seq_id
stringlengths
4
11
text
stringlengths
113
2.92M
repo_name
stringlengths
4
125
sub_path
stringlengths
3
214
file_name
stringlengths
3
160
file_ext
stringclasses
18 values
file_size_in_byte
int64
113
2.92M
program_lang
stringclasses
1 value
lang
stringclasses
93 values
doc_type
stringclasses
1 value
stars
int64
0
179k
dataset
stringclasses
3 values
pt
stringclasses
78 values
40779260735
import magic import collections from pprint import pprint class cbmagic(magic.Magic): def __init__(self): magic.Magic.__init__(self) self.file_types=collections.OrderedDict() self.file_types['JPEG'] = 'jpg' self.file_types['PNG'] = 'png' self.file_types['PDF'] = 'pdf' def from_file(self, file): result=magic.Magic.from_file(self,file) #Return the file type: jpg, png or pdf return self.file_types[result.split(' ',1)[0]] if __name__ == "__main__": from cb_idcheck import cbmagic myMagic = cbmagic.cbmagic() print("Deduces the file type from the file header and returns one of the following strings: 'jpg', 'png' or 'pdf'.") filename = input("File name: ") pprint(myMagic.from_file(filename))
commerceblock/cb_idcheck
cb_idcheck/cbmagic.py
cbmagic.py
py
902
python
en
code
1
github-code
50
13156721245
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This script cleans up the workspace after a full synthese (vasy, boom, boog, loon) run. """ __author__ = "Siegfried Kienzle" __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = "Siegfried Kienzle" __email__ = "[email protected]" import os import sys import getopt # Extension of VHDL Behavioral Subset VBE = ".vbe" # Extension of VHDL Structural Subset VST = ".vst" # Extension for graphical schematic viewer XSC = ".xsc" def usage(): print("usage: cleanup.py [-h] [-f]") print("") print("optional arguments:") print("-h, --help show this help message and exit") print( "-f, --force removes without asking all files with extensions " + VBE + ", " + VST + ", " + XSC + ".") def remove(filename): os.remove(filename) def delete_question(filename): delete = input("Should the file " + filename + " removed? (y/n)") return delete def main(): try: opts, args = getopt.getopt(sys.argv[1:], "hf", ["help", "force"]) except getopt.GetoptError as err: print(err) usage() sys.exit(2) force = False for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() elif o in ("-f", "--force"): force = True path = os.path.abspath(os.getcwd()) files = [] for filename in os.listdir(path): if filename.endswith(VBE) or filename.endswith( VST) or filename.endswith(XSC): files.append(filename) for candidate in files: if force: print(candidate + " will be deleted") remove(candidate) else: if delete_question(candidate) == ("y"): print(candidate + " will be deleted") remove(candidate) if __name__ == "__main__": main()
sikienzl/FPGA_Alliance_Scripts
wrapper_synthese/cleanup.py
cleanup.py
py
1,927
python
en
code
0
github-code
50
18781204661
if '__file__' in globals(): import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import unittest import numpy as np from dezero import Variable def f(x): y = x ** 4 - 2 * x ** 2 return y class HighgradTest(unittest.TestCase): def test_backward(self): x = Variable(np.array(2.0)) y = f(x) y.backward(create_graph=True) # print(x.grad) self.assertEqual(x.grad.data, 24.0) gx = x.grad x.cleargrad() gx.backward() # print(x.grad) self.assertEqual(x.grad.data, 44.0) unittest.main()
kanan4gh/my-dezero
tests/testStep33.py
testStep33.py
py
607
python
en
code
0
github-code
50
11932588404
import zipfile import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout, Conv2D, MaxPooling2D, Flatten from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image_dataset_from_directory from tensorflow.keras.applications import EfficientNetB0, resnet50 from tensorflow.keras.models import Sequential import numpy as np import pandas as pd # !wget !wget https://storage.googleapis.com/ztm_tf_course/food_vision/pizza_steak.zip zip_ref = zipfile.ZipFile("pizza_steak.zip", "r") zip_ref.extractall() zip_ref.close() train_directory = './pizza_steak/train/' test_directory = './pizza_steak/test/' IMAGE_SIZE = (224, 224) image_data_generator = ImageDataGenerator(rescale=1. / 255, zoom_range=0.2, shear_range=0.2, rotation_range=0.2) # incase we use class_mode='binary' we must 1 node in the last layer # incase we use class_mode='categorical' we must have 2 nodes in the last layer train_dt = image_data_generator.flow_from_directory(directory=train_directory, class_mode='categorical', batch_size=32, target_size=IMAGE_SIZE) test_dt = image_data_generator.flow_from_directory(directory=test_directory, class_mode='categorical', batch_size=32, target_size=IMAGE_SIZE) # Get the class names # test_dt.class_indices model = Sequential() model.add(Conv2D(filters=16, kernel_size=3, activation='relu')) model.add(Conv2D(filters=16, kernel_size=3, activation='relu')) model.add(MaxPooling2D()) model.add(Conv2D(filters=16, kernel_size=3, activation='relu')) model.add(Conv2D(filters=16, kernel_size=3, activation='relu')) model.add(MaxPooling2D()) model.add(Flatten()) model.add(Dense(2, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_dt, epochs=5, validation_data=test_dt, validation_steps=len(test_dt)) # --------------------- PREDICTION --------------------------- def load_image_for_prediction(img_path): img = tf.io.read_file(img_path) # Decode the read file into a tensor & ensure 3 colour channels # (our model is trained on images with 3 colour channels and sometimes images have 4 colour channels) img = tf.image.decode_image(img, channels=3) # Resize the image (to the same size our model was trained on) img = tf.image.resize(img, size=IMAGE_SIZE) # Rescale the image (get all values between 0 and 1) img = img / 255. return tf.expand_dims(img, axis=0) # ----------------- Get categories name class_names = [x for x in test_dt.class_indices.keys()] class_names # ------------------------- Get prediction probability img_path = './pizza_steak/test/pizza/1001116.jpg' # it is a pizza image model.predict(load_image_for_prediction(img_path)) img_path = './pizza_steak/test/steak/1064847.jpg' # it is a steak image model.predict(load_image_for_prediction(img_path)) #------------ Get most probable class prediction_probabilities = [0.08698346, 0.9142322 ] max_values = np.max(prediction_probabilities) class_names[prediction_probabilities.index(max_values)]
salman-/small-codes-for-tensorflow-certificate-exam
classifications/image-classification/binary-image-classification-prediction.py
binary-image-classification-prediction.py
py
3,534
python
en
code
0
github-code
50
26636857394
from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * class MyWindow(QWidget): def __init__(self): super(MyWindow, self).__init__() self.resize(300,300) self.setWindowTitle('test geometry') self.setMinimumSize(300,300) self.setMaximumSize(600,600) # self.move(0,0) # self.setGeometry(0,0,300,300) self.total_widgets = 9 self.col = 3 self.init_gui() def init_gui(self): my_button_width = self.width() // self.col total_rows = (self.total_widgets - 1) // self.col + 1 my_button_height = self.height() // total_rows print(self.frameGeometry()) # print(self.width()) # print(self.height()) # print(self.geometry().width()) for i in range(self.total_widgets): my_btn = QPushButton(self) my_btn.setText('btn%d'%i) my_btn.setStyleSheet('background-color:grey;border:1px solid yellow;') my_btn_x = i % self.col * my_button_width my_btn_y = i // self.col * my_button_height my_btn.resize(my_button_width,my_button_height) my_btn.move(my_btn_x,my_btn_y) if __name__ == '__main__': import sys app = QApplication(sys.argv) mywindow = MyWindow() mywindow.show() mywindow.setGeometry(-10,-200,300,300) print(mywindow.frameSize()) print(mywindow.frameGeometry()) sys.exit(app.exec_())
PeterZhangxing/codewars
gui_test/test_pyqt/test_geometry.py
test_geometry.py
py
1,478
python
en
code
0
github-code
50
33682023920
import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import numpy as np fig = plt.figure() ax = plt.axes() ax = ax.set(xlabel='x', ylabel='f(x) = x^3 + x^2 - 10') x = np.linspace(-20, 20, 1000) plt.axis([-20, 20, -20, 20]) plt.plot(x, ((x * x * x) + (4 * x * x) - 10), color = '0.75') plt.plot(x, x-x) plt.plot(y, y-y) plt.title("Analyse numerique : TP1") plt.show()
TheoDaix/TP_anum
Entrainements/matplotlib_test.py
matplotlib_test.py
py
392
python
en
code
0
github-code
50
34556117864
