seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
14816787756
"""web URL Configuration""" from django.conf.urls import include,url from django.contrib import admin from . import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$', views.index, name='index'), url(r'^pdx/(?P<pk>\w{0,50})/$', views.pdx, name="pdx"), url(r'^search/', views.search, name="search"), #url(r'^search/', include('haystack.urls')), url(r'^resources/', views.resources, name="resources"), ]
jmason-ebi/pdx
web/urls.py
urls.py
py
442
python
en
code
0
github-code
6
[ { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 8, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" } ]
36649336174
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 11 10:56:48 2020 @author: alexanderfalk """ import itertools import time import sys class ThreeOPT: def __init__(self, computed_solution, time_limit=60): self.solution = computed_solution self.time_limit = time_limit def construct(self, time_left): return self.algorithm(time_left) def algorithm(self, start_time): for index, route in enumerate(self.solution.routes): segments = self.tour_segments(route) for i, j, k in segments: self.solution.routes[index] = self.improvement(route, i, j, k) t1 = time.time() # End time if t1 - start_time > self.time_limit: sys.stdout.write("Time Expired\n") return self.solution return self.solution def distance(self, i, j): return self.solution.instance.pre_distance(i, j) def tour_segments(self, route): indices = [index for index in range(len(route))] return list(itertools.combinations(indices, r = 3)) def improvement(self, route, i, j, k): A, B, C, D, E, F = route[i-1], route[i], route[j-1], route[j], route[k-1], route[k % len(route)] dist0 = self.distance(A, B) + self.distance(C, D) + self.distance(E, F) dist1 = self.distance(A, C) + self.distance(B, D) + self.distance(E, F) dist2 = self.distance(A, B) + self.distance(C, E) + self.distance(D, F) dist3 = self.distance(A, D) + self.distance(E, B) + self.distance(C, F) dist4 = self.distance(F, B) + self.distance(C, D) + self.distance(E, A) if dist0 > dist1: route[i:j] = reversed(route[i:j]) elif dist0 > dist2: route[j:k] = reversed(route[j:k]) elif dist0 > dist4: route[i:k] = reversed(route[i:k]) elif dist0 > dist3: route[i:k] = route[j:k] + route[i:j] return route
AlexanderFalk/2020_Project01_CS_HA
src/threeopt.py
threeopt.py
py
2,076
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 29, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 31, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 31, "usage_type": "attribute" }, { "api_name": "itertools.combinations", "line_number": 41, "usage_type": "call" } ]
39922767694
# THIS FILE IS SAFE TO EDIT. It will not be overwritten when rerunning go-raml. from flask import jsonify, request import sqlite3 def books_postHandler(): connection = sqlite3.connect("BookStore") cursor=connection.cursor() inputs = request.get_json() cursor.execute("CREATE TABLE IF NOT EXISTS BookStore (BookId INTEGER PRIMARY KEY AUTOINCREMENT,title TEXT,subTitle TEXT,authors TEXT)") cursor.execute("INSERT INTO BookStore VALUES(NULL,?,?,?)", (inputs["title"],inputs["subTitle"],inputs["authors"])) connection.commit() connection.close() return jsonify("successfully")
BolaNasr/BookStore-API
server/handlers/books_postHandler.py
books_postHandler.py
py
608
python
en
code
0
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 8, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 10, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 15, "usage_type": "call" } ]
9460034812
""" Запуск класса с датасетами твитов и генома ВИЧ """ import Hyperbolic import numpy as np import Levenshtein as Lev import pandas as pd from grad_descent import MSE import draw """ ТВИТЫ """ positive = np.array(pd.read_csv( r'twitter_data/positive.csv', sep=';', usecols=[3], names=['text'])) negative = np.array(pd.read_csv( r'twitter_data/negative.csv', sep=';', usecols=[3], names=['text'])) # positive_90 = np.array( # positive[positive['text'].apply(lambda text: len(text) == 90)]) # negative_90 = np.array( # negative[negative['text'].apply(lambda text: len(text) == 90)]) size = 50 dataset = np.concatenate((positive[np.random.choice( len(positive), size)], negative[np.random.choice(len(negative), size)])) perm = np.random.permutation(2*size) ran = np.array(range(2*size)) map = {perm[i]: ran[i] for i in range(2*size)} dataset = dataset[perm] distance = np.zeros((2*size, 2*size), dtype=float) for i in range(2*size): for j in range(2*size): distance[i, j] = Lev.distance(dataset[i, 0], dataset[j, 0]) distance = distance / 10. H = Hyperbolic.Hyperbolic(graph=distance, dimension=2, maxiter=1000, batch=1.) print("MSE %f" % MSE(H.point_coordinates, distance)) draw.draw(H.point_coordinates, distance, draw_edges=False, map=map, annotate=False) """ Геном вич """ # lst = np.array([]).reshape(0, 0) # for i in range(100): # f = open(rf'data/sequence ({i}).txt', 'r') # string = f.read().replace("\n", "") # tmp = list(string.encode()) # if i == 0: # lst = np.array(tmp).reshape(1, -1) # else: # lst = np.vstack((lst, np.array(tmp).reshape(1, -1))) # # создал пустой интовый массив для расстояний # distance = np.zeros((100, 100), dtype=float) # # заполнил его правильными значениями # for i in range(100): # for j in range(100): # distance[i, j] = (lst[i] != lst[j]).sum() # distance = distance / 3. # H = Hyperbolic.Hyperbolic(graph=distance, dimension=2, maxiter=100, batch=0.1) # draw.draw(H.point_coordinates, distance, True, annotate=False)
DanilShishkin/Hyperbolic
actual/main.py
main.py
py
2,184
python
en
code
1
github-code
6
[ { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 17, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 26, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.random.permutation", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 35, "usage_type": "call" }, { "api_name": "Levenshtein.distance", "line_number": 39, "usage_type": "call" }, { "api_name": "Hyperbolic.Hyperbolic", "line_number": 44, "usage_type": "call" }, { "api_name": "grad_descent.MSE", "line_number": 45, "usage_type": "call" }, { "api_name": "draw.draw", "line_number": 47, "usage_type": "call" } ]
32592778621
import geoip2.database """ Requirements: geoip2 use this page to download the db: https://dev.maxmind.com/geoip/geolite2-free-geolocation-data?lang=en """ # This creates a Reader object. You should use the same object # across multiple requests as creation of it is expensive. with geoip2.database.Reader('/path/to/GeoLite2-City.mmdb') as reader: # Replace "city" with the method corresponding to the database # that you are using, e.g., "country". response = reader.city('203.0.113.0') print( response.country.iso_code + response.country.name + response.country.names['zh-CN'] + response.subdivisions.most_specific.name + response.subdivisions.most_specific.iso_code + response.city.name + response.postal.code + response.location.latitude + response.location.longitude + response.traits.network, sep="\n" ) ""
steriospydev/tutools
Functions/get_ip_location.py
get_ip_location.py
py
927
python
en
code
0
github-code
6
[ { "api_name": "geoip2.database.database.Reader", "line_number": 10, "usage_type": "call" }, { "api_name": "geoip2.database.database", "line_number": 10, "usage_type": "attribute" }, { "api_name": "geoip2.database", "line_number": 10, "usage_type": "name" } ]
26889693373
import cv2 import numpy as np import matplotlib.pyplot as plt def viz2(img, regions, rooms, all_ctrs): all_ctrs_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) cv2.drawContours(all_ctrs_img, all_ctrs, -1, (0, 255, 0), 3) filtered_ctrs_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) for region in regions + rooms: cv2.drawContours(filtered_ctrs_img, [region], -1, (0, 255, 0), 3) f, ax = plt.subplots(1, 2, figsize=(20, 14)) ax[0].imshow(all_ctrs_img) ax[0].axis('off') ax[0].set_title('All contours simplified') ax[1].imshow(filtered_ctrs_img) ax[1].axis('off') ax[1].set_title('All contours filtered and simplified') f.savefig('fig2.jpg') return
jmou/quarks-knit
viz2.py
viz2.py
py
736
python
en
code
0
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 7, "usage_type": "attribute" }, { "api_name": "cv2.drawContours", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 11, "usage_type": "attribute" }, { "api_name": "cv2.drawContours", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" } ]
10506264622
""" a very simple MNIST classifier """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def main(_): #import data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #create nodes for the input images and target output classes x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) #define the weights w and biases b for model W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) #implement regression model #multiply the vectorized input images x by the weight matrix W, add the bias b y = tf.matmul(x, W) + b #specify a loss function cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) #train the model #minimize cross entropy using gradient descent with a learning rate of 0.5 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() #initialize variable with specified values tf.global_variables_initializer().run() #run the training procedure for _ in range(1000): batch = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch[0], y_: batch[1]}) #evaluate the model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='d:/Workspace/tensorflow/MNIST_data', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
RuanYB/tensorflow
mnist.py
mnist.py
py
1,897
python
en
code
0
github-code
6
[ { "api_name": "tensorflow.examples.tutorials.mnist.input_data.read_data_sets", "line_number": 20, "usage_type": "call" }, { "api_name": "tensorflow.examples.tutorials.mnist.input_data", "line_number": 20, "usage_type": "name" }, { "api_name": "tensorflow.placeholder", "line_number": 23, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 24, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tensorflow.Variable", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 28, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 28, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 32, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 35, "usage_type": "call" }, { "api_name": "tensorflow.nn.softmax_cross_entropy_with_logits", "line_number": 36, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 36, "usage_type": "attribute" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 40, "usage_type": "attribute" }, { "api_name": "tensorflow.InteractiveSession", "line_number": 42, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 45, "usage_type": "call" }, { "api_name": "tensorflow.equal", "line_number": 54, "usage_type": "call" }, { "api_name": "tensorflow.argmax", "line_number": 54, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 55, "usage_type": "call" }, { "api_name": "tensorflow.cast", "line_number": 55, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 55, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 59, "usage_type": "call" }, { "api_name": "tensorflow.app.run", "line_number": 63, "usage_type": "call" }, { "api_name": "tensorflow.app", "line_number": 63, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 63, "usage_type": "attribute" } ]
14070127148
import math import numpy as np from scipy.special import expit class LogReg(): def __init__(self, lambda_1=0.0, lambda_2=1.0, gd_type='full', tolerance=1e-4, max_iter=1000, w0=None, alpha=1e-3): """ lambda_1: L1 regularization param lambda_2: L2 regularization param gd_type: 'full' or 'stochastic' tolerance: for stopping gradient descent max_iter: maximum number of steps in gradient descent w0: np.array of shape (d) - init weights alpha: learning rate """ self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.gd_type = gd_type self.tolerance = tolerance self.max_iter = max_iter self.w0 = w0 self.alpha = alpha self.w = None self.loss_history = None def fit(self, X, y): """ X: np.array of shape (l, d) y: np.array of shape (l) --- output: self """ self.loss_history = [] count = 0 self.w = np.ones((len(X[0]),)) while np.linalg.norm(self.w - self.w0) > self.tolerance or count < self.max_iter: count += 1 self.w = self.w0 if self.gd_type == 'stochastic': i = random.randint(0, len(y)) grad = self.calc_gradient(X[i, :], np.array(y[i])) else: grad = self.calc_gradient(X, y) self.w = self.w0 - self.alpha * grad loss = self.calc_loss(X, y) self.loss_history.append(loss) self.w0 = self.w return self def predict_proba(self, X): """ X: np.array of shape (l, d) --- output: np.array of shape (l, 2) where first column has probabilities of -1 second column has probabilities of +1 """ if self.w is None: raise Exception('Not trained yet') pred = expit(np.dot(X, self.w)) return pred def calc_gradient(self, X, y): """ X: np.array of shape (l, d) (l can be equal to 1 if stochastic) y: np.array of shape (l) --- output: np.array of shape (d) """ tm1 = expit(-y * np.dot(X, self.w)) tm2 = y[:, np.newaxis] * X tm3 = tm1[:, np.newaxis] * tm2 tm4 = -np.sum(tm3, axis=0) grad = tm4 / X.shape[0] + self.lambda_2 * self.w return grad def calc_loss(self, X, y): """ X: np.array of shape (l, d) y: np.array of shape (l) --- output: float """ n = X.shape[0] tm1 = np.logaddexp(0, -y * np.dot(X, self.w)) reg = self.lambda_2 * np.sum(self.w ** 2) / 2 loss = (1 / n) * np.sum(tm1, axis=0) + reg return loss
idStep/hse_ml
logreg.py
logreg.py
py
2,793
python
en
code
0
github-code
6
[ { "api_name": "numpy.ones", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 38, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 43, "usage_type": "call" }, { "api_name": "scipy.special.expit", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 62, "usage_type": "call" }, { "api_name": "scipy.special.expit", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 73, "usage_type": "attribute" }, { "api_name": "numpy.newaxis", "line_number": 74, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.logaddexp", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 89, "usage_type": "call" } ]
39220567289
from sklearn.preprocessing import StandardScaler file_name2 = 'data2.csv' df = pd.read_csv(file_name2) df['race_date'] = pd.to_datetime(df['race_date']).dt.date # 情報不足行を削除 df = df.dropna(subset=['past_time_sec1', 'past_time_sec2', 'past_time_sec3', 'past_time_sec4', 'past_time_sec5']).reset_index(drop=True) # レースID付与 def set_race_id(params): param_list = params.split('_') race_date, place, race_num = param_list[0], param_list[1], param_list[2], return f'{race_date}{place}{race_num}' df['tmp'] = df['race_date'].astype( str) + '_' + df['place'].astype(str) + '_' + df['race_num'].astype(str) df['race_id'] = df['tmp'].map(set_race_id) df = df.drop(columns=['tmp']) # 予測に使用しない列を削除(必要に応じて変更) df = df.drop(columns=['horse', 'jockey', 'race_num', 'stable', 'race_name', 'rank', 'pop', 'gap', 'tansho', 'win1', 'time_sec']) # ダミー列定義(One-Hot変換対象) dummy_columns = ['sex', 'place', 'course_type', 'course_lr', 'weather', 'ground', 'past_course_type1', 'past_course_lr1', 'past_weather1', 'past_ground1', 'past_gap1', 'past_course_type2', 'past_course_lr2', 'past_weather2', 'past_ground2', 'past_gap2', 'past_course_type3', 'past_course_lr3', 'past_weather3', 'past_ground3', 'past_gap3', 'past_course_type4', 'past_course_lr4', 'past_weather4', 'past_ground4', 'past_gap4', 'past_course_type5', 'past_course_lr5', 'past_weather5', 'past_ground5', 'past_gap5'] # ダミー化 df_dummy = df[dummy_columns] df_dummy = pd.get_dummies(df_dummy, dummy_na=True) df_main = df.drop(columns=dummy_columns) # 標準化前に必要な情報を退避 df_main['kitaichi'] = df_main['win3'] * df_main['fukusho'] train_kitaichi = df_main.pop('kitaichi') train_labels = df_main.pop('win3') train_date = df_main.pop('race_date') train_raceids = df_main.pop('race_id') df_main = df_main.drop(columns=['fukusho']) df_main = df_main.astype(float) standard_file = 'standard.csv' df_main.to_csv(standard_file, index=False) # 標準化 ss = StandardScaler() df_main = pd.DataFrame(ss.fit_transform( df_main), columns=df_main.columns, index=df_main.index) # ダミー列とマージ df = pd.concat([df_main, df_dummy], axis=1) df['kitaichi'] = train_kitaichi.values df['win3'] = train_labels.values df['race_date'] = train_date.values df['race_id'] = train_raceids.values file_name3 = 'data3.csv' df.to_csv(file_name3, index=False)
keisukee/horse_racing
normalize_3.py
normalize_3.py
py
2,492
python
en
code
1
github-code
6
[ { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 49, "usage_type": "call" } ]
651508757
from . learningTasks import RandomForest import os import luigi import numpy as np import logging # import the proper nifty version try: import nifty.graph.rag as nrag except ImportError: try: import nifty_with_cplex.graph.rag as nrag except ImportError: import nifty_with_gurobi.graph.rag as nrag from .dataTasks import StackedRegionAdjacencyGraph, InputData from .tools import config_logger, run_decorator from .featureTasks import RegionNodeFeatures from .customTargets import HDF5DataTarget, FolderTarget from .pipelineParameter import PipelineParameter # init the workflow logger workflow_logger = logging.getLogger(__name__) config_logger(workflow_logger) class DefectNodeGroundtruth(luigi.Task): pathToSeg = luigi.Parameter() pathToDefectGt = luigi.Parameter() def requires(self): return{ "rag": StackedRegionAdjacencyGraph(self.pathToSeg), "defect_gt": InputData(self.pathToDefectGt, dtype='uint8') } @run_decorator def run(self): inp = self.input() rag = inp['rag'].read() defect_gt = inp['defect_gt'] defect_gt.open() node_labels = nrag.gridRagAccumulateLabels(rag, defect_gt.get()) assert (np.unique(node_labels) == np.array([0, 1])).all(), str(np.unique(node_labels)) self.output().write(node_labels) def output(self): seg_file = os.path.split(self.pathToSeg)[1][:-3] save_path = "DefectNodeGroundtruth_%s.h5" % seg_file return HDF5DataTarget(save_path) class LearnDefectRandomForest(luigi.Task): pathsToSeg = luigi.ListParameter() pathsToDefectGt = luigi.ListParameter() def requires(self): assert len(self.pathsToSeg) == len(self.pathsToGt) n_inputs = len(self.pathsToSeg) inputs = PipelineParameter().inputs if n_inputs == 1: raw_path = inputs['data'][0] return { 'gt': DefectNodeGroundtruth(self.pathsToSeg[0], self.pathsToDefectGt[0]), 'feats': RegionNodeFeatures(self.pathsToSeg[0], raw_path) } else: inp_paths = inputs['data'] assert n_inputs % inp_paths == 0 inp_per_seg = len(inp_paths) // n_inputs return { 'gt': [DefectNodeGroundtruth(self.pathsToSeg[i], self.pathsToDefectGt[i]) for i in range(n_inputs)], 'feats': [RegionNodeFeatures(self.pathToSeg[i], inp_paths[inp_per_seg * i]) for i in range(n_inputs)] } @run_decorator def run(self): if(self.pathsToSeg) > 1: self._learn_defect_rf_multi_input() else: self._learn_defect_rf_single_input() def _learn_defect_rf_multi_input(self): inp = self.input() gts = inp['gt'] feats = inp['feats'] assert len(gts) == len(feats) features = [] labels = [] for i, gt in enumerate(gts): this_gt = gt.read() this_feats = feats[i].read([0, 0], feats[i].shape) assert len(this_gt) == len(this_feats), "%i, %i" % (len(this_gt), len(this_feats)) features.append(this_feats) labels.append(this_gt) features = np.concatenate(features, axis=0) labels = np.concatenate(labels, axis=0) rf = RandomForest( features, labels, n_trees=PipelineParameter().nTrees, n_threads=PipelineParameter().nThreads ) rf.write(str(self.output().path), 'rf') def _learn_defect_rf_single_input(self): inp = self.input() gt = inp['gt'].read() feats = inp['feats'] feats = feats.readSubarray([0, 0], feats.shape) assert len(gt) == len(feats), "%i, %i" % (len(gt), len(feats)) rf = RandomForest( feats, gt, n_trees=PipelineParameter().nTrees, n_threads=PipelineParameter().nThreads ) rf.write(str(self.output().path), 'rf') def output(self): save_path = 'LearnDefectRandomForest_%s' % ( 'multi_input' if len(self.pathsToSeg) > 1 else 'single_input', ) return FolderTarget(save_path)
constantinpape/mc_luigi
mc_luigi/defectRandomForests.py
defectRandomForests.py
py
4,204
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 24, "usage_type": "call" }, { "api_name": "tools.config_logger", "line_number": 25, "usage_type": "call" }, { "api_name": "luigi.Task", "line_number": 28, "usage_type": "attribute" }, { "api_name": "luigi.Parameter", "line_number": 30, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 31, "usage_type": "call" }, { "api_name": "dataTasks.StackedRegionAdjacencyGraph", "line_number": 35, "usage_type": "call" }, { "api_name": "dataTasks.InputData", "line_number": 36, "usage_type": "call" }, { "api_name": "nifty_with_gurobi.graph.rag.gridRagAccumulateLabels", "line_number": 46, "usage_type": "call" }, { "api_name": "nifty_with_gurobi.graph.rag", "line_number": 46, "usage_type": "name" }, { "api_name": "numpy.unique", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 47, "usage_type": "call" }, { "api_name": "tools.run_decorator", "line_number": 39, "usage_type": "name" }, { "api_name": "os.path.split", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path", "line_number": 51, "usage_type": "attribute" }, { "api_name": "customTargets.HDF5DataTarget", "line_number": 53, "usage_type": "call" }, { "api_name": "luigi.Task", "line_number": 56, "usage_type": "attribute" }, { "api_name": "luigi.ListParameter", "line_number": 58, "usage_type": "call" }, { "api_name": "luigi.ListParameter", "line_number": 59, "usage_type": "call" }, { "api_name": "pipelineParameter.PipelineParameter", "line_number": 64, "usage_type": "call" }, { "api_name": "featureTasks.RegionNodeFeatures", "line_number": 70, "usage_type": "call" }, { "api_name": "featureTasks.RegionNodeFeatures", "line_number": 78, "usage_type": "call" }, { "api_name": "tools.run_decorator", "line_number": 81, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 102, "usage_type": "call" }, { "api_name": "learningTasks.RandomForest", "line_number": 103, "usage_type": "call" }, { "api_name": "pipelineParameter.PipelineParameter", "line_number": 105, "usage_type": "call" }, { "api_name": "pipelineParameter.PipelineParameter", "line_number": 106, "usage_type": "call" }, { "api_name": "learningTasks.RandomForest", "line_number": 116, "usage_type": "call" }, { "api_name": "pipelineParameter.PipelineParameter", "line_number": 118, "usage_type": "call" }, { "api_name": "pipelineParameter.PipelineParameter", "line_number": 119, "usage_type": "call" }, { "api_name": "customTargets.FolderTarget", "line_number": 127, "usage_type": "call" } ]
31360177466
#Long Short-Term Memory import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error dataset_train = pd.read_csv('files/Salestrain.csv') plt.plot(dataset_train, color='blue', label='Vendas') plt.title('Vendas') plt.xlabel('Tempo') plt.ylabel('Vendas') plt.legend() plt.show() sc = MinMaxScaler(feature_range=(0, 1)) trainning_set_scaled = sc.fit_transform(dataset_train) X_train = [] y_train = [] for i in range(90, len(trainning_set_scaled)): data = trainning_set_scaled[i-90:i, 0] X_train.append(data) y_train.append(trainning_set_scaled[i,0]) X_train = np.array(X_train.reshape(-1,90,1)) y_train = np.array(y_train) model = Sequential() model.add(LSTM(units=100, return_sequences=True, input_shape=(X_train.shape[1],1))) model.add(Dropout(0.2)) model.add(LSTM(units=100, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=100, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(units=100)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, y_train, epochs=300, batch_size=1) dataset_test = pd.read_csv('files/Salestest.csv') train_values = dataset_train['data'].values test_values = dataset_test['data'].values total_values = np.concatenate((train_values, test_values), axis=0) time_index = range(len(total_values)) plt.plot(time_index[:len(train_values)], color='blue', label='Vendas - Treinamento') plt.plot(time_index[len(test_values):], color='red', label='Vendas - Teste') plt.title('Vendas') plt.xlabel('Tempo') plt.ylabel('Vendas') plt.legend() plt.show() dataset_test_anomalies = dataset_test.copy() dataset_test_anomalies.loc[:9, 'data'] = 90 dataset_test_anomalies.loc[10:34, 'data'] = np.random.uniform(100,200,size=(25,)) dataset_test_anomalies.loc[35:, 'data'] = 90 plt.plot(dataset_test, color='blue', label='Vendas') plt.plot(dataset_test_anomalies, color='red', label='Vendas com anomalias') plt.title('Vendas') plt.xlabel('Tempo') plt.ylabel('Vendas') plt.legend() plt.show() dataset_total = pd.concat((dataset_train['data'], dataset_test['data']), axis=0) inputs = dataset_total[len(dataset_total)-len(dataset_test-90):] inputs = pd.DataFrame(inputs, columns=['data']) inputs = sc.transform(inputs) dataset_total_anomalies = pd.concat((dataset_train['data'], dataset_test_anomalies['data']), axis=0) inputs_anomalies = dataset_total_anomalies[len(dataset_total_anomalies)-len(dataset_test_anomalies-90):] inputs_anomalies = pd.DataFrame(inputs_anomalies, columns=['data']) inputs_anomalies = sc.transform(inputs_anomalies) X_test = [] X_test_anomalies = [] for i in range(90, len(inputs)): X_test.append(inputs[i-90:i,0]) X_test_anomalies.append(inputs_anomalies[i-90:i,0]) X_test, X_test_anomalies = np.array(X_test), np.array(X_test_anomalies) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) X_test_anomalies = np.reshape(X_test_anomalies, (X_test_anomalies.shape[0], X_test_anomalies.shape[1], 1)) prediced_sales = model.predict(X_test) prediced_sales = sc.inverse_transform(prediced_sales) prediced_sales_anomalies = model.predict(X_test_anomalies) prediced_sales_anomalies = sc.inverse_transform(prediced_sales_anomalies) mean_squared_error_test = mean_squared_error(test_values, prediced_sales) mean_squared_error_anomalies = mean_squared_error(test_values, prediced_sales_anomalies) print(f'MSE normal data: ', mean_squared_error_test) print(f'MSE data with anomalies: ', mean_squared_error_anomalies) plt.plot(test_values, color='blue', label='Valores reais') plt.plot(prediced_sales_anomalies, colo='red', label='Previsões com anomalias') plt.plot(prediced_sales, color='green', label='Previsões') plt.title('Previsões com anomalias, sem anomalias e valores reais') plt.xlabel('Tempo') plt.ylabel('Vendas') plt.legend() plt.show()
francinehahn/ai-and-machine-learning
detectingAnomalies/LSTM.py
LSTM.py
py
4,027
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 11, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 11, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 12, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 32, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 33, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 34, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 35, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 36, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 37, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 38, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 39, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 40, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 41, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "numpy.random.uniform", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 63, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "pandas.concat", "line_number": 74, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 76, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 79, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 92, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 99, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 108, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 110, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 112, "usage_type": "name" } ]
11753378103
import urllib3 import requests from bs4 import BeautifulSoup from csv import writer import csv import pandas as pd url = 'https://www.mubawab.tn/fr/cc/immobilier-a-louer-all:o:i:sc:houses-for-rent:p:' + str(1) page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') lists = soup.find_all('li', class_='listingBox w100') for list in lists: estate_local = list.find('h3', class_='listingH3').text.split()[-1].strip() estate_type = "Maison" estate_surface = getattr(list.find('h4', class_='listingH4 floatR'),'text', None) estate_piece = list.find('h4', class_='listingH4 floatR').text.split()[0].strip() estate_price = getattr(list.find("span", class_= "priceTag hardShadow float-right floatL yellowBg"),'text', None) if (str(estate_price)=='None'): estate_price = getattr(list.find("span", class_= "priceTag hardShadow float-right floatL"),'text', None) info = [estate_local, estate_type, estate_surface, estate_piece, str(estate_price)] print(info)
sofienne-chouiekh/Scraping_data_estate_location
test.py
test.py
py
1,091
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 9, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 11, "usage_type": "call" } ]
28322769353
from django.urls import path, include from . import views app_name = 'api' employment = [ path('', views.EmploymentListEmployee.as_view(), name='list'), ] employee = [ path('<int:pk>/employment/', include((employment, 'employment'))), ] urlpatterns = [ path('employee/', include((employee, 'employee'))), ]
crowmurk/mallenom
mallenom/api/urls.py
urls.py
py
325
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "django.urls.include", "line_number": 17, "usage_type": "call" } ]
34118032788
# Going to be extremely similar to the staff groups file from __future__ import print_function import os.path import json from typing import get_type_hints from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build # importing module import oracledb # needed for connection to PowerSchool server (ordcle database) import os # needed for environement variable reading from datetime import * # setup db connection un = 'PSNavigator' #PSNavigator is read only, PS is read/write pw = os.environ.get('POWERSCHOOL_DB_PASSWORD') #the password for the database account cs = os.environ.get('POWERSCHOOL_PROD_DB') #the IP address, port, and database name to connect to print("Username: " + str(un) + " |Password: " + str(pw) + " |Server: " + str(cs)) #debug so we can see where oracle is trying to connect to/with # If modifying these scopes, delete the file token.json. SCOPES = ['https://www.googleapis.com/auth/admin.directory.user', 'https://www.googleapis.com/auth/admin.directory.group', 'https://www.googleapis.com/auth/admin.directory.group.member', 'https://www.googleapis.com/auth/apps.licensing'] emailSuffix = os.environ.get('EMAIL_SUFFIX') studentSuffix = os.environ.get('STUDENT_SUFFIX') allStudentGroup = os.environ.get('ALL_STUDENT_GROUP') studentOU = os.environ.get('STUDENT_OU') gradYearPrefix = os.environ.get('GRAD_YEAR_PREFIX') creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.json', 'w') as token: token.write(creds.to_json()) service = build('admin', 'directory_v1', credentials=creds) # function to take a group by email, and return all the members of the group as well as their role. Makes a dict with these pairings, then adds that dict as well as the group email to the overall memberLists dict def getGroupMembers(groupEmail): try: studentMemberToken = '' # blank primer token for multi-page query results tempDict = {} # create a temp dict that will hold the members and their roles print(f'Getting members of {groupEmail}') # debug while studentMemberToken is not None: # while we still have results to process studentMemberResults = service.members().list(groupKey=groupEmail, pageToken=studentMemberToken, includeDerivedMembership='True').execute() # get the members of the group by email studentMemberToken = studentMemberResults.get('nextPageToken') studentMembers = studentMemberResults.get('members', []) # separate the actual members array from the rest of the result for member in studentMembers: # go through each member and store their email and role in variables studentEmail = member.get('email') studentMemberType = member.get('role') # print(f'{staffMemberEmail} is a {staffMemberType}') tempDict.update({studentEmail : studentMemberType}) # add the email : role entry to the dict memberLists.update({groupEmail : tempDict}) # update the overall master member dict with with this group's email and member sub-dict except Exception as er: if ("notFound" in str(er)): print(f'ERROR: Group {groupEmail} not found') print(f'ERROR: Group {groupEmail} not found',file=log) else: print(f'ERROR: {er}') print(f'ERROR: {er}',file=log) # go through all student members in the OU, look at their school access lists, and see if they are in the groups they belong in def processGroups(orgUnit): userToken = '' queryString = "orgUnitPath='" + orgUnit + "'" # have to have the orgUnit enclosed by its own set of quotes in order to work print(queryString) while userToken is not None: # do a while loop while we still have the next page token to get more results with userResults = service.users().list(customer='my_customer', orderBy='email', projection='full', pageToken=userToken, query=queryString).execute() userToken = userResults.get('nextPageToken') users = userResults.get('users', []) for user in users: # print(user) # debug try: ou = user.get('orgUnitPath') if ('test' not in ou.lower()) and ('fbla' not in ou.lower()) and ('pre students' not in ou.lower()): # ignore any accounts that are in an OU that contains the word test, fbla, pre students email = user.get('primaryEmail') # .get allows us to retrieve the value of one of the sub results homeschool = str(user.get('customSchemas').get('Synchronization_Data').get('Homeschool_ID')) # get their homeschool ID gradYear = str(user.get('customSchemas').get('Synchronization_Data').get('Graduation_Year')) # get their homeschool ID print(f'{email} should be a part of {allStudentGroup}, {schoolAbbreviations.get(homeschool) + studentSuffix + emailSuffix} and {gradYearPrefix + gradYear + emailSuffix}') print(f'{email} should be a part of {allStudentGroup}, {schoolAbbreviations.get(homeschool) + studentSuffix + emailSuffix} and {gradYearPrefix + gradYear + emailSuffix}', file=log) addBodyDict = {'email' : email, 'role' : 'MEMBER'} # define a dict for the member email and role type, which is this case is just their email and the normal member role # Check to see if they are a member of the all student group, if not we need to add them if not memberLists.get(allStudentGroup).get(email): print(f'ACTION: {email} is currently not a member of {allStudentGroup}, will be added') print(f'ACTION: {email} is currently not a member of {allStudentGroup}, will be added', file=log) service.members().insert(groupKey=allStudentGroup, body=addBodyDict).execute() # do the addition to the group # else: # debug # print(f'INFO: {email} is already a part of {allStudentGroup}, no action needed') # print(f'INFO: {email} is already a part of {allStudentGroup}, no action needed', file=log) # go through each school code : abbreviation pair to check membership for each building group for schoolEntry in schoolAbbreviations.keys(): try: schoolGroupEmail = schoolAbbreviations.get(schoolEntry) + studentSuffix + emailSuffix if schoolEntry == homeschool: # if the school id number we are currently is their school, they should be a part of that school's groups if not memberLists.get(schoolGroupEmail).get(email): # if they are not a member of the group print(f'ACTION: {email} is currently not a member of {schoolGroupEmail}, will be added') print(f'ACTION: {email} is currently not a member of {schoolGroupEmail}, will be added', file=log) service.members().insert(groupKey=schoolGroupEmail, body=addBodyDict).execute() # do the addition to the group # else: # debug # print(f'INFO: {email} is already a part of {schoolGroupEmail}, no action needed') # print(f'INFO: {email} is already a part of {schoolGroupEmail}, no action needed', file=log) else: # if the current school entry is not their school, we need to make sure they are NOT part of that schools groups and remove them if they are if memberLists.get(schoolGroupEmail).get(email): # if they are a member of the group if memberLists.get(schoolGroupEmail).get(email) == 'MEMBER': # check and see if they are just a member, if so remove them, otherwise we do not want to touch the managers and owners print(f'ACTION: {email} should not be a member of {schoolGroupEmail}, will be removed') print(f'ACTION: {email} should not be a member of {schoolGroupEmail}, will be removed', file=log) service.members().delete(groupKey=schoolGroupEmail, memberKey=email).execute() # do the removal from the group else: # if they are an elevated member just give a warning print(f'WARNING: {email} is an elevated role in {schoolGroupEmail} and will NOT be removed') print(f'WARNING: {email} is an elevated role in {schoolGroupEmail} and will NOT be removed', file=log) except Exception as er: print(f'ERROR: in building {schoolEntry} on user {email}: {er}') print(f'ERROR: in building {schoolEntry} on user {email}: {er}', file=log) # go through each grad year group to check membership for year in gradYears: try: gradYearEmail = gradYearPrefix + str(year) + emailSuffix if str(year) == gradYear: # if the year we are currently on is their grad year, they should be a part of the group if not memberLists.get(gradYearEmail).get(email): print(f'ACTION: {email} is currently not a member of {gradYearEmail}, will be added') print(f'ACTION: {email} is currently not a member of {gradYearEmail}, will be added', file=log) service.members().insert(groupKey=gradYearEmail, body=addBodyDict).execute() # do the addition to the group # else: # debug # print(f'INFO: {email} is already a part of {gradYearEmail}, no action needed') # print(f'INFO: {email} is already a part of {gradYearEmail}, no action needed', file=log) else: # if the year is not their grad year, we need to make sure they are NOT a part of that group if memberLists.get(gradYearEmail).get(email): if memberLists.get(gradYearEmail).get(email) == 'MEMBER': # check and see if they are just a member, if so remove them, otherwise we do not want to touch the managers and owners print(f'ACTION: {email} should not be a member of {gradYearEmail}, will be removed') print(f'ACTION: {email} should not be a member of {gradYearEmail}, will be removed', file=log) service.members().delete(groupKey=gradYearEmail, memberKey=email).execute() # do the removal from the group else: # if they are an elevated member just give a warning print(f'WARNING: {email} is an elevated role in {gradYearEmail} and will NOT be removed') print(f'WARNING: {email} is an elevated role in {gradYearEmail} and will NOT be removed', file=log) except Exception as er: print(f'ERROR: in grad year entry {schoolEntry} on user {email}: {er}') print(f'ERROR: in grad year entry {schoolEntry} on user {email}: {er}', file=log) except Exception as er: print(f'ERROR: on {user} - {er}') print(f'ERROR: on {user} - {er}',file=log) # main program with oracledb.connect(user=un, password=pw, dsn=cs) as con: # create the connecton to the database with con.cursor() as cur: # start an entry cursor with open('StudentGroupsLog.txt', 'w') as log: startTime = datetime.now() startTime = startTime.strftime('%H:%M:%S') currentYear = int(datetime.now().strftime('%Y')) # get current year for calculations of grad year classes print(f'Execution started at {startTime}') print(f'Execution started at {startTime}', file=log) # Start by getting a list of schools id's and abbreviations for the "real" schools which are not excluded from state reporting cur.execute('SELECT abbreviation, school_number FROM schools WHERE State_ExcludeFromReporting = 0') schools = cur.fetchall() schoolAbbreviations = {} # define a dict to store the school codes and abbreviations linked for school in schools: # store results in variables mostly just for readability schoolAbbrev = school[0].lower() # convert to lower case since email groups are all lower schoolNum = str(school[1]) # print(f'School {schoolAbbrev} - Code {schoolNum}') schoolAbbreviations.update({schoolNum : schoolAbbrev}) print(f'Schools numbers and their abbreviations: {schoolAbbreviations}') print(f'Schools numbers and their abbreviations: {schoolAbbreviations}', file=log) memberLists = {} # make a master dict for group memberships, that will have sub-dict sof each member and their role as its values gradYears = [] # make an array that will hold the next 14 years to have as reference for graduation years for i in range(17): gradYears.append(currentYear + (i-1)) # start with 0 (-1) from the current year and go through the next 15 years print(f'The graduation years in range: {gradYears}') # debug print(f'The graduation years in range: {gradYears}', file=log) # debug # find the members of each group once at the start so we do not have to constantly query via the api whether a user is a member, we can just do a list comparison for entry in schoolAbbreviations.values(): # go through each school abbreviation and find their student group studentGroup = entry + studentSuffix + emailSuffix getGroupMembers(studentGroup) for year in gradYears: classGroup = gradYearPrefix + str(year) + emailSuffix getGroupMembers(classGroup) getGroupMembers(allStudentGroup) # get membership for the district wide student group added to dict print(memberLists) # debug, now should have a dict containing each group email as the keys, and the value is a dict of its own containing the emails and roles of each member of the group # print(memberLists, file=log) # debug, now should have a dict containing each group email as the keys, and the value is a dict of its own containing the emails and roles of each member of the group processGroups(studentOU) # process the student groups for the main student OU, this will also include any sub-OUs endTime = datetime.now() endTime = endTime.strftime('%H:%M:%S') print(f'Execution ended at {endTime}') print(f'Execution ended at {endTime}', file=log)
Philip-Greyson/D118-Google-Groups-Licensing
doStudentGroups.pyw
doStudentGroups.pyw
pyw
16,072
python
en
code
0
github-code
6
[ { "api_name": "os.environ.get", "line_number": 22, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 23, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 29, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 30, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 31, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 32, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 33, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "google.oauth2.credentials.Credentials.from_authorized_user_file", "line_number": 41, "usage_type": "call" }, { "api_name": "google.oauth2.credentials.Credentials", "line_number": 41, "usage_type": "name" }, { "api_name": "google.auth.transport.requests.Request", "line_number": 45, "usage_type": "call" }, { "api_name": "google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file", "line_number": 47, "usage_type": "call" }, { "api_name": "google_auth_oauthlib.flow.InstalledAppFlow", "line_number": 47, "usage_type": "name" }, { "api_name": "googleapiclient.discovery.build", "line_number": 54, "usage_type": "call" }, { "api_name": "oracledb.connect", "line_number": 169, "usage_type": "call" }, { "api_name": "datetime.now", "line_number": 172, "usage_type": "call" }, { "api_name": "datetime.now", "line_number": 174, "usage_type": "call" }, { "api_name": "datetime.now", "line_number": 215, "usage_type": "call" } ]
5675740119
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) import os, re, collections, getpass, functools, click, six, logging, json, threading import dash from dash import dcc from dash import html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State, ALL import os, collections, getpass, functools _name_dev_dd={ 'A-UL': '207', 'B-UL': '202', 'A-TZ': '220', 'B-TZ': '221', 'A-LV': '222', 'B-LV': '223', 'A-SA': '224', 'B-SA': '225'} _dev_name_dd={vv:kk for kk,vv in _name_dev_dd.items()} def _get_devices(path='/device/dfe'): return [{}] # _root=nalct.NalctConfiguration.NalctConfiguration(quiet=True, _context=_context)()._asdict() # _devices=next(iter(_root.get('entity', DotMap()).get('container', DotMap()).match(('name','device'))), DotMap()) # _dev_ent=_devices.get('container', DotMap()).get('entity', []) # _dfe=next(iter(list(filter(lambda x: x.get('name') in ['dfe'], _dev_ent))), DotMap()) # # _dfe=next(iter(_devices.get('container', DotMap()).get('entity', []).match(('name','dfe'))), DotMap()) # _devs=list(map(lambda x: x.get('name'), _dfe.get('container', DotMap()).get('entity', []) )) # return [{'label': _dev_name_dd.get(_dev, _dev), 'value':os.path.join(path, _dev)} for _dev in _devs] _command_funcs=[] _devices=_get_devices() logging.getLogger(__name__).debug('Devices: {}'.format(_devices)) # _commands=sorted(list(set( [_cmd for _device in [_dev.get('value') for _dev in _devices] for _cmds in nalct.NalctCommanding.NalctCommanding(path=_device, _context=_context).commands for _cmd in _cmds ] ))) _commands=[] # _dev_cmds={_device:list(nalct.NalctCommanding.NalctCommanding(path=_device, _context=_context).commands) for _device in [_dev.get('value') for _dev in _devices] } _dev_cmds={} # _commands=[] # [_commands.extend(_vv) for _vv in _dev_cmds.values()] _commands=sorted(list(set( _commands ))) _get_click_context = lambda command: click.Context(command).__enter__() # _commands=collections.OrderedDict([(_cmd.command.name, _cmd) for _cmd in map(_get_click_context, _commands)]) # _cmd_exe_dd = collections.OrderedDict([(_cmd_name, _command_funcs[ii]) for ii,_cmd_name in enumerate(_commands.keys())]) _cmd_exe_dd = {} _all_services={} #cc.__name__ : cc for cc in nalct.DockerService.DockerService.yield_progeny()} _all_service_names=sorted(set( filter(lambda x: isinstance(x, six.string_types), [getattr(vv,'component', None) for vv in _all_services.values()]) )) input_groups = html.Div( [ dbc.Container( children=[ html.Label([ "Devices to Command", dcc.Dropdown( id='nalct-device-select-dropdown', options=_devices, multi=True, value=[_dev.get('value') for _dev in _devices]) ]), dbc.InputGroup( [ # dbc.InputGroupAddon("Nalct Command", addon_type="prepend"), dbc.InputGroupText("Nalct Command"), dbc.Select(options=[{'label': _command_name, 'value': _command_name} for _command_name in _commands],id='nalct-command-input'), ],), dbc.Container(id='nalct-command-parameters') ], id='nalct-command-builder' ), ], ) layout = dbc.Container( children=[ dbc.Alert("PyNAPL -- NetAcquire Commanding", color="success"), input_groups, dbc.Container( children=[dbc.InputGroup([dbc.Button("Execute", id='nalct-launch', outline=True, color="info", className="mr-1", disabled=True),]),], id='nalct-command-cfg-exec-container' ), dbc.Container( children=[], id='nalct-command-exec-container' ), ], className="p-5", ) def make_bool_option(_command, _param): return dbc.FormGroup([ dbc.Checklist( options=[ {"label": _param.name, "value": _param.name} ], value=[], id={'type': 'nalct-command-line-flags', 'index': '{}-{}'.format(_command, _param.name)}, switch=True, ), dbc.FormText(_param.help, color="secondary",)] ) def make_command_option(_command, _param): _ctx=_context if re.match(r'^.*enclave.*$', _param.name): return dbc.FormGroup([ dbc.Label(_param.name, html_for='nalct-command-line-options-{}-{}'.format(_command, _param.name)), dbc.Select( options=[{'label': _enclave, 'value': _enclave} for _enclave in sorted(_ctx.active.keys())] if re.match(r'^kill$', _command) else [{'label': _enclave, 'value': _enclave} for _enclave in sorted(_ctx.enclaves.keys())], id={'type': 'nalct-command-line-options', 'index': '{}-{}'.format(_command, _param.name)}), dbc.FormText(_param.help, color="secondary",)] ) elif re.match(r'^.*service.*$', _param.name): return dbc.FormGroup([ dbc.Label(_param.name, html_for='nalct-command-line-options-{}-{}'.format(_command, _param.name)), dbc.Select( options=[{'label': _service, 'value': _service} for _service in _all_service_names], id={'type': 'nalct-command-line-options', 'index': '{}-{}'.format(_command, _param.name)}), dbc.FormText(_param.help, color="secondary",)] ) else: return dbc.FormGroup([ dbc.Label(_param.name, html_for='nalct-command-line-options-{}-{}'.format(_command, _param.name)), dbc.Input(placeholder="{} value...".format(_param.name), type="text", id={'type': 'nalct-command-line-options', 'index': '{}-{}'.format(_command, _param.name)}), dbc.FormText(_param.help, color="secondary",)] ) def build_command_form(command): if not(command): return _ctx=None #_commands.get(command) _params=[] #_ctx.command.params _flags=[] #list(filter(lambda x: x.is_flag, _params)) _options=[] #list(filter(lambda x: not(x.is_flag), _params)) _content=[] if _options: options = dbc.FormGroup([ dbc.FormGroup([make_command_option(command, _param) for _param in _options], id='nalct-command-line-options-{}'.format(command))]) _content.append(options) if _flags: flags = dbc.FormGroup([ dbc.Label("Flags", html_for='nalct-command-line-flags-{}'.format(command)), dbc.FormGroup([make_bool_option(command, _param) for _param in _flags], id='nalct-command-line-flags-{}'.format(command))]) _content.append(flags) if _content: _content= [dbc.Label("Nalct {} Options".format(command.capitalize()), 'nalct-command-options-{}'.format(command))] + _content return dbc.FormGroup(_content) @app.callback([Output("nalct-command-parameters", "children"), Output('nalct-launch', 'disabled')], [Input("nalct-command-input", "value")]) def update_command_form(nalct_command): logging.getLogger('.'.join([__name__, 'update_command_form'])).info('Command: "{}"'.format(nalct_command)) if nalct_command: return [build_command_form(nalct_command)], False return [], True def _invoke(command, devices): pass @app.callback( Output('nalct-command-exec-container', 'children'), [Input('nalct-launch', 'n_clicks')], [State("nalct-command-input", "value"), State("nalct-device-select-dropdown", "value")], ) def launch_nalct_command(launch_button_clicks, command, devices): logging.getLogger('.'.join([__name__, 'launch_nalct_command'])).info('Command: "{}", Devices: {}'.format(command, devices)) if command and devices: _opts=SmartDict(command=command, devices=devices) try: threading.Thread(target=_invoke, args=(command, devices), name='.'.join([__name__, 'launch_nalct_command','invoke'])).start() return [dbc.Toast( [ html.P("Launching `nalct.Command({})`".format(', '.join('{}={}'.format(kk,vv) for kk,vv in _opts.items())), className="mb-0"), html.A("Status", href="/apps/app2", className="mb-0"), dbc.Spinner(spinner_style={"width": "3rem", "height": "3rem"})], id="nalct-launch-notifier", header="Launching Nalct Command", icon="primary", duration=5000, ),] except Exception as e: return [dbc.Toast( [html.P("Failed to Launch `nalct.{}({})`: {}".format(command, _opts, e), className="mb-0")], id="nalct-launch-notifier", header="Uh-oh!", icon="danger", duration=5000, )] return [None] ################################################################################ # vim:set sr et ts=4 sw=4 ft=python fenc=utf-8: // See Vim, :help 'modeline'
meghanstell/SNOWIE
megalodon/web/apps/launch.py
launch.py
py
9,144
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 39, "usage_type": "call" }, { "api_name": "click.Context", "line_number": 50, "usage_type": "call" }, { "api_name": "six.string_types", "line_number": 55, "usage_type": "attribute" }, { "api_name": "dash.html.Div", "line_number": 59, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 59, "usage_type": "name" }, { "api_name": "dash_bootstrap_components.Container", "line_number": 61, "usage_type": "call" }, { "api_name": "dash.html.Label", "line_number": 63, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 63, "usage_type": "name" }, { "api_name": "dash.dcc.Dropdown", "line_number": 65, "usage_type": "call" }, { "api_name": "dash.dcc", "line_number": 65, "usage_type": "name" }, { "api_name": "dash_bootstrap_components.InputGroup", "line_number": 71, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.InputGroupText", "line_number": 74, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Select", "line_number": 75, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Container", "line_number": 77, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Container", "line_number": 84, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Alert", "line_number": 86, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Container", "line_number": 88, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.InputGroup", "line_number": 89, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Button", "line_number": 89, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Container", "line_number": 92, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 101, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Checklist", "line_number": 102, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormText", "line_number": 108, "usage_type": "call" }, { "api_name": "re.match", "line_number": 113, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 114, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Label", "line_number": 115, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Select", "line_number": 116, "usage_type": "call" }, { "api_name": "re.match", "line_number": 117, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormText", "line_number": 119, "usage_type": "call" }, { "api_name": "re.match", "line_number": 121, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 123, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Label", "line_number": 124, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Select", "line_number": 125, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormText", "line_number": 128, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 131, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Label", "line_number": 132, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Input", "line_number": 133, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormText", "line_number": 134, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 146, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 147, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 152, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Label", "line_number": 153, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 154, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Label", "line_number": 159, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.FormGroup", "line_number": 160, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 164, "usage_type": "call" }, { "api_name": "dash.dependencies.Output", "line_number": 162, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 162, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 179, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 183, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Toast", "line_number": 185, "usage_type": "call" }, { "api_name": "dash.html.P", "line_number": 187, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 187, "usage_type": "name" }, { "api_name": "dash.html.A", "line_number": 188, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 188, "usage_type": "name" }, { "api_name": "dash_bootstrap_components.Spinner", "line_number": 189, "usage_type": "call" }, { "api_name": "dash_bootstrap_components.Toast", "line_number": 196, "usage_type": "call" }, { "api_name": "dash.html.P", "line_number": 197, "usage_type": "call" }, { "api_name": "dash.html", "line_number": 197, "usage_type": "name" }, { "api_name": "dash.dependencies.Output", "line_number": 173, "usage_type": "call" }, { "api_name": "dash.dependencies.Input", "line_number": 174, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 175, "usage_type": "call" }, { "api_name": "dash.dependencies.State", "line_number": 176, "usage_type": "call" } ]
73883744829
import os _, filename = os.path.split('/a/b/c/t.txt') print(filename) metro_areas = [ ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)), ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)), ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)), ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)), ('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)), ] print('{:15} | {:^9} | {:^9}'.format('', 'lat.', 'long.')) fmt = '{:15} | {:9.4f} | {:9.4f}' for name, cc, pop, (latitude, latitude) in metro_areas: if latitude <= 0: print(fmt.format(name, latitude, latitude)) from collections import namedtuple City = namedtuple('City', 'name country population coordinates') tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667)) print(tokyo) for key, value in tokyo._asdict().items(): print(key + ":", value)
yubo-yue/yubo-python
fluentpython/ch02.py
ch02.py
py
857
python
en
code
0
github-code
6
[ { "api_name": "os.path.split", "line_number": 3, "usage_type": "call" }, { "api_name": "os.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "collections.namedtuple", "line_number": 23, "usage_type": "call" } ]
728222177
import string # Initializing Variables num_sentences = 0 num_words = 0 the_num_sentences = 0 frequency_the = 0 # Task 0 with open('war_and_peace.txt', 'r') as f: # opening and reading file for line in f: line = line.rstrip() # removing the space on right side num_sentences += line.count('.') + line.count('!') + line.count('?') # counting the sentences with open('war_and_peace.txt', 'r') as f: for line in f: words = line.split(None) # splitting into words and storing in list num_words += len(words) # finding length of list print("Number of sentences:", num_sentences) print("Number of words:", num_words) # Task 1 text = open('war_and_peace.txt', "r") # Open the file in read mode d = dict() # Create an empty dictionary for line in text: # Loop through each line of the file line = line.strip() # Remove the leading spaces and newline character # Convert the characters in line to line = line.lower() # lowercase to avoid case mismatch line = line.translate(line.maketrans("", "", string.punctuation)) # Remove the punctuation marks from the line words = line.split(" ") # Split the line into words for word in words: # Iterate over each word in line if word in d: # Check if the word is already in dictionary d[word] = d[word] + 1 # Increment count of word by 1 else: d[word] = 1 sorted_by_value = sorted(d.items(), key=lambda kv: kv[1], reverse=True) # sorting dictionary as higher value first with open('result.csv', 'w', newline='') as f: # creating csv file for w in sorted_by_value: f.write(w[0] + "," + str(d[w[0]]) + "," + str(d[w[0]] / num_words) + '\n') # writing in to csv file # Task 2 with open('war_and_peace.txt', 'r') as f: for line in f: line = line.rstrip() the_num_sentences += (line.count(". the") + line.count("! the") + line.count("? the") + line.count('. The') + line.count('! The') + line.count('? The')) print("Number of sentences starts with 'the' :", the_num_sentences) frequency_the = the_num_sentences / num_sentences print("Frequency of THE sentences:", frequency_the) # Task 3 import re from itertools import islice from collections import Counter s = open("war_and_peace.txt") #opening file g = s.read() words = re.findall("\w+", g) #finding the reg-ex letter = (Counter(zip(words, islice(words, 1, None)))) #counting The frequent two word combunations print(letter.most_common()[0])
ruchitakatkar04/CNS-project-1
project1.py
project1.py
py
2,634
python
en
code
0
github-code
6
[ { "api_name": "string.punctuation", "line_number": 40, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 78, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 79, "usage_type": "call" }, { "api_name": "itertools.islice", "line_number": 79, "usage_type": "call" } ]
36734211163
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ @author: Pramod Bharadwaj Chandrashekar, Li Liu @email: [email protected], [email protected] """ import numpy as np from sklearn.cluster import KMeans import scipy.stats as stats def get_cdf_pval(data): """ Function for guassian mixture of dat and computing pvalues """ cdf_pvals = [] for i in range(0, len(data)): mn_samp = np.mean(data[i, :]) sd_samp = np.std(data[i, :]) kcl = KMeans(n_clusters=2, random_state=0).fit(np.reshape(data[i], [-1, 1])) cluster_1_id = np.where(kcl.labels_ == 0)[0] c1_mn, c1_sd = np.mean(data[i, cluster_1_id]), np.std(data[i, cluster_1_id]) cdf_pval_1 = np.reshape(1.0 - stats.norm.cdf(data[i, :], c1_mn, c1_sd), [-1, 1]) cluster_2_id = np.where(kcl.labels_ == 1)[0] c2_mn, c2_sd = np.mean(data[i, cluster_2_id]), np.std(data[i, cluster_2_id]) cdf_pval_2 = np.reshape(1.0 - stats.norm.cdf(data[i, :], c2_mn, c2_sd), [-1, 1]) cdf_pval_3 = np.reshape(1.0 - stats.norm.cdf(data[i, :], mn_samp, sd_samp), [-1, 1]) cdf_pvals.append(np.concatenate((cdf_pval_1, cdf_pval_2, cdf_pval_3), axis=1)) return cdf_pvals def get_important_bins(pval_data): """ Fetch important bins based on pvalues""" imp_bins = [] # Bonferroni Corrected pvals check if len(np.where(pval_data*200 < 0.05)[0]) > 0: imp_bins = np.where(pval_data*200 < 0.05)[0] # Normal pval check elif len(np.where(pval_data < 0.05)[0]): imp_bins = np.where(pval_data < 0.05)[0] # Top 10 bins else: sorted_bins = np.argsort(pval_data) imp_bins = sorted_bins[0:20] #imp_bins = np.argpartition(pval_data, 10) return imp_bins
liliulab/DeepCORE
DeepCORE_attention_util.py
DeepCORE_attention_util.py
py
1,744
python
en
code
0
github-code
6
[ { "api_name": "numpy.mean", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 18, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 23, "usage_type": "call" }, { "api_name": "scipy.stats.norm.cdf", "line_number": 23, "usage_type": "call" }, { "api_name": "scipy.stats.norm", "line_number": 23, "usage_type": "attribute" }, { "api_name": "scipy.stats", "line_number": 23, "usage_type": "name" }, { "api_name": "numpy.where", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 27, "usage_type": "call" }, { "api_name": "scipy.stats.norm.cdf", "line_number": 27, "usage_type": "call" }, { "api_name": "scipy.stats.norm", "line_number": 27, "usage_type": "attribute" }, { "api_name": "scipy.stats", "line_number": 27, "usage_type": "name" }, { "api_name": "numpy.reshape", "line_number": 29, "usage_type": "call" }, { "api_name": "scipy.stats.norm.cdf", "line_number": 29, "usage_type": "call" }, { "api_name": "scipy.stats.norm", "line_number": 29, "usage_type": "attribute" }, { "api_name": "scipy.stats", "line_number": 29, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 45, "usage_type": "call" } ]
31141179192
import transformers import torch def shape(structure): try: return structure.shape except AttributeError: return (f"list[{len(structure)}]", *shape(structure[0])) short_prompt = """To be or not to""" long_prompt = """It was the best of times, it was the worst""" if __name__ == "__main__": print("Started") model_uri = "gpt2" tokenizer = transformers.AutoTokenizer.from_pretrained(model_uri) tokenizer.pad_token = tokenizer.eos_token model = transformers.AutoModelForCausalLM.from_pretrained(model_uri) model.to("cuda:0") inputs = tokenizer([short_prompt, long_prompt], padding=True, return_tensors="pt").to("cuda:0") generated = [] for _ in range(10): print(inputs.keys()) print(shape(inputs["input_ids"])) print(shape(inputs["attention_mask"])) print(inputs["attention_mask"].sum(axis=1, dtype=torch.int64)) with torch.no_grad(): outputs = model(**inputs) print(shape(outputs.past_key_values)) print() next_tokens = outputs.logits[:, -1, :].max(axis=-1).indices generated.append(tokenizer.decode(next_tokens)) insertion_points = inputs["attention_mask"].sum(axis=1, dtype=torch.int64) new_column = torch.tensor(tokenizer.pad_token_id).repeat(2).to("cuda:0") new_inputs = torch.cat((inputs["input_ids"], new_column[:, None]), dim=1) new_inputs.scatter_(1, insertion_points[:, None], next_tokens[:, None]) mask = inputs["attention_mask"] new_mask_column = torch.zeros((len(inputs["input_ids"]), 1)).to("cuda:0") new_mask = torch.cat((mask, new_mask_column), dim=1) new_mask.scatter_(1, insertion_points[:, None], torch.ones(2, 1).to("cuda:0")) # inputs["input_ids"] = new_inputs # inputs["attention_mask"] = new_mask # inputs.past_key_values = outputs.past_key_values inputs = { "input_ids": new_inputs, "attention_mask": new_mask, # "past_key_values": outputs.past_key_values } print(tokenizer.batch_decode(new_inputs, ignore_special_tokens=True))
jjjmillist/ttc-workbench
scripts/23-05-18@13:50:44.py
23-05-18@13:50:44.py
py
2,176
python
en
code
0
github-code
6
[ { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 22, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 22, "usage_type": "attribute" }, { "api_name": "transformers.AutoModelForCausalLM.from_pretrained", "line_number": 24, "usage_type": "call" }, { "api_name": "transformers.AutoModelForCausalLM", "line_number": 24, "usage_type": "attribute" }, { "api_name": "torch.int64", "line_number": 34, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.int64", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 53, "usage_type": "call" } ]
18804693997
import copy from typing import Dict, Optional, TypeVar from pymilvus.exceptions import CollectionNotExistException, ExceptionsMessage from pymilvus.settings import Config Index = TypeVar("Index") Collection = TypeVar("Collection") class Index: def __init__( self, collection: Collection, field_name: str, index_params: Dict, **kwargs, ) -> Index: """Creates index on a specified field according to the index parameters. Args: collection(Collection): The collection in which the index is created field_name(str): The name of the field to create an index for. index_params(dict): Indexing parameters. kwargs: * *index_name* (``str``) -- The name of index which will be created. If no index name is specified, default index name will be used. Raises: MilvusException: If anything goes wrong. Examples: >>> from pymilvus import * >>> from pymilvus.schema import * >>> from pymilvus.types import DataType >>> connections.connect() <pymilvus.client.stub.Milvus object at 0x7fac15e53470> >>> field1 = FieldSchema("int64", DataType.INT64, is_primary=True) >>> field2 = FieldSchema("fvec", DataType.FLOAT_VECTOR, is_primary=False, dim=128) >>> schema = CollectionSchema(fields=[field1, field2]) >>> collection = Collection(name='test_collection', schema=schema) >>> # insert some data >>> index_params = { ... "index_type": "IVF_FLAT", ... "metric_type": "L2", ... "params": {"nlist": 128}} >>> index = Index(collection, "fvec", index_params) >>> index.params {'index_type': 'IVF_FLAT', 'metric_type': 'L2', 'params': {'nlist': 128}} >>> index.collection_name test_collection >>> index.field_name fvec >>> index.drop() """ from .collection import Collection if not isinstance(collection, Collection): raise CollectionNotExistException(message=ExceptionsMessage.CollectionType) self._collection = collection self._field_name = field_name self._index_params = index_params index_name = kwargs.get("index_name", Config.IndexName) self._index_name = index_name self._kwargs = kwargs if self._kwargs.pop("construct_only", False): return conn = self._get_connection() conn.create_index(self._collection.name, self._field_name, self._index_params, **kwargs) indexes = conn.list_indexes(self._collection.name) for index in indexes: if index.field_name == self._field_name: self._index_name = index.index_name break def _get_connection(self): return self._collection._get_connection() @property def params(self) -> dict: """dict: The index parameters""" return copy.deepcopy(self._index_params) @property def collection_name(self) -> str: """str: The corresponding collection name""" return self._collection.name @property def field_name(self) -> str: """str: The corresponding field name.""" return self._field_name @property def index_name(self) -> str: """str: The corresponding index name.""" return self._index_name def __eq__(self, other: Index) -> bool: """The order of the fields of index must be consistent.""" return self.to_dict() == other.to_dict() def to_dict(self): """Put collection name, field name and index params into dict.""" return { "collection": self._collection._name, "field": self._field_name, "index_name": self._index_name, "index_param": self.params, } def drop(self, timeout: Optional[float] = None, **kwargs): """Drop an index and its corresponding index files. Args: timeout(float, optional): An optional duration of time in seconds to allow for the RPC. When timeout is set to None, client waits until server response or error occur kwargs: * *index_name* (``str``) -- The name of index. If no index is specified, the default index name is used. """ copy_kwargs = copy.deepcopy(kwargs) index_name = copy_kwargs.pop("index_name", Config.IndexName) conn = self._get_connection() conn.drop_index( collection_name=self._collection.name, field_name=self.field_name, index_name=index_name, timeout=timeout, **copy_kwargs, )
milvus-io/pymilvus
pymilvus/orm/index.py
index.py
py
4,921
python
en
code
744
github-code
6
[ { "api_name": "typing.TypeVar", "line_number": 7, "usage_type": "call" }, { "api_name": "typing.TypeVar", "line_number": 8, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 16, "usage_type": "name" }, { "api_name": "collection.Collection", "line_number": 59, "usage_type": "name" }, { "api_name": "pymilvus.exceptions.CollectionNotExistException", "line_number": 60, "usage_type": "call" }, { "api_name": "pymilvus.exceptions.ExceptionsMessage.CollectionType", "line_number": 60, "usage_type": "attribute" }, { "api_name": "pymilvus.exceptions.ExceptionsMessage", "line_number": 60, "usage_type": "name" }, { "api_name": "pymilvus.settings.Config.IndexName", "line_number": 64, "usage_type": "attribute" }, { "api_name": "pymilvus.settings.Config", "line_number": 64, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 84, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 114, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 125, "usage_type": "call" }, { "api_name": "pymilvus.settings.Config.IndexName", "line_number": 126, "usage_type": "attribute" }, { "api_name": "pymilvus.settings.Config", "line_number": 126, "usage_type": "name" } ]
3709323219
import pandas as pd import numpy as np from cloudservice import get_documenttask, download_doc from cloudservice import get_doctag, create_doctag, delete_doctag from cloudservice import create_doctagrel, delete_doctagrel from cloudservice import change_step from cloudservice import get_docs_byid, fill_docinfo from cloudservice import get_all_projs, get_file_projs import time, os, shutil import config import core import utils from datetime import datetime from wordapi import transdoc from pptapi import transppt def analysis_log(info, info_obj): print(info, info_obj) def on_loop(project_id): docresponse = get_documenttask(projid=project_id) docdata = pd.DataFrame(docresponse) if len(docdata) == 0: return docdata = docdata[docdata['step'] == 1] docdata = docdata.tail(config.n_for_project_in_loop) docdata = (docdata # .sort_values('name') .dropna(subset=['fileUrl', 'step']) .reset_index() ) # basepath = os.path.join(config.root_dir, str(project_id)) basepath = r'E:\file-local-analysis' for indx, dt in docdata.iterrows(): info_log_obj = {'id': dt['fileId'], 'name': dt['name']} print() analysis_log('开始', info_log_obj) # if not dt['fileUrl'].startswith('http'): # analysis_log('无文件', info_log_obj) # continue try: # curpath = os.path.join(basepath, dt['name']) curpath = dt['fileUrl'] # transformed = core.transform(curpath, basepath, extname) ext_tuple = os.path.splitext(dt['name']) extname = ext_tuple[1] # 补写 # if extname != '.dwg' and extname != '.rar': # continue # analysis_log('开始', info_log_obj) # 补写 if extname == '.doc': transdoc.doc2docx(curpath, basepath, remove=False) curpath = os.path.join(basepath, dt['name']) if extname == '.ppt': transppt.ppt2pptx(curpath, basepath, remove=False) curpath = os.path.join(basepath, dt['name']) # dwg rar本地转移 在线分析不用 if extname == '.dwg': shutil.copy(curpath, basepath) curpath = os.path.join(basepath, dt['name']) if extname == '.rar' or extname == '.zip': shutil.copy(curpath, basepath) curpath = os.path.join(basepath, dt['name']) # 很大的 if os.path.getsize(dt['fileUrl']) > 100 * 1000 * 1000: analysis_log('文件过大', info_log_obj) dt['step'] = 2 change_step(dt['id'], dt.to_dict(), projid=project_id) continue except Exception as e: analysis_log('下载和转换文件', info_log_obj) continue # 分析成字段 try: kwords, kwfreq, pharr, nwarr, sumarr, *img_none = core.analysis( curpath, extname, imgdir=None, do_drawings=True) kwords_arr = kwords.split(',') real_kwords = [] for kw in kwords_arr: if is_real_kw(kw): real_kwords.append(kw) if len(real_kwords) > 5: low_kw = real_kwords[5:] else: low_kw = [] except Exception as e: analysis_log('分析成字段', info_log_obj) print(e) # avoid always fail dt['step'] = 2 change_step(dt['id'], dt.to_dict(), projid=project_id) # avoid always fail continue # 文件表写入字段 file_table_write_success = False try: doc_record = get_docs_byid(dt['fileId'], projid=project_id) # choose summary real_summary = [] for su in sumarr: if is_real_summary(su): real_summary.append(su) summarylimit = 3 if len(real_summary) > summarylimit: real_summary = sorted(real_summary, key=lambda x: len(x), reverse=True)[:summarylimit] nwlimit = 900 nwarr = utils.remove_blank(nwarr) if len(nwarr) > nwlimit: nwarr = nwarr[:nwlimit] updated = { # "keyWord": kwords, "keyWord": ','.join(low_kw), "abstract": ','.join(real_summary), "newWords": nwarr, "wordFrequency": kwfreq, "phrases": pharr } doc_record.update(updated) # print(doc_record) fill_docinfo(doc_record['id'], doc_record, projid=project_id) file_table_write_success = True except Exception as e: analysis_log('文件表填入', info_log_obj) continue # 创建新标签并关联 try: if not real_kwords: analysis_log('无内容', info_log_obj) else: alltags = get_doctag(projid=project_id) if len(real_kwords) >= config.web_keywords_num: curtags = real_kwords[:config.web_keywords_num] else: curtags = real_kwords dtrels = [] for curtag in curtags: existq = False for t in alltags: if str(t['name']).upper() == str(curtag).upper(): dtrels.append((dt['fileId'], t['id'])) existq = True break if not existq: tagid = create_doctag(curtag, projid=project_id) dtrels.append((dt['fileId'], tagid)) # 写入关联文件和标签 create_doctagrel(dtrels, projid=project_id) except: analysis_log('标签', info_log_obj) continue # 更改task的阶段为已完成 if file_table_write_success: dt['step'] = 2 change_step(dt['id'], dt.to_dict(), projid=project_id) # 删除本地下载文件 pass analysis_log('完成', info_log_obj) # delete_doctagrel(13, projid=project_id) print('end proj') def is_real_kw(kw: str) -> bool: if len(kw) < 2: return False undercount = 0 for c in kw: if c == '_': undercount += 1 if undercount / len(kw) > 0.499: return False return True def is_real_summary(su) -> bool: if len(su) < 6: return False return True def find_needed_project_ids(): pids = np.loadtxt(r'.\ftp-pids.csv', dtype=int) return pids def exitq() -> bool: with open('stop.cms') as sf: sign = sf.readline() sign = int(sign) if sign > 0: return True return False if __name__ == '__main__': # projects = find_needed_project_ids() # loop_id = 0 # while True: # if exitq(): # print('exit') # print(datetime.now()) # break # loop_id += 1 # print('loop: ' + str(loop_id)) # for pid in projects: # time.sleep(0.1) # on_loop(project_id=pid) # print('loop: ' + str(loop_id) + ' / proj: ' + str(pid)) # time.sleep(2) projects = find_needed_project_ids() # with exclude have_file_projects = get_file_projs() loop_id = 0 while True: if exitq(): print('exit') print(datetime.now()) break loop_id += 1 print('loop: ' + str(loop_id)) for pid in projects: if pid not in have_file_projects: continue time.sleep(0.1) print('loop: ' + str(loop_id) + ' / proj: ' + str(pid)) on_loop(project_id=pid) time.sleep(2)
