commands.common.tools import src_root TEST_DATA = src_root() / 'tests' / 'test_files' TEST_CONTENT_REPO = TEST_DATA / 'content_slim' TEST_JSON_NO_FROM_VERSION = TEST_CONTENT_REPO / PACKS_DIR / 'Sample01' / CLASSIFIERS_DIR / 'classifier-sample_new.json' def test_to_version_no_from_version(datadir): from packaging.version import parse obj = JSONContentObject(TEST_JSON_NO_FROM_VERSION, "classifier") assert obj.from_version == parse("0.0.0") assert obj.to_version == parse("4.0.0") class TestFileWithStem: def test_with_readme_change_log(self): obj = JSONContentObject(TEST_JSON_NO_FROM_VERSION, "classifier") assert obj.readme is not None assert obj.changelog is not None
AdouniH/demisto-sdk
demisto_sdk/commands/common/content/tests/objects/pack_objects/abstract_pack_objects/json_content_object_test.py
json_content_object_test.py
py
952
python
en
code
null
github-code
6
[ { "api_name": "demisto_sdk.commands.common.tools.src_root", "line_number": 6, "usage_type": "call" }, { "api_name": "demisto_sdk.commands.common.constants.PACKS_DIR", "line_number": 8, "usage_type": "name" }, { "api_name": "demisto_sdk.commands.common.constants.CLASSIFIERS_DIR", "line_number": 8, "usage_type": "name" }, { "api_name": "demisto_sdk.commands.common.content.objects.pack_objects.abstract_pack_objects.json_content_object.JSONContentObject", "line_number": 13, "usage_type": "call" }, { "api_name": "packaging.version.parse", "line_number": 14, "usage_type": "call" }, { "api_name": "packaging.version.parse", "line_number": 15, "usage_type": "call" }, { "api_name": "demisto_sdk.commands.common.content.objects.pack_objects.abstract_pack_objects.json_content_object.JSONContentObject", "line_number": 20, "usage_type": "call" } ]
24285372674
#! python3 # program to load current weather from api # via cmd # display for today and the next two days # to run: currentWeather location import json import requests import sys if len(sys.argv) < 2: print('More argument pls') sys.exit() location = ' '.join(sys.argv[1:]) key = '' # download url = 'http://api.openweathermap.org/data/2.5/forecast/daily?q=%s&cnt=3&APPID=%s' % (location, key) print(url) try: res = requests.get(url) res.raise_for_status() weatherData = json.loads(res.text) print(weatherData) w = weatherData['list'] print('Current Weather', w) except Exception as e: print(e)
chhatrachhorm/ABS
PythonStuff/JsonApi/currentWeather.py
currentWeather.py
py
632
python
en
code
5
github-code
6
[ { "api_name": "sys.argv", "line_number": 10, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 13, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 19, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 22, "usage_type": "call" } ]
38044932492
import requests import uuid from datetime import datetime import pandas as pd # https://kcnew.ifrc.org/api/v1/forms find the kpi asset uid for forms here #from settings import * #to import MYTOKEN and KPIASSETUID ################## ## RUN SETTINGS ## ################## ##https://kobonew.ifrc.org/token/?format=json MYTOKEN = "" #"kpi_asset_uid": KPIASSETUID= "" # https://kcnew.ifrc.org/api/v1/forms find the kpi asset uid headers = { 'Authorization': f'Token {MYTOKEN}', 'Content-Type': 'application/json', 'Accept': 'application/json' } now = datetime.now() current_time = now.strftime("%Y-%b-%d %I:%M %p") # Specify the path to your Excel file First Qtr 2022 file_path = 'data/ercs_base_wh_dummy.xlsx' # Read the Excel file into a Pandas DataFrame data_frame = pd.read_excel(file_path) for index, row in data_frame.iterrows(): # Access values in each column for the current row submission = { 'meta': { 'instanceID': f'uuid:{uuid.uuid4()}', }, 'Supplier_Donor':row['Supplier_Donor'], 'Local_or_Foreign_Receival':row['Local_or_Foreign_Receival'], 'Packing_List_Number':row['Packing_List_Number'], 'Certificate_of_Origin':row['Certificate_of_Origin'], 'Donation_Certificate':row['Donation_Certificate'], 'Waybill_Number':row['Waybill_Number'], 'Contract_Number':row['Contract_Number'], 'Invoice_Number':row['Invoice_Number'], 'Purchase_Requisition_Number':row['Purchase_Requisition_Number'], 'Department_Name':row['Department_Name'], 'Receiver':row['Receiver'], 'Purchase_Order':row['Purchase_Order'], 'Date_of_Reception':row['Date_of_Reception'].date().strftime("%Y-%m-%d"), 'Items_Inspected_approved':row['Items_Inspected_approved'], 'Received_By':row['Received_By'], 'Received_On':row['Received_On'].date().strftime("%Y-%m-%d"), 'Account_Number':row['Account_Number'], 'Project_code':row['Project_code'], 'Items':row['Items'], 'Remark':row['Remark'], 'EXPIRY_DATES':row['EXPIRY_DATES'].date().strftime("%Y-%m-%d"), 'Vender_Manufacturer_No':row['Vender_Manufacturer_No'], 'Vender_seiral_No':row['Vender_seiral_No'], 'Unit_of_Measure':row['Unit_of_Measure'], 'Quantity_Intial':row['Quantity_Intial'], 'Unit_Price':row['Unit_Price'], 'Currency_of_Purchase':row['Currency_of_Purchase'], } data_request = requests.post( f'https://kcnew.ifrc.org/api/v1/submissions', json={ "id": f"{KPIASSETUID}", "submission": submission }, headers=headers )
aklilu/BachUploadToKobo
bathcuploadtokobo.py
bathcuploadtokobo.py
py
2,722
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 28, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 28, "usage_type": "name" }, { "api_name": "pandas.read_excel", "line_number": 35, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 41, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 75, "usage_type": "call" } ]