from bs4 import BeautifulSoup import requests import pandas as pd import numpy as np import matplotlib.pyplot as plt def get_burberry_df(): urls = [ "https://us.burberry.com/womens-new-arrivals-new-in/", "https://us.burberry.com/womens-new-arrivals-new-in/?start=2&pageSize=120&productsOffset=&cellsOffset=8&cellsLimit=&__lang=en" ] # SCRAPING & CREATING A LIST OF LINKS doc = [] for url in urls: r = requests.get(url) html_doc = r.text soup = BeautifulSoup(html_doc) for link in soup.find_all("a"): l = link.get("href") if "-p80" in l: # <-- THIS WILL NEED TO CHANGE doc.append(l) # DEDUPLICATING THE LIST OF LINKS doc_uniq = set(doc) print("Number of unique items:"+str(len(doc_uniq))) # CREATING A DICTIONARY WITH WORDS : COUNTS AND KEY : VALUE PAIRS result = {} for link in doc_uniq: words = link.replace("/", "").split("-") for word in words: if word in result: result[word] += 1 else: result[word] = 1 words = list(result.keys()) counts = list(result.values()) # TURNING THE DICTIONARY INTO A DATAFRAME, SORTING & SELECTING FOR RELEVANCE df = pd.DataFrame.from_dict({ "words": words, "counts": counts, }) df_sorted = df.sort_values("counts", ascending = True) df_rel = df_sorted[df_sorted['counts']>3] print(df_rel.head()) print(df_rel.shape) # PLOTTING plt.barh(df_rel['words'], df_rel['counts'], color = "#C19A6B") plt.title("Most used words in Burberry 'New in' SS2020 Women collection") plt.xticks(np.arange(0, 18, step=2)) plt.savefig("SS2020_Burberry_word_frequency.png") df_rel['brand']='burberry' return df_rel def get_versace_df(): # VERSACE # CREATING LIST OF RELEVANT URLS url = "https://www.versace.com/us/en-us/women/new-arrivals/new-in/" # SCRAPING & CREATING A LIST OF LINKS doc = [] #for url in urls: r = requests.get(url) html_doc = r.text soup = BeautifulSoup(html_doc) soup_f = soup.find_all("a") for t in soup_f: a = t.get("href") if a.startswith("/us/en-us/women/new-arrivals/new-in/"): doc.append(a) # DEDUPLICATING THE LIST OF LINKS doc_uniq = set(doc) print("Number of unique items:"+str(len(doc_uniq))) #print(doc_uniq) result = {} garbage = [] for link in doc_uniq: if link.startswith("/us/en-us/women/new-arrivals/new-in/?"): continue words = link.replace("/us/en-us/women/new-arrivals/new-in/", "") .split("/") words = words[0].split("-") for word in words: if word in result: result[word] += 1 else: result[word] = 1 words = list(result.keys()) counts = list(result.values()) #print(result) # TURNING THE DICTIONARY INTO A DATAFRAME, SORTING & SELECTING FOR RELEVANCE df = pd.DataFrame.from_dict({ "words": words, "counts": counts, }) df2 = df.set_index("words") #df2 = df.drop(["a1008"],axis=0) df_sorted = df2.sort_values("counts", ascending = True) df_rel = df_sorted[df_sorted['counts']>2] #print(df_rel.head()) #print(df_rel.shape) #PLOTTING plt.barh(df_rel.index, df_rel['counts'], color = "#FFD700") plt.title("Most used words in Versace 'New in' SS2020 Women collection") plt.savefig("SS2020_Versace_word_frequency.png") df_rel['brand']='versace' return df_rel def get_dg_df(): # CREATING LIST OF RELEVANT URLS urls = [] #urls = list(urls) for i in [1,2,3,4]: u = str("https://us.dolcegabbana.com/en/women/highlights/new-in/?page=") + str(i) urls.append(u) #print(urls) # SCRAPING & CREATING A LIST OF LINKS doc = [] for url in urls: r = requests.get(url) html_doc = r.text soup = BeautifulSoup(html_doc) soup_f = soup.find_all("a") for t in soup_f: a = t.get("aria-label") if a != None and a.startswith("Visit"): doc.append(a) #print(doc) # DEDUPLICATING THE LIST OF LINKS doc_uniq = set(doc) print("Number of unique items:"+str(len(doc_uniq))) result = {} for link in doc_uniq: words = link.replace("Visit", "").replace(" product page","").split(" ") for word in words: if word in result: result[word] += 1 else: result[word] = 1 del(result[""]) words = list(result.keys()) counts = list(result.values()) # TURNING THE DICTIONARY INTO A DATAFRAME, SORTING & SELECTING FOR RELEVANCE df = pd.DataFrame.from_dict({ "words": words, "counts": counts, }) df2 = df.set_index("words") #df2.drop(["", "WITH"]) df_sorted = df2.sort_values("counts", ascending = True) df_rel = df_sorted[df_sorted['counts']>4] #print(df_rel.head()) #print(df_rel.shape) # PLOTTING plt.barh(df_rel.index, df_rel['counts'], color = "#E0115F") plt.title("Most used words in D&G 'New in' SS2020 Women collection") plt.savefig("SS2020_D&G_word_frequency.png", pad_inches=0.1) df_rel['brand']='d&g' return df_rel
adasegroup/FDS2020_seminars
Week 2/Day 2/Submissions/Sergei_Gostilovich/get_data_fun.py
get_data_fun.py
py
5,341
python
en
code
3
github-code
50
11342959263
import pickle import requests import string def get_keyword_xml(letter): r = requests.get(f'https://vocab.lternet.edu/vocab/vocab/services.php?task=letter&arg={letter}') return r.text def parse_keywords(txt): i = 0 keywords = [] while i >= 0: i = txt.find('<string><![CDATA[', i) if i >= 0: i = i + len('<string><![CDATA[') j = txt.find(']', i) keywords.append(txt[i:j]) return keywords def get_all_keywords(): keywords = [] for letter in list(string.ascii_lowercase): keywords.extend(parse_keywords(get_keyword_xml(letter))) return keywords keywords = get_all_keywords() with open('webapp/static/lter_keywords.pkl', 'wb') as keyfile: pickle.dump(keywords, keyfile)
PASTAplus/ezEML
get_lter_keywords.py
get_lter_keywords.py
py
775
python
en
code
6
github-code
50
71244192794
def read(): numbers = [] with open("./files/numbers.txt", "r", encoding="utf-8") as data: for line in data: numbers.append(int(line)) print(numbers) def write(): names = ["Facundo", "Miguel", "Pepe", "Christian", "Fernández"] with open("./files/numbers.txt", "a") as data: for name in names: data.write(name) data.write("\n") # whith open("/directory", "mode", encoding="utf-8") as f: # Modes # a = Append # r = Read # w = Write # Filename = f (Usualy this way) def run(): #read() write() if __name__ == "__main__": run()
defdzg/Platzi-Python-intermedio
archivos.py
archivos.py
py
675
python
en
code
0
github-code
50
15726376022
#!/usr/bin/env python # coding: utf-8 # In[39]: import pandas as pd from pandas_datareader import data as pdr import yfinance as yf import numpy as np import datetime as dt import matplotlib.pyplot as plt # In[117]: tickers = ['HD','DIS','WMT','VZ'] # In[118]: weights = np.array([.25, .3, .15, .3]) # In[119]: initial_investment = 1000 # In[120]: start = dt.datetime(2020,1,1) end = dt.datetime(2020,12,31) # In[121]: data = pdr.get_data_yahoo(tickers, start, end=dt.date.today())['Close'] # In[122]: returns = data.pct_change() # In[123]: returns.tail() # In[124]: cov_matrix = returns.cov() cov_matrix # ### Calculating Means # In[125]: avg_rets = returns.mean() # In[126]: port_mean = avg_rets.dot(weights) # Calculate portfolio standard deviation port_stdev = np.sqrt(weights.T.dot(cov_matrix).dot(weights)) # Calculate mean of investment mean_investment = (1+port_mean) * initial_investment # Calculate standard deviation of investmnet stdev_investment = initial_investment * port_stdev # ### Confidence Level # In[142]: # Select our confidence interval (I'll choose 95% here) conf_level1 = 0.05 from scipy.stats import norm cutoff1 = norm.ppf(conf_level1, mean_investment, stdev_investment) # ### 95% Confidence # In[143]: #Finally, we can calculate the VaR at our confidence interval var_1d1 = initial_investment - cutoff1 var_1d1 # In[140]: # Calculate n Day VaR var_array = [] num_days = int(15) for x in range(1, num_days+1): var_array.append(np.round(var_1d1 * np.sqrt(x),2)) print(str(x) + " day VaR @ 95% confidence: " + str(np.round(var_1d1 * np.sqrt(x),2))) # In[139]: plt.xlabel("Day #") plt.ylabel("Max portfolio loss (USD)") plt.title("Max portfolio loss (VaR) over 15-day period") plt.plot(var_array, "r") # In[130]: import matplotlib.mlab as mlab import matplotlib.pyplot as plt from scipy.stats import norm from scipy import stats import scipy as sp # In[138]: returns['HD'].hist(bins=40, histtype="stepfilled",alpha=0.5) x = np.linspace(port_mean - 3*port_stdev, port_mean+3*port_stdev,100) plt.plot(x, sp.stats.norm.pdf(x, port_mean, port_stdev), "r") plt.title("HD returns (binned) vs. normal distribution") plt.show() # In[137]: returns['DIS'].hist(bins=40, histtype="stepfilled",alpha=0.5) x = np.linspace(port_mean - 3*port_stdev, port_mean+3*port_stdev,100) plt.plot(x, sp.stats.norm.pdf(x, port_mean, port_stdev), "r") plt.title("DIS returns (binned) vs. normal distribution") plt.show() # In[136]: returns['WMT'].hist(bins=40, histtype="stepfilled",alpha=0.5) x = np.linspace(port_mean - 3*port_stdev, port_mean+3*port_stdev,100) plt.plot(x, sp.stats.norm.pdf(x, port_mean, port_stdev), "r") plt.title("WMT returns (binned) vs. normal distribution") plt.show() # In[135]: returns['VZ'].hist(bins=40, histtype="stepfilled",alpha=0.5) x = np.linspace(port_mean - 3*port_stdev, port_mean+3*port_stdev,100) plt.plot(x, sp.stats.norm.pdf(x, port_mean, port_stdev), "r") plt.title("VZ returns (binned) vs. normal distribution") plt.show() # ### Source # #### https://www.interviewqs.com/blog/value_at_risk # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]:
btobin0/Python-Hedging-Trading
Learning ValueAtRisk(VAR).py
Learning ValueAtRisk(VAR).py
py
3,246
python
en
code
2
github-code
50
27193442601