pengyang486868/PY-read-Document
analysislocal.py
analysislocal.py
py
8,022
python
en
code
0
github-code
6
[ { "api_name": "cloudservice.get_documenttask", "line_number": 23, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 24, "usage_type": "call" }, { "api_name": "config.n_for_project_in_loop", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "wordapi.transdoc.doc2docx", "line_number": 64, "usage_type": "call" }, { "api_name": "wordapi.transdoc", "line_number": 64, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "pptapi.transppt.ppt2pptx", "line_number": 67, "usage_type": "call" }, { "api_name": "pptapi.transppt", "line_number": 67, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path", "line_number": 68, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cloudservice.change_step", "line_number": 82, "usage_type": "call" }, { "api_name": "core.analysis", "line_number": 90, "usage_type": "call" }, { "api_name": "cloudservice.change_step", "line_number": 108, "usage_type": "call" }, { "api_name": "cloudservice.get_docs_byid", "line_number": 115, "usage_type": "call" }, { "api_name": "utils.remove_blank", "line_number": 127, "usage_type": "call" }, { "api_name": "cloudservice.fill_docinfo", "line_number": 141, "usage_type": "call" }, { "api_name": "cloudservice.get_doctag", "line_number": 152, "usage_type": "call" }, { "api_name": "config.web_keywords_num", "line_number": 153, "usage_type": "attribute" }, { "api_name": "config.web_keywords_num", "line_number": 154, "usage_type": "attribute" }, { "api_name": "cloudservice.create_doctag", "line_number": 166, "usage_type": "call" }, { "api_name": "cloudservice.create_doctagrel", "line_number": 169, "usage_type": "call" }, { "api_name": "cloudservice.change_step", "line_number": 177, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 207, "usage_type": "call" }, { "api_name": "cloudservice.get_file_projs", "line_number": 237, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 243, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 243, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 250, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 253, "usage_type": "call" } ]
16832434416
# 图形画布 from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib # 导入图表模块 import matplotlib.pyplot as plt # 导入绘图模块 class PlotCanvas(FigureCanvas): def __init__(self, parent=None, width=0, height=0, dpi=100): # 避免中文乱码 matplotlib.rcParams['font.sans-serif'] = ['SimHei'] #选择字体为SimHei matplotlib.rcParams['axes.unicode_minus'] = False #处理坐标抽轴线的负刻度值情况 # 创建图形 fig = plt.figure(figsize=(width, height), dpi=dpi) # 初始化图形画布 FigureCanvas.__init__(self, fig) self.setParent(parent) # 设置父类 # 折线图 def broken_line(self,number,train_list): ''' linewidth:折线的宽度 marker:折点的形状 markerfacecolor:折点实心颜色 markersize:折点大小 number:车票数量 train_list:车次 ''' #enumerate内建序列函数,返回(i,value)索引和值 day_x = ['第二天', '第三天','第四天','第五天', '第六天'] # X轴折线点 for index, n in enumerate(number): plt.plot(day_x, n, linewidth=1, marker='o', markerfacecolor='blue', markersize=8, label=train_list[index]) # 绘制折线marker:折点,label:图例 plt.grid(linestyle=":") plt.legend(bbox_to_anchor=(-0.03,1)) # 让图例生效,并设置图例显示位置 plt.title('卧铺车票数量走势图') # 标题名称 # bbox_to_anchor(num1, num2), bbox_to_anchor被赋予的二元组中,第一个数值用于控制legend的左右移动,值越大越向右边移动,第二个数值用于控制legend的上下移动,值越大,越向上移动。
yunmi02/MyProject
11/源程序/ticket _analysis/chart.py
chart.py
py
1,900
python
zh
code
1
github-code
6
[ { "api_name": "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "line_number": 7, "usage_type": "name" }, { "api_name": "matplotlib.rcParams", "line_number": 11, "usage_type": "attribute" }, { "api_name": "matplotlib.rcParams", "line_number": 12, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg.__init__", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" } ]
27834268107
#! /usr/bin/python3 import numpy as np from matplotlib import pyplot as plt # Simple Euler forward # Input variables Q = 10. b = [20.] S = 1E-2 D = 2E-2 h_b = 4 intermittency = 1 # Constants phi = 3.97 g = 9.805 rho_s = 2700. rho = 1000. tau_star_crit = 0.0495 # Derived variables a1 = 1. / h_b a2 = S**0.7 / ( 2.9 * (rho_s - rho)/rho * g**0.3 * D**0.9 ) kh = D**.1 / (2.9 * g**.3 * S**.3) # Starting values t = [0.] dt = 10000 nt = 120 # Equilibrium width? beq = 0.17 / ( g**.5 * ((rho_s - rho)/rho)**(5/3.) * 1.2**(5/3.) * tau_star_crit**(5/3.) ) * Q * S**(7/6.) / D**1.5 # Depth? h = kh * (Q/b[-1])**0.6 # Tau* tau_star_bed = h * S / ( ((rho_s - rho)/rho) * D) tau_star_bank = tau_star_bed / 1.2 # Compute through time for i in range(nt): bi = b[-1] tau_star_bank = a2 * (Q/bi)**(3/5.) / 1.2 if tau_star_bank > tau_star_crit: bi += a1 * ( tau_star_bank - tau_star_crit )**(3/2.) \ * dt * intermittency else: b = beq break b.append(bi) t.append(t[-1] + dt) t = np.array(t) b = np.array(b) plt.figure() plt.hlines(beq, t[0] / (24.*60.*60.), t[-1] / (24.*60.*60.), '.5', label='Equilibrium width', linewidth=2) plt.plot(t / (24.*60.*60.), b, 'k-', label='Transient width', linewidth=2) plt.xlabel('Flood duration [days]') plt.ylabel('Channel width [m]') plt.legend() plt.tight_layout()
MNiMORPH/OTTAR
examples/standalone-widening-intuitive/transport-limited-width.py
transport-limited-width.py
py
1,398
python
en
code
5
github-code
6
[ { "api_name": "numpy.array", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hlines", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" } ]
4817137896
import cv2 import os import numpy as np import imutils def open_picture(image): """We open picture""" img = cv2.imread(image) return img def show_picture(name, image, mode, destroy): cv2.imshow(name, image) cv2.waitKey(mode) if mode == 1: time.sleep(0.2) if destroy == "y": cv2.destroyAllWindows() def save_picture(name, image): path = "dataset/data_analysing/{}" cv2.imwrite(path.format(str(name)), image) def blanck_picture(img): """Create a black background picture same dimension of original picture""" blank_image = np.zeros((img.shape[0],img.shape[1],3), np.uint8) blank_image[0:img.shape[0], 0:img.shape[1]] = 0, 0, 0 return blank_image def find_object(img): """ We binarising picture for only have a form of our object. We search contours now """ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray,250,255,cv2.THRESH_BINARY_INV) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours def recup_object(contours, img): """ We search the max contours. Sometimes there are noise of litle area of the rest of the background of pixels (5x5) of background. We don't want it ! After we make a crop of that. """ maxi = 0 for cnts in contours: if cv2.contourArea(cnts) > maxi: maxi = cv2.contourArea(cnts) for cnts in contours: if cv2.contourArea(cnts) == maxi: x, y, w, h = cv2.boundingRect(cnts) crop = img[y:y+h, x:x+w] return crop def main_croping(picture): img = open_picture(picture) contours = find_object(img) crop = recup_object(contours, img) return crop
LeGrosLezard/qu-est-ce-qu-il-y-a-dans-une-salle-a-manger-
program/training/crop_object.py
crop_object.py
py
1,965
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 35, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 50, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 50, "usage_type": "attribute" }, { "api_name": "cv2.threshold", "line_number": 51, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY_INV", "line_number": 51, "usage_type": "attribute" }, { "api_name": "cv2.findContours", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.RETR_TREE", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 54, "usage_type": "attribute" }, { "api_name": "cv2.contourArea", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.contourArea", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.contourArea", "line_number": 77, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 79, "usage_type": "call" } ]
42602524063
#!/usr/bin/env python import numpy as np from subprocess import call from ase.io import read def argparse(): import argparse parser = argparse.ArgumentParser(description = """ This code will give you the (Total/Partial) Raidial Distribution Function. Return npy file. """) # Positional arguments parser.add_argument('chem1', type=str, help='chem1,2, are chemical symbols consisting bonds.') parser.add_argument('chem2', type=str, help='e.g. Ge Te | "a": any symbols, "x": do all partial.') parser.add_argument('alist_file', type=str, help='ASE readable atoms list file name.') # Optional arguments parser.add_argument('-n', '--image_slice', type=str, default=':', help='Image slice following python convention. default=":" (e.g.) -n :1000:10') parser.add_argument('-r', '--rcut', type = float, default=8.5, help='Maximum radius for RDF. Default: 8.5') parser.add_argument('-b', '--nBin', type=int, default=500, help='Number of bins. Default: 500') parser.add_argument('-g', '--gsmear', type=float, default=0., help='Width(simga, STD) of Gaussian smearing in Angstrom unit. Zero means no smearing. [default: 0]') parser.add_argument('-e', '--rectify_cut', type=float, default=None, help='All of drastic kink higher than this will be omitted. [Default: no rectify]') parser.add_argument('-m', '--multiply', type=float, default=1., help='Multiply this value to RDF (re-scale). [default: 1.]') parser.add_argument('-s', '--dont_save', dest='save_bool', action='store_false', help='If provided, npy will not be saved. Default: Save array') parser.add_argument('-o', '--dont_load', dest='load_bool', action='store_false', help='If provided, npy will not be loaded. Default: Load if possible') parser.add_argument('-t', '--dont_share_y', action='store_true', help='Subplots will not share y-axes if provided.') parser.add_argument('-j', '--x_lower', type=float, default=0, help='Lower bound for RDF x-axis [Default: 0]') parser.add_argument('-u', '--rdf_upper', type=float, default=None, help='Upper bound for RDF plot [Default: automatic]') parser.add_argument('-l', '--rdf_lower', type=float, default=0, help='Lower bound for RDF plot [Default: 0]') parser.add_argument('-p', '--s_upper', type=float, default=None, help='Upper bound for S(Q) plot [Default: automatic]') parser.add_argument('-q', '--s_lower', type=float, default=0, help='Lower bound for S(Q) plot [Default: 0]') parser.add_argument('-x', '--xtick_list', type=float, nargs='+', default=None, help='Specify x ticks of RDF. [Default: automatic]') parser.add_argument('-y', '--ytick_list', type=float, nargs='+', default=None, help='Specify y ticks of RDF. [Default: automatic]') parser.add_argument('-v', '--s_xtick_list', type=float, nargs='+', default=None, help='Specify x ticks of S(Q). [Default: automatic]') parser.add_argument('-w', '--s_ytick_list', type=float, nargs='+', default=None, help='Specify y ticks of S(Q). [Default: automatic]') return parser.parse_args() def get_RDF( alist, rcut, nBin=500, symbol_tuple=None, log=False, ): from asap3.analysis.rdf import RadialDistributionFunction as RDF RDFobj = RDF( atoms=alist[0], rMax=rcut, nBins=nBin, ) for i in range(1,len(alist)): RDFobj.atoms = alist[i] RDFobj.update() if log and i % 1000 == 999: print('\t Updating '+str(i+1)+" th image's RDF") ## Total RDF if symbol_tuple == ('a', 'a'): rdf = RDFobj.get_rdf() ## Partial RDF else: # Get normalize constant (unique, counts) = np.unique(alist[0].get_chemical_symbols(), return_counts=True) norm_const = counts[list(unique).index(symbol_tuple[1])] / np.sum(counts, dtype=np.float) # from chemical_symbol_number_inverter import invert_chem_sym_num spec_inds = invert_chem_sym_num(symbol_tuple) # rdf = RDFobj.get_rdf(elements=tuple(spec_inds)) / norm_const x = np.arange(nBin) / float(nBin) * rcut ## Return curve return np.transpose(np.concatenate(([x], [rdf]))) def get_s_factor( r, RDF, rho, ): """ inf sin(kr) S(k) = 1 + 4 \pi \rho dr (sum) r^2 {g(r)-1} --------- r=0 kr where \rho: Number density g(r): RDF """ dr = r[1] - r[0] k = np.fft.fftfreq(len(r)) / dr kr_matrix = k.reshape(-1,1) *r.reshape(-1,1).T S = 1. +4*np.pi *rho *dr *np.sum( np.reshape(r**2 *(RDF-1), (1,-1)) *np.sinc(kr_matrix/np.pi), axis=1, ) # print(np.reshape(r**2 *(RDF-1), (1,-1)) *np.sinc(kr_matrix/np.pi)) # print(np.sum(np.reshape(r**2 *(RDF-1), (1,-1)) *np.sinc(kr_matrix/np.pi), axis=1)) realpart = k >= 0. return k[realpart], S[realpart] def get_curve( alist, image_slice, alist_file, chem1, chem2, nBin = 500, rcut = 8.5, load_bool = True, save_bool = True, rectify_cut = None, gsmear_std = 0., ): # Slice process from ss_util import str_slice_to_list slice_list = str_slice_to_list(image_slice) # out file out_fname = 'rdf-saved/{}_slice-{}-{}-{}_sym-{}-{}_nBin-{}_rcut-{}_.npy'.format( alist_file, *slice_list, chem1, chem2, nBin, rcut) out_fname2 = 'rdf-saved/{}_slice-{}-{}-{}_sym-{}-{}_nBin-{}_rcut-{}_.npy'.format( alist_file, *slice_list, chem2, chem1, nBin, rcut) ## Main dr = rcut /nBin try: assert load_bool == True curve = np.load(out_fname) except: try: assert load_bool == True curve = np.load(out_fname2) except: do_calc = True if load_bool: print('Failed to load saved npy file. Calculation will be carried out') print(' Failed to load npy file "{}"'.format(out_fname)) print(' or equivalent data "{}"'.format(out_fname2)) else: print('File "{}" has been loaded.'.format(out_fname2)) do_calc = False if do_calc: curve = get_RDF(alist, rcut, nBin, (chem1, chem2), log=True) if save_bool: from ss_util import pick_folder_from_path as pffp folder = pffp(out_fname) call('mkdir -p {}'.format(folder), shell=True) np.save(out_fname, curve) print('=================================================================================================='.center(120)) print('RDF saved! ----------> {}'.format(out_fname).center(120)) print('=================================================================================================='.center(120)) else: print('File "{}" has been loaded.'.format(out_fname)) # @ Rectify curve if rectify_cut: from ss_util import rectify_curve curve = rectify_curve(curve, rectify_cut) if not gsmear_std == 0: print(' Gaussian smearing...') # from gaussian_smear import gsmear # agr= gsmear(angd,agr,gsmear_std) from scipy.ndimage.filters import gaussian_filter1d curve[:,1] = gaussian_filter1d(curve[:,1], gsmear_std /dr) # Debug option print('Integration of RDF.={}'.format(np.trapz(curve[:,1], curve[:,0]))) return curve if __name__ == '__main__': ## Intro import datetime now = datetime.datetime.now() time = now.strftime('%Y-%m-%d %H:%M:%S') print('') print('>>>>> Code by Young Jae Choi @ POSTECH <<<<<'.center(120)) print(('Code runtime : '+time).center(120)) print('') print('=================================================================================================='.center(120)) print('This code will give you the (Total/Partial) Raidial Distribution Function'.center(120)) print('=================================================================================================='.center(120)) print('') args = argparse() ## Read input params # params chem1 = args.chem1 chem2 = args.chem2 rcut = args.rcut nBin = args.nBin gsmear_std = args.gsmear rectify_cut = args.rectify_cut # den_list = [] ## Read inputs alist = read(args.alist_file, args.image_slice) if not isinstance(alist, list): alist = [alist] den_list = [] for atoms in alist: den_list.append(len(atoms) / atoms.get_volume()) num_den = np.mean(den_list) # In case symbol is 'x' chem_list = np.unique(alist[0].get_chemical_symbols()).tolist() if chem1 == 'x': chem1_list = chem_list[:] else: chem1_list = [chem1] if chem2 == 'x': chem2_list = chem_list[:] else: chem2_list = [chem2] # Make symbol_sets symbol_sets = [] if len(chem1_list) == 1 or len(chem2_list) == 1: for s1 in chem1_list: for s2 in chem2_list: symbol_sets.append([s1, s2]) else: for i in range(len(chem_list)): for j in range(i,len(chem_list)): symbol_sets.append([chem_list[i], chem_list[j]]) # Main curve_list = [] for symb_set in symbol_sets: cv = get_curve( alist, args.image_slice, args.alist_file, symb_set[0], symb_set[1], nBin, rcut, args.load_bool, args.save_bool, rectify_cut, gsmear_std, ) cv[:,1] *= args.multiply, curve_list.append(cv) # @ Get structure factor k_list = [] S_list = [] for curve in curve_list: k, S = get_s_factor(curve[:,0], curve[:,1], num_den) k_list.append(k) S_list.append(S) # @ Plot title = '{} slice-{} symb-{},{} nBin-{} rcut-{}'.format( args.alist_file, args.image_slice, chem1, chem2, nBin, rcut) import matplotlib.pyplot as plt font = {'family':'sans-serif', 'sans-serif':'Arial'} plt.rc('font', **font) if args.dont_share_y: fig, axs = plt.subplots(len(curve_list), sharex=True) else: fig, axs = plt.subplots(len(curve_list), sharex=True, sharey=True) if not isinstance(axs, np.ndarray): axs = [axs] # Plot RDF symbol_set_plot = [] for i in range(len(symbol_sets)): symbol_set_plot.append([]) for j in range(len(symbol_sets[i])): sym = symbol_sets[i][j] if sym == 'X': symbol_set_plot[i].append('V') else: symbol_set_plot[i].append(sym) if args.rdf_upper is not None: rdf_upper = args.rdf_upper else: rdf_upper = np.max(np.array(curve_list)[:,:,1]) * 1.10 for i in range(len(curve_list)): # axs[i].plot(curve_list[i][:,0], curve_list[i][:,1], c='k', lw=2) # if (symbol_set_plot[i][0], symbol_set_plot[i][1]) == ('a', 'a'): axs[i].set_ylabel(r'$g_{\rm tot} \it (r)$', fontsize='x-large') else: axs[i].set_ylabel(r'$g\rm _{{{}}} \it (r)$'.format(symbol_set_plot[i][0]+symbol_set_plot[i][1]), fontsize='x-large') # if args.xtick_list is not None: axs[i].set_xticks(args.xtick_list) else: intvl = int(rcut // 10 + 1) axs[i].set_xticks(range(0, int(rcut)+1, intvl)) # if args.ytick_list is not None: axs[i].set_yticks(args.ytick_list) else: intvl = int(rdf_upper // 4 + 1) axs[i].set_yticks(range(0, int(rdf_upper)+1, intvl)) # axs[i].tick_params(axis="both",direction="in", labelsize='x-large', labelbottom=False) axs[i].set_xlim(args.x_lower, rcut) axs[i].set_ylim(args.rdf_lower, rdf_upper) axs[i].axhline(1., linestyle='dashed', linewidth=1, c='k') axs[i].grid(alpha=0.5) axs[-1].tick_params(axis="both",direction="in", labelsize='x-large', labelbottom=True) axs[-1].set_xlabel(r'Distance $\rm (\AA)$', fontsize='x-large') axs[0].set_title(title, pad=10) bottom = (1.-len(axs)*0.1) /2. plt.subplots_adjust(left=0.25, bottom=bottom, right=0.75, top=1-bottom, wspace=0.20, hspace=0.20) # plt.subplots_adjust(left=0.30, bottom=0.40, right=0.70, top=1-bottom, wspace=0.20, hspace=0.20) # Plot S(Q) if args.s_upper is not None: s_upper = args.s_upper else: s_upper = np.max(np.array(S_list)) * 1.10 if args.dont_share_y: fig, axs = plt.subplots(len(curve_list), sharex=True) else: fig, axs = plt.subplots(len(curve_list), sharex=True, sharey=True) if not isinstance(axs, np.ndarray): axs = [axs] for i in range(len(curve_list)): # axs[i].plot(k_list[i], S_list[i], c='k', lw=2) # if (symbol_set_plot[i][0], symbol_set_plot[i][0]) == ('a', 'a'): axs[i].set_ylabel(r'$S_{\rm tot} (Q)$', fontsize='x-large') else: axs[i].set_ylabel(r'$S\rm _{{{}}} (Q)$'.format(symbol_set_plot[i][0]+symbol_set_plot[i][1]), fontsize='x-large') # if args.s_xtick_list is not None: axs[i].set_xticks(args.s_xtick_list) else: intvl = int(np.max(k_list[i]) // 10 + 1) axs[i].set_xticks(range(0, int(np.max(k_list[i]))+1, intvl)) # if args.s_ytick_list is not None: axs[i].set_yticks(args.s_ytick_list) else: intvl = int(s_upper // 4 + 1) axs[i].set_yticks(range(0, int(s_upper)+1, intvl)) # axs[i].tick_params(axis="both",direction="in", labelsize='x-large', labelbottom=False) axs[i].set_xlim(0., np.max(k_list[i])) axs[i].set_ylim(args.s_lower, s_upper) axs[i].axhline(1., linestyle='dashed', linewidth=1, c='k') axs[i].grid(alpha=0.5) axs[-1].tick_params(axis="both",direction="in", labelsize='x-large', labelbottom=True) axs[-1].set_xlabel(r'$\rm Q\ (\AA^{-1})$', fontsize='x-large') axs[0].set_title(title, pad=10) bottom = (1.-len(axs)*0.1) /2. plt.subplots_adjust(left=0.25, bottom=bottom, right=0.75, top=1-bottom, wspace=0.20, hspace=0.20) # plt.subplots_adjust(left=0.30, bottom=0.40, right=0.70, top=1-bottom, wspace=0.20, hspace=0.20) plt.show()
hitergelei/tools
ase_rdf.py
ase_rdf.py
py
14,474
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 8, "usage_type": "call" }, { "api_name": "asap3.analysis.rdf.RadialDistributionFunction", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 63, "usage_type": "attribute" }, { "api_name": "chemical_symbol_number_inverter.invert_chem_sym_num", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.fft.fftfreq", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.fft", "line_number": 86, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 88, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 89, "usage_type": "call" }, { "api_name": "asap3.analysis.rdf.RadialDistributionFunction", "line_number": 89, "usage_type": "name" }, { "api_name": "numpy.sinc", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 89, "usage_type": "attribute" }, { "api_name": "ss_util.str_slice_to_list", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 127, "usage_type": "call" }, { "api_name": "ss_util.pick_folder_from_path", "line_number": 141, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 143, "usage_type": "call" }, { "api_name": "ss_util.rectify_curve", "line_number": 153, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters.gaussian_filter1d", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.trapz", "line_number": 162, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 169, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 169, "usage_type": "attribute" }, { "api_name": "ase.io.read", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 200, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 203, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rc", "line_number": 256, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 256, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 258, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 258, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 260, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 260, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 261, "usage_type": "attribute" }, { "api_name": "numpy.max", "line_number": 278, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 278, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 309, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 309, "usage_type": "name" }, { "api_name": "numpy.max", "line_number": 316, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 316, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 318, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 318, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 320, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 320, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 321, "usage_type": "attribute" }, { "api_name": "numpy.max", "line_number": 335, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 336, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 345, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 353, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 353, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 355, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 355, "usage_type": "name" } ]
31014617376
import numpy as np import os import matplotlib.pyplot as plt import sys import NeuralTrainerCustoms as ntc import AdaMod as am import keras from keras import backend as K from keras.models import Sequential, Model from keras.layers import Input, Layer, Dense, Activation, Embedding, LSTM, Bidirectional, Lambda, concatenate from keras.layers.wrappers import TimeDistributed import keras.losses # import tensorflow as tf from keras_contrib.layers import CRF from keras_contrib.losses import crf_loss from keras_contrib.metrics import crf_accuracy from keras.utils.generic_utils import get_custom_objects losses = ntc.Losses() class NeuralModel: embedding_size = 300 hidden_size = 100 def __init__(self, maxlen, num_tags, word_index, embeddings, save_weights=False): self.maxlen = maxlen self.vocab_size = len(word_index)+1 self.num_tags = num_tags self.word_index = word_index self.embeddings = embeddings self.model = None self.tags = ['']*num_tags self.arg_classes = ['']*num_tags self.transition_matrix = None self.save_weights = save_weights self.read_tag_mapping() self.set_transition_matrix() num_measures = 1 + 3*(num_tags - 2) def read_tag_mapping(self): f = open('tag_mapping.txt', 'r', encoding='utf-8') lines = f.readlines() tags = {} for mapping in lines: if(mapping == ''): continue map = mapping.split('\t') tags[int(map[1][0])-1] = map[0] for i in range(0, self.num_tags): self.tags[i] = tags[i] if tags[i] == '(O)': self.arg_classes[i] = '|' elif tags[i] == '(P)': self.arg_classes[i] = 'premise' elif tags[i] == '(C)': self.arg_classes[i] = 'claim' elif tags[i] == '(I)': self.arg_classes[i] = 'inside' def set_transition_matrix(self): transition_matrix = np.array([[1]*self.num_tags]*self.num_tags) # matrix is initialized to 1 # this function sets some entries to -1 for i in range(0, self.num_tags): if self.tags[i] == '(O)': for j in range(0, self.num_tags): if self.tags[j] == '(P)': # impossible transition to (O) transition_matrix[i][j] = -1 elif self.tags[j] == '(C)': # impossible transition to (O) transition_matrix[i][j] = -1 elif self.tags[i] == '(P)': for j in range(0, self.num_tags): if self.tags[j] == '(P)': # impossible transition to (P) transition_matrix[i][j] = -1 elif self.tags[j] == '(C)': # impossible transition to (P) transition_matrix[i][j] = -1 elif self.tags[i] == '(C)': for j in range(0, self.num_tags): if self.tags[j] == '(P)': # impossible transition to (C) transition_matrix[i][j] = -1 elif self.tags[j] == '(C)': # impossible transition to (C) transition_matrix[i][j] = -1 elif self.tags[i] == '(I)': for j in range(0, self.num_tags): if self.tags[j] == '(O)': # impossible transition to (I) transition_matrix[i][j] = -1 print(transition_matrix) #debug self.transition_matrix = transition_matrix # def switch_loss_wrapper(self, crf_layer): # # current_epoch = self.monitor.current_epoch # def switch_loss(y_true, y_pred): # if not K.is_tensor(y_pred): # y_pred = K.constant(y_pred) # y_true = K.cast(y_true, y_pred.dtype) # pure_mae = K.mean(K.abs(y_pred - y_true), axis=-1) # y_true_aux = K.squeeze(y_true, axis=-1) # zero = K.constant(0) # simple_loss = K.switch(K.equal(y_true_aux, zero), K.zeros_like(pure_mae), pure_mae) # # print('ypred shape', K.int_shape(y_pred)) # I_prob = K.squeeze(crf_layer[:,:,:1], axis=-1) # ypred_size = K.int_shape(y_pred)[1] # tiled = K.tile(y_pred, [1, 2, 1]) #repeat array like [1, 2, 3] -> [1, 2, 3, 1, 2, 3] # rolled_y_pred = tiled[:,ypred_size-1:-1] #crop repeated array (from len-1) -> [3, 1, 2] <- (to -1) # dist_dif = K.abs((rolled_y_pred - y_pred) - K.ones_like(y_pred)) # dist_err_mae = K.switch(K.greater(I_prob, K.constant(0.5)), K.mean(K.abs(y_pred - y_true + dist_dif), axis=-1), K.mean(K.abs(y_pred - y_true), axis=-1)) # dist_err_loss = K.switch(K.equal(y_true_aux, zero), K.zeros_like(dist_err_mae), dist_err_mae) # simple_loss = keras.losses.mean_squared_error(y_true, y_pred) # dist_err_loss = keras.losses.mean_squared_logarithmic_error(y_true, y_pred) # return K.switch(K.less(current_epoch, K.constant(100)), dist_err_loss, simple_loss) # return switch_loss def createEmbeddings(self, word_index, embeddings): embeddings_index = {} path = 'Embeddings/' + embeddings + '.txt' f = open(path, "r", encoding='utf8') for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() embedding_matrix = np.zeros((self.vocab_size, self.embedding_size)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector return embedding_matrix def create_biLSTM(self, input): embeddingMatrix = self.createEmbeddings(self.word_index, self.embeddings) emb = Embedding(self.vocab_size, self.embedding_size, weights=[embeddingMatrix], input_length=self.maxlen, trainable=False, mask_zero=True, name='embedding')(input) biLSTM_tensor = TimeDistributed(Dense(self.hidden_size, activation='relu'), name='time_distributed_1')(emb) biLSTM_tensor = Bidirectional(LSTM(self.hidden_size, return_sequences=True, activation='pentanh', recurrent_activation='pentanh'), name='biLSTM_1')(biLSTM_tensor) biLSTM_tensor = Bidirectional(LSTM(self.hidden_size, return_sequences=True, activation='pentanh', recurrent_activation='pentanh'), name='biLSTM_2')(biLSTM_tensor) return biLSTM_tensor def create_CRF(self, biLSTM_tensor, learn, test): crf_tensor = TimeDistributed(Dense(20, activation='relu'), name='time_distributed_2')(biLSTM_tensor) chain_matrix = keras.initializers.Constant(self.transition_matrix) if learn == 'marginal': #loaded model or std CRF-dist model crf = CRF(self.num_tags, sparse_target=False, learn_mode=learn, test_mode=test, chain_initializer=chain_matrix, name='crf_layer') # crf = CRF(self.num_tags, sparse_target=False, learn_mode=learn, test_mode=test, name='crf_layer') else: #baseline model crf = CRF(self.num_tags, sparse_target=False, learn_mode=learn, test_mode=test, name='crf_layer') crf_tensor = crf(crf_tensor) return crf_tensor def create_dist_layer(self, biLSTM_tensor, crf_tensor): dist_tensor = TimeDistributed(Dense(1, activation='relu'), name='distance_layer')(biLSTM_tensor) soft_argmax = ntc.SoftArgMax() soft_argmax.create_soft_argmax_layer() # zero_switch = ntc.SoftArgMax() # zero_switch.create_zero_switch_layer() concat = concatenate([crf_tensor, dist_tensor], axis=-1, name='concatenate') ### LAYER OPTIONS: ##### soft_argmax.layer ##### zero_switch.layer output = TimeDistributed(soft_argmax.layer, name='softargmax')(concat) return (output, soft_argmax) def create_model(self, fold_name=''): input = Input(shape=(self.maxlen,), name='input') biLSTM_tensor = self.create_biLSTM(input) crf_tensor = self.create_CRF(biLSTM_tensor, 'marginal', 'marginal') temp_model = Model(input=input, output=crf_tensor) if self.save_weights: print('MODEL LOADED FROM FILE') base_crf_tensor = self.create_CRF(biLSTM_tensor, 'marginal', 'marginal') baseline_model = Model(input=input, output=base_crf_tensor) print(baseline_model.summary()) #debug baseline_model.compile(optimizer='adam', loss=crf_loss, metrics=[crf_accuracy]) # baseline_model.run_eagerly = True #debug baseline_model.load_weights('./tmp/'+fold_name+'/baseline_checkpoint.h5', by_name=True) base_layers = baseline_model.layers model_layers = temp_model.layers for i in range(0, len(base_layers)): print(model_layers[i].name, base_layers[i].name) assert model_layers[i].name == base_layers[i].name layer_name = base_layers[i].name temp_model.get_layer(layer_name).set_weights(base_layers[i].get_weights()) temp_model.get_layer(layer_name).trainable = False (dist_tensor, soft_argmax) = self.create_dist_layer(temp_model.get_layer('biLSTM_2').output, temp_model.output) self.model = Model(input=input, output=[temp_model.output,dist_tensor]) print(self.model.summary()) #debug #loss_weights=[1.0, 0.10], ####LOSSES: ######'mean_absolute_error' ######'loss_func' ######'consecutive_dist_loss' ####OPTIMIZERS: ######'adam' ######am.AdaMod() ?? # get_custom_objects().update({'consecutive_dist_loss': losses.consecutive_dist_loss_wrapper(crf_tensor)}) # get_custom_objects().update({'switch_loss': losses.switch_loss_wrapper(crf_tensor)}) # # keras.losses.consecutive_dist_loss = losses.consecutive_dist_loss_wrapper(crf_tensor) self.model.compile(optimizer='adam', loss=[crf_loss,losses.loss_func], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'}) # self.model.compile(optimizer='adam', loss=[crf_loss,losses.consecutive_dist_loss_wrapper(temp_model.output)], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'}) # self.model.compile(optimizer='adam', loss=[crf_loss,keras.losses.mean_squared_error], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'}) # self.model.run_eagerly = True #debug def create_baseline_model(self): input = Input(shape=(self.maxlen,)) biLSTM_tensor = self.create_biLSTM(input) crf_tensor = self.create_CRF(biLSTM_tensor, 'marginal', 'marginal') self.model = Model(input=input, output=crf_tensor) print(self.model.summary()) #debug self.model.compile(optimizer='adam', loss=crf_loss, metrics=[crf_accuracy]) # self.model.run_eagerly = True #debug def recompile_model_new_loss(self, loss, fold_name=''): input = Input(shape=(self.maxlen,), name='input') biLSTM_tensor = self.create_biLSTM(input) crf_tensor = self.create_CRF(biLSTM_tensor, 'marginal', 'marginal') (dist_tensor, soft_argmax) = self.create_dist_layer(biLSTM_tensor, crf_tensor) temp_model = Model(input=input, output=crf_tensor) if self.save_weights: print('MODEL LOADED FROM FILE') base_crf_tensor = self.create_CRF(biLSTM_tensor, 'marginal', 'marginal') baseline_model = Model(input=input, output=base_crf_tensor) baseline_model.compile(optimizer='adam', loss=crf_loss, metrics=[crf_accuracy]) # baseline_model.run_eagerly = True #debug baseline_model.load_weights('./tmp/'+fold_name+'/baseline_checkpoint.h5', by_name=True) base_layers = baseline_model.layers model_layers = temp_model.layers for i in range(0, len(base_layers)): print(model_layers[i].name, base_layers[i].name) assert model_layers[i].name == base_layers[i].name layer_name = base_layers[i].name temp_model.get_layer(layer_name).set_weights(base_layers[i].get_weights()) temp_model.get_layer(layer_name).trainable = False (dist_tensor, soft_argmax) = self.create_dist_layer(temp_model.get_layer('biLSTM_2').output, temp_model.output) new_model = Model(input=input, output=[temp_model.output,dist_tensor]) new_layers = new_model.layers model_layers = self.model.layers total_layers = len(model_layers) for i in range(total_layers-3, total_layers): assert model_layers[i].name == new_layers[i].name layer_name = model_layers[i].name new_model.get_layer(layer_name).set_weights(model_layers[i].get_weights()) print(new_model.summary()) #debug self.model = new_model if loss == 'consecutive_dist_loss': self.model.compile(optimizer='adam', loss=[crf_loss,losses.consecutive_dist_loss_wrapper(temp_model.output)], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'}) # new_model.compile(optimizer='adam', loss=[crf_loss,keras.losses.mean_squared_logarithmic_error], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'}) else: self.model.compile(optimizer='adam', loss=[crf_loss,losses.loss_func], loss_weights=[1.0, 0.10], metrics={'crf_layer':[crf_accuracy], 'softargmax':'mae'})
fspring/NeuralArgMining
NeuralModel.py
NeuralModel.py
py
13,844
python
en
code
0
github-code
6
[ { "api_name": "NeuralTrainerCustoms.Losses", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 147, "usage_type": "call" }, { "api_name": "keras.layers.Embedding", "line_number": 156, "usage_type": "call" }, { "api_name": "keras.layers.wrappers.TimeDistributed", "line_number": 159, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 159, "usage_type": "call" }, { "api_name": "keras.layers.Bidirectional", "line_number": 160, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 160, "usage_type": "call" }, { "api_name": "keras.layers.Bidirectional", "line_number": 161, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 161, "usage_type": "call" }, { "api_name": "keras.layers.wrappers.TimeDistributed", "line_number": 166, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 166, "usage_type": "call" }, { "api_name": "keras.initializers.Constant", "line_number": 168, "usage_type": "call" }, { "api_name": "keras.initializers", "line_number": 168, "usage_type": "attribute" }, { "api_name": "keras_contrib.layers.CRF", "line_number": 171, "usage_type": "call" }, { "api_name": "keras_contrib.layers.CRF", "line_number": 176, "usage_type": "call" }, { "api_name": "keras.layers.wrappers.TimeDistributed", "line_number": 183, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 183, "usage_type": "call" }, { "api_name": "NeuralTrainerCustoms.SoftArgMax", "line_number": 185, "usage_type": "call" }, { "api_name": "keras.layers.concatenate", "line_number": 191, "usage_type": "call" }, { "api_name": "keras.layers.wrappers.TimeDistributed", "line_number": 196, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 201, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 206, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 212, "usage_type": "call" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 214, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 214, "usage_type": "name" }, { "api_name": "keras.models.Model", "line_number": 231, "usage_type": "call" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 245, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 245, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 252, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 257, "usage_type": "call" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 260, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 260, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 265, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 272, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 278, "usage_type": "call" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 279, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 279, "usage_type": "name" }, { "api_name": "keras.models.Model", "line_number": 296, "usage_type": "call" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 309, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 309, "usage_type": "name" }, { "api_name": "keras_contrib.losses.crf_loss", "line_number": 312, "usage_type": "name" }, { "api_name": "keras_contrib.metrics.crf_accuracy", "line_number": 312, "usage_type": "name" } ]
71578033787
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py To create the package for pypi. 1. Change the version in __init__.py, setup.py as well as docs/source/conf.py. 2. Commit these changes with the message: "Release: VERSION" 3. Add a tag in git to mark the release: git tag VERSION -m 'Adds tag VERSION for pypi' Push the tag to git: git push --tags origin master 4. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). For the wheel, run: "python setup.py bdist_wheel" in the top level directory. (this will build a wheel for the python version you use to build it). For the sources, run: "python setup.py sdist" You should now have a /dist directory with both .whl and .tar.gz source versions. 5. Check that everything looks correct by uploading package to test server: twine upload dist/* -r pypitest (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r pypitest\ --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers 6. Upload the final version to actual pypi: twine upload dist/* -r pypi 7. Copy the release notes from RELEASE.md to the tag in github. """ import os from setuptools import setup # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname: str) -> str: """ Read and return README as str. """ return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="asta", version="0.0.7", author="Brendan Whitaker", description=("Shape annotations for homogeneous numpy arrays and pytorch/tensorflow tensors."), license="GPLv3", packages=["asta"], long_description=read("README"), long_description_content_type="text/plain", install_requires=["toml", "numpy", "sympy", "oxentiel"], package_data={"asta": ["defaults/astarc"]}, include_package_data=True, python_requires=">=3.7.0", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "Topic :: Utilities", "License :: OSI Approved :: BSD License", "Topic :: Scientific/Engineering", "Programming Language :: Python :: 3.7", ], )
langfield/asta
setup.py
setup.py
py
2,854
python
en
code
14
github-code
6
[ { "api_name": "os.path.join", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 61, "usage_type": "call" }, { "api_name": "setuptools.setup", "line_number": 64, "usage_type": "call" } ]
9582892535
import os from pathlib import Path def get_last_n_files_in_dir(dir_path, n, recurse=False, *args, **kwargs): method_str = "rglob" if recurse else "glob" p = Path(dir_path) fluid_glob = getattr(p, method_str) l = [(i, i.stat().st_mtime) for i in fluid_glob("*.*")] l.sort(key=lambda x: x[0], **kwargs) l_ = l[:n] return [i[0] for i in l_] def delete_last_n_files_in_dir(dir_path, *args, **kwargs): fpaths = get_last_n_files_in_dir(dir_path, *args, **kwargs) for p in fpaths: os.remove(p)
royassis/djangoRestML
myapi/helpers.py
helpers.py
py
536
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 7, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 20, "usage_type": "call" } ]
72532713149
from pathlib import Path from .code_description import CodeDescriptionParams, CodeDescriptionXLSXDocument from .dataset_description import ( DatasetDescriptionParams, DatasetDescriptionXLSXDocument, ) from .manifest import ManifestXLSXDocument def write_xlsx_files( base_path: Path, dataset_description_params: DatasetDescriptionParams, code_description_params: CodeDescriptionParams, ) -> None: dataset_description_xlsx = DatasetDescriptionXLSXDocument() dataset_description_xlsx.save_document( base_path=base_path, template_data=dataset_description_params ) code_description_xlsx = CodeDescriptionXLSXDocument() code_description_xlsx.save_document( base_path=base_path, template_data=code_description_params ) manifest_xlsx = ManifestXLSXDocument() manifest_xlsx.save_document(base_path=base_path, template_data=None)
ITISFoundation/osparc-simcore
services/web/server/src/simcore_service_webserver/exporter/_formatter/xlsx/writer.py
writer.py
py
892
python
en
code
35
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 12, "usage_type": "name" }, { "api_name": "dataset_description.DatasetDescriptionParams", "line_number": 13, "usage_type": "name" }, { "api_name": "code_description.CodeDescriptionParams", "line_number": 14, "usage_type": "name" }, { "api_name": "dataset_description.DatasetDescriptionXLSXDocument", "line_number": 16, "usage_type": "call" }, { "api_name": "code_description.CodeDescriptionXLSXDocument", "line_number": 21, "usage_type": "call" }, { "api_name": "manifest.ManifestXLSXDocument", "line_number": 25, "usage_type": "call" } ]
26255854051
from MainA1 import Mainfun from unigramIndex import Linkedlist import string from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import pickle class QueryProcess: def __init__(self): '''Attribute for each Query processing results, Totdocmatch for total documentmatch, comparison for total comparison done in a merging algo, and fnamelist for list of all matched file''' self.Totdocmatch = 0 self.comparison = 0 self.fnamelist = [] '''function for preprocessing of a query including converting into lower letter, remove punctuation, tokenization, remove stopping words and Lemmatization''' def preprocess(self, query): #normalisation result1 = query.lower() result2 = result1.translate(str.maketrans("","", string.punctuation)) #tokenization tokens = word_tokenize(result2) #removing the stopping words stop_words = set(stopwords.words('english')) result3 = [w for w in tokens if w not in stop_words] #Lemmatization lem = WordNetLemmatizer() result4query = [] for word in result3: lmword = lem.lemmatize(word) result4query.append(lmword) return(result4query) def MergingAlgo(self, postlink, operatorseq, maxDocID, filename): length = len(operatorseq) #retrieve first posting list post1 = postlink[0] #Process the query from Left to Right, Iterate the query starting from query operator list for i in range(length): #REtrieve the operator and second postinglist operator = operatorseq[i] post2 = postlink[i+1] if (operator == 'AND'): p1 = post1.headptr p2 = post2.headptr #Calling the specific intersection Merge Algo post1 = self.MergeAND(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'OR'): p1 = post1.headptr p2 = post2.headptr #Calling the specific Union Merge Algo post1 = self.MergeOR(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'AND NOT'): tp2 = post2.headptr #Computing the complement of second posting list resulttp = self.ListCompliment(tp2, maxDocID) p1 = post1.headptr p2 = resulttp.headptr #Calling the specific intersection Merge Algo post1 = self.MergeAND(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 elif(operator == 'OR NOT'): tp2 = post2.headptr #Computing the complement of second posting list resulttp = self.ListCompliment(tp2, maxDocID) p1 = post1.headptr p2 = resulttp.headptr #Calling the specific Union Merge Algo post1 = self.MergeOR(p1, p2) '''checking the resultant postinglist will be null or not, if it is null then this post1 will move further to the next index in query list''' if(post1.freq == 0): post1 = postlink[i+1] i=i+1 '''After completing the merging Algo, the final resultant posting list will be post1 retreiving the Document name acc. to the docID present in the final posting list''' self.Totdocmatch = post1.freq pt = post1.headptr while(pt is not None): self.fnamelist.append(filename[pt.IDval]) pt = pt.next def MergeAND(self, ptr1, ptr2): answer = Linkedlist() #ptr1 and ptr2 , iterate the both pointer till the end of the linkedlist, both linkedlist are already in sorted form while(ptr1 is not None and ptr2 is not None): if(ptr1.IDval == ptr2.IDval): #here when both pointer node value matches, then add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #move both pointer by one node ptr1 = ptr1.next ptr2 = ptr2.next #here counting the comarison, in this algo this is the first comparison so just add 1 to the comparison variable self.comparison = self.comparison + 1 elif(ptr1.IDval < ptr2.IDval): #here the ptr1 is behind the ptr2, so just move ptr1 by one node ptr1 = ptr1.next #here counting the comarison, in this algo this is the second comparison so just add 2 to the comparison variable self.comparison = self.comparison + 2 else: #here in the else, the ptr2 is behind the ptr1, so just move ptr2 by one node ptr2 = ptr2.next #here counting the comarison, in this algo 2 comparison are already done in above, so just add 2 to the comparison variable self.comparison = self.comparison + 2 return answer def MergeOR(self, ptr1, ptr2): answer = Linkedlist() #ptr1 and ptr2 , iterate the both pointer till the end of the linkedlist, both linkedlist are already in sorted form while(ptr1 is not None and ptr2 is not None): if(ptr1.IDval < ptr2.IDval): #add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #here the ptr1 is behind the ptr2, so just move ptr1 by one node ptr1 = ptr1.next #here counting the comarison, in this algo this is the first comparison so just add 1 to the comparison variable self.comparison = self.comparison + 1 elif(ptr1.IDval > ptr2.IDval): #add the nodevalue to the answer linked list answer.addnode(ptr2.IDval) #the ptr2 is behind the ptr1, so just move ptr2 by one node ptr2 = ptr2.next #here counting the comarison, in this algo this is the second comparison so just add 2 to the comparison variable self.comparison = self.comparison + 2 else: #here in the else, when both pointer node value matches, then add the nodevalue to the answer linked list answer.addnode(ptr1.IDval) #move both pointer by one node ptr1 = ptr1.next ptr2 = ptr2.next #here counting the comarison, in this algo 2 comparison are already done in above, so just add 2 to the comparison variable self.comparison = self.comparison + 2 #if ptr2 becomes none but ptr1 is not none, so just add the remaining node value of ptr1 to the answer linkedlsit while(ptr1 is not None): answer.addnode(ptr1.IDval) ptr1 = ptr1.next #if ptr1 becomes none but ptr2 is not none, so just add the remaining node value of ptr2 to the answer linkedlsit while(ptr2 is not None): answer.addnode(ptr2.IDval) ptr2 = ptr2.next return answer #Function for finding the complement of a linkedlist def ListCompliment(self, ptr, maxDocID): i = 0 answer = Linkedlist() #here maxDOCID is representing the number that the max docID that allocate to the document(0-maxdocID) while(i < maxDocID and ptr is not None): #if the docID present in the list, so just move to the next node if(i == ptr.IDval): i = i+1 ptr = ptr.next #if the docID not present in the list, so just add to the answer linkedlist elif(i < ptr.IDval): answer.addnode(i) i=i+1 #adding the remaining docID to the answer linkedlist while(i < maxDocID): answer.addnode(i) i=i+1 return(answer) if __name__ == '__main__': #Deserailization of MainA1 class object, in which unigram data structure has stored with open('store.dat' , 'rb') as fr: tempomainobj = pickle.load(fr) #retriving the unigram data structure, list of all doc, max doc ID dictlist = tempomainobj.postinglist filename = tempomainobj.docname maxDocID = tempomainobj.docID #Input the no. of query from the User n = int(input("Enter the number of Query: ")) for i in range(n): #input the query and query operator query = input("Input Query: ") queryoperatorseq = input("Input Query operator: ").split(', ') #Preprocessing of Query Queryobj = QueryProcess() prepresult = Queryobj.preprocess(query) #Retriving the postinglist of each tokenize word of a query in postlink[] list postlink = [] for qword in prepresult: LinkL = dictlist.get(qword) postlink.append(LinkL) #Process the Query and query operator by merging Algoruthm Queryobj.MergingAlgo(postlink, queryoperatorseq, maxDocID, filename) #print the desirable result of a query print('Number of document matched: ', end=' ') print(Queryobj.Totdocmatch) print('Number of comparison Done in Merging Algorithm: ', end=' ') print(Queryobj.comparison) print('List of matched document name:') print(Queryobj.fnamelist)
prashant18360/Information-Retrieval-Assignment-1
Qprocessing.py
Qprocessing.py
py
10,931
python
en
code
0
github-code
6
[ { "api_name": "string.punctuation", "line_number": 26, "usage_type": "attribute" }, { "api_name": "nltk.tokenize.word_tokenize", "line_number": 29, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 32, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 32, "usage_type": "name" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 36, "usage_type": "call" }, { "api_name": "unigramIndex.Linkedlist", "line_number": 130, "usage_type": "call" }, { "api_name": "unigramIndex.Linkedlist", "line_number": 165, "usage_type": "call" }, { "api_name": "unigramIndex.Linkedlist", "line_number": 217, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 242, "usage_type": "call" } ]
31546382074
from functools import reduce def main(): # one liner functions culc_sum = lambda number_list: sum(number_list) check_palindrome = lambda number: str(number) == str(number)[::-1] factorial = lambda number: reduce((lambda a, b: a * b), range(1, number + 1)) # check functions print(culc_sum([1, 2, 3, 4, 5, 10])) print(check_palindrome(12121)) print(factorial(6)) if __name__ == '__main__': main()
lidorelias3/Lidor_Elias_Answers
python/One Liners/OneLiners.py
OneLiners.py
py
437
python
en
code
0
github-code
6
[ { "api_name": "functools.reduce", "line_number": 8, "usage_type": "call" } ]
16705170564
from django.shortcuts import render, redirect from .models import Todo from .forms import TodoForm def tasks_list(request): todos = Todo.objects.all() context = {'todos': todos} return render(request, 'tasks_list.html', context) def add_todo(request): if request.method == 'POST': form = TodoForm(request.POST) if form.is_valid(): form.save() return redirect('add_todo') else: form = TodoForm() todos = Todo.objects.all() context = { 'form': form, 'todos': todos, } return render(request, 'add_todo.html', context)
Chikitonik/DI_Bootcamp
Week_12_PY/Day2/exercises_xp/todo_project/todo_list/todos/views.py
views.py
py
622
python
en
code
0
github-code
6
[ { "api_name": "models.Todo.objects.all", "line_number": 7, "usage_type": "call" }, { "api_name": "models.Todo.objects", "line_number": 7, "usage_type": "attribute" }, { "api_name": "models.Todo", "line_number": 7, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 9, "usage_type": "call" }, { "api_name": "forms.TodoForm", "line_number": 14, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 17, "usage_type": "call" }, { "api_name": "forms.TodoForm", "line_number": 19, "usage_type": "call" }, { "api_name": "models.Todo.objects.all", "line_number": 21, "usage_type": "call" }, { "api_name": "models.Todo.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "models.Todo", "line_number": 21, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" } ]
44999838
import networkx as nx import numpy as np # from GPy.kern import Kern from functools import reduce from itertools import product import copy # class Ours(Kern): # def __init__(self, input_dim, G, scale=1., variance = 1, # active_dims=None, name='ours', K_matrix = None, kern = "linear", # pava = True): # Kern.__init__(self, input_dim, active_dims, name) # self.scale = scale # self.N_objs = input_dim # self.G = G # self.K_matrix = K_matrix # self.kern = kern # self.variance = variance # self.pava = pava # def kernel_f(self, sigma, sigma_prime): # if self.kern == "exp": # return np.exp(-self.scale*np.linalg.norm(self.phi_(sigma) - self.phi_(sigma_prime))) # elif self.kern == "linear": # return np.dot(self.phi_(sigma), self.phi_(sigma_prime)) # elif self.kern == "linear*exp": # phi_sigma = self.phi_(sigma) # phi_sigma_prime = self.phi_(sigma_prime) # l = np.dot(phi_sigma, phi_sigma_prime) # e = np.exp(-self.scale*np.linalg.norm(phi_sigma - phi_sigma_prime)) # return l*e # def _index(self, X, X2): # if X2 is None: i1 = i2 = X.astype('int').flat # else: i1, i2 = X.astype('int').flat, X2.astype('int').flat # return self.K_matrix[i1,:][:,i2] # def K(self, X, X2=None): return self.variance * self._index(X, X2) # def Kdiag(self, X): return self.variance * self._index(X,None).diagonal() # def update_gradients_full(self, dL_dK, X, X2=None): pass # def update_gradients_diag(self, dL_dKdiag, X): raise NotImplementedError # def gradients_X(self, dL_dK, X, X2=None): raise NotImplementedError # def gradients_X_diag(self, dL_dKdiag, X): raise NotImplementedError # def calc_v(self, groups): # v = np.zeros(len(groups)) # B_i, B_i_ = set(), set() # k = 0 # while len(B_i) < self.N_objs: # B_i = B_i.union(groups[len(groups) - 1 - k]) # # B_i = B_i.union(groups[k]) # v[k] = - (self.F(B_i) - self.F(B_i_)) / (len(B_i)-len(B_i_)) # B_i_ = B_i.copy() # k += 1 # return v # def F(self, A_): return nx.cut_size(self.G, A_, None, 'weight') # def phi_(self, A): # assert type(A[0]) == set # A_is = A.copy() # if not self.pava: # v = self.calc_v(A_is) # else: # v = [] # k = len(A_is) # while len(v) < len(A_is): # B_i = reduce(lambda a,b: a.union(b), A_is[k-1:]) # B_i_ = reduce(lambda a,b: a.union(b), A_is[k:]) if k < len(A_is) else set([]) # v_ = - (self.F(B_i) - self.F(B_i_)) / (len(B_i)-len(B_i_)) # if len(v) != 0 and v_ < v[0]: # A_is[k-1:k+1] = [A_is[k-1].union(A_is[k])] # v.pop(0) # continue # v.insert(0,v_) # k -= 1 # w = np.zeros(self.N_objs) # # Reordering # for i in range(len(A_is)): w[list(A_is[i])] = v[i] # # Not Reordering # # for a,i in zip(A_is,range(len(v))): # # w[list(a)] = v[i] # return - w # def F(A_, G): return nx.cut_size(G, A_, None, 'weight') def F(A_, G): return nx.cut_size(G, A_, None) def phi_(A, N_objs, G): assert type(A[0]) == set A_is = A.copy() v = [] k = len(A_is) while len(v) < len(A_is): B_i = reduce(lambda a, b: a.union(b), A_is[k - 1 :]) B_i_ = reduce(lambda a, b: a.union(b), A_is[k:]) if k < len(A_is) else set([]) v_ = -(F(B_i, G) - F(B_i_, G)) / (len(B_i) - len(B_i_)) if len(v) != 0 and v_ < v[0]: A_is[k - 1 : k + 1] = [A_is[k - 1].union(A_is[k])] v.pop(0) continue v.insert(0, v_) k -= 1 w = np.zeros(N_objs) for i in range(len(A_is)): w[list(A_is[i])] = v[i] return -w def get_phi(X_ours, G, N_objs, train_ind, test_ind): X_phi = np.zeros((len(X_ours), N_objs)) for i, x in enumerate(X_ours): f = phi_(x, N_objs, G) X_phi[i] = f / np.linalg.norm(f) return X_phi[train_ind.ravel()], X_phi[test_ind.ravel()] def phi_interleaving(A_inter, G, N_objs, heuristic=False, samples=2000): absents = list(set(list(range(N_objs))) - set(list(A_inter))) inter = [set()] for o in A_inter: inter.append(set(([o]))) inter.append(set()) possible_positions = list(range(0, len(inter), 2)) X_inter_phi = np.zeros(N_objs) if not heuristic or samples >= len(possible_positions) ** len(absents): coherent_set = product(possible_positions, repeat=len(absents)) div = len(possible_positions) ** len(absents) else: rng = np.random.RandomState(N_objs) coherent_set = rng.choice(possible_positions, (samples, len(absents))) div = samples for i, abs_pos in enumerate(coherent_set): cur = copy.deepcopy(inter) for pos, o in zip(abs_pos, absents): cur[pos].add(o) while set() in cur: cur.remove(set()) f = phi_(cur, N_objs, G) X_inter_phi += f # / np.linalg.norm(f) # weighting more the certain partitions # w = 1 / N_objs # w1 = 2 * w # w2 = round((1-w1*len(A_inter)),2) / len(absents) # for i in range(N_objs): # X_inter_phi[i] = X_inter_phi[i] * (w1 if i in A_inter else w2) return X_inter_phi / div # %% import matplotlib.pyplot as plt import seaborn as sns sns.set_theme() from sushi_dataset import sushi_dataset as load_dataset my_dpi = 96 N_objs = 10 X, X_ours, y, y_train, y_test, train_ind, test_ind, G =\ load_dataset(0, "full", N=2500) plt.figure(figsize=(500/my_dpi/1.6, 500/my_dpi/1.6), dpi=my_dpi) # plt.figure() # plt.subplot(1,2,1) # A_1 = [set([x]) for x in X[2][:5]]+ [set([x for x in X[2][5:]])] # A_2 = [set([x]) for x in X[2][:4:-1]]+[set([x for x in X[2][:5]])] A_1 = X_ours[2] A_2 = X_ours[2][::-1] print(A_1) print(A_2) w_1 = phi_(A_1, N_objs, G) w_2 = phi_(A_2, N_objs, G) # plt.scatter(range(1,1+N_objs), w_1, label = r"$\phi(A_1)$") # plt.scatter(range(1,1+N_objs), w_2, label = r"$\phi(A_2)$") # plt.xticks(range(1,1+N_objs)) # plt.yticks(np.arange(-5,7,2)) plt.vlines(0,-0.5,10.5, "black", "--", alpha = 0.7) plt.scatter(w_1, range(1,1+N_objs), label = r"$\phi(A)$", color = "gold") plt.scatter(w_2, range(1,1+N_objs), label = r"$\phi(A')$", color = "red") # plt.yticks(range(1,1+N_objs), df_sushi.iloc[:,0].tolist()) # plt.yticks(range(1,1+N_objs), [str(set([x])) for x in range(1,1+N_objs)]) plt.yticks(range(1,1+N_objs), range(1,1+N_objs)) # plt.xticks(np.arange(-5,7,2)) # plt.ylabel("W") plt.xlabel(r"$\phi_d$", fontsize = 18) plt.ylabel(r"$d$ ", fontsize = 18).set_rotation(0) # plt.xlim(-6,8) plt.ylim(0.5,10.5) plt.legend(fontsize = 12, borderpad=0.01, borderaxespad=0, labelspacing=0.4,handletextpad=-0.3, scatterpoints=1, loc = "upper right") plt.tight_layout() plt.savefig("cached_results/interpretation21.pdf", bbox_inches="tight") plt.show() # plt.subplot(1,2,2) plt.figure(figsize=(500/my_dpi/1.6, 500/my_dpi/1.6), dpi=my_dpi) plt.vlines(0,-0.5,9.5, "black", "--", alpha = 0.7) plt.scatter(w_1*w_2, range(1,1+N_objs), color = "orange")#, label = r"$\phi(A_1)_i\cdot\phi(A_2)_i \forall i=1\ldots n$") plt.yticks([]) plt.xlabel(r"$\phi(A)_d\phi(A')_d$", fontsize = 18) # plt.xlim(-6,12) plt.ylim(-0.5,9.5) plt.tight_layout() plt.savefig("cached_results/interpretation22.pdf",bbox_inches="tight") # plt.legend() plt.show() # # %% # str(w_1.round(2).tolist())[1:-1].replace(",", "\\") # str(w_2.round(2).tolist())[1:-1].replace(",", "\\") # str((w_1 * w_2).round(2).tolist())[1:-1].replace(",", "\\") # # %% from copy import deepcopy A_is = deepcopy(X_ours[2]) v = [] k = len(A_is) while len(v) < len(A_is): B_i = reduce(lambda a,b: a.union(b), A_is[k-1:]) B_i_ = reduce(lambda a,b: a.union(b), A_is[k:]) if k < len(A_is) else set([]) v_ = - (F(B_i, G) - F(B_i_, G)) / (len(B_i)-len(B_i_)) if len(v) != 0 and v_ < v[0]: A_is[k-1:k+1] = [A_is[k-1].union(A_is[k])] v.pop(0) continue v.insert(0,v_) k -= 1 my_dpi = 96 plt.figure(figsize=(450/my_dpi/1.6, 250/my_dpi/1.6), dpi=my_dpi) for i in range(len(A_is)): A_is[i] = set([x+1 for x in A_is[i]]) plt.hlines(0,-0.5,9.5, "black", "--", alpha = 0.7) plt.scatter(range(len(v)) , -np.array(v), 10) a = str(A_is).replace("[","").replace("]","").split("{")[1:] a = [("\n" if i % 2 == 0 else "")+"{"+x.replace(",","") for i,x in enumerate(a) ] plt.xticks(range(len(v)), a, fontsize = 7) plt.yticks(np.arange(-4,6,2), fontsize = 7) plt.yticks(fontsize = 7) plt.xlim(-0.5,6.5) plt.ylabel("values", fontsize = 8) plt.tight_layout() plt.savefig("cached_results/interpretation1.pdf") plt.show()
MichelangeloConserva/CutFunctionKernel
interleaving/our_kernel.py
our_kernel.py
py
8,950
python
en
code
2
github-code
6
[ { "api_name": "networkx.cut_size", "line_number": 102, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 113, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 125, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 136, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 148, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.random.RandomState", "line_number": 154, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 154, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 160, "usage_type": "call" }, { "api_name": "seaborn.set_theme", "line_number": 182, "usage_type": "call" }, { "api_name": "sushi_dataset.sushi_dataset", "line_number": 190, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 192, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 192, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.vlines", "line_number": 213, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 213, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 214, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 214, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 215, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 215, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 218, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 218, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 221, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 221, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 224, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 224, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 225, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 226, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 226, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 227, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 228, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 228, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 231, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 231, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.vlines", "line_number": 233, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 233, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 234, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 234, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 235, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 235, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 236, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 236, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 238, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 238, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 240, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 240, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 241, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 241, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 244, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 244, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 258, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 263, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 264, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 276, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 276, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hlines", "line_number": 280, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 280, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 281, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 281, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 281, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 284, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 284, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 285, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 285, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 285, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 286, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 286, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 287, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 287, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 288, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 288, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 291, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 291, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 292, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 293, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 293, "usage_type": "name" } ]
3901695878
from parse import parse import pygame from pygame.locals import * from cube import Cube from const import * from pygame.math import Vector3 from utils import * from drawable_chunk import DrawableChunk from hero import Hero from level import * class Level(pygame.sprite.Sprite): def __init__(self): super().__init__() self.cubes = [] self.drawables = [] self.events = [] self.image_tileset = pygame.image.load("res/tileset.png").convert_alpha() self.size = Vector3() def add_drawable(self, drawable): self.drawables.append(drawable) def read(self, filename): tileset_width = self.image_tileset.get_width() // TILE_SIZE with open(filename) as f: lines = [line.rstrip() for line in f] for line in lines: r = parse("{:d}:{:d}:{:d} {:d}:{:d}:{:d}", line) c0 = to_2d_coords( r[3], tileset_width, ) c1 = to_2d_coords( r[4], tileset_width, ) c2 = to_2d_coords( r[5], tileset_width, ) coords = [c0, c1, c2] cube = Cube(coords) cube.position = Vector3( r[0] * Cube.SIZE, r[1] * Cube.SIZE, r[2] * Cube.SIZE ) cube.indexes = Vector3(r[0], r[1], r[2]) cube.zindex = sum(cube.indexes) self.cubes.append(cube) self.update_size() def update_size(self): for cube in self.cubes: if self.size.x < cube.indexes.x + 1: self.size.x = cube.indexes.x + 1 if self.size.y < cube.indexes.y + 1: self.size.y = cube.indexes.y + 1 if self.size.z < cube.indexes.z + 1: self.size.z = cube.indexes.z + 1 def get_drawable(self, x, y, z): for i in range(len(self.drawables)): drawable = self.drawables[i] if drawable.position.x // 16 == x and drawable.position.y // 16 == y and drawable.position.z // 16 == z: return drawable def get_cube(self, x, y, z): for i in range(len(self.cubes)): cube = self.cubes[i] if cube.indexes.x == x and cube.indexes.y == y and cube.indexes.z == z: return cube def get_cube_index(self, x, y, z): for i in range(len(self.cubes)): cube = self.cubes[i] if cube.indexes.x == x and cube.indexes.y == y and cube.indexes.z == z: return i def draw(self, camera, surface_display): drawables_with_chunks = [] # Work In Progress: split drawables into chunks when needed for drawable in self.drawables: if isinstance(drawable, Hero): # assum that only hero needs chunk display # draw in a temporary surface surface_tmp = pygame.Surface( (drawable.drawable_width, drawable.drawable_height), pygame.SRCALPHA ) drawable.draw(0, 0, surface_tmp) # assum 2 chunks nb_chunk = 2 # drawable_height // Cube.SIZE for number in range(nb_chunk): drawable_chunk = DrawableChunk( drawable.position.x, drawable.position.y, drawable.position.z + 16, # Shift ) # TODO fix drawing when hero jump drawable_chunk.zindex = ( sum( list( map( (lambda x: x / Cube.SIZE), drawable_chunk.position, ) ) ) + number - 1 ) drawable_chunk.number = nb_chunk - number - 1 drawable_chunk.surface = surface_tmp drawable_chunk.size = Vector2( drawable.drawable_width, drawable.drawable_height ) drawables_with_chunks.append(drawable_chunk) else: drawables_with_chunks.append(drawable) sorted_drawables = sorted( self.cubes + drawables_with_chunks, key=lambda drawable: drawable.zindex ) for drawable in sorted_drawables: drawable_iso = cartesian_to_isometric( (drawable.position.x, drawable.position.y) ) x = camera.x + drawable_iso.x - Cube.SIZE y = camera.y + drawable_iso.y - drawable.position.z if isinstance(drawable, Cube): drawable.draw(x, y, surface_display, self.image_tileset) else: drawable.draw(x, y, surface_display) def clear(self): self.drawables.clear() self.cubes.clear() self.events.clear()
odrevet/isometric-map
level.py
level.py
py
5,207
python
en
code
0
github-code
6
[ { "api_name": "pygame.sprite", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.math.Vector3", "line_number": 22, "usage_type": "call" }, { "api_name": "parse.parse", "line_number": 32, "usage_type": "call" }, { "api_name": "cube.Cube", "line_number": 51, "usage_type": "call" }, { "api_name": "cube.position", "line_number": 52, "usage_type": "attribute" }, { "api_name": "pygame.math.Vector3", "line_number": 52, "usage_type": "call" }, { "api_name": "cube.Cube.SIZE", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cube.Cube", "line_number": 53, "usage_type": "name" }, { "api_name": "cube.indexes", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pygame.math.Vector3", "line_number": 56, "usage_type": "call" }, { "api_name": "cube.zindex", "line_number": 57, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 57, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 64, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 65, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 67, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 68, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 70, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 71, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 82, "usage_type": "attribute" }, { "api_name": "cube.indexes", "line_number": 88, "usage_type": "attribute" }, { "api_name": "hero.Hero", "line_number": 96, "usage_type": "argument" }, { "api_name": "pygame.Surface", "line_number": 99, "usage_type": "call" }, { "api_name": "pygame.SRCALPHA", "line_number": 100, "usage_type": "attribute" }, { "api_name": "drawable_chunk.DrawableChunk", "line_number": 107, "usage_type": "call" }, { "api_name": "drawable_chunk.zindex", "line_number": 114, "usage_type": "attribute" }, { "api_name": "cube.Cube.SIZE", "line_number": 118, "usage_type": "attribute" }, { "api_name": "cube.Cube", "line_number": 118, "usage_type": "name" }, { "api_name": "drawable_chunk.position", "line_number": 119, "usage_type": "attribute" }, { "api_name": "drawable_chunk.number", "line_number": 127, "usage_type": "attribute" }, { "api_name": "drawable_chunk.surface", "line_number": 128, "usage_type": "attribute" }, { "api_name": "drawable_chunk.size", "line_number": 129, "usage_type": "attribute" }, { "api_name": "cube.Cube.SIZE", "line_number": 144, "usage_type": "attribute" }, { "api_name": "cube.Cube", "line_number": 144, "usage_type": "name" }, { "api_name": "cube.Cube", "line_number": 147, "usage_type": "argument" } ]
14177896732
"""Reads parameters of received http request""" import http.client as http_client import logging from typing import Optional import azure.functions as func from .custom_error import DownloadBlobError log = logging.getLogger(name="log." + __name__) def main(req: func.HttpRequest, params_list: Optional[list] = None) -> dict[str, str]: """ Reads parameters of received http request. Args: req (azure.functions.HttpRequest): HTTP request sent to Azure Function's endpoint. params_list (Optional[list], optional): list of parameters expected in the request.\ Defaults to ["invoice_id", "single_file_download", "file_format"]. Raises: DownloadBlobError: if any of the expected parameters is not found in the request. Returns: dict[str, str]: dictionary of parameters and their values. """ log.debug(msg=f"Reading parameters of the request {req}.") if params_list is None: params_list = ["invoice_id", "file_format"] params = {} for param in params_list: try: params[param] = req.params[param] except KeyError as exc: message = f"No {param} parameter in the request." raise DownloadBlobError( exception_type="KeyError", details=f"KeyError: {param}", message=message, status_code=http_client.BAD_REQUEST, ) from exc log.debug(msg=f"Parameters of the request {req} read successfully.") return params
wieczorekgrzegorz/ksef-krportal-communication
modules/download_blob/modules/read_params.py
read_params.py
py
1,531
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "azure.functions.HttpRequest", "line_number": 13, "usage_type": "attribute" }, { "api_name": "azure.functions", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 13, "usage_type": "name" }, { "api_name": "custom_error.DownloadBlobError", "line_number": 38, "usage_type": "call" }, { "api_name": "http.client.BAD_REQUEST", "line_number": 42, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 42, "usage_type": "name" } ]
33247661764