import numpy as np from tqdm import tqdm from tabulate import tabulate from torch.utils.data import DataLoader from scipy.special import softmax from sklearn import preprocessing from data.lmdb_dataset import LMDBDataset from models.models_dict import DATASET_MODELS_DICT from config import args from ds3_utils import ds3 import scipy.io as scio def compute_prototype(support_feas,support_labels): unique_labels = np.unique(support_labels) n_category = unique_labels.shape[0] prots = np.zeros((n_category,support_feas.shape[1])) for i in range(n_category): idx = np.where(support_labels == i)[0] prots[i,:] = support_feas[idx, :].mean(0) return prots all_support_dataset = ['ilsvrc_2012','cu_birds','dtd','quickdraw','fungi','vgg_flower','omniglot','aircraft'] def main(): LIMITER = 600 # Setting up datasets dataspec_root_dir = args['data.dataspec_root_dir'] all_test_datasets = args['data.trgset'] extractor_domains = args['data.train'] dump_name = args['dump.name'] if args['dump.name'] else 'test_dump' testset = LMDBDataset(args,extractor_domains, all_test_datasets, args['model.backbone'], 'test', dump_name, LIMITER) # define the embedding method dataset_models = DATASET_MODELS_DICT[args['model.backbone']] accs_names = ['AS3 '] all_accs = dict() # Go over all test datasets for test_dataset in all_test_datasets: # print(test_dataset) testset.set_sampling_dataset(test_dataset) test_loader = DataLoader(testset, batch_size=None, batch_sampler=None, num_workers=16) all_accs[test_dataset] = {name: [] for name in accs_names} i = 0 all_selected_weights = [] for sample in tqdm(test_loader): context_labels = sample['context_labels'].numpy() target_labels = sample['target_labels'].numpy() context_features_dict = {k: v.numpy() for k, v in sample['context_feature_dict'].items()} target_features_dict = {k: v.numpy() for k, v in sample['target_feature_dict'].items()} learner_weight,all_prots = ds3(context_features_dict,context_labels) target_features_dict_keys = list(target_features_dict.keys()) all_selected_trg_feas = [] all_selected_prots = [] weights = np.zeros(8) for i in range(len(target_features_dict_keys)): # print(learner_weight.shape) selected_query_feas = target_features_dict[target_features_dict_keys[i]] selected_prototypes = all_prots[i] selected_query_feas = preprocessing.normalize(selected_query_feas,norm='l2') selected_prototypes = preprocessing.normalize(selected_prototypes,norm='l2') all_selected_trg_feas.append(learner_weight[i] * selected_query_feas) all_selected_prots.append(learner_weight[i] * selected_prototypes) idx = all_support_dataset.index(target_features_dict_keys[i]) weights[idx] = learner_weight[i] selected_query_feas = np.hstack(all_selected_trg_feas) selected_support_prots = np.hstack(all_selected_prots) # print(selected_idxs) selected_support_prots = selected_support_prots.transpose([1,0]) logits = np.dot(selected_query_feas, selected_support_prots) # logits = np.reshape(logits,[-1,logits.shape[-1]]) probs = softmax(logits, axis=1) preds = probs.argmax(1) final_acc = np.mean(np.equal(preds, target_labels)) all_accs[test_dataset]['AS3'].append(final_acc) all_selected_weights.append(weights) # Make a nice accuracy table all_selected_weights = np.vstack(all_selected_weights) results_save_dir = f'{args["model.save_dir"]}/' rows = [] for dataset_name in all_test_datasets: row = [dataset_name] for model_name in accs_names: acc = np.array(all_accs[dataset_name][model_name]) * 100 mean_acc = acc.mean() conf = (1.96 * acc.std()) / np.sqrt(len(acc)) mean_acc_round = round(mean_acc, 2) conf_round = round(conf, 2) save_pth = f'{results_save_dir}/{dataset_name}/{dataset_name}_ds3_results.txt' weight_save_pth = f'{results_save_dir}/{dataset_name}/{dataset_name}_weights.mat' scio.savemat(weight_save_pth,{'support_dset':all_support_dataset,'weight':all_selected_weights}) with open(save_pth, 'w') as f: f.write(dataset_name) f.write('\n') f.write(str(mean_acc_round)) f.write('\n') f.write(str(conf_round)) f.write('\n') row.append(f"{mean_acc:0.2f} +- {conf:0.2f}") rows.append(row) table = tabulate(rows, headers=['model \\ data'] + accs_names, floatfmt=".2f") print(table) print("\n") if __name__ == '__main__': main()
indussky8/AS3
AS3_MM/test_ds3.py
test_ds3.py
py
5,247
python
en
code
0
github-code
50
23792607445
from copy import deepcopy n, m = map(int, input().split()) grid = [list(map(int, input().split())) for _ in range(n)] check = [[False for _ in range(m)] for _ in range(n)] answer = -99999999 def check_is_visited(check, r1, c1, r2, c2): return any( [any([check[i][j] for j in range(c1, c2 + 1)]) for i in range(r1, r2 + 1)] ) def get_visited_grid(check): checked = deepcopy(check) for i in range(r1, r2 + 1): for j in range(c1, c2 + 1): checked[i][j] = True return checked def get_total(r1, c1, r2, c2): ret = 0 for i in range(r1, r2 + 1): for j in range(c1, c2 + 1): ret += grid[i][j] return ret def get_maximum_second_rectangle(checked): maximum = -9999999 for r1 in range(n): for c1 in range(m): for r2 in range(r1, n): for c2 in range(c1, m): if check_is_visited(checked, r1, c1, r2, c2): break maximum = max( maximum, get_total(r1, c1, r2, c2) ) return maximum for r1 in range(n): for c1 in range(m): for r2 in range(r1, n): for c2 in range(c1, m): rectangle = get_total(r1, c1, r2, c2) checked = get_visited_grid(check) second_rectangle = get_maximum_second_rectangle(checked) answer = max(answer, rectangle + second_rectangle) print(answer)
innjuun/Algorithm
LeeBros/2주차/겹쳐지지 않는 두 직사각형.py
겹쳐지지 않는 두 직사각형.py
py
1,515
python
en
code
2
github-code
50
16380363520
# Preprocessor - Alexander Liao # This will take dict input (JSON format) and assign each note a UUID # See /data-formats.md # `some input` -> `python3 chordgenerator.py` import json from sys import stdin, stdout from chordoffsets import C, D, E, F, G, A, B def snap(notes): sixteenthnote = notes["tempo"] / 4 for note in notes["notes"]: note["startTime"] = round(note["startTime"] / sixteenthnote) * sixteenthnote return notes def process(notes): uuid = 0 for note in notes["notes"]: note["pitch"] -= notes["key"] note["key"] = notes["key"] note["tempo"] = notes["tempo"] note.update(uuid = uuid, octaves = note["pitch"] // 12) note["pitch"] %= 12 uuid += 1 notes["notes"].sort(key = lambda note: note["startTime"]) return notes def merge(notes): combos = {} tempo = notes["tempo"] index = 0 notelist = notes["notes"] for note in notelist: beat = int(note["startTime"] / tempo) if beat not in combos: combos[beat] = [] combos[beat].append(note) return list(combos.values()) print(json.dumps(merge(process(snap(json.loads(stdin.read())))), indent = 4))
hyper-neutrino/hack-the-north-2017
acc-gen/preprocessor.py
preprocessor.py
py
1,192
python
en
code
0
github-code
50
9513492956
#!/usr/bin/env /usr/bin/python3 import numpy as np import os import subprocess as sp import multiprocessing as mp from pathlib import Path from timer import timer from make_initial import make_initial ################################################################################ #=============================================================================== # run_eigen.py #=============================================================================== ################################################################################ base_dir = Path(__file__).resolve().parent out_dir = base_dir.parent/'hyperbolic_eigenvalues' out_dir.mkdir(exist_ok=True) cores_to_use = mp.cpu_count() - 4 # = 12 number_sims = cores_to_use * 16 r_param = 0.5 number_cells = 128 polygon_number = 12 area_values = np.array([2.0,1.0,0.5,0.25,0.125])*np.pi #run_type = 'coarse' run_type = 'medium' #run_type = 'fine' # Coarse if run_type == 'coarse': p_values = np.arange(3.800, 4.201, 0.020) # Fine elif run_type == 'fine': p_values = np.arange(3.800, 4.201, 0.002) else: p_values = np.arange(3.800, 4.201, 0.010) def run_eigen (run_number): sim_dir = out_dir/'run_{0:02d}'.format(run_number) Path.mkdir(sim_dir, exist_ok = True) os.chdir(str(sim_dir)) # Run through the parameter values. for area_param in area_values: # Generate an initial state. if (sim_dir/('initial_state_{0:1.4f}.fe'.format(area_param))).exists(): pass else: make_initial(N = number_cells, polygon_sides = polygon_number, outfile = sim_dir / ('initial_state_' + \ '{0:1.4f}.fe'.format(area_param)), polygon_area = area_param, shape_index = 3.6, perimeter_modulus = 0.5) for p_param in p_values: if (sim_dir/('eigenvalues_area_{0:1.4f}'.format(area_param) + \ '_p0_{0:1.3f}.csv'.format(p_param))).exists(): continue else: with open(sim_dir/'eigen.fe','w') as eigen_script: eigen_script.write('p0_shape_index := {0:1.3f};\n'.format( p_param)) eigen_script.write('relax_system(1000);\n') eigen_script.write('J;\n0.01\nrelax_system(100);\nJ;\n') eigen_script.write('relax_system(10000);\n') eigen_script.write('ritz(-1000,2*vertex_count)') eigen_script.write('>>"temp.txt"\n') eigen_script.write('quit 1\n') # Relax system and output eigenvalues. eigen = sp.Popen(['evolver', '-feigen.fe', '-x', 'initial_state_{0:1.4f}.fe'.format(area_param)]) eigen.wait() (sim_dir / 'eigen.fe').unlink() print(run_number) eigenvalues = np.genfromtxt('./temp.txt', usecols = (1), skip_header = 2, skip_footer = 1) np.savetxt(sim_dir / \ ('eigenvalues_area_{0:1.4f}'.format(area_param) + \ '_p0_{0:1.3f}.csv'.format(p_param)), eigenvalues, delimiter = ',') (sim_dir / 'temp.txt').unlink() if __name__ == '__main__': os.chdir(str(out_dir)) np.savetxt('./area_values.csv', area_values, delimiter=',', fmt='%1.4f') np.savetxt('./p_values.csv', p_values, delimiter=',', fmt='%1.3f') np.savetxt('./run_values.csv', np.arange(1,number_sims+1), delimiter=',', fmt='%d') code_timer = timer() code_timer.start() Path.mkdir(out_dir, exist_ok = True) with mp.Pool(processes = cores_to_use) as pool: pool.map(run_eigen, range(1,number_sims+1)) code_timer.stop() ################################################################################ # EOF
HopyanLab/ConPT2D
hyperbolic_source/run_eigen.py
run_eigen.py
py
3,416
python
en
code
0
github-code
50
15341415584
import requests import datetime import pandas as pd import csv request_headers = { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:75.0) Gecko/20100101 Firefox/75.0', 'Accept': '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'Origin': 'https://grafcan1.maps.arcgis.com', 'Connection': 'keep-alive', 'Referer': 'https://grafcan1.maps.arcgis.com/apps/opsdashboard/index.html', 'Cache-Control': 'max-age=0', 'TE': 'Trailers', } deaths_params = ( ('f', 'json'), ('where', '(ESTADO=\'Fallecido\') AND (TIPO_MUN=\'Residencia\')'), ('returnGeometry', 'false'), ('spatialRel', 'esriSpatialRelIntersects'), ('outFields', '*'), ('outStatistics', '[{"statisticType":"count","onStatisticField":"OID","outStatisticFieldName":"value"}]'), ('resultType', 'standard'), ('cacheHint', 'true'), ) recovered_params = ( ('f', 'json'), ('where', '(ESTADO=\'Cerrado por alta m\xE9dica\') AND (TIPO_MUN=\'Residencia\')'), ('returnGeometry', 'false'), ('spatialRel', 'esriSpatialRelIntersects'), ('outFields', '*'), ('outStatistics', '[{"statisticType":"count","onStatisticField":"OID","outStatisticFieldName":"value"}]'), ('resultType', 'standard'), ('cacheHint', 'true'), ) total_cases_params = ( ('f', 'json'), ('where', 'TIPO_MUN=\'Residencia\''), ('returnGeometry', 'false'), ('spatialRel', 'esriSpatialRelIntersects'), ('outFields', '*'), ('outStatistics', '[{"statisticType":"count","onStatisticField":"OID","outStatisticFieldName":"value"}]'), ('resultType', 'standard'), ('cacheHint', 'true'), ) endpoint = 'https://services9.arcgis.com/CgZpnNiCwFObjaOT/arcgis/rest/services/CV19tipo/FeatureServer/4/query' deaths_response = requests.get(endpoint, headers=request_headers, params=deaths_params) recoveries_response = requests.get(endpoint, headers=request_headers, params=recovered_params) total_cases_response = requests.get(endpoint, headers=request_headers, params=total_cases_params) today = datetime.date.today().strftime('%Y/%-m/%d') deaths = deaths_response.json()['features'][0]['attributes']['value'] recoveries = recoveries_response.json()['features'][0]['attributes']['value'] total_cases = total_cases_response.json()['features'][0]['attributes']['value'] today_row = [today, 'Canaries', total_cases, '', deaths, recoveries] # check if we have been run already today, and if not, then add the new row df = pd.read_csv("../data/canarias_arcgis.csv") if df.values[-1].tolist()[0] == today_row[0]: print("update_canarias_cases.py: Already run today.") else: print("update_canarias_cases.py: First run today.") with open('../data/canarias_arcgis.csv', 'a') as datafile: writer = csv.writer(datafile, lineterminator='\n') print("update_canarias_cases.py: writing row:", today_row) writer.writerow(today_row)
nathanschepers/covid-canaries
scripts/update_canarias_cases.py
update_canarias_cases.py
py
2,880
python
en
code
2
github-code
50
6661385448
# --- # # Needs .csv tables to plot quantities # # --- from __future__ import division import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') import numpy as np import pandas as pd import sys import os import copy import h5py import csv from scipy import interpolate from scipy import stats # sys.path.append('/data01/numrel/vsevolod.nedora/bns_ppr_tools/') from preanalysis import LOAD_INIT_DATA from outflowed import EJECTA_PARS from preanalysis import LOAD_ITTIME from plotting_methods import PLOT_MANY_TASKS from profile import LOAD_PROFILE_XYXZ, LOAD_RES_CORR, LOAD_DENSITY_MODES from utils import Paths, Lists, Labels, Constants, Printcolor, UTILS, Files, PHYSICS from data import * from tables import * from settings import simulations, old_simulations, resolutions # v_n + _modmtot : v_n / (M1 + M2) # v_n + _modmchirp : v_n / [(M1 * M2) / (M1 + M2) ** (1. / 5.)] which is Mchirp # v_n + _modq : v_n / [(M1 * M2) / (M1 + M2) ** 2] which is q # v_n + _modq2 : v_n / [ [(M1 * M2) / (M1 + M2) ** 2] ** 2] which is q # v_n + _modqmtot2 : v_n / [ [(M1 * M2) / (M1 + M2) ** 2] * [M1 + M2] ** 2 ] # plot_fit1 = True plot_fit2 = True plot_fit_total = True plot_old_table = True v_n_x = "Lambda"#"Mej_tot-geo_entropy_above_10_dev_mtot"#"Mej_tot-geo_entropy_above_10"#"Lambda" v_n_y = "Mej_tot-geo_dev_mtotsymqmchirp"#"Mej_tot-geo_entropy_below_10_dev_mtot"#"Mej_tot-geo_entropy_below_10"#"Mej_tot-geo_6"#"Mej_tot-geo_Mchirp" v_n_col = "q" simlist = simulations simlist2 = old_simulations simtable = Paths.output + "models3.csv"#"models2.csv" simtable2 = Paths.output + "radice2018_summary2.csv"#"radice2018_summary.csv" deferr = 0.2 __outplotdir__ = "/data01/numrel/vsevolod.nedora/figs/all3/" xyscales = None#"log" prompt_bhtime = 1.5 marker_pc = 's' marker_bh = 'o' marker_long = 'd' plot_legend = True rs, rhos = [], [] def get_table_label(v_n): if v_n == "q": return r"$M_a/M_b$" if v_n == "mtot": return r"$M_b + M_a$" if v_n == "mtot2": return r"$(M_b + M_a)^2$" if v_n == "Mej_tot-geo" or v_n == "Mej": return r"$M_{\rm{ej}}$ $[10^{-2}M_{\odot}]$" if v_n == "Lambda": return r"$\tilde{\Lambda}$" if v_n == "mchirp": return r"$\mathcal{M}$" if v_n == "mchirp2": return r"$\mathcal{M} ^2$" if v_n == "Mej": return r"M_{\rm{ej}}" if v_n == "symq": return r"$\eta$" if v_n == "symq2": return r"$\eta^2$" if v_n == "symqmchirp": return r"$\eta\mathcal{M}$" if v_n == "mtotsymqmchirp": return r"$\eta M_{\rm{tot}}\mathcal{M}$" if v_n == "Mej_tot-geo_entropy_below_10"or v_n == "Mej_tidal": return r"$M_{\rm{ej;s<10}}$" # $[10^{-2}M_{\odot}]$ if v_n == "Mej_tot-geo_entropy_above_10" or v_n == "Mej_shocked": return r"$M_{\rm{ej;s>10}}$" # $[10^{-2}M_{\odot}]$ # elif str(v_n).__contains__("_mult_"): v_n1 = v_n.split("_mult_")[0] v_n2 = v_n.split("_mult_")[-1] lbl1 = get_table_label(v_n1) lbl2 = get_table_label(v_n2) return lbl1 + r"$\times$" + lbl2 elif str(v_n).__contains__("_dev_"): v_n1 = v_n.split("_dev_")[0] v_n2 = v_n.split("_dev_")[-1] lbl1 = get_table_label(v_n1) lbl2 = get_table_label(v_n2) return lbl1 + r"$/$" + lbl2 raise NameError("Np label for v_n: {}".format(v_n)) # if v_n == "Lambda": # return r"$\tilde{\Lambda}$" # if v_n == "Mej_tot-geo": # return r"$M_{\rm{ej}}$ $[10^{-2}M_{\odot}]$" # if v_n == "Mej_tot-geo_entropy_above_10" or v_n_y == "Mej_shocked": # return r"$M_{\rm{ej;s>10}}$ $[10^{-2}M_{\odot}]$" # if v_n == "Mej_tot-geo_entropy_below_10"or v_n_y == "Mej_tidal": # return r"$M_{\rm{ej;s<10}}$ $[10^{-2}M_{\odot}]$" # if v_n == "Mej_tot-geo" or v_n == "Mej": # return r"$M_{\rm{ej}}$ $[10^{-2}M_{\odot}]$" # if v_n == "Mej_tot-geo_5" or v_n == "Mej5": # return r"$M_{\rm{ej}} / (\eta^2)$" # $\eta=(M_1 \times M_2) / (M_1 + M_2)^2$ # if v_n == "Mej_tot-geo_1" or v_n == "Mej1": # return r"$M_{\rm{ej}} / M_{\rm{chirp}}$" # $\eta=(M_1 \times M_2) / (M_1 + M_2)^2$ # if v_n == "Mej_tot-geo_6" or v_n == "Mej6": # return r"$M_{\rm{ej}} \times \eta^2$" # $\eta=(M_1 \times M_2) / (M_1 + M_2)^2$ # if v_n == "q": # return r"$M_a/M_b$" # return str(v_n).replace('_','\_') def set_dic_xminxmax(v_n, dic, xarr): # if v_n == "Mej_tot-geo" or v_n == "Mej": dic['xmin'], dic['xmax'] = 0, 1.5 elif v_n == "Lambda": dic['xmin'], dic['xmax'] = 5, 1500 elif v_n == "Mej_tot-geo_entropy_above_10" or v_n == "Mej_shocked": dic['xmin'], dic['xmax'] = 0, 0.7 elif v_n == "Mej_tot-geo_entropy_below_10" or v_n == "Mej_tidal": dic['xmin'], dic['xmax'] = 0, 0.5 else: dic['xmin'], dic['xmax'] = np.array(xarr).min(), np.array(xarr).max() Printcolor.yellow("xlimits are not set for v_n_x:{}".format(v_n)) return dic def set_dic_yminymax(v_n, dic, yarr): # if v_n == "Mej_tot-geo" or v_n == "Mej": dic['ymin'], dic['ymax'] = 0, 1.5 elif v_n == "Mej_tot-geo_2" or v_n == "Mej2": dic['ymin'], dic['ymax'] = 0, 2 elif v_n == "Mej_tot-geo_1" or v_n == "Mej1": dic['ymin'], dic['ymax'] = 0, 0.7 elif v_n == "Mej_tot-geo_3" or v_n == "Mej3": dic['ymin'], dic['ymax'] = 0, 2 elif v_n == "Mej_tot-geo_4" or v_n == "Mej4": dic['ymin'], dic['ymax'] = 0, .75 elif v_n == "Mej_tot-geo_5" or v_n == "Mej5": dic['ymin'], dic['ymax'] = 0, 10. elif v_n == "Mej_tot-geo_6" or v_n == "Mej6": dic['ymin'], dic['ymax'] = 0, 0.06 elif v_n == "Mej_tot-geo_entropy_above_10" or v_n == "Mej_shocked": dic['ymin'], dic['ymax'] = 0, 0.7 elif v_n == "Mej_tot-geo_entropy_below_10" or v_n == "Mej_tidal": dic['ymin'], dic['ymax'] = 0, 0.5 else: dic['ymin'], dic['ymax'] = np.array(yarr).min(), np.array(yarr).max() Printcolor.yellow("xlimits are not set for v_n_x:{}".format(v_n)) return dic ''' --------------------------------------------------------------- ''' total_x = [] # for fits total_y = [] # for fits Printcolor.blue("Collecting Data") o_tbl = GET_PAR_FROM_TABLE() o_tbl.set_intable = simtable o_tbl.load_table() data = {} all_x = [] all_y = [] all_col = [] all_marker = [] for eos in simlist.keys(): data[eos] = {} for usim in simlist[eos].keys(): data[eos][usim] = {} sims = simlist[eos][usim] print("\t{} [{}]".format(usim, len(sims))) x, x1, x2 = o_tbl.get_par_with_error(sims, v_n_x, deferr=deferr) y, y1, y2 = o_tbl.get_par_with_error(sims, v_n_y, deferr=deferr) col = o_tbl.get_par(sims[0], v_n_col) data[eos][usim]["x"] = x data[eos][usim]['x1'] = x1 data[eos][usim]['x2'] = x2 data[eos][usim]['y'] = y data[eos][usim]['y1'] = y1 data[eos][usim]['y2'] = y2 data[eos][usim]['col'] = col all_x.append(x) all_y.append(y) all_col.append(col) isbh, ispromtcoll = o_tbl.get_is_prompt_coll(sims, delta_t=prompt_bhtime, v_n_tmerg="tmerg_r") data[eos][usim]["isprompt"] = ispromtcoll data[eos][usim]["isbh"] = isbh if isbh and not ispromtcoll: marker = marker_bh elif isbh and ispromtcoll: marker = marker_pc else: marker = marker_long all_marker.append(marker) data[eos][usim]["marker"] = marker data["allx"] = np.array(all_x) data["ally"] = np.array(all_y) data["allcol"] = np.array(all_col) data["allmarker"] = all_marker # for fits for eos in simlist.keys(): for usim in simlist[eos].keys(): if not data[eos][usim]["isprompt"]: total_x.append(data[eos][usim]["x"]) total_y.append(data[eos][usim]["y"]) # Printcolor.green("Data is collected") Printcolor.blue("Plotting Data") # def make_plot_name(v_n_x, v_n_y, v_n_col, do_plot_old_table): figname = '' figname = figname + v_n_x + '_' figname = figname + v_n_y + '_' figname = figname + v_n_col + '_' if do_plot_old_table: figname = figname + '_InclOldTbl' figname = figname + '.png' return figname figname = make_plot_name(v_n_x, v_n_y, v_n_col, False) # def get_custom_colormap(cmap_name = 'newCmap', n_bin=8): from matplotlib.colors import LinearSegmentedColormap # colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] colors=([(1, 0, 0), (0, 0, 1)],[1., 1.8]) cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=n_bin) return cm # o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (4.2, 3.6) # <->, |] o_plot.gen_set["figname"] = figname o_plot.gen_set["sharex"] = True o_plot.gen_set["sharey"] = False o_plot.gen_set["subplots_adjust_h"] = 0.0 o_plot.gen_set["subplots_adjust_w"] = 0.0 o_plot.set_plot_dics = [] # assert len(data["allx"]) == len(data["ally"]) assert len(data["ally"]) == len(data["allcol"]) assert len(data["allcol"]) > 0 if v_n_y.__contains__("Mej"): data["ally"] = data["ally"] * 1e2 if v_n_x.__contains__("Mej"): data["allx"] = data["allx"] * 1e2 # # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # print('-0--------------------') if plot_fit1: total_x1, total_y1 = UTILS.x_y_z_sort(total_x, total_y) # fit_polynomial(x, y, order, depth, new_x=np.empty(0, ), print_formula=True): Printcolor.blue("New data fit") if xyscales == "log": fit_x1, fit_y1 = UTILS.fit_polynomial(total_x, total_y, order=1, depth=100) else: fit_x1, fit_y1 = UTILS.fit_polynomial(total_x, total_y, order=1, depth=100) # if v_n_y.__contains__("Mej"): fit_y1 = fit_y1 * 1e2 if v_n_x.__contains__("Mej"): fit_x1 = fit_x1 * 1e2 # print(fit_x, fit_y) linear_fit = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': fit_x1, "yarr": fit_y1, 'xlabel': None, "ylabel": None, 'label': "New Data", 'ls': '-', 'color': 'red', 'lw': 1., 'alpha': 0.8, 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14, # 'text':{'x':1., 'y':1., 'text':'my_text', 'fs':14, 'color':'black','horal':True} } o_plot.set_plot_dics.append(linear_fit) r, rho = stats.spearmanr(total_x1, total_y1) print("r: {} rho: {}".format(r, rho)) rs.append(r) rhos.append(rho) text_dic = { 'task': 'text', 'ptype': 'cartesian', 'position': (1, 1), 'x': 0.45, 'y': 0.9, 'text': r'New: $r:{:.2f}$ $\rho:{:.2e}$'.format(r, rho), 'fs': 10, 'color': 'black', 'horizontalalignment': "left", 'transform': True } o_plot.set_plot_dics.append(text_dic) dic = { 'task': 'scatter', 'ptype': 'cartesian', # 'aspect': 1., 'xarr': data["allx"], "yarr": data["ally"], "zarr": data["allcol"], 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': v_n_x, 'v_n_y': v_n_y, 'v_n': v_n_col, 'xlabel': get_table_label(v_n_x), "ylabel": get_table_label(v_n_y), 'xmin': 300, 'xmax': 900, 'ymin': None, 'ymax': None, 'vmin': 1.0, 'vmax': 1.9, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'cmap': 'tab10', 'norm': None, 'ms': 60, 'markers': data["allmarker"], 'alpha': 0.7, "edgecolors": None, 'tick_params': {"axis": 'both', "which": 'both', "labelleft": True, "labelright": False, # "tick1On":True, "tick2On":True, "labelsize": 12, "direction": 'in', "bottom": True, "top": True, "left": True, "right": True}, 'yaxiscolor': {'bottom': 'black', 'top': 'black', 'right': 'black', 'left': 'black'}, 'minorticks': True, 'title': {}, # {"text": eos, "fontsize": 12}, 'label': None, 'legend': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } dic = set_dic_xminxmax(v_n_x, dic, data["allx"]) dic = set_dic_yminymax(v_n_y, dic, data["ally"]) dic['cbar'] = {'location': 'right .03 .0', 'label': Labels.labels(v_n_col), # 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14} o_plot.set_plot_dics.append(dic) ''' ------------------------------------------------------------------------------------------ ''' if plot_old_table: translation = {"Mej_tot-geo":"Mej", "Lambda":"Lambda", "Mej_tot-geo_Mchirp":"Mej_Mchirp", "Mej_tot-geo_1":"Mej1", "Mej_tot-geo_2":"Mej2", "Mej_tot-geo_3": "Mej3", "Mej_tot-geo_4": "Mej4", "Mej_tot-geo_5": "Mej5", "Mej_tot-geo_6": "Mej6", "tcoll_gw":"tcoll", "Mej_tot-geo_entropy_above_10":"Mej_shocked", "Mej_tot-geo_entropy_below_10":"Mej_tidal", "Mej_tot-geo_entropy_above_10_dev_mtot":"Mej_shocked_dev_mtot", "Mej_tot-geo_entropy_below_10_dev_mtot":"Mej_tidal_dev_mtot", "Mej_tot-geo_dev_mtot":"Mej_dev_mtot", "Mej_tot-geo_dev_mtot2":"Mej_dev_mtot2", "Mej_tot-geo_mult_mtot":"Mej_mult_mtot", "Mej_tot-geo_mult_mtot2":"Mej_mult_mtot2", "Mej_tot-geo_dev_symq":"Mej_dev_symq", "Mej_tot-geo_dev_symq2":"Mej_dev_symq2", "Mej_tot-geo_mult_symq":"Mej_mult_symq", "Mej_tot-geo_mult_symq2":"Mej_mult_symq2", "Mej_tot-geo_dev_mchirp":"Mej_dev_mchirp", "Mej_tot-geo_dev_mchirp2":"Mej_dev_mchirp2", "Mej_tot-geo_mult_mchirp":"Mej_mult_mchirp", "Mej_tot-geo_dev_symqmchirp":"Mej_dev_symqmchirp", "Mej_tot-geo_dev_mtotsymqmchirp":"Mej_dev_mtotsymqmchirp"} v_n_x = translation[v_n_x] v_n_y = translation[v_n_y] total_x2 = [] # for fits total_y2 = [] # for fits Printcolor.blue("Collecting Data") o_tbl = GET_PAR_FROM_TABLE() o_tbl.set_intable = simtable2 o_tbl.load_table() data2 = {} all_x = [] all_y = [] all_col = [] all_marker = [] for eos in simlist2.keys(): data2[eos] = {} for usim in simlist2[eos].keys(): data2[eos][usim] = {} sims = simlist2[eos][usim] print("\t{} [{}]".format(usim, len(sims))) x, x1, x2 = o_tbl.get_par_with_error(sims, v_n_x, deferr=deferr) y, y1, y2 = o_tbl.get_par_with_error(sims, v_n_y, deferr=deferr) # col = o_tbl.get_par(sims[0], v_n_col) col = o_tbl.get_par(sims[0], v_n_col) # print(col); exit(1) data2[eos][usim]["x"] = x data2[eos][usim]['x1'] = x1 data2[eos][usim]['x2'] = x2 data2[eos][usim]['y'] = y data2[eos][usim]['y1'] = y1 data2[eos][usim]['y2'] = y2 data2[eos][usim]['col'] = col all_x.append(x) all_y.append(y) all_col.append(col) isbh, ispromtcoll = o_tbl.get_is_prompt_coll(sims, delta_t=3., v_n_tcoll="tcoll", v_n_tmerg="tmerg_r") data2[eos][usim]["isprompt"] = ispromtcoll data2[eos][usim]["isbh"] = isbh if isbh and not ispromtcoll: marker = marker_bh elif isbh and ispromtcoll: marker = marker_pc else: marker = marker_long all_marker.append(marker) data2[eos][usim]["marker"] = marker data2["allx"] = np.array(all_x) data2["ally"] = np.array(all_y) data2["allcol"] = np.array(all_col) data2["allmarker"] = all_marker # # Printcolor.green("Data is collected") Printcolor.blue("Plotting Data") # def make_plot_name(v_n_x, v_n_y, v_n_col, do_plot_old_table): figname = '' figname = figname + v_n_x + '_' figname = figname + v_n_y + '_' figname = figname + v_n_col + '_' if do_plot_old_table: figname = figname + '_InclOldTbl' figname = figname + '.png' return figname figname = make_plot_name(v_n_x, v_n_y, v_n_col, False) # def get_custom_colormap(cmap_name = 'newCmap', n_bin=8): from matplotlib.colors import LinearSegmentedColormap # colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] colors=([(1, 0, 0), (0, 0, 1)],[1., 1.8]) cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=n_bin) return cm # # assert len(data2["allx"]) == len(data2["ally"]) assert len(data2["ally"]) == len(data2["allcol"]) assert len(data2["allcol"]) > 0 if v_n_y.__contains__("Mej"): data2["ally"] = data2["ally"] * 1e2 if v_n_x.