import sys from pathlib import Path import cv2 import imutils import numpy as np FILE = Path(__file__).resolve() ROOT = FILE.parents[1] if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) code_dir_path = ROOT.joinpath("Code") data_dir_path = ROOT.joinpath("Data") class BlurTool: def __init__(self): cfg_path = code_dir_path.joinpath("yolov7.cfg") weight_path = code_dir_path.joinpath("yolov7.weights") self.net = cv2.dnn.readNetFromDarknet(str(cfg_path), str(weight_path)) self.layers = [(self.net.getLayerNames()[i - 1]) for i in self.net.getUnconnectedOutLayers()] def _check_file(self, file_name): self.file_path = data_dir_path.joinpath(file_name) assert self.file_path.exists(), "File does not exist!" suffix = self.file_path.suffix if suffix in [".png", ".jpg"]: self.is_video = False elif suffix in [".mp4"]: self.is_video = True else: raise ValueError(f"No Support for the Format: {suffix}") def process(self, file_name="LP.png"): self._check_file(file_name) if not self.is_video: self.process_image() else: self.process_video() def process_image(self): frame = cv2.imread(str(self.file_path)) vehicles = self.detect_vehicle(frame) # for vehicle in vehicles: # xmin, xmax, ymin, ymax = vehicle # self.detect_license_plate(frame[ymin: ymax, xmin: xmax]) xmin, xmax, ymin, ymax = vehicles[1] self.detect_license_plate(frame[ymin: ymax, xmin: xmax]) # print(vehicles) def process_video(self): cap = cv2.VideoCapture() def detect_vehicle(self, frame): frame_height, frame_width = frame.shape[:2] vehicle_classes = [2, 3, 5, 7] vehicle_boxes, vehicle_scores, vehicles = [], [], [] vehicle_conf_thr, vehicle_nms_thr = 0.5, 0.2 # ?: size # preprocess -> set input -> forward blob = cv2.dnn.blobFromImage(frame, scalefactor=1 / 255, size=(320, 320), mean=[0, 0, 0], swapRB=True) self.net.setInput(blob) outputs = self.net.forward(self.layers) for output in outputs: for detection in output: # [x, y, w, h, conf, score1, score2, ..., score80] scores = detection[5:] class_id = np.argmax(scores) conf = scores[class_id] if (class_id in vehicle_classes) and (conf > vehicle_conf_thr): x, y = detection[0] * frame_width, detection[1] * frame_height w, h = detection[2] * frame_width, detection[3] * frame_height xmin, xmax = x - w / 2, x + w / 2 ymin, ymax = y - h / 2, y + h / 2 vehicle_boxes.append((xmin, xmax, ymin, ymax)) vehicle_scores.append(float(conf)) # postprocess: nms -> size filter vehicle_indices = cv2.dnn.NMSBoxes(vehicle_boxes, vehicle_scores, vehicle_conf_thr, vehicle_nms_thr) for index in vehicle_indices: xmin, xmax, ymin, ymax = map(int, vehicle_boxes[index]) if (xmax - xmin) * (ymax - ymin) >= frame_width * frame_height * 0.03: # [(xmin, xmax, ymin, ymax), ...] vehicles.append((xmin, xmax, ymin, ymax)) return vehicles def detect_license_plate(self, frame): license_plate = None # convert to grey scale -> reduce noise -> detect edges frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame_reduce_noise = cv2.bilateralFilter(frame_gray, d=13, sigmaColor=15, sigmaSpace=15) frame_edge = cv2.Canny(frame_reduce_noise, threshold1=30, threshold2=200) contours = imutils.grab_contours(cv2.findContours(frame_edge.copy(), mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE)) # check which one has a rectangle shape (4 sides) and closed figure for cnt in sorted(contours, key=cv2.contourArea, reverse=True)[:5]: peri = cv2.arcLength(curve=cnt, closed=True) approx = cv2.approxPolyDP(curve=cnt, epsilon=0.1 * peri, closed=True) if len(approx) == 4: x, y, w, h = cv2.boundingRect(approx) license_plate = (x, y, x + w, y + h) break return license_plate # # open -> threshold -> edge detection # frame_open = cv2.morphologyEx(frame_reduce_noise, op=cv2.MORPH_OPEN, kernel=np.ones((23, 23), np.uint8)) # frame_add_weight = cv2.addWeighted(src1=frame_reduce_noise, alpha=1, src2=frame_open, beta=-1, gamma=0) # _, frame_thresh = cv2.threshold(frame_add_weight, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU) # frame_edge = cv2.Canny(frame_thresh, threshold1=100, threshold2=200) # frame_edge = cv2.morphologyEx(frame_edge, op=cv2.MORPH_CLOSE, kernel=np.ones((10, 10), np.uint8)) # frame_edge = cv2.morphologyEx(frame_edge, cv2.MORPH_OPEN, kernel=np.ones((10, 10), np.uint8)) # contours = imutils.grab_contours(cv2.findContours(frame_edge.copy() , cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)) # for cnt in sorted(contours, key=cv2.contourArea, reverse=True)[:5]: # (x, y), (w, h), angle = cv2.minAreaRect(cnt) # cv2.imshow("test", frame_edge) # cv2.waitKey() # exit() # cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2) # cv2.imshow("test", frame) # cv2.waitKey() # cv2.drawContours(frame, [a], -1, (0, 255, 0), 3) # cv2.imshow("test", frame) # cv2.waitKey() blur_tool = BlurTool() blur_tool.process(file_name="LP.png") # LP.png frame.jpg """ # face detection prototxt_path = "Code/prototxt.txt" model_path = "Code/res10_300x300_ssd_iter_140000_fp16.caffemodel" model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) xmin, xmax, ymin, ymax = map(int, vehicle_boxes[index]) vehicles.append() cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 5) cv2.imshow("test", frame) cv2.waitKey() """
Beau-Yang/CapstoneProject
Code/blur_tool_version.py
blur_tool_version.py
py
6,194
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 8, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "cv2.dnn.readNetFromDarknet", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 22, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 47, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.dnn.blobFromImage", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 72, "usage_type": "attribute" }, { "api_name": "numpy.argmax", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.dnn.NMSBoxes", "line_number": 92, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 92, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 105, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 105, "usage_type": "attribute" }, { "api_name": "cv2.bilateralFilter", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.Canny", "line_number": 107, "usage_type": "call" }, { "api_name": "imutils.grab_contours", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.RETR_TREE", "line_number": 109, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 109, "usage_type": "attribute" }, { "api_name": "cv2.contourArea", "line_number": 111, "usage_type": "attribute" }, { "api_name": "cv2.arcLength", "line_number": 112, "usage_type": "call" }, { "api_name": "cv2.approxPolyDP", "line_number": 113, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 115, "usage_type": "call" } ]
18995573707
import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" from paddleocr import PaddleOCR,draw_ocr # Paddleocr supports Chinese, English, French, German, Korean and Japanese. # You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan` # to switch the language model in order. ocr = PaddleOCR(use_angle_cls=True, lang='ch') # need to run only once to download and load model into memory img_path = 'Im6.png' result = ocr.ocr(img_path, cls=True) #for line in result: # print(line) # Each line consists of a 4 * 2 list and a tuple, # containing coordinates of a bounding box and ocr result with confidence, respectively. # draw result from PIL import Image image = Image.open(img_path).convert('RGB') boxes = [line[0] for line in result] txts = [line[1][0] for line in result] scores = [line[1][1] for line in result] im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf') im_show = Image.fromarray(im_show) im_show.save('result.jpg')
tota1Noob/autoBookmarkGen4PDF
moduleTryouts/ocrTest.py
ocrTest.py
py
983
python
en
code
1
github-code
6
[ { "api_name": "os.environ", "line_number": 2, "usage_type": "attribute" }, { "api_name": "paddleocr.PaddleOCR", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 19, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 19, "usage_type": "name" }, { "api_name": "paddleocr.draw_ocr", "line_number": 23, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 24, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 24, "usage_type": "name" } ]
73955138107
from tkinter import * from PIL import Image, ImageDraw from src.Model import Model b1 = "up" xold, yold = None, None image1, drawimg = None, None model = Model() def create_lines(canv): canv.create_line(30, 0, 30, 140, smooth=TRUE, fill="red", width="1") canv.create_line(110, 0, 110, 140, smooth=TRUE, fill="red", width="1") canv.create_line(0, 30, 140, 30, smooth=TRUE, fill="red", width="1") canv.create_line(0, 110, 140, 110, smooth=TRUE, fill="red", width="1") def testCallback(canv): global image1, model #image1 = image1.resize((28,28)) image1.save("./valami.png") model.testImage(image1) def clearCallback(canv): global image1, drawimg canv.delete('all') create_lines(canv) drawimg.rectangle((0, 0, image1.size[0], image1.size[1]), fill=0) def main(): global image1, drawimg image1 = Image.new(mode="L", size=(28, 28)) drawimg = ImageDraw.Draw(image1) root = Tk() root.title("DRAW") root.geometry('200x150') drawing_area = Canvas(root) drawing_area.grid(row=0, column=0, rowspan=2) drawing_area.config(width=140, height=140) drawing_area.configure(background='black') create_lines(drawing_area) drawing_area.bind("<Motion>", motion) drawing_area.bind("<ButtonPress-1>", b1down) drawing_area.bind("<ButtonRelease-1>", b1up) B1 = Button(root, text="Test", command=lambda: testCallback(drawing_area)) B1.grid(row=0, column=1) B2 = Button(root, text="Clear", command=lambda: clearCallback(drawing_area)) B2.grid(row=1, column=1) root.mainloop() def b1down(event): global b1 b1 = "down" def b1up(event): global b1, xold, yold b1 = "up" xold = None yold = None def motion(event): global drawimg if b1 == "down": global xold, yold if xold is not None and yold is not None: event.widget.create_line(xold, yold, event.x, event.y, smooth=TRUE, fill="white", width="10") drawimg.line((xold / 5, yold / 5, event.x / 5, event.y / 5), fill=255, width=2) xold = event.x yold = event.y if __name__ == "__main__": model.gen_data() model.train() main()
Freyb/LegoAI-homework
src/Gui.py
Gui.py
py
2,185
python
en
code
0
github-code
6
[ { "api_name": "src.Model.Model", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.Image.new", "line_number": 32, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 32, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 33, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 33, "usage_type": "name" } ]
33043283636
import base64 import os from django.conf import settings from django.contrib import messages from django.contrib.auth import login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.core.files.base import ContentFile from django.http import JsonResponse from django.shortcuts import get_object_or_404, redirect, render from django.views.decorators.http import require_http_methods from .forms import DinoImageForm, DinosaurForm from .models import DinoImage, Dinosaur, Favorite def register(request): if request.method == "POST": form = UserCreationForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get("username") messages.success(request, f"Account created for {username}!") return redirect("login") else: form = UserCreationForm() return render(request, "registration/register.html", {"form": form}) def user_login(request): if request.method == "POST": form = AuthenticationForm(data=request.POST) if form.is_valid(): user = form.get_user() login(request, user) messages.success(request, f"You are now logged in as {user.username}") return redirect("home") else: form = AuthenticationForm() return render(request, "registration/login.html", {"form": form}) def user_logout(request): logout(request) messages.success(request, "You have been logged out") return redirect("home") @login_required def home(request): dinos = Dinosaur.objects.all() return render(request, "home.html", {"dinos": dinos}) @login_required # def dinosaur_detail(request, pk): # dino = get_object_or_404(Dinosaur, pk=pk) # images = DinoImage.objects.filter(dinosaur=dino) # image_urls = [] # for image in images: # image_urls.append( # f"data:{image.content_type};base64,{base64.b64encode(image.image.read()).decode()}" # ) # is_favorited = Favorite.objects.filter(user=request.user, dinosaur=dino).exists() # return render( # request, # "dinosaur_detail.html", # {"dino": dino, "image_urls": image_urls, "is_favorited": is_favorited}, # ) def dinosaur_detail(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) images = DinoImage.objects.filter(dinosaur=dino) image_urls = [] for image in images: image_path = os.path.join(settings.MEDIA_ROOT, str(image.image)) with open(image_path, "rb") as f: image_data = f.read() image_base64 = base64.b64encode(image_data).decode() image_url = f"data:image/jpeg;base64,{image_base64}" image_urls.append(image_url) return render( request, "dinosaur_detail.html", {"dino": dino, "images": images, "image_urls": image_urls}, ) @login_required def add_dinosaur(request): if request.method == "POST": form = DinosaurForm(request.POST, request.FILES) if form.is_valid(): dino = form.save() messages.success(request, f"{dino.name} has been added to the database!") return redirect("dinosaur_detail", pk=dino.pk) else: form = DinosaurForm() return render(request, "add_dinosaur.html", {"form": form}) @login_required def search_results(request): query = request.GET.get("q") print( query ) # Add this line to check that the search query is being retrieved correctly if query: dinosaurs = Dinosaur.objects.filter(name__icontains=query) else: dinosaurs = Dinosaur.objects.all() return render(request, "search_results.html", {"dinosaurs": dinosaurs}) @login_required def edit_dinosaur(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) if request.method == "POST": form = DinosaurForm(request.POST, request.FILES, instance=dino) if form.is_valid(): form.save() return redirect("dinosaur_detail", pk=dino.pk) else: form = DinosaurForm(instance=dino) return render(request, "dinosaur_edit.html", {"form": form, "dino": dino}) @login_required def update_dinosaur(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) if request.method == "POST": form = DinosaurForm(request.POST, request.FILES, instance=dino) if form.is_valid(): dino = form.save() messages.success(request, f"{dino.name} has been updated!") return redirect("dinosaur_detail", pk=dino.pk) else: form = DinosaurForm(instance=dino) return render(request, "add_dinosaur.html", {"form": form}) @login_required def delete_dinosaur(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) if request.method == "POST": dino.delete() messages.success(request, f"{dino.name} has been deleted from the database!") return redirect("home") return render(request, "delete_dinosaur.html", {"dino": dino}) @login_required @require_http_methods(["POST"]) def add_image(request, pk): dinosaur = get_object_or_404(Dinosaur, pk=pk) if request.method == "POST": form = DinoImageForm(request.POST, request.FILES) if form.is_valid(): image = form.save(commit=False) image.dinosaur = dinosaur image.save() return redirect("dinosaur_detail", pk=dinosaur.pk) else: form = DinoImageForm() return render(request, "add_image.html", {"form": form, "dinosaur": dinosaur}) @login_required @require_http_methods(["POST"]) def delete_image(request, pk): dino_image = get_object_or_404(DinoImage, pk=pk) dinosaur_pk = dino_image.dinosaur.pk dino_image.delete() return redirect("dinosaur_detail", pk=dinosaur_pk) @login_required @require_http_methods(["POST"]) def toggle_favorite(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) fav, created = Favorite.objects.get_or_create(user=request.user, dinosaur=dino) if not created: fav.delete() return JsonResponse({"success": True, "is_favorited": not created}) @login_required def add_favorite(request, pk): dino = get_object_or_404(Dinosaur, pk=pk) fav, created = Favorite.objects.get_or_create(user=request.user, dinosaur=dino) if created: messages.success(request, "Added to favorites.") else: messages.error(request, "This dinosaur is already in your favorites.") return redirect("dinosaur_detail", pk=dino.pk) @login_required def list_favorites(request): favorites = Favorite.objects.filter(user=request.user) dinos = [fav.dinosaur for fav in favorites] return render(request, "list_favorites.html", {"dinos": dinos})
Vleyked/django-template
dinosaur_app/dinosaurs/views.py
views.py
py
6,837
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.forms.UserCreationForm", "line_number": 20, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 24, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 24, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 25, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.UserCreationForm", "line_number": 27, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 33, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 36, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 37, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 37, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 38, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 40, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 41, "usage_type": "call" }, { "api_name": "django.contrib.auth.logout", "line_number": 45, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 46, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 46, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 47, "usage_type": "call" }, { "api_name": "models.Dinosaur.objects.all", "line_number": 52, "usage_type": "call" }, { "api_name": "models.Dinosaur.objects", "line_number": 52, "usage_type": "attribute" }, { "api_name": "models.Dinosaur", "line_number": 52, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 53, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 50, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 72, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 72, "usage_type": "argument" }, { "api_name": "models.DinoImage.objects.filter", "line_number": 73, "usage_type": "call" }, { "api_name": "models.DinoImage.objects", "line_number": 73, "usage_type": "attribute" }, { "api_name": "models.DinoImage", "line_number": 73, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 76, "usage_type": "call" }, { "api_name": "os.path", "line_number": 76, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 76, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 76, "usage_type": "name" }, { "api_name": "base64.b64encode", "line_number": 79, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 82, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 56, "usage_type": "name" }, { "api_name": "forms.DinosaurForm", "line_number": 92, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 95, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 95, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 96, "usage_type": "call" }, { "api_name": "forms.DinosaurForm", "line_number": 98, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 99, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 89, "usage_type": "name" }, { "api_name": "models.Dinosaur.objects.filter", "line_number": 109, "usage_type": "call" }, { "api_name": "models.Dinosaur.objects", "line_number": 109, "usage_type": "attribute" }, { "api_name": "models.Dinosaur", "line_number": 109, "usage_type": "name" }, { "api_name": "models.Dinosaur.objects.all", "line_number": 111, "usage_type": "call" }, { "api_name": "models.Dinosaur.objects", "line_number": 111, "usage_type": "attribute" }, { "api_name": "models.Dinosaur", "line_number": 111, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 112, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 102, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 117, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 117, "usage_type": "argument" }, { "api_name": "forms.DinosaurForm", "line_number": 119, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 122, "usage_type": "call" }, { "api_name": "forms.DinosaurForm", "line_number": 124, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 125, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 115, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 130, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 130, "usage_type": "argument" }, { "api_name": "forms.DinosaurForm", "line_number": 132, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 135, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 135, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 136, "usage_type": "call" }, { "api_name": "forms.DinosaurForm", "line_number": 138, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 139, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 128, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 144, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 144, "usage_type": "argument" }, { "api_name": "django.contrib.messages.success", "line_number": 147, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 147, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 148, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 149, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 142, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 155, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 155, "usage_type": "argument" }, { "api_name": "forms.DinoImageForm", "line_number": 157, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 162, "usage_type": "call" }, { "api_name": "forms.DinoImageForm", "line_number": 164, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 165, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 152, "usage_type": "name" }, { "api_name": "django.views.decorators.http.require_http_methods", "line_number": 153, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 171, "usage_type": "call" }, { "api_name": "models.DinoImage", "line_number": 171, "usage_type": "argument" }, { "api_name": "django.shortcuts.redirect", "line_number": 174, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 168, "usage_type": "name" }, { "api_name": "django.views.decorators.http.require_http_methods", "line_number": 169, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 180, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 180, "usage_type": "argument" }, { "api_name": "models.Favorite.objects.get_or_create", "line_number": 181, "usage_type": "call" }, { "api_name": "models.Favorite.objects", "line_number": 181, "usage_type": "attribute" }, { "api_name": "models.Favorite", "line_number": 181, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 184, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 177, "usage_type": "name" }, { "api_name": "django.views.decorators.http.require_http_methods", "line_number": 178, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 189, "usage_type": "call" }, { "api_name": "models.Dinosaur", "line_number": 189, "usage_type": "argument" }, { "api_name": "models.Favorite.objects.get_or_create", "line_number": 190, "usage_type": "call" }, { "api_name": "models.Favorite.objects", "line_number": 190, "usage_type": "attribute" }, { "api_name": "models.Favorite", "line_number": 190, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 192, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 192, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 194, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 194, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 195, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 187, "usage_type": "name" }, { "api_name": "models.Favorite.objects.filter", "line_number": 200, "usage_type": "call" }, { "api_name": "models.Favorite.objects", "line_number": 200, "usage_type": "attribute" }, { "api_name": "models.Favorite", "line_number": 200, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 202, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 198, "usage_type": "name" } ]
38714648302
from rest_framework import serializers from .models import Animal import serializer_company class AnimalSerializer(serializers.HyperlinkedModelSerializer): company = serializer_company.CompanySerializer() class Meta: model = Animal fields = [ 'id', 'name', 'type', 'sub_type', 'header_image', 'profile_image', 'tag_number', 'registration_number', 'dob', 'father', 'mother', 'attachment', 'company' ]
pohara9720/lma-python
lma/api/serializer_animal.py
serializer_animal.py
py
591
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.serializers.HyperlinkedModelSerializer", "line_number": 6, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 6, "usage_type": "name" }, { "api_name": "serializer_company.CompanySerializer", "line_number": 7, "usage_type": "call" }, { "api_name": "models.Animal", "line_number": 10, "usage_type": "name" } ]
31126427233
from gpiozero import DigitalInputDevice import time class EncoderCounter(object): def __init__(self,pin_number,side): self.side = side self.test_mode = False self.pulse_count = 0 self.device = DigitalInputDevice(pin=pin_number) self.device.pin.when_changed = self.count_pulses self.previous = None self.difs = [] def record_gap_between_high(self,_,state): if(state == 1): if self.previous==None: self.previous = time.time() else: next = time.time() dif = next-self.previous self.previous = next self.difs.append(dif) def count_pulses(self,_,state): self.pulse_count +=1 def reset(self): self.pulse_count=0 def set_mode(self,mode): if(mode=='normal'): self.test_mode = False self.device.pin.when_changed = self.count_ticks if(mode=='test'): self.test_mode = True self.device.pin.when_changed = self.record_gap_between_high def report_test(self,np): result = np.array(self.difs) result = result[20:-20] centred = result - result.mean() centred = np.absolute(centred) sd = result.std() outliers = result[centred>sd*2] print(f'result for side: {self.side}') print(f'max: {result.max()}, min: {result.min()}, mean {result.mean()} , sd {result.std()}') print('outliers',outliers) return result # bot.stop()
gregorianrants/legobot-7
Encoder.py
Encoder.py
py
1,404
python
en
code
1
github-code
6
[ { "api_name": "gpiozero.DigitalInputDevice", "line_number": 9, "usage_type": "call" }, { "api_name": "time.time", "line_number": 17, "usage_type": "call" }, { "api_name": "time.time", "line_number": 19, "usage_type": "call" } ]
19475609630
from django.apps import AppConfig from django.conf import settings import os import joblib class SentimentConfig(AppConfig): name = 'sentiment' path = os.path.join(settings.MODELS, 'models.p') path_emosi = os.path.join(settings.MODELS, 'models_emotion.p') path_general = os.path.join(settings.MODELS, 'models_general.p') # separation of data packed in the model joblib with open(path, 'rb') as joblibFile: data = joblib.load(joblibFile) with open(path_emosi, 'rb') as joblibFile: data_emosi = joblib.load(joblibFile) with open(path_general, 'rb') as joblibFile: data_general = joblib.load(joblibFile) model = data['classifier'] vectorizer = data['vectorizer'] model_emosi = data_emosi['classifier'] vectorizer_emosi = data_emosi['vectorizer'] model_general = data_general['classifier'] vectorizer_general = data_general['vectorizer']
kholiqcode/skripsi
sentiment/apps.py
apps.py
py
927
python
en
code
0
github-code
6
[ { "api_name": "django.apps.AppConfig", "line_number": 8, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MODELS", "line_number": 10, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MODELS", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 11, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MODELS", "line_number": 12, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 12, "usage_type": "name" }, { "api_name": "joblib.load", "line_number": 16, "usage_type": "call" }, { "api_name": "joblib.load", "line_number": 19, "usage_type": "call" }, { "api_name": "joblib.load", "line_number": 22, "usage_type": "call" } ]
16970226908
from setuptools import setup from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open("README.md") as f: long_description = f.read() version = {} with open(path.join(here, "emv", "__init__.py")) as fp: exec(fp.read(), version) setup( name="emv", version=version["__version__"], description="EMV Smartcard Protocol Library", long_description=long_description, long_description_content_type="text/markdown", license="MIT", author="Russ Garrett", author_email="[email protected]", url="https://github.com/russss/python-emv", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", ], keywords="smartcard emv payment", python_requires=">=3.4", packages=["emv", "emv.protocol", "emv.command"], install_requires=[ "pyscard==2.0.0", "pycountry==20.7.3", "terminaltables==3.1.0", "click==7.1.2", ], entry_points={"console_scripts": {"emvtool=emv.command.client:run"}}, )
russss/python-emv
setup.py
setup.py
py
1,114
python
en
code
100
github-code
6
[ { "api_name": "os.path.abspath", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path", "line_number": 5, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 5, "usage_type": "call" }, { "api_name": "codecs.open", "line_number": 7, "usage_type": "call" }, { "api_name": "codecs.open", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "name" }, { "api_name": "setuptools.setup", "line_number": 14, "usage_type": "call" } ]
40411376601
#!/usr/bin/env python3 """ Name: locator_led_status.py Description: NXAPI: display locator-led status for chassis, modules, fans Example output: % ./locator_led_status.py --vault hashicorp --devices cvd_bgw_1 --module 1,2 --fan 1,2 ip hostname status locator-led 192.168.11.110 cvd-1111-bgw ON chassis 192.168.11.110 cvd-1111-bgw OFF module_1 192.168.11.110 cvd-1111-bgw ON module_2 192.168.11.110 cvd-1111-bgw ON fan_1 192.168.11.110 cvd-1111-bgw OFF fan_2 % """ our_version = 106 script_name = "locator_led_status" # standard libraries import argparse import re from concurrent.futures import ThreadPoolExecutor # local libraries from nxapi_netbox.args.args_cookie import ArgsCookie from nxapi_netbox.args.args_nxapi_tools import ArgsNxapiTools from nxapi_netbox.general.log import get_logger from nxapi_netbox.netbox.netbox_session import netbox, get_device_mgmt_ip from nxapi_netbox.vault.vault import get_vault from nxapi_netbox.nxapi.nxapi_locator_led import NxapiLocatorLedStatus def get_parser(): ex_prefix = "Example:" help_module = ( "Either a single module/linecard, or a comma-separate list of modules/linecards" ) help_fan = "Either a single fan, or a comma-separate list of fans" help_on = "If present, print only locator-leds whose status is ON. If not present, print status for all locator-leds" ex_module = "{} --module 2,3,6".format(ex_prefix) ex_fan = "{} --fan 3".format(ex_prefix) ex_on = "{} --on".format(ex_prefix) parser = argparse.ArgumentParser( description="DESCRIPTION: NXAPI: display locator-led status for chassis, modules, fans", parents=[ArgsCookie, ArgsNxapiTools], ) mandatory = parser.add_argument_group(title="MANDATORY SCRIPT ARGS") optional = parser.add_argument_group(title="OPTIONAL SCRIPT ARGS") optional.add_argument( "--on", dest="on", required=False, action="store_true", default=False, help="{} {}".format(help_on, ex_on), ) optional.add_argument( "--module", dest="module", required=False, default=None, help="(default: %(default)s) " + help_module + ex_module, ) optional.add_argument( "--fan", dest="fan", required=False, default=None, help="(default: %(default)s) " + help_fan + ex_fan, ) parser.add_argument( "--version", action="version", version="{} v{}".format("%(prog)s", our_version) ) return parser.parse_args() def get_device_list(): try: return cfg.devices.split(",") except: log.error( "exiting. Cannot parse --devices {}. Example usage: --devices leaf_1,spine_2,leaf_2".format( cfg.devices ) ) exit(1) def print_output(futures): for future in futures: output = future.result() if output == None: continue for line in output: print(line) if len(output) > 0: print() def print_header(): print(fmt.format("ip", "hostname", "status", "locator-led")) def collect_output(ip, nx, modules, fans): lines = list() if not cfg.on: lines.append(fmt.format(ip, nx.hostname, nx.chassis, "chassis")) elif cfg.on and nx.chassis == "ON": lines.append(fmt.format(ip, nx.hostname, nx.chassis, "chassis")) for module in modules: nx.module = module if cfg.on and nx.module_status != "ON": continue lines.append( fmt.format(ip, nx.hostname, nx.module_status, "module_{}".format(module)) ) for fan in fans: nx.fan = fan if cfg.on and nx.fan_status != "ON": continue lines.append(fmt.format(ip, nx.hostname, nx.fan_status, "fan_{}".format(fan))) return lines def worker(device, vault, modules, fans): ip = get_device_mgmt_ip(nb, device) nx = NxapiLocatorLedStatus(vault.nxos_username, vault.nxos_password, ip, log) nx.nxapi_init(cfg) nx.refresh() return collect_output(ip, nx, modules, fans) def cfg_to_list(cfg_list, desc): _list = list() if cfg_list == None: return _list for item in re.split(",", str(cfg_list)): if item == None: continue try: _list.append(int(item)) except: log.error("Exiting. Expected int() for {}. Got {}".format(desc, cfg_list)) log.error("Usage examples:") log.error(" --{} 3".format(desc)) log.error(" --{} 1,2,4".format(desc)) exit(1) return _list cfg = get_parser() modules = cfg_to_list(cfg.module, "module") fans = cfg_to_list(cfg.fan, "fan") log = get_logger(script_name, cfg.loglevel, "DEBUG") vault = get_vault(cfg.vault) vault.fetch_data() nb = netbox(vault) devices = get_device_list() fmt = "{:<15} {:<18} {:<6} {:<12}" print_header() executor = ThreadPoolExecutor(max_workers=len(devices)) futures = list() for device in devices: args = [device, vault, modules, fans] futures.append(executor.submit(worker, *args)) print_output(futures)
allenrobel/nxapi-netbox
scripts/locator_led_status.py
locator_led_status.py
py
5,240
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 46, "usage_type": "call" }, { "api_name": "nxapi_netbox.args.args_cookie.ArgsCookie", "line_number": 48, "usage_type": "name" }, { "api_name": "nxapi_netbox.args.args_nxapi_tools.ArgsNxapiTools", "line_number": 48, "usage_type": "name" }, { "api_name": "nxapi_netbox.netbox.netbox_session.get_device_mgmt_ip", "line_number": 131, "usage_type": "call" }, { "api_name": "nxapi_netbox.nxapi.nxapi_locator_led.NxapiLocatorLedStatus", "line_number": 132, "usage_type": "call" }, { "api_name": "re.split", "line_number": 142, "usage_type": "call" }, { "api_name": "nxapi_netbox.general.log.get_logger", "line_number": 159, "usage_type": "call" }, { "api_name": "nxapi_netbox.vault.vault.get_vault", "line_number": 160, "usage_type": "call" }, { "api_name": "nxapi_netbox.netbox.netbox_session.netbox", "line_number": 162, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 169, "usage_type": "call" } ]
21569497560
#!/usr/bin/env python """ Script to: Extract 3D images from a 4D image and then extract one selected slice from each of these 3D images and combine them as a gif. """ # Author: Bishesh Khanal <[email protected]> # Asclepios INRIA Sophia Antipolis import subprocess import sys import argparse as ag import bish_utils as bu #import time as tm def get_input_options(): ''' Command line interface, get user input options. ''' parser = ag.ArgumentParser() parser.add_argument('in_img', help='Filename of the input 4D image') parser.add_argument('out_gif', help='Filename of the output file') parser.add_argument('total_tpts', help='Total number of time points to ' 'extract from the input image', type=int) parser.add_argument('slice_axis', help='Slice axis: 0,1 or 2') parser.add_argument(dest='slice_num', help='slice number to be extracted') parser.add_argument('resize', help='resize to maximum possible size in each' ' direction, e.g. 400x400') parser.add_argument('-time_unit', help='unit of time for display. E.g yrs' '\n If none, time info not overlayed over the video') parser.add_argument( '-time_step', help='time between tpt1 and tpt2. Used only when ' 'time_unit is also used. Default 1.0', type=float) parser.add_argument( 'delay', help='time delay between frames in milliseconds') parser.add_argument( '-rotate', help='If given overrides the default rotation used for ' 'proper orientation of the slice.') parser.add_argument( '-crop', help='convert -crop ops: If given crops 2D slices before ' 'combining. wxh+x+y') ops = parser.parse_args() return ops def main(): ''' Extract 3D images from a 4D image and then extract one selected slice from each of these 3D images and combine them as a gif. ''' ops = get_input_options() #split 4d image to get all the 3D images: tmp3d_basename, file_ext = 'tmp3DImage', '.nii.gz' cmd = 'ImageMath 4 %s%s TimeSeriesDisassemble %s' % ( tmp3d_basename, file_ext, ops.in_img) bu.print_and_execute(cmd) #ImageMath 4 tmp3DImage.nii.gz TimeSeriesDisassemble ops.in_img #convert (from ImageMagick) #Executables that must exist: #ImageMath extract_slice = "/home/bkhanal/works/tools/marcoSliceExtractor/myImgSliceExtractor" axis = ops.slice_axis num = 0 #print('number of time steps: %s \n' % (str(ops.total_tpts))) while num < ops.total_tpts: #outputs/results of the executables index = str(num+100) #ImageMath extracted slice names start from 100. tmp3DImage = '%s%s%s' % (tmp3d_basename, index, file_ext) tmp2DImage = 'slice%s.png' % (index,) cmd = '%s %s %s %s %s' % ( extract_slice, tmp3DImage, axis, ops.slice_num, tmp2DImage) bu.print_and_execute(cmd, False) # Rotate the image for proper orientation. if ops.rotate is None: cmd = 'convert -rotate 180 %s %s' % (tmp2DImage, tmp2DImage) else: cmd = 'convert -rotate %s %s %s' % (ops.rotate, tmp2DImage, tmp2DImage) bu.print_and_execute(cmd, False) if ops.crop: cmd = 'convert %s -crop %s +repage %s' % (tmp2DImage, ops.crop, tmp2DImage) bu.print_and_execute(cmd, False) # Write time-point info if ops.time_unit is not None: if ops.time_step is not None: tpt = float(num) * ops.time_step else: tpt = num cmd = ('convert %s -gravity SouthWest -fill orange -pointsize 12 ' '-annotate +0+0 "%s %s" %s' % ( tmp2DImage, str(tpt), ops.time_unit, tmp2DImage)) bu.print_and_execute(cmd, False) #Delete individual 3D files. bu.print_and_execute('rm ' + tmp3DImage, False) #Go to next file num += 1 #Now make the animation and delete individual 2D slices: cmd = 'convert slice1*.png -resize %s -set delay %s %s' % ( ops.resize, ops.delay, ops.out_gif) bu.print_and_execute(cmd) bu.print_and_execute('rm slice1*.png', False) if __name__ == "__main__": main()
Inria-Asclepios/simul-atrophy
scripts/extractSliceVideoFrom4d.py
extractSliceVideoFrom4d.py
py
4,284
python
en
code
7
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 18, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 55, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 71, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 77, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 80, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 90, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 93, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 100, "usage_type": "call" }, { "api_name": "bish_utils.print_and_execute", "line_number": 101, "usage_type": "call" } ]
22329982080
import imp import discord from discord.ext import commands import json import os from os import listdir from os.path import isfile, join from datetime import datetime import subprocess from discordLevelingSystem import DiscordLevelingSystem import aiosqlite def micsid(ctx): return ctx.author.id == 481377376475938826 or ctx.author.id == 624076054969188363 def log(log): now = datetime.now() timern = now.strftime("%d/%m/%Y %H:%M:%S") with open('./other/log.txt', 'a') as f: f.write('\n') f.write(f"{timern} | {log}") cogs = [] for i in os.listdir("cogs/"): if i == "__pycache__": pass else: print(i[:-3]) class BotMakerCommands(commands.Cog): def __init__(self, client): self.client = client @commands.command() @commands.check(micsid) async def logs(self, ctx): file = discord.File("./other/log.txt") await ctx.author.send(file=file) @commands.command() @commands.check(micsid) async def msgserver(self, ctx, id:int, *, message): for guild in self.client.guilds: if guild.id == id: return await guild.text_channels[0].send(message) await ctx.send("guild not found") @commands.command() @commands.check(micsid) async def reloadall(self, ctx): lst = [f for f in listdir("cogs/") if isfile(join("cogs/", f))] no_py = [s.replace('.py', '') for s in lst] startup_extensions = ["cogs." + no_py for no_py in no_py] startup_extensions.remove("cogs.Leveling") try: for cogs in startup_extensions: self.client.reload_extension(cogs) await ctx.send("All Reloaded") except Exception as e: print(e) log(e) @commands.command(hidden = True) @commands.check(micsid) async def pull(self, ctx): gitstuff = subprocess.run(["git", "pull"], capture_output=True).stdout await ctx.send(gitstuff.decode()) log(gitstuff.decode()) @commands.command(help="Dms all server owners") @commands.check(micsid) async def dm_owners(self,ctx,*, msg): await ctx.send("Sending...") log(f"DMing all owners with {msg}") mins = 0 #predicts how long it will take mins = len(self.client.guilds) * 0.1 await ctx.send(f"Estimated time: {mins} minutes") owners = [] for server in self.client.guilds: tosend = server.owner owners.append(tosend) owners = list(set(owners)) for i in owners: try: await i.send(msg) except: await ctx.send(f"Counld not send to {i}") await ctx.send("Done") @commands.command() @commands.check(micsid) async def ghoastping(self,ctx,*,member:discord.Member): for i in ctx.guild.channels: try: x = await i.send(f"{member.mention}") await x.delete() except: print(f"Can't send message in {i}") @commands.command(hidden = True) @commands.is_owner() async def clearlog(self,ctx): file = discord.File("./other/log.txt") await ctx.author.send(file=file) dirs = 'other/' for f in os.listdir(dirs): os.remove(os.path.join(dirs, f)) dirs = 'tempstorage/' for f in os.listdir(dirs): os.remove(os.path.join(dirs, f)) await ctx.send("Cleared") await log("Cleared at " + datetime.now().strftime("%d/%m/%Y %H:%M:%S")) @commands.command(hidden = True) @commands.check(micsid) async def status(self, ctx): gitstuff = subprocess.run(["git", "status"], capture_output=True).stdout await ctx.send(gitstuff.decode()) log(gitstuff.decode()) @commands.command() @commands.check(micsid) async def load(self, ctx, extension): self.client.load_extension(f"cogs.{extension}") embed = discord.Embed( title='Load', description=f'{extension} successfully loaded', color=0xff00c8) await ctx.send(embed=embed) @commands.command() @commands.check(micsid) async def unload(self, ctx, extension): self.client.unload_extension(f"cogs.{extension}") await ctx.send(f"The module '{extension}' has been unloaded successfully!") @commands.command() @commands.is_owner() async def change_status(self, ctx, *, status): status = status.replace("[[servers]]", str(len(self.client.guilds))) await self.client.change_presence(activity=discord.Game(name=status)) await ctx.send(f"Status changed to {status}") @commands.command() @commands.is_owner() async def commandlookup(self, ctx, command): #check if command exists if self.client.get_command(command) == None: await ctx.send("Command not found") return #find the cog for i in self.client.cogs: if self.client.get_command(command) in self.client.get_cog(i).get_commands(): cog = i await ctx.send(f"Cog: {cog}\nCommand: {command}") #when a command is used, it will be logged @commands.Cog.listener() async def on_command(self, ctx): #check if file exists if os.path.isfile(f"databases/command_usage.db"): async with aiosqlite.connect("databases/command_usage.db") as db: #check if command is in database async with db.execute("SELECT * FROM command_usage WHERE command = ?", (ctx.command.name,)) as cursor: data = await cursor.fetchall() #if command is not in database if len(data) == 0: await db.execute("INSERT INTO command_usage VALUES (?, ?, ?)", (ctx.command.name, 1, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) await db.commit() #if command is in database else: await db.execute("UPDATE command_usage SET times_used = ?, last_used = ? WHERE command = ?", (data[0][1] + 1, datetime.now().strftime("%d/%m/%Y %H:%M:%S"), ctx.command.name)) await db.commit() else: async with aiosqlite.connect("databases/command_usage.db") as db: await db.execute("CREATE TABLE command_usage (command TEXT, times_used INTEGER, last_used TEXT)") await db.commit() @commands.command() @commands.check(micsid) async def commandusage(self, ctx, command): if os.path.isfile(f"databases/command_usage.db"): async with aiosqlite.connect("databases/command_usage.db") as db: async with db.execute("SELECT * FROM command_usage WHERE command = ?", (command,)) as cursor: data = await cursor.fetchall() if len(data) == 0: await ctx.send("Command not found") else: embed = discord.Embed(title = "Command Usage", description = f"Command: {data[0][0]}\nTimes used: {data[0][1]}\nLast used: {data[0][2]}", color = 0xff00c8) await ctx.send(embed = embed) else: await ctx.send("Command not found") @commands.command() @commands.check(micsid) async def commandusagelist(self, ctx): if os.path.isfile(f"databases/command_usage.db"): async with aiosqlite.connect("databases/command_usage.db") as db: async with db.execute("SELECT * FROM command_usage") as cursor: data = await cursor.fetchall() if len(data) == 0: await ctx.send("No commands found") else: embed = discord.Embed(title = "Command Usage", description = "Command: Times used: Last used:", color = 0xff00c8) for i in data: embed.description += f"\n{i[0]}: {i[1]}: {i[2]}" await ctx.send(embed = embed) else: await ctx.send("No commands found") @commands.command() @commands.is_owner() async def server_invite(self, ctx, *, server): guild = self.client.get_guild(int(server)) if guild == None: await ctx.send("Server not found") return invite = await guild.channels[0].create_invite() await ctx.send(invite) @commands.command() @commands.is_owner() async def server_look_up(self, ctx, *, server): guild = self.client.get_guild(int(server)) if guild == None: await ctx.send("Server not found") return embed = discord.Embed(title = guild.name, description = f"ID: {guild.id}", color = 0xff00c8) embed.add_field(name = "Owner", value = f"{guild.owner.name}#{guild.owner.discriminator}") embed.add_field(name = "Members", value = guild.member_count) embed.add_field(name = "Channels", value = len(guild.channels)) embed.add_field(name = "Roles", value = len(guild.roles)) embed.add_field(name = "Created at", value = guild.created_at.strftime("%d/%m/%Y %H:%M:%S")) embed.add_field(name = "Owner ID", value = guild.owner.id) try: embed.set_thumbnail(url = guild.icon.url) except: pass await ctx.send(embed = embed) def setup(client): client.add_cog(BotMakerCommands(client))
micfun123/Simplex_bot
cogs/micsid.py
micsid.py
py
9,632
python
en
code
24
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 19, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 19, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 29, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 35, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 35, "usage_type": "name" }, { "api_name": "discord.File", "line_number": 44, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 41, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 41, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 42, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 42, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 47, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 47, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 48, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 48, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 58, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 55, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 55, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 56, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 56, "usage_type": "name" }, { "api_name": "subprocess.run", "line_number": 76, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 73, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 73, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 74, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 74, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 80, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 80, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 81, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 81, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 105, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 103, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 103, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 104, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 104, "usage_type": "name" }, { "api_name": "discord.File", "line_number": 116, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 119, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 120, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 120, "usage_type": "call" }, { "api_name": "os.path", "line_number": 120, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 122, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 123, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 123, "usage_type": "call" }, { "api_name": "os.path", "line_number": 123, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 125, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 125, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 113, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 113, "usage_type": "name" }, { "api_name": "discord.ext.commands.is_owner", "line_number": 114, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 114, "usage_type": "name" }, { "api_name": "subprocess.run", "line_number": 130, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 127, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 127, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 128, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 128, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 138, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 134, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 134, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 135, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 135, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 142, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 142, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 143, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 143, "usage_type": "name" }, { "api_name": "discord.Game", "line_number": 152, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 148, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 148, "usage_type": "name" }, { "api_name": "discord.ext.commands.is_owner", "line_number": 149, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 149, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 155, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 155, "usage_type": "name" }, { "api_name": "discord.ext.commands.is_owner", "line_number": 156, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 156, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 174, "usage_type": "call" }, { "api_name": "os.path", "line_number": 174, "usage_type": "attribute" }, { "api_name": "aiosqlite.connect", "line_number": 175, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 181, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 181, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 185, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 185, "usage_type": "name" }, { "api_name": "aiosqlite.connect", "line_number": 189, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog.listener", "line_number": 171, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 171, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 171, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 196, "usage_type": "call" }, { "api_name": "os.path", "line_number": 196, "usage_type": "attribute" }, { "api_name": "aiosqlite.connect", "line_number": 197, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 203, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 193, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 193, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 194, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 194, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 211, "usage_type": "call" }, { "api_name": "os.path", "line_number": 211, "usage_type": "attribute" }, { "api_name": "aiosqlite.connect", "line_number": 212, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 218, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 208, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 208, "usage_type": "name" }, { "api_name": "discord.ext.commands.check", "line_number": 209, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 209, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 227, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 227, "usage_type": "name" }, { "api_name": "discord.ext.commands.is_owner", "line_number": 228, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 228, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 244, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 237, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 237, "usage_type": "name" }, { "api_name": "discord.ext.commands.is_owner", "line_number": 238, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 238, "usage_type": "name" } ]
8201488763
from flask import render_template, redirect, url_for from flask_login import login_user, logout_user, current_user from . import home from ..models import User, Account, Role, Course from ..forms import LoginForm, RegisterForm from sha_training_app import db import datetime @home.route('/') def homepage(): courses = Course.query.limit(5) return render_template('home/index.html', courses=courses) @home.route('/courses') def course_listing(): courses = Course.query.all() return render_template('home/courses.html', courses=courses, standalone=True) @home.route('/register', methods=['GET', 'POST']) def register(): register_form = RegisterForm(csrf_enabled=True) # The user has submitted the form, let's make sure it's valid if register_form.validate_on_submit(): # Create a new user from the form data user = User( username=register_form.username.data, email=register_form.email.data, password=register_form.password.data ) role = Role.query.filter_by(role_id=1).first() account = Account( role_id=role.role_id, date_joined=datetime.datetime.now(), first_name=register_form.first_name.data, last_name=register_form.last_name.data ) user.account = account db.session.add(user) db.session.add(account) db.session.commit() # At this point the user has been registered and should # have been sent a confirmation email return render_template('home/registration_success.html') # Show the user the registration form return render_template('home/register.html', form=register_form) @home.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('user.account')) login_form = LoginForm(csrf_enabled=True) if login_form.validate_on_submit(): user = User.query.filter_by(email=login_form.email.data).first() if user is not None and user.verify_password(login_form.password.data): login_user(user) return redirect(url_for('user.account')) return render_template('home/login.html', form=login_form) @home.route('/logout') def logout(): logout_user() # This should kill the session return redirect(url_for('home.homepage'))
ScottishHD/training_site
sha_training_app/_home/views.py
views.py
py
2,385
python
en
code
0
github-code
6
[ { "api_name": "models.Course.query.limit", "line_number": 12, "usage_type": "call" }, { "api_name": "models.Course.query", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.Course", "line_number": 12, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 13, "usage_type": "call" }, { "api_name": "models.Course.query.all", "line_number": 18, "usage_type": "call" }, { "api_name": "models.Course.query", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.Course", "line_number": 18, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 19, "usage_type": "call" }, { "api_name": "forms.RegisterForm", "line_number": 24, "usage_type": "call" }, { "api_name": "models.User", "line_number": 29, "usage_type": "call" }, { "api_name": "models.Role.query.filter_by", "line_number": 35, "usage_type": "call" }, { "api_name": "models.Role.query", "line_number": 35, "usage_type": "attribute" }, { "api_name": "models.Role", "line_number": 35, "usage_type": "name" }, { "api_name": "models.Account", "line_number": 37, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 39, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 39, "usage_type": "attribute" }, { "api_name": "sha_training_app.db.session.add", "line_number": 46, "usage_type": "call" }, { "api_name": "sha_training_app.db.session", "line_number": 46, "usage_type": "attribute" }, { "api_name": "sha_training_app.db", "line_number": 46, "usage_type": "name" }, { "api_name": "sha_training_app.db.session.add", "line_number": 47, "usage_type": "call" }, { "api_name": "sha_training_app.db.session", "line_number": 47, "usage_type": "attribute" }, { "api_name": "sha_training_app.db", "line_number": 47, "usage_type": "name" }, { "api_name": "sha_training_app.db.session.commit", "line_number": 48, "usage_type": "call" }, { "api_name": "sha_training_app.db.session", "line_number": 48, "usage_type": "attribute" }, { "api_name": "sha_training_app.db", "line_number": 48, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 54, "usage_type": "call" }, { "api_name": "flask_login.current_user.is_authenticated", "line_number": 59, "usage_type": "attribute" }, { "api_name": "flask_login.current_user", "line_number": 59, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 60, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 60, "usage_type": "call" }, { "api_name": "forms.LoginForm", "line_number": 62, "usage_type": "call" }, { "api_name": "models.User.query.filter_by", "line_number": 65, "usage_type": "call" }, { "api_name": "models.User.query", "line_number": 65, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 65, "usage_type": "name" }, { "api_name": "flask_login.login_user", "line_number": 67, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 68, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 68, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 70, "usage_type": "call" }, { "api_name": "flask_login.logout_user", "line_number": 75, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 76, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 76, "usage_type": "call" } ]
24133449429
#!/usr/bin/env python import argparse import csv import logging import math import sys import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from pylab import rcParams def plot_bar(data_fh, target, xlabel, ylabel, zlabel, title, x_label, y_label, x_order, y_order, fig_width, fig_height, fontsize, xlabel_rotation, category, colours, stacked, z_annot): ''' xlabel: groups on x axis ylabel: colours ''' logging.info('starting...') import matplotlib.style matplotlib.style.use('seaborn') included = total = 0 results = {} xvals = set() yvals = set() max_zval = 0.0 categories = {} for row in csv.DictReader(data_fh, delimiter='\t'): try: included += 1 xval = row[xlabel] # group axis value yval = row[ylabel] # sub-group axis value xvals.add(xval) yvals.add(yval) zval = float(row[zlabel]) max_zval = max(max_zval, zval) xy = '{},{}'.format(xval, yval) results[xy] = zval logging.debug('Added %s = %f', xy, zval) if category is not None: categories[xy] = row[category] except: logging.debug('Failed to include %s', row) total += 1 logging.info('finished reading %i of %i records with max_zval %.2f', included, total, max_zval) if len(results) == 0: logging.warn('No data to plot') return if x_order is None: xvals = sorted(list(xvals)) # groups else: xvals = x_order # groups if y_order is None: yvals = sorted(list(yvals)) # sub-groups else: yvals = y_order logging.debug('xvals %s yvals %s', xvals, yvals) #fig, ax = plt.subplots() #fig_width = min(18, max(9, len(xvals) * len(yvals))) fig = plt.figure(figsize=(fig_width, fig_height)) rcParams.update({'font.size': fontsize}) ax = fig.add_subplot(111) width = fig_width / len(xvals) / len(yvals) ind = np.arange(len(xvals)) * fig_width / len(xvals) # the x locations for the groups logging.info('ind is %s, width is %f fig_width is %f', ind, width, fig_width) bottom = None for idx in range(len(yvals)): # each yval if stacked: offset = 0 else: offset = idx * width * 0.9 - (len(yvals) - 1) * width / 2 vals = [results['{},{}'.format(x, yvals[idx])] for x in xvals] # each xval with that yval if bottom is None: bottom = [0] * len(vals) logging.debug('adding values %s for %s at %s', vals, yvals[idx], ind + offset) if category is None: if stacked and bottom is not None: rects = ax.bar(ind + offset, vals, width * 0.85, label=yvals[idx], bottom=bottom) else: rects = ax.bar(ind + offset, vals, width * 0.85, label=yvals[idx]) else: rects = ax.bar(ind + offset, vals, width * 0.85) for rect, val, b in zip(rects, xvals, bottom): height = rect.get_height() if z_annot is None: if height < 0.01: annot = '' #annot = '{:.3e}'.format(height) else: annot = '{:.2f}'.format(height) else: annot = z_annot.format(height) if stacked: # for stacked, put in centre of box ax.annotate(annot, xy=(rect.get_x() + rect.get_width() / 2, height / 2 + b), xytext=(0, 3), # use 3 points offset textcoords="offset points", # in both directions ha='center', va='bottom') else: # non-stacked, put at top of box ax.annotate(annot, xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # use 3 points offset textcoords="offset points", # in both directions ha='center', va='bottom') if category is not None: label = '{} {}'.format(categories['{},{}'.format(val, yvals[idx])], yvals[idx]) rect.set_label(label) if colours is not None: for colour in colours: cat, col = colour.split('=') if cat == label: rect.set_color(col) if bottom is None: bottom = vals else: bottom = [x[0] + x[1] for x in zip(bottom, vals)] logging.debug('vals is %s bottom is %s', vals, bottom) # Add some text for labels, title and custom x-axis tick labels, etc. if y_label is not None: ax.set_ylabel(y_label) if x_label is not None: ax.set_xlabel(x_label) ax.set_title(title) ax.set_xticks(ind) ax.set_xticklabels(xvals, rotation=xlabel_rotation) #ax.legend(loc='upper right') # place legend at right based on https://stackoverflow.com/questions/10101700/moving-matplotlib-legend-outside-of-the-axis-makes-it-cutoff-by-the-figure-box/10154763#10154763 handles, labels = ax.get_legend_handles_labels() labels_seen = set() labels_u = [] handles_u = [] for handle, label in sorted(zip(handles, labels), key=lambda pair: pair[1]): if label in labels_seen: continue labels_seen.add(label) labels_u.append(label) handles_u.append(handle) lgd = ax.legend(handles_u, labels_u, loc='upper left', bbox_to_anchor=(1.01,1.0), borderaxespad=0) lgd.get_frame().set_edgecolor('#000000') #fig = plt.figure(figsize=(figsize, 1 + int(figsize * len(yvals) / len(xvals)))) #ax = fig.add_subplot(111) logging.info('done processing %i of %i', included, total) plt.tight_layout() plt.savefig(target) matplotlib.pyplot.close('all') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Plot a bar chart') parser.add_argument('--x', required=True, help='x column name') parser.add_argument('--y', required=True, help='y column name') parser.add_argument('--z', required=True, help='z column name') parser.add_argument('--z_annot', required=False, help='format for values (default is :.2f)') parser.add_argument('--category', required=False, help='additional category column') parser.add_argument('--colours', required=False, nargs='*', help='category colours') parser.add_argument('--title', required=False, help='z column name') parser.add_argument('--y_label', required=False, help='label on y axis') parser.add_argument('--x_label', required=False, help='label on x axis') parser.add_argument('--x_order', required=False, nargs='*', help='order of x axis') parser.add_argument('--y_order', required=False, nargs='*', help='order of y axis') parser.add_argument('--stacked', action='store_true', help='stack categories') parser.add_argument('--verbose', action='store_true', help='more logging') parser.add_argument('--target', required=False, default='plot.png', help='plot filename') parser.add_argument('--height', required=False, type=float, default=8, help='height of plot') parser.add_argument('--width', required=False, type=float, default=12, help='width of plot') parser.add_argument('--fontsize', required=False, type=float, default=8, help='font size') parser.add_argument('--x_label_rotation', required=False, default='horizontal', help='label rotation') args = parser.parse_args() if args.verbose: logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG) else: logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) plot_bar(sys.stdin, args.target, args.x, args.y, args.z, args.title, args.x_label, args.y_label, args.x_order, args.y_order, args.width, args.height, args.fontsize, args.x_label_rotation, args.category, args.colours, args.stacked, args.z_annot)
supernifty/plotme
plotme/bar.py
bar.py
py
7,407
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.use", "line_number": 12, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.style.use", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.style", "line_number": 24, "usage_type": "attribute" }, { "api_name": "csv.DictReader", "line_number": 32, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 43, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 47, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 51, "usage_type": "call" }, { "api_name": "logging.warn", "line_number": 54, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "pylab.rcParams.update", "line_number": 72, "usage_type": "call" }, { "api_name": "pylab.rcParams", "line_number": 72, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 76, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 77, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 88, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 135, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 166, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 166, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 167, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 168, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 171, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 192, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 192, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 194, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 194, "usage_type": "attribute" }, { "api_name": "sys.stdin", "line_number": 196, "usage_type": "attribute" } ]
44083406715
# -*- coding: utf-8 -*- ## Add uid to data gathered from qMp nodes in GuifiSants ## http://dsg.ac.upc.edu/qmpsu/index.php ## meshmon-format.py ## (c) Llorenç Cerdà-Alabern, May 2020. ## debug: import pdb; pdb.set_trace() import json cache = {} graph = [] tabs = {} def find_node_by_address(d, k, v): """ find address v in d[*]['addresses'][k] k: ether, inet6, inet, inet6ll """ if v in cache: return cache[v] else: for n in d.values(): if 'addresses' in n and k in n['addresses']: for a in n['addresses'][k]: if v == a: cache.update({v: n}) return n return None def add_ids_to_link(d, links): """ """ for l in links: if 'llocalIp' in l: n = find_node_by_address(d, 'inet6ll', l['llocalIp']) if n: l.update({'id': n['id']}) def add_iwdump_to_l(d, links, ifces, w): """ """ for i in w.values(): for m in i.keys(): n = find_node_by_address(d, 'ether', m) if n and 'id' in n: for l in links: if 'id' in l and l['id'] == n['id'] and l['viaDev'] in ifces \ and ifces[l['viaDev']] == 'wireless': l.update({'iwdump': i[m]}) break def get_interfaces(ifces): """ """ res = {} for i in ifces: if 'devName' in i and 'type' in i: res.update({i['devName']: i['type']}) return res def add_links(d, ng, n): """ """ i = get_interfaces(n['bmx6']['interfaces']) ng.update({'interfaces': i}) l = n['bmx6']['links'] add_ids_to_link(d, l) if 'iwdump' in n: add_iwdump_to_l(d, l, i, n['iwdump']) ng.update({'links': l}) def add_net_dev(ng, nd): """ """ res = {} for k,v in nd.items(): if k in ng['interfaces']: res.update({k: v}) if res: ng.update({'net_dev': res}) def build_graph(d): """ build a graph with the data gathered from the mesh in dict d """ global graph ; graph = [] # initialize global cache ; cache = {} # initialize for i in sorted(d.keys(), key=lambda k: d[k]['id']): c = {} for w in "loadavg cpu_info cpu_meminfo hostname uid id uptime processes cpu_stat brctl vmstat".split(' '): if w in d[i]: c.update({w: d[i][w]}) c.update({'ipv6': i}) graph.append(c) if 'bmx6' in d[i] and 'interfaces' in d[i]['bmx6'] and 'links' in d[i]['bmx6']: add_links(d, graph[-1], d[i]) if 'net_dev' in d[i]: add_net_dev(graph[-1], d[i]['net_dev']) def si2f(x): n = x.find('K') if(n >= 0): return float(x[:n]+'e3') n = x.find('M') if(n >= 0): return float(x[:n]+'e6') n = x.find('G') if(n >= 0): return float(x[:n]+'e9') def build_rt(d): """ build rt with the data gathered from the mesh in dict d """ global tabs # initialize tabs = {} num_nodes = len(d) ; rt =[[None] * num_nodes for n in range(0,num_nodes)] adj =[[0] * num_nodes for n in range(0,num_nodes)] metric = [[None] * num_nodes for n in range(0,num_nodes)] uid = [None] * num_nodes for i in sorted(d.keys(), key=lambda k: d[k]['id']): nid = d[i]['id'] uid[nid] = d[i]['uid'] if 'originators' in d[i]['bmx6']: for o in d[i]['bmx6']['originators']: if 'primaryIp' in o: n = find_node_by_address(d, 'inet6', o['primaryIp']) if n: if 'viaIp' in o: via = find_node_by_address(d, 'inet6ll', o['viaIp']) if via: rt[nid][n['id']] = via['id'] if n['id'] == via['id']: adj[nid][n['id']] = 1 if 'metric' in o: metric[nid][n['id']] = si2f(o['metric']) tabs.update({'uid': uid}) tabs.update({'rt': rt}) tabs.update({'adj': adj}) tabs.update({'metric': metric}) tabs.update({'out_degree': [sum(x) for x in adj]}) tabs.update({'in_degree': [sum(x) for x in zip(*adj)]}) def show(i): "" "" print(json.dumps(graph[i], indent=2)) # Local Variables: # mode: python # coding: utf-8 # python-indent-offset: 4 # python-indent-guess-indent-offset: t # End:
llorenc/meshmon-parser
meshmon-format.py
meshmon-format.py
py
4,474
python
en
code
0
github-code
6
[ { "api_name": "json.dumps", "line_number": 143, "usage_type": "call" } ]
19108144876
import colors import info from icon_path import icon_path from tooltip import Tooltip from scan_media_window import ScanMediaWindow from ingest_window import IngestWindow from open_window import OpenWindow from info_window import InfoWindow try: import tkinter except ImportError: import Tkinter as tkinter class MenuView(): """Provides a frame containing munu-level control buttons. Attributes: frame(Frame): the containing frame for this view. """ def __init__(self, master, open_manager, scan_statistics_window, preferences): """Args: master(a UI container): Parent. open_mangaer(OpenManager): Able to open a new dataset. """ # open manager self._open_manager = open_manager self._scan_statistics_window = scan_statistics_window self._preferences = preferences # make the containing frame self.frame = tkinter.Frame(master) # make the frame for the control buttons button_frame = tkinter.Frame(self.frame, bg=colors.BACKGROUND) button_frame.pack(side=tkinter.TOP, anchor="w") # open button self._open_icon = tkinter.PhotoImage(file=icon_path("open")) open_button = tkinter.Button(button_frame, image=self._open_icon, command=self._handle_open, bg=colors.BACKGROUND, activebackground=colors.ACTIVEBACKGROUND, highlightthickness=0) open_button.pack(side=tkinter.LEFT) Tooltip(open_button, "Open scanned output") # scan statistics button self._scan_statistics_icon = tkinter.PhotoImage(file=icon_path("view_scan_statistics")) scan_statistics_button = tkinter.Button(button_frame, image=self._scan_statistics_icon, command=self._handle_scan_statistics_window, bg=colors.BACKGROUND, activebackground=colors.ACTIVEBACKGROUND, highlightthickness=0) scan_statistics_button.pack(side=tkinter.LEFT, padx=(0,8)) Tooltip(scan_statistics_button, "Show scan statistics") # ingest button self._ingest_icon = tkinter.PhotoImage(file=icon_path("ingest")) ingest_button = tkinter.Button(button_frame, image=self._ingest_icon, command=self._handle_ingest, bg=colors.BACKGROUND, activebackground=colors.ACTIVEBACKGROUND, highlightthickness=0) ingest_button.pack(side=tkinter.LEFT) Tooltip(ingest_button, "Ingest files into a\nnew hashdb database") # scan button self._scan_icon = tkinter.PhotoImage(file=icon_path("scan")) scan_button = tkinter.Button(button_frame, image=self._scan_icon, command=self._handle_scan, bg=colors.BACKGROUND, activebackground=colors.ACTIVEBACKGROUND, highlightthickness=0) scan_button.pack(side=tkinter.LEFT, padx=(0,8)) Tooltip(scan_button, "Scan a media image") # info button self._info_icon = tkinter.PhotoImage(file=icon_path( "info")) info_button = tkinter.Button(button_frame, image=self._info_icon, command=self._handle_info, bg=colors.BACKGROUND, activebackground=colors.ACTIVEBACKGROUND, highlightthickness=0) info_button.pack(side=tkinter.LEFT) Tooltip(info_button, "About SectorScope %s" % info.VERSION) def _handle_open(self): OpenWindow(self.frame, self._open_manager) def _handle_scan_statistics_window(self): self._scan_statistics_window.show() def _handle_ingest(self): IngestWindow(self.frame) # IngestWindow(self.frame, source_dir='/home/bdallen/KittyMaterial', hashdb_dir='/home/bdallen/Kitty/zzki.hdb') def _handle_scan(self): ScanMediaWindow(self.frame) # ScanMediaWindow(self.frame, media='/home/bdallen/Kitty/jo-favorites-usb-2009-12-11.E01', hashdb_dir='/home/bdallen/Kitty/KittyMaterial.hdb', output_file='/home/bdallen/Kitty/zz_jo.json') def _handle_info(self): InfoWindow(self.frame)
NPS-DEEP/SectorScope
python/menu_view.py
menu_view.py
py
4,423
python
en
code
11
github-code
6