__contains__("Mej"): data2["allx"] = data2["allx"] * 1e2 # # if plot_legend: # x = -1. # y = -1. # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, 1), # 'xarr': [x], "yarr": [y], # 'xlabel': None, "ylabel": None, # 'label': "BH formation", # 'marker': marker_bh, 'color': 'gray', 'ms': 10., 'alpha': 0.4, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # # o_plot.set_plot_dics.append(marker_dic_lr) # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, 1), # 'xarr': [x], "yarr": [y], # 'xlabel': None, "ylabel": None, # 'label': "Prompt collapse", # 'marker': marker_pc, 'color': 'gray', 'ms': 10., 'alpha': 0.4, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # # o_plot.set_plot_dics.append(marker_dic_lr) # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, 1), # 'xarr': [x], "yarr": [y], # 'xlabel': None, "ylabel": None, # 'label': "Long lived", # 'marker': marker_long, 'color': 'gray', 'ms': 10., 'alpha': 0.4, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # marker_dic_lr['legend'] = {'loc': 'upper left', 'ncol': 1, 'shadow': False, 'framealpha': 0., # 'borderaxespad': 0., 'fontsize': 11} # o_plot.set_plot_dics.append(marker_dic_lr) # # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # # print('-0--------------------') # print(data2["ally"]); exit(1) dic2 = { 'task': 'scatter', 'ptype': 'cartesian', # 'aspect': 1., 'xarr': data2["allx"], "yarr": data2["ally"], "zarr": data2["allcol"], 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': v_n_x, 'v_n_y': v_n_y, 'v_n': v_n_col, 'xlabel': get_table_label(v_n_x), "ylabel": get_table_label(v_n_y), 'xmin': 300, 'xmax': 900, 'ymin': 0.03, 'ymax': 0.5, 'vmin': 1.0, 'vmax': 1.9, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'cmap': 'tab10', 'norm': None, 'ms': 40, 'marker': '*', 'alpha': 0.4, "edgecolors": None, #data2["allmarker"] 'tick_params': {"axis": 'both', "which": 'both', "labelleft": True, "labelright": False, # "tick1On":True, "tick2On":True, "labelsize": 12, "direction": 'in', "bottom": True, "top": True, "left": True, "right": True}, 'yaxiscolor': {'bottom': 'black', 'top': 'black', 'right': 'black', 'left': 'black'}, 'minorticks': True, 'title': {}, # {"text": eos, "fontsize": 12}, 'label': None, 'legend': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } dic2 = set_dic_xminxmax(v_n_x, dic2, data2["allx"]) dic2 = set_dic_yminymax(v_n_y, dic2, data2["ally"]) dic2['cbar'] = {'location': 'right .03 .0', 'label': Labels.labels(v_n_col), # 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14} if xyscales == "log": dic2["xscale"] = "log" dic2["yscale"] = "log" dic2["xmin"], dic2["xmax"] = 5e-3, 1e0 dic2["ymin"], dic2["ymax"] = 5e-3, 1e0 o_plot.set_plot_dics.append(dic2) # for fits for eos in simlist2.keys(): for usim in simlist2[eos].keys(): if not data2[eos][usim]["isprompt"]: total_x2.append(data2[eos][usim]["x"]) total_y2.append(data2[eos][usim]["y"]) if plot_fit2: total_x2, total_y2 = UTILS.x_y_z_sort(total_x2, total_y2) # fit_polynomial(x, y, order, depth, new_x=np.empty(0, ), print_formula=True): Printcolor.blue("Old data fit") if xyscales == "log": fit_x2, fit_y2 = UTILS.fit_polynomial(total_x2, total_y2, order=1, depth=100) else: fit_x2, fit_y2 = UTILS.fit_polynomial(total_x2, total_y2, order=1, depth=100) # if v_n_y.__contains__("Mej"): fit_y2 = fit_y2 * 1e2 if v_n_x.__contains__("Mej"): fit_x2 = fit_x2 * 1e2 # print(fit_x, fit_y) linear_fit = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': fit_x2, "yarr": fit_y2, 'xlabel': None, "ylabel": None, 'label': "Old Data", 'ls': '--', 'color': 'blue', 'lw': 1., 'alpha': 0.8, 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14, # 'text':{'x':1., 'y':1., 'text':'my_text', 'fs':14, 'color':'black','horal':True} } o_plot.set_plot_dics.append(linear_fit) r, rho = stats.spearmanr(total_x2, total_y2) rs.append(r) rhos.append(rho) print("r: {} rho: {}".format(r, rho)) text_dic = { 'task': 'text', 'ptype': 'cartesian', 'position': (1, 1), 'x': 0.45, 'y': 0.8, 'text': r'Old: $r:{:.2f}$ $\rho:{:.2e}$'.format(r, rho), 'fs': 10, 'color': 'black', 'horizontalalignment': "left", 'transform': True } o_plot.set_plot_dics.append(text_dic) if plot_fit2 and plot_old_table: total_x3, total_y3 = np.append(total_x, total_x2), np.append(total_y, total_y2) # print(len(total_x3)); exit(1) total_x3, total_y3 = UTILS.x_y_z_sort(total_x3, total_y3) # fit_polynomial(x, y, order, depth, new_x=np.empty(0, ), print_formula=True): Printcolor.blue("All data fit") if xyscales == "log": fit_x3, fit_y3 = UTILS.fit_polynomial(total_x3, total_y3, order=1, depth=100) else: fit_x3, fit_y3 = UTILS.fit_polynomial(total_x3, total_y3, order=1, depth=100) # if v_n_y.__contains__("Mej"): fit_y3 = fit_y3 * 1e2 if v_n_x.__contains__("Mej"): fit_x3 = fit_x3 * 1e2 # print(fit_x, fit_y) linear_fit = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': fit_x3, "yarr": fit_y3, 'xlabel': None, "ylabel": None, 'label': "All Data", 'ls': ':', 'color': 'black', 'lw': 1., 'alpha': 1., 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14, # 'text':{'x':1., 'y':1., 'text':'my_text', 'fs':14, 'color':'black','horal':True} } o_plot.set_plot_dics.append(linear_fit) r, rho = stats.spearmanr(total_x3, total_y3) print("r: {} rho: {}".format(r, rho)) text_dic = { 'task': 'text', 'ptype': 'cartesian', 'position': (1, 1), 'x': 0.45, 'y': 0.7, 'text': r'All: $r:{:.2f}$ $\rho:{:.2e}$'.format(r, rho), 'fs': 10, 'color': 'black', 'horizontalalignment': "left", 'transform': True } o_plot.set_plot_dics.append(text_dic) rs.append(r) rhos.append(rho) if plot_legend: x = -1. y = -1. marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "BH formation", 'marker': marker_bh, 'color': 'gray', 'ms': 8., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(marker_dic_lr) marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "Prompt collapse", 'marker': marker_pc, 'color': 'gray', 'ms': 8., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(marker_dic_lr) marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "Long lived", 'marker': marker_long, 'color': 'gray', 'ms': 8., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } marker_dic_lr['legend'] = {'loc': 'upper left', 'ncol': 1, 'shadow': False, 'framealpha': 0., 'borderaxespad': 0., 'fontsize': 11} o_plot.set_plot_dics.append(marker_dic_lr) print("\n") Printcolor.blue("Spearman's Rank Coefficients for: ") Printcolor.green("v_n_x: {}".format(v_n_x)) Printcolor.green("v_n_y: {}".format(v_n_y)) Printcolor.blue("New data: ", comma=True) Printcolor.green("{:.2f}".format(rs[0])) Printcolor.blue("Old data: ", comma=True) Printcolor.green("{:.2f}".format(rs[1])) Printcolor.blue("All data: ", comma=True) Printcolor.green("{:.2f}".format(rs[2])) o_plot.main() exit(0) __outplotdir__ = "/data01/numrel/vsevolod.nedora/figs/all3/" #/data01/numrel/vsevolod.nedora/bns_ppr_tools # import imp # LOAD_INIT_DATA = imp.load_source("LOAD_INIT_DATA", "/data01/numrel/vsevolod.nedora/bns_ppr_tools/preanalysis.py") # LOAD_INIT_DATA. def __get_value(o_init, o_par, det=None, mask=None, v_n=None): if v_n in o_init.list_v_ns and mask == None: value = o_init.get_par(v_n) elif not v_n in o_init.list_v_ns and mask == None: value = o_par.get_par(v_n) elif v_n == "Mej_tot_scaled": ma = __get_value(o_init, o_par, None, None, "Mb1") mb = __get_value(o_init, o_par, None, None, "Mb2") mej = __get_value(o_init, o_par, det, mask, "Mej_tot") return mej / (ma + mb) elif v_n == "Mej_tot_scaled2": # M1 * M2 / (M1 + M2) ^ 2 ma = __get_value(o_init, o_par, None, None, "Mb1") mb = __get_value(o_init, o_par, None, None, "Mb2") eta = ma * mb / (ma + mb) ** 2 mej = __get_value(o_init, o_par, det, mask, "Mej_tot") return mej / (eta * (ma + mb)) elif not v_n in o_init.list_v_ns and mask != None: value = o_par.get_outflow_par(det, mask, v_n) else: raise NameError("unrecognized: v_n_x:{} mask_x:{} det:{} combination" .format(v_n, mask, det)) if value == None or np.isinf(value) or np.isnan(value): raise ValueError("sim: {} det:{} mask:{} v_n:{} --> value:{} wrong!" .format(o_par.sim,det,mask,v_n, value)) return value def __get_val_err(sims, o_inits, o_pars, v_n, det=0, mask="geo", error=0.2): if v_n == "nsims": return len(sims), len(sims), len(sims) elif v_n == "pizzaeos": pizza_eos = '' for sim, o_init, o_par in zip(sims, o_inits, o_pars): _pizza_eos = o_init.get_par("pizza_eos") if pizza_eos != '' and pizza_eos != _pizza_eos: raise NameError("sim:{} pizza_eos:{} \n sim:{} pizza_eos: {} \n MISMATCH" .format(sim, pizza_eos, sims[0], _pizza_eos)) pizza_eos = _pizza_eos return pizza_eos, pizza_eos, pizza_eos if len(sims) == 0: raise ValueError("no simualtions passed") _resols, _values = [], [] assert len(sims) == len(o_inits) assert len(sims) == len(o_pars) for sim, o_init, o_par in zip(sims, o_inits, o_pars): _val = __get_value(o_init, o_par, det, mask, v_n) # print(sim, _val) _res = "fuck" for res in resolutions.keys(): if sim.__contains__(res): _res = res break if _res == "fuck": raise NameError("fuck") _resols.append(resolutions[_res]) _values.append(_val) if len(sims) == 1: return _values[0], _values[0] - error * _values[0], _values[0] + error * _values[0] elif len(sims) == 2: delta = np.abs(_values[0] - _values[1]) if _resols[0] < _resols[1]: return _values[0], _values[0] - delta, _values[0] + delta else: return _values[1], _values[1] - delta, _values[1] + delta elif len(sims) == 3: _resols_, _values_ = UTILS.x_y_z_sort(_resols, _values) # 123, 185, 236 delta1 = np.abs(_values_[0] - _values_[1]) delta2 = np.abs(_values_[1] - _values_[2]) # print(_values, _values_); exit(0) return _values_[1], _values_[1] - delta1, _values_[1] + delta2 else: raise ValueError("Too many simulations") def __get_is_prompt_coll(sims, o_inits, o_pars, delta_t = 3.): isprompt = False isbh = False for sim, o_init, o_par in zip(sims, o_inits, o_pars): tcoll = o_par.get_par("tcoll_gw") if np.isinf(tcoll): pass else: isbh = True tmerg = o_par.get_par("tmerg") assert tcoll > tmerg if float(tcoll - tmerg) < delta_t * 1e-3: isprompt = True return isbh, isprompt def __get_custom_descrete_colormap(n): # n = 5 import matplotlib.colors as col from_list = col.LinearSegmentedColormap.from_list cm = from_list(None, plt.cm.Set1(range(0, n)), n) x = np.arange(99) y = x % 11 z = x % n return cm v_n_x = "Lambda" v_n_y = "Ye_ave" v_n_col = "q" det = 0 do_plot_linear_fit = True do_plot_promptcoll = True do_plot_bh = True do_plot_error_bar_y = True do_plot_error_bar_x = False do_plot_old_table = True do_plot_annotations = False mask_x, mask_y, mask_col = None, "geo", None # geo_entropy_above_10 data2 = {} error = 0.2 # in * 100 percent delta_t_prompt = 2. # ms ''' --- collect data for table 1 --- ''' old_data = {} if do_plot_old_table: # if mask_x != None and mask_x != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_x)) if mask_y != None and mask_y != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_y)) if mask_col != None and mask_col != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_col)) # new_old_dic = {'Mej_tot': "Mej", "Lambda": "Lambda", "vel_inf_ave": "vej", "Ye_ave": "Yeej"} old_tbl = ALL_SIMULATIONS_TABLE() old_tbl.set_list_neut = ["LK", "M0"] old_tbl.set_list_vis = ["L5", "L25", "L50"] old_tbl.set_list_eos.append("BHBlp") old_tbl.set_intable = Paths.output + "radice2018_summary.csv" old_tbl.load_input_data() old_all_x = [] old_all_y = [] old_all_col = [] for run in old_tbl.table: sim = run['name'] old_data[sim] = {} if not sim.__contains__("HR") \ and not sim.__contains__("OldM0") \ and not sim.__contains__("LR") \ and not sim.__contains__("L5") \ and not sim.__contains__("L25") \ and not sim.__contains__("L50"): x = float(run[new_old_dic[v_n_x]]) y = float(run[new_old_dic[v_n_y]]) col = "gray" old_all_col.append(col) old_all_x.append(x) old_all_y.append(y) old_data[sim][v_n_x] = x old_data[sim][v_n_y] = y Printcolor.green("old data is collected") old_all_x = np.array(old_all_x) old_all_y = np.array(old_all_y) ''' --- --- --- ''' new_data = {} # collect old data old_data = {} if do_plot_old_table: # if mask_x != None and mask_x != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_x)) if mask_y != None and mask_y != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_y)) if mask_col != None and mask_col != "geo": raise NameError("old table des not contain data for mask_x: {}".format(mask_col)) # new_old_dic = {'Mej_tot': "Mej", "Lambda": "Lambda", "vel_inf_ave": "vej", "Ye_ave": "Yeej"} old_tbl = ALL_SIMULATIONS_TABLE() old_tbl.set_list_neut = ["LK", "M0"] old_tbl.set_list_vis = ["L5", "L25", "L50"] old_tbl.set_list_eos.append("BHBlp") old_tbl.set_intable = Paths.output + "radice2018_summary.csv" old_tbl.load_input_data() old_all_x = [] old_all_y = [] old_all_col = [] for run in old_tbl.table: sim = run['name'] old_data[sim] = {} if not sim.__contains__("HR") \ and not sim.__contains__("OldM0") \ and not sim.__contains__("LR") \ and not sim.__contains__("L5") \ and not sim.__contains__("L25") \ and not sim.__contains__("L50"): x = float(run[new_old_dic[v_n_x]]) y = float(run[new_old_dic[v_n_y]]) col = "gray" old_all_col.append(col) old_all_x.append(x) old_all_y.append(y) old_data[sim][v_n_x] = x old_data[sim][v_n_y] = y Printcolor.green("old data is collected") old_all_x = np.array(old_all_x) old_all_y = np.array(old_all_y) # exit(1) # collect data for eos in simulations.keys(): data2[eos] = {} for q in simulations[eos]: data2[eos][q] = {} for u_sim in simulations[eos][q]: data2[eos][q][u_sim] = {} sims = simulations[eos][q][u_sim] o_inits = [LOAD_INIT_DATA(sim) for sim in sims] o_pars = [ADD_METHODS_ALL_PAR(sim) for sim in sims] x_coord, x_err1, x_err2 = __get_val_err(sims, o_inits, o_pars, v_n_x, det, mask_x, error) y_coord, y_err1, y_err2 = __get_val_err(sims, o_inits, o_pars, v_n_y, det, mask_y, error) col_coord, col_err1, col_err2 = __get_val_err(sims, o_inits, o_pars, v_n_col, det, mask_col, error) data2[eos][q][u_sim]["lserr"] = len(sims) data2[eos][q][u_sim]["x"] = x_coord data2[eos][q][u_sim]["xe1"] = x_err1 data2[eos][q][u_sim]["xe2"] = x_err2 data2[eos][q][u_sim]["y"] = y_coord data2[eos][q][u_sim]["ye1"] = y_err1 data2[eos][q][u_sim]["ye2"] = y_err2 data2[eos][q][u_sim]["c"] = col_coord data2[eos][q][u_sim]["ce1"] = col_err1 data2[eos][q][u_sim]["ce2"] = col_err2 # isbh, ispromtcoll = __get_is_prompt_coll(sims, o_inits, o_pars, delta_t=delta_t_prompt) data2[eos][q][u_sim]["isprompt"] = ispromtcoll data2[eos][q][u_sim]["isbh"] = isbh if isbh and not ispromtcoll: marker = 'o' elif isbh and ispromtcoll: marker = 's' else: marker = 'd' data2[eos][q][u_sim]["marker"] = marker # pizzaeos = False if eos == "SFHo": pizzaeos, _, _ = __get_val_err(sims, o_inits, o_pars, "pizzaeos") if pizzaeos.__contains__("2019"): _pizzaeos = True data2[eos][q][u_sim]['pizza2019'] = True else: _pizzaeos = False data2[eos][q][u_sim]['pizza2019'] = False # Printcolor.print_colored_string([u_sim, "({})".format(len(sims)), "x:[", "{:.1f}".format(x_coord), "v:", "{:.1f}".format(x_err1), "^:", "{:.1f}".format(x_err2), "|", "y:", "{:.5f}".format(y_coord), "v:", "{:.5f}".format(y_err1), "^:", "{:.5f}".format(y_err2), "] col: {} BH:".format(col_coord), "{}".format(ispromtcoll), "pizza2019:", "{}".format(pizzaeos)], ["blue", "green", "blue", "green", "blue", "green", "blue", "green", "yellow", "blue", "green", "blue", "green", "blue", "green", "blue", "green", "blue", "green"]) # Printcolor.blue("Processing {} ({} sims) x:[{:.1f}, v:{:.1f} ^{:.1f}] y:[{:.5f}, v{:.5f} ^{:.5f}] col:{:.1f}" # .format(u_sim, len(sims), x_coord, x_err1, x_err2, y_coord, y_err1, y_err2, col_coord)) Printcolor.green("Data is collaected") # FIT print(" =============================== ") all_x = [] all_y = [] for eos in data2.keys(): for q in data2[eos].keys(): for u_sim in data2[eos][q].keys(): ispc = data2[eos][q][u_sim]["isprompt"] if not ispc: all_x.append(data2[eos][q][u_sim]["x"]) all_y.append(data2[eos][q][u_sim]['y']) all_x = np.array(all_x) all_y = np.array(all_y) # print(all_x) all_x, all_y = UTILS.x_y_z_sort(all_x, all_y) # print(all_x); print("_log(lambda) as x") UTILS.fit_polynomial(np.log10(all_x), all_y, 1, 100) print("lamda as x") fit_x, fit_y = UTILS.fit_polynomial(all_x, all_y, 1, 100) # print(fit_x); exit(1) print("ave: {}".format(np.sum(all_y) / len(all_y))) print(" =============================== ") # stuck data for scatter plot for eos in simulations.keys(): for v_n in ["x", "y", "c", "marker"]: arr = [] for q in simulations[eos].keys(): for u_sim in simulations[eos][q]: arr.append(data2[eos][q][u_sim][v_n]) data2[eos][v_n + "s"] = arr Printcolor.green("Data is stacked") # plot the scatter points figname = '' if mask_x == None: figname = figname + v_n_x + '_' else: figname = figname + v_n_x + '_' + mask_x + '_' if mask_y == None: figname = figname + v_n_y + '_' else: figname = figname + v_n_y + '_' + mask_y + '_' if mask_col == None: figname = figname + v_n_col + '_' else: figname = figname + v_n_col + '_' + mask_col + '_' if det == None: figname = figname + '' else: figname = figname + str(det) if do_plot_old_table: figname = figname + '_InclOldTbl' figname = figname + '.png' # o_plot = PLOT_MANY_TASKS() o_plot.gen_set["figdir"] = __outplotdir__ o_plot.gen_set["type"] = "cartesian" o_plot.gen_set["figsize"] = (4.2, 3.6) # <->, |] o_plot.gen_set["figname"] = figname o_plot.gen_set["sharex"] = True o_plot.gen_set["sharey"] = False o_plot.gen_set["subplots_adjust_h"] = 0.0 o_plot.gen_set["subplots_adjust_w"] = 0.0 o_plot.set_plot_dics = [] # FOR LEGENDS if do_plot_promptcoll: x = -1. y = -1. marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "Prompt collapse", 'marker': 's', 'color': 'gray', 'ms': 10., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # print('-0--------------------') marker_dic_lr['legend'] = {'loc': 'upper left', 'ncol': 1, 'shadow': False, 'framealpha': 0., 'borderaxespad': 0., 'fontsize': 11} o_plot.set_plot_dics.append(marker_dic_lr) if do_plot_bh: x = -1. y = -1. marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "BH formation", 'marker': 'o', 'color': 'gray', 'ms': 10., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # print('-0--------------------') marker_dic_lr['legend'] = {'loc': 'upper left', 'ncol': 1, 'shadow': False, 'framealpha': 0., 'borderaxespad': 0., 'fontsize': 11} o_plot.set_plot_dics.append(marker_dic_lr) if do_plot_bh: x = -1. y = -1. marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "Long Lived", 'marker': 'd', 'color': 'gray', 'ms': 10., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # print('-0--------------------') marker_dic_lr['legend'] = {'loc': 'upper right', 'ncol': 1, 'shadow': False, 'framealpha': 0., 'borderaxespad': 0., 'fontsize': 11} o_plot.set_plot_dics.append(marker_dic_lr) if do_plot_old_table: x = -1. y = -1. marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': "Radice+2018", 'marker': '*', 'color': 'gray', 'ms': 10., 'alpha': 0.4, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # print('-0--------------------') marker_dic_lr['legend'] = {'loc': 'upper right', 'ncol': 1, 'shadow': False, 'framealpha': 0., 'borderaxespad': 0., 'fontsize': 11} o_plot.set_plot_dics.append(marker_dic_lr) # FOR FITS if do_plot_linear_fit: if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": fit_y = fit_y * 1e2 if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": fit_x = fit_x * 1e2 # print(fit_x, fit_y) linear_fit = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': fit_x, "yarr": fit_y, 'xlabel': None, "ylabel": None, 'label': "Linear fit", 'ls': '-', 'color': 'black', 'lw': 1., 'alpha': 1., 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(linear_fit) # if do_plot_old_table: if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": old_all_y = old_all_y * 1e2 