[ { "api_name": "Tkinter.Frame", "line_number": 33, "usage_type": "call" }, { "api_name": "Tkinter.Frame", "line_number": 36, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 36, "usage_type": "attribute" }, { "api_name": "Tkinter.TOP", "line_number": 37, "usage_type": "attribute" }, { "api_name": "Tkinter.PhotoImage", "line_number": 40, "usage_type": "call" }, { "api_name": "icon_path.icon_path", "line_number": 40, "usage_type": "call" }, { "api_name": "Tkinter.Button", "line_number": 41, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 43, "usage_type": "attribute" }, { "api_name": "colors.ACTIVEBACKGROUND", "line_number": 44, "usage_type": "attribute" }, { "api_name": "Tkinter.LEFT", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tooltip.Tooltip", "line_number": 47, "usage_type": "call" }, { "api_name": "Tkinter.PhotoImage", "line_number": 50, "usage_type": "call" }, { "api_name": "icon_path.icon_path", "line_number": 50, "usage_type": "call" }, { "api_name": "Tkinter.Button", "line_number": 51, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 54, "usage_type": "attribute" }, { "api_name": "colors.ACTIVEBACKGROUND", "line_number": 55, "usage_type": "attribute" }, { "api_name": "Tkinter.LEFT", "line_number": 57, "usage_type": "attribute" }, { "api_name": "tooltip.Tooltip", "line_number": 58, "usage_type": "call" }, { "api_name": "Tkinter.PhotoImage", "line_number": 61, "usage_type": "call" }, { "api_name": "icon_path.icon_path", "line_number": 61, "usage_type": "call" }, { "api_name": "Tkinter.Button", "line_number": 62, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 64, "usage_type": "attribute" }, { "api_name": "colors.ACTIVEBACKGROUND", "line_number": 65, "usage_type": "attribute" }, { "api_name": "Tkinter.LEFT", "line_number": 67, "usage_type": "attribute" }, { "api_name": "tooltip.Tooltip", "line_number": 68, "usage_type": "call" }, { "api_name": "Tkinter.PhotoImage", "line_number": 71, "usage_type": "call" }, { "api_name": "icon_path.icon_path", "line_number": 71, "usage_type": "call" }, { "api_name": "Tkinter.Button", "line_number": 72, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 74, "usage_type": "attribute" }, { "api_name": "colors.ACTIVEBACKGROUND", "line_number": 75, "usage_type": "attribute" }, { "api_name": "Tkinter.LEFT", "line_number": 77, "usage_type": "attribute" }, { "api_name": "tooltip.Tooltip", "line_number": 78, "usage_type": "call" }, { "api_name": "Tkinter.PhotoImage", "line_number": 81, "usage_type": "call" }, { "api_name": "icon_path.icon_path", "line_number": 81, "usage_type": "call" }, { "api_name": "Tkinter.Button", "line_number": 83, "usage_type": "call" }, { "api_name": "colors.BACKGROUND", "line_number": 86, "usage_type": "attribute" }, { "api_name": "colors.ACTIVEBACKGROUND", "line_number": 87, "usage_type": "attribute" }, { "api_name": "Tkinter.LEFT", "line_number": 89, "usage_type": "attribute" }, { "api_name": "tooltip.Tooltip", "line_number": 90, "usage_type": "call" }, { "api_name": "info.VERSION", "line_number": 90, "usage_type": "attribute" }, { "api_name": "open_window.OpenWindow", "line_number": 94, "usage_type": "call" }, { "api_name": "ingest_window.IngestWindow", "line_number": 100, "usage_type": "call" }, { "api_name": "scan_media_window.ScanMediaWindow", "line_number": 104, "usage_type": "call" }, { "api_name": "info_window.InfoWindow", "line_number": 108, "usage_type": "call" } ]
71765759867
""" REPSVM Agresores v3, esquemas de pydantic """ from pydantic import BaseModel from lib.schemas_base import OneBaseOut class RepsvmAgresorOut(BaseModel): """Esquema para entregar agresores""" id: int | None distrito_id: int | None distrito_clave: str | None distrito_nombre: str | None distrito_nombre_corto: str | None consecutivo: int | None delito_generico: str | None delito_especifico: str | None nombre: str | None numero_causa: str | None pena_impuesta: str | None observaciones: str | None sentencia_url: str | None tipo_juzgado: str | None tipo_sentencia: str | None class Config: """SQLAlchemy config""" orm_mode = True class OneRepsvmAgresorOut(RepsvmAgresorOut, OneBaseOut): """Esquema para entregar un agresor"""
PJECZ/pjecz-plataforma-web-api-new
plataforma_web/v3/repsvm_agresores/schemas.py
schemas.py
py
824
python
es
code
0
github-code
6
[ { "api_name": "pydantic.BaseModel", "line_number": 9, "usage_type": "name" }, { "api_name": "lib.schemas_base.OneBaseOut", "line_number": 34, "usage_type": "name" } ]
7047537895
# import cv2 # # videoCapture = cv2.VideoCapture("/home/haoyu/yuhao_video/a827.avi") # # # # fps = videoCapture.get() # # size = (int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)), # # int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT))) # # # # # videoWriter = cv2.VideoWriter('./data/video_plane.avi',) # # print(111) # # success, frame = videoCapture.read() # num=0 # while 1: # # cv2.imshow("Oto Video", frame) # # # cv2.waitKey(1000 / int(fps)) # # # videoWriter.write(frame) # # # # cv2.imshow("imgs", frame) # # cv2.waitKey(1) # # # videoWriter.write(frame) # # # if num%2==0: # # cv2.imwrite('./imgs/{0}.jpg'.format(num), frame) # num+=1 # success, frame = videoCapture.read() # # import tensorflow as tf import matplotlib.pyplot as plt import time import PIL.Image as Image import numpy as np import os label_to_colours = {0: [0, 0,0], 1: [128,0,0], 2: [ 0 ,28 ,0 ], 3: [128 ,128 ,0 ] } # def class_to_img(input): new_tensor = input[:, :, :, [0]] # new_tensor=np.expand_dims(new_tensor,axis=-1) image_rgb = np.repeat(new_tensor, 3, axis=-1) for num in range(len(input)): shape=np.shape(input[num]) for i in range(shape[0]): for j in range(shape[1]): cls_max=np.argmax(input[num][i][j] ,axis=0) image_rgb[num][i][j]=label_to_colours[cls_max] # print(cls_max) return image_rgb # detector = Detector()0006 # path = "/home/haoyu/data_tracking_image_2/testing/image_02/0014" path = "/home/llye/Desktop/imgcrop-ok/"#数据集合的目录 # path="../imgs22" all_abs = [] for img_name in os.listdir(path): abs_img = os.path.join(path, img_name) all_abs.append(abs_img) sort_abs_imgs = np.sort(all_abs) print(sort_abs_imgs) num = 0 globals_imgs_np=[] for one_img in sort_abs_imgs: with Image.open(one_img) as im: num += 1 print(num) #################尺寸变换 image_resize = im.resize((128, 128)) im_np = np.array(image_resize) globals_imgs_np.append(im_np) f, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) plt.ion() with tf.Graph().as_default(): output_graph_def = tf.GraphDef() # output_graph_path = "../pb/road_old.pb" output_graph_path = "./lights_4cls.pb" # output_graph_path = "./road_t_bn_5w.pb" # output_graph_path = 'netsmodel/combined_modelok_pnet.pb' # 这里是你保存的文件的位置 with open(output_graph_path, "rb") as f: output_graph_def.ParseFromString(f.read()) tf.import_graph_def(output_graph_def, name="") # with tf.Session() as sess: with tf.Session().as_default() as sess: # print(a.eval()) # print(b.eval(session=sess)) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) input_x = sess.graph.get_tensor_by_name("Placeholder:0") # output = sess.graph.get_tensor_by_name("generator/BatchNorm_16/FusedBatchNorm:0") output = sess.graph.get_tensor_by_name("generator/add_10:0") # 这个是你保存文件的名字,取0是tensor # 输出的时候的名字 # for im_np in globals_imgs_np: # print(im_np) # # plt.clf() # a = time.time() # # pre_img = sess.run(output, {input_x: [np.array(image) / 255 - 0.5]}) # pre_img = sess.run(output, {input_x: [im_np/255-0.5]}) # # # ccc = np.argmax(pre_img[0], axis=2) # aaa = time.time() # # ddd=np.multiply(im_np[:,:,2], ccc) # # image = im_np # ax2.imshow(ddd.astype(np.uint8)) # ax1.imshow(im_np.astype(np.uint8)) # plt.pause(0.02) # img1=ax1.imshow(im_np.astype(np.uint8)) # img2=ax2.imshow(im_np.astype(np.uint8)) num=0 for im_np in globals_imgs_np[0:]: # print(im_np) # plt.clf() a = time.time() # pre_img = sess.run(output, {input_x: [np.array(image) / 255 - 0.5]}) aa=time.time() pre_img = sess.run(output, {input_x: [im_np/255-0.5]}) print(time.time()-aa) # output.eval(session=sess,input_x: [im_np/255-0.5]) ccc = np.argmax(pre_img, axis=1) aaa = time.time() print(pre_img) num+=1 if ccc==0: print("...............红色......................................") r_img=Image.fromarray(np.uint8(im_np)) r_img.save("/home/llye/Desktop/red/{0}.jpg".format(num)) if ccc==1: print(".................................绿色.........................................") r_img = Image.fromarray(np.uint8(im_np)) r_img.save("/home/llye/Desktop/green/{0}.jpg".format(num)) if ccc==2: print("....................................................黄色......................................") r_img = Image.fromarray(np.uint8(im_np)) r_img.save("/home/llye/Desktop/yellow/{0}.jpg".format(num)) if ccc == 3: print("..........................................................................................") r_img = Image.fromarray(np.uint8(im_np)) r_img.save("/home/llye/Desktop/other/{0}.jpg".format(num)) # ddd=np.multiply(im_np[:,:,2], ccc) # image = im_np # ax2.imshow(ddd.astype(np.uint8)) # ax1.imshow(im_np.astype(np.uint8)) # img1.set_data(im_np.astype(np.uint8)) # img2.set_data(ddd.astype(np.uint8)) # plt.pause(2) plt.clf() # import cv2 # # cap = cv2.VideoCapture("./2222.mp4") # print(cap) # # # success, photo = cap.read() # print(photo) # while True: # # cv2.waitKey(1) # # # # photo = cv2.resize(photo, (256, 540), fx=0.5, fy=0.5) # # print(np.shape(photo)) # # aaa=pnet_detect(photo) # # b, g, r = cv2.split(photo) # # img = cv2.merge([r, g, b]) # # im = Image.fromarray(img, "RGB") # # # boxes = detector.detect(im) # # for box in boxes: # # x1 = int(box[0]) # # y1 = int(box[1]) # # x2 = int(box[2]) # # y2 = int(box[3]) # # w = x2 - x1 # # h = y2 - y1 # # cv2.rectangle(photo, (x1, y1), (x2, y2), (0, 0, 255), 1) # # cv2.imshow("capture", photo) # success, photo = cap.read() # if cv2.waitKey(100) & 0xFF == ord('q'): # break
ylltest/myscripts-github
traffic_lights/new_pil_pd.py
new_pil_pd.py
py
6,966
python
en
code
0
github-code
6
[ { "api_name": "numpy.repeat", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 52, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "numpy.sort", "line_number": 68, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 75, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 75, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" }, { "api_name": "tensorflow.Graph", "line_number": 87, "usage_type": "call" }, { "api_name": "tensorflow.GraphDef", "line_number": 88, "usage_type": "call" }, { "api_name": "tensorflow.import_graph_def", "line_number": 96, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 100, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 104, "usage_type": "call" }, { "api_name": "tensorflow.train.Coordinator", "line_number": 105, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 105, "usage_type": "attribute" }, { "api_name": "tensorflow.train.start_queue_runners", "line_number": 106, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 106, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 134, "usage_type": "call" }, { "api_name": "time.time", "line_number": 136, "usage_type": "call" }, { "api_name": "time.time", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 142, "usage_type": "call" }, { "api_name": "time.time", "line_number": 143, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 148, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 148, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 148, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 152, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 152, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 152, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 156, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 156, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 156, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 160, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 160, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 160, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 171, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 171, "usage_type": "name" } ]
9304520532
from rest_framework.generics import GenericAPIView from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.permissions import BasePermission from rest_framework import status from game.serializers import GameSerializer, TileSerializer, NextMoveSerializer from game.models import Tile, Game from game.node import Node from game.algorithm import Minimax from game.heuristics import HeuristicSimpleTreat from game.rules import GameRules from game.analyzer import Analyzer from game.internal_types import TileXY class TilePermission(BasePermission): def has_permission(self, request, view) -> bool: serializer = TileSerializer(data=request.data) serializer.is_valid(raise_exception=True) game = Game.objects.get(pk=serializer.data["game_id"]) player = serializer.data["player"] node = Node.from_game(game, player) return GameRules().check_open_threes(node, TileXY.from_dict(serializer.data)) class GameView(GenericAPIView): serializer_class = GameSerializer def post(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status.HTTP_201_CREATED) class TileView(GenericAPIView): serializer_class = TileSerializer permission_classes = (TilePermission,) @staticmethod def _delete_tiles_by_captures(game, player, captures): for capture in captures: Tile.objects.filter(game=game, x_coordinate=capture[0].x, y_coordinate=capture[0].y).delete() Tile.objects.filter(game=game, x_coordinate=capture[1].x, y_coordinate=capture[1].y).delete() if player == game.player_1: game.captures_o += 1 game.save() elif player == game.player_2: game.captures_x += 1 game.save() def post(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) tile = serializer.save() game = tile.game player = game.player_1 if tile.player == game.player_2 else game.player_2 node = Node.from_game(game=game, player=player) captures = node.find_captures_to_delete(tile_xy=TileXY.from_serializer(tile)) node.update_from_captures(captures) self._delete_tiles_by_captures(game, player, captures) winner = GameRules().deeper_winner_check(node) tiles = Tile.objects.filter(game=tile.game) tiles_serializer = self.serializer_class(instance=tiles, many=True) return Response( { "tiles": tiles_serializer.data, "captures": { 'x': game.captures_x, 'o': game.captures_o, }, "winner": winner, }, status.HTTP_201_CREATED, ) class NextMoveView(APIView): serializer_class = NextMoveSerializer def get(self, request, game_id: int, player: str): # TODO: validate if it is this user turn serializer = self.serializer_class(data={"game": game_id, "player": player}) serializer.is_valid(raise_exception=True) game = Game.objects.get(pk=game_id) Analyzer.refresh() value, chosen_node = self._get_move(game, player) # self._print_logs(value, chosen_node) return Response( { 'coordinates': chosen_node.new_move if chosen_node else (9, 9), 'time': Analyzer.get(Analyzer.ALL_TIME), }, status.HTTP_200_OK ) @Analyzer.update_time(Analyzer.ALL_TIME) def _get_move(self, game, player): node = Node.from_game(game, player) minimax = Minimax(HeuristicSimpleTreat()) value, chosen_node = minimax.calculate_minimax(node, 2) self._print_logs(value, node) return value, chosen_node @staticmethod def _print_logs(value: float, node: Node): if not node: return # node.print_children(0) Analyzer.print_results() print(value)
earlyche/gomoku
backend/game/views.py
views.py
py
4,210
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.permissions.BasePermission", "line_number": 17, "usage_type": "name" }, { "api_name": "game.serializers.TileSerializer", "line_number": 19, "usage_type": "call" }, { "api_name": "game.serializers", "line_number": 22, "usage_type": "name" }, { "api_name": "game.models.Game.objects.get", "line_number": 22, "usage_type": "call" }, { "api_name": "game.models.Game.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "game.models.Game", "line_number": 22, "usage_type": "name" }, { "api_name": "game.node.Node.from_game", "line_number": 24, "usage_type": "call" }, { "api_name": "game.serializers", "line_number": 24, "usage_type": "argument" }, { "api_name": "game.node.Node", "line_number": 24, "usage_type": "name" }, { "api_name": "game.rules.GameRules", "line_number": 26, "usage_type": "call" }, { "api_name": "game.internal_types.TileXY.from_dict", "line_number": 26, "usage_type": "call" }, { "api_name": "game.internal_types.TileXY", "line_number": 26, "usage_type": "name" }, { "api_name": "rest_framework.generics.GenericAPIView", "line_number": 29, "usage_type": "name" }, { "api_name": "game.serializers.GameSerializer", "line_number": 30, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 37, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 37, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 37, "usage_type": "name" }, { "api_name": "rest_framework.generics.GenericAPIView", "line_number": 40, "usage_type": "name" }, { "api_name": "game.serializers.TileSerializer", "line_number": 41, "usage_type": "name" }, { "api_name": "game.models.Tile.objects.filter", "line_number": 47, "usage_type": "call" }, { "api_name": "game.models.Tile.objects", "line_number": 47, "usage_type": "attribute" }, { "api_name": "game.models.Tile", "line_number": 47, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 47, "usage_type": "name" }, { "api_name": "game.models.Tile.objects.filter", "line_number": 48, "usage_type": "call" }, { "api_name": "game.models.Tile.objects", "line_number": 48, "usage_type": "attribute" }, { "api_name": "game.models.Tile", "line_number": 48, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 48, "usage_type": "name" }, { "api_name": "game.serializers.player_1", "line_number": 50, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 50, "usage_type": "name" }, { "api_name": "game.serializers.captures_o", "line_number": 51, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 51, "usage_type": "name" }, { "api_name": "game.serializers.save", "line_number": 52, "usage_type": "call" }, { "api_name": "game.serializers", "line_number": 52, "usage_type": "name" }, { "api_name": "game.serializers.player_2", "line_number": 53, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 53, "usage_type": "name" }, { "api_name": "game.serializers.captures_x", "line_number": 54, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 54, "usage_type": "name" }, { "api_name": "game.serializers.save", "line_number": 55, "usage_type": "call" }, { "api_name": "game.serializers", "line_number": 55, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 61, "usage_type": "name" }, { "api_name": "game.serializers.player_2", "line_number": 62, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 62, "usage_type": "name" }, { "api_name": "game.serializers.player_1", "line_number": 62, "usage_type": "attribute" }, { "api_name": "game.node.Node.from_game", "line_number": 63, "usage_type": "call" }, { "api_name": "game.node.Node", "line_number": 63, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 63, "usage_type": "name" }, { "api_name": "game.internal_types.TileXY.from_serializer", "line_number": 65, "usage_type": "call" }, { "api_name": "game.internal_types.TileXY", "line_number": 65, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 67, "usage_type": "argument" }, { "api_name": "game.rules.GameRules", "line_number": 69, "usage_type": "call" }, { "api_name": "game.models.Tile.objects.filter", "line_number": 71, "usage_type": "call" }, { "api_name": "game.models.Tile.objects", "line_number": 71, "usage_type": "attribute" }, { "api_name": "game.models.Tile", "line_number": 71, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 73, "usage_type": "call" }, { "api_name": "game.serializers.captures_x", "line_number": 77, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 77, "usage_type": "name" }, { "api_name": "game.serializers.captures_o", "line_number": 78, "usage_type": "attribute" }, { "api_name": "game.serializers", "line_number": 78, "usage_type": "name" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 82, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 82, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 86, "usage_type": "name" }, { "api_name": "game.serializers.NextMoveSerializer", "line_number": 87, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 92, "usage_type": "name" }, { "api_name": "game.models.Game.objects.get", "line_number": 92, "usage_type": "call" }, { "api_name": "game.models.Game.objects", "line_number": 92, "usage_type": "attribute" }, { "api_name": "game.models.Game", "line_number": 92, "usage_type": "name" }, { "api_name": "game.analyzer.Analyzer.refresh", "line_number": 94, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer", "line_number": 94, "usage_type": "name" }, { "api_name": "game.serializers", "line_number": 95, "usage_type": "argument" }, { "api_name": "rest_framework.response.Response", "line_number": 98, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer.get", "line_number": 101, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer", "line_number": 101, "usage_type": "name" }, { "api_name": "game.analyzer.Analyzer.ALL_TIME", "line_number": 101, "usage_type": "attribute" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 103, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 103, "usage_type": "name" }, { "api_name": "game.node.Node.from_game", "line_number": 108, "usage_type": "call" }, { "api_name": "game.serializers", "line_number": 108, "usage_type": "argument" }, { "api_name": "game.node.Node", "line_number": 108, "usage_type": "name" }, { "api_name": "game.algorithm.Minimax", "line_number": 109, "usage_type": "call" }, { "api_name": "game.heuristics.HeuristicSimpleTreat", "line_number": 109, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer.update_time", "line_number": 106, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer", "line_number": 106, "usage_type": "name" }, { "api_name": "game.analyzer.Analyzer.ALL_TIME", "line_number": 106, "usage_type": "attribute" }, { "api_name": "game.node.Node", "line_number": 115, "usage_type": "name" }, { "api_name": "game.analyzer.Analyzer.print_results", "line_number": 119, "usage_type": "call" }, { "api_name": "game.analyzer.Analyzer", "line_number": 119, "usage_type": "name" } ]
1826616432
import cv2 import matplotlib.pyplot as plt import numpy as np from skimage.measure import label from skimage.io import imread, imshow def read_image(url): imagem = cv2.cvtColor(imread(url), cv2.COLOR_RGB2HSV) return imagem def apply_mask(imagem): x = imagem.shape[0] y = imagem.shape[1] mask = np.zeros((x+1,y+1)) for i in range(0,x): for j in range(0,y): h,s,v = imagem[i,j,:] if (0 <= h <= 20) and (25 <= s <= 180): mask[i,j] = 1 return mask,x,y def opening_closing(mask): kernel = np.ones((18,18),np.uint8) opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel) return closing def label_image(closing,x,y): label_image = label(closing) flat_label_image = label_image.flatten() # Número de regiões num_regioes = max(flat_label_image) regioes_dict = {} # não leva em conta os que tem indice 0 for i in range(1,int(num_regioes)+1): regioes_dict[str(i)] = len(np.where(flat_label_image == i)[0]) lista_chaves = list(regioes_dict.keys()) lista_valores = list(regioes_dict.values()) position = lista_valores.index(max(lista_valores)) maior_regiao_indice = lista_chaves[position] area_imagem = x*y area_regiao = regioes_dict[maior_regiao_indice] porcentagem_ocupada = (area_regiao/area_imagem)*100 return num_regioes,porcentagem_ocupada
EricaFer/Nudity-Detection
utils/preprocessing.py
preprocessing.py
py
1,487
python
pt
code
0
github-code
6
[ { "api_name": "cv2.cvtColor", "line_number": 8, "usage_type": "call" }, { "api_name": "skimage.io.imread", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2HSV", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 29, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.MORPH_OPEN", "line_number": 30, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.MORPH_CLOSE", "line_number": 31, "usage_type": "attribute" }, { "api_name": "skimage.measure.label", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 48, "usage_type": "call" } ]
43449602370
#!/usr/bin/env python3 import re import json import urllib.request import pymysql.cursors def ipToCountry(ip): url = 'http://api.ipstack.com/' + ip + '?access_key=dfe38edcd4541577119d91e7053a584a' data = urllib.request.urlopen(url).read().decode("utf-8") json_data = json.loads(data) if not json_data['country_name'] is None: return json_data['country_name'] return 'none' f = open('logs.txt', 'r') #f = open('logs_lite.txt', 'r') users = {} product_categories = [] carts = {} types_action = [] actions = [] users_cart_pay = [] users_products = {} print("Processed rows:") i = 1 for line in f: date = re.search(r'\d{4}-\d{2}-\d{2}', line).group(0) time = re.search(r'\d{2}:\d{2}:\d{2}', line).group(0) action_name = re.search(r'\[\w{8}\]', line).group(0)[1:-1] ip = re.search(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', line).group(0) buf = re.search(r'(ttom.com).+', line).group(0) user_action = re.sub(r'(ttom.com/)', '', buf) type_action = 'none' action = {} action['category'] = 'none' if not ip in users: users[ip] = ipToCountry(ip) users_products[ip] = [] if not user_action or re.match(r'pay\?', user_action): type_action = "other" elif re.match(r'cart\?', user_action): type_action = "cart" buf = re.search(r'(cart_id=).+', user_action).group(0) cart_id = re.sub(r'(cart_id=)', '', buf) if not cart_id in carts: carts[cart_id] = 0 user_cart_pay = {} user_cart_pay['user_cart'] = users_products.pop(ip) user_cart_pay['cart_id'] = cart_id user_cart_pay['ip'] = ip users_cart_pay.append(user_cart_pay) elif re.match(r'success_pay_', user_action): type_action = "success_pay" buf = re.search(r'(success_pay_).+', user_action).group(0) cart_id = re.sub(r'(success_pay_)', '', buf)[:-1] carts[cart_id] = 1 elif user_action.count('/') is 1: type_action = "category" category = user_action[:-1] if not category in product_categories: product_categories.append(category) action['category'] = category elif user_action.count('/') is 2: type_action = "product" category = re.split(r'/', user_action)[0] if not category in product_categories: product_categories.append(category) if not ip in users_products: users_products[ip] = [] if not category in users_products[ip]: users_products[ip].append(action_name) action['category'] = category if not type_action in types_action: types_action.append(type_action) action['date'] = date action['time'] = time action['ip'] = ip action['type_action'] = type_action action['name'] = action_name actions.append(action) print('Read row #: ' + format(i)) i = i + 1 f.close() connection = pymysql.connect(host='localhost', user='root', password='', db='logs', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) try: print("Table 'user': Adding data ...") i = 1 with connection.cursor() as cursor: for key, value in users.items() : try: sql = "INSERT INTO `user` (`ip`, `country`) VALUES (%s, %s)" cursor.execute(sql, (key, value)) connection.commit() print("Table 'user': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'user': Success!") print("Table 'product_category': Adding data...") i = 1 with connection.cursor() as cursor: for value in product_categories : try: sql = "INSERT INTO `product_category` (`name`) VALUES (%s)" cursor.execute(sql, (value)) connection.commit() print("Table 'product_category': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'product_category': Success!") print("Table 'action_type': Adding data...") i = 1 with connection.cursor() as cursor: for value in types_action : try: sql = "INSERT INTO `action_type` (`name`) VALUES (%s)" cursor.execute(sql, (value)) connection.commit() print("Table 'action_type': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'action_type': Success!") print("Table 'cart': Adding data...") i = 1 with connection.cursor() as cursor: for key, value in carts.items() : try: sql = "INSERT INTO `cart` (`id_cart`, `success_pay_flag`) VALUES (%s, %s)" if value is 1: cursor.execute(sql, (key, '1')) else : cursor.execute(sql, (key, '0')) connection.commit() print("Table 'cart': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'cart': Success!") print("Table 'action': Adding data...") i = 1 with connection.cursor() as cursor: for action in actions : sql = "SELECT `id` FROM `user` WHERE `ip`=%s" cursor.execute(sql, (action['ip'])) _user = cursor.fetchone()['id'] sql = "SELECT `id` FROM `action_type` WHERE `name`=%s" cursor.execute(sql, (action['type_action'])) _action_type = cursor.fetchone()['id'] _product_category = 'none' if not action['category'] is 'none' : sql = "SELECT `id` FROM `product_category` WHERE `name`=%s" cursor.execute(sql, (action['category'])) _product_category = cursor.fetchone()['id'] try: if not _product_category is 'none' : sql = "INSERT INTO `action` (`datetime`, `user` , `action_type` , `product_category` , `name`) VALUES (%s, %s, %s, %s, %s)" cursor.execute(sql, (action['date'] + ' ' + action['time'], _user, _action_type, _product_category, action['name'])) else : sql = "INSERT INTO `action` (`datetime`, `user` , `action_type` , `name`) VALUES (%s, %s, %s, %s)" cursor.execute(sql, (action['date'] + ' ' + action['time'], _user, _action_type, action['name'])) connection.commit() print("Table 'action': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'action': Success!") print("Table 'cart_to_user': Adding data...") i = 1 with connection.cursor() as cursor: for value in users_cart_pay : sql = "SELECT `id` FROM `user` WHERE `ip`=%s" cursor.execute(sql, (value['ip'])) _user = cursor.fetchone()['id'] sql = "SELECT `id` FROM `cart` WHERE `id_cart`=%s" cursor.execute(sql, (value['cart_id'])) _cart = cursor.fetchone()['id'] for action_name in value['user_cart'] : sql = "SELECT `id` FROM `action` WHERE `name`=%s" cursor.execute(sql, (action_name)) _action = cursor.fetchone()['id'] try: sql = "INSERT INTO `cart_to_user` (`user`, `cart`, `action`) VALUES (%s, %s, %s)" cursor.execute(sql, (_user, _cart, _action)) connection.commit() print("Table 'cart_to_user': Inserted row #: " + format(i)) i = i + 1 except pymysql.err.IntegrityError as err: if 'Duplicate entry' in format(err) : print("Warning: Duplicate: {}".format(err)) else : raise pymysql.err.IntegrityError(err) print("Table 'cart_to_user': Success!") finally: connection.close()
VadimAspirin/usml
back/log_mapper.py
log_mapper.py
py
9,005
python
en
code
0
github-code
6
[ { "api_name": "urllib.request.request.urlopen", "line_number": 10, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 10, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 10, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 11, "usage_type": "call" }, { "api_name": "re.search", "line_number": 31, "usage_type": "call" }, { "api_name": "re.search", "line_number": 32, "usage_type": "call" }, { "api_name": "re.search", "line_number": 33, "usage_type": "call" }, { "api_name": "re.search", "line_number": 34, "usage_type": "call" }, { "api_name": "re.search", "line_number": 35, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 36, "usage_type": "call" }, { "api_name": "re.match", "line_number": 45, "usage_type": "call" }, { "api_name": "re.match", "line_number": 48, "usage_type": "call" }, { "api_name": "re.search", "line_number": 50, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 51, "usage_type": "call" }, { "api_name": "re.match", "line_number": 60, "usage_type": "call" }, { "api_name": "re.search", "line_number": 62, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 63, "usage_type": "call" }, { "api_name": "re.split", "line_number": 75, "usage_type": "call" }, { "api_name": "pymysql.cursors.connect", "line_number": 102, "usage_type": "call" }, { "api_name": "pymysql.cursors", "line_number": 102, "usage_type": "name" }, { "api_name": "pymysql.cursors.cursors", "line_number": 107, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 107, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 121, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 121, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 125, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 125, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 125, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 138, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 138, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 142, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 142, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 142, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 155, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 155, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 159, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 159, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 159, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 175, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 175, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 179, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 179, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 179, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 210, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 210, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 214, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 214, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 214, "usage_type": "name" }, { "api_name": "pymysql.cursors.err", "line_number": 240, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 240, "usage_type": "name" }, { "api_name": "pymysql.cursors.err.IntegrityError", "line_number": 244, "usage_type": "call" }, { "api_name": "pymysql.cursors.err", "line_number": 244, "usage_type": "attribute" }, { "api_name": "pymysql.cursors", "line_number": 244, "usage_type": "name" } ]
29572346979
from __future__ import annotations from typing import TYPE_CHECKING, Any, Literal from transformers import AutoTokenizer from partial_tagger.data.collators import TransformerCollator from partial_tagger.encoders.transformer import ( TransformerModelEncoderFactory, TransformerModelWithHeadEncoderFactory, ) from partial_tagger.training import Trainer if TYPE_CHECKING: from partial_tagger.encoders.base import BaseEncoderFactory def create_trainer( model_name: str = "roberta-base", dropout: float = 0.2, tokenizer_args: dict[str, Any] | None = None, encoder_type: Literal["default", "with_head"] = "default", ) -> Trainer: """Creates an instance of Trainer.""" encoder_factory: BaseEncoderFactory if encoder_type == "default": encoder_factory = TransformerModelEncoderFactory(model_name, dropout) elif encoder_type == "with_head": encoder_factory = TransformerModelWithHeadEncoderFactory(model_name, dropout) else: raise ValueError(f"{encoder_type} is not supported.") collator = TransformerCollator( AutoTokenizer.from_pretrained(model_name), tokenizer_args ) return Trainer(collator=collator, encoder_factory=encoder_factory)
yasufumy/pytorch-partial-tagger
src/partial_tagger/utils.py
utils.py
py
1,230
python
en
code
1
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 14, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 21, "usage_type": "name" }, { "api_name": "typing.Literal", "line_number": 22, "usage_type": "name" }, { "api_name": "partial_tagger.encoders.base.BaseEncoderFactory", "line_number": 26, "usage_type": "name" }, { "api_name": "partial_tagger.encoders.transformer.TransformerModelEncoderFactory", "line_number": 29, "usage_type": "call" }, { "api_name": "partial_tagger.encoders.transformer.TransformerModelWithHeadEncoderFactory", "line_number": 31, "usage_type": "call" }, { "api_name": "partial_tagger.data.collators.TransformerCollator", "line_number": 35, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 36, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 36, "usage_type": "name" }, { "api_name": "partial_tagger.training.Trainer", "line_number": 38, "usage_type": "call" }, { "api_name": "partial_tagger.training.Trainer", "line_number": 23, "usage_type": "name" } ]
70205052348
import os import argparse import sys import warnings from pathlib import Path warnings.filterwarnings('ignore') import torch import torchvision as tv import pytorch_lightning as pl import webdataset as wds from resnet_sagemaker.models import ResNet from resnet_sagemaker.callbacks import PlSageMakerLogger, ProfilerCallback import torch.distributed as dist from apex.parallel import DistributedDataParallel as DDP local_rank = int(os.environ.get("LOCAL_RANK", 0)) world_size = int(os.environ.get("WORLD_SIZE", 1)) torch.cuda.set_device(local_rank) if world_size>1: dist.init_process_group( backend="nccl", init_method="env://", ) def parse_args(): cmdline = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) cmdline.add_argument('--train_file_dir', default='/opt/ml/input/data/train/', help="""Path to dataset in WebDataset format.""") cmdline.add_argument('--validation_file_dir', default='/opt/ml/input/data/validation/', help="""Path to dataset in WebDataset format.""") cmdline.add_argument('--max_epochs', default=20, type=int, help="""Number of epochs.""") cmdline.add_argument('--num_classes', default=1000, type=int, help="""Number of classes.""") cmdline.add_argument('--resnet_version', default=50, type=int, help="""Resnet version.""") cmdline.add_argument('-lr', '--learning_rate', default=1e-2, type=float, help="""Base learning rate.""") cmdline.add_argument('-b', '--batch_size', default=128, type=int, help="""Size of each minibatch per GPU""") cmdline.add_argument('--warmup_epochs', default=1, type=int, help="""Number of epochs for learning rate warmup""") cmdline.add_argument('--mixup_alpha', default=0.1, type=float, help="""Extent of convex combination for training mixup""") cmdline.add_argument('--optimizer', default='adamw', type=str, help="""Optimizer type""") cmdline.add_argument('--amp_backend', default='apex', type=str, help="""Mixed precision backend""") cmdline.add_argument('--amp_level', default='O2', type=str, help="""Mixed precision level""") cmdline.add_argument('--precision', default=16, type=int, help="""Floating point precision""") cmdline.add_argument('--profiler_start', default=128, type=int, help="""Profiler start step""") cmdline.add_argument('--profiler_steps', default=32, type=int, help="""Profiler steps""") cmdline.add_argument('--dataloader_workers', default=4, type=int, help="""Number of data loaders""") cmdline.add_argument('--profiler_type', default='smppy', type=str, help="""Profiler type""") return cmdline def main(ARGS): train_s3_loc = 'pipe:aws s3 cp {0}train_{{{1:04d}..{2:04d}}}.tar -'.format(ARGS.train_file_dir, 0, 2047) val_s3_loc = 'pipe:aws s3 cp {0}val_{{{1:04d}..{2:04d}}}.tar -'.format(ARGS.validation_file_dir, 0, 127) model_params = {'num_classes': ARGS.num_classes, 'resnet_version': ARGS.resnet_version, 'train_path': train_s3_loc, 'val_path': val_s3_loc, 'optimizer': ARGS.optimizer, 'lr': ARGS.learning_rate, 'batch_size': ARGS.batch_size, 'dataloader_workers': ARGS.dataloader_workers, 'max_epochs': ARGS.max_epochs, 'warmup_epochs': ARGS.warmup_epochs, 'mixup_alpha': ARGS.mixup_alpha, } trainer_params = {'gpus': [int(os.environ.get("LOCAL_RANK", 0))], 'max_epochs': ARGS.max_epochs, 'amp_backend': ARGS.amp_backend, 'amp_level': ARGS.amp_level, 'precision': ARGS.precision, 'progress_bar_refresh_rate': 0, 'logger': pl.loggers.TensorBoardLogger('logs/'), 'callbacks': [PlSageMakerLogger(), ProfilerCallback(start_step=ARGS.profiler_start, num_steps=ARGS.profiler_steps, output_dir='logs/profiling/', profiler_type=ARGS.profiler_type)] } model = ResNet(**model_params) trainer = pl.Trainer(**trainer_params) trainer.fit(model) if __name__=='__main__': cmdline = parse_args() ARGS, unknown_args = cmdline.parse_known_args() main(ARGS)
johnbensnyder/resnet-sagemaker
pytorch/train.py
train.py
py
4,937
python
en
code
2
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 6, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 18, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 19, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "torch.cuda.set_device", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 20, "usage_type": "attribute" }, { "api_name": "torch.distributed.init_process_group", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.distributed", "line_number": 23, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 28, "usage_type": "call" }, { "api_name": "argparse.ArgumentDefaultsHelpFormatter", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 85, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 85, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.loggers.TensorBoardLogger", "line_number": 91, "usage_type": "call" }, { "api_name": "pytorch_lightning.loggers", "line_number": 91, "usage_type": "attribute" }, { "api_name": "resnet_sagemaker.callbacks.PlSageMakerLogger", "line_number": 92, "usage_type": "call" }, { "api_name": "resnet_sagemaker.callbacks.ProfilerCallback", "line_number": 93, "usage_type": "call" }, { "api_name": "resnet_sagemaker.models.ResNet", "line_number": 99, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 100, "usage_type": "call" } ]
11946226959
import sys, os, urllib.request, urllib.error, urllib.parse, logging, pwd import subprocess, site, cgi, datetime, threading, copy, json import uuid, time, re from html import escape # ***MUST COME before `from lxml import html`!*** from collections import defaultdict, OrderedDict from lxml import html from lxml.html import builder from http.cookies import SimpleCookie logging.basicConfig( level=logging.DEBUG if __debug__ else logging.INFO, format='%(asctime)s:%(levelname)s:%(name)s:%(message)s') LOCK = threading.Lock() try: # command-line testing won't have module available import uwsgi #logging.debug('uwsgi: %s', dir(uwsgi)) except ImportError: uwsgi = type('uwsgi', (), {'opt': {}}) # object with empty opt attribute uwsgi.lock = LOCK.acquire uwsgi.unlock = LOCK.release #logging.debug('uwsgi.opt: %s', repr(uwsgi.opt)) #logging.debug('sys.argv: %s', sys.argv) # only shows [uwsgi] # 2017-12-28 set `chdir` option in pyturn.uwsgi so now PWD should be correct #logging.debug('current working directory: %s', os.path.abspath('.')) # was '/' # so we can see that sys.argv is useless for uwsgi operation THISDIR = os.path.dirname(uwsgi.opt.get('wsgi-file', b'').decode()) if THISDIR and os.getcwd() != THISDIR: logging.warning('having to chdir from %s to %s', os.getcwd(), THISDIR) os.chdir(THISDIR) else: logging.warning('THISDIR: %s, os.getcwd(): %s', THISDIR, os.getcwd()) APPDIR = (uwsgi.opt.get('check_static', b'').decode() or os.path.join(THISDIR, 'html')) MIMETYPES = {'png': 'image/png', 'ico': 'image/x-icon', 'jpg': 'image/jpeg', 'jpeg': 'image/jpeg',} DATA = { 'groups': {}, # active groups 'finished': {}, # inactive groups (for "Report" page) } HTTPSESSIONS = {} # data like username, linked with session keys, goes here EXPECTED_ERRORS = ( NotImplementedError, ValueError, KeyError, IndexError, SystemError, ) PARSED = html.parse(os.path.join(APPDIR, 'index.html')).getroot() PAGE = html.tostring(PARSED.getroottree()) DEBUG = ['all'] # populate from querystring # create translation table of illegal characters for groupnames # ":" is used in this program for internal purposes, so disallow that # "/" cannot be allowed because we create a filename from groupname # otherwise, mostly being permissive ILLEGAL = str.maketrans(dict.fromkeys('''([{:/'"}])''')) def debug(category, *args): ''' log debug code only for given category reduces log size and allows for granular approach to debugging ''' if not __debug__: return elif category in DEBUG: logging.debug(*args) def findpath(env): ''' locate directory where files are stored, and requested file side effect: splits off querystring and stores its debug values in DEBUG NOTE: DEBUG is a global and as such will be affected by any client adding `debug=` args to his querystring. so the net result in debugging will be the union of what all the clients request. ''' start = APPDIR parsed = urllib.parse.urlparse( urllib.parse.unquote(env.get('REQUEST_URI', ''))) if parsed.query: query = urllib.parse.parse_qs(parsed.query or '') DEBUG[:] = list(set(DEBUG) | set(query.get('debug', []))) debug('all', 'findpath: start: %s' % start) path = urllib.parse.unquote(env.get('HTTP_PATH', '')) #debug('all', 'path, attempt 1: %s', path) path = path or parsed.path #debug('all', 'path, attempt 2: %s', path) path = (path or '/').lstrip('/') debug('all', 'findpath: should not be None at this point: "%s"', path) return start, path def loadpage(path, data=None): ''' input template and populate the HTML with data array eventually client-side JavaScript will perform many of these functions. ''' data = data or DATA parsed = html.fromstring(PAGE) postdict = data.get('postdict', {}) debug('load', 'loadpage: postdict: %s', postdict) set_values(parsed, postdict, ['username', 'groupname', 'httpsession_key', 'joined']) if 'groups' in data: groups = populate_grouplist(parsed, data) else: groups = [] debug('load', 'loadpage: groups: %s', groups) # only show load indicator if no path specified; # get rid of meta refresh if path has already been chosen if path == '': debug('load', 'showing load indicator') hide_except('loading', parsed) return html.tostring(parsed).decode() else: for tag in parsed.xpath('//meta[@http-equiv="refresh"]'): tag.getparent().remove(tag) if 'text' in postdict: message = builder.PRE(postdict['text']) parsed.xpath('//div[@id="error-text"]')[0].append(message) debug('load', 'showing error page') hide_except('error', parsed) elif postdict.get('joined'): debug('join', 'found "joined": %s', data['postdict']) group = sanitize(postdict['groupname']) if not group in groups: if not group in data['finished']: debug('all', 'nonexistent group, showing joinform again') hide_except('joinform', parsed) else: create_report(parsed, group, data) debug('all', 'showing report page') hide_except('report', parsed) else: groupdata = data['groups'][group] speaker = select_speaker(group, data) userdata = groupdata['participants'][postdict['username']] remaining = groupdata['talksession']['remaining'] set_text(parsed, ['talksession-speaker'], ['Current speaker is %s' % speaker if speaker else 'Waiting for next speaker']) set_text(parsed, ['talksession-time'], [formatseconds(remaining)]) debug('talk', 'userdata[request]: %.6f', userdata['request']) buttonvalue = 'Cancel request' if userdata['request'] else 'My Turn' debug('talk', 'setting buttonvalue to %s', buttonvalue) set_button(parsed, ['myturn-button'], [buttonvalue]) debug('talk', 'showing talk page') hide_except('talksession', parsed) elif (postdict.get('submit') == 'Join' and postdict.get('username') and postdict.get('group', '') == ''): # some browsers won't return `group` in postdict at all if # selected element is empty (as it is by default in this case) debug('join', 'showing groupform after joinform') hide_except('groupform', parsed) else: debug('load', 'showing joinform by default') hide_except('joinform', parsed) return html.tostring(parsed).decode() def create_report(parsed=None, group=None, data=None, **formatting): ''' show participants with the amount of time each spoke >>> parsed = html.fromstring(""" ... <div id="report-body" class="body"> ... <div id="report-wrapper" class="pagewrapper top"> ... <div id="report-box" class="box"> ... <table> ... <tr><th>Name</th><th>Elapsed Time</th></tr> ... <tr><td>(none)</td><td>00:00:00</td></tr> ... </table> ... </div><!-- box --> ... </div><!-- pagewrapper --> ... </div><!-- body -->""") >>> data = json.loads("""{"finished": {"test": {"groupname": "test", ... "participants": {"jc": {"spoke": 48.5}, "Ed": {"spoke": 3.25}}}}}""") >>> formatting = {'pretty_print': True, 'with_tail': False} >>> print(create_report(parsed, 'test', data, **formatting).decode('utf8')) <div id="report-body" class="body"> <div id="report-wrapper" class="pagewrapper top"> <div id="report-box" class="box"> <table> <tr> <th>Name</th> <th>Elapsed Time</th> </tr> <tr> <td>jc</td> <td>00:00:48</td> </tr> <tr> <td>Ed</td> <td>00:00:03</td> </tr> </table> </div> <!-- box --> </div> <!-- pagewrapper --> </div> <BLANKLINE> ''' parsed = parsed if parsed is not None else copy.deepcopy(PARSED) data = data or DATA body_div = parsed.xpath('//*[@id="report-body"]')[0] rows = body_div.xpath('.//table/tr') debug('report', 'create_report: rows: %s', rows) template = rows[1] table = template.getparent() table.remove(template) try: participants = data['finished'][group]['participants'] except KeyError as nosuchgroup: logging.warning('No such group %s', nosuchgroup) participants = {} speakers = sorted(participants, key=lambda u: -participants[u]['spoke']) columns = template.xpath('./td') debug('report', 'create_report: speakers: %s', speakers) for speaker in speakers: debug('report', 'adding speaker "%s" to report', speaker) columns[0].text = speaker columns[1].text = formatseconds(participants[speaker]['spoke']) debug('report', 'template now: %s', html.tostring(template)) table.append(html.fromstring(html.tostring(template))) debug('report', 'table now: %s', html.tostring(table)) return html.tostring(body_div, **formatting) def set_text(parsed, idlist, values): ''' pre-set page text ''' debug('all', 'setting values of %s from %s', idlist, values) for index in range(len(idlist)): elementid = idlist[index] value = values[index] element = parsed.xpath('//*[@id="%s"]' % elementid)[0] debug('all', 'before: %s', html.tostring(element)) element.text = value debug('all', 'after: %s', html.tostring(element)) def set_button(parsed, idlist, values): ''' modify button values >>> content = html.fromstring('<div><input id="test" value="Test"></div>') >>> set_button(content, ['test'], ['new value']) >>> content.xpath('//*[@id="test"]')[0].get('value') 'new value' ''' for index in range(len(idlist)): elementid = idlist[index] value = values[index] element = parsed.xpath('//*[@id="%s"]' % elementid)[0] debug('buttons', 'before: %s', html.tostring(element)) element.set('value', value) debug('buttons', 'after: %s', html.tostring(element)) def set_values(parsed, postdict, fieldlist): ''' pre-set form input values from postdict ''' debug('hidden', 'setting values of %s from %s', fieldlist, postdict) for fieldname in fieldlist: value = postdict.get(fieldname, '') if not value: debug('hidden', 'skipping %s, no value found', fieldname) continue elements = parsed.xpath('//input[@name="%s"]' % fieldname) for element in elements: debug('hidden', 'before: %s', html.tostring(element)) element.set('value', value) debug('hidden', 'after: %s', html.tostring(element)) def populate_grouplist(parsed=None, data=None, formatted='list', **options): ''' fill in 'select' element with options for each available group if `formatted` is 'list', just return list of groups, oldest first >>> options = {'pretty_print': True, 'with_tail': False} >>> data = {'groups': {'test': {'timestamp': 0}, 'again': {'timestamp': 1}}} >>> print(populate_grouplist(None, data, 'element', **options)) <select id="group-select" name="group" data-contents=":test:again"> <option value="">(Create new group)</option> <option value="test">test</option> <option value="again" selected>again</option></select> <BLANKLINE> >>> data['groups']['test']['timestamp'] = 2 >>> populate_grouplist(None, data) ['again', 'test'] ''' # sorting a dict gives you a list of keys data = data or DATA session_key = data.get('httpsession_key', None) session = HTTPSESSIONS.get(session_key, {}) added_group = session.get('added_group', None) parsed = parsed if parsed is not None else html.fromstring(PAGE) groups = sorted(data['groups'], key=lambda g: data['groups'][g]['timestamp']) contents = ':'.join([''] + groups) grouplist = parsed.xpath('//select[@name="group"]')[0] debug('grouplist', 'populate_grouplist: %s', grouplist) for group in groups: newgroup = builder.OPTION(group, value=group) grouplist.append(newgroup) # make newest group the "selected" one # except for someone who just created a group, mark *that* one selected for group in grouplist.getchildren(): try: del group.attrib['selected'] except KeyError: pass try: grouplist[grouplist.index(added_group)].set('selected', 'selected') except (KeyError, ValueError, IndexError, TypeError): grouplist[-1].set('selected', 'selected') grouplist.set("data-contents", contents) if formatted == 'list': return groups else: return html.tostring(grouplist, **options).decode() def hide_except(keep, tree): ''' set "display: none" for all sections of the page we don't want to see ''' for page in tree.xpath('//div[@class="body"]'): if not page.get('id').startswith(keep): page.set('style', 'display: none') elif 'style' in page.attrib: del page.attrib['style'] def data_merge(data, cookie): ''' anything missing in data['postdict'] gets set from cookie if found ''' if cookie: if not data['postdict'].get('username'): logging.debug('data_merge: setting username from cookie') data['postdict']['username'] = cookie['username'].value else: logging.debug('data_merge: found username already in postdict') if not data['postdict'].get('http_sessionkey'): logging.debug('data_merge: setting session key from cookie') data['postdict']['http_sessionkey'] = cookie['sessionid'].value else: logging.debug('data_merge: session key already in postdict') else: logging.debug('data_merge: cookie: %r, postdict: %s', cookie, data.get('postdict')) def server(env=None, start_response=None): ''' primary server process, sends page with current groups list ''' status_code, mimetype, page = '500 Server error', 'text/html', '(Unknown)' start, path = findpath(env) cookie, data = handle_post(env) logging.debug('server: cookie: %s', cookie) data_merge(data, cookie) # set any missing data from cookie debug('all', 'server: data: %s', data) if path in ('groups',): page = populate_grouplist(None, data, formatted='element') status_code = '200 OK' elif path.startswith('report/'): group = path.split('/')[1] page = create_report(group=group).decode('utf8') status_code = '200 OK' elif path.startswith('groups/'): group = path.split('/')[1] try: page = json.dumps(data['groups'][group]) except KeyError as groupname: debug('all', 'group %s does not exist in %s', groupname, data) page = '{}' status_code = '200 OK' elif path in ('', 'noscript', 'app'): page = loadpage(path, data) status_code = '200 OK' elif path == 'status': page = escape(json.dumps(data)) status_code = '200 OK' else: try: page, mimetype = render(os.path.join(start, path)) status_code = '200 OK' except (IOError, OSError) as filenotfound: status_code = '404 File not found' page = '<h1>No such page: %s</h1>' % str(filenotfound) headers = [('Content-type', mimetype)] if cookie is not None: logging.debug('setting cookie headers %r', cookie.output()) headers.extend(cookie_headers(cookie)) start_response(status_code, headers) debug('all', 'page: %s', page[:128]) return [page.encode('utf8')] def cookie_headers(cookie): ''' make list of tuples for cookie values >>> cookie = SimpleCookie() >>> cookie['test'] = 'this' >>> cookie['test']['path'] = '/' >>> cookie_headers(cookie) [('Set-Cookie', 'test=this; Path=/')] ''' cookies = cookie.output().split('\r\n') return [tuple(re.compile(': ').split(c, 1)) for c in cookies] def handle_post(env): ''' process the form submission and return data structures note what dict(parse_qsl(formdata)) does: >>> from urllib.parse import parse_qsl >>> parse_qsl('a=b&b=c&a=d&a=e') [('a', 'b'), ('b', 'c'), ('a', 'd'), ('a', 'e')] >>> OrderedDict(_) OrderedDict([('a', 'e'), ('b', 'c')]) >>> so only use it where you know that no key will have more than one value. parse_qs will instead return a dict of lists. ''' uwsgi.lock() # lock access to DATA global worker = getattr(uwsgi, 'worker_id', lambda *args: None)() DATA['handler'] = (worker, env.get('uwsgi.core')) timestamp = datetime.datetime.utcnow().timestamp() cookie = SimpleCookie(env['HTTP_COOKIE']) if 'HTTP_COOKIE' in env else None try: if env.get('REQUEST_METHOD') != 'POST': DATA['postdict'] = {} return cookie, copy.deepcopy(DATA) form = cgi.FieldStorage(fp=env['wsgi.input'], environ=env) DATA['postdict'] = postdict = {k: form.getfirst(k) for k in form.keys()} debug('all', 'handle_post: %s, postdict: %s', form, postdict) # [groupname, total, turn] and submit=Submit if group creation # [username, group] and submit=Join if joining a group postdict['timestamp'] = timestamp if not postdict.get('httpsession_key'): postdict['httpsession_key'] = uuid.uuid4().hex debug('sessions', 'set httpsession_key = %s', postdict['httpsession_key']) try: buttonvalue = postdict['submit'] except KeyError: raise ValueError('No "submit" button found') cookie = update_httpsession(postdict) if buttonvalue == 'Join': # username being added to group # don't allow if name already in group groups = DATA['groups'] debug('join', 'processing Join: %s', postdict) username = postdict.get('username', '') group = sanitize(postdict.get('group', '')) if not username: raise ValueError('Name field cannot be empty') elif group in groups: postdict['groupname'] = group if username in groups[group]['participants']: raise ValueError('"%s" is already a member of %s' % ( username, group)) groups[group]['participants'][username] = defaultdict( float, # for `speaking` and `spoke` times {'timestamp': timestamp, 'requests': []} ) postdict['joined'] = '%s:%s' % (username, group) if 'talksession' not in groups[group]: groups[group]['talksession'] = { 'start': timestamp, 'speaker': None, 'tick': 0, } counter = threading.Thread( target=countdown, name=group, args=(group,)) counter.daemon = True # leave no zombies on exit counter.start() # else group not in groups, no problem, return to add group form return cookie, copy.deepcopy(DATA) elif buttonvalue == 'Submit': # groupname, total (time), turn (time) being added to groups # don't allow if groupname already being used groups = DATA['groups'] group = postdict['groupname'] = sanitize(postdict['groupname']) if not group in groups: groups[group] = postdict groups[group]['participants'] = {} return cookie, copy.deepcopy(DATA) else: raise ValueError(( 'Group {group[groupname]} already exists with total time ' '{group[total]} minutes and turn time ' '{group[turn]} seconds').format(group=groups[group])) elif buttonvalue == 'OK': # affirming receipt of error message or Help screen return cookie, copy.deepcopy(DATA) elif buttonvalue == 'Help': raise UserWarning('Help requested') elif buttonvalue == 'My Turn': # attempting to speak in ongoing session # this can be reached either by normal HTML form submission # or by XHR from JavaScript on client side debug('button', 'My Turn button pressed, env: %s', env) groups = DATA['groups'] group = sanitize(postdict['groupname']) username = postdict['username'] try: userdata = groups[group]['participants'][username] if not userdata['request']: debug('button', "userdata: setting %s's request to %.6f", username, timestamp) userdata['request'] = timestamp userdata['requests'].append([timestamp, None]) else: logging.warning('ignoring newer request %.6f, ' 'keeping %.6f', userdata['request'], timestamp) except KeyError: raise SystemError('Group %s is no longer active' % group) return cookie, copy.deepcopy(DATA) elif buttonvalue == 'Cancel request': debug('button', 'My Turn button released') groups = DATA['groups'] group = sanitize(postdict['groupname']) username = postdict['username'] try: userdata = groups[group]['participants'][username] if userdata['request']: userdata['request'] = None userdata['requests'][-1][1] = timestamp else: logging.error('no speaking request found for %s', username) except KeyError: raise SystemError('Group %s is no longer active' % group) return cookie, copy.deepcopy(DATA) elif buttonvalue == 'Check status': return cookie, copy.deepcopy(DATA) else: raise ValueError('Unknown form submitted') except UserWarning as request: if str(request) == 'Help requested': debug('all', 'displaying help screen') DATA['postdict']['text'] = read(os.path.join(THISDIR, 'README.md')) return cookie, copy.deepcopy(DATA) except EXPECTED_ERRORS as failed: debug('all', 'displaying error: "%r"', failed) DATA['postdict']['text'] = repr(failed) return cookie, copy.deepcopy(DATA) finally: uwsgi.unlock() def most_eligible_speaker(group, data=None): ''' participant who first requested to speak who has spoken least >>> data = { ... 'groups': { ... 'test': { ... 'participants': { ... 'alice': {'spoke': 3, 'request': '2017-10-01T14:21:37.024529'}, ... 'bob': {'spoke': 2, 'request': '2017-10-01T14:21:37.024531'}, ... 'chuck': {'spoke': 3, 'request': '2017-10-01T14:21:37.024530'}}}}} >>> most_eligible_speaker('test', data) 'bob' >>> data = { ... 'groups': { ... 'test': { ... 'participants': { ... 'alice': {'spoke': 2, 'request': '2017-10-01T14:21:37.024531'}, ... 'bob': {'spoke': 2, 'request': '2017-10-01T14:21:37.024531'}, ... 'chuck': {'spoke': 2, 'request': '2017-10-01T14:21:37.024530'}}}}} >>> most_eligible_speaker('test', data) 'chuck' ''' data = data or DATA groupdata = data['groups'][group] people = groupdata['participants'] waiting = filter(lambda p: people[p]['request'], people) speaker_pool = sorted(waiting, key=lambda p: (people[p]['spoke'], people[p]['request'])) return (speaker_pool or [None])[0] def select_speaker(group, data=None): ''' let current speaker finish his turn before considering most eligible SIDE EFFECTS: when `turn` time is up or speaker voluntarily relinquishes turn: sets speaker's `speaking` count to zero in data dict sets speaker to new speaker NOTE: not using uwsgi.lock for this, shouldn't be necessary. no possible race conditions are known at time of coding (jc). ''' data = data or DATA groupdata = data['groups'][group] talksession = groupdata['talksession'] turntime = float(groupdata['turn']) if talksession['speaker']: speaker = groupdata['participants'][talksession['speaker']] if speaker['speaking'] >= turntime or not speaker['request']: speaker['speaking'] = 0 talksession['speaker'] = most_eligible_speaker(group, data) else: talksession['speaker'] = most_eligible_speaker(group, data) return talksession['speaker'] def sanitize(name): ''' can't count on someone entering, say, '../../../.hidden/evil' as groupname in addition to ILLEGAL characters, also strip leading '.' and '-', the first hiding the file from normal listing, the second making removal difficult because it looks like an option to rm, so one needs to `rm -- -evilfile`. >>> sanitize('../../../.-hidden/::evil') 'hiddenevil' >>> sanitize(None) ''' return name.translate(ILLEGAL).lstrip('-.') if name is not None else None def countdown(group, data=None): ''' expire the talksession after `minutes` currently only using uwsgi.lock() when moving group to `finished`. may need to reevaluate that (jc). >>> now = datetime.datetime.utcnow().timestamp() >>> data = {'finished': {}, 'groups': { ... 'test': { ... 'total': '.001', ... 'talksession': {'start': now, 'speaker': None}, ... 'participants': {'nobody': {'requests': [[0.1, 0.2]]}}, ... }}} >>> countdown('test', data) ''' data = data or DATA groups = data['groups'] sleeptime = .25 # seconds try: minutes = float(groups[group]['total']) groups[group]['talksession']['remaining'] = minutes * 60 ending = (datetime.datetime.fromtimestamp( groups[group]['talksession']['start']) + datetime.timedelta(minutes=minutes)).timestamp() debug('countdown', 'countdown ending: %.6f', ending) while True: time.sleep(sleeptime) now = datetime.datetime.utcnow().timestamp() debug('countdown', 'countdown now: %.6f', now) if now > ending: debug('countdown', 'countdown ended at %.6f', now) break speaker = select_speaker(group, data) debug('countdown', 'countdown: speaker: %s', speaker) if speaker: speakerdata = groups[group]['participants'][speaker] speakerdata['speaking'] += sleeptime speakerdata['spoke'] += sleeptime groups[group]['talksession']['remaining'] -= sleeptime groups[group]['talksession']['tick'] += 1 # should we uwsgi.lock() here in case group is currently being updated? # if so, need uwsgi.unlock() in `finally` clause data['finished'][group] = data['groups'].pop(group) # now save the report of clicks, not same as report of time spoken reportdir = os.path.join('statistics', group) reportname = os.path.join(reportdir, '%.6f.json' % now) try: participants = data['finished'][group]['participants'] except KeyError: logging.error("No such key 'participants' in %s", data['finished'][group]) return os.makedirs(reportdir, exist_ok=True) report = open(reportname, 'w') report.write(json.dumps([{speaker: participants[speaker]['requests']} for speaker in participants], indent=4)) report.close() except KeyError as error: logging.error('countdown: was group "%s" removed? KeyError: %s', group, error, exc_info=True) logging.info('data: %s', data) def update_httpsession(postdict): ''' simple implementation of user (http) sessions this is for keeping state between client and server, this is *not* the same as discussion (talk) sessions! another thread should go through and remove expired httpsessions ''' # FIXME: this session mechanism can only be somewhat secure with https # FIXME: a thread needs to remove old httpsessions to save memory timestamp = postdict['timestamp'] cookie = None if 'httpsession_key' in postdict and postdict['httpsession_key']: session_key = postdict['httpsession_key'] # only bother storing session once a username has been entered if postdict.get('username', None): username = postdict['username'] newgroup = sanitize(postdict.get('group', None)) if session_key in HTTPSESSIONS: if HTTPSESSIONS[session_key]['username'] != username: logging.warning( 'changing session username from "%s" to "%s"', HTTPSESSIONS[session_key]['username'], username) if newgroup: HTTPSESSIONS[session_key]['added_group'] = newgroup HTTPSESSIONS[session_key]['updated'] = timestamp else: HTTPSESSIONS[session_key] = { 'timestamp': timestamp, 'updated': timestamp, 'added_group': None, 'username': username} cookie = SimpleCookie() cookie['sessionid'] = session_key cookie['sessionid']['path'] = '/' logging.debug('cookie: %s', cookie) cookie['username'] = username cookie['username']['path'] = '/' logging.debug('cookie: %s', cookie) else: debug('sessions', 'no username yet associated with session %s', session_key) else: logging.warning('no httpsession_key in POST') return cookie def render(pagename, standalone=True): ''' Return content with Content-type header ''' debug('render', 'render(%s, %s) called', pagename, standalone) if pagename.endswith('.html'): debug('render', 'rendering static HTML content') return (read(pagename), 'text/html') elif not pagename.endswith(('.png', '.ico', '.jpg', '.jpeg')): # assume plain text logging.warning('app is serving %s instead of nginx', pagename) return (read(pagename), 'text/plain') elif standalone: logging.warning('app is serving %s instead of nginx', pagename) return (read(pagename), MIMETYPES.get(os.path.splitext(pagename)[1], 'text/plain')) else: logging.error('not standalone, and no match for filetype') raise OSError('File not found: %s' % pagename) def read(filename): ''' Return contents of a file ''' debug('read', 'read: returning contents of %s', filename) with open(filename) as infile: data = infile.read() debug('read', 'data: %s', data[:128]) return data def formatseconds(seconds): ''' return rounded-up seconds count as HH:MM:SS https://stackoverflow.com/a/31946730/493161 >>> formatseconds(666.50001) '00:11:07' ''' return '{:0>8}'.format(str(datetime.timedelta(seconds=round(seconds)))) if __name__ == '__main__': print(server(os.environ, lambda *args: None))
jcomeauictx/pyturn
myturn.py
myturn.py
py
32,136
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 9, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 10, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 10, "usage_type": "attribute" }, { "api_name": "threading.Lock", "line_number": 12, "usage_type": "call" }, { "api_name": "uwsgi.lock", "line_number": 18, "usage_type": "attribute" }, { "api_name": "uwsgi.unlock", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "uwsgi.opt.get", "line_number": 25, "usage_type": "call" }, { "api_name": "uwsgi.opt", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 26, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 27, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 27, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 28, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 30, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 30, "usage_type": "call" }, { "api_name": "uwsgi.opt.get", "line_number": 31, "usage_type": "call" }, { "api_name": "uwsgi.opt", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "lxml.html.parse", "line_number": 47, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 47, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "lxml.html.tostring", "line_number": 48, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 48, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 65, "usage_type": "call" }, { "api_name": "urllib.request.parse.urlparse", "line_number": 78, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 78, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 78, "usage_type": "name" }, { "api_name": "urllib.request.parse.unquote", "line_number": 79, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 79, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 79, "usage_type": "name" }, { "api_name": "urllib.request.parse.parse_qs", "line_number": 81, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 81, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 81, "usage_type": "name" }, { "api_name": "urllib.request.parse.unquote", "line_number": 84, "usage_type": "call" }, { "api_name": "urllib.request.parse", "line_number": 84, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 84, "usage_type": "name" }, { "api_name": "lxml.html.fromstring", "line_number": 99, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 99, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 114, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 114, "usage_type": "name" }, { "api_name": "lxml.html.builder.PRE", "line_number": 119, "usage_type": "call" }, { "api_name": "lxml.html.builder", "line_number": 119, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 158, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 158, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 203, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 214, "usage_type": "call" }, { "api_name": "lxml.html.tostring", "line_number": 223, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 223, "usage_type": "name" }, { "api_name": "lxml.html.fromstring", "line_number": 224, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 224, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 224, "usage_type": "call" }, { "api_name": "lxml.html.tostring", "line_number": 225, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 225, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 226, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 226, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 237, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 237, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 239, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 239, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 254, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 254, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 256, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 256, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 270, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 270, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 272, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 272, "usage_type": "name" }, { "api_name": "lxml.html.fromstring", "line_number": 297, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 297, "usage_type": "name" }, { "api_name": "lxml.html.builder.OPTION", "line_number": 304, "usage_type": "call" }, { "api_name": "lxml.html.builder", "line_number": 304, "usage_type": "name" }, { "api_name": "lxml.html.tostring", "line_number": 321, "usage_type": "call" }, { "api_name": "lxml.html", "line_number": 321, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 339, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 342, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 344, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 347, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 349, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 359, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 372, "usage_type": "call" }, { "api_name": "html.escape", "line_number": 381, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 381, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 385, "usage_type": "call" }, { "api_name": "os.path", "line_number": 385, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 392, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 409, "usage_type": "call" }, { "api_name": "uwsgi.lock", "line_number": 429, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 432, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 432, "usage_type": "attribute" }, { "api_name": "http.cookies.SimpleCookie", "line_number": 433, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 437, "usage_type": "call" }, { "api_name": "cgi.FieldStorage", "line_number": 438, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 445, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 467, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 478, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 485, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 494, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 502, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 521, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 526, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 538, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 541, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 543, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 549, "usage_type": "call" }, { "api_name": "os.path", "line_number": 549, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 550, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 554, "usage_type": "call" }, { "api_name": "uwsgi.unlock", "line_number": 556, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 651, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 651, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 653, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 656, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 657, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 657, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 674, "usage_type": "call" }, { "api_name": "os.path", "line_number": 674, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 675, "usage_type": "call" }, { "api_name": "os.path", "line_number": 675, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 679, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 682, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 684, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 689, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 691, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 714, "usage_type": "call" }, { "api_name": "http.cookies.SimpleCookie", "line_number": 727, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 730, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 733, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 738, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 751, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 754, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 756, "usage_type": "call" }, { "api_name": "os.path", "line_number": 756, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 758, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 780, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 783, "usage_type": "attribute" } ]
6742136861
import numpy as np import cv2 cap = cv2.VideoCapture(0) faceCascade = cv2.CascadeClassifier("face.xml") while(True): # Capture frame-by-frame ret, frame = cap.read() # Our operations on the frame come here gray = frame # find face # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE ) #print ('Found {0} faces!'.format(len(faces))) # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(gray, (x, y), (x+w, y+h), (0, 255, 0), 2) # Display the resulting frame cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
khanab85/FaceDetectors
start.py
start.py
py
866
python
en
code
0
github-code
6
[ { "api_name": "cv2.VideoCapture", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.CascadeClassifier", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 22, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 41, "usage_type": "call" } ]
111612310
import json f = open('dados.json') Dados = json.load(f) Dados = [x for x in Dados if x['valor'] > 0] menor = float("inf") #menor faturamento diário for x in Dados: atual = x['valor'] if(menor > atual): menor = atual print('O menor valor de faturamento ocorrido em um dia do mês foi de ', menor) #maior faturamento diário maior = 0.0 for x in Dados: atual = x['valor'] if(maior < atual): maior = atual print('O maior valor de faturamento ocorrido em um dia do mês foi de ', maior) #faturamento diário superior à média mensal totalValor = 0.0 for x in Dados: atual = x['valor'] totalValor = totalValor + float(atual) media = totalValor/30 dias = 0 for x in Dados: atual = x['valor'] if(atual > media): dias = dias + 1 print('O número de dias no mês em que o valor do faturamento diário superou à média mensal foi de ', dias) f.close()
CaioPyro/Target_Sistemas
Faturamento/main.py
main.py
py
890
python
pt
code
0
github-code
6
[ { "api_name": "json.load", "line_number": 5, "usage_type": "call" } ]
73966289468
#!/usr/bin/env python # -*- coding:utf-8 -*- import requests import json #药监总局地址:http://scxk.nmpa.gov.cn:81/xk/ if __name__ == "__main__": url = 'http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsList' user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1' headers = { 'User-Agent': user_agent } data = { "on": "true","" "page": "1", "pageSize": "15","" "productName":"", "conditionType": "1", "applyname":"", "applysn":"", } json_ids = requests.post(url=url,headers=headers,data=data).json() print(json_ids) all_data_list = [] #存储所有企业的详情数据 id_list = [] #存储企业的ID for dic in json_ids['list']: id_list.append(dic['ID']) print(id_list)#批量获取的ID #获取企业详情页信息 print() post_url = 'http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsById' for id in id_list: data = { 'id':id } detail_json = requests.post(url=url,headers=headers,data=data).json() print(detail_json,"--------") all_data_list.append(detail_json) #持久化存储 fp = open('../alldata.json', 'w', encoding='utf-8') json.dump(all_data_list,fp=fp,ensure_ascii=False) print("over")
xjuun/Note
Python/爬虫/code/request基础/06.requests之药监总局相关数据爬取.py
06.requests之药监总局相关数据爬取.py
py
1,414
python
en
code
0
github-code
6
[ { "api_name": "requests.post", "line_number": 21, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 36, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 41, "usage_type": "call" } ]
39556012979
# -*- coding: utf-8 -*- """ Created on Sun Aug 12 10:37:33 2018 @author: Gerardo Cervantes """ import xml.etree.cElementTree as ET from src.coordinates import Coordinates from src.hotkeys import Hotkeys class SharedPreferences(): COORDINATES_TAG = 'coordinates' SPLIT_TAG = 'split_key' RESET_TAG = 'reset_key' ROUTE_TAG = 'route' def write_preferences(self, file_name, coordinates, route_name, hotkeys): xml_str = self.create_xml(coordinates, route_name, hotkeys) with open(file_name, "wb") as f: f.write(xml_str) def create_xml(self, coordinates, route_name, hotkeys): root = ET.Element("root") ET.SubElement(root, self.ROUTE_TAG).text = self.to_valid_xml_str(route_name) ET.SubElement(root, self.SPLIT_TAG).text = self.to_valid_xml_str(hotkeys.get_split_key()) ET.SubElement(root, self.RESET_TAG).text = self.to_valid_xml_str(hotkeys.get_reset_key()) xml_coordinates = ET.SubElement(root, self.COORDINATES_TAG) x, y, width, height = coordinates.get_coordinates() ET.SubElement(xml_coordinates, "x").text = str(x) ET.SubElement(xml_coordinates, "y").text = str(y) ET.SubElement(xml_coordinates, "width").text = str(width) ET.SubElement(xml_coordinates, "height").text = str(height) xml_str = ET.tostring(root, encoding='utf8', method='xml') return xml_str def to_valid_xml_str(self, text): if text == '': return ' ' return text def parse_xml(self, file_name): try: tree = ET.parse(file_name) except FileNotFoundError: return None, None, None root = tree.getroot() route_name = root.find(self.ROUTE_TAG).text split_key = root.find(self.SPLIT_TAG).text reset_key = root.find(self.RESET_TAG).text coordinates_xml = root.find(self.COORDINATES_TAG) x = coordinates_xml.find("x").text y = coordinates_xml.find("y").text width = coordinates_xml.find("width").text height = coordinates_xml.find("height").text coordinates = Coordinates() coordinates.set_coordinates(x, y, width, height) hotkeys = Hotkeys() hotkeys.set_split_key(split_key) hotkeys.set_reset_key(reset_key) return coordinates, route_name, hotkeys if __name__ == "__main__": shared_prefs = SharedPreferences() coordinates = Coordinates() coordinates.set_coordinates(20, 25, 50, 30) hotkeys = Hotkeys() file_name = 'example_pref_file.zd' shared_prefs.write_preferences(file_name, coordinates, '', hotkeys) coordinates, route_name, hotkeys = shared_prefs.parse_xml(file_name) print(coordinates) print(hotkeys.get_split_key()) print(hotkeys.get_reset_key()) print(route_name) # xml_str = shared_prefs.create_xml(coordinates, 'Home', 'Other', 'Route') # shared_prefs.xml_print(xml_str)
gcervantes8/Star-Classifier-For-Mario-64
src/shared_preferences.py
shared_preferences.py
py
3,050
python
en
code
8
github-code
6
[ { "api_name": "xml.etree.cElementTree.Element", "line_number": 26, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 26, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 28, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 28, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 29, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 29, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 30, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 30, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 32, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 32, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 35, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 35, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 36, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 36, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 37, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 37, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.SubElement", "line_number": 38, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 38, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.tostring", "line_number": 40, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 40, "usage_type": "name" }, { "api_name": "xml.etree.cElementTree.parse", "line_number": 50, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 50, "usage_type": "name" }, { "api_name": "src.coordinates.Coordinates", "line_number": 64, "usage_type": "call" }, { "api_name": "src.hotkeys.Hotkeys", "line_number": 67, "usage_type": "call" }, { "api_name": "src.coordinates.Coordinates", "line_number": 76, "usage_type": "call" }, { "api_name": "src.hotkeys.Hotkeys", "line_number": 78, "usage_type": "call" } ]
36721611160
import torch from torch import nn from modules import ConvSC, Inception # stride를 만들어내는 모듈.. def stride_generator(N, reverse=False): strides = [1, 2]*10 if reverse: return list(reversed(strides[:N])) else: return strides[:N] # N_S개 만큼 Stride를 생성한 후, ConvSC 생성해서 # 총 N_S의 깊이를 가진 Encoder 모듈 생성. class Encoder(nn.Module): def __init__(self,C_in, C_hid, N_S): super(Encoder,self).__init__() strides = stride_generator(N_S) self.enc = nn.Sequential( ConvSC(C_in, C_hid, stride=strides[0]), *[ConvSC(C_hid, C_hid, stride=s) for s in strides[1:]] ) def forward(self,x): enc1 = self.enc[0](x) latent = enc1 for i in range(1,len(self.enc)): latent = self.enc[i](latent) return latent,enc1 # Mid_Xnet으로부터 받은 C_hid의 채널을 토대로 최종적으로 C_out 크기의 # 채널으로 변환 여기서 C_out은 초기 C와 같음. # 여기서는 C_hid의 채널 수로 일정하게 조금씩 Upsampling 되다가 # 마지막에 encoder에서 추출한 공간 정보를 concat한다. class Decoder(nn.Module): def __init__(self,C_hid, C_out, N_S): super(Decoder,self).__init__() strides = stride_generator(N_S, reverse=True) self.dec = nn.Sequential( *[ConvSC(C_hid, C_hid, stride=s, transpose=True) for s in strides[:-1]], ConvSC(2*C_hid, C_hid, stride=strides[-1], transpose=True) ) self.readout = nn.Conv2d(C_hid, C_out, 1) def forward(self, hid, enc1=None): for i in range(0,len(self.dec)-1): hid = self.dec[i](hid) Y = self.dec[-1](torch.cat([hid, enc1], dim=1)) Y = self.readout(Y) return Y # Translator를 나타내는 중앙 인셉션 네트워크 부분. # 인셉션 네트워크에도 인코더, 디코더 부분이 존재하여 스킵 연결을 통해, 인코더에서 뽑은 코딩을 # 디코더에 주입하여 Temporal 정보를 학습함. class Mid_Xnet(nn.Module): def __init__(self, channel_in, channel_hid, N_T, incep_ker = [3,5,7,11], groups=8): super(Mid_Xnet, self).__init__() self.N_T = N_T enc_layers = [Inception(channel_in, channel_hid//2, channel_hid, incep_ker= incep_ker, groups=groups)] for i in range(1, N_T-1): enc_layers.append(Inception(channel_hid, channel_hid//2, channel_hid, incep_ker= incep_ker, groups=groups)) enc_layers.append(Inception(channel_hid, channel_hid//2, channel_hid, incep_ker= incep_ker, groups=groups)) dec_layers = [Inception(channel_hid, channel_hid//2, channel_hid, incep_ker= incep_ker, groups=groups)] for i in range(1, N_T-1): dec_layers.append(Inception(2*channel_hid, channel_hid//2, channel_hid, incep_ker= incep_ker, groups=groups)) dec_layers.append(Inception(2*channel_hid, channel_hid//2, channel_in, incep_ker= incep_ker, groups=groups)) self.enc = nn.Sequential(*enc_layers) self.dec = nn.Sequential(*dec_layers) def forward(self, x): B, T, C, H, W = x.shape x = x.reshape(B, T*C, H, W) # encoder skips = [] z = x for i in range(self.N_T): z = self.enc[i](z) if i < self.N_T - 1: skips.append(z) # decoder z = self.dec[0](z) for i in range(1, self.N_T): z = self.dec[i](torch.cat([z, skips[-i]], dim=1)) y = z.reshape(B, T, C, H, W) return y class SimVP(nn.Module): def __init__(self, shape_in, hid_S=16, hid_T=256, N_S=4, N_T=8, incep_ker=[3,5,7,11], groups=8): super(SimVP, self).__init__() T, C, H, W = shape_in self.enc = Encoder(C, hid_S, N_S) self.hid = Mid_Xnet(T*hid_S, hid_T, N_T, incep_ker, groups) self.dec = Decoder(hid_S, C, N_S) def forward(self, x_raw): B, T, C, H, W = x_raw.shape x = x_raw.view(B*T, C, H, W) embed, skip = self.enc(x) _, C_, H_, W_ = embed.shape z = embed.view(B, T, C_, H_, W_) hid = self.hid(z) hid = hid.reshape(B*T, C_, H_, W_) Y = self.dec(hid, skip) Y = Y.reshape(B, T, C, H, W) return Y
J-PARK11/Video_Prediction_using_SimVP
model.py
model.py
py
4,304
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "modules.ConvSC", "line_number": 18, "usage_type": "call" }, { "api_name": "modules.ConvSC", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 33, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 37, "usage_type": "name" }, { "api_name": "modules.ConvSC", "line_number": 38, "usage_type": "call" }, { "api_name": "modules.ConvSC", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 41, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 53, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "name" }, { "api_name": "modules.Inception", "line_number": 58, "usage_type": "call" }, { "api_name": "modules.Inception", "line_number": 60, "usage_type": "call" }, { "api_name": "modules.Inception", "line_number": 61, "usage_type": "call" }, { "api_name": "modules.Inception", "line_number": 63, "usage_type": "call" }, { "api_name": "modules.Inception", "line_number": 65, "usage_type": "call" }, { "api_name": "modules.Inception", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 69, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 92, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 92, "usage_type": "name" } ]
20538043919
""" You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself. """ """ Time complexity:- O(max(n,m)) Space Complexity:- O(1) """ from typing import Optional # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def addTwoNumbers( self, l1: Optional[ListNode], l2: Optional[ListNode] ) -> Optional[ListNode]: # Create a dummy head and a tail pointer for the result linked list dummyHead = ListNode(0) tail = dummyHead carry = 0 # Initialize the carry to 0 while l1 or l2 or carry != 0: # Get the current digits of l1 and l2 (or 0 if one of them is None) digit1 = l1.val if l1 else 0 digit2 = l2.val if l2 else 0 # Calculate the sum of the digits and the carry _sum = digit1 + digit2 + carry digit = _sum % 10 carry = _sum // 10 # Create a new node with the calculated digit newNode = ListNode(digit) # Append the new node to the result linked list tail.next = newNode tail = tail.next # Move to the next nodes in l1 and l2 (if available) l1 = l1.next if l1 else None l2 = l2.next if l2 else None # Get the result linked list starting from the node after the dummy head result = dummyHead.next # Remove the reference to the rest of the linked list dummyHead.next = None return result # Return the result linked list
Amit258012/100daysofcode
Day14/add_two_numbers_linked_list.py
add_two_numbers_linked_list.py
py
1,871
python
en
code
0
github-code
6
[ { "api_name": "typing.Optional", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 24, "usage_type": "name" } ]
42442738126
from django.shortcuts import render from .models import Twit,Company import datetime from django.contrib.auth.mixins import LoginRequiredMixin from django.views import View from django.http import HttpResponse,HttpResponseRedirect,Http404 import jdatetime from django.db.models import Q # new import datetime # Create your views here. def signal_week(mdate): week = [] print('&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&',mdate,type(mdate)) for i in range(5): print(mdate+datetime.timedelta(days=-i-1)) nextday = mdate+datetime.timedelta(days=i+1) jnextday = jdatetime.date.fromgregorian(date=nextday) print(':::::::::::::::::::::::::::::::::::::::::::',jnextday) query = Twit.objects.filter(created_on__year=str(nextday.year)).filter(created_on__month=str(nextday.month)).filter(created_on__day=str(nextday.day)) if query: week.append({ 'date' : jnextday, 'len' : len(query) }) if not week : for i in range (5): PerivousDay = mdate+datetime.timedelta(days=-i-1) JPerivousDay = jdatetime.date.fromgregorian(date=PerivousDay) query = Twit.objects.filter(created_on__year=str(PerivousDay.year)).filter(created_on__month=str(PerivousDay.month)).filter(created_on__day=str(PerivousDay.day)) if query: week.append({ 'date' : JPerivousDay, 'len' : len(query) }) print(week) return week def index (request): # test = Twit.objects.filter(id =1) print(datetime.date.today()) # twits = Twit.objects.filter(created_on__date=datetime.date.today()) today = datetime.datetime.today() # twits = Twit.objects.filter(created_on__year=today.year, created_on__month=today.month, created_on__day=today.day) twits = Twit.objects.filter(created_on__year=today.year, created_on__month=today.month, created_on__day=today.day,\ status=1,avaiable=True,company__status=1) if len(twits) == 0: # twits = Twit.objects.all().order_by('-created_on')[:20] twits = Twit.objects.filter(status=1,avaiable=True,company__status=1).order_by('-created_on')[:20] companeis = Company.objects.filter(status=1) print('twits : ',len(twits)) return render(request, 'home.html',{ 'twits':twits, 'companeis': companeis, 'jdate' : jdatetime.date.today(), 'week' : signal_week(today) }) class UnavailableTiwtView(LoginRequiredMixin,View): def get_object(self, pk): try: return Twit.objects.get(pk=pk) except Twit.DoesNotExist: raise Http404 def get(self,request,pk) : print("get pk : ",pk) twit = self.get_object(pk) twit.status =0 twit.save() return HttpResponseRedirect('/') def post(self,request,pk): pass class CompanyDetailView(View): def get(self,request): pass class Search(View): def get(self,request): return HttpResponseRedirect('/') def post(self,request): today = datetime.datetime.today() if request.POST.get('search'): search_text = request.POST.get('search') data = Twit.objects.filter( Q(description__contains=search_text)| Q(company__name__contains=search_text)| Q(category__name__contains=search_text)).filter(status=1,avaiable=True,company__status=1) companeis = Company.objects.filter(status=1) print('******************twits***************** : ',len(data)) return render(request, 'search.html',{ 'twits':data, 'companeis': companeis, 'jdate' : jdatetime.date.today(), 'search_text': search_text, 'week' : signal_week(today) }) else: return HttpResponseRedirect('/') class SearchByDate(View): def post(self,request): pass def get(self,request,year,month,day): try: date = jdatetime.date(int(year),int(month),int(day)) mdate = date.togregorian() year,month,day = str(mdate).split('-') week = signal_week(mdate) except: print("errror when convert data:" + str(year) + "-"+str(month) + "-" + str(day)) return HttpResponseRedirect('/') finally: data = Twit.objects.filter(created_on__year=str(year)).filter(created_on__month=str(month)).filter(created_on__day=str(day)) companeis = Company.objects.filter(status=1) print('******************twits***************** : ',len(data)) return render(request, 'search.html',{ 'twits':data, 'companeis': companeis, 'jdate' : date, 'search_text': date, 'week' : week, }) return HttpResponseRedirect('/')
mhsharifi96/sursiz_ir
backend/bors/views.py
views.py
py
5,221
python
en
code
3
github-code
6
[ { "api_name": "datetime.timedelta", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 18, "usage_type": "call" }, { "api_name": "jdatetime.date.fromgregorian", "line_number": 19, "usage_type": "call" }, { "api_name": "jdatetime.date", "line_number": 19, "usage_type": "attribute" }, { "api_name": "models.Twit.objects.filter", "line_number": 21, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 21, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 29, "usage_type": "call" }, { "api_name": "jdatetime.date.fromgregorian", "line_number": 30, "usage_type": "call" }, { "api_name": "jdatetime.date", "line_number": 30, "usage_type": "attribute" }, { "api_name": "models.Twit.objects.filter", "line_number": 31, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 31, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 31, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 45, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 45, "usage_type": "attribute" }, { "api_name": "datetime.datetime.today", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 47, "usage_type": "attribute" }, { "api_name": "models.Twit.objects.filter", "line_number": 49, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 49, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 49, "usage_type": "name" }, { "api_name": "models.Twit.objects.filter", "line_number": 53, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 53, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 53, "usage_type": "name" }, { "api_name": "models.Company.objects.filter", "line_number": 55, "usage_type": "call" }, { "api_name": "models.Company.objects", "line_number": 55, "usage_type": "attribute" }, { "api_name": "models.Company", "line_number": 55, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 58, "usage_type": "call" }, { "api_name": "jdatetime.date.today", "line_number": 61, "usage_type": "call" }, { "api_name": "jdatetime.date", "line_number": 61, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 65, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 65, "usage_type": "name" }, { "api_name": "models.Twit.objects.get", "line_number": 68, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 68, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 68, "usage_type": "name" }, { "api_name": "models.Twit.DoesNotExist", "line_number": 69, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 69, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 70, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 76, "usage_type": "call" }, { "api_name": "django.views.View", "line_number": 83, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 88, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 90, "usage_type": "call" }, { "api_name": "datetime.datetime.today", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 92, "usage_type": "attribute" }, { "api_name": "models.Twit.objects.filter", "line_number": 95, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 95, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 95, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 96, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 97, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 98, "usage_type": "call" }, { "api_name": "models.Company.objects.filter", "line_number": 99, "usage_type": "call" }, { "api_name": "models.Company.objects", "line_number": 99, "usage_type": "attribute" }, { "api_name": "models.Company", "line_number": 99, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 101, "usage_type": "call" }, { "api_name": "jdatetime.date.today", "line_number": 104, "usage_type": "call" }, { "api_name": "jdatetime.date", "line_number": 104, "usage_type": "attribute" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 110, "usage_type": "call" }, { "api_name": "django.views.View", "line_number": 112, "usage_type": "name" }, { "api_name": "jdatetime.date", "line_number": 120, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 130, "usage_type": "call" }, { "api_name": "models.Twit.objects.filter", "line_number": 132, "usage_type": "call" }, { "api_name": "models.Twit.objects", "line_number": 132, "usage_type": "attribute" }, { "api_name": "models.Twit", "line_number": 132, "usage_type": "name" }, { "api_name": "models.Company.objects.filter", "line_number": 133, "usage_type": "call" }, { "api_name": "models.Company.objects", "line_number": 133, "usage_type": "attribute" }, { "api_name": "models.Company", "line_number": 133, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 135, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 142, "usage_type": "call" } ]
14870918627
import logging def initLogging(): # Use simple logging in this file # See whether I can seperate logging from this program and my library logging.basicConfig(filename='test_logging.log',level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%Y%m%d-%H%M%S') logger = logging.getLogger('root') # This will setup the default logger # The default level for this logging system is info # a = logging a = logger a.info('Hello world') a.error('This is an error') a.warning('This is a warning') a.debug('Debug information') # initLogging() # Make sure the log information from tenon would not contaminate here tenonpath = '..' import sys; sys.path.append(tenonpath) import tenon tenon.run(__file__, '../demo.blend') if tenon.inblender(): tenon.render.write('demo.png') tenon.logging.info('Write image to demo.png') logging.info('The execution is completed')
qiuwch/tenon
test/test_logging.py
test_logging.py
py
934
python
en
code
9
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 6, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 9, "usage_type": "call" }, { "api_name": "sys.path.append", "line_number": 23, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tenon.run", "line_number": 27, "usage_type": "call" }, { "api_name": "tenon.inblender", "line_number": 28, "usage_type": "call" }, { "api_name": "tenon.render.write", "line_number": 29, "usage_type": "call" }, { "api_name": "tenon.render", "line_number": 29, "usage_type": "attribute" }, { "api_name": "tenon.logging.info", "line_number": 30, "usage_type": "call" }, { "api_name": "tenon.logging", "line_number": 30, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 32, "usage_type": "call" } ]
20493833703
import json d1 = { 'Pessoa 1': { 'nome:': 'Luiz Augusto', 'idade:': 25, }, 'Pessoa 2': { 'nome:': 'Adriano Santos', 'idade:': 30, }, } print() print(d1,'\n') d1_json = json.dumps(d1, indent=True) with open('arquivo.json', 'w+') as file: file.write(d1_json) print(d1_json)
Adriano1976/Curso-de-Python
Secao03-Programacao-Procedural/Aula087-Arquivos-Criar-ler-escrever-e-apagar/main.py
main.py
py
329
python
pt
code
0
github-code
6
[ { "api_name": "json.dumps", "line_number": 17, "usage_type": "call" } ]
18405151031
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 12 17:56:03 2020 @author: mints """ import logging import itertools import joblib import warnings import numpy as np from astropy.utils.exceptions import AstropyUserWarning from pandas.core.common import SettingWithCopyWarning from semiphore_public.cuda.cudaprocessor import CudaProcessor from semiphore_public.utils import interpolate warnings.filterwarnings('ignore', category=AstropyUserWarning, append=True) warnings.filterwarnings('ignore', category=SettingWithCopyWarning, append=True) def distance(w1, w2, sed1, sed2, err1, err2): """Calculate distance between two SED templates Args: w1 (float): weight of the first SED w2 (float): weight of the second SED sed1 (float[]): magnitudes of the first SED sed2 (float[]): magnitudes of the second SED err1 (float[]): width of the first SED err2 (float[]): width of the second SED Returns: "Distance" """ d = (w1 * (sed1 - sed2)**2 / (err1**2 + 1e-2), w2 * (sed1 - sed2)**2 / (err2**2 + 1e-2)) return np.sum(np.sqrt(d)) def get_order(w1, w2, sed1, sed2, err1, err2): """Reorder SEDs. Here all parameters are arrays along the redshift. Args: w1 (float[]): weight of the first SED w2 (float[]): weight of the second SED sed1 (float[][]): magnitudes of the first SED sed2 (float[][]): magnitudes of the second SED err1 (float[][]): width of the first SED err2 (float[][]): width of the second SED Returns: [type]: [description] """ nn = len(w1) d = np.zeros((nn, nn)) for i in range(nn): for j in range(nn): d[i, j] = distance(w1[i], w2[j], sed1[i], sed2[j], err1[i], err2[j]) smin = np.inf tOk = None for t in itertools.permutations(np.arange(nn, dtype=int), nn): s = 0 for i in range(nn): s += d[i, t[i]] if s < smin: smin = s tOk = t return tOk if __name__ == '__main__': import argparse import logging logger = logging.getLogger("FIT") logger.setLevel(logging.DEBUG) logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') parser = argparse.ArgumentParser(description=""" Perform a full CUDA-based SED-PhotoZ fit. """, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-i', '--input', type=str, default=None, help='Input filename') parser.add_argument('-c', '--catalogs', type=str, default=None, required=True, help='Input catalogs to use (comma separated)') parser.add_argument('-o', '--output', type=str, default=None, help='Output filename') parser.add_argument('-n', '--nsed', type=int, default=1, help='Number of SEDs to fit') parser.add_argument('-V', '--verbose', action="store_true", default=False, help='Be verbose') args = parser.parse_args() processor = CudaProcessor(args.catalogs.split(','), args.nsed) results = [] sizes = [] logger.info("Load data from %s", args.catalogs) processor.load_data(filename=args.input) z_len = len(processor.z) is_ok = [] izs = [] # Forward run for z0, mags, errs in processor.iterate_data(size=1000): logger.info("Forward run, redshift=%.2f", processor.z[int(z0)]) if len(results) > 0: output = processor.run_on_data(mags, errs, custom_params=results[-1][0]) else: output = processor.run_on_data(mags, errs) if output is not None: res, size, _ = output if res[1] >= processor.MAX_ITERATIONS * args.nsed: logger.warn(f'Iteration count exceeded for z nr {z0}') is_ok.append(False) else: is_ok.append(True) results.append(res) sizes.append(size) izs.append(z0) # Backward run: for ii in range(len(izs)-2, 0, -1): if not is_ok[ii + 1] or not is_ok[ii]: continue old_norm = results[ii][2] / sizes[ii] if results[ii + 1][2] / sizes[ii + 1] > old_norm: logger.info("Backward run, redshift=%.2f", processor.z[int(izs[ii])]) mags, errs = processor.get_data_for_zs(izs[ii]) output = processor.run_on_data(mags, errs, custom_params=results[ii+1][0]) if output is not None: res, size, _ = output if res[2] / size >= results[ii][2] / sizes[ii]: logger.debug(f'...new l_norm={res[2] / size} is better') results[ii] = res sizes[ii] = size else: logger.debug(f'...new l_norm={res[2] / size} is lower, rejecting') iz_min = int(np.ceil(np.min(izs))) iz_max = int(np.ceil(np.max(izs))) izs = processor.z[0] + np.array(izs) * 0.02 sed_shape = (z_len, processor.n_seds, len(processor.columns)) output = {'z': processor.z, 'names': processor.names, 'weights': np.zeros((z_len, processor.n_seds)), 'sed': np.zeros(sed_shape), 'err': np.zeros(sed_shape), 'l_values': np.zeros(len(izs)), 'iterations': np.zeros(len(izs)), 'sizes': sizes, } w = np.array([results[ii][0][0] for ii in range(len(results))]) sed = np.array([results[ii][0][1] for ii in range(len(results))]) err = np.array([results[ii][0][2] for ii in range(len(results))]) output['iterations'] = np.array([results[ii][1] for ii in range(len(results))]) output['l_values'] = np.array([results[ii][2] for ii in range(len(results))]) ind = np.argsort(w) logger.info("Reordering...") # Reordering output['weights00'] = w output['sed00'] = sed output['err00'] = err w_order = [w[0]] sed_order = [sed[0]] err_order = [err[0]] for i in range(0, len(w)-1): new_order = list(get_order(w_order[i], w[i+1], sed_order[i], sed[i+1], err_order[i], err[i+1])) w_order.append(w[i + 1][new_order]) sed_order.append(sed[i + 1][new_order]) err_order.append(err[i + 1][new_order]) logger.info("Interpolating...") # Interpolation output['weights0'] = w_order output['sed0'] = sed_order output['err0'] = err_order output['weights'] = interpolate.curve_processor(izs, np.array(w_order), processor.z, is_log=True) output['sed'] = interpolate.curve_processor(izs, np.array(sed_order), processor.z, is_log=False) output['err'] = interpolate.curve_processor(izs, np.array(err_order), processor.z, is_log=True, bounded=True) output['weights'] = output['weights'] / \ output['weights'].sum(axis=1)[:, np.newaxis] output['z_base'] = izs output['input_file'] = args.input if args.output is None: names = '_'.join(processor.names) outname = f'../calibrations/seds/{names}_{processor.n_seds}seds.joblib' else: outname = args.output logger.info('Saving calibration to %s', outname) joblib.dump(output, outname) logger.info("Finished")
minzastro/semiphore_public
fit/complete_fit.py
complete_fit.py
py
7,837
python
en
code
0
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 17, "usage_type": "call" }, { "api_name": "astropy.utils.exceptions.AstropyUserWarning", "line_number": 17, "usage_type": "name" }, { "api_name": "warnings.filterwarnings", "line_number": 18, "usage_type": "call" }, { "api_name": "pandas.core.common.SettingWithCopyWarning", "line_number": 18, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 62, "usage_type": "attribute" }, { "api_name": "itertools.permutations", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 64, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 77, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 78, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 79, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 80, "usage_type": "call" }, { "api_name": "argparse.RawDescriptionHelpFormatter", "line_number": 82, "usage_type": "attribute" }, { "api_name": "semiphore_public.cuda.cudaprocessor.CudaProcessor", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 154, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 158, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 159, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 161, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 165, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate.curve_processor", "line_number": 188, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate", "line_number": 188, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 188, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate.curve_processor", "line_number": 190, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate", "line_number": 190, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 190, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate.curve_processor", "line_number": 192, "usage_type": "call" }, { "api_name": "semiphore_public.utils.interpolate", "line_number": 192, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 192, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 197, "usage_type": "attribute" }, { "api_name": "joblib.dump", "line_number": 207, "usage_type": "call" } ]
71969151547
from django.contrib import admin from django.urls import path, re_path from . import views urlpatterns = [ path('',views.index,name="words-index"), #index homePage path('words/',views.index,name="words-index"),#index homePage path('random/',views.get_random,name="random"), #Random word path('words/<str:word_name>/', views.detail, name='words-detail'), # detail page path('words/add/<str:word_name>', views.add_word, name="words-add_word_details"),# add word page path('add/', views.add_word, name="words-add_word_details"), path('about/',views.about,name="about-page"), #about page path('contact/',views.contact,name="contact"), #contact page path('tag/',views.all_tags,name="all-tags-page"), #Case for empty tag entering path('tag/<str:str_Tag>',views.tag_page,name="tag-detail-page"), #Tag page for words of a certain tag path('tagList/', views.all_tags, name="all-tags-page"), #page where all tags are displayed path('words/votes/<str:slug>/<str:direction>/',views.vote, name="vote"), # This view Manages votes ]
gystr/words
words/urls.py
urls.py
py
1,067
python
en
code
1
github-code
6
[ { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" } ]
26038693036
from __future__ import annotations import logging import os import re import textwrap from collections import defaultdict from dataclasses import dataclass from pants.backend.codegen.protobuf.protoc import Protoc from pants.backend.codegen.protobuf.target_types import ( AllProtobufTargets, ProtobufGrpcToggleField, ProtobufSourceField, ProtobufSourcesGeneratorTarget, ProtobufSourceTarget, ) from pants.backend.go import target_type_rules from pants.backend.go.dependency_inference import ( GoImportPathsMappingAddressSet, GoModuleImportPathsMapping, GoModuleImportPathsMappings, GoModuleImportPathsMappingsHook, ) from pants.backend.go.target_type_rules import GoImportPathMappingRequest from pants.backend.go.target_types import GoOwningGoModAddressField, GoPackageSourcesField from pants.backend.go.util_rules import ( assembly, build_pkg, build_pkg_target, first_party_pkg, go_mod, link, sdk, third_party_pkg, ) from pants.backend.go.util_rules.build_opts import GoBuildOptions from pants.backend.go.util_rules.build_pkg import ( BuildGoPackageRequest, FallibleBuildGoPackageRequest, ) from pants.backend.go.util_rules.build_pkg_target import ( BuildGoPackageTargetRequest, GoCodegenBuildRequest, ) from pants.backend.go.util_rules.first_party_pkg import FallibleFirstPartyPkgAnalysis from pants.backend.go.util_rules.go_mod import OwningGoMod, OwningGoModRequest from pants.backend.go.util_rules.pkg_analyzer import PackageAnalyzerSetup from pants.backend.go.util_rules.sdk import GoSdkProcess from pants.backend.python.util_rules import pex from pants.build_graph.address import Address from pants.core.util_rules.external_tool import DownloadedExternalTool, ExternalToolRequest from pants.core.util_rules.source_files import SourceFiles, SourceFilesRequest from pants.core.util_rules.stripped_source_files import StrippedSourceFiles from pants.engine.fs import ( AddPrefix, CreateDigest, Digest, DigestContents, Directory, FileContent, MergeDigests, RemovePrefix, Snapshot, ) from pants.engine.internals.native_engine import EMPTY_DIGEST from pants.engine.internals.selectors import Get, MultiGet from pants.engine.platform import Platform from pants.engine.process import FallibleProcessResult, Process, ProcessResult from pants.engine.rules import collect_rules, rule from pants.engine.target import ( GeneratedSources, GenerateSourcesRequest, HydratedSources, HydrateSourcesRequest, SourcesPaths, SourcesPathsRequest, TransitiveTargets, TransitiveTargetsRequest, ) from pants.engine.unions import UnionRule from pants.source.source_root import ( SourceRoot, SourceRootRequest, SourceRootsRequest, SourceRootsResult, ) from pants.util.dirutil import group_by_dir from pants.util.frozendict import FrozenDict from pants.util.logging import LogLevel from pants.util.strutil import softwrap _logger = logging.getLogger(__name__) class GoCodegenBuildProtobufRequest(GoCodegenBuildRequest): generate_from = ProtobufSourceField class GenerateGoFromProtobufRequest(GenerateSourcesRequest): input = ProtobufSourceField output = GoPackageSourcesField @dataclass(frozen=True) class _SetupGoProtocPlugin: digest: Digest _QUOTE_CHAR = r"(?:'|\")" _IMPORT_PATH_RE = re.compile(rf"^\s*option\s+go_package\s+=\s+{_QUOTE_CHAR}(.*){_QUOTE_CHAR};") def parse_go_package_option(content_raw: bytes) -> str | None: content = content_raw.decode() for line in content.splitlines(): m = _IMPORT_PATH_RE.match(line) if m: return m.group(1) return None class ProtobufGoModuleImportPathsMappingsHook(GoModuleImportPathsMappingsHook): pass @rule(desc="Map import paths for all Go Protobuf targets.", level=LogLevel.DEBUG) async def map_import_paths_of_all_go_protobuf_targets( _request: ProtobufGoModuleImportPathsMappingsHook, all_protobuf_targets: AllProtobufTargets, ) -> GoModuleImportPathsMappings: sources = await MultiGet( Get( HydratedSources, HydrateSourcesRequest( tgt[ProtobufSourceField], for_sources_types=(ProtobufSourceField,), enable_codegen=True, ), ) for tgt in all_protobuf_targets ) all_contents = await MultiGet( Get(DigestContents, Digest, source.snapshot.digest) for source in sources ) go_protobuf_mapping_metadata = [] owning_go_mod_gets = [] for tgt, contents in zip(all_protobuf_targets, all_contents): if not contents: continue if len(contents) > 1: raise AssertionError( f"Protobuf target `{tgt.address}` mapped to more than one source file." ) import_path = parse_go_package_option(contents[0].content) if not import_path: continue owning_go_mod_gets.append(Get(OwningGoMod, OwningGoModRequest(tgt.address))) go_protobuf_mapping_metadata.append((import_path, tgt.address)) owning_go_mod_targets = await MultiGet(owning_go_mod_gets) import_paths_by_module: dict[Address, dict[str, set[Address]]] = defaultdict( lambda: defaultdict(set) ) for owning_go_mod, (import_path, address) in zip( owning_go_mod_targets, go_protobuf_mapping_metadata ): import_paths_by_module[owning_go_mod.address][import_path].add(address) return GoModuleImportPathsMappings( FrozenDict( { go_mod_addr: GoModuleImportPathsMapping( mapping=FrozenDict( { import_path: GoImportPathsMappingAddressSet( addresses=tuple(sorted(addresses)), infer_all=True ) for import_path, addresses in import_path_mapping.items() } ), address_to_import_path=FrozenDict( { address: import_path for import_path, addresses in import_path_mapping.items() for address in addresses } ), ) for go_mod_addr, import_path_mapping in import_paths_by_module.items() } ) ) @dataclass(frozen=True) class _SetupGoProtobufPackageBuildRequest: """Request type used to trigger setup of a BuildGoPackageRequest for entire generated Go Protobuf package. This type is separate so that a build of the full package can be cached no matter which one of its component source files was requested. This occurs because a request to build any one of the source files will be converted into this type and then built. """ addresses: tuple[Address, ...] import_path: str build_opts: GoBuildOptions @rule async def setup_full_package_build_request( request: _SetupGoProtobufPackageBuildRequest, protoc: Protoc, go_protoc_plugin: _SetupGoProtocPlugin, analyzer: PackageAnalyzerSetup, platform: Platform, ) -> FallibleBuildGoPackageRequest: output_dir = "_generated_files" protoc_relpath = "__protoc" protoc_go_plugin_relpath = "__protoc_gen_go" transitive_targets, downloaded_protoc_binary, empty_output_dir = await MultiGet( Get(TransitiveTargets, TransitiveTargetsRequest(request.addresses)), Get(DownloadedExternalTool, ExternalToolRequest, protoc.get_request(platform)), Get(Digest, CreateDigest([Directory(output_dir)])), ) go_mod_addr = await Get(OwningGoMod, OwningGoModRequest(transitive_targets.roots[0].address)) package_mapping = await Get( GoModuleImportPathsMapping, GoImportPathMappingRequest(go_mod_addr.address) ) all_sources = await Get( SourceFiles, SourceFilesRequest( sources_fields=( tgt[ProtobufSourceField] for tgt in transitive_targets.closure if tgt.has_field(ProtobufSourceField) ), for_sources_types=(ProtobufSourceField,), enable_codegen=True, ), ) source_roots, input_digest = await MultiGet( Get(SourceRootsResult, SourceRootsRequest, SourceRootsRequest.for_files(all_sources.files)), Get(Digest, MergeDigests([all_sources.snapshot.digest, empty_output_dir])), ) source_root_paths = sorted({sr.path for sr in source_roots.path_to_root.values()}) pkg_sources = await MultiGet( Get(SourcesPaths, SourcesPathsRequest(tgt[ProtobufSourceField])) for tgt in transitive_targets.roots ) pkg_files = sorted({f for ps in pkg_sources for f in ps.files}) maybe_grpc_plugin_args = [] if any(tgt.get(ProtobufGrpcToggleField).value for tgt in transitive_targets.roots): maybe_grpc_plugin_args = [ f"--go-grpc_out={output_dir}", "--go-grpc_opt=paths=source_relative", ] gen_result = await Get( FallibleProcessResult, Process( argv=[ os.path.join(protoc_relpath, downloaded_protoc_binary.exe), f"--plugin=go={os.path.join('.', protoc_go_plugin_relpath, 'protoc-gen-go')}", f"--plugin=go-grpc={os.path.join('.', protoc_go_plugin_relpath, 'protoc-gen-go-grpc')}", f"--go_out={output_dir}", "--go_opt=paths=source_relative", *(f"--proto_path={source_root}" for source_root in source_root_paths), *maybe_grpc_plugin_args, *pkg_files, ], # Note: Necessary or else --plugin option needs absolute path. env={"PATH": protoc_go_plugin_relpath}, input_digest=input_digest, immutable_input_digests={ protoc_relpath: downloaded_protoc_binary.digest, protoc_go_plugin_relpath: go_protoc_plugin.digest, }, description=f"Generating Go sources from {request.import_path}.", level=LogLevel.DEBUG, output_directories=(output_dir,), ), ) if gen_result.exit_code != 0: return FallibleBuildGoPackageRequest( request=None, import_path=request.import_path, exit_code=gen_result.exit_code, stderr=gen_result.stderr.decode(), ) # Ensure that the generated files are in a single package directory. gen_sources = await Get(Snapshot, Digest, gen_result.output_digest) files_by_dir = group_by_dir(gen_sources.files) if len(files_by_dir) != 1: return FallibleBuildGoPackageRequest( request=None, import_path=request.import_path, exit_code=1, stderr=textwrap.dedent( f""" Expected Go files generated from Protobuf sources to be output to a single directory. - import path: {request.import_path} - protobuf files: {', '.join(pkg_files)} """ ).strip(), ) gen_dir = list(files_by_dir.keys())[0] # Analyze the generated sources. input_digest = await Get(Digest, MergeDigests([gen_sources.digest, analyzer.digest])) result = await Get( FallibleProcessResult, Process( (analyzer.path, gen_dir), input_digest=input_digest, description=f"Determine metadata for generated Go package for {request.import_path}", level=LogLevel.DEBUG, env={"CGO_ENABLED": "0"}, # protobuf files should not have cgo! ), ) # Parse the metadata from the analysis. fallible_analysis = FallibleFirstPartyPkgAnalysis.from_process_result( result, dir_path=gen_dir, import_path=request.import_path, minimum_go_version="", description_of_source=f"Go package generated from protobuf targets `{', '.join(str(addr) for addr in request.addresses)}`", ) if not fallible_analysis.analysis: return FallibleBuildGoPackageRequest( request=None, import_path=request.import_path, exit_code=fallible_analysis.exit_code, stderr=fallible_analysis.stderr, ) analysis = fallible_analysis.analysis # Obtain build requests for third-party dependencies. # TODO: Consider how to merge this code with existing dependency inference code. dep_build_request_addrs: set[Address] = set() for dep_import_path in (*analysis.imports, *analysis.test_imports, *analysis.xtest_imports): # Infer dependencies on other Go packages. candidate_addresses = package_mapping.mapping.get(dep_import_path) if candidate_addresses: # TODO: Use explicit dependencies to disambiguate? This should never happen with Go backend though. if candidate_addresses.infer_all: dep_build_request_addrs.update(candidate_addresses.addresses) else: if len(candidate_addresses.addresses) > 1: return FallibleBuildGoPackageRequest( request=None, import_path=request.import_path, exit_code=result.exit_code, stderr=textwrap.dedent( f""" Multiple addresses match import of `{dep_import_path}`. addresses: {', '.join(str(a) for a in candidate_addresses.addresses)} """ ).strip(), ) dep_build_request_addrs.update(candidate_addresses.addresses) dep_build_requests = await MultiGet( Get(BuildGoPackageRequest, BuildGoPackageTargetRequest(addr, build_opts=request.build_opts)) for addr in sorted(dep_build_request_addrs) ) return FallibleBuildGoPackageRequest( request=BuildGoPackageRequest( import_path=request.import_path, pkg_name=analysis.name, digest=gen_sources.digest, dir_path=analysis.dir_path, go_files=analysis.go_files, s_files=analysis.s_files, direct_dependencies=dep_build_requests, minimum_go_version=analysis.minimum_go_version, build_opts=request.build_opts, ), import_path=request.import_path, ) @rule async def setup_build_go_package_request_for_protobuf( request: GoCodegenBuildProtobufRequest, ) -> FallibleBuildGoPackageRequest: # Hydrate the protobuf source to parse for the Go import path. sources = await Get(HydratedSources, HydrateSourcesRequest(request.target[ProtobufSourceField])) sources_content = await Get(DigestContents, Digest, sources.snapshot.digest) assert len(sources_content) == 1 import_path = parse_go_package_option(sources_content[0].content) if not import_path: return FallibleBuildGoPackageRequest( request=None, import_path="", exit_code=1, stderr=f"No import path was set in Protobuf file via `option go_package` directive for {request.target.address}.", ) go_mod_addr = await Get(OwningGoMod, OwningGoModRequest(request.target.address)) package_mapping = await Get( GoModuleImportPathsMapping, GoImportPathMappingRequest(go_mod_addr.address) ) # Request the full build of the package. This indirection is necessary so that requests for two or more # Protobuf files in the same Go package result in a single cacheable rule invocation. protobuf_target_addrs_set_for_import_path = package_mapping.mapping.get(import_path) if not protobuf_target_addrs_set_for_import_path: return FallibleBuildGoPackageRequest( request=None, import_path=import_path, exit_code=1, stderr=softwrap( f""" No Protobuf files exists for import path `{import_path}`. Consider whether the import path was set correctly via the `option go_package` directive. """ ), ) return await Get( FallibleBuildGoPackageRequest, _SetupGoProtobufPackageBuildRequest( addresses=protobuf_target_addrs_set_for_import_path.addresses, import_path=import_path, build_opts=request.build_opts, ), ) @rule(desc="Generate Go source files from Protobuf", level=LogLevel.DEBUG) async def generate_go_from_protobuf( request: GenerateGoFromProtobufRequest, protoc: Protoc, go_protoc_plugin: _SetupGoProtocPlugin, platform: Platform, ) -> GeneratedSources: output_dir = "_generated_files" protoc_relpath = "__protoc" protoc_go_plugin_relpath = "__protoc_gen_go" downloaded_protoc_binary, empty_output_dir, transitive_targets = await MultiGet( Get(DownloadedExternalTool, ExternalToolRequest, protoc.get_request(platform)), Get(Digest, CreateDigest([Directory(output_dir)])), Get(TransitiveTargets, TransitiveTargetsRequest([request.protocol_target.address])), ) # NB: By stripping the source roots, we avoid having to set the value `--proto_path` # for Protobuf imports to be discoverable. all_sources_stripped, target_sources_stripped = await MultiGet( Get( StrippedSourceFiles, SourceFilesRequest( tgt[ProtobufSourceField] for tgt in transitive_targets.closure if tgt.has_field(ProtobufSourceField) ), ), Get( StrippedSourceFiles, SourceFilesRequest([request.protocol_target[ProtobufSourceField]]) ), ) input_digest = await Get( Digest, MergeDigests([all_sources_stripped.snapshot.digest, empty_output_dir]) ) maybe_grpc_plugin_args = [] if request.protocol_target.get(ProtobufGrpcToggleField).value: maybe_grpc_plugin_args = [ f"--go-grpc_out={output_dir}", "--go-grpc_opt=paths=source_relative", ] result = await Get( ProcessResult, Process( argv=[ os.path.join(protoc_relpath, downloaded_protoc_binary.exe), f"--plugin=go={os.path.join('.', protoc_go_plugin_relpath, 'protoc-gen-go')}", f"--plugin=go-grpc={os.path.join('.', protoc_go_plugin_relpath, 'protoc-gen-go-grpc')}", f"--go_out={output_dir}", "--go_opt=paths=source_relative", *maybe_grpc_plugin_args, *target_sources_stripped.snapshot.files, ], # Note: Necessary or else --plugin option needs absolute path. env={"PATH": protoc_go_plugin_relpath}, input_digest=input_digest, immutable_input_digests={ protoc_relpath: downloaded_protoc_binary.digest, protoc_go_plugin_relpath: go_protoc_plugin.digest, }, description=f"Generating Go sources from {request.protocol_target.address}.", level=LogLevel.DEBUG, output_directories=(output_dir,), ), ) normalized_digest, source_root = await MultiGet( Get(Digest, RemovePrefix(result.output_digest, output_dir)), Get(SourceRoot, SourceRootRequest, SourceRootRequest.for_target(request.protocol_target)), ) source_root_restored = ( await Get(Snapshot, AddPrefix(normalized_digest, source_root.path)) if source_root.path != "." else await Get(Snapshot, Digest, normalized_digest) ) return GeneratedSources(source_root_restored) # Note: The versions of the Go protoc and gRPC plugins are hard coded in the following go.mod. To update, # copy the following go.mod and go.sum contents to go.mod and go.sum files in a new directory. Then update the # versions and run `go mod download all`. Copy the go.mod and go.sum contents back into these constants, # making sure to replace tabs with `\t`. GO_PROTOBUF_GO_MOD = """\ module org.pantsbuild.backend.go.protobuf go 1.17 require ( \tgoogle.golang.org/grpc/cmd/protoc-gen-go-grpc v1.2.0 \tgoogle.golang.org/protobuf v1.27.1 ) require ( \tgithub.com/golang/protobuf v1.5.0 // indirect \tgithub.com/google/go-cmp v0.5.5 // indirect \tgolang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543 // indirect ) """ GO_PROTOBUF_GO_SUM = """\ github.com/golang/protobuf v1.5.0 h1:LUVKkCeviFUMKqHa4tXIIij/lbhnMbP7Fn5wKdKkRh4= github.com/golang/protobuf v1.5.0/go.mod h1:FsONVRAS9T7sI+LIUmWTfcYkHO4aIWwzhcaSAoJOfIk= github.com/google/go-cmp v0.5.5 h1:Khx7svrCpmxxtHBq5j2mp/xVjsi8hQMfNLvJFAlrGgU= github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543 h1:E7g+9GITq07hpfrRu66IVDexMakfv52eLZ2CXBWiKr4= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= google.golang.org/grpc v1.2.0 h1:v8eFdETH8nqZHQ9x+0f2PLuU6W7zo5PFZuVEwH5126Y= google.golang.org/grpc v1.2.0/go.mod h1:yo6s7OP7yaDglbqo1J04qKzAhqBH6lvTonzMVmEdcZw= google.golang.org/grpc/cmd/protoc-gen-go-grpc v1.2.0 h1:TLkBREm4nIsEcexnCjgQd5GQWaHcqMzwQV0TX9pq8S0= google.golang.org/grpc/cmd/protoc-gen-go-grpc v1.2.0/go.mod h1:DNq5QpG7LJqD2AamLZ7zvKE0DEpVl2BSEVjFycAAjRY= google.golang.org/protobuf v1.27.1 h1:SnqbnDw1V7RiZcXPx5MEeqPv2s79L9i7BJUlG/+RurQ= google.golang.org/protobuf v1.27.1/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc= """ @rule async def setup_go_protoc_plugin() -> _SetupGoProtocPlugin: go_mod_digest = await Get( Digest, CreateDigest( [ FileContent("go.mod", GO_PROTOBUF_GO_MOD.encode()), FileContent("go.sum", GO_PROTOBUF_GO_SUM.encode()), ] ), ) download_sources_result = await Get( ProcessResult, GoSdkProcess( ["mod", "download", "all"], input_digest=go_mod_digest, output_directories=("gopath",), description="Download Go `protoc` plugin sources.", allow_downloads=True, ), ) go_plugin_build_result, go_grpc_plugin_build_result = await MultiGet( Get( ProcessResult, GoSdkProcess( ["install", "google.golang.org/protobuf/cmd/[email protected]"], input_digest=download_sources_result.output_digest, output_files=["gopath/bin/protoc-gen-go"], description="Build Go protobuf plugin for `protoc`.", ), ), Get( ProcessResult, GoSdkProcess( [ "install", "google.golang.org/grpc/cmd/[email protected]", ], input_digest=download_sources_result.output_digest, output_files=["gopath/bin/protoc-gen-go-grpc"], description="Build Go gRPC protobuf plugin for `protoc`.", ), ), ) if go_plugin_build_result.output_digest == EMPTY_DIGEST: raise AssertionError( f"Failed to build protoc-gen-go:\n" f"stdout:\n{go_plugin_build_result.stdout.decode()}\n\n" f"stderr:\n{go_plugin_build_result.stderr.decode()}" ) if go_grpc_plugin_build_result.output_digest == EMPTY_DIGEST: raise AssertionError( f"Failed to build protoc-gen-go-grpc:\n" f"stdout:\n{go_grpc_plugin_build_result.stdout.decode()}\n\n" f"stderr:\n{go_grpc_plugin_build_result.stderr.decode()}" ) merged_output_digests = await Get( Digest, MergeDigests( [go_plugin_build_result.output_digest, go_grpc_plugin_build_result.output_digest] ), ) plugin_digest = await Get(Digest, RemovePrefix(merged_output_digests, "gopath/bin")) return _SetupGoProtocPlugin(plugin_digest) def rules(): return ( *collect_rules(), UnionRule(GenerateSourcesRequest, GenerateGoFromProtobufRequest), UnionRule(GoCodegenBuildRequest, GoCodegenBuildProtobufRequest), UnionRule(GoModuleImportPathsMappingsHook, ProtobufGoModuleImportPathsMappingsHook), ProtobufSourcesGeneratorTarget.register_plugin_field(GoOwningGoModAddressField), ProtobufSourceTarget.register_plugin_field(GoOwningGoModAddressField), # Rules needed for this to pass src/python/pants/init/load_backends_integration_test.py: *assembly.rules(), *build_pkg.rules(), *build_pkg_target.rules(), *first_party_pkg.rules(), *go_mod.rules(), *link.rules(), *sdk.rules(), *target_type_rules.rules(), *third_party_pkg.rules(), *pex.rules(), )
pantsbuild/pants
src/python/pants/backend/codegen/protobuf/go/rules.py
rules.py
py
25,015
python
en
code
2,896
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 93, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg_target.GoCodegenBuildRequest", "line_number": 96, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 97, "usage_type": "name" }, { "api_name": "pants.engine.target.GenerateSourcesRequest", "line_number": 100, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 101, "usage_type": "name" }, { "api_name": "pants.backend.go.target_types.GoPackageSourcesField", "line_number": 102, "usage_type": "name" }, { "api_name": "pants.engine.fs.Digest", "line_number": 107, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 105, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 111, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMappingsHook", "line_number": 123, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.AllProtobufTargets", "line_number": 130, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 132, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 133, "usage_type": "call" }, { "api_name": "pants.engine.target.HydratedSources", "line_number": 134, "usage_type": "argument" }, { "api_name": "pants.engine.target.HydrateSourcesRequest", "line_number": 135, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 136, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 137, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 144, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 145, "usage_type": "call" }, { "api_name": "pants.engine.fs.DigestContents", "line_number": 145, "usage_type": "argument" }, { "api_name": "pants.engine.fs.Digest", "line_number": 145, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 162, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoMod", "line_number": 162, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoModRequest", "line_number": 162, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 165, "usage_type": "call" }, { "api_name": "pants.build_graph.address.Address", "line_number": 167, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 167, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 168, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMappings", "line_number": 176, "usage_type": "call" }, { "api_name": "pants.util.frozendict.FrozenDict", "line_number": 177, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMapping", "line_number": 179, "usage_type": "call" }, { "api_name": "pants.util.frozendict.FrozenDict", "line_number": 180, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoImportPathsMappingAddressSet", "line_number": 182, "usage_type": "call" }, { "api_name": "pants.util.frozendict.FrozenDict", "line_number": 188, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 127, "usage_type": "call" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 127, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 127, "usage_type": "name" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMappings", "line_number": 131, "usage_type": "name" }, { "api_name": "pants.build_graph.address.Address", "line_number": 212, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_opts.GoBuildOptions", "line_number": 214, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 202, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.protoc.Protoc", "line_number": 220, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.pkg_analyzer.PackageAnalyzerSetup", "line_number": 222, "usage_type": "name" }, { "api_name": "pants.engine.platform.Platform", "line_number": 223, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 229, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 230, "usage_type": "call" }, { "api_name": "pants.engine.target.TransitiveTargets", "line_number": 230, "usage_type": "argument" }, { "api_name": "pants.engine.target.TransitiveTargetsRequest", "line_number": 230, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 231, "usage_type": "call" }, { "api_name": "pants.core.util_rules.external_tool.DownloadedExternalTool", "line_number": 231, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.external_tool.ExternalToolRequest", "line_number": 231, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 232, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 232, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 232, "usage_type": "call" }, { "api_name": "pants.engine.fs.Directory", "line_number": 232, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 235, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoMod", "line_number": 235, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoModRequest", "line_number": 235, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 236, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMapping", "line_number": 237, "usage_type": "argument" }, { "api_name": "pants.backend.go.target_type_rules.GoImportPathMappingRequest", "line_number": 237, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 240, "usage_type": "call" }, { "api_name": "pants.core.util_rules.source_files.SourceFiles", "line_number": 241, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.source_files.SourceFilesRequest", "line_number": 242, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 244, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 246, "usage_type": "argument" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 248, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 252, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 253, "usage_type": "call" }, { "api_name": "pants.source.source_root.SourceRootsResult", "line_number": 253, "usage_type": "argument" }, { "api_name": "pants.source.source_root.SourceRootsRequest", "line_number": 253, "usage_type": "argument" }, { "api_name": "pants.source.source_root.SourceRootsRequest.for_files", "line_number": 253, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 254, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 254, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 254, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 259, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 260, "usage_type": "call" }, { "api_name": "pants.engine.target.SourcesPaths", "line_number": 260, "usage_type": "argument" }, { "api_name": "pants.engine.target.SourcesPathsRequest", "line_number": 260, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 260, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufGrpcToggleField", "line_number": 266, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 272, "usage_type": "call" }, { "api_name": "pants.engine.process.FallibleProcessResult", "line_number": 273, "usage_type": "argument" }, { "api_name": "pants.engine.process.Process", "line_number": 274, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 276, "usage_type": "call" }, { "api_name": "os.path", "line_number": 276, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 277, "usage_type": "call" }, { "api_name": "os.path", "line_number": 277, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 278, "usage_type": "call" }, { "api_name": "os.path", "line_number": 278, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 293, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 293, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 298, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 306, "usage_type": "call" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 306, "usage_type": "argument" }, { "api_name": "pants.engine.fs.Digest", "line_number": 306, "usage_type": "argument" }, { "api_name": "pants.util.dirutil.group_by_dir", "line_number": 307, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 309, "usage_type": "call" }, { "api_name": "textwrap.dedent", "line_number": 313, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 324, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 324, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 324, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 325, "usage_type": "call" }, { "api_name": "pants.engine.process.FallibleProcessResult", "line_number": 326, "usage_type": "argument" }, { "api_name": "pants.engine.process.Process", "line_number": 327, "usage_type": "call" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 331, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 331, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.first_party_pkg.FallibleFirstPartyPkgAnalysis.from_process_result", "line_number": 337, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.first_party_pkg.FallibleFirstPartyPkgAnalysis", "line_number": 337, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 345, "usage_type": "call" }, { "api_name": "pants.build_graph.address.Address", "line_number": 355, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 365, "usage_type": "call" }, { "api_name": "textwrap.dedent", "line_number": 369, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 379, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 380, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.BuildGoPackageRequest", "line_number": 380, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.build_pkg_target.BuildGoPackageTargetRequest", "line_number": 380, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 384, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.BuildGoPackageRequest", "line_number": 385, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 217, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 224, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 405, "usage_type": "call" }, { "api_name": "pants.engine.target.HydratedSources", "line_number": 405, "usage_type": "argument" }, { "api_name": "pants.engine.target.HydrateSourcesRequest", "line_number": 405, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 405, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 406, "usage_type": "call" }, { "api_name": "pants.engine.fs.DigestContents", "line_number": 406, "usage_type": "argument" }, { "api_name": "pants.engine.fs.Digest", "line_number": 406, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 410, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 417, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoMod", "line_number": 417, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.go_mod.OwningGoModRequest", "line_number": 417, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 418, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMapping", "line_number": 419, "usage_type": "argument" }, { "api_name": "pants.backend.go.target_type_rules.GoImportPathMappingRequest", "line_number": 419, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 426, "usage_type": "call" }, { "api_name": "pants.util.strutil.softwrap", "line_number": 430, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 438, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 439, "usage_type": "argument" }, { "api_name": "pants.engine.rules.rule", "line_number": 400, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.FallibleBuildGoPackageRequest", "line_number": 403, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.protoc.Protoc", "line_number": 451, "usage_type": "name" }, { "api_name": "pants.engine.platform.Platform", "line_number": 453, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 459, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 460, "usage_type": "call" }, { "api_name": "pants.core.util_rules.external_tool.DownloadedExternalTool", "line_number": 460, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.external_tool.ExternalToolRequest", "line_number": 460, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 461, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 461, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 461, "usage_type": "call" }, { "api_name": "pants.engine.fs.Directory", "line_number": 461, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 462, "usage_type": "call" }, { "api_name": "pants.engine.target.TransitiveTargets", "line_number": 462, "usage_type": "argument" }, { "api_name": "pants.engine.target.TransitiveTargetsRequest", "line_number": 462, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 467, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 468, "usage_type": "call" }, { "api_name": "pants.core.util_rules.stripped_source_files.StrippedSourceFiles", "line_number": 469, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.source_files.SourceFilesRequest", "line_number": 470, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 471, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 473, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 476, "usage_type": "call" }, { "api_name": "pants.core.util_rules.stripped_source_files.StrippedSourceFiles", "line_number": 477, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.source_files.SourceFilesRequest", "line_number": 477, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceField", "line_number": 477, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 481, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 482, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 482, "usage_type": "call" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufGrpcToggleField", "line_number": 486, "usage_type": "argument" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 492, "usage_type": "call" }, { "api_name": "pants.engine.process.ProcessResult", "line_number": 493, "usage_type": "argument" }, { "api_name": "pants.engine.process.Process", "line_number": 494, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 496, "usage_type": "call" }, { "api_name": "os.path", "line_number": 496, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 497, "usage_type": "call" }, { "api_name": "os.path", "line_number": 497, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 498, "usage_type": "call" }, { "api_name": "os.path", "line_number": 498, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 512, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 512, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 517, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 518, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 518, "usage_type": "argument" }, { "api_name": "pants.engine.fs.RemovePrefix", "line_number": 518, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 519, "usage_type": "call" }, { "api_name": "pants.source.source_root.SourceRoot", "line_number": 519, "usage_type": "argument" }, { "api_name": "pants.source.source_root.SourceRootRequest", "line_number": 519, "usage_type": "argument" }, { "api_name": "pants.source.source_root.SourceRootRequest.for_target", "line_number": 519, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 523, "usage_type": "call" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 523, "usage_type": "argument" }, { "api_name": "pants.engine.fs.AddPrefix", "line_number": 523, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 525, "usage_type": "call" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 525, "usage_type": "argument" }, { "api_name": "pants.engine.fs.Digest", "line_number": 525, "usage_type": "argument" }, { "api_name": "pants.engine.target.GeneratedSources", "line_number": 527, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 448, "usage_type": "call" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 448, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 448, "usage_type": "name" }, { "api_name": "pants.engine.target.GeneratedSources", "line_number": 454, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 570, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 571, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 572, "usage_type": "call" }, { "api_name": "pants.engine.fs.FileContent", "line_number": 574, "usage_type": "call" }, { "api_name": "pants.engine.fs.FileContent", "line_number": 575, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 580, "usage_type": "call" }, { "api_name": "pants.engine.process.ProcessResult", "line_number": 581, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.sdk.GoSdkProcess", "line_number": 582, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.MultiGet", "line_number": 591, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 592, "usage_type": "call" }, { "api_name": "pants.engine.process.ProcessResult", "line_number": 593, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.sdk.GoSdkProcess", "line_number": 594, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 601, "usage_type": "call" }, { "api_name": "pants.engine.process.ProcessResult", "line_number": 602, "usage_type": "argument" }, { "api_name": "pants.backend.go.util_rules.sdk.GoSdkProcess", "line_number": 603, "usage_type": "call" }, { "api_name": "pants.engine.internals.native_engine.EMPTY_DIGEST", "line_number": 614, "usage_type": "name" }, { "api_name": "pants.engine.internals.native_engine.EMPTY_DIGEST", "line_number": 620, "usage_type": "name" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 627, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 628, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 629, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 633, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 633, "usage_type": "argument" }, { "api_name": "pants.engine.fs.RemovePrefix", "line_number": 633, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 568, "usage_type": "name" }, { "api_name": "pants.engine.rules.collect_rules", "line_number": 639, "usage_type": "call" }, { "api_name": "pants.engine.unions.UnionRule", "line_number": 640, "usage_type": "call" }, { "api_name": "pants.engine.target.GenerateSourcesRequest", "line_number": 640, "usage_type": "argument" }, { "api_name": "pants.engine.unions.UnionRule", "line_number": 641, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg_target.GoCodegenBuildRequest", "line_number": 641, "usage_type": "argument" }, { "api_name": "pants.engine.unions.UnionRule", "line_number": 642, "usage_type": "call" }, { "api_name": "pants.backend.go.dependency_inference.GoModuleImportPathsMappingsHook", "line_number": 642, "usage_type": "argument" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourcesGeneratorTarget.register_plugin_field", "line_number": 643, "usage_type": "call" }, { "api_name": "pants.backend.go.target_types.GoOwningGoModAddressField", "line_number": 643, "usage_type": "argument" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourcesGeneratorTarget", "line_number": 643, "usage_type": "name" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceTarget.register_plugin_field", "line_number": 644, "usage_type": "call" }, { "api_name": "pants.backend.go.target_types.GoOwningGoModAddressField", "line_number": 644, "usage_type": "argument" }, { "api_name": "pants.backend.codegen.protobuf.target_types.ProtobufSourceTarget", "line_number": 644, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.assembly.rules", "line_number": 646, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.assembly", "line_number": 646, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg.rules", "line_number": 647, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg", "line_number": 647, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.build_pkg_target.rules", "line_number": 648, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.build_pkg_target", "line_number": 648, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.first_party_pkg.rules", "line_number": 649, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.first_party_pkg", "line_number": 649, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.go_mod.rules", "line_number": 650, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.go_mod", "line_number": 650, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.link.rules", "line_number": 651, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.link", "line_number": 651, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.sdk.rules", "line_number": 652, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.sdk", "line_number": 652, "usage_type": "name" }, { "api_name": "pants.backend.go.target_type_rules.rules", "line_number": 653, "usage_type": "call" }, { "api_name": "pants.backend.go.target_type_rules", "line_number": 653, "usage_type": "name" }, { "api_name": "pants.backend.go.util_rules.third_party_pkg.rules", "line_number": 654, "usage_type": "call" }, { "api_name": "pants.backend.go.util_rules.third_party_pkg", "line_number": 654, "usage_type": "name" }, { "api_name": "pants.backend.python.util_rules.pex.rules", "line_number": 655, "usage_type": "call" }, { "api_name": "pants.backend.python.util_rules.pex", "line_number": 655, "usage_type": "name" } ]
33850641451
# 第 0002 题:生成的200个激活码保存在mysql关系型数据库中 import random, string import pymysql def get_string(num, length=10): codes = [] chars = string.ascii_uppercase + string.digits for i in range(num): one_code = random.sample(chars, length) codes.append(''.join(one_code)) return codes def save_code_mysql(): try: conn = pymysql.connect(host='localhost', user='root', password='123456', charset='UTF8') cur = conn.cursor() except BaseException as e: print(e) else: try: cur.execute("CREATE DATABASE IF NOT EXISTS code_mysql") cur.execute("USE code_mysql") cur.execute("CREATE TABLE IF NOT EXISTS codes (id INT AUTO_INCREMENT PRIMARY KEY, code VARCHAR(32))") codes = get_string(200) for code in codes: cur.execute("INSERT INTO codes(code) values(%s)", (code)) conn.commit() cur.execute("SELECT * FROM codes") result = cur.fetchall() for i in result: print(i) except BaseException as e: print(e) finally: cur.close() conn.close() if __name__ == '__main__': save_code_mysql()
akenYu/learnpy
showme/02/savemysql.py
savemysql.py
py
1,070
python
en
code
0
github-code
6
[ { "api_name": "string.ascii_uppercase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "string.digits", "line_number": 9, "usage_type": "attribute" }, { "api_name": "random.sample", "line_number": 11, "usage_type": "call" }, { "api_name": "pymysql.connect", "line_number": 18, "usage_type": "call" } ]
35374859965
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 8 22:42:38 2022 @author: sanggupark """ import numpy as np import traci from dataclasses import dataclass import math from shapely.geometry import LineString, Point from SimpleMath import create_vehicle_shape @dataclass(init = True) class Object_sensed: ID: str xpos: float ypos: float vel: float angle: float width: float length: float acc_max: float = 4.0 dec_max: float = 7.0 dec_min: float = 2.0 response: float = 0.2 blinker: int = 0 def lidar_sensing(ego, veh_other): xpos = ego.xpos ypos = ego.ypos length = ego.length rad = np.radians(ego.angle) p_tail = Point([xpos-(length)*math.sin(rad), ypos-(length)*math.cos(rad)]) # FOV control if "LF" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/4), rad-(ego.sensor.fov/4), 100) elif "LC_R" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/2.0), rad-(ego.sensor.fov/2.0), 100) elif "LC_L" in ego.behavior: angles = np.linspace(rad+(ego.sensor.fov/2.0), rad-(ego.sensor.fov/2.0), 100) distance = ego.sensor.radius * 1.00 lines = [] for angle in angles: line = LineString([[p_tail.x, p_tail.y], [p_tail.x + distance*math.sin(angle), p_tail.y + distance*math.cos(angle)]]) lines.append(line) vehicles_sensed = [] follower = traci.vehicle.getFollower(ego.ID, dist=5.0)[0] """ LIDAR Sensing """ for veh in veh_other: is_detected = False poly_veh = create_vehicle_shape(veh) if veh.ID != ego.ID: for line in lines: is_detected = poly_veh.intersects(line) if is_detected: break if is_detected and not (veh.ID == follower): vehicles_sensed.append(veh) return vehicles_sensed def blinker_sensing(ego, vehicles_sensed): """ Blinker Sensing """ for veh in vehicles_sensed: blinker = traci.vehicle.getSignals(veh.ID) # If LF """ if blinker == 0: veh.blinker = 0 # If LC_R """ elif blinker == 1: veh.blinker = -1 # If LC_L """ elif blinker == 2: veh.blinker = 1 return vehicles_sensed def update_prev_info(ego, vehicles_sensed): """ Update Old info """ for veh in vehicles_sensed: if 'auv' in veh.ID: object_add = Object_sensed(veh.ID, veh.xpos, veh.ypos, veh.vel, veh.angle, veh.width, veh.length, blinker=veh.blinker) elif 'huv' in veh.ID: blinker = traci.vehicle.getSignals(veh.ID) if blinker == 1: blinker = -1 elif blinker == -1: blinker = 1 else: blinker = 0 object_add = Object_sensed(veh.ID, veh.xpos, veh.ypos, veh.vel, veh.angle, veh.width, veh.length, blinker=-traci.vehicle.getSignals(veh.ID)) if len(ego.objects_sensed): flag = False for obj in ego.objects_sensed: if obj.ID == object_add.ID: # replacement due to overlaps ego.objects_sensed[np.where(ego.objects_sensed==obj)] = object_add flag = True if not flag: # add if no overlaps ego.objects_sensed = np.append(ego.objects_sensed, object_add) else: # if the list is empty ego.objects_sensed = np.append(ego.objects_sensed, object_add) return
sanggu-park/blaft_simulation
Sensing.py
Sensing.py
py
3,640
python
en
code
0
github-code
6
[ { "api_name": "dataclasses.dataclass", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 37, "usage_type": "call" }, { "api_name": "shapely.geometry.Point", "line_number": 38, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 38, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 47, "usage_type": "call" }, { "api_name": "shapely.geometry.LineString", "line_number": 52, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 52, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 52, "usage_type": "call" }, { "api_name": "traci.vehicle.getFollower", "line_number": 56, "usage_type": "call" }, { "api_name": "traci.vehicle", "line_number": 56, "usage_type": "attribute" }, { "api_name": "SimpleMath.create_vehicle_shape", "line_number": 61, "usage_type": "call" }, { "api_name": "traci.vehicle.getSignals", "line_number": 77, "usage_type": "call" }, { "api_name": "traci.vehicle", "line_number": 77, "usage_type": "attribute" }, { "api_name": "traci.vehicle.getSignals", "line_number": 99, "usage_type": "call" }, { "api_name": "traci.vehicle", "line_number": 99, "usage_type": "attribute" }, { "api_name": "traci.vehicle.getSignals", "line_number": 108, "usage_type": "call" }, { "api_name": "traci.vehicle", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 119, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 122, "usage_type": "call" } ]
71674830588
import genanki import functools import os TRUE_FALSE_MODEL_ID = 1803127777 @functools.lru_cache() def load_true_false_model(): data = {} for fname in ['fields.json', 'templates.yaml', 'cards.css']: path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'true_false_model', fname) with open(path) as f: data[fname] = f.read() return genanki.Model( TRUE_FALSE_MODEL_ID, 'Anatomy True False', fields=data['fields.json'], templates=data['templates.yaml'], css=data['cards.css'], ) class AnatomyTrueFalseNote(genanki.Note): def __init__(self, *args, **kwargs): super().__init__(load_true_false_model(), *args, **kwargs) MULTIPLE_CHOICE_MODEL_ID = 1803127778 @functools.lru_cache() def load_multiple_choice_model(): data = {} for fname in ['fields.json', 'templates.yaml', 'cards.css']: path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'multiple_choice_model', fname) with open(path) as f: data[fname] = f.read() return genanki.Model( MULTIPLE_CHOICE_MODEL_ID, 'Anatomy Multiple Choice', fields=data['fields.json'], templates=data['templates.yaml'], css=data['cards.css'], ) class AnatomyMultipleChoiceNote(genanki.Note): def __init__(self, *args, **kwargs): super().__init__(load_multiple_choice_model(), *args, **kwargs)
kerrickstaley/anatomyquestions
note.py
note.py
py
1,414
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 11, "usage_type": "call" }, { "api_name": "genanki.Model", "line_number": 17, "usage_type": "call" }, { "api_name": "functools.lru_cache", "line_number": 6, "usage_type": "call" }, { "api_name": "genanki.Note", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 36, "usage_type": "call" }, { "api_name": "genanki.Model", "line_number": 42, "usage_type": "call" }, { "api_name": "functools.lru_cache", "line_number": 31, "usage_type": "call" }, { "api_name": "genanki.Note", "line_number": 50, "usage_type": "attribute" } ]
70167475709
#!/usr/bin/env python from setuptools import setup, Extension import os from os import popen from os.path import dirname, join class lazy_cythonize(list): def __init__(self, callback): self._list = None self.callback = callback def c_list(self): if self._list is None: self._list = self.callback() return self._list def __iter__(self): return iter(self.c_list()) def __getitem__(self, ii): return self.c_list()[ii] def __len__(self): return len(self.c_list()) # for CWB 2.2 #extra_libs = [] # for CWB >= 3.0 extra_libs = ['pcre', 'glib-2.0'] if 'CWB_DIR' in os.environ: cqp_dir = os.environ['CWB_DIR'] else: cqp_location = popen('which cqp').read().rstrip() cqp_dir = dirname(cqp_location) def extensions(): try: from Cython.Build import cythonize incdirs = ['src', join(cqp_dir, 'include')] except ImportError: cythonize = lambda x: x incdirs = [] ext_modules = [Extension('CWB.CL', ['src/CWB/CL.pyx'], include_dirs=incdirs, library_dirs=[join(cqp_dir, 'lib')], libraries=['cl'] + extra_libs)] return cythonize(ext_modules) def read(fname): return open(fname).read() setup( name='cwb-python', description='CQP and CL interfaces for Python', author='Yannick Versley / Jorg Asmussen', version='0.2.1', author_email='[email protected]', url='https://bitbucket.org/yannick/cwb-python', ext_modules=lazy_cythonize(extensions), py_modules=['PyCQP_interface'], packages=['CWB', 'CWB.tools'], long_description=read('README'), entry_points={ 'console_scripts': [ 'cqp2conll = CWB.tools.cqp2conll:main', 'cqp_bitext = CWB.tools.make_bitext:main', 'cqp_vocab = CWB.tools.cqp2vocab:cqp2vocab_main' ]}, install_requires=['setuptools>=17', 'cython>=0.19', 'six'], package_dir={'': 'py_src'})
bogdanbabych/paralex4cfields
tests/cwb-python/setup.py
setup.py
py
2,041
python
en
code
0
github-code
6
[ { "api_name": "os.environ", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.popen", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 42, "usage_type": "call" }, { "api_name": "Cython.Build.cythonize", "line_number": 44, "usage_type": "name" }, { "api_name": "setuptools.Extension", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 48, "usage_type": "call" }, { "api_name": "Cython.Build.cythonize", "line_number": 50, "usage_type": "call" }, { "api_name": "setuptools.setup", "line_number": 56, "usage_type": "call" } ]
3990110801
from functions import * from create_directory import * from Crypto.Cipher import AES import os import shutil import time home = user_home() if os.path.exists(home + "DataShareSecure") == False: print("\nNous vous prions de lire le fichier \"Readme.txt\" et de suivre ces consignes.\n") sys.exit() print("BIENVENUE DANS CE PROGRAMME DE DECHIFFREMENT DE FICHIERS\n") print("######### BON À SAVOIR ##########\n") print("Vous exécutez ce programme stipule que:\n\n" "1- Vous avez pris connaissance du fonctionnement de DataShareSecure grâce au \"Readme.txt\" \n" "2- Vous avez exécuté le programme \"Public_Key_Manage.py\" au moins une fois et disposer donc d'une " "paire de clés\n" "3- Vous désirez déchiffrer des fichiers que vous avez reçus d'un correspondant\n") print("Si vous ne remplissez pas toutes les conditions du \"BON À SAVOIR\", je vous invite à fermer ce programme.\n" "Et à prendre le temps de remplir ces conditions.\n") choix = input("Remplissez-vous les conditions sus-cités ? (O)ui ou (N)on : ") if choix == 'O' or choix =='o': print("\nBien. Nous pouvons donc continuer\n") vide_directory(home + "DataShareSecure/Encrypted") vide_directory(home + "DataShareSecure/Decrypted") os.chdir(home + "DataShareSecure/Received") path = home + 'DataShareSecure/Received/key_used' with open(path, "r") as file: key_encrypted = file.read() key = dechiffrer(key_encrypted) buffer_size = 65536 # 64kb ########## MOVE FILE ############ print("######## DECHIFFREMENT DES FICHIERS ET VERIFIVATION DES SIGNATURES ######## \n") file_dir = [] file = [f for f in os.listdir(home + "DataShareSecure/Received") if os.path.isfile(f)] for f in file: if ".dss" in f: shutil.copy(f, home + "DataShareSecure/Encrypted") elif ".asc" in f: shutil.copy(f, home + "DataShareSecure/Decrypted") ########## DECRYPT ############### print("\n############# DECHIFFREMENT DES FICHIERS REÇUES ############\n") os.chdir(home + "DataShareSecure/Encrypted") files_dir = [] files = [f for f in os.listdir(home + "DataShareSecure/Encrypted") if os.path.isfile(f)] for f in files: files_dir.append(f) for x in files_dir: with open(home + "DataShareSecure/Encrypted/" + x, "rb") as f: f.seek(0) path = home + 'DataShareSecure/Decrypted/' + x output_file = open(path[:-4], "wb") iv = f.read(16) cipher_encrypt = AES.new(key, AES.MODE_CFB, iv=iv) buffer = f.read(buffer_size) while len(buffer) > 0: decrypted_bytes = cipher_encrypt.decrypt(buffer) output_file.write(decrypted_bytes) buffer = f.read(buffer_size) print("Vos fichiers déchiffrés sont enregistrés dans le repertoire \"Decrypted\". \n") ########## VERIFY SIGNATURE ############### print("\n############ VERIFICATION DES FICHERS REÇUES #################\n") os.chdir(home + "DataShareSecure/Decrypted/") files_dir = [] files = [f for f in os.listdir(home + "DataShareSecure/Decrypted/") if os.path.isfile(f)] for f in files: if ".asc" in f: files_dir.append(f) for x in files_dir: with open(home + "DataShareSecure/Decrypted/" + x, "rb") as f: file = x[:-4] verified = gpg.verify_file(f, file) print(file + " : ", verified.status + "") print("\nNOUS VOICI À LA FIN\n")
Su1M01/DataShareSecure
Receiver.py
Receiver.py
py
3,616
python
fr
code
0
github-code
6
[ { "api_name": "os.path.exists", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.chdir", "line_number": 36, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path", "line_number": 52, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 55, "usage_type": "call" }, { "api_name": "shutil.copy", "line_number": 57, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 63, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path", "line_number": 67, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.AES.new", "line_number": 77, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES", "line_number": 77, "usage_type": "name" }, { "api_name": "Crypto.Cipher.AES.MODE_CFB", "line_number": 77, "usage_type": "attribute" }, { "api_name": "os.chdir", "line_number": 90, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path", "line_number": 94, "usage_type": "attribute" } ]
26061079286
import nltk from nltk.tokenize import * import numpy as np #-------------------------------------------------------- alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] punctuation = ['?',',','!','.',':',';'] char_count= [0] * len(alphabet) punctuation_count = [0] * len(punctuation) #-------------------------------------------------------- # PART OF SPEECH STUFF #-------------------------------------------------------- #part of speech ratios + lexical variety # - determiners # - prepositions # - pronouns # - modal auxiliary-verbs -> CAN, COULD, WILL, WOULD # - adverbs # - coord-conjuctions # - nouns # - proper-nouns # - adjectives # - verbs # - lexical variety = nouns + proper_nouns + adjectives + verbs + adverbs pronouns_list = ['PRP', 'PRP$', 'WP', 'WP$'] adverbs_list = ['RB' ,'RBR', 'RBS', 'WRB'] adjectives_list = ['JJ', 'JJR', 'JJS'] verbs_list = ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'] pos_ratios = [0] * 11 avg_sentence_length = 0 avg_word_length = 0 total_words = 0 #-------------------------------------------------------- def main(): np.set_printoptions(suppress=True) features = [] text = open("training_set\Abraham Lincoln\Abraham Lincoln___Lincoln Letters.txt").read() #total useful char t_u_c = total_useful_char(text) total_puctuation = count_punctuation(text) total_words = len(word_tokenize(text)) #FEATURES 1 - 26 letters_frequency(text, t_u_c) #FEATURES 27 - 32 punctuation_frequency(text, total_puctuation) #FEATIRES 33 - 44 part_of_speech_ratios(text, total_words) #FEATURES 44 - 45 avg_sentence_length = average_sentence_length(text) avg_word_length = average_word_length(text) features.extend(char_count) features.extend(punctuation_count) features.extend(pos_ratios) features.append(avg_sentence_length) features.append(avg_word_length) features.append(total_words) features = np.array(features).reshape(-1,1) print("\n\n FEATURES final array: \n", features) print(features.shape) def average_word_length(text): words = word_tokenize(text) sum = 0 for word in words: sum += len(word) return sum/len(words) def average_sentence_length(text): sentences = sent_tokenize(text) sum = 0 for sentence in sentences: sum += len(word_tokenize(sentence)) return sum/len(sentences) def count_punctuation(text): return text.count('?') + text.count(',') + text.count('!') + text.count('.') + text.count(':') + text.count(';') def total_useful_char(text): return len(text) - text.count(" ") - text.count("\n") def letters_frequency(text, tChar): for char in text.lower(): if char in alphabet: char_count[alphabet.index(char)] += 1 for letter in char_count: char_count[char_count.index(letter)] /= tChar def punctuation_frequency(text, total_puctuation): for char in text: if char in punctuation: punctuation_count[punctuation.index(char)] += 1 for element in punctuation_count: punctuation_count[punctuation_count.index(element)] /= total_puctuation def part_of_speech_ratios(text, total_words): words = word_tokenize(text) tagged_words = nltk.pos_tag(words) # lexical variety = nouns + proper_nouns + adjectives + verbs + adverbs for tagged_word in tagged_words: is_a_pronoun = [pronoun for pronoun in pronouns_list if(pronoun in tagged_word)] is_a_adverb = [adverb for adverb in adverbs_list if(adverb in tagged_word)] is_a_adjective = [adjective for adjective in adjectives_list if(adjective in tagged_word)] is_a_verb = [verb for verb in verbs_list if(verb in tagged_word)] if 'DT' in tagged_word: pos_ratios[0] += 1 elif 'IN' in tagged_word: pos_ratios[1] += 1 elif is_a_pronoun: pos_ratios[2] += 1 elif 'MD' in tagged_word: pos_ratios[3] += 1 elif is_a_adverb: pos_ratios[4] += 1 pos_ratios[10] += 1 elif 'CC' in tagged_word: pos_ratios[5] += 1 elif ('NN' in tagged_word or 'NNS' in tagged_word): pos_ratios[6] += 1 pos_ratios[10] += 1 elif ('NNP' in tagged_word or 'NNPS' in tagged_word): pos_ratios[7] += 1 pos_ratios[10] += 1 elif is_a_adjective: pos_ratios[8] += 1 pos_ratios[10] += 1 elif is_a_verb: pos_ratios[9] += 1 pos_ratios[10] += 1 for element in pos_ratios: pos_ratios[pos_ratios.index(element)] /= total_words if __name__ == '__main__': main()
andresOchoaHernandez/AuthorshipRecognition
PythonPrototype/extract_features.py
extract_features.py
py
4,777
python
en
code
0
github-code
6
[ { "api_name": "numpy.set_printoptions", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 74, "usage_type": "call" }, { "api_name": "nltk.pos_tag", "line_number": 129, "usage_type": "call" } ]
71842718268
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #autograd oops import torch.optim as optim # core code of TRADES # shhhhhh where does the author use l2-norm????? def squared_l2_norm(x): flattened = x.view(x.unsqueeze(0).shape[0], -1) return (flattened ** 2).sum(1) def l2_norm(x): return squared_l2_norm(x).sqrt() # core function for TRADES calculating traded_loss def trades_loss(model, x_natural, y, optimizer, step_size=0.003, epsilon=0.031, perturb_steps=10, beta=1.0, # the coeff of second term distance='l_inf'): # define KL-loss for inner maximization https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html?highlight=kldivloss#torch.nn.KLDivLoss # If the field size_average is set to False, the losses are instead summed for each minibatch. criterion_kl = nn.KLDivLoss(size_average=False) # how to use loss : f_loss(*args)(input) <- two parenthesis #eval() for BN and Dropout model.eval() # feed x_natural here into the loss as a batch batch_size = len(x_natural) # generate adversarial example # initiate an x_adv for skipping the concave x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cpu().detach() # detach() tensor won't give it grad calculations anymore. if distance == 'l_inf': # L-infinity ball # no random start here for _ in range(perturb_steps): # FGSM_k x_adv.requires_grad_() # start from x_adv with torch.enable_grad(): # enable_grad vs no_grad # For the maximization problem, using torch.nn.KLDivLoss and cross entropy is equivalent because they differ by a constant additive term. loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) # why first term log while second term origin: because in the loss_criteria, there is no "log_target = True" grad = torch.autograd.grad(loss_kl, [x_adv])[0] # Computes and returns the sum of gradients of outputs w.r.t. the inputs. x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) #clamp .. x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) #clamp original pic x_adv = torch.clamp(x_adv, 0.0, 1.0) elif distance == 'l_2':# L_2 we will come back later about l_2....not commented yet delta = 0.001 * torch.randn(x_natural.shape).cpu().detach() delta = Variable(delta.data, requires_grad=True) # Setup optimizers optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2) for _ in range(perturb_steps): adv = x_natural + delta # optimize optimizer_delta.zero_grad() with torch.enable_grad(): loss = (-1) * criterion_kl(F.log_softmax(model(adv), dim=1), F.softmax(model(x_natural), dim=1)) loss.backward() # renorming gradient grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1) delta.grad.div_(grad_norms.view(-1, 1, 1, 1)) # avoid nan or inf if gradient is 0 if (grad_norms == 0).any(): delta.grad[grad_norms == 0] = torch.randn_like(delta.grad[grad_norms == 0]) optimizer_delta.step() # projection delta.data.add_(x_natural) delta.data.clamp_(0, 1).sub_(x_natural) delta.data.renorm_(p=2, dim=0, maxnorm=epsilon) x_adv = Variable(x_natural + delta, requires_grad=False) # not implemented for other losses else: x_adv = torch.clamp(x_adv, 0.0, 1.0) # adding two losses: L(fx,y) , L(fx',fx) model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) # not the main part, code related only # zero gradient again, zero_grad -> loss_back -> updae? optimizer.zero_grad() # calculate robust loss logits = model(x_natural) # pred of fx loss_natural = F.cross_entropy(logits, y) # loss of fx,y # loss of fx' fx loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(model(x_natural), dim=1)) loss = loss_natural + beta * loss_robust return loss
yaoyugua/TRADES
TRADES-master/trades.py
trades.py
py
4,661
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.KLDivLoss", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.randn", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.enable_grad", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 50, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.autograd.grad", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 53, "usage_type": "attribute" }, { "api_name": "torch.sign", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.randn", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.optim.SGD", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.enable_grad", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.randn_like", "line_number": 84, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 95, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 114, "usage_type": "name" }, { "api_name": "torch.nn.functional.log_softmax", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 116, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 117, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 117, "usage_type": "name" } ]
25066459905
from django.contrib.auth import mixins from oauth2_provider.contrib.rest_framework import ( OAuth2Authentication as BaseOAuth2Authentication, ) from purplship.server.core.authentication import ( JWTAuthentication, TokenAuthentication, get_request_org, ) class OAuth2Authentication(BaseOAuth2Authentication): def authenticate(self, request): auth = super().authenticate(request) if auth is not None: user, _ = auth request.org = get_request_org(request, user) return auth class AccessMixin(mixins.AccessMixin): """Verify that the current user is authenticated.""" def dispatch(self, request, *args, **kwargs): try: auth = ( OAuth2Authentication().authenticate(request) or JWTAuthentication().authenticate(request) or TokenAuthentication().authenticate(request) ) if auth is not None: user, *_ = auth request.user = user finally: return super().dispatch(request, *args, **kwargs)
danh91/purplship
insiders/server/iam/purplship/server/iam/authentication.py
authentication.py
py
1,109
python
en
code
null
github-code
6
[ { "api_name": "oauth2_provider.contrib.rest_framework.OAuth2Authentication", "line_number": 13, "usage_type": "name" }, { "api_name": "purplship.server.core.authentication.get_request_org", "line_number": 20, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.AccessMixin", "line_number": 25, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.mixins", "line_number": 25, "usage_type": "name" }, { "api_name": "purplship.server.core.authentication.JWTAuthentication", "line_number": 32, "usage_type": "call" }, { "api_name": "purplship.server.core.authentication.TokenAuthentication", "line_number": 33, "usage_type": "call" } ]
45897381316
import os from PIL import Image class ImageUpscaler: def __init__(self, image_path, scale_factor): self.image_path = image_path self.scale_factor = scale_factor def upscale_image(self, image_file): # Open the image image = Image.open(image_file) # Calculate the new dimensions width, height = image.size new_width = int(width * self.scale_factor) new_height = int(height * self.scale_factor) # Resize the image upscaled_image = image.resize((new_width, new_height), Image.BICUBIC) # Save the upscaled image upscaled_folder = os.path.join(self.image_path, 'upscaled') os.makedirs(upscaled_folder, exist_ok=True) file_name = os.path.splitext(os.path.basename(image_file))[0] save_path = os.path.join(upscaled_folder, f'{file_name}_upscaled.png') upscaled_image.save(save_path) # print(f"Upscaled image saved: {save_path}") def upscale_images_in_directory(self): # Get a list of all image files in the directory image_files = [ os.path.join(self.image_path, file_name) for file_name in os.listdir(self.image_path) if file_name.endswith(('.jpg', '.jpeg', '.png')) ] for image_file in image_files: self.upscale_image(image_file) if __name__ == '__main__': directory_path = '../private_keys' scale_factor = 4 # Increase the dimensions by a factor of 4 upscaler = ImageUpscaler(directory_path, scale_factor) upscaler.upscale_images_in_directory()
huju-tub/visual-cryptography-generator
classes/image_upscaler.py
image_upscaler.py
py
1,598
python
en
code
0
github-code
6
[ { "api_name": "PIL.Image.open", "line_number": 12, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 12, "usage_type": "name" }, { "api_name": "PIL.Image.BICUBIC", "line_number": 20, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 20, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 36, "usage_type": "call" } ]
8469582185
from calculations import get_standings, get_current_track_data from utils import get_player_name, get_telegram_name from plots import timedelta_to_string def info_about_current_weeks_ladder_changes(old_data, new_data): new_data = get_current_track_data(new_data) new_data = new_data[new_data["Origin"] == "Player"] new_ladder = get_standings(new_data) current_track = new_data["track_id"].unique()[0] old_data = old_data[old_data["track_id"] == current_track] old_data = old_data[old_data["Origin"] == "Player"] old_ladder = get_standings(old_data) player_overlap = list(set(new_ladder.index) & set(old_ladder.index)) new_ladder = new_ladder.loc[new_ladder.index.isin(player_overlap)] old_ladder = old_ladder.loc[old_ladder.index.isin(player_overlap)] changes = new_ladder.index != old_ladder.index new_ladder = new_ladder[changes].reset_index().reset_index().set_index("Player") old_ladder = old_ladder[changes].reset_index().reset_index().set_index("Player") new_ladder["index_change"] = new_ladder["index"] - old_ladder["index"] messages = [] for player in new_ladder.index.values: overtakes = new_ladder.loc[player, "index_change"] if not overtakes > 0: continue index = new_ladder.loc[player, "index"] overtook = new_ladder[(new_ladder["index"] >= index-overtakes) & (new_ladder["index"] < index)].index.values have_scored = old_data.loc[old_data["Origin"] == "Player", "Player"].unique() overtook = ", ".join([get_telegram_name(p) for p in overtook if p in have_scored]) new_record = new_data.groupby(["Player", "track_id"])["Time"].min().loc[player, current_track] messages.append( f"{get_player_name(player)} scored a {timedelta_to_string(new_record)} and overtook {overtook}." ) return messages def info_about_new_times(old_data, new_data): messages = [] new_entries_index = new_data[~new_data.isin(old_data)].dropna(how="all").index new_entries = new_data.loc[new_entries_index] for row_index, entry in new_entries.iterrows(): player_name = entry["Player"] new_record = timedelta_to_string(entry["Time"]) track = entry["Track"] message = f"{track}: {get_player_name(player_name)} scored a new record of {new_record}!" messages.append(message) return messages
Excidion/trackmania_nations_challenge_bot
messages.py
messages.py
py
2,399
python
en
code
1
github-code
6
[ { "api_name": "calculations.get_current_track_data", "line_number": 7, "usage_type": "call" }, { "api_name": "calculations.get_standings", "line_number": 9, "usage_type": "call" }, { "api_name": "calculations.get_standings", "line_number": 13, "usage_type": "call" }, { "api_name": "utils.get_telegram_name", "line_number": 31, "usage_type": "call" }, { "api_name": "utils.get_player_name", "line_number": 34, "usage_type": "call" }, { "api_name": "plots.timedelta_to_string", "line_number": 34, "usage_type": "call" }, { "api_name": "plots.timedelta_to_string", "line_number": 45, "usage_type": "call" }, { "api_name": "utils.get_player_name", "line_number": 47, "usage_type": "call" } ]
30357818911
from pyface.qt import QtCore, QtGui, is_qt4 from pyface.image_resource import ImageResource from pyface.timer.api import do_later from pyface.ui_traits import Image from traits.api import ( Any, Bool, Button, Dict, Event, List, HasTraits, Instance, Int, Property, Str, cached_property, observe, ) from traitsui.api import ( EnumEditor, InstanceEditor, Group, Item, Label, ObjectColumn, TableColumn, TableFilter, UI, View, default_handler, spring, ) from traitsui.editors.table_editor import ( BaseTableEditor, ReversedList, customize_filter, ) from traitsui.ui_traits import SequenceTypes from .editor import Editor from .table_model import TableModel, SortFilterTableModel if is_qt4: def set_qheader_section_resize_mode(header): return header.setResizeMode else: def set_qheader_section_resize_mode(header): return header.setSectionResizeMode class TableEditor(Editor, BaseTableEditor): """Editor that presents data in a table. Optionally, tables can have a set of filters that reduce the set of data displayed, according to their criteria. """ # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: The table view control associated with the editor: table_view = Any() def _table_view_default(self): return TableView(editor=self) #: A wrapper around the source model which provides filtering and sorting: model = Instance(SortFilterTableModel) def _model_default(self): return SortFilterTableModel(editor=self) #: The table model associated with the editor: source_model = Instance(TableModel) def _source_model_default(self): return TableModel(editor=self) #: The set of columns currently defined on the editor: columns = List(TableColumn) #: The currently selected row(s), column(s), or cell(s). selected = Any() #: The current selected row selected_row = Property(Any, observe="selected") selected_indices = Property(Any, observe="selected") #: Current filter object (should be a TableFilter or callable or None): filter = Any() #: The indices of the table items currently passing the table filter: filtered_indices = List(Int) #: Current filter summary message filter_summary = Str("All items") #: Update the filtered contents. update_filter = Event() #: The event fired when a cell is clicked on: click = Event() #: The event fired when a cell is double-clicked on: dclick = Event() #: The Traits UI associated with the table editor toolbar: toolbar_ui = Instance(UI) #: The index of the row that was last right clicked on its vertical header header_row = Int() #: Whether to auto-size the columns or not. auto_size = Bool(False) #: Dictionary mapping image names to QIcons images = Dict() #: Dictionary mapping ImageResource objects to QIcons image_resources = Dict() #: An image being converted: image = Image def init(self, parent): """Finishes initializing the editor by creating the underlying toolkit widget.""" factory = self.factory self.filter = factory.filter columns = factory.columns[:] if (len(columns) == 0) and (len(self.value) > 0): columns = [ ObjectColumn(name=name) for name in self.value[0].editable_traits() ] self.columns = columns if factory.table_view_factory is not None: self.table_view = factory.table_view_factory(editor=self) if factory.source_model_factory is not None: self.source_model = factory.source_model_factory(editor=self) if factory.model_factory is not None: self.model = factory.model_factory(editor=self) # Create the table view and model self.model.setDynamicSortFilter(True) self.model.setSourceModel(self.source_model) self.table_view.setModel(self.model) # When sorting is enabled, the first column is initially displayed with # the triangle indicating it is the sort index, even though no sorting # has actually been done. Sort here for UI/model consistency. if self.factory.sortable and not self.factory.reorderable: self.model.sort(0, QtCore.Qt.SortOrder.AscendingOrder) # Connect to the mode specific selection handler and select the first # row/column/cell. Do this before creating the edit_view to make sure # that it has a valid item to use when constructing its view. smodel = self.table_view.selectionModel() mode_slot = getattr(self, "_on_%s_selection" % factory.selection_mode) smodel.selectionChanged.connect(mode_slot) self.table_view.setCurrentIndex(self.model.index(0, 0)) # Create the toolbar if necessary if factory.show_toolbar and len(factory.filters) > 0: main_view = QtGui.QWidget() layout = QtGui.QVBoxLayout(main_view) layout.setContentsMargins(0, 0, 0, 0) self.toolbar_ui = self.edit_traits( parent=parent, kind="subpanel", view=View( Group( Item("filter{View}", editor=factory._filter_editor), Item("filter_summary{Results}", style="readonly"), spring, orientation="horizontal", ), resizable=True, ), ) self.toolbar_ui.parent = self.ui layout.addWidget(self.toolbar_ui.control) layout.addWidget(self.table_view) else: main_view = self.table_view # Create auxiliary editor and encompassing splitter if necessary mode = factory.selection_mode if (factory.edit_view == " ") or mode not in {"row", "rows"}: self.control = main_view else: if factory.orientation == "horizontal": self.control = QtGui.QSplitter(QtCore.Qt.Orientation.Horizontal) else: self.control = QtGui.QSplitter(QtCore.Qt.Orientation.Vertical) self.control.setSizePolicy( QtGui.QSizePolicy.Policy.Expanding, QtGui.QSizePolicy.Policy.Expanding ) self.control.addWidget(main_view) self.control.setStretchFactor(0, 2) # Create the row editor below the table view editor = InstanceEditor(view=factory.edit_view, kind="subpanel") self._ui = self.edit_traits( parent=self.control, kind="subpanel", view=View( Item( "selected_row", style="custom", editor=editor, show_label=False, resizable=True, width=factory.edit_view_width, height=factory.edit_view_height, ), resizable=True, handler=factory.edit_view_handler, ), ) self._ui.parent = self.ui self.control.addWidget(self._ui.control) self.control.setStretchFactor(1, 1) # Connect to the click and double click handlers self.table_view.clicked.connect(self._on_click) self.table_view.doubleClicked.connect(self._on_dclick) # Make sure we listen for 'items' changes as well as complete list # replacements self.context_object.on_trait_change( self.update_editor, self.extended_name + "_items", dispatch="ui" ) # Listen for changes to traits on the objects in the list self.context_object.on_trait_change( self.refresh_editor, self.extended_name + ".-", dispatch="ui" ) # Listen for changes on column definitions self.on_trait_change(self._update_columns, "columns", dispatch="ui") self.on_trait_change( self._update_columns, "columns_items", dispatch="ui" ) # Set up the required externally synchronized traits is_list = mode in ("rows", "columns", "cells") self.sync_value(factory.click, "click", "to") self.sync_value(factory.dclick, "dclick", "to") self.sync_value(factory.columns_name, "columns", is_list=True) self.sync_value(factory.selected, "selected", is_list=is_list) self.sync_value( factory.selected_indices, "selected_indices", is_list=is_list ) self.sync_value(factory.filter_name, "filter", "from") self.sync_value(factory.filtered_indices, "filtered_indices", "to") self.sync_value(factory.update_filter_name, "update_filter", "from") self.auto_size = self.factory.auto_size # Initialize the ItemDelegates for each column self._update_columns() def dispose(self): """Disposes of the contents of an editor.""" self.model.beginResetModel() self.model.endResetModel() # Make sure that the auxiliary UIs are properly disposed if self.toolbar_ui is not None: self.toolbar_ui.dispose() if self._ui is not None: self._ui.dispose() # Remove listener for 'items' changes on object trait self.context_object.on_trait_change( self.update_editor, self.extended_name + "_items", remove=True ) # Remove listener for changes to traits on the objects in the list self.context_object.on_trait_change( self.refresh_editor, self.extended_name + ".-", remove=True ) # Remove listeners for column definition changes self.on_trait_change(self._update_columns, "columns", remove=True) self.on_trait_change( self._update_columns, "columns_items", remove=True ) super().dispose() def update_editor(self): """Updates the editor when the object trait changes externally to the editor.""" if self._no_notify: return self.table_view.setUpdatesEnabled(False) try: filtering = ( len(self.factory.filters) > 0 or self.filter is not None ) if filtering: self._update_filtering() # invalidate the model, but do not reset it. Resetting the model # may cause problems if the selection sync'ed traits are being used # externally to manage the selections self.model.invalidate() self.table_view.resizeColumnsToContents() if self.auto_size: self.table_view.resizeRowsToContents() finally: self.table_view.setUpdatesEnabled(True) def restore_prefs(self, prefs): """Restores any saved user preference information associated with the editor. """ header = self.table_view.horizontalHeader() if header is not None and "column_state" in prefs: header.restoreState(prefs["column_state"]) def save_prefs(self): """Returns any user preference information associated with the editor.""" prefs = {} header = self.table_view.horizontalHeader() if header is not None: prefs["column_state"] = header.saveState().data() return prefs def refresh_editor(self): """Requests that the underlying table widget to redraw itself.""" self.table_view.viewport().update() def create_new_row(self): """Creates a new row object using the provided factory.""" factory = self.factory kw = factory.row_factory_kw.copy() if "__table_editor__" in kw: kw["__table_editor__"] = self return self.ui.evaluate( factory.row_factory, *factory.row_factory_args, **kw ) def items(self): """Returns the raw list of model objects.""" items = self.value if not isinstance(items, SequenceTypes): items = [items] if self.factory and self.factory.reverse: items = ReversedList(items) return items def callx(self, func, *args, **kw): """Call a function without notifying the underlying table view or model.""" old = self._no_notify self._no_notify = True try: func(*args, **kw) finally: self._no_notify = old def setx(self, **keywords): """Set one or more attributes without notifying the underlying table view or model.""" old = self._no_notify self._no_notify = True try: for name, value in keywords.items(): setattr(self, name, value) finally: self._no_notify = old def set_selection(self, objects=[], notify=True): """Sets the current selection to a set of specified objects.""" if not isinstance(objects, list): objects = [objects] mode = self.factory.selection_mode indexes = [] flags = QtGui.QItemSelectionModel.SelectionFlag.ClearAndSelect # In the case of row or column selection, we need a dummy value for the # other dimension that has not been filtered. source_index = self.model.mapToSource(self.model.index(0, 0)) source_row, source_column = source_index.row(), source_index.column() # Selection mode is 'row' or 'rows' if mode.startswith("row"): flags |= QtGui.QItemSelectionModel.SelectionFlag.Rows items = self.items() for obj in objects: try: row = items.index(obj) except ValueError: continue indexes.append(self.source_model.index(row, source_column)) # Selection mode is 'column' or 'columns' elif mode.startswith("column"): flags |= QtGui.QItemSelectionModel.SelectionFlag.Columns for name in objects: column = self._column_index_from_name(name) if column != -1: indexes.append(self.source_model.index(source_row, column)) # Selection mode is 'cell' or 'cells' else: items = self.items() for obj, name in objects: try: row = items.index(obj) except ValueError: continue column = self._column_index_from_name(name) if column != -1: indexes.append(self.source_model.index(row, column)) # Perform the selection so that only one signal is emitted selection = QtGui.QItemSelection() smodel = self.table_view.selectionModel() if smodel is None: # guard against selection during tear-down return for index in indexes: index = self.model.mapFromSource(index) if index.isValid(): smodel.setCurrentIndex( index, QtGui.QItemSelectionModel.SelectionFlag.NoUpdate ) selection.select(index, index) smodel.blockSignals(not notify) try: if len(selection.indexes()): smodel.clear() smodel.select(selection, flags) else: smodel.clear() finally: smodel.blockSignals(False) self.refresh_editor() # ------------------------------------------------------------------------- # Private methods: # ------------------------------------------------------------------------- def _column_index_from_name(self, name): """Returns the index of the column with the given name or -1 if no column exists with that name.""" for i, column in enumerate(self.columns): if name == column.name: return i return -1 def _customize_filters(self, filter): """Allows the user to customize the current set of table filters.""" filter_editor = TableFilterEditor(editor=self) ui = filter_editor.edit_traits(parent=self.control) if ui.result: self.factory.filters = filter_editor.templates self.filter = filter_editor.selected_filter else: self.setx(filter=filter) def _update_filtering(self): """Update the filter summary and the filtered indices.""" items = self.items() num_items = len(items) f = self.filter if f is None: self._filtered_cache = None self.filtered_indices = list(range(num_items)) self.filter_summary = "All %i items" % num_items else: if not callable(f): f = f.filter self._filtered_cache = fc = [f(item) for item in items] self.filtered_indices = fi = [i for i, ok in enumerate(fc) if ok] self.filter_summary = "%i of %i items" % (len(fi), num_items) def _add_image(self, image_resource): """Adds a new image to the image map.""" image = image_resource.create_icon() self.image_resources[image_resource] = image self.images[image_resource.name] = image return image def _get_image(self, image): """Converts a user specified image to a QIcon.""" if isinstance(image, str): self.image = image image = self.image if isinstance(image, ImageResource): result = self.image_resources.get(image) if result is not None: return result return self._add_image(image) return self.images.get(image) def _create_empty_menu(self): """Create a QMenu to display in empty space below the rows. Returns a QMenu or None if no menu to display. """ if not self.factory.editable or self.factory.row_factory is None: return None empty_menu = QtGui.QMenu(self.table_view) action = empty_menu.addAction("Add new item") action.triggered.connect(self._on_context_append) return empty_menu def _create_header_menu(self): """Create a QMenu to display in the vertical header. Returns a QMenu or None if no menu to display. """ header_menu = QtGui.QMenu(self.table_view) if self.factory.editable: if self.factory.row_factory is not None: action = header_menu.addAction("Insert new item") action.triggered.connect(self._on_context_insert) if self.factory.deletable: action = header_menu.addAction("Delete item") action.triggered.connect(self._on_context_remove) if self.factory.reorderable: show_up = (self.header_row > 0) show_down = (self.header_row < self.model.rowCount() - 1) if not header_menu.isEmpty() and (show_up or show_down): header_menu.addSeparator() if show_up: header_menu_up = header_menu.addAction("Move item up") header_menu_up.triggered.connect(self._on_context_move_up) if show_down: header_menu_down = header_menu.addAction("Move item down") header_menu_down.triggered.connect(self._on_context_move_down) if header_menu.isEmpty(): return None else: return header_menu # -- Trait Property getters/setters --------------------------------------- @cached_property def _get_selected_row(self): """Gets the selected row, or the first row if multiple rows are selected.""" mode = self.factory.selection_mode if mode.startswith("column"): return None elif mode == "row": return self.selected try: if mode == "rows": return self.selected[0] elif mode == "cell": return self.selected[0] elif mode == "cells": return self.selected[0][0] except IndexError: return None @cached_property def _get_selected_indices(self): """Gets the row,column indices which match the selected trait""" selection_items = self.table_view.selectionModel().selection() indices = self.model.mapSelectionToSource(selection_items).indexes() if self.factory.selection_mode.startswith("row"): indices = sorted(set(index.row() for index in indices)) elif self.factory.selection_mode.startswith("column"): indices = sorted(set(index.column() for index in indices)) else: indices = [(index.row(), index.column()) for index in indices] if self.factory.selection_mode in {"rows", "columns", "cells"}: return indices elif len(indices) > 0: return indices[0] else: return -1 def _set_selected_indices(self, indices): if not isinstance(indices, list): indices = [indices] selected = [] if self.factory.selection_mode.startswith("row"): for row in indices: selected.append(self.value[row]) elif self.factory.selection_mode.startswith("column"): for col in indices: selected.append(self.columns[col].name) else: for row, col in indices: selected.append((self.value[row], self.columns[col].name)) self.selected = selected self.set_selection(self.selected, False) # -- Trait Change Handlers ------------------------------------------------ def _filter_changed(self, old_filter, new_filter): """Handles the current filter being changed.""" if not self._no_notify: if new_filter is customize_filter: do_later(self._customize_filters, old_filter) else: self._update_filtering() self.model.invalidate() self.set_selection(self.selected) def _update_columns(self): """Handle the column list being changed.""" self.table_view.setItemDelegate(TableDelegate(self.table_view)) for i, column in enumerate(self.columns): if column.renderer: self.table_view.setItemDelegateForColumn(i, column.renderer) self.model.invalidate() self.table_view.resizeColumnsToContents() if self.auto_size: self.table_view.resizeRowsToContents() def _selected_changed(self, new): """Handle the selected row/column/cell being changed externally.""" if not self._no_notify: self.set_selection(self.selected, notify=False) def _update_filter_changed(self): """The filter has changed internally.""" self._filter_changed(self.filter, self.filter) # -- Event Handlers ------------------------------------------------------- def _on_row_selection(self, added, removed): """Handle the row selection being changed.""" items = self.items() indexes = self.table_view.selectionModel().selectedRows() if len(indexes): index = self.model.mapToSource(indexes[0]) selected = items[index.row()] else: selected = None self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_rows_selection(self, added, removed): """Handle the rows selection being changed.""" items = self.items() indexes = self.table_view.selectionModel().selectedRows() selected = [ items[self.model.mapToSource(index).row()] for index in indexes ] self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_column_selection(self, added, removed): """Handle the column selection being changed.""" indexes = self.table_view.selectionModel().selectedColumns() if len(indexes): index = self.model.mapToSource(indexes[0]) selected = self.columns[index.column()].name else: selected = "" self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_columns_selection(self, added, removed): """Handle the columns selection being changed.""" indexes = self.table_view.selectionModel().selectedColumns() selected = [ self.columns[self.model.mapToSource(index).column()].name for index in indexes ] self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_cell_selection(self, added, removed): """Handle the cell selection being changed.""" items = self.items() indexes = self.table_view.selectionModel().selectedIndexes() if len(indexes): index = self.model.mapToSource(indexes[0]) obj = items[index.row()] column_name = self.columns[index.column()].name else: obj = None column_name = "" selected = (obj, column_name) self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_cells_selection(self, added, removed): """Handle the cells selection being changed.""" items = self.items() indexes = self.table_view.selectionModel().selectedIndexes() selected = [] for index in indexes: index = self.model.mapToSource(index) obj = items[index.row()] column_name = self.columns[index.column()].name selected.append((obj, column_name)) self.setx(selected=selected) self.ui.evaluate(self.factory.on_select, self.selected) def _on_click(self, index): """Handle a cell being clicked.""" index = self.model.mapToSource(index) column = self.columns[index.column()] obj = self.items()[index.row()] # Fire the same event on the editor after mapping it to a model object # and column name: self.click = (obj, column) # Invoke the column's click handler: column.on_click(obj) def _on_dclick(self, index): """Handle a cell being double clicked.""" index = self.model.mapToSource(index) column = self.columns[index.column()] obj = self.items()[index.row()] # Fire the same event on the editor after mapping it to a model object # and column name: self.dclick = (obj, column) # Invoke the column's double-click handler: column.on_dclick(obj) def _on_context_insert(self): """Handle 'insert item' being selected from the header context menu.""" self.model.insertRow(self.header_row) def _on_context_append(self): """Handle 'add item' being selected from the empty space context menu.""" self.model.insertRow(self.model.rowCount()) def _on_context_remove(self): """Handle 'remove item' being selected from the header context menu.""" self.model.removeRow(self.header_row) def _on_context_move_up(self): """Handle 'move up' being selected from the header context menu.""" self.model.moveRow(self.header_row, self.header_row - 1) def _on_context_move_down(self): """Handle 'move down' being selected from the header context menu.""" self.model.moveRow(self.header_row, self.header_row + 1) # Define the SimpleEditor class. SimpleEditor = TableEditor # Define the ReadonlyEditor class. ReadonlyEditor = TableEditor # ------------------------------------------------------------------------- # Qt widgets that have been configured to behave as expected by Traits UI: # ------------------------------------------------------------------------- class TableDelegate(QtGui.QStyledItemDelegate): """A QStyledItemDelegate which fetches Traits UI editors.""" def createEditor(self, parent, option, index): """Reimplemented to return the editor for a given index.""" model = index.model() index = model.mapToSource(index) table_editor = model._editor column = table_editor.columns[index.column()] obj = table_editor.items()[index.row()] factory = column.get_editor(obj) style = column.get_style(obj) if factory is None: return None target, name = column.target_name(obj) handler = default_handler() if table_editor.ui.context is None: ui = UI(handler=handler) else: context = table_editor.ui.context.copy() context["table_editor_object"] = context["object"] context["object"] = target ui = UI(handler=handler, context=context) # Create and initialize the editor factory_method = getattr(factory, style + "_editor") editor = factory_method(ui, target, name, "", parent) editor.prepare(parent) control = editor.control control.setParent(parent) # Required for QMouseEvents to propagate to the widget control.setFocusPolicy(QtCore.Qt.FocusPolicy.StrongFocus) # The table view's background will shine through unless the editor # paints its own background control.setAutoFillBackground(True) # Make sure that editors are disposed of correctly # will be disposed in closeEditor of the TableView control._editor = editor return control def updateEditorGeometry(self, editor, option, index): """Update the editor's geometry.""" editor.setGeometry(option.rect) def paint(self, painter, option, index): self.initStyleOption(option, index) if (option.state & QtGui.QStyle.StateFlag.State_Selected) and ( option.state & QtGui.QStyle.StateFlag.State_Active ): factory = self.parent()._editor.factory if factory.selection_bg_color is not None: option.palette.setColor( QtGui.QPalette.ColorRole.Highlight, factory.selection_bg_color_ ) if factory.selection_color is not None: option.palette.setColor( QtGui.QPalette.ColorRole.HighlightedText, factory.selection_color_ ) QtGui.QApplication.style().drawControl( QtGui.QStyle.ControlElement.CE_ItemViewItem, option, painter, None ) class TableView(QtGui.QTableView): """A QTableView configured to behave as expected by TraitsUI.""" _SELECTION_MAP = { "row": ( QtGui.QAbstractItemView.SelectionBehavior.SelectRows, QtGui.QAbstractItemView.SelectionMode.SingleSelection, ), "rows": ( QtGui.QAbstractItemView.SelectionBehavior.SelectRows, QtGui.QAbstractItemView.SelectionMode.ExtendedSelection, ), "column": ( QtGui.QAbstractItemView.SelectionBehavior.SelectColumns, QtGui.QAbstractItemView.SelectionMode.SingleSelection, ), "columns": ( QtGui.QAbstractItemView.SelectionBehavior.SelectColumns, QtGui.QAbstractItemView.SelectionMode.ExtendedSelection, ), "cell": ( QtGui.QAbstractItemView.SelectionBehavior.SelectItems, QtGui.QAbstractItemView.SelectionMode.SingleSelection, ), "cells": ( QtGui.QAbstractItemView.SelectionBehavior.SelectItems, QtGui.QAbstractItemView.SelectionMode.ExtendedSelection, ), } def __init__(self, editor): """Initialise the object.""" QtGui.QTableView.__init__(self) self._initial_size = False self._editor = editor factory = editor.factory # Configure the grid lines. self.setShowGrid(factory.show_lines) # Configure the selection behaviour. self.setCornerButtonEnabled(False) behav, mode = self._SELECTION_MAP[factory.selection_mode] self.setSelectionBehavior(behav) self.setSelectionMode(mode) # Configure the editing behavior. triggers = ( QtGui.QAbstractItemView.EditTrigger.DoubleClicked | QtGui.QAbstractItemView.EditTrigger.SelectedClicked ) if factory.edit_on_first_click and not factory.reorderable: triggers |= QtGui.QAbstractItemView.EditTrigger.CurrentChanged self.setEditTriggers(triggers) # Configure the reordering and sorting behavior. self.setDragEnabled(True) self.viewport().setAcceptDrops(True) self.setDropIndicatorShown(True) if factory.reorderable: self.setDragDropMode(QtGui.QAbstractItemView.DragDropMode.InternalMove) if factory.sortable: self.setSortingEnabled(True) if factory._qt_stylesheet is not None: self.setStyleSheet(factory._qt_stylesheet) self.resizeColumnsToContents() def setModel(self, model): super().setModel(model) self._update_header_sizing() def contextMenuEvent(self, event): """Reimplemented to create context menus for cells and empty space.""" # Determine the logical indices of the cell where click occured hheader, vheader = self.horizontalHeader(), self.verticalHeader() position = event.globalPos() row = vheader.logicalIndexAt(vheader.mapFromGlobal(position)) column = hheader.logicalIndexAt(hheader.mapFromGlobal(position)) # Map the logical row index to a real index for the source model model = self.model() row = model.mapToSource(model.index(row, 0)).row() # Show a context menu for empty space at bottom of table... editor = self._editor if row == -1: empty_menu = editor._create_empty_menu() if empty_menu is not None: event.accept() empty_menu.exec_(position) # ...or show a context menu for a cell. elif column != -1: obj = editor.items()[row] column = editor.columns[column] menu_manager = column.get_menu(obj) if menu_manager is None: menu_manager = editor.factory.menu if menu_manager is not None: event.accept() selected = editor.selected if not isinstance(selected, SequenceTypes): selected = [selected] if obj not in selected: selected = [obj] editor.set_menu_context(selected, obj, column) menu = menu_manager.create_menu(self, controller=editor) menu.exec_(position) def eventFilter(self, obj, event): """Reimplemented to create context menu for the vertical header.""" vheader = self.verticalHeader() if obj is vheader and event.type() == QtCore.QEvent.Type.ContextMenu: position = event.globalPos() editor = self._editor row = vheader.logicalIndexAt(event.pos().y()) if row == -1: empty_menu = editor._create_empty_menu() if empty_menu is not None: event.accept() empty_menu.exec_(position) else: editor.header_row = row header_menu = editor._create_header_menu() if header_menu is not None: event.accept() header_menu.exec_(position) return True else: return QtGui.QTableView.eventFilter(self, obj, event) def resizeEvent(self, event): """Reimplemented to size the table columns when the size of the table changes. Because the layout algorithm requires that the available space be known, we have to wait until the UI that contains this table gives it its initial size.""" QtGui.QTableView.resizeEvent(self, event) if self._editor.auto_size: self.resizeColumnsToContents() self.resizeRowsToContents() else: parent = self.parent() if ( not self._initial_size and parent and (self.isVisible() or isinstance(parent, QtGui.QMainWindow)) ): self._initial_size = True if self._editor.auto_size: self.resizeColumnsToContents() self.resizeRowsToContents() def sizeHint(self): """Reimplemented to define a better size hint for the width of the TableEditor.""" size_hint = QtGui.QTableView.sizeHint(self) # This method is sometimes called by Qt after the editor has been # disposed but before this control has been deleted: if self._editor.factory is None: return size_hint width = self.style().pixelMetric( QtGui.QStyle.PixelMetric.PM_ScrollBarExtent, QtGui.QStyleOptionHeader(), self ) for column in range(len(self._editor.columns)): width += self.sizeHintForColumn(column) size_hint.setWidth(width) return size_hint def sizeHintForColumn(self, column_index): """Reimplemented to support absolute width specification via TableColumns and to improve the metric for autosizing columns.""" editor = self._editor column = editor.columns[column_index] requested_width = column.get_width() # Autosize based on column contents and label width. Qt's default # implementation of this function does content, we handle the label. if requested_width < 1: base_width = QtGui.QTableView.sizeHintForColumn(self, column_index) # Determine what font to use in the calculation font = column.get_text_font(None) if font is None: font = self.font() font.setBold(True) else: font = QtGui.QFont(font) # Determine the width of the column label text = column.get_label() # QFontMetrics.width() is deprecated and Qt docs suggest using # horizontalAdvance() instead, but is only available since Qt 5.11 if QtCore.__version_info__ >= (5, 11): width = QtGui.QFontMetrics(font).horizontalAdvance(text) else: width = QtGui.QFontMetrics(font).width(text) # Add margin to the calculated width as appropriate style = self.style() option = QtGui.QStyleOptionHeader() width += ( style.pixelMetric( QtGui.QStyle.PixelMetric.PM_HeaderGripMargin, option, self ) * 2 ) if editor.factory.sortable and not editor.factory.reorderable: # Add size of sort indicator width += style.pixelMetric( QtGui.QStyle.PixelMetric.PM_HeaderMarkSize, option, self ) # Add distance between sort indicator and text width += style.pixelMetric( QtGui.QStyle.PixelMetric.PM_HeaderMargin, option, self ) return max(base_width, width) # Or else set width absolutely else: return requested_width def resizeColumnsToContents(self): """Support proportional column width specifications.""" # TODO: The proportional size specification approach found in the # TableColumns is not entirely compatible with the ability to # specify the resize_mode. Namely, there are combinations of # specifications that are redundant, and others which are # contradictory. Rework this method so that the various values # for **width** have a well-defined, sensible meaning for each # of the possible values of resize_mode. editor = self._editor available_space = self.viewport().width() hheader = self.horizontalHeader() # Compute sizes for columns with absolute or no size requests proportional = [] for column_index in range(len(editor.columns)): column = editor.columns[column_index] requested_width = column.get_width() if ( column.resize_mode in ("interactive", "stretch") and 0 < requested_width <= 1.0 ): proportional.append((column_index, requested_width)) elif ( column.resize_mode == "interactive" and requested_width < 0 and self._initial_size ): # Keep previous size if initial sizing has been done available_space -= hheader.sectionSize(column_index) else: base_width = hheader.sectionSizeHint(column_index) width = max(base_width, self.sizeHintForColumn(column_index)) hheader.resizeSection(column_index, width) available_space -= width # Now use the remaining space for columns with proportional width # requests for column_index, percent in proportional: base_width = hheader.sectionSizeHint(column_index) width = max(base_width, int(percent * available_space)) hheader.resizeSection(column_index, width) def closeEditor(self, control, hint): # dispose traits editor associated with control if any editor = getattr(control, "_editor", None) if editor is not None: editor.dispose() delattr(control, "_editor") return super().closeEditor(control, hint) def _update_header_sizing(self): """Header section sizing can be done only after a valid model is set. Otherwise results in segfault with Qt5. """ editor = self._editor factory = editor.factory # Configure the row headings. vheader = self.verticalHeader() set_resize_mode = set_qheader_section_resize_mode(vheader) insertable = factory.row_factory is not None if ( factory.editable and (insertable or factory.deletable) ) or factory.reorderable: vheader.installEventFilter(self) set_resize_mode(QtGui.QHeaderView.ResizeMode.ResizeToContents) elif not factory.show_row_labels: vheader.hide() if factory.row_height > 0: vheader.setDefaultSectionSize(factory.row_height) self.setAlternatingRowColors(factory.alternate_bg_color) self.setHorizontalScrollMode(QtGui.QAbstractItemView.ScrollMode.ScrollPerPixel) # Configure the column headings. # We detect if there are any stretchy sections at all; if not, then # we make the last non-fixed-size column stretchy. hheader = self.horizontalHeader() set_resize_mode = set_qheader_section_resize_mode(hheader) resize_mode_map = dict( interactive=QtGui.QHeaderView.ResizeMode.Interactive, fixed=QtGui.QHeaderView.ResizeMode.Fixed, stretch=QtGui.QHeaderView.ResizeMode.Stretch, resize_to_contents=QtGui.QHeaderView.ResizeMode.ResizeToContents, ) stretchable_columns = [] for i, column in enumerate(editor.columns): set_resize_mode(i, resize_mode_map[column.resize_mode]) if column.resize_mode in ("stretch", "interactive"): stretchable_columns.append(i) if not stretchable_columns: # Use the behavior from before the "resize_mode" trait was added # to TableColumn hheader.setStretchLastSection(True) else: # hheader.setSectionResizeMode( # stretchable_columns[-1], QtGui.QHeaderView.ResizeMode.Stretch) hheader.setStretchLastSection(False) if factory.show_column_labels: hheader.setHighlightSections(False) else: hheader.hide() # ------------------------------------------------------------------------- # Editor for configuring the filters available to a TableEditor: # ------------------------------------------------------------------------- class TableFilterEditor(HasTraits): """An editor that manages table filters.""" # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: TableEditor this editor is associated with editor = Instance(TableEditor) #: The list of filters filters = List(TableFilter) #: The list of available templates from which filters can be created templates = Property(List(TableFilter), observe="filters") #: The currently selected filter template selected_template = Instance(TableFilter) #: The currently selected filter selected_filter = Instance(TableFilter, allow_none=True) #: The view to use for the current filter selected_filter_view = Property(observe="selected_filter") #: Buttons for add/removing filters add_button = Button("New") remove_button = Button("Delete") # The default view for this editor view = View( Group( Group( Group( Item("add_button", enabled_when="selected_template"), Item( "remove_button", enabled_when="len(templates) > 1 and " "selected_filter is not None", ), orientation="horizontal", show_labels=False, ), Label("Base filter for new filters:"), Item("selected_template", editor=EnumEditor(name="templates")), Item( "selected_filter", style="custom", editor=EnumEditor(name="filters", mode="list"), ), show_labels=False, ), Item( "selected_filter", width=0.75, style="custom", editor=InstanceEditor(view_name="selected_filter_view"), ), id="TableFilterEditorSplit", show_labels=False, layout="split", orientation="horizontal", ), id="traitsui.qt.table_editor.TableFilterEditor", buttons=["OK", "Cancel"], kind="livemodal", resizable=True, width=800, height=400, title="Customize filters", ) # ------------------------------------------------------------------------- # Private methods: # ------------------------------------------------------------------------- # -- Trait Property getter/setters ---------------------------------------- @cached_property def _get_selected_filter_view(self): view = None if self.selected_filter: model = self.editor.model index = model.mapToSource(model.index(0, 0)) if index.isValid(): obj = self.editor.items()[index.row()] else: obj = None view = self.selected_filter.edit_view(obj) return view @cached_property def _get_templates(self): templates = [f for f in self.editor.factory.filters if f.template] templates.extend(self.filters) return templates # -- Trait Change Handlers ------------------------------------------------ def _editor_changed(self): self.filters = [ f.clone_traits() for f in self.editor.factory.filters if not f.template ] self.selected_template = self.templates[0] @observe('add_button') def _create_and_select_new_filter(self, event): """Create a new filter based on the selected template and select it.""" new_filter = self.selected_template.clone_traits() new_filter.template = False new_filter.name = new_filter._name = "New filter" self.filters.append(new_filter) self.selected_filter = new_filter @observe("remove_button") def _delete_selected_filter(self, event): """Delete the currently selected filter.""" if self.selected_template == self.selected_filter: self.selected_template = self.templates[0] index = self.filters.index(self.selected_filter) del self.filters[index] if index < len(self.filters): self.selected_filter = self.filters[index] else: self.selected_filter = None @observe("selected_filter:name") def _update_filter_list(self, event): """A hack to make the EnumEditor watching the list of filters refresh their text when the name of the selected filter changes. """ filters = self.filters self.filters = [] self.filters = filters
enthought/traitsui
traitsui/qt/table_editor.py
table_editor.py
py
49,857
python
en
code
290
github-code
6
[ { "api_name": "pyface.qt.is_qt4", "line_number": 46, "usage_type": "name" }, { "api_name": "editor.Editor", "line_number": 57, "usage_type": "name" }, { "api_name": "traitsui.editors.table_editor.BaseTableEditor", "line_number": 57, "usage_type": "name" }, { "api_name": "traits.api.Any", "line_number": 68, "usage_type": "call" }, { "api_name": "traits.api.Instance", "line_number": 74, "usage_type": "call" }, { "api_name": "table_model.SortFilterTableModel", "line_number": 74, "usage_type": "argument" }, { "api_name": "table_model.SortFilterTableModel", "line_number": 77, "usage_type": "call" }, { "api_name": "traits.api.Instance", "line_number": 80, "usage_type": "call" }, { "api_name": "table_model.TableModel", "line_number": 80, "usage_type": "argument" }, { "api_name": "table_model.TableModel", "line_number": 83, "usage_type": "call" }, { "api_name": "traits.api.List", "line_number": 86, "usage_type": "call" }, { "api_name": "traitsui.api.TableColumn", "line_number": 86, "usage_type": "argument" }, { "api_name": "traits.api.Any", "line_number": 89, "usage_type": "call" }, { "api_name": "traits.api.Property", "line_number": 92, "usage_type": "call" }, { "api_name": "traits.api.Any", "line_number": 92, "usage_type": "argument" }, { "api_name": "traits.api.Property", "line_number": 94, "usage_type": "call" }, { "api_name": "traits.api.Any", "line_number": 94, "usage_type": "argument" }, { "api_name": "traits.api.Any", "line_number": 97, "usage_type": "call" }, { "api_name": "traits.api.List", "line_number": 100, "usage_type": "call" }, { "api_name": "traits.api.Int", "line_number": 100, "usage_type": "argument" }, { "api_name": "traits.api.Str", "line_number": 103, "usage_type": "call" }, { "api_name": "traits.api.Event", "line_number": 106, "usage_type": "call" }, { "api_name": "traits.api.Event", "line_number": 109, "usage_type": "call" }, { "api_name": "traits.api.Event", "line_number": 112, "usage_type": "call" }, { "api_name": "traits.api.Instance", "line_number": 115, "usage_type": "call" }, { "api_name": "traitsui.api.UI", "line_number": 115, "usage_type": "argument" }, { "api_name": "traits.api.Int", "line_number": 118, "usage_type": "call" }, { "api_name": "traits.api.Bool", "line_number": 121, "usage_type": "call" }, { "api_name": "traits.api.Dict", "line_number": 124, "usage_type": "call" }, { "api_name": "traits.api.Dict", "line_number": 127, "usage_type": "call" }, { "api_name": "pyface.ui_traits.Image", "line_number": 130, "usage_type": "name" }, { "api_name": "traitsui.api.ObjectColumn", "line_number": 142, "usage_type": "call" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 163, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 163, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QWidget", "line_number": 175, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 175, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QVBoxLayout", "line_number": 176, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 176, "usage_type": "name" }, { "api_name": "traitsui.api.View", "line_number": 181, "usage_type": "call" }, { "api_name": "traitsui.api.Group", "line_number": 182, "usage_type": "call" }, { "api_name": "traitsui.api.spring", "line_number": 185, "usage_type": "argument" }, { "api_name": "traitsui.api.Item", "line_number": 183, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 184, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QSplitter", "line_number": 203, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 203, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 203, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 203, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QSplitter", "line_number": 205, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 205, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 205, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 205, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QSizePolicy", "line_number": 207, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 207, "usage_type": "name" }, { "api_name": "traitsui.api.InstanceEditor", "line_number": 213, "usage_type": "call" }, { "api_name": "traitsui.api.View", "line_number": 217, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 218, "usage_type": "call" }, { "api_name": "traitsui.ui_traits.SequenceTypes", "line_number": 367, "usage_type": "argument" }, { "api_name": "traitsui.editors.table_editor.ReversedList", "line_number": 371, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QItemSelectionModel", "line_number": 406, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 406, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QItemSelectionModel", "line_number": 415, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 415, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QItemSelectionModel", "line_number": 426, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 426, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QItemSelection", "line_number": 445, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 445, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QItemSelectionModel", "line_number": 454, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 454, "usage_type": "name" }, { "api_name": "pyface.image_resource.ImageResource", "line_number": 527, "usage_type": "argument" }, { "api_name": "pyface.qt.QtGui.QMenu", "line_number": 543, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 543, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMenu", "line_number": 553, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 553, "usage_type": "name" }, { "api_name": "traits.api.cached_property", "line_number": 580, "usage_type": "name" }, { "api_name": "traits.api.cached_property", "line_number": 602, "usage_type": "name" }, { "api_name": "traitsui.editors.table_editor.customize_filter", "line_number": 644, "usage_type": "name" }, { "api_name": "pyface.timer.api.do_later", "line_number": 645, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QStyledItemDelegate", "line_number": 824, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 824, "usage_type": "name" }, { "api_name": "traitsui.api.default_handler", "line_number": 842, "usage_type": "call" }, { "api_name": "traitsui.api.UI", "line_number": 844, "usage_type": "call" }, { "api_name": "traitsui.api.UI", "line_number": 849, "usage_type": "call" }, { "api_name": "editor.prepare", "line_number": 854, "usage_type": "call" }, { "api_name": "editor.control", "line_number": 855, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 859, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 859, "usage_type": "name" }, { "api_name": "editor.setGeometry", "line_number": 872, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 877, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 877, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 878, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 878, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QPalette", "line_number": 883, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 883, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QPalette", "line_number": 887, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 887, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QApplication.style", "line_number": 890, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QApplication", "line_number": 890, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 890, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 891, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 891, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 895, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 895, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 900, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 900, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 901, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 901, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 904, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 904, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 905, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 905, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 908, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 908, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 909, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 909, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 912, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 912, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 913, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 913, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 916, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 916, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 917, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 917, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 920, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 920, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 921, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 921, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QTableView.__init__", "line_number": 928, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 928, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 928, "usage_type": "name" }, { "api_name": "editor.factory", "line_number": 932, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 945, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 945, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 946, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 946, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 949, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 949, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 958, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 958, "usage_type": "name" }, { "api_name": "editor._create_empty_menu", "line_number": 987, "usage_type": "call" }, { "api_name": "editor.items", "line_number": 994, "usage_type": "call" }, { "api_name": "editor.columns", "line_number": 995, "usage_type": "attribute" }, { "api_name": "editor.factory", "line_number": 998, "usage_type": "attribute" }, { "api_name": "editor.selected", "line_number": 1001, "usage_type": "attribute" }, { "api_name": "traitsui.ui_traits.SequenceTypes", "line_number": 1002, "usage_type": "argument" }, { "api_name": "editor.set_menu_context", "line_number": 1006, "usage_type": "call" }, { "api_name": "pyface.qt.QtCore.QEvent", "line_number": 1014, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 1014, "usage_type": "name" }, { "api_name": "editor._create_empty_menu", "line_number": 1019, "usage_type": "call" }, { "api_name": "editor.header_row", "line_number": 1024, "usage_type": "attribute" }, { "api_name": "editor._create_header_menu", "line_number": 1025, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView.eventFilter", "line_number": 1032, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 1032, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1032, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QTableView.resizeEvent", "line_number": 1040, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 1040, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1040, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMainWindow", "line_number": 1051, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1051, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QTableView.sizeHint", "line_number": 1062, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 1062, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1062, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 1070, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1070, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyleOptionHeader", "line_number": 1070, "usage_type": "call" }, { "api_name": "editor.columns", "line_number": 1082, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui.QTableView.sizeHintForColumn", "line_number": 1088, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QTableView", "line_number": 1088, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1088, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QFont", "line_number": 1096, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 1096, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.__version_info__", "line_number": 1102, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 1102, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QFontMetrics", "line_number": 1103, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 1103, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QFontMetrics", "line_number": 1105, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 1105, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyleOptionHeader", "line_number": 1109, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 1109, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 1112, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1112, "usage_type": "name" }, { "api_name": "editor.factory", "line_number": 1116, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 1119, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1119, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QStyle", "line_number": 1123, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1123, "usage_type": "name" }, { "api_name": "editor.columns", "line_number": 1148, "usage_type": "attribute" }, { "api_name": "editor.columns", "line_number": 1149, "usage_type": "attribute" }, { "api_name": "editor.dispose", "line_number": 1180, "usage_type": "call" }, { "api_name": "editor.factory", "line_number": 1190, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui.QHeaderView", "line_number": 1199, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1199, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAbstractItemView", "line_number": 1205, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1205, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QHeaderView", "line_number": 1212, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1212, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QHeaderView", "line_number": 1213, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1213, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QHeaderView", "line_number": 1214, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1214, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QHeaderView", "line_number": 1215, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 1215, "usage_type": "name" }, { "api_name": "editor.columns", "line_number": 1218, "usage_type": "attribute" }, { "api_name": "traits.api.HasTraits", "line_number": 1241, "usage_type": "name" }, { "api_name": "traits.api.Instance", "line_number": 1249, "usage_type": "call" }, { "api_name": "traits.api.List", "line_number": 1252, "usage_type": "call" }, { "api_name": "traitsui.api.TableFilter", "line_number": 1252, "usage_type": "argument" }, { "api_name": "traits.api.Property", "line_number": 1255, "usage_type": "call" }, { "api_name": "traits.api.List", "line_number": 1255, "usage_type": "call" }, { "api_name": "traitsui.api.TableFilter", "line_number": 1255, "usage_type": "argument" }, { "api_name": "traits.api.Instance", "line_number": 1258, "usage_type": "call" }, { "api_name": "traitsui.api.TableFilter", "line_number": 1258, "usage_type": "argument" }, { "api_name": "traits.api.Instance", "line_number": 1261, "usage_type": "call" }, { "api_name": "traitsui.api.TableFilter", "line_number": 1261, "usage_type": "argument" }, { "api_name": "traits.api.Property", "line_number": 1264, "usage_type": "call" }, { "api_name": "traits.api.Button", "line_number": 1267, "usage_type": "call" }, { "api_name": "traits.api.Button", "line_number": 1268, "usage_type": "call" }, { "api_name": "traitsui.api.View", "line_number": 1271, "usage_type": "call" }, { "api_name": "traitsui.api.Group", "line_number": 1272, "usage_type": "call" }, { "api_name": "traitsui.api.Group", "line_number": 1273, "usage_type": "call" }, { "api_name": "traitsui.api.Group", "line_number": 1274, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 1275, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 1276, "usage_type": "call" }, { "api_name": "traitsui.api.Label", "line_number": 1284, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 1285, "usage_type": "call" }, { "api_name": "traitsui.api.EnumEditor", "line_number": 1285, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 1286, "usage_type": "call" }, { "api_name": "traitsui.api.EnumEditor", "line_number": 1289, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 1293, "usage_type": "call" }, { "api_name": "traitsui.api.InstanceEditor", "line_number": 1297, "usage_type": "call" }, { "api_name": "traits.api.cached_property", "line_number": 1319, "usage_type": "name" }, { "api_name": "traits.api.cached_property", "line_number": 1332, "usage_type": "name" }, { "api_name": "traits.api.observe", "line_number": 1348, "usage_type": "call" }, { "api_name": "traits.api.observe", "line_number": 1357, "usage_type": "call" }, { "api_name": "traits.api.observe", "line_number": 1370, "usage_type": "call" } ]
17270713471
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_regression from mpl_toolkits import mplot3d # Training phase/ Training the LR model/ Find optimal weights def fit(X, y): """ X: Feature matrix: (n_samples, n_features) y: y_true: (n_samples,1) Returns: weights weights: optimal weights (n_features, 1) """ X = X.copy() ones_column = np.ones((len(X),1)) X = np.concatenate([ones_column, X], axis=1) w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) return w # prediction def predict(X, w): """ X: Feature matrix: (n_samples, n_features) w: weight vector: (n_fetures, 1) Returns: y: y_pred = X.w (n_samples,1) """ X = X.copy() ones_column = np.ones((len(X),1)) X = np.concatenate([ones_column, X], axis=1) return X.dot(w) # r_squared def r_squared(ytrue, ypred): e_method = ((ytrue-ypred)**2).sum() # sum of squares of residuals e_baseline = ((ytrue-ytrue.mean())**2).sum() # total sum of squares return 1 - e_method/e_baseline # loss function def loss(ytrue, ypred): return ((ytrue-ypred)**2).sum() X, y, coeff = make_regression(n_samples=100, n_features=2, coef=True, noise=0.5, bias=3, random_state=70) # print(X.shape, y.shape) # Train the model/ learn the optimal weights w = fit(X, y) #################################################### fig = plt.figure(figsize=(8,8)) ax = plt.axes(projection='3d') ax.scatter(X[:,0], X[:,1], y, c=y, cmap='seismic') f1 = np.linspace(X[:,0].min(), X[:,0].max(), 50) f2 = np.linspace(X[:,1].min(), X[:,1].max(), 50) f1, f2 = np.meshgrid(f1, f2) # prediction plane X_ = np.concatenate([f1.reshape(-1,1), f2.reshape(-1,1)], axis=1) pred = predict(X_, w).reshape(f1.shape) ax.plot_surface(f1, f2, pred, alpha=0.5, cmap='seismic') ax.set_xlabel("Feature 1") ax.set_ylabel("Feature 2") ax.set_zlabel("Output (y)") plt.show()
princeyyadav/CB-DS-LV-May21
DS/S13-linear-regression/viz.py
viz.py
py
1,905
python
en
code
0
github-code
6
[ { "api_name": "numpy.ones", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.linalg.inv", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 19, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 32, "usage_type": "call" }, { "api_name": "sklearn.datasets.make_regression", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axes", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" } ]
485113359
import pytest from graph_pkg.edit_cost.edit_cost_proteins_tu import EditCostProteinsTU from graph_pkg.graph.label.label_node_proteins_tu import LabelNodeProteinsTU from graph_pkg.graph.node import Node @pytest.mark.parametrize('coord1, e_cost, expected', [ ((1,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (1., 1., 1., 1., 'dirac'), 1.), ((2,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (11., 1., 1., 1., 'dirac'), 11.), ((0,), (1., 1.9, 1.9, 1.9, 'dirac'), 1.), ]) def test_dirac_proteins_tu_add_node(coord1, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_insert_node(node0) assert result == expected @pytest.mark.parametrize('coord1, e_cost, expected', [ ((1,), (1., 1., 1., 1., 'dirac'), 1.), ((0,), (1., 1., 1., 1., 'dirac'), 1.), ((1,), (16., 12., 18., 17., 'dirac'), 12.), ]) def test_dirac_proteins_tu_delete_node(coord1, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_delete_node(node0) assert result == expected @pytest.mark.parametrize('coord1, coord2, e_cost, expected', [ ((1,), (1,), (1., 1., 1., 1., 'dirac'), 0.), ((0,), (1,), (1., 1., 1., 1., 'dirac'), 2.), ((1,), (0,), (1., 1., 1., 1., 'dirac'), 2.), ((1,), (2,), (3., 2., 2.5, 1., 'dirac'), 5.), ]) def test_dirac_proteins_tu_substitution(coord1, coord2, e_cost, expected): node0 = Node(0, LabelNodeProteinsTU(*coord1)) node1 = Node(1, LabelNodeProteinsTU(*coord2)) edit_cost = EditCostProteinsTU(*e_cost) result = edit_cost.cost_substitute_node(node0, node1) assert result == expected
CheshireCat12/graph_project
tests/unit_edit_cost/test_edit_cost_proteins_tu.py
test_edit_cost_proteins_tu.py
py
2,168
python
en
code
1
github-code
6
[ { "api_name": "graph_pkg.graph.node.Node", "line_number": 17, "usage_type": "call" }, { "api_name": "graph_pkg.graph.label.label_node_proteins_tu.LabelNodeProteinsTU", "line_number": 17, "usage_type": "call" }, { "api_name": "graph_pkg.edit_cost.edit_cost_proteins_tu.EditCostProteinsTU", "line_number": 19, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 8, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 8, "usage_type": "attribute" }, { "api_name": "graph_pkg.graph.node.Node", "line_number": 33, "usage_type": "call" }, { "api_name": "graph_pkg.graph.label.label_node_proteins_tu.LabelNodeProteinsTU", "line_number": 33, "usage_type": "call" }, { "api_name": "graph_pkg.edit_cost.edit_cost_proteins_tu.EditCostProteinsTU", "line_number": 35, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 26, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 26, "usage_type": "attribute" }, { "api_name": "graph_pkg.graph.node.Node", "line_number": 51, "usage_type": "call" }, { "api_name": "graph_pkg.graph.label.label_node_proteins_tu.LabelNodeProteinsTU", "line_number": 51, "usage_type": "call" }, { "api_name": "graph_pkg.graph.node.Node", "line_number": 52, "usage_type": "call" }, { "api_name": "graph_pkg.graph.label.label_node_proteins_tu.LabelNodeProteinsTU", "line_number": 52, "usage_type": "call" }, { "api_name": "graph_pkg.edit_cost.edit_cost_proteins_tu.EditCostProteinsTU", "line_number": 54, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 42, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 42, "usage_type": "attribute" } ]
27016970830
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) from django.utils.translation import ugettext_lazy as _ from GameFeb19_intro.models import add_currency, add_tokens, TRNSL_ERR_MSG, translated_languages import csv import random author = 'Tatiana Mayskaya' doc = """ Cognitive Reflection Test & IQ Test & GRE-based Test :: whatever counts as cognitive test """ class Constants(BaseConstants): name_in_url = 'GameFeb19_questions_cognitive' players_per_group = None # this is done only to count the number of questions in the quiz # (assuming Russian and English versions have the same number) with open('GameFeb19_questions_cognitive/cognitive_en.csv') as file: questions = list(csv.DictReader(file)) num_rounds = len(questions) class Subsession(BaseSubsession): def creating_session(self): assert self.session.config['language'] in translated_languages, TRNSL_ERR_MSG if self.round_number == 1: if self.session.config['language'] == 'en': with open('GameFeb19_questions_cognitive/cognitive_en.csv', encoding='utf-8-sig') as test_file: self.session.vars['test_file_list'] = list(csv.DictReader(test_file)) else: with open('GameFeb19_questions_cognitive/cognitive_ru.csv', encoding='utf-8-sig') as test_file: self.session.vars['test_file_list'] = list(csv.DictReader(test_file)) for p in self.get_players(): p.random_questions() self.session.vars['num_questions_CT'] = Constants.num_rounds for p in self.get_players(): question_data = p.current_question() p.question_id = question_data['id'] p.question = question_data['question'] p.solution = int(question_data['solution']) if int(question_data['n_choices']) == 0: p.solution_text = question_data['solution'] else: p.solution_text = question_data['choice{}'.format(p.solution)] p.participant.vars['questions_CT'] = [] def vars_for_admin_report(self): players = [] for p in self.get_players(): players.append((p.participant.label, p.question, p.submitted_answer_text, p.solution_text, p.get_is_correct_display())) return {'players': players} class Group(BaseGroup): pass class Player(BasePlayer): question_id = models.IntegerField() question = models.StringField() solution = models.IntegerField() solution_text = models.StringField() submitted_answer = models.IntegerField() submitted_answer_options = models.IntegerField(widget=widgets.RadioSelect) submitted_answer_text = models.StringField() is_correct = models.BooleanField(initial=False, choices=[[True, _('Yes')], [False, _('No')]]) def random_questions(self): randomized_questions = random.sample(range(1, Constants.num_rounds + 1, 1), Constants.num_rounds) self.participant.vars['questions_order_CT'] = randomized_questions def current_question(self): num = self.participant.vars['questions_order_CT'][self.round_number - 1] return self.session.vars['test_file_list'][num - 1] def check_correct(self): question_data = self.current_question() if int(question_data['n_choices']) > 0: self.submitted_answer = self.submitted_answer_options self.is_correct = (self.submitted_answer == self.solution) if int(question_data['n_choices']) == 0: self.submitted_answer_text = str(self.submitted_answer) else: self.submitted_answer_text = question_data['choice{}'.format(self.submitted_answer)] self.participant.vars['questions_CT'].append( (self.round_number, self.question, self.submitted_answer_text, self.solution_text, self.get_is_correct_display())) if self.is_correct: self.payoff = self.session.vars['rate_CT'] def set_payoffs(self): self.participant.vars['questions_correct_CT'] = sum([int(p.is_correct) for p in self.in_all_rounds()]) self.participant.vars['payment_formula'] = \ self.participant.vars['payment_formula'] + \ ' + ' + str(self.participant.vars['questions_correct_CT']) + '*' + \ add_currency(self.session.config['currency_used'], self.session.vars['rate_CT'] * self.session.config['real_world_currency_per_point'])
TatianaMayskaya/oTree
GameFeb19_questions_cognitive/models.py
models.py
py
4,609
python
en
code
0
github-code
6
[ { "api_name": "otree.api.BaseConstants", "line_number": 20, "usage_type": "name" }, { "api_name": "csv.DictReader", "line_number": 27, "usage_type": "call" }, { "api_name": "otree.api.BaseSubsession", "line_number": 32, "usage_type": "name" }, { "api_name": "GameFeb19_intro.models.translated_languages", "line_number": 34, "usage_type": "name" }, { "api_name": "GameFeb19_intro.models.TRNSL_ERR_MSG", "line_number": 34, "usage_type": "name" }, { "api_name": "csv.DictReader", "line_number": 38, "usage_type": "call" }, { "api_name": "csv.DictReader", "line_number": 41, "usage_type": "call" }, { "api_name": "otree.api.BaseGroup", "line_number": 64, "usage_type": "name" }, { "api_name": "otree.api.BasePlayer", "line_number": 68, "usage_type": "name" }, { "api_name": "otree.api.models.IntegerField", "line_number": 69, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 69, "usage_type": "name" }, { "api_name": "otree.api.models.StringField", "line_number": 70, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 70, "usage_type": "name" }, { "api_name": "otree.api.models.IntegerField", "line_number": 71, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 71, "usage_type": "name" }, { "api_name": "otree.api.models.StringField", "line_number": 72, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 72, "usage_type": "name" }, { "api_name": "otree.api.models.IntegerField", "line_number": 73, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 73, "usage_type": "name" }, { "api_name": "otree.api.models.IntegerField", "line_number": 74, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 74, "usage_type": "name" }, { "api_name": "otree.api.widgets.RadioSelect", "line_number": 74, "usage_type": "attribute" }, { "api_name": "otree.api.widgets", "line_number": 74, "usage_type": "name" }, { "api_name": "otree.api.models.StringField", "line_number": 75, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 75, "usage_type": "name" }, { "api_name": "otree.api.models.BooleanField", "line_number": 76, "usage_type": "call" }, { "api_name": "otree.api.models", "line_number": 76, "usage_type": "name" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 76, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 79, "usage_type": "call" }, { "api_name": "GameFeb19_intro.models.add_currency", "line_number": 106, "usage_type": "call" } ]
9963863734
import numpy as np import scipy.sparse as sp import torch import time import random from utils.tool import read_data, write_dic, dictionary, normalize, sparse_mx_to_torch_sparse_tensor def encoding_test(test_graph_path, test_fact_path, train_dataset = "fb237_v1"): """load test-graph and test-facts, and do the encoding on the test-graph""" t_start = time.time() path = "data" #these two paths are for loading relation_dic_path = "{}/{}/train/relation-dic.txt".format(path, train_dataset) type_dic_path = "{}/{}/train/type-dic.txt".format(path, train_dataset) test_graph_triples = read_data(test_graph_path) test_fact_triples_with_label = read_data(test_fact_path) #load relation dic and type dic generated by training f_relation_dic = open(relation_dic_path) relations = [] for line in f_relation_dic: relation_new = line.strip().split("\t")[1] relations.append(relation_new) f_type_dic = open(type_dic_path) types = [] for line in f_type_dic: type_new = line.strip().split("\t")[1] types.append(type_new) relation_set = set(relations) all_triples_with_label = test_graph_triples + test_fact_triples_with_label test_graph_real_triples = [] test_graph_type_triples = [] for triple in test_graph_triples: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": test_graph_real_triples.append(triple) else: test_graph_type_triples.append(triple) test_fact_real_triples_with_label = [] test_fact_type_triples_with_label = [] for triple in test_fact_triples_with_label: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": test_fact_real_triples_with_label.append(triple) else: test_fact_type_triples_with_label.append(triple) all_real_triples_with_label = [] all_type_triples_with_label = [] constant_set = set() for triple in all_triples_with_label: if triple[1] != "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>": constant_set.add(triple[0]) constant_set.add(triple[2]) all_real_triples_with_label.append(triple) else: constant_set.add(triple[0]) all_type_triples_with_label.append(triple) constants = list(constant_set) constant2index = dictionary(constants) relation2index = dictionary(relations) type2index = dictionary(types) #print("time:",time.time()-t_start) #generate list of pairs for encoding pairs = [] pair_set = set() for triple in all_real_triples_with_label: sub_idx = constant2index[triple[0]] obj_idx = constant2index[triple[2]] if sub_idx < obj_idx: if (sub_idx, obj_idx) not in pair_set: pair_set.add((sub_idx, obj_idx)) pairs.append((sub_idx, obj_idx)) if sub_idx > obj_idx: if (obj_idx, sub_idx) not in pair_set: pair_set.add((obj_idx, sub_idx)) pairs.append((obj_idx, sub_idx)) for constant_idx in range(len(constants)): pairs.append((constant_idx, constant_idx)) pair_set.add((constant_idx, constant_idx)) pair2index = dictionary(pairs) s_time = time.time() #collect related pairs for each constant pairs_for_constant = dict([(i,set()) for i in range(len(constants))]) p_idx = 0 for pair in pairs: p_idx = pair2index[pair] c1 = pair[0] c2 = pair[1] pairs_for_constant[c1].add(p_idx) pairs_for_constant[c2].add(p_idx) #collect neighbors for each pair node pneighbors_for_pair = dict([(i,set()) for i in range(len(pairs))]) for c_idx in range(len(constants)): pairs_c = set(pairs_for_constant[c_idx]) #pair and n_pair would contain one common constant for pair in pairs_c: for n_pair in pairs_c: if pair != n_pair: pneighbors_for_pair[pair].add(n_pair) #generate edge list edges = [] for i in range(len(pairs)): pneighbors = pneighbors_for_pair[i] for pneighbor in pneighbors: edges.append([i, pneighbor]) edges.append([pneighbor, i]) #print("Finished generating edges", time.time() - s_time) #generate a normalized adjencency matrix (strategy for GCN) #print(edges) edges = np.array(edges) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(len(pairs), len(pairs)), dtype=np.float32) adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj) adj = normalize(adj + sp.eye(adj.shape[0])) adj = sparse_mx_to_torch_sparse_tensor(adj) del edges #print("Total time for adj: {:.4f}s".format(time.time() - s_time)) #print("Start to generate features, labels, and masks") def initialize(test_graph_real_triples, test_graph_type_triples, test_fact_real_triples_with_label, test_fact_type_triples_with_label): labels = torch.zeros(len(pairs), len(types) + 2*len(relations)) masks = torch.zeros(len(pairs), len(types) + 2*len(relations)) features = torch.zeros(len(pairs), len(types) + 2*len(relations)) #labels and masks are generated for all triples in test-facts (pos&neg) for triple in test_fact_type_triples_with_label: cons = triple[0] typ = triple[2] label = triple[3] pair_idx= pair2index[(constant2index[cons], constant2index[cons])] typ_idx = type2index[typ] if label == "1": labels[pair_idx][typ_idx] = 1 elif label == "0": labels[pair_idx][typ_idx] = 0 masks[pair_idx][typ_idx] = 1 for triple in test_fact_real_triples_with_label: sub = triple[0] rel = triple[1] obj = triple[2] label = triple[3] sub_idx = constant2index[sub] rel_idx = relation2index[rel] obj_idx = constant2index[obj] try: pair_idx = pair2index[(sub_idx, obj_idx)] except: pair_idx = pair2index[(obj_idx, sub_idx)] rel_idx = rel_idx + len(relations) if label == "1": labels[pair_idx][len(types) + rel_idx] = 1 elif label == "0": labels[pair_idx][len(types) + rel_idx] = 0 masks[pair_idx][len(types) + rel_idx] = 1 #features are generated for all triples in test-graph (pos&neg) for triple in test_graph_type_triples: cons = triple[0] typ = triple[2] pair_idx= pair2index[(constant2index[cons], constant2index[cons])] typ_idx = type2index[typ] features[pair_idx][typ_idx] = 1 for triple in test_graph_real_triples: sub = triple[0] rel = triple[1] obj = triple[2] sub_idx = constant2index[sub] rel_idx = relation2index[rel] obj_idx = constant2index[obj] try: pair_idx = pair2index[(sub_idx, obj_idx)] except: pair_idx = pair2index[(obj_idx, sub_idx)] rel_idx = rel_idx + len(relations) features[pair_idx][len(types) + rel_idx] = 1 features.requires_grad = True labels.requires_grad = False return features, labels, masks features, labels, masks = initialize(test_graph_real_triples, test_graph_type_triples, test_fact_real_triples_with_label, test_fact_type_triples_with_label) num_type = len(types) num_relation = len(relations) def triple2index(triple_now): sub_idx = constant2index[triple_now[0]] try: relation_idx = relation2index[triple_now[1]] except: pair_idx = pair2index[(sub_idx, sub_idx)] dim_idx = type2index[triple_now[2]] return pair_idx, dim_idx obj_idx = constant2index[triple_now[2]] if (sub_idx, obj_idx) in pair_set: pair_idx = pair2index[(sub_idx, obj_idx)] dim_idx = len(types) + relation_idx elif (obj_idx, sub_idx) in pair_set: pair_idx = pair2index[(obj_idx, sub_idx)] dim_idx = len(types) + len(relations) + relation_idx else: print(triple_now, sub_idx, relation_idx, obj_idx) print("wrong") return pair_idx, dim_idx hits_true = [] for triple in test_fact_triples_with_label: if triple[-1] == "1": hits_true.append(triple2index(triple)) #print("Finished generation") #print("Total time elapsed for encoding: {:.4f}s".format(time.time() - t_start)) return adj, features, labels, masks, num_type, num_relation, constants, relations, types, pairs, hits_true
shuwen-liu-ox/INDIGO
utils/utils_test_pattern.py
utils_test_pattern.py
py
9,170
python
en
code
22
github-code
6
[ { "api_name": "time.time", "line_number": 15, "usage_type": "call" }, { "api_name": "utils.tool.read_data", "line_number": 25, "usage_type": "call" }, { "api_name": "utils.tool.read_data", "line_number": 26, "usage_type": "call" }, { "api_name": "utils.tool.dictionary", "line_number": 80, "usage_type": "call" }, { "api_name": "utils.tool.dictionary", "line_number": 81, "usage_type": "call" }, { "api_name": "utils.tool.dictionary", "line_number": 82, "usage_type": "call" }, { "api_name": "utils.tool.dictionary", "line_number": 104, "usage_type": "call" }, { "api_name": "time.time", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 146, "usage_type": "call" }, { "api_name": "scipy.sparse.coo_matrix", "line_number": 147, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 147, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 147, "usage_type": "attribute" }, { "api_name": "utils.tool.normalize", "line_number": 150, "usage_type": "call" }, { "api_name": "scipy.sparse.eye", "line_number": 150, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 150, "usage_type": "name" }, { "api_name": "utils.tool.sparse_mx_to_torch_sparse_tensor", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 159, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 160, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 161, "usage_type": "call" } ]
43077970864
from typing import Any, Callable, Dict, Optional, Type, Union from fugue.execution.execution_engine import ExecutionEngine, SQLEngine from fugue.execution.native_execution_engine import NativeExecutionEngine from triad.utils.convert import to_instance from triad import assert_or_throw, ParamDict class _ExecutionEngineFactory(object): def __init__(self): self._funcs: Dict[str, Callable] = {} self._type_funcs: Dict[Type, Callable] = {} self._sql_funcs: Dict[str, Callable] = {} self.register_default(lambda conf, **kwargs: NativeExecutionEngine(conf=conf)) self.register_default_sql_engine(lambda engine, **kwargs: engine.sql_engine) def register( self, name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: if isinstance(name_or_type, str): self._register(self._funcs, name=name_or_type, func=func, on_dup=on_dup) else: self._register( self._type_funcs, name=name_or_type, func=func, on_dup=on_dup ) def register_default(self, func: Callable, on_dup="overwrite") -> None: self.register("", func, on_dup) def register_sql_engine( self, name: str, func: Callable, on_dup="overwrite" ) -> None: self._register(self._sql_funcs, name=name, func=func, on_dup=on_dup) def register_default_sql_engine(self, func: Callable, on_dup="overwrite") -> None: self.register_sql_engine("", func, on_dup) def make( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: if isinstance(engine, tuple): execution_engine = self.make_execution_engine( engine[0], conf=conf, **kwargs ) sql_engine = self.make_sql_engine(engine[1], execution_engine) execution_engine.set_sql_engine(sql_engine) return execution_engine else: return self.make((engine, None), conf=conf, **kwargs) def make_execution_engine( self, engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: # Apply this function to an Execution Engine instance can # make sure the compile conf is a superset of conf # TODO: it's a mess here, can we make the logic more intuitive? def make_engine(engine: Any) -> ExecutionEngine: if isinstance(engine, str) and engine in self._funcs: return self._funcs[engine](conf, **kwargs) for k, f in self._type_funcs.items(): if isinstance(engine, k): return f(engine, conf, **kwargs) if isinstance(engine, ExecutionEngine): if conf is not None: engine.compile_conf.update(conf) engine.compile_conf.update(kwargs) return engine return to_instance( engine, ExecutionEngine, kwargs=dict(conf=conf, **kwargs) ) result = make_engine(engine or "") result.compile_conf.update(result.conf, on_dup=ParamDict.IGNORE) result.compile_conf.update(conf, on_dup=ParamDict.OVERWRITE) result.compile_conf.update(kwargs, on_dup=ParamDict.OVERWRITE) return result def make_sql_engine( self, engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: if engine is None: engine = "" if isinstance(engine, str) and engine in self._sql_funcs: return self._sql_funcs[engine](execution_engine, **kwargs) if isinstance(engine, SQLEngine): assert_or_throw( execution_engine is None and len(kwargs) == 0, lambda: ValueError( f"{engine} is an instance, can't take arguments " f"execution_engine={execution_engine}, kwargs={kwargs}" ), ) return engine return to_instance( engine, SQLEngine, kwargs=dict(execution_engine=execution_engine, **kwargs) ) def _register( self, callables: Dict[Any, Callable], name: Any, func: Callable, on_dup="overwrite", ) -> None: if name not in callables: callables[name] = func if on_dup in ["raise", "throw"]: raise KeyError(f"{name} is already registered") if on_dup == "overwrite": callables[name] = func return if on_dup == "ignore": return raise ValueError(on_dup) _EXECUTION_ENGINE_FACTORY = _ExecutionEngineFactory() def register_execution_engine( name_or_type: Union[str, Type], func: Callable, on_dup="overwrite" ) -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` with a given name. :param name_or_type: alias of the execution engine, or type of an object that can be converted to an execution engine :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples Alias registration examples: .. code-block:: python # create a new engine with name my (overwrites if existed) register_execution_engine("my", lambda conf: MyExecutionEngine(conf)) # 0 make_execution_engine("my") make_execution_engine("my", {"myconfig":"value}) # 1 with FugueWorkflow("my") as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run("my", {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("my") Type registration examples: .. code-block:: python from pyspark.sql import SparkSession from fugue_spark import SparkExecutionEngine from fugue_sql import fsql register_execution_engine( SparkSession, lambda session, conf: SparkExecutionEngine(session, conf)) spark_session = SparkSession.builder.getOrCreate() fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run(spark_session) """ _EXECUTION_ENGINE_FACTORY.register(name_or_type, func, on_dup) def register_default_execution_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.ExecutionEngine` as the default engine. :param func: a callable taking |ParamsLikeObject| and ``**kwargs`` and returning an :class:`~fugue.execution.execution_engine.ExecutionEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_execution_engine(lambda conf: MyExecutionEngine(conf)) # the following examples will use MyExecutionEngine # 0 make_execution_engine() make_execution_engine(None, {"myconfig":"value}) # 1 with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() # 2 dag = FugueWorkflow() dag.create([[0]],"a:int").show() dag.run(None, {"myconfig":"value}) # 3 fsql(''' CREATE [[0]] SCHEMA a:int PRINT ''').run("", {"myconfig":"value}) """ _EXECUTION_ENGINE_FACTORY.register_default(func, on_dup) def register_sql_engine(name: str, func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` with a given name. :param name: name of the SQL engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_sql_engine("mysql", lambda engine: MySQLEngine(engine)) # create execution engine with MySQLEngine as the default make_execution_engine(("", "mysql")) # create DaskExecutionEngine with MySQLEngine as the default make_execution_engine(("dask", "mysql")) # default execution engine + MySQLEngine with FugueWorkflow(("","mysql")) as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_sql_engine(name, func, on_dup) def register_default_sql_engine(func: Callable, on_dup="overwrite") -> None: """Register :class:`~fugue.execution.execution_engine.SQLEngine` as the default engine :param func: a callable taking :class:`~fugue.execution.execution_engine.ExecutionEngine` and ``**kwargs`` and returning a :class:`~fugue.execution.execution_engine.SQLEngine` instance :param on_dup: action on duplicated ``name``. It can be "overwrite", "ignore" (not overwriting) or "throw" (throw exception), defaults to "overwrite". :raises KeyError: if ``on_dup`` is ``throw`` and the ``name`` already exists .. note:: You should be careful to use this function, because when you set a custom SQL engine as default, all execution engines you create will use this SQL engine unless you are explicit. For example if you set the default SQL engine to be a Spark specific one, then if you start a NativeExecutionEngine, it will try to use it and will throw exceptions. So it's always a better idea to use ``register_sql_engine`` instead .. admonition:: Examples .. code-block:: python # create a new engine with name my (overwrites if existed) register_default_sql_engine(lambda engine: MySQLEngine(engine)) # create NativeExecutionEngine with MySQLEngine as the default make_execution_engine() # create SparkExecutionEngine with MySQLEngine instead of SparkSQLEngine make_execution_engine("spark") # NativeExecutionEngine with MySQLEngine with FugueWorkflow() as dag: dag.create([[0]],"a:int").show() """ _EXECUTION_ENGINE_FACTORY.register_default_sql_engine(func, on_dup) def make_execution_engine( engine: Any = None, conf: Any = None, **kwargs: Any ) -> ExecutionEngine: """Create :class:`~fugue.execution.execution_engine.ExecutionEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default execution engine), a string (use the registered execution engine), an :class:`~fugue.execution.execution_engine.ExecutionEngine` type, or the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance , or a tuple of two values where the first value represents execution engine and the second value represents the sql engine (you can use ``None`` for either of them to use the default one), defaults to None :param conf: |ParamsLikeObject|, defaults to None :param kwargs: additional parameters to initialize the execution engine :return: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance .. admonition:: Examples .. code-block:: python register_default_execution_engine(lambda conf: E1(conf)) register_execution_engine("e2", lambda conf, **kwargs: E2(conf, **kwargs)) register_sql_engine("s", lambda conf: S2(conf)) # E1 + E1.default_sql_engine make_execution_engine() # E2 + E2.default_sql_engine make_execution_engine(e2) # E1 + S2 make_execution_engine((None, "s")) # E2(conf, a=1, b=2) + S2 make_execution_engine(("e2", "s"), conf, a=1, b=2) # SparkExecutionEngine + SparkSQLEngine make_execution_engine(SparkExecutionEngine) make_execution_engine(SparkExecutionEngine(spark_session, conf)) # SparkExecutionEngine + S2 make_execution_engine((SparkExecutionEngine, "s")) """ import fugue._utils.register # pylint: disable=W0611 # noqa: F401 return _EXECUTION_ENGINE_FACTORY.make(engine, conf, **kwargs) def make_sql_engine( engine: Any = None, execution_engine: Optional[ExecutionEngine] = None, **kwargs: Any, ) -> SQLEngine: """Create :class:`~fugue.execution.execution_engine.SQLEngine` with specified ``engine`` :param engine: it can be empty string or null (use the default SQL engine), a string (use the registered SQL engine), an :class:`~fugue.execution.execution_engine.SQLEngine` type, or the :class:`~fugue.execution.execution_engine.SQLEngine` instance (you can use ``None`` to use the default one), defaults to None :param execution_engine: the :class:`~fugue.execution.execution_engine.ExecutionEngine` instance to create the :class:`~fugue.execution.execution_engine.SQLEngine`. Normally you should always provide this value. :param kwargs: additional parameters to initialize the sql engine :return: the :class:`~fugue.execution.execution_engine.SQLEngine` instance .. note:: For users, you normally don't need to call this function directly. Use ``make_execution_engine`` instead .. admonition:: Examples .. code-block:: python register_default_sql_engine(lambda conf: S1(conf)) register_sql_engine("s2", lambda conf: S2(conf)) engine = NativeExecutionEngine() # S1(engine) make_sql_engine(None, engine) # S1(engine, a=1) make_sql_engine(None, engine, a=1) # S2(engine) make_sql_engine("s2", engine) # SqliteEngine(engine) make_sql_engine(SqliteEngine) """ import fugue._utils.register # pylint: disable=W0611 # noqa: F401 return _EXECUTION_ENGINE_FACTORY.make_sql_engine(engine, execution_engine, **kwargs)
ofili/Wrangle-and-Analyze-Data
venv/Lib/site-packages/fugue/execution/factory.py
factory.py
py
15,192
python
en
code
0
github-code
6
[ { "api_name": "typing.Dict", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Type", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 13, "usage_type": "name" }, { "api_name": "fugue.execution.native_execution_engine.NativeExecutionEngine", "line_number": 14, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Type", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 27, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 31, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 35, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 39, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 40, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 52, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 58, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 64, "usage_type": "argument" }, { "api_name": "triad.utils.convert.to_instance", "line_number": 69, "usage_type": "call" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 70, "usage_type": "argument" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 58, "usage_type": "name" }, { "api_name": "triad.ParamDict.IGNORE", "line_number": 74, "usage_type": "attribute" }, { "api_name": "triad.ParamDict", "line_number": 74, "usage_type": "name" }, { "api_name": "triad.ParamDict.OVERWRITE", "line_number": 75, "usage_type": "attribute" }, { "api_name": "triad.ParamDict", "line_number": 75, "usage_type": "name" }, { "api_name": "triad.ParamDict.OVERWRITE", "line_number": 76, "usage_type": "attribute" }, { "api_name": "triad.ParamDict", "line_number": 76, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 53, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 81, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 82, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 82, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 83, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.SQLEngine", "line_number": 89, "usage_type": "argument" }, { "api_name": "triad.assert_or_throw", "line_number": 90, "usage_type": "call" }, { "api_name": "triad.utils.convert.to_instance", "line_number": 98, "usage_type": "call" }, { "api_name": "fugue.execution.execution_engine.SQLEngine", "line_number": 99, "usage_type": "argument" }, { "api_name": "fugue.execution.execution_engine.SQLEngine", "line_number": 84, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 104, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 104, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 104, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 105, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 106, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 125, "usage_type": "name" }, { "api_name": "typing.Type", "line_number": 125, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 125, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 189, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 231, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 265, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 309, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 310, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 361, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 362, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.ExecutionEngine", "line_number": 362, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 363, "usage_type": "name" }, { "api_name": "fugue.execution.execution_engine.SQLEngine", "line_number": 364, "usage_type": "name" } ]
17609260691
# encoding: utf-8 import badgrlog import datetime from django.utils import timezone from rest_framework import permissions from rest_framework.response import Response from rest_framework import serializers from rest_framework import status from backpack.models import BackpackCollection, BackpackBadgeShare, BackpackCollectionShare from backpack.serializers_v1 import CollectionSerializerV1, LocalBadgeInstanceUploadSerializerV1 from backpack.serializers_v2 import BackpackAssertionSerializerV2, BackpackCollectionSerializerV2, \ BackpackImportSerializerV2, BackpackAssertionAcceptanceSerializerV2 from entity.api import BaseEntityListView, BaseEntityDetailView from issuer.models import BadgeInstance from issuer.permissions import AuditedModelOwner, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope from issuer.public_api import ImagePropertyDetailView from apispec_drf.decorators import apispec_list_operation, apispec_post_operation, apispec_get_operation, \ apispec_delete_operation, apispec_put_operation, apispec_operation from mainsite.permissions import AuthenticatedWithVerifiedIdentifier logger = badgrlog.BadgrLogger() _TRUE_VALUES = ['true', 't', 'on', 'yes', 'y', '1', 1, 1.0, True] _FALSE_VALUES = ['false', 'f', 'off', 'no', 'n', '0', 0, 0.0, False] def _scrub_boolean(boolean_str, default=None): if boolean_str in _TRUE_VALUES: return True if boolean_str in _FALSE_VALUES: return False return default class BackpackAssertionList(BaseEntityListView): model = BadgeInstance v1_serializer_class = LocalBadgeInstanceUploadSerializerV1 v2_serializer_class = BackpackAssertionSerializerV2 create_event = badgrlog.BadgeUploaded permission_classes = (AuthenticatedWithVerifiedIdentifier, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope) http_method_names = ('get', 'post') valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], } include_defaults = { 'include_expired': {'v1': 'true', 'v2': 'false'}, 'include_revoked': {'v1': 'false', 'v2': 'false'}, 'include_pending': {'v1': 'false', 'v2': 'false'}, } def get_objects(self, request, **kwargs): version = kwargs.get('version', 'v1') include_expired = request.query_params.get( 'include_expired', self.include_defaults['include_expired'][version] ).lower() in ['1', 'true'] include_revoked = request.query_params.get( 'include_revoked', self.include_defaults['include_revoked'][version] ).lower() in ['1', 'true'] include_pending = request.query_params.get( 'include_pending', self.include_defaults['include_pending'][version] ).lower() in ['1', 'true'] def badge_filter(b): if ((b.acceptance == BadgeInstance.ACCEPTANCE_REJECTED) or (not include_expired and b.expires_at != None and b.expires_at < timezone.now()) or (not include_revoked and b.revoked) or (not include_pending and b.pending)): return False return True return list(filter(badge_filter, self.request.user.cached_badgeinstances())) @apispec_list_operation('Assertion', summary="Get a list of Assertions in authenticated user's backpack ", tags=['Backpack'] ) def get(self, request, **kwargs): mykwargs = kwargs.copy() mykwargs['expands'] = [] expands = request.GET.getlist('expand', []) if 'badgeclass' in expands: mykwargs['expands'].append('badgeclass') if 'issuer' in expands: mykwargs['expands'].append('issuer') return super(BackpackAssertionList, self).get(request, **mykwargs) @apispec_post_operation('Assertion', summary="Upload a new Assertion to the backpack", tags=['Backpack'] ) def post(self, request, **kwargs): if kwargs.get('version', 'v1') == 'v1': try: return super(BackpackAssertionList, self).post(request, **kwargs) except serializers.ValidationError as e: self.log_not_created(e) raise e raise NotImplementedError("use BackpackImportBadge.post instead") def log_not_created(self, error): request = self.request user = request.user image_data = '' user_entity_id = '' error_name = '' error_result = '' if request.data.get('image', None) is not None: image_data = request.data.get('image', '')[:1024] if user is not None: user_entity_id = user.entity_id if len(error.detail) <= 1: #grab first error e = error.detail[0] error_name = e.get('name', '') error_result = e.get('result', '') invalid_badge_upload_report = badgrlog.InvalidBadgeUploadReport(image_data, user_entity_id, error_name, error_result) logger.event(badgrlog.InvalidBadgeUploaded(invalid_badge_upload_report)) def get_context_data(self, **kwargs): context = super(BackpackAssertionList, self).get_context_data(**kwargs) context['format'] = self.request.query_params.get('json_format', 'v1') # for /v1/earner/badges compat return context class BackpackAssertionDetail(BaseEntityDetailView): model = BadgeInstance v1_serializer_class = LocalBadgeInstanceUploadSerializerV1 v2_serializer_class = BackpackAssertionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, VerifiedEmailMatchesRecipientIdentifier, BadgrOAuthTokenHasScope) http_method_names = ('get', 'delete', 'put') valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'put': ['rw:backpack'], 'delete': ['rw:backpack'], } def get_context_data(self, **kwargs): context = super(BackpackAssertionDetail, self).get_context_data(**kwargs) context['format'] = self.request.query_params.get('json_format', 'v1') # for /v1/earner/badges compat return context @apispec_get_operation('BackpackAssertion', summary="Get detail on an Assertion in the user's Backpack", tags=['Backpack'] ) def get(self, request, **kwargs): mykwargs = kwargs.copy() mykwargs['expands'] = [] expands = request.GET.getlist('expand', []) if 'badgeclass' in expands: mykwargs['expands'].append('badgeclass') if 'issuer' in expands: mykwargs['expands'].append('issuer') return super(BackpackAssertionDetail, self).get(request, **mykwargs) @apispec_delete_operation('BackpackAssertion', summary='Remove an assertion from the backpack', tags=['Backpack'] ) def delete(self, request, **kwargs): obj = self.get_object(request, **kwargs) related_collections = list(BackpackCollection.objects.filter(backpackcollectionbadgeinstance__badgeinstance=obj)) if obj.source_url is None: obj.acceptance = BadgeInstance.ACCEPTANCE_REJECTED obj.save() else: obj.delete() for collection in related_collections: collection.save() request.user.save() return Response(status=status.HTTP_204_NO_CONTENT) @apispec_put_operation('BackpackAssertion', summary="Update acceptance of an Assertion in the user's Backpack", tags=['Backpack'] ) def put(self, request, **kwargs): fields_whitelist = ('acceptance',) data = {k: v for k, v in list(request.data.items()) if k in fields_whitelist} obj = self.get_object(request, **kwargs) if not self.has_object_permissions(request, obj): return Response(status=status.HTTP_404_NOT_FOUND) context = self.get_context_data(**kwargs) update_serializer = BackpackAssertionAcceptanceSerializerV2(obj, data, context=context) update_serializer.is_valid(raise_exception=True) update_serializer.save(updated_by=request.user) main_serializer_class = self.get_serializer_class() serializer = main_serializer_class(update_serializer.instance, context=context) return Response(serializer.data) class BackpackAssertionDetailImage(ImagePropertyDetailView, BadgrOAuthTokenHasScope): model = BadgeInstance prop = 'image' valid_scopes = ['r:backpack', 'rw:backpack'] class BackpackCollectionList(BaseEntityListView): model = BackpackCollection v1_serializer_class = CollectionSerializerV1 v2_serializer_class = BackpackCollectionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, AuditedModelOwner, BadgrOAuthTokenHasScope) valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], } def get_objects(self, request, **kwargs): return self.request.user.cached_backpackcollections() @apispec_get_operation('Collection', summary='Get a list of Collections', tags=['Backpack'] ) def get(self, request, **kwargs): return super(BackpackCollectionList, self).get(request, **kwargs) @apispec_post_operation('Collection', summary='Create a new Collection', tags=['Backpack'] ) def post(self, request, **kwargs): return super(BackpackCollectionList, self).post(request, **kwargs) class BackpackCollectionDetail(BaseEntityDetailView): model = BackpackCollection v1_serializer_class = CollectionSerializerV1 v2_serializer_class = BackpackCollectionSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, AuditedModelOwner, BadgrOAuthTokenHasScope) valid_scopes = { 'get': ['r:backpack', 'rw:backpack'], 'post': ['rw:backpack'], 'put': ['rw:backpack'], 'delete': ['rw:backpack'] } @apispec_get_operation('Collection', summary='Get a single Collection', tags=['Backpack'] ) def get(self, request, **kwargs): return super(BackpackCollectionDetail, self).get(request, **kwargs) @apispec_put_operation('Collection', summary='Update a Collection', tags=['Backpack'] ) def put(self, request, **kwargs): return super(BackpackCollectionDetail, self).put(request, **kwargs) @apispec_delete_operation('Collection', summary='Delete a collection', tags=['Backpack'] ) def delete(self, request, **kwargs): return super(BackpackCollectionDetail, self).delete(request, **kwargs) class BackpackImportBadge(BaseEntityListView): v2_serializer_class = BackpackImportSerializerV2 permission_classes = (AuthenticatedWithVerifiedIdentifier, BadgrOAuthTokenHasScope,) http_method_names = ('post',) valid_scopes = ['rw:backpack'] @apispec_operation( summary="Import a new Assertion to the backpack", tags=['Backpack'], parameters=[ { "in": "body", "name": "body", "required": True, "schema": { "type": "object", "properties": { "url": { "type": "string", "format": "url", "description": "URL to an OpenBadge compliant badge", 'required': False }, "image": { 'type': "string", 'format': "data:image/png;base64", 'description': "base64 encoded Baked OpenBadge image", 'required': False }, "assertion": { 'type': "json", 'description': "OpenBadge compliant json", 'required': False }, } }, } ] ) def post(self, request, **kwargs): context = self.get_context_data(**kwargs) serializer_class = self.get_serializer_class() serializer = serializer_class(data=request.data, context=context) serializer.is_valid(raise_exception=True) new_instance = serializer.save(created_by=request.user) self.log_create(new_instance) response_serializer = BackpackAssertionSerializerV2(new_instance, context=context) return Response(response_serializer.data, status=status.HTTP_201_CREATED) class ShareBackpackAssertion(BaseEntityDetailView): model = BadgeInstance permission_classes = (permissions.AllowAny,) # this is AllowAny to support tracking sharing links in emails http_method_names = ('get',) allow_any_unauthenticated_access = True def get(self, request, **kwargs): """ Share a single badge to a support share provider --- parameters: - name: provider description: The identifier of the provider to use. Supports 'facebook', 'linkedin' required: true type: string paramType: query """ redirect = _scrub_boolean(request.query_params.get('redirect', "1")) provider = request.query_params.get('provider') if not provider: return Response({'error': "unspecified share provider"}, status=status.HTTP_400_BAD_REQUEST) provider = provider.lower() source = request.query_params.get('source', 'unknown') badge = self.get_object(request, **kwargs) if not badge: return Response(status=status.HTTP_404_NOT_FOUND) include_identifier = _scrub_boolean(request.query_params.get('include_identifier', False)) share = BackpackBadgeShare(provider=provider, badgeinstance=badge, source=source) share_url = share.get_share_url(provider, include_identifier=include_identifier) if not share_url: return Response({'error': "invalid share provider"}, status=status.HTTP_400_BAD_REQUEST) share.save() logger.event(badgrlog.BadgeSharedEvent(badge, provider, datetime.datetime.now(), source)) if redirect: headers = {'Location': share_url} return Response(status=status.HTTP_302_FOUND, headers=headers) else: return Response({'url': share_url}) class ShareBackpackCollection(BaseEntityDetailView): model = BackpackCollection permission_classes = (permissions.AllowAny,) # this is AllowAny to support tracking sharing links in emails http_method_names = ('get',) def get(self, request, **kwargs): """ Share a collection to a supported share provider --- parameters: - name: provider description: The identifier of the provider to use. Supports 'facebook', 'linkedin' required: true type: string paramType: query """ redirect = _scrub_boolean(request.query_params.get('redirect', "1")) provider = request.query_params.get('provider') if not provider: return Response({'error': "unspecified share provider"}, status=status.HTTP_400_BAD_REQUEST) provider = provider.lower() source = request.query_params.get('source', 'unknown') collection = self.get_object(request, **kwargs) if not collection: return Response(status=status.HTTP_404_NOT_FOUND) share = BackpackCollectionShare(provider=provider, collection=collection, source=source) share_url = share.get_share_url(provider, title=collection.name, summary=collection.description) if not share_url: return Response({'error': "invalid share provider"}, status=status.HTTP_400_BAD_REQUEST) share.save() if redirect: headers = {'Location': share_url} return Response(status=status.HTTP_302_FOUND, headers=headers) else: return Response({'url': share_url})
reedu-reengineering-education/badgr-server
apps/backpack/api.py
api.py
py
16,711
python
en
code
2
github-code
6
[ { "api_name": "badgrlog.BadgrLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityListView", "line_number": 37, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 38, "usage_type": "name" }, { "api_name": "backpack.serializers_v1.LocalBadgeInstanceUploadSerializerV1", "line_number": 39, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackAssertionSerializerV2", "line_number": 40, "usage_type": "name" }, { "api_name": "badgrlog.BadgeUploaded", "line_number": 41, "usage_type": "attribute" }, { "api_name": "mainsite.permissions.AuthenticatedWithVerifiedIdentifier", "line_number": 42, "usage_type": "name" }, { "api_name": "issuer.permissions.VerifiedEmailMatchesRecipientIdentifier", "line_number": 42, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 42, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance.ACCEPTANCE_REJECTED", "line_number": 67, "usage_type": "attribute" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 67, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 68, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 68, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_list_operation", "line_number": 76, "usage_type": "call" }, { "api_name": "rest_framework.serializers.ValidationError", "line_number": 100, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 100, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_post_operation", "line_number": 92, "usage_type": "call" }, { "api_name": "badgrlog.InvalidBadgeUploadReport", "line_number": 125, "usage_type": "call" }, { "api_name": "badgrlog.InvalidBadgeUploaded", "line_number": 126, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityDetailView", "line_number": 134, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 135, "usage_type": "name" }, { "api_name": "backpack.serializers_v1.LocalBadgeInstanceUploadSerializerV1", "line_number": 136, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackAssertionSerializerV2", "line_number": 137, "usage_type": "name" }, { "api_name": "mainsite.permissions.AuthenticatedWithVerifiedIdentifier", "line_number": 138, "usage_type": "name" }, { "api_name": "issuer.permissions.VerifiedEmailMatchesRecipientIdentifier", "line_number": 138, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 138, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_get_operation", "line_number": 151, "usage_type": "call" }, { "api_name": "backpack.models.BackpackCollection.objects.filter", "line_number": 173, "usage_type": "call" }, { "api_name": "backpack.models.BackpackCollection.objects", "line_number": 173, "usage_type": "attribute" }, { "api_name": "backpack.models.BackpackCollection", "line_number": 173, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance.ACCEPTANCE_REJECTED", "line_number": 176, "usage_type": "attribute" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 176, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 185, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_204_NO_CONTENT", "line_number": 185, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 185, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_delete_operation", "line_number": 167, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 197, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 197, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 197, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackAssertionAcceptanceSerializerV2", "line_number": 201, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 208, "usage_type": "call" }, { "api_name": "apispec_drf.decorators.apispec_put_operation", "line_number": 187, "usage_type": "call" }, { "api_name": "issuer.public_api.ImagePropertyDetailView", "line_number": 211, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 211, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 212, "usage_type": "name" }, { "api_name": "entity.api.BaseEntityListView", "line_number": 217, "usage_type": "name" }, { "api_name": "backpack.models.BackpackCollection", "line_number": 218, "usage_type": "name" }, { "api_name": "backpack.serializers_v1.CollectionSerializerV1", "line_number": 219, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackCollectionSerializerV2", "line_number": 220, "usage_type": "name" }, { "api_name": "mainsite.permissions.AuthenticatedWithVerifiedIdentifier", "line_number": 221, "usage_type": "name" }, { "api_name": "issuer.permissions.AuditedModelOwner", "line_number": 221, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 221, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_get_operation", "line_number": 230, "usage_type": "call" }, { "api_name": "apispec_drf.decorators.apispec_post_operation", "line_number": 237, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityDetailView", "line_number": 245, "usage_type": "name" }, { "api_name": "backpack.models.BackpackCollection", "line_number": 246, "usage_type": "name" }, { "api_name": "backpack.serializers_v1.CollectionSerializerV1", "line_number": 247, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackCollectionSerializerV2", "line_number": 248, "usage_type": "name" }, { "api_name": "mainsite.permissions.AuthenticatedWithVerifiedIdentifier", "line_number": 249, "usage_type": "name" }, { "api_name": "issuer.permissions.AuditedModelOwner", "line_number": 249, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 249, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_get_operation", "line_number": 257, "usage_type": "call" }, { "api_name": "apispec_drf.decorators.apispec_put_operation", "line_number": 264, "usage_type": "call" }, { "api_name": "apispec_drf.decorators.apispec_delete_operation", "line_number": 271, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityListView", "line_number": 279, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackImportSerializerV2", "line_number": 280, "usage_type": "name" }, { "api_name": "mainsite.permissions.AuthenticatedWithVerifiedIdentifier", "line_number": 281, "usage_type": "name" }, { "api_name": "issuer.permissions.BadgrOAuthTokenHasScope", "line_number": 281, "usage_type": "name" }, { "api_name": "backpack.serializers_v2.BackpackAssertionSerializerV2", "line_number": 326, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 327, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 327, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 327, "usage_type": "name" }, { "api_name": "apispec_drf.decorators.apispec_operation", "line_number": 285, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityDetailView", "line_number": 330, "usage_type": "name" }, { "api_name": "issuer.models.BadgeInstance", "line_number": 331, "usage_type": "name" }, { "api_name": "rest_framework.permissions.AllowAny", "line_number": 332, "usage_type": "attribute" }, { "api_name": "rest_framework.permissions", "line_number": 332, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 351, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 351, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 351, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 358, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 358, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 358, "usage_type": "name" }, { "api_name": "backpack.models.BackpackBadgeShare", "line_number": 362, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 365, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 365, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 365, "usage_type": "name" }, { "api_name": "badgrlog.BadgeSharedEvent", "line_number": 368, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 368, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 368, "usage_type": "attribute" }, { "api_name": "rest_framework.response.Response", "line_number": 372, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_302_FOUND", "line_number": 372, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 372, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 374, "usage_type": "call" }, { "api_name": "entity.api.BaseEntityDetailView", "line_number": 377, "usage_type": "name" }, { "api_name": "backpack.models.BackpackCollection", "line_number": 378, "usage_type": "name" }, { "api_name": "rest_framework.permissions.AllowAny", "line_number": 379, "usage_type": "attribute" }, { "api_name": "rest_framework.permissions", "line_number": 379, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 397, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 397, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 397, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 404, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 404, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 404, "usage_type": "name" }, { "api_name": "backpack.models.BackpackCollectionShare", "line_number": 406, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 409, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 409, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 409, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 415, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_302_FOUND", "line_number": 415, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 415, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 417, "usage_type": "call" } ]
22195221109
from __future__ import print_function from __future__ import division from __future__ import absolute_import import numpy as np from btk import btk import os import matplotlib import matplotlib.pyplot as plt from tkinter import * from tkinter.messagebox import * from tkinter import ttk # Label = strike / off ; context = droite / gauche def filtreExtremum(extrem, originalData): if 0 in extrem: extrem = extrem[1:] if len(originalData)-1 in extrem: extrem = extrem[:-1] return extrem # But : trouvé tous les maximum locaux # In : un vecteur de taille nx1 # Out : les positions x des max locaux (pas leur valeur y) def maxLocal(a): TFarray = np.array(np.r_[True, a[1:] > a[:-1]] & np.r_[a[:-1] > a[1:], True]) # Rempli un vecteur avec que des False, sauf lorsqu'une donnée dans le vecteur est plus grande que son voisin de droite et de gauche (il met alors True) indMax = np.ravel( np.where( TFarray == True ) ) # On récupère les index où il y a les True indMax = filtreExtremum(indMax, a) return indMax # Fonctions en cours, pas encore effective def semiMaxLocal(a): TFarray = np.array(np.r_[True, a[1:] > a[:-1]] & np.r_[a[:-1] == a[1:], True]) indSemiMax = np.where( TFarray == True ) return indSemiMax def findMinMin(data, Min): minMin = minLocal(data[Min]) return Min[minMin] # Pareil que maxLocal, mais pour trouver les minimum locaux def minLocal(a): TFarray = np.array(np.r_[True, a[1:] < a[:-1]] & np.r_[a[:-1] < a[1:], True]) indMin = np.ravel( np.where( TFarray == True ) ) indMin = filtreExtremum(indMin, a) return indMin #clean the arrays of all local extremum that are too close of eachother (extremums super local) def cleanMinMax(indMin, indMax): for i in indMax: for j in np.flip(indMin,0): if(np.abs(i-j)<7): indMax = np.extract(indMax!=i,indMax) indMin = np.extract(indMin!=j,indMin) break return indMin, indMax # Dico avec comme clé les labels, et comme valeur un entier # e.g. : DicoLabels = {"LSHO" = 0, "RSHO" = 1, "RANK" = 2, ...} # Fonction jamais utilisé pour l'instant def dicLab(metadata): point_labels = metadata.FindChild("POINT").value().FindChild("LABELS").value().GetInfo().ToString() dicoLabels = {} index = 0 for lab in point_labels: dicoLabels[lab] = index index += 1 return dicoLabels # Plot les events dans la figure "ax", lignes verticales # In : acq, qui contient les events ; ax, où on va ploter les lignes verticales # Out : la nouvelle figure, où on a ploté les lignes def plotEvent(acq, ax): n_events = acq.GetEventNumber() # On récupère le nombre d'évènements, pour les parcourirs for numevent in range(n_events): # On parcours les indices des évènements event = acq.GetEvent(numevent) # On récupère un évènement, grâce à son indice correspondant event_frame = event.GetFrame() # On récupère la frame où se situe l'évènement context = event.GetContext() # On récupère le context (e.g. Left ou Right) label = event.GetLabel() # On récupère le label (e.g. : Foot_Strike_GS) if context == 'Left': # Test si c'est le pied gauche if label == 'Foot_Strike_GS': # Test si c'est quand le pied touche le sol leftLineStrike = ax.axvline(x = event_frame, color='r', label='Left - Strike', linestyle='--') # Plot en rouge, avec des tirets # ax.legend([leftLineStrike], 'Left - Strike') elif label == 'Foot_Off_GS': # Test si c'est quand le pied ne touche plus le sol leftLineOff = ax.axvline(x = event_frame, color='r', label='Left - Off', linestyle='-.') # Plot en rouge, avec des tirets et des points if context == 'Right': # Test si c'est le pied droit if label == 'Foot_Strike_GS': # Test si c'est quand le pied touche le sol rightLineStrike = ax.axvline(x = event_frame, color='g', label='Righ - Strike', linestyle='--') # Plot en vert, avec des tirets elif label == 'Foot_Off_GS': # Test si c'est quand le pied ne touche plus le sol rightLineOff = ax.axvline(x = event_frame, color='g', label='Right - Off', linestyle='-.') # Plot en rouge, avec des tirets et des points # On rajoute la légende # S'IL Y A UNE ERREUR, ENLEVER CETTE LIGNE # ax.legend((leftLineOff, rightLineStrike, rightLineOff), ('Left - Off', 'Right - Strike', 'Right - Off')) return ax # Selectionne les éléments de files ayant un event correspondant au label et au contexte # Renvoie en training set (3/4) et un testing set (1/4) constitués de ces éléments. def selectWithExistingEvent(files, lab, cont): eventfiles = [] for acq in files: n_events = acq.GetEventNumber() # On récupère le nombre d'évènements, pour les parcourirs for numevent in range(n_events): # On parcours les indices des évènements event = acq.GetEvent(numevent) # On récupère un évènement, grâce à son indice correspondant if event.GetLabel() == lab and event.GetContext()==cont: # Test si c'est le label recherché eventfiles.append(acq) break test = np.random.choice(eventfiles, (len(eventfiles)//4), replace = False).tolist() train = list(set(eventfiles)-set(test)) return train, test # But : Récupérer les données # In : path des données (Attention : le chemin commence de là où est le fichier) # Out : les données def initial(pathFile): reader = btk.btkAcquisitionFileReader() reader.SetFilename(pathFile) reader.Update() acq = reader.GetOutput() return acq def save(acq, pathFile): writer = btk.btkAcquisitionFileWriter() writer.SetInput(acq) writer.SetFilename(pathFile) writer.Update() def allFiles(path): files = [] # Pour trouver tous les fichiers .c3d for r, d, f in os.walk(path): for file in f: if '.c3d' in file: files.append(initial(os.path.join(r, file))) return files # But : avoir des infos à propos des frames de "acq" # In : les données acq # Out : nombres de frames, numéro de la 1ère frame, numéro de la dernière frame def frameData(acq): # get some parameters n_frames = acq.GetPointFrameNumber() # give the number of frames first_frame = acq.GetFirstFrame() last_frame = acq.GetLastFrame() return n_frames, first_frame, last_frame # But : créer un nouvel évènement # Un nouvel évènement est caractérisé par un label, un context, et un numéro de frame # In : les données "acq", un label, un context, et une frame def addEvent(acq, label, context, frameNumber): newEvent = btk.btkEvent() # Créer un nouvel évènement vide newEvent.SetLabel(label) # Met un label newEvent.SetContext(context) # Met un context newEvent.SetFrame(frameNumber) # Met la positoin, la frame acq.AppendEvent(newEvent) # Rajoute l'évènement parmi tous les autres évènements # But : équivalent à print('obj = ', obj) # Pas nécessaire pour le projet def printName(obj, namespace): nom = [name for name in namespace if namespace[name] is obj] print(nom[0],' = ', obj) # But : Avoir toutes les infos d'un évènements # In : les données "acq", et le numéro de l'évènement # Out : l'évènement, le label, le context, et le num de la frame def eventInfo(acq, numEvent): event = acq.GetEvent(0) # extract the first event of the aquisition label = event.GetLabel() # return a string representing the Label context = event.GetContext() # return a string representing the Context frame = event.GetFrame() # return the frame as an integer return event, label, context, frame # But : trouver l'évènement le plus proche d'une position, frame donnée # In : des données "data", l'ensemble des évènements (AllEvents), le label et le context recherché , et la position depuis laquel on recherche # Out : l'évènement, et la frame cprrespondante def closestEvent(data, AllEvents, label=0, context=0, start=1): if (label == 0) and (context == 0): return AllEvents.GetItem(0), AllEvents.GetItem(0).GetFrame() eventVIP = [] # Array qui contiendra tous les évènements correspondant au même label et même contexte que demandé numberEvent = AllEvents.GetItemNumber() # Nombre d'évènements au total for num in range(numberEvent): # On regarde tout les évènement event = AllEvents.GetItem(num) # On récupère un évènement if (event.GetContext() == context) and (event.GetLabel() == label): # Test si on a les mêmes context et label eventVIP.append(event) # On rajoute l'évènement if len(eventVIP) == 0: # Si on a trouvé aucun évènement recherché, on arrête return 0, 0 dist = 1000 # On initialise une distance très grande, qui diminuera even = eventVIP[0] # On commence par le premier évènement for event in eventVIP: # On parcours les évènements if np.abs(event.GetFrame() - start) < dist: # On test si la distance entre la position de départ et un évènement correspondant dist = np.abs(event.GetFrame() - start) # On mémorise la nouvel distance even = event # On mémorise le nouvel évènement return even, even.GetFrame() # But : trouver l'extremum le plus proche d'une position de départ # In : position de départ "start", les indices (position x) d'extremum (les min ou les max) # Out : position x de l'extremum, la distance par rapport au point de départ (start), et l'indice dans l'array des min ou max def closestExtrem(start, indExtrem): # Renvoie la position de l'extrem par rapport à la frame Start AllDistance = indExtrem - start # Soustraction d'un vecteur par un scalaire, ici les positions des indices moins la position de départ (start) absDist = np.abs(AllDistance) # On met en valeur absolue indexMinimDist = np.argmin(absDist) # On récupère l'indice de la distance minimale positionExtrem = indExtrem[indexMinimDist] # On récupère la position x de l'extremum distance = AllDistance[indexMinimDist] # On récupère la distance (sans la valeur absolue) return positionExtrem, distance, indexMinimDist def plotPosi(acq, position, axe, ax, event=0): dicoAxe = {"x" : 0, "y" : 1, "z" : 2} data = np.array(acq.GetPoint(position).GetValues()[:, dicoAxe[axe]]) n_frames, first_frame, last_frame = frameData(acq) Min, Max = minLocal(data), maxLocal(data) Min, Max = cleanMinMax(Min, Max) #used to clean some local extremums # Plot part ax.plot(np.array(range(first_frame, last_frame + 1)), data, 'k') ax.plot(Min, data[Min], 'o b') ax.plot(Max, data[Max], 'o', color='purple') ax = plotEvent(acq, ax) if (event != 0): print('Position de depart :', event.GetFrame()) positionExtrem, distance, indexMinimDist = closestExtrem(event.GetFrame(), Max) ax.plot(positionExtrem, data[positionExtrem], 'o g') print('Position :', positionExtrem) plt.title(" Position = {} - axis = {}".format(position, axe)) # ax.show(block = False) return ax def simple(files, posiCombo, axeCombo , buttonCombo, fileCombo): posiCombo['values'] = ['LFHD', 'RFHD', 'LBHD', 'RBHD', 'C7', 'T10', 'STRN', 'CLAV', 'RBAK', 'LSHO', 'LELB', 'LWRA', 'LWRB', 'RSHO', 'RELB', 'RWRA', 'RWRB', 'LASI', 'RASI', 'LPSI', 'RPSI', 'LTHI', 'RTHI', 'LKNE', 'RKNE', 'LTIB', 'RTIB', 'LANK', 'RANK', 'LHEE', 'RHEE', 'RTOE', 'LTOE'] posiCombo.current(0) buttonCombo["text"] = "PLOT" buttonCombo["command"] = lambda: onePlot(files, posiCombo, axeCombo, fileCombo ) def double(files, posiCombo, axeCombo , buttonCombo, fileCombo): posiCombo['values'] = ["FHD", "BHD", "SHO", "ELB", "WRA", "WRB", "ASI", "PSI", "THI", "KNE", "TIB", "ANK", "HEE", "TOE"] posiCombo.current(0) buttonCombo["text"] = "PLOT x2" buttonCombo["command"] = lambda: twoPlot(files, posiCombo, axeCombo, fileCombo ) def onePlot (files, posiCombo, axeCombo, fileCombo ): acq = files[int(fileCombo.get())] # voir le chapitre sur les événements n_frames, first_frame, last_frame = frameData(acq) plt.figure(figsize=(9,7)) guiPlot = plt.subplot() guiPlot = plotPosi(acq, posiCombo.get(), axeCombo.get(), guiPlot) plt.show(block=False) def twoPlot(files, posiCombo, axeCombo, fileCombo ): # voir le chapitre sur les événements acq = files[int(fileCombo.get())] n_frames, first_frame, last_frame = frameData(acq) dr = 'R' + posiCombo.get() ga = 'L' + posiCombo.get() plt.figure(figsize=(9,7)) guiPlot = plt.subplot(2,1,1) guiPlot = plotPosi(acq, dr, axeCombo.get(), guiPlot) guiPlot = plt.subplot(2,1,2) guiPlot = plotPosi(acq, ga, axeCombo.get(), guiPlot) plt.show(block=False) def GUIplot(files): acq = files[0] metadata = acq.GetMetaData() point_labels = list(metadata.FindChild("POINT").value().FindChild("LABELS").value().GetInfo().ToString()) win = Tk() win.title("BTK Project") # win.geometry("500x100") ttk.Label(win, text="Choix du capteur").grid(column=1, row=0) posiCombo = ttk.Combobox(win, values=point_labels) posiCombo.grid(column=1, row=1) ttk.Label(win, text="Choix de l'axe").grid(column=2, row=0) axeCombo = ttk.Combobox(win, values=["x", "y", "z"]) axeCombo.grid(column=2, row=1) ttk.Label(win, text="Choix du fichier").grid(column=0, row=0) fileCombo = ttk.Combobox(win, values=list(range(len(files)))) fileCombo.grid(column=0, row=1) posiCombo.current(newindex=28) axeCombo.current(2) fileCombo.current(0) buttonCombo = Button (win, text="PLOT", command= lambda: onePlot(files, posiCombo, axeCombo, fileCombo )) buttonCombo.grid(column=3, row=1) v = IntVar() # v.set(1) R1 = Radiobutton(win, text="Plot unique", variable=v, value=1, command= lambda: simple(files, posiCombo, axeCombo , buttonCombo, fileCombo)) R1.grid(column=0, row=2) R2 = Radiobutton(win, text="Double Plot", variable=v, value=2, command= lambda: double(files, posiCombo, axeCombo , buttonCombo, fileCombo)) R2.grid(column=1, row=2) v.set(1) win.mainloop()
staufga0/DM_Project
Source/file.py
file.py
py
14,754
python
fr
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.r_", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.ravel", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.r_", "line_number": 36, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.r_", "line_number": 46, "usage_type": "attribute" }, { "api_name": "numpy.ravel", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.flip", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.extract", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.extract", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 118, "usage_type": "attribute" }, { "api_name": "btk.btk.btkAcquisitionFileReader", "line_number": 126, "usage_type": "call" }, { "api_name": "btk.btk", "line_number": 126, "usage_type": "name" }, { "api_name": "btk.btk.btkAcquisitionFileWriter", "line_number": 133, "usage_type": "call" }, { "api_name": "btk.btk", "line_number": 133, "usage_type": "name" }, { "api_name": "os.walk", "line_number": 143, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 146, "usage_type": "call" }, { "api_name": "os.path", "line_number": 146, "usage_type": "attribute" }, { "api_name": "btk.btk.btkEvent", "line_number": 164, "usage_type": "call" }, { "api_name": "btk.btk", "line_number": 164, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 207, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 217, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 218, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 231, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 241, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 241, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 260, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 260, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 261, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 261, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 263, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 263, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 270, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 270, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 271, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 271, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 273, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 273, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 275, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 275, "usage_type": "name" }, { "api_name": "tkinter.ttk.Label", "line_number": 287, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 287, "usage_type": "name" }, { "api_name": "tkinter.ttk.Combobox", "line_number": 288, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 288, "usage_type": "name" }, { "api_name": "tkinter.ttk.Label", "line_number": 290, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 290, "usage_type": "name" }, { "api_name": "tkinter.ttk.Combobox", "line_number": 291, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 291, "usage_type": "name" }, { "api_name": "tkinter.ttk.Label", "line_number": 293, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 293, "usage_type": "name" }, { "api_name": "tkinter.ttk.Combobox", "line_number": 294, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 294, "usage_type": "name" } ]
21095535591
import torch import torch.nn as nn import numpy as np from torch.nn.functional import upsample, interpolate from Spa_downs import * import torch.nn.functional as F from torch.autograd import Variable import argparse from torch.nn import init import scipy.io as sio import os import random class ReshapeTo2D(nn.Module): def __init__(self): super(ReshapeTo2D, self).__init__() def forward(self,x): return torch.reshape(x, (x.shape[0], x.shape[1], x.shape[2]*x.shape[3])) class ReshapeTo3D(nn.Module): def __init__(self): super(ReshapeTo3D, self).__init__() def forward(self,x): return torch.reshape(x, (x.shape[0], x.shape[1], int(np.sqrt(x.shape[2])), int(np.sqrt(x.shape[2])))) class TransDimen(nn.Module): def __init__(self): super(TransDimen, self).__init__() def forward(self,x): return torch.Tensor.permute(x,[0,2,1]) def channel_crop(data, position, length): assert data.size(1) >= position + length, 'the cropped channel out of size.' return data[:, position: position + length, :, :] def ins (list_, data, index): list_start = list_[:index] list_start = [ Variable(i, requires_grad=False).type(torch.cuda.FloatTensor) for i in list_start] data = [Variable(data, requires_grad=False).type(torch.cuda.FloatTensor)] list_end = list_[index:] list_end = [ Variable(i, requires_grad=False).type(torch.cuda.FloatTensor) for i in list_end] return list_start + data + list_end def to_gpu(data): return Variable(data, requires_grad=False).type(torch.cuda.FloatTensor) class L_Dspec(nn.Module): def __init__(self,in_channel,out_channel,P_init): super(L_Dspec, self).__init__() self.in_channle = in_channel self.out_channel = out_channel self.P = nn.Parameter(P_init) def forward(self,input): S = input.shape out = torch.reshape(input,[S[0],S[1],S[2]*S[3]]) out = torch.matmul(self.P,out) return torch.reshape(out,[S[0],self.out_channel,S[2],S[3]]) def add_wgn(x, snr): P_signal=torch.sum(x.abs()**2) P_noise = P_signal/10**(snr/10.0) sigma = torch.sqrt(P_noise/x.numel()) noise = torch.randn(x.shape).type(torch.cuda.FloatTensor) return x + sigma * noise def tensor_copy(x): return x.clone() def parse_arg(): parser = argparse.ArgumentParser() parser.add_argument('--model' , default='MSDANet', help='MSDANet') parser.add_argument('--fusion' , default='Concate', help='Concate') parser.add_argument('--lr' , default=1e-4, type=float, help='learning rate for optimizer') parser.add_argument('--batch_size', default=16, type=int, help='batch size for training') parser.add_argument('--factor' , default=8, type=int, help='scale factor. 4/8/16') parser.add_argument('--dataset' , default='Houston', help='Houston/PaviaU/dc/PaviaC') parser.add_argument('--patch_size', default=64, type=int, help='patch size of training') parser.add_argument('--stride' , default=32, type=int, help='stride of training') parser.add_argument('--pan' , action='store_true', help='pan_sharpening or MSI + HSI') parser.add_argument('--mem_load' , action='store_true', help='load the all dataset into memory or disk') parser.add_argument('--phase' , default='train', help='train/test') parser.add_argument('--noise' , action='store_true', help='wheater to add noise to LR_HSI and HR_MSI') return parser.parse_args() def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Conv2d') != -1: init.kaiming_normal(m.weight.data) def split(full_list,shuffle=False,ratio=0.2): n_total = len(full_list) offset = int(n_total * ratio) if n_total==0 or offset<1: return [],full_list random.seed(4) if shuffle: random.shuffle(full_list) sublist_1 = full_list[:offset] sublist_2 = full_list[offset:] return sublist_1,sublist_2 def all_data_in(Path='Data/Houston/', datasets='Houston', Train_image_num=10): names = get_img_name(Path=Path, datasets=datasets) allData = [] for i in range(Train_image_num): Data = sio.loadmat(os.path.join(Path, names[i])+'.mat') HSI = Data['hsi'] HSI = HSI.transpose((2, 0, 1)) allData.append(HSI) return allData dataset_dict = dict( PaviaC = [10, 5, 300, 8000, 102, 1, (55, 41, 12)], ### [train_img_num, val_img_num, stop epoch, max_value, band_number, RGB] PaviaU = [10, 5, 300, 8000, 103, 1, (46, 27, 10)], Houston = [3, 2, 300, 65535, 144, 1, (65, 51, 22)], dc = [11, 5, 300, 65535, 191, 4, (51, 35, 21)], ) def get_img_name(Path='Data/Houston/', datasets='Houston'): names_PaviaC_list = [ 'PaviaC_01', 'PaviaC_02', 'PaviaC_03', 'PaviaC_04', 'PaviaC_05', 'PaviaC_06', 'PaviaC_07', 'PaviaC_08', 'PaviaC_09', 'PaviaC_10', 'PaviaC_11', 'PaviaC_12', 'PaviaC_13', 'PaviaC_14', 'PaviaC_15' ] names_Houston_list = [ 'Houston_01', 'Houston_02', 'Houston_03', 'Houston_04', 'Houston_05' ] names_dc_list = [ 'dc_01', 'dc_02', 'dc_03', 'dc_04', 'dc_05', 'dc_06', 'dc_07', 'dc_08', 'dc_09', 'dc_10', 'dc_11', 'dc_12', 'dc_13', 'dc_14', 'dc_15', 'dc_16', ] names_PaviaU_list = [ 'PaviaU_01', 'PaviaU_02', 'PaviaU_03', 'PaviaU_04', 'PaviaU_05', 'PaviaU_06', 'PaviaU_07', 'PaviaU_08', 'PaviaU_09', 'PaviaU_10', 'PaviaU_11', 'PaviaU_12', 'PaviaU_13', 'PaviaU_14', 'PaviaU_15' ] names_Houston, names_Houston_valid = split(names_Houston_list, shuffle=True, ratio=0.6) names_dc, names_dc_valid = split(names_dc_list, shuffle=True, ratio=0.7) names_PaviaU, names_PaviaU_valid = split(names_PaviaU_list, shuffle=True, ratio=0.67) names_PaviaC, names_PaviaC_valid = split(names_PaviaC_list, shuffle=True, ratio=0.67) if datasets == 'PaviaC': names = names_PaviaC elif datasets == 'PaviaC_val': names = names_PaviaC_valid elif datasets == 'PaviaU': names = names_PaviaU elif datasets == 'PaviaU_val': names = names_PaviaU_valid elif datasets == 'Houston': names = names_Houston elif datasets == 'Houston_val': names = names_Houston_valid elif datasets == 'dc': names = names_dc elif datasets == 'dc_val': names = names_dc_valid else: assert 'wrong dataset name' return names
pyguan88/MDA-Net
function.py
function.py
py
6,689
python
en
code
8
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 15, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 15, "usage_type": "name" }, { "api_name": "torch.reshape", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 23, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.reshape", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 30, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.Tensor.permute", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 35, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 43, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 44, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 46, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 51, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 54, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.nn.Parameter", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 59, "usage_type": "name" }, { "api_name": "torch.reshape", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.matmul", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.reshape", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.sqrt", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.randn", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 72, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.nn.init.kaiming_normal", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 100, "usage_type": "name" }, { "api_name": "random.seed", "line_number": 107, "usage_type": "call" }, { "api_name": "random.shuffle", "line_number": 109, "usage_type": "call" }, { "api_name": "scipy.io.loadmat", "line_number": 121, "usage_type": "call" }, { "api_name": "scipy.io", "line_number": 121, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 121, "usage_type": "call" }, { "api_name": "os.path", "line_number": 121, "usage_type": "attribute" } ]
18834111771
# -*- coding: utf-8 -*- # Author:sen # Date:9090/3/94 10:48 from typing import List from heapq import * class Solution: def majorityElement(self, nums: List[int]) -> int: from collections import Counter counter = Counter(nums) for item in counter.items(): # item: (元素, 数量) if item[1] > (len(nums) / 2.0): return item[0] class Solution2: def majorityElement(self, nums: List[int]) -> int: # 不使用自带Counter counter = {} for num in nums: counter[num] = counter.get(num, 0) + 1 for item in counter.items(): if item[1] > (len(nums) / 2.0): return item[0] if __name__ == '__main__': nums = [9,9,8,8,8,9,9] so = Solution() print(so.majorityElement(nums)) so = Solution2() print(so.majorityElement(nums))
PandoraLS/CodingInterview
ProgrammingOJ/LeetCode_python/169_多数元素.py
169_多数元素.py
py
892
python
en
code
2
github-code
6
[ { "api_name": "typing.List", "line_number": 8, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 10, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 16, "usage_type": "name" }, { "api_name": "{'Counter': 'collections.Counter'}", "line_number": 27, "usage_type": "call" } ]
39201428004
import cv2 import time import os import HandTrackingModule as htm from dronekit import connect, VehicleMode, LocationGlobalRelative, APIException import time import socket import math import argparse from pymavlink import mavutil from time import sleep import numpy as np ################################################################################### def connectMyCopter(): parser=argparse.ArgumentParser(description='commands') parser.add_argument('--connect', default='127.0.0.1:14550') args=parser.parse_args() connection_string=args.connect baud_rate=921600 vehicle=connect(connection_string, baud=baud_rate, wait_ready=True) return vehicle ################################################################################### # Function to arm and takeoff def arm_and_takeoff(TargetAltitude): # Switch vehicle to Guided Mode vehicle.mode = VehicleMode("GUIDED") while vehicle.mode!="GUIDED": print("Waiting for guided mode") time.sleep(1) # Arming the Vehicle vehicle.armed = True while vehicle.armed == False: print("Waiting for the vehicle to be armed") time.sleep(1) vehicle.simple_takeoff(TargetAltitude) while True: print("Current Altitude: %d" , vehicle.location.global_relative_frame.alt) if vehicle.location.global_relative_frame.alt >= TargetAltitude*.95: break time.sleep(1) print("Target Altitude reached") return None ################################################################## #-- Define the function for sending mavlink velocity command in body frame def set_velocity_body(vehicle, vx, vy, vz): """ Remember: vz is positive downward!!! http://ardupilot.org/dev/docs/copter-commands-in-guided-mode.html Bitmask to indicate which dimensions should be ignored by the vehicle (a value of 0b0000000000000000 or 0b0000001000000000 indicates that none of the setpoint dimensions should be ignored). Mapping: bit 1: x, bit 2: y, bit 3: z, bit 4: vx, bit 5: vy, bit 6: vz, bit 7: ax, bit 8: ay, bit 9: """ msg = vehicle.message_factory.set_position_target_local_ned_encode( 0, 0, 0, mavutil.mavlink.MAV_FRAME_BODY_NED, 0b0000111111000111, #-- BITMASK -> Consider only the velocities 0, 0, 0, #-- POSITION vx, vy, vz, #-- VELOCITY 0, 0, 0, #-- ACCELERATIONS 0, 0) vehicle.send_mavlink(msg) vehicle.flush() ################################################################### vehicle = connectMyCopter() wCam, hCam = 640, 480 deadZone = 100 pTime = 0 cap = cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam) detector = htm.handDetector(detectionCon=0.8, maxHands=1) x = [300, 245, 200, 170, 145, 130, 112, 103, 93, 87, 80, 75, 70, 67, 62, 59, 57] y = [20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] coff = np.polyfit(x, y, 2) # y = AX^2 + BX + C c = [] i = 0 tipIds = [4, 8, 12, 16, 20] while True: success, img = cap.read() img = detector.findHands(img) lmList = detector.findPosition(img, draw=False) #print(lmList) if len(lmList) !=0: fingers = [] # Thumb . Here the x value of thumb tip is compared with the x value of mid thumb if lmList[tipIds[0]][1] > lmList[tipIds[0] - 1][1]: fingers.append(1) else: fingers.append(0) # Other Fingers for id in range(1,5): if lmList[tipIds[id]][2] < lmList[tipIds[id]-2][2]: fingers.append(1) else: fingers.append(0) #print(sum(fingers)) x1, y1 = lmList[5][1], lmList[5][2] x2, y2 = lmList[17][1], lmList[17][2] cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 ty = lmList[4][2] #print(cx, cy) cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED) #length = int(math.hypot(x2 - x1, y2 - y1)) #A, B, C = coff #distanceCM = A*length**2 + B*length + C #print(distanceCM) if sum(fingers) == 0: print(" Arm and Takeoff ") arm_and_takeoff(2) if sum(fingers) == 5: if ((cx < int(wCam/2) + deadZone) and (cx > int(wCam/2) - deadZone)): print("Hold Position") set_velocity_body(vehicle, 0, 0, 0) if (cx < int(wCam/2) - deadZone): print("Moving Right") set_velocity_body(vehicle, 0, 0.5, 0) if (cx > int(wCam/2) + deadZone): print("Moving Left") set_velocity_body(vehicle, 0, -0.5, 0) if sum(fingers) == 1: if ((ty < int(hCam/2) + deadZone) and (ty > int(hCam/2) - deadZone)): print("Hold Position") set_velocity_body(vehicle, 0, 0, 0) if (ty < int(hCam/2) - deadZone): print("Moving Up") set_velocity_body(vehicle, 0, 0, -1) if (ty > int(hCam/2) + deadZone): print("Moving Down") set_velocity_body(vehicle, 0, 0, 1) #if sum(fingers) == 5: # c.append(cx) # if len(c)!=0: # for i in range(len(c)): # difference = c[i]-c[i-1] #print(difference) # if difference > 0: # print("Moving Left") # set_velocity_body(vehicle, 0, -3, 0) # elif difference < 0: # print("Moving Right") # set_velocity_body(vehicle, 0, 3, 0) # elif difference == 0: # print("Hold Position") # set_velocity_body(vehicle, 0, 0, 0) # #print(" Moving Right ") #set_velocity_body(vehicle, distanceCM*0.05, 0, 0) cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (40, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 3) cv2.imshow("Image", img) cv2.waitKey(1)
2ashishmohan/Hand-Gesture-Controlled-Quadcopter-UAV
HandTrackingDemo.py
HandTrackingDemo.py
py
6,355
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 17, "usage_type": "call" }, { "api_name": "dronekit.connect", "line_number": 24, "usage_type": "call" }, { "api_name": "dronekit.VehicleMode", "line_number": 33, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 36, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 42, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 50, "usage_type": "call" }, { "api_name": "pymavlink.mavutil.mavlink", "line_number": 73, "usage_type": "attribute" }, { "api_name": "pymavlink.mavutil", "line_number": 73, "usage_type": "name" }, { "api_name": "cv2.VideoCapture", "line_number": 87, "usage_type": "call" }, { "api_name": "HandTrackingModule.handDetector", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.polyfit", "line_number": 93, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 126, "usage_type": "call" }, { "api_name": "cv2.FILLED", "line_number": 126, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 190, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 193, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX", "line_number": 193, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 194, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 195, "usage_type": "call" } ]
22248410521
""" Very simple HTTP server in python for logging requests Usage:: ./server.py [<port>] """ from http.server import BaseHTTPRequestHandler, HTTPServer from urllib import parse import os import logging class S(BaseHTTPRequestHandler): def _set_response(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_POST(self): content_length = int(self.headers['Content-Length']) # <--- Gets the size of data post_data = self.rfile.read(content_length) # <--- Gets the data itself # logging.info("POST request,\nPath: %s\nHeaders:\n%s\n\nBody:\n%s\n", # str(self.path), str(self.headers), post_data.decode('utf-8')) standard = post_data.decode("utf-8") dump = parse.parse_qs(standard) if "type" in dump.keys(): if dump["type"][0] == "vote": writeVoteToFile(dump["titleID"][0]) if dump["type"][0] == "chat": writeChatToFile(dump) self._set_response() def run(server_class=HTTPServer, handler_class=S, port=3000): # logging.basicConfig(level=logging.INFO) server_address = ('', port) httpd = server_class(server_address, handler_class) # logging.info('Starting httpd...\n') try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() # logging.info('Stopping httpd...\n') # Safety operations def doesIDExist(titleID): with open("/resources/text/titleinfo.txt", "r") as f: for line in f: if line[8:16] == titleID[8:16]: return True return False # Saving operations def writeVoteToFile(titleID): if doesIDExist(titleID): with open("/resources/text/vote.txt", "a") as f: f.write(titleID + "\r") os.system("echo \"$(tail -n 200 /resources/text/vote.txt)\" > /resources/text/vote.txt") else: print("Could not write vote for: " + titleID) def writeChatToFile(details): with open("/resources/text/msg.txt", "a") as f: f.write(details["author"][0] + ";;" + details["time"][0] + ";;" + details["message"][0] +"\r") os.system("echo \"$(tail -n 200 /resources/text/msg.txt)\" > /resources/text/msg.txt") # Main function if __name__ == '__main__': from sys import argv if len(argv) == 2: run(port=int(argv[1])) else: run()
jacquesCedric/newWWP-server
listener/Listener.py
Listener.py
py
2,426
python
en
code
0
github-code
6
[ { "api_name": "http.server.BaseHTTPRequestHandler", "line_number": 11, "usage_type": "name" }, { "api_name": "urllib.parse.parse_qs", "line_number": 24, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 24, "usage_type": "name" }, { "api_name": "http.server.HTTPServer", "line_number": 35, "usage_type": "name" }, { "api_name": "os.system", "line_number": 61, "usage_type": "call" }, { "api_name": "os.system", "line_number": 69, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 76, "usage_type": "argument" }, { "api_name": "sys.argv", "line_number": 77, "usage_type": "name" } ]
8692787672
from strong.models import Project, Images from rest_framework import serializers class ImagesSerializers(serializers.HyperlinkedModelSerializer): project_id = serializers.PrimaryKeyRelatedField(queryset=Project.objects.all(),source='project.id') class Meta: model = Images fields = ('project_id', 'image') def create(self, validated_data): subject = Images.objects.create(parent=validated_data['project']['id'], child_name=validated_data['image']) return child class ProjectSerializers(serializers.ModelSerializer): images = ImagesSerializers(many=True, read_only=True) class Meta: model = Project fields = ('type_of_project', 'description', 'images') # fields = "__all__"
urielcookies/RESTFUL_API
strong/serializers.py
serializers.py
py
753
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.serializers.HyperlinkedModelSerializer", "line_number": 4, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 4, "usage_type": "name" }, { "api_name": "rest_framework.serializers.PrimaryKeyRelatedField", "line_number": 5, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 5, "usage_type": "name" }, { "api_name": "strong.models.Project.objects.all", "line_number": 5, "usage_type": "call" }, { "api_name": "strong.models.Project.objects", "line_number": 5, "usage_type": "attribute" }, { "api_name": "strong.models.Project", "line_number": 5, "usage_type": "name" }, { "api_name": "strong.models.Images", "line_number": 7, "usage_type": "name" }, { "api_name": "strong.models.Images.objects.create", "line_number": 11, "usage_type": "call" }, { "api_name": "strong.models.Images.objects", "line_number": 11, "usage_type": "attribute" }, { "api_name": "strong.models.Images", "line_number": 11, "usage_type": "name" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 14, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 14, "usage_type": "name" }, { "api_name": "strong.models.Project", "line_number": 17, "usage_type": "name" } ]
72579481788
from flask import Flask, request, redirect, url_for from flask_jsonpify import jsonify from flask import render_template from flask import abort from flask import Response from flask_api import status import json from flaskext.mysql import MySQL import pandas as pd import requests from datetime import datetime, timedelta import matplotlib as plt import base64 import io app = Flask(__name__) mysql = MySQL() # MySQL configurations app.config['MYSQL_DATABASE_USER'] = 'root' app.config['MYSQL_DATABASE_PASSWORD'] = '' app.config['MYSQL_DATABASE_DB'] = 'cloud' app.config['MYSQL_DATABASE_HOST'] = 'localhost' mysql.init_app(app) db = mysql.connect() cursor = db.cursor() @app.route('/') def homepage(): return render_template('forecast.html') @app.route('/historical/', methods=['GET','POST']) #lists all the dates def historical(): if(request.method=='GET'): dates_list = [] cursor.execute("select DATE from dailyweather") query=cursor.fetchall() my_hist = [i[0] for i in query] for item in my_hist: a = {"DATE":str(item)} dates_list.append(a) js = json.dumps(dates_list) return js, 200 else: l=request.get_json() d=l['DATE'] tmax=l['TMAX'] tmin=l['TMIN'] obj = {} cursor.execute("select DATE from dailyweather") q=cursor.fetchall() list=[i[0] for i in q] x=0 for item in list: if(int(d)==item): x=1 if(x==1): cursor.execute("update dailyweather set TMAX=%f, TMIN=%f where DATE=%d" %(float(tmax),float(tmin),int(d))) else: cursor.execute("insert into dailyweather values(%d,%f,%f)" % (int(d),float(tmax),float(tmin))) db.commit() obj={"DATE":str(d)} return jsonify(obj), 201 @app.route('/historical/<string:DATE>', methods=['GET']) #gets the weather info of a particular day def get_info(DATE): obj = {} l=[] cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE =%d" % int(DATE)) q=cursor.fetchall() if(len(q)>0): for i in range(3): l.append(q[0][i]) obj = { "DATE": str(l[0]), "TMAX": l[1], "TMIN": l[2] } return jsonify(obj), 200 else: return '', 404 @app.route('/historical/<int:DATE>', methods=['DELETE']) def del_info(DATE): obj={} l=[] cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE=%d" % int(DATE)) query=cursor.fetchall() cursor.execute("delete from dailyweather where DATE=%d" % int(DATE)) db.commit() if(len(query)>0): for i in range(3): l.append(str(query[0][i])) obj = { "DATE": l[0], "TMAX": l[1], "TMIN": l[2] } return jsonify(obj), 200 else: return '', 204 @app.route('/forecast/<DATE>', methods=['GET']) #forecasts weather info of the next 7days def forecast(DATE): lst_dates = [] lst_obj = [] current_date = pd.to_datetime(DATE,format='%Y%m%d') stop_date = current_date+timedelta(days=7) while current_date<stop_date: lst_dates.append(str(pd.to_datetime(current_date)).split(' ')[0].replace("-","")) current_date = current_date+timedelta(days=1) for curr_date in lst_dates: cursor.execute("select DATE,TMAX,TMIN from dailyweather where DATE =%d" % int(curr_date)) query=cursor.fetchall() if (len(query) > 0): obj = { "DATE": curr_date, "TMAX": query[0][1], "TMIN": query[0][2] } lst_obj.append(obj) else: cursor.execute("select ROUND(RAND()*(80-75+1),1)+75") q=cursor.fetchall() cursor.execute("select ROUND(RAND()*(50-45+1),1)+45") q1=cursor.fetchall() obj = { "DATE": curr_date, "TMAX": q[0][0], "TMIN": q1[0][0] } lst_obj.append(obj) return jsonify(lst_obj), 200 if __name__ == '__main__': app.run(host='0.0.0.0',debug=True,port=80)
cotraak/weather-app-flask
app.py
app.py
py
4,277
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 16, "usage_type": "call" }, { "api_name": "flaskext.mysql.MySQL", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 31, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 35, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 35, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 46, "usage_type": "name" }, { "api_name": "flask_jsonpify.jsonify", "line_number": 64, "usage_type": "call" }, { "api_name": "flask_jsonpify.jsonify", "line_number": 80, "usage_type": "call" }, { "api_name": "flask_jsonpify.jsonify", "line_number": 100, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 108, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 109, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 111, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 112, "usage_type": "call" }, { "api_name": "flask_jsonpify.jsonify", "line_number": 134, "usage_type": "call" } ]
31211286041
# -*- coding: utf-8 -*- """ Created on Wed Oct 28 07:07:43 2015 @author: RAHUL JAIN """ from xml.dom.minidom import parse import xml.dom.minidom DOMTree = xml.dom.minidom.parse("chemsep1.xml") compounds = DOMTree.documentElement compound = compounds.getElementsByTagName("compound") i = 1 for comp in compound: compName = comp.getElementsByTagName("CompoundID")[0].getAttribute("value") CompName = compName.replace(" ","") CompName = CompName.replace("-","") CompName = CompName.replace(",","") CompName = CompName.replace("1","One") CompName = CompName.replace("2","Two") CompName = CompName.replace("3","Three") CompName = CompName.replace("4","Four") CompName = CompName.replace("5","Five") CriticalTemp = comp.getElementsByTagName("CriticalTemperature")[0].getAttribute("value") CriticalPres = comp.getElementsByTagName("CriticalPressure")[0].getAttribute("value") CriticalVol = comp.getElementsByTagName("CriticalVolume")[0].getAttribute("value") CriticalComp = comp.getElementsByTagName("CriticalCompressibility")[0].getAttribute("value") try: NormalBoilPoint = comp.getElementsByTagName("NormalBoilingPointTemperature")[0].getAttribute("value") except IndexError: NormalBoilPoint = "0" try: NormalMeltingPoint = comp.getElementsByTagName("NormalMeltingPointTemperature")[0].getAttribute("value") except IndexError: NormalMeltingPoint = "0" try: TripPntTemp = comp.getElementsByTagName("TriplePointTemperature")[0].getAttribute("value") except IndexError: TripPntTemp = "0" try: TripPntPres = comp.getElementsByTagName("TriplePointPressure")[0].getAttribute("value") except IndexError: TripPntPres = "0" MolWt = comp.getElementsByTagName("MolecularWeight")[0].getAttribute("value") try: LiqVolAtBoilPnt = comp.getElementsByTagName("LiquidVolumeAtNormalBoilingPoint")[0].getAttribute("value") except IndexError: LiqVolAtBoilPnt = "0" try: AcenFactor = comp.getElementsByTagName("AcentricityFactor")[0].getAttribute("value") except IndexError: AcenFactor = "0" try: SolParam = comp.getElementsByTagName("SolubilityParameter")[0].getAttribute("value") except IndexError: SolParam = "0" try: DipoleMoment = comp.getElementsByTagName("DipoleMoment")[0].getAttribute("value") except IndexError: DipoleMoment = "0" try: IGHF = comp.getElementsByTagName("HeatOfFormation")[0].getAttribute("value") except IndexError: IGHF = "0" try: GEF = comp.getElementsByTagName("GibbsEnergyOfFormation")[0].getAttribute("value") except IndexError: GEF = "0" try: AbsEntropy = comp.getElementsByTagName("AbsEntropy")[0].getAttribute("value") except IndexError: AbsEntropy = "0" try: HeatFusionMeltPnt = comp.getElementsByTagName("HeatOfFusionAtMeltingPoint")[0].getAttribute("value") except IndexError: HeatFusionMeltPnt = "0" try: HOC = comp.getElementsByTagName("HeatOfCombustion")[0].getAttribute("value") except IndexError: HOC = "0" try: UniquacR = comp.getElementsByTagName("UniquacR")[0].getAttribute("value") except IndexError: UniquacR = "0" try: UniquacQ = comp.getElementsByTagName("UniquacQ")[0].getAttribute("value") except IndexError: UniquacQ = "0" try: RacketParam = comp.getElementsByTagName("RacketParameter")[0].getAttribute("value") except IndexError: RacketParam = "0" try: LiqDen = comp.getElementsByTagName("LiquidDensity")[0] LiqDenEqn = LiqDen.getElementsByTagName("eqno")[0].getAttribute("value") A=LiqDen.getElementsByTagName("A")[0].getAttribute("value") B=LiqDen.getElementsByTagName("B")[0].getAttribute("value") C=LiqDen.getElementsByTagName("C")[0].getAttribute("value") D=LiqDen.getElementsByTagName("D")[0].getAttribute("value") try: E=LiqDen.getElementsByTagName("E")[0].getAttribute("value") except IndexError: E = "0" except IndexError: LiqDenEqn = "0" A = "0" B = "0" C = "0" D = "0" E = "0" try: VapPres = comp.getElementsByTagName("VaporPressure")[0] VapPresEqn = VapPres.getElementsByTagName("eqno")[0].getAttribute("value") VA=VapPres.getElementsByTagName("A")[0].getAttribute("value") VB=VapPres.getElementsByTagName("B")[0].getAttribute("value") VC=VapPres.getElementsByTagName("C")[0].getAttribute("value") try: VD=VapPres.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VD = "0" try: VE=VapPres.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VE = "0" except IndexError: VapPresEqn = "0" VA = "0" VB = "0" VC = "0" VD = "0" VE = "0" try: LiqCp = comp.getElementsByTagName("LiquidHeatCapacityCp")[0] LiqCpEqn = LiqCp.getElementsByTagName("eqno")[0].getAttribute("value") LCpA=LiqCp.getElementsByTagName("A")[0].getAttribute("value") LCpB=LiqCp.getElementsByTagName("B")[0].getAttribute("value") LCpC=LiqCp.getElementsByTagName("C")[0].getAttribute("value") try: LCpD=LiqCp.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LCpD = "0" try: LCpE=LiqCp.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LCpE = "0" except IndexError: LiqCpEqn = "0" LCpA = "0" LCpB = "0" LCpC = "0" LCpD = "0" LCpE = "0" try: HOV = comp.getElementsByTagName("HeatOfVaporization")[0] HOVEqn = HOV.getElementsByTagName("eqno")[0].getAttribute("value") HOVA=HOV.getElementsByTagName("A")[0].getAttribute("value") HOVB=HOV.getElementsByTagName("B")[0].getAttribute("value") HOVC=HOV.getElementsByTagName("C")[0].getAttribute("value") try: HOVD=HOV.getElementsByTagName("D")[0].getAttribute("value") except IndexError: HOVD = "0" try: HOVE=HOV.getElementsByTagName("E")[0].getAttribute("value") except IndexError: HOVE = "0" except IndexError: HOVEqn = "0" HOVA = "0" HOVB = "0" HOVC = "0" HOVD = "0" HOVE = "0" if (float(NormalBoilPoint) > 298.15 ): HA = float(HOVA) HB = float(HOVB) HC = float(HOVC) HD = float(HOVD) HE = float(HOVE) Tr = 298.15/float(CriticalTemp) SHOV = HA*(pow((1-Tr),(HB + HC*Tr + HD*pow(Tr,2) + HE*pow(Tr,3)))) AbsEnthalpy = float(IGHF) - SHOV else: AbsEnthalpy = float(IGHF) SH = str(AbsEnthalpy) try: VapCp = comp.getElementsByTagName("IdealGasHeatCapacityCp")[0] VapCpEqn = VapCp.getElementsByTagName("eqno")[0].getAttribute("value") VCpA=VapCp.getElementsByTagName("A")[0].getAttribute("value") VCpB=VapCp.getElementsByTagName("B")[0].getAttribute("value") VCpC=VapCp.getElementsByTagName("C")[0].getAttribute("value") try: VCpD=VapCp.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VCpD = "0" try: VCpE=VapCp.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VCpE = "0" except IndexError: VapCpEqn = "0" VCpA = "0" VCpB = "0" VCpC = "0" VCpD = "0" VCpE = "0" try: LiqVis = comp.getElementsByTagName("LiquidViscosity")[0] LiqVisEqn = LiqVis.getElementsByTagName("eqno")[0].getAttribute("value") LiqVisA=LiqVis.getElementsByTagName("A")[0].getAttribute("value") LiqVisB=LiqVis.getElementsByTagName("B")[0].getAttribute("value") LiqVisC=LiqVis.getElementsByTagName("C")[0].getAttribute("value") try: LiqVisD=LiqVis.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LiqVisD = "0" try: LiqVisE=LiqVis.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LiqVisE = "0" except IndexError: LiqVisEqn = "0" LiqVisA = "0" LiqVisB = "0" LiqVisC = "0" LiqVisD = "0" LiqVisE = "0" try: VapVis = comp.getElementsByTagName("VaporViscosity")[0] VapVisEqn = VapVis.getElementsByTagName("eqno")[0].getAttribute("value") VapVisA=VapVis.getElementsByTagName("A")[0].getAttribute("value") VapVisB=VapVis.getElementsByTagName("B")[0].getAttribute("value") VapVisC=VapVis.getElementsByTagName("C")[0].getAttribute("value") try: VapVisD=VapVis.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VapVisD = "0" try: VapVisE=VapVis.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VapVisE = "0" except IndexError: VapVisEqn = "0" VapVisA = "0" VapVisB = "0" VapVisC = "0" VapVisD = "0" VapVisE = "0" try: LiqK = comp.getElementsByTagName("LiquidThermalConductivity")[0] LiqKEqn = LiqK.getElementsByTagName("eqno")[0].getAttribute("value") LiqKA=LiqK.getElementsByTagName("A")[0].getAttribute("value") LiqKB=LiqK.getElementsByTagName("B")[0].getAttribute("value") LiqKC=LiqK.getElementsByTagName("C")[0].getAttribute("value") try: LiqKD=LiqK.getElementsByTagName("D")[0].getAttribute("value") except IndexError: LiqKD = "0" try: LiqKE=LiqK.getElementsByTagName("E")[0].getAttribute("value") except IndexError: LiqKE = "0" except IndexError: LiqKEqn = "0" LiqKA = "0" LiqKB = "0" LiqKC = "0" LiqKD = "0" LiqKE = "0" try: VapK = comp.getElementsByTagName("VaporThermalConductivity")[0] VapKEqn = VapK.getElementsByTagName("eqno")[0].getAttribute("value") VapKA=VapK.getElementsByTagName("A")[0].getAttribute("value") VapKB=VapK.getElementsByTagName("B")[0].getAttribute("value") VapKC=VapK.getElementsByTagName("C")[0].getAttribute("value") try: VapKD=VapK.getElementsByTagName("D")[0].getAttribute("value") except IndexError: VapKD = "0" try: VapKE=VapK.getElementsByTagName("E")[0].getAttribute("value") except IndexError: VapKE = "0" except IndexError: VapKEqn = "0" VapKA = "0" VapKB = "0" VapKC = "0" VapKD = "0" VapKE = "0" f = open('File5.txt','a') f.write('model '+CompName) f.write('\n') f.write('extends General_Properties(') f.write('\n') f.write('SN ' + '=' + str(i) +',') f.write('\n') f.write('name' + '=' + '"'+ CompName + '",') f.write('\n') f.write('Tc ' + '=' + CriticalTemp + ',') f.write('\n') f.write('Pc ' + '=' + CriticalPres + ',') f.write('\n') f.write('Vc ' + '=' + CriticalVol + ',') f.write('\n') f.write('Cc ' + '=' + CriticalComp + ',') f.write('\n') f.write('Tb ' + '=' + NormalBoilPoint + ',') f.write('\n') f.write('Tm ' + '=' + NormalMeltingPoint + ',') f.write('\n') f.write('TT ' + '=' + TripPntTemp + ',') f.write('\n') f.write('TP ' + '=' + TripPntPres + ',') f.write('\n') f.write('MW ' + '=' + MolWt + ',') f.write('\n') f.write('LVB ' + '=' + LiqVolAtBoilPnt + ',') f.write('\n') f.write('AF ' + '=' + AcenFactor + ',') f.write('\n') f.write('SP ' + '=' + SolParam + ',') f.write('\n') f.write('DM ' + '=' + DipoleMoment + ',') f.write('\n') f.write('SH ' + '=' + SH + ',') f.write('\n') f.write('IGHF ' + '=' + IGHF + ',') f.write('\n') f.write('GEF ' + '=' + GEF + ',') f.write('\n') f.write('AS ' + '=' + AbsEntropy + ',') f.write('\n') f.write('HFMP ' + '=' + HeatFusionMeltPnt + ',') f.write('\n') f.write('HOC ' + '=' + HOC + ',') f.write('\n') f.write('LiqDen = {'+LiqDenEqn+","+A+","+B+","+C+","+D+","+E+'},') f.write('\n') f.write('VP = {'+VapPresEqn+","+VA+","+VB+","+VC+","+VD+","+VE+'},') f.write('\n') f.write('LiqCp = {'+LiqCpEqn+","+LCpA+","+LCpB+","+LCpC+","+LCpD+","+LCpE+'},') f.write('\n') f.write('HOV = {'+HOVEqn+","+HOVA+","+HOVB+","+HOVC+","+HOVD+","+HOVE+'},') f.write('\n') f.write('VapCp = {'+VapCpEqn+","+VCpA+","+VCpB+","+VCpC+","+VCpD+","+VCpE+'},') f.write('\n') f.write('LiqVis = {'+LiqVisEqn+","+LiqVisA+","+LiqVisB+","+LiqVisC+","+LiqVisD+","+LiqVisE+'},') f.write('\n') f.write('VapVis = {'+VapVisEqn+","+VapVisA+","+VapVisB+","+VapVisC+","+VapVisD+","+VapVisE+'},') f.write('\n') f.write('LiqK = {'+LiqKEqn+","+LiqKA+","+LiqKB+","+LiqKC+","+LiqKD+","+LiqKE+'},') f.write('\n') f.write('VapK = {'+VapKEqn+","+VapKA+","+VapKB+","+VapKC+","+VapKD+","+VapKE+'},') f.write('\n') f.write('Racketparam = '+RacketParam +',') f.write('\n') f.write('UniquacR = '+ UniquacR + ',') f.write('\n') f.write('UniquacQ = '+ UniquacQ + ');') f.write('\n') f.write('end '+CompName+';') f.write('\n') f.write('\n') # f.write('function Psat') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Vp;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Vp := exp(VP[2] + VP[3] / T + VP[4] * log(T) + VP[5] * T ^ VP[6]);') # f.write('\n') # f.write('end Psat;') # f.write('\n') # f.write('\n') # # f.write('function LCp') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Cp;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Cp := (LiqCp[2] + exp(LiqCp[3] / T + LiqCp[4] + LiqCp[5] * T + LiqCp[6] * T ^ 2)) / 1000;') # f.write('\n') # f.write('end LCp;') # f.write('\n') # f.write('\n') # # f.write('function HV') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Hv;') # f.write('\n') # f.write('protected') # f.write('\n') # f.write('Real Tr = T / Tc;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Hv := HOV[2] * (1 - Tr) ^ (HOV[3] + HOV[4] * Tr + HOV[5] * Tr ^ 2 + HOV[6] * Tr ^ 3) / 1000;') # f.write('\n') # f.write('end HV;') # f.write('\n') # f.write('\n') # # f.write('function HLiq') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Ent;') # f.write('\n') # f.write('protected') # f.write('\n') # f.write('Real Temp = 298.15;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Ent := 0;') # f.write('\n') # f.write('while Temp < T loop') # f.write('\n') # f.write('Ent := Ent + LCp(Temp) * 1;') # f.write('\n') # f.write('Temp := Temp + 1;') # f.write('\n') # f.write('end while;') # f.write('\n') # f.write('Ent := SH / 1000 + Ent;') # f.write('\n') # f.write('end HLiq;') # f.write('\n') # f.write('\n') # # f.write('function HVap') # f.write('\n') # f.write('input Real T;') # f.write('\n') # f.write('output Real Ent;') # f.write('\n') # f.write('algorithm') # f.write('\n') # f.write('Ent := HLiq(T) + HV(T);') # f.write('\n') # f.write('end HVap;') # f.write('\n') i = i + 1 f.close()
RahulJain7/Openmodelica-Thermodynamic-Engine
PythonFiles/getComp.py
getComp.py
py
15,689
python
en
code
3
github-code
6
[ { "api_name": "xml.dom.minidom.dom.minidom.parse", "line_number": 10, "usage_type": "call" }, { "api_name": "xml.dom.minidom.dom", "line_number": 10, "usage_type": "attribute" }, { "api_name": "xml.dom.minidom", "line_number": 10, "usage_type": "name" } ]
16480507143
"""Original from https://github.com/yhenon/pytorch-retinanet""" import torch import torch.nn as nn import numpy as np import skimage.io import skimage.transform import skimage.color import skimage from PIL import Image def comptue_dim(dim, padding, kernel_size, stride): return np.floor((dim + 2*padding - kernel_size) / stride) + 1 def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BBoxTransform(nn.Module): def __init__(self, mean=None, std=None): super(BBoxTransform, self).__init__() if mean is None: self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)).cuda() else: self.mean = mean if std is None: self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)).cuda() else: self.std = std def forward(self, boxes, deltas): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0] * self.std[0] + self.mean[0] dy = deltas[:, :, 1] * self.std[1] + self.mean[1] dw = deltas[:, :, 2] * self.std[2] + self.mean[2] dh = deltas[:, :, 3] * self.std[3] + self.mean[3] pred_ctr_x = ctr_x + dx * widths pred_ctr_y = ctr_y + dy * heights pred_w = torch.exp(dw) * widths pred_h = torch.exp(dh) * heights pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) return pred_boxes class ClipBoxes(nn.Module): def __init__(self, width=None, height=None): super(ClipBoxes, self).__init__() def forward(self, boxes, img): batch_size, num_channels, height, width = img.shape boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) return boxes class Resizer(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, image, annots, min_side=608, max_side=1024): image = np.array(image) annots = np.array([[*annot['bbox'], annot['category_id']] for annot in annots]) rows, cols, cns = image.shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side # resize the image with the computed scale image = skimage.transform.resize(image, (int(round(rows * scale)), int(round((cols * scale))))) rows, cols, cns = image.shape pad_w = 32 - rows % 32 pad_h = 32 - cols % 32 new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32) new_image[:rows, :cols, :] = image.astype(np.float32) annots[:, 4] = annots[:, 4] * scale return Image.fromarray(np.uint8(new_image)), torch.from_numpy(annots), scale class Augmenter(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, flip_x=0.5): if np.random.rand() < flip_x: image, annots = sample['img'], sample['annot'] image = image[:, ::-1, :] rows, cols, channels = image.shape x1 = annots[:, 0].copy() x2 = annots[:, 2].copy() x_tmp = x1.copy() annots[:, 0] = cols - x2 annots[:, 2] = cols - x_tmp sample = {'img': image, 'annot': annots} return sample class Normalizer(object): def __init__(self): self.mean = np.array([[[0.485, 0.456, 0.406]]]) self.std = np.array([[[0.229, 0.224, 0.225]]]) def __call__(self, sample): image, annots = sample['img'], sample['annot'] return {'img': ((image.astype(np.float32) - self.mean) / self.std), 'annot': annots} class UnNormalizer(object): def __init__(self, mean=None, std=None): if mean == None: self.mean = [0.485, 0.456, 0.406] else: self.mean = mean if std == None: self.std = [0.229, 0.224, 0.225] else: self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor
sebastiani/pytorch-attention-augmented-convolution
utils/utils.py
utils.py
py
7,137
python
en
code
18
github-code
6
[ { "api_name": "numpy.floor", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 20, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 24, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 56, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 65, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 66, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 67, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 95, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 95, "usage_type": "name" }, { "api_name": "torch.from_numpy", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 100, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 104, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.exp", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 135, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 135, "usage_type": "name" }, { "api_name": "torch.clamp", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 156, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 157, "usage_type": "call" }, { "api_name": "skimage.transform.resize", "line_number": 174, "usage_type": "call" }, { "api_name": "skimage.transform", "line_number": 174, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 180, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 180, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 181, "usage_type": "attribute" }, { "api_name": "PIL.Image.fromarray", "line_number": 186, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 186, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 186, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 186, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 193, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 215, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 216, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 221, "usage_type": "attribute" } ]
37021992627
from django.core.exceptions import ObjectDoesNotExist from django.http import StreamingHttpResponse, HttpResponse from rest_framework.response import Response from .models import AudioSlice, Audio from .serializers import AudioSerializer, AudioSliceSerializer from rest_framework.decorators import api_view from rest_framework.decorators import parser_classes from rest_framework.parsers import MultiPartParser from .utils import utils as ut from audio.dbmanager.redis_dao import * from audio.services.preprocessor import AudioPreprocessor from audio.dbmanager.youtube_handler import * import re import time range_re = re.compile(r'bytes\s*=\s*(\d+)\s*-\s*(\d*)', re.I) file_count = 0 """ timeline t0 : page 1에서 사용자가 오디오 요청을 보낼 때 t1 : page 2에서 사용자가 오디오의 구간을 선택할 때 """ """ t0 > CELERY RESULT BACKEND 사용자의 오디오 요청에 대한 전처리 실행 후 기록 --> view 함수에 """ # preprocessor = AudioPreprocessor() # # task_id는 audio의 id # # audio_id = uuid.uuid4() # 처음 들어오는 경우, 그게 아니면 database에서 꺼내오기 # AudioPreprocessor().preprocess.apply_async((3, 56), task_id="hiek", expires=datetime.now() + timedelta(days=1)) """ t1 > USER INFO RECORD : (audio <----> choreo <----> product) Inter-server communication KEY "a30gk3" <-- uuid.uuid4() VAL (HSET) { audio_id : e317fce <-- 클라이언트에게 받을 것 start : 13 <-- audio_handler가 계산하도록 end : 31 <-- audio_handler가 계산하도록 progress : 0.0 } <-- 어느정도 진행되었는지 percentage """ """ t1 > SIMILARITY : (audio <----> choreo) Inter-server communication KEY e317fce-14 <-- 노래 구간 id VAL [ "af3g0s39_13 : 89", "ldf9a8i_4 : 90", "fk02j3bu_9 : 99", ... ] <-- 노래구간 id 와 점수가 매핑된 요소들로 구성된 list """ """ t1 > AMPLITUDE : (audio <----> choreo) Inter-server communication KEY e317fce-14 <-- 노래 구간 id VAL [ 7 2 9 8 6 ] <-- 점수 list """ """ =================================================================================================================== """ # def upload_file(request): # if request.method == 'POST': # form = UploadFileForm(request.POST, request.FILES) # if form.is_valid(): # instance = ModelWithFileField(file_field=request.FILES['file']) # instance.save() # return HttpResponseRedirect('/success/url/') # else: # form = UploadFileForm() # return render(request, 'upload.html', {'form': form}) @api_view(['POST']) @parser_classes([MultiPartParser]) def meta(request): data = MultiPartParser.parse(request) print(data) res = write_from_meta() return Response(AudioSerializer(Audio.objects.all(), many=True).data) @api_view(['POST']) async def youtube_url(request): download_url = request.data.get("download_url") try: # 이미 있는 경우 return Response(AudioSerializer(Audio.objects.get(download_url=download_url)).data) except ObjectDoesNotExist: try: print(f"started at {time.strftime('%X')}") _id, _title, _duration = await write_from_link(download_url) audio = Audio(audio_id=_id, title=_title, download_url=download_url, duration=_duration) audio.save() serializer = AudioSerializer(audio) # 이게 tasks에 해당됨 AudioPreprocessor(audio=audio).preprocess() # 파일 찾아서 정보와 함께 보내주기 return Response(serializer.data) except: print("===========download failure=============") return Response("cannot open file.", status=400) # response = StreamingHttpResponse(streaming_content=request.FILES["audio_file"]) # response['Content-Disposition'] = f'attachment; filename="{request.data["audio_file"]}"' # return response @api_view(['POST']) @parser_classes([MultiPartParser]) # @renderer_classes([MultiPartRenderer]) def file(request): """ :param request: :return: audio_id 와 file을 streaming 형태로 """ ext = request.data.get("ext") global file_count filename = "up" + str(file_count) if ext != "wav": ut.get_console_output( 'ffmpeg -n -i "{}/{}.{}" "{}/{}.wav"'.format("../../media/ORG", filename, ext, "../../media/WAV", filename)) # 바로 파일 저장 - store in the volume file_count += 1 response = StreamingHttpResponse(streaming_content=request.data["audio_file"]) response['Content-Disposition'] = f'attachment; filename="{request.data["audio_file"]}"' return response @api_view(['POST']) def skeletal_after_interval(request): """ :param request: audio_id, start_sec, end_sec :return: """ audio_id = request.data.get('audio_id') user_start_sec = request.data['start_sec'] user_end_sec = request.data['end_sec'] UserRedisHandler.set_user_info(audio_id, user_start_sec, user_end_sec) if bool(AudioSlice.objects.filter(audio_slice_id__contains=audio_id)): start_arr = AudioSlice.objects.values_list('start_sec', flat=True) start_audio_slice_id = AudioSlice.objects.get( start_sec=ut.find_nearest(start_arr, user_start_sec)).only('audio_slice_id') end_audio_slice_id = request.data.get('audio_id') + AudioSlice.objects.get( start_sec=ut.find_nearest(start_arr, user_end_sec)).only('audio_slice_id').split("_")[1] else: audio_handler = AudioPreprocessor(Audio.objects.get(audio_id=audio_id)) audio_handler.preprocess() start_audio_slice_id = audio_handler.get_slice_id(ut.find_nearest(audio_handler.beat_track, user_start_sec)) end_audio_slice_id = audio_handler.get_slice_id(ut.find_nearest(audio_handler.beat_track, user_end_sec)) interval_number = int(end_audio_slice_id.split("ㅡ")[1]) - int(start_audio_slice_id.split("ㅡ")[1]) # Task 1. Similarity process & get into redis # smlr_app = Celery('redis_dao', backend=cc.result_smlr_backend, broker=cc.broker_smlr_url) # smlr_app.config_from_object('celery_config') --꼭 안해도 될 듯 # 여기에 혜린이가 한 부분을 어떻게 어떻게 만들어서.. # cluster_smlr.apply_async(filter_kmeans_labels, filter_feat, 0, 6)) # Task 2. Amplitude process & get into redis # ampl_app = Celery(backend=cc.result_ampl_backend, broker=cc.broker_ampl_url) # get_amplitude.apply_async((3, 56), task_id=audio_id, expires=datetime.now() + timedelta(days=1)) return Response( AudioSliceSerializer(start_audio_slice_id=start_audio_slice_id, end_audio_slice_id=end_audio_slice_id, interval_number=interval_number).data) # app = Celery('redis_dao', backend=cc.result_backend, broker=cc.broker_url) # app.config_from_object('celery_config') # def youtube(request): # # task_id는 audio의 id # audio_id = uuid.uuid4() # 처음 들어오는 경우, 그게 아니면 database에서 꺼내오기 # preprocess.apply_async((3, 56), task_id=audio_id, expires=datetime.now() + timedelta(days=1)) # def serve(request): # return FileResponse(open(request.data.get('music'), 'rb')) @api_view(['POST']) def get_music(request): with open(request.data.get('music'), 'rb') as f: # 필요한 응답헤더 세팅 return set_audio_response('오디오파일 경로, wav 확장자까지 꼭 입력할 것', "오디오 파일 id(youtube id)", "wav", "오디오파일 duration float 형태로") def set_audio_response(audio_src, audio_id, ext, duration): response = HttpResponse(open(audio_src, "rb")) response["Access-Control-Allow-Origin"] = "*" response['Content-Type'] = "application/octet-stream" response['Content-Disposition'] = f'attachment; filename="{audio_id}.{ext}"' # wav만 보내지 않아도 되도록 response['audio_id'] = audio_id response['duration'] = duration return response # data = { # "audio_id": "dfsdff", # "interval_number": 14, # "music": open(request.data.get('music'), 'rb') # } # return HttpResponse(data) # response = HttpResponse(content=open(request.data.get('music'), 'rb')) # response['Content-Type'] = 'application/json' # return FileResponse(open(request.data.get('music'), 'rb'))
Choleor/choleor-audio-reboot
audio/views_old.py
views_old.py
py
8,450
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 16, "usage_type": "call" }, { "api_name": "re.I", "line_number": 16, "usage_type": "attribute" }, { "api_name": "rest_framework.parsers.MultiPartParser.parse", "line_number": 76, "usage_type": "call" }, { "api_name": "rest_framework.parsers.MultiPartParser", "line_number": 76, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 79, "usage_type": "call" }, { "api_name": "serializers.AudioSerializer", "line_number": 79, "usage_type": "call" }, { "api_name": "models.Audio.objects.all", "line_number": 79, "usage_type": "call" }, { "api_name": "models.Audio.objects", "line_number": 79, "usage_type": "attribute" }, { "api_name": "models.Audio", "line_number": 79, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 73, "usage_type": "call" }, { "api_name": "rest_framework.decorators.parser_classes", "line_number": 74, "usage_type": "call" }, { "api_name": "rest_framework.parsers.MultiPartParser", "line_number": 74, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 88, "usage_type": "call" }, { "api_name": "serializers.AudioSerializer", "line_number": 88, "usage_type": "call" }, { "api_name": "models.Audio.objects.get", "line_number": 88, "usage_type": "call" }, { "api_name": "models.Audio.objects", "line_number": 88, "usage_type": "attribute" }, { "api_name": "models.Audio", "line_number": 88, "usage_type": "name" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 89, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 91, "usage_type": "call" }, { "api_name": "audio.dbmanager.redis_dao", "line_number": 93, "usage_type": "name" }, { "api_name": "models.Audio", "line_number": 93, "usage_type": "call" }, { "api_name": "audio.dbmanager.redis_dao.save", "line_number": 94, "usage_type": "call" }, { "api_name": "audio.dbmanager.redis_dao", "line_number": 94, "usage_type": "name" }, { "api_name": "serializers.AudioSerializer", "line_number": 95, "usage_type": "call" }, { "api_name": "audio.dbmanager.redis_dao", "line_number": 95, "usage_type": "argument" }, { "api_name": "audio.services.preprocessor.AudioPreprocessor", "line_number": 97, "usage_type": "call" }, { "api_name": "audio.dbmanager.redis_dao", "line_number": 97, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 99, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 102, "usage_type": "call" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 82, "usage_type": "call" }, { "api_name": "utils.utils.get_console_output", "line_number": 121, "usage_type": "call" }, { "api_name": "utils.utils", "line_number": 121, "usage_type": "name" }, { "api_name": "django.http.StreamingHttpResponse", "line_number": 128, "usage_type": "call" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 109, "usage_type": "call" }, { "api_name": "rest_framework.decorators.parser_classes", "line_number": 110, "usage_type": "call" }, { "api_name": "rest_framework.parsers.MultiPartParser", "line_number": 110, "usage_type": "name" }, { "api_name": "models.AudioSlice.objects.filter", "line_number": 145, "usage_type": "call" }, { "api_name": "models.AudioSlice.objects", "line_number": 145, "usage_type": "attribute" }, { "api_name": "models.AudioSlice", "line_number": 145, "usage_type": "name" }, { "api_name": "models.AudioSlice.objects.values_list", "line_number": 146, "usage_type": "call" }, { "api_name": "models.AudioSlice.objects", "line_number": 146, "usage_type": "attribute" }, { "api_name": "models.AudioSlice", "line_number": 146, "usage_type": "name" }, { "api_name": "models.AudioSlice.objects.get", "line_number": 147, "usage_type": "call" }, { "api_name": "models.AudioSlice.objects", "line_number": 147, "usage_type": "attribute" }, { "api_name": "models.AudioSlice", "line_number": 147, "usage_type": "name" }, { "api_name": "utils.utils.find_nearest", "line_number": 148, "usage_type": "call" }, { "api_name": "utils.utils", "line_number": 148, "usage_type": "name" }, { "api_name": "models.AudioSlice.objects.get", "line_number": 149, "usage_type": "call" }, { "api_name": "models.AudioSlice.objects", "line_number": 149, "usage_type": "attribute" }, { "api_name": "models.AudioSlice", "line_number": 149, "usage_type": "name" }, { "api_name": "utils.utils.find_nearest", "line_number": 150, "usage_type": "call" }, { "api_name": "utils.utils", "line_number": 150, "usage_type": "name" }, { "api_name": "audio.services.preprocessor.AudioPreprocessor", "line_number": 153, "usage_type": "call" }, { "api_name": "models.Audio.objects.get", "line_number": 153, "usage_type": "call" }, { "api_name": "models.Audio.objects", "line_number": 153, "usage_type": "attribute" }, { "api_name": "models.Audio", "line_number": 153, "usage_type": "name" }, { "api_name": "utils.utils.find_nearest", "line_number": 155, "usage_type": "call" }, { "api_name": "utils.utils", "line_number": 155, "usage_type": "name" }, { "api_name": "utils.utils.find_nearest", "line_number": 156, "usage_type": "call" }, { "api_name": "utils.utils", "line_number": 156, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 170, "usage_type": "call" }, { "api_name": "serializers.AudioSliceSerializer", "line_number": 171, "usage_type": "call" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 133, "usage_type": "call" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 188, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 197, "usage_type": "call" } ]
30282625342
from dataclasses import dataclass, replace from typing import Any from uuid import UUID from topics.domain.repositories.topic_repository import TopicRepository from topics.domain.usecases.base import Usecase @dataclass(kw_only=True) class UpdateTopicRequest: id: UUID content: str | None = None discussed: bool | None = None @dataclass(kw_only=True) class UpdateTopicUsecase(Usecase[UpdateTopicRequest, None]): topic_repository: TopicRepository def handle(self, request: UpdateTopicRequest) -> None: topic = self.topic_repository.get(request.id) updated_fields: dict[str, Any] = {} if request.content is not None: updated_fields["content"] = request.content if request.discussed is not None: updated_fields["discussed"] = request.discussed self.topic_repository.update(replace(topic, **updated_fields))
cbenavid/topics
src/topics/domain/usecases/topic/update_topic.py
update_topic.py
py
893
python
en
code
0
github-code
6
[ { "api_name": "uuid.UUID", "line_number": 11, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 9, "usage_type": "call" }, { "api_name": "topics.domain.usecases.base.Usecase", "line_number": 17, "usage_type": "name" }, { "api_name": "topics.domain.repositories.topic_repository.TopicRepository", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 22, "usage_type": "name" }, { "api_name": "dataclasses.replace", "line_number": 27, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 16, "usage_type": "call" } ]
30503616911
# Author: Ron Jones # Date Created: 7-3-17 # Date Last Modified: 7-4-17 # Purpose: Check CDS Overlay Excel Sheet with Master Data Sheet # Status: Working perfectly with MDS and CDS_Overlay_Final2.xlsx as of July 4, 2017 '''Note: The "compare dicts function iterates through every correct combination of entries from the overlay and data files to check for any discrepancies, then checks every entry from the overlay against the data to see if there are any entire records erroneously absent from the MDS. For more detailed instructions, check FM_Overlay_Script, the structure is basically the same''' # Import openpyxl module to allow python to access data from Excel documents import openpyxl as xl, sys def main(): # Pull data from workbooks data = xl.load_workbook(sys.argv[1]) overlay = xl.load_workbook(sys.argv[2]) # Pull worksheets from workbooks data_sheet = data.get_sheet_by_name('Data') overlay_sheet = overlay.get_sheet_by_name('Table 1') # Open output file (validation comments) for writing comments = open('Classified_Information_Comments', 'w') #Write heading to output file comments.write("Inconsistencies:" + "\n" + "\n") # Open empty dictionary for overlay info overlay_dict = {} # Open empty dictionary for master info data_dict = {} populate_overlay_dict(overlay_sheet, overlay_dict) populate_data_dict(data_sheet, data_dict) compare_dicts(data_dict, overlay_dict, comments) def populate_overlay_dict(sheet, inp_dict): titles = ['CONTROL', 'CLASSIFIED INFORMATION OVERLAY'] for i in range(60, 157): if not sheet.cell(row=i, column=1).value in titles: inp_dict[sheet.cell(row=i, column=1).value] = sheet.cell(row=i, column=2).value #print("Overlay dictionary: ", inp_dict) def populate_data_dict(worksheet, inp): for i in range(4, worksheet.max_row + 1): if not worksheet.cell(row=i, column=3).value in inp: inp[worksheet.cell(row=i, column=3).value] = [worksheet.cell(row=i, column=50).value] else: inp[worksheet.cell(row=i, column=3).value].append(worksheet.cell(row=i, column=50).value) #print("Data Dict: ", inp) def compare_dicts(data, overlay, outfile): switch = 0 #For loop to check for incorrect/missing entries for key in data: for key2 in overlay: if key == key2: for elt in data[key]: if elt == overlay[key2]: #Can uncomment for visual evidence that loop executed #print("Data validated " + str(key) + " " + str(key2)) continue else: outfile.write("Discrepancy with control " + str(key) + "\n" + "\n") switch = 1 break continue #For loop to check for missing records for key2 in overlay: if not key2 in data: outfile.write(((str(key2) + " should include a " + str(overlay[key2]) + " in the overlay column of MDS, but the record itself does not exist" + "\n" + "\n"))) switch = 1 if switch == 0: print("No discrepancies found") else: print("There were some discrepancies. Check 'Classified_Information_Comments for more information") main()
NISTBoard/data_validation
Classified_Info_Script.py
Classified_Info_Script.py
py
3,365
python
en
code
0
github-code
6
[ { "api_name": "openpyxl.load_workbook", "line_number": 20, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "attribute" }, { "api_name": "openpyxl.load_workbook", "line_number": 21, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 21, "usage_type": "attribute" } ]
22514895256
#!/usr/bin/env python3 from fastapi import APIRouter, Body, Request, Response, HTTPException, status from bson.objectid import ObjectId from typing import List from lib.mongo import insert_one, find_one, find_many, update_one from models.prescription import Prescription, PrescriptionUpdate router = APIRouter() coll = "prescription" @router.get("/{nss}", response_description="Get all prescriptions for a patient", status_code=status.HTTP_200_OK, response_model=List[Prescription]) def find_precriptions(request: Request, nss: str): find_criteria = {"nss": nss} return find_many(request, find_criteria, coll) @router.post("/", response_description="Create a new prescription", status_code=status.HTTP_201_CREATED, response_model=Prescription) def create_prescription(request: Request, prescription: PrescriptionUpdate = Body(...)): inserted = insert_one(request, prescription, coll) return find_one(request, {'_id': inserted.inserted_id}, coll) @router.post("/associate_checkup", response_description="Links a checkup to the 'checkup' field for a prescription", status_code=status.HTTP_200_OK, response_model=Prescription) def associate_checkup_with_prescription(request: Request, data=Body(...)): print(data) prescription_find_criteria = {"_id": ObjectId(data['prescription_id'])} update_one(request, prescription_find_criteria, { "$set": { "consulta": data['checkup_id'] } }, coll) return find_one(request, prescription_find_criteria, coll)
Serlych/national-medical-record
routes/prescription.py
prescription.py
py
1,582
python
en
code
0
github-code
6
[ { "api_name": "fastapi.APIRouter", "line_number": 10, "usage_type": "call" }, { "api_name": "fastapi.Request", "line_number": 16, "usage_type": "name" }, { "api_name": "lib.mongo.find_many", "line_number": 18, "usage_type": "call" }, { "api_name": "fastapi.status.HTTP_200_OK", "line_number": 14, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 14, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 15, "usage_type": "name" }, { "api_name": "models.prescription.Prescription", "line_number": 15, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 23, "usage_type": "name" }, { "api_name": "models.prescription.PrescriptionUpdate", "line_number": 23, "usage_type": "name" }, { "api_name": "fastapi.Body", "line_number": 23, "usage_type": "call" }, { "api_name": "lib.mongo.insert_one", "line_number": 24, "usage_type": "call" }, { "api_name": "lib.mongo.find_one", "line_number": 25, "usage_type": "call" }, { "api_name": "fastapi.status.HTTP_201_CREATED", "line_number": 21, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 21, "usage_type": "name" }, { "api_name": "models.prescription.Prescription", "line_number": 22, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 32, "usage_type": "name" }, { "api_name": "fastapi.Body", "line_number": 32, "usage_type": "call" }, { "api_name": "bson.objectid.ObjectId", "line_number": 34, "usage_type": "call" }, { "api_name": "lib.mongo.update_one", "line_number": 35, "usage_type": "call" }, { "api_name": "lib.mongo.find_one", "line_number": 41, "usage_type": "call" }, { "api_name": "fastapi.status.HTTP_200_OK", "line_number": 30, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 30, "usage_type": "name" }, { "api_name": "models.prescription.Prescription", "line_number": 31, "usage_type": "name" } ]