if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": old_all_x = old_all_x * 1e2 dic = { 'task': 'scatter', 'ptype': 'cartesian', # 'aspect': 1., 'xarr': old_all_x, "yarr": old_all_y, "zarr": old_all_col, 'position': (1, 1), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': v_n_x, 'v_n_y': v_n_y, 'v_n': v_n_col, 'xlabel': None, "ylabel": Labels.labels(v_n_y, mask_y), 'xmin': 300, 'xmax': 900, 'ymin': 0.03, 'ymax': 0.3, 'vmin': 1.0, 'vmax': 1.9, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'cmap': 'tab10', 'norm': None, 'ms': 60, 'marker': '*', 'alpha': 0.7, "edgecolors": None, 'tick_params': {"axis": 'both', "which": 'both', "labelleft": True, "labelright": False, # "tick1On":True, "tick2On":True, "labelsize": 12, "direction": 'in', "bottom": True, "top": True, "left": True, "right": True}, 'yaxiscolor': {'bottom': 'black', 'top': 'black', 'right': 'black', 'left': 'black'}, 'minorticks': True, 'title': {}, # {"text": eos, "fontsize": 12}, 'label': None, 'legend': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(dic) if do_plot_annotations: for eos in ["SFHo"]: print(eos) for q in simulations[eos].keys(): for u_sim in simulations[eos][q].keys(): x = data2[eos][q][u_sim]["x"] y = data2[eos][q][u_sim]["y"] y1 = data2[eos][q][u_sim]["ye1"] y2 = data2[eos][q][u_sim]["ye2"] if data2[eos][q][u_sim]["pizza2019"]: if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": x = x * 1e2 if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": y1 = y1 * 1e2 y2 = y2 * 1e2 y = y * 1e2 marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, 1), 'xarr': [x], "yarr": [y], 'xlabel': None, "ylabel": None, 'label': None, 'marker': '2', 'color': 'blue', 'ms': 15, 'alpha': 1., # 'ls': ls, 'color': 'gray', 'lw': 1.5, 'alpha': 1., 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(marker_dic_lr) # PLOTS i_col = 1 for eos in ["SLy4", "SFHo", "BLh", "LS220", "DD2"]: print(eos) # Error Bar if do_plot_error_bar_y: for q in simulations[eos].keys(): for u_sim in simulations[eos][q].keys(): x = data2[eos][q][u_sim]["x"] y = data2[eos][q][u_sim]["y"] y1 = data2[eos][q][u_sim]["ye1"] y2 = data2[eos][q][u_sim]["ye2"] nsims = data2[eos][q][u_sim]["lserr"] if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": x = x * 1e2 if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": y1 = y1 * 1e2 y2 = y2 * 1e2 y = y * 1e2 if nsims == 1: ls = ':' elif nsims == 2: ls = '--' elif nsims == 3: ls = '-' else: raise ValueError("too many sims >3") marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, i_col), 'xarr': [x, x], "yarr": [y1, y2], 'xlabel': None, "ylabel": None, 'label': None, 'ls': ls, 'color': 'gray', 'lw': 1.5, 'alpha': 0.6, 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(marker_dic_lr) if do_plot_error_bar_x: for q in simulations[eos].keys(): for u_sim in simulations[eos][q].keys(): x = data2[eos][q][u_sim]["x"] x1 = data2[eos][q][u_sim]["xe1"] x2 = data2[eos][q][u_sim]["xe2"] y = data2[eos][q][u_sim]["y"] nsims = data2[eos][q][u_sim]["lserr"] if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": y = y * 1e2 if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": x1 = x1 * 1e2 x2 = x2 * 1e2 x = x * 1e2 if nsims == 1: ls = ':' elif nsims == 2: ls = '--' elif nsims == 3: ls = '-' else: raise ValueError("too many sims >3") marker_dic_lr = { 'task': 'line', 'ptype': 'cartesian', 'position': (1, i_col), 'xarr': [x1, x2], "yarr": [y, y], 'xlabel': None, "ylabel": None, 'label': None, 'ls': ls, 'color': 'gray', 'lw': 1.5, 'alpha': 1., 'ds': 'default', 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } o_plot.set_plot_dics.append(marker_dic_lr) # if do_plot_promptcoll: # for q in simulations2[eos].keys(): # for u_sim in simulations2[eos][q].keys(): # x = data[eos][q][u_sim]["x"] # y = data[eos][q][u_sim]["y"] # isprompt = data[eos][q][u_sim]["isprompt"] # if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": # y = y * 1e2 # if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": # x = x * 1e2 # if isprompt: # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, i_col), # 'xarr': [x], "yarr": [y], # 'xlabel': None, "ylabel": None, # 'label': None, # 'marker': 's', 'color': 'gray', 'ms': 10., 'alpha': 0.4, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # # print('-0--------------------') # marker_dic_lr['legend'] = {'loc':'upper left', 'ncol':1, 'shadow': False, 'framealpha':0., 'borderaxespad':0., 'fontsize':11} # o_plot.set_plot_dics.append(marker_dic_lr) # if do_plot_bh: # for q in simulations2[eos].keys(): # for u_sim in simulations2[eos][q].keys(): # x = data[eos][q][u_sim]["x"] # y = data[eos][q][u_sim]["y"] # isbh = data[eos][q][u_sim]["isbh"] # if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": # y = y * 1e2 # if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": # x = x * 1e2 # if isbh: # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, i_col), # 'xarr': [x], "yarr": [y], # 'xlabel': None, "ylabel": None, # 'label': None, # 'marker': 'o', 'color': 'gray', 'ms': 10., 'alpha': 0.4, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # # if eos == "BLh" and u_sim == simulations2[eos][q].keys()[-1]: # # print('-0--------------------') # marker_dic_lr['legend'] = {'loc':'upper left', 'ncol':1, 'shadow': False, 'framealpha':0., 'borderaxespad':0., 'fontsize':11} # o_plot.set_plot_dics.append(marker_dic_lr) # LEGEND # if eos == "DD2" and plot_legend: # for res in ["HR", "LR", "SR"]: # marker_dic_lr = { # 'task': 'line', 'ptype': 'cartesian', # 'position': (1, i_col), # 'xarr': [-1], "yarr": [-1], # 'xlabel': None, "ylabel": None, # 'label': res, # 'marker': 'd', 'color': 'gray', 'ms': 8, 'alpha': 1., # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # if res == "HR": marker_dic_lr['marker'] = "v" # if res == "SR": marker_dic_lr['marker'] = "d" # if res == "LR": marker_dic_lr['marker'] = "^" # # if res == "BH": marker_dic_lr['marker'] = "x" # if res == "SR": # if v_n_y == "Ye_ave": # loc = 'lower right' # else: # loc = 'upper right' # marker_dic_lr['legend'] = {'loc': loc, 'ncol': 1, 'fontsize': 12, 'shadow': False, # 'framealpha': 0.5, 'borderaxespad': 0.0} # o_plot.set_plot_dics.append(marker_dic_lr) # xarr = np.array(data2[eos]["xs"]) yarr = np.array(data2[eos]["ys"]) colarr = data2[eos]["cs"] markers = data2[eos]['markers'] # marker = data[eos]["res" + 's'] # edgecolor = data[eos]["vis" + 's'] # bh_marker = data[eos]["tcoll" + 's'] # # UTILS.fit_polynomial(xarr, yarr, 1, 100) # # print(xarr, yarr); exit(1) if v_n_y == "Mej_tot" or v_n_y == "Mej_tot_scaled": yarr = yarr * 1e2 if v_n_x == "Mej_tot" or v_n_x == "Mej_tot_scaled": xarr = xarr * 1e2 # # # # dic_bh = { # 'task': 'scatter', 'ptype': 'cartesian', # 'aspect': 1., # 'xarr': xarr, "yarr": yarr, "zarr": colarr, # 'position': (1, i_col), # 'title': '[{:.1f} ms]'.format(time_), # 'cbar': {}, # 'v_n_x': v_n_x, 'v_n_y': v_n_y, 'v_n': v_n_col, # 'xlabel': None, "ylabel": None, 'label': eos, # 'xmin': 300, 'xmax': 900, 'ymin': 0.03, 'ymax': 0.3, 'vmin': 1.0, 'vmax': 1.5, # 'fill_vmin': False, # fills the x < vmin with vmin # 'xscale': None, 'yscale': None, # 'cmap': 'viridis', 'norm': None, 'ms': 80, 'marker': bh_marker, 'alpha': 1.0, "edgecolors": edgecolor, # 'fancyticks': True, # 'minorticks': True, # 'title': {}, # 'legend': {}, # 'sharey': False, # 'sharex': False, # removes angular citkscitks # 'fontsize': 14, # 'labelsize': 14 # } # # if mask_y != None and mask_y.__contains__("bern"): # o_plot.set_plot_dics.append(dic_bh) # # # # print("marker: {}".format(marker)) dic = { 'task': 'scatter', 'ptype': 'cartesian', # 'aspect': 1., 'xarr': xarr, "yarr": yarr, "zarr": colarr, 'position': (1, i_col), # 'title': '[{:.1f} ms]'.format(time_), 'cbar': {}, 'v_n_x': v_n_x, 'v_n_y': v_n_y, 'v_n': v_n_col, 'xlabel': None, "ylabel": Labels.labels(v_n_y, mask_y), 'xmin': 300, 'xmax': 900, 'ymin': 0.03, 'ymax': 0.3, 'vmin': 1.0, 'vmax': 1.9, 'fill_vmin': False, # fills the x < vmin with vmin 'xscale': None, 'yscale': None, 'cmap': 'tab10', 'norm': None, 'ms': 60, 'markers': markers, 'alpha': 0.6, "edgecolors": None, 'tick_params': {"axis": 'both', "which": 'both', "labelleft": True, "labelright": False, # "tick1On":True, "tick2On":True, "labelsize": 12, "direction": 'in', "bottom": True, "top": True, "left": True, "right": True}, 'yaxiscolor': {'bottom': 'black', 'top': 'black', 'right': 'black', 'left': 'black'}, 'minorticks': True, 'title': {}, # {"text": eos, "fontsize": 12}, 'label': None, 'legend': {}, 'sharey': False, 'sharex': False, # removes angular citkscitks 'fontsize': 14, 'labelsize': 14 } # if v_n_y == "q": dic['ymin'], dic['ymax'] = 0.9, 2.0 if v_n_col == "nsims": dic['vmin'], dic['vmax'] = 1, 3.9 dic['cmap'] = __get_custom_descrete_colormap(3) # dic['cmap'] = 'RdYlBu' if v_n_y == "Mdisk3Dmax": dic['ymin'], dic['ymax'] = 0.03, 0.30 if v_n_y == "Mb": dic['ymin'], dic['ymax'] = 2.8, 3.4 if v_n_y == "Mej_tot" and mask_y == "geo": dic['ymin'], dic['ymax'] = 0, 1.2 if v_n_y == "Mej_tot_scaled" and mask_y == "geo": dic['ymin'], dic['ymax'] = 0, 0.5 if v_n_y == "Mej_tot_scaled2" and mask_y == "geo": dic['ymin'], dic['ymax'] = 0, 1. if v_n_y == "Mej_tot_scaled2" and mask_y == "geo_entropy_above_10": dic['ymin'], dic['ymax'] = 0, 0.01 if v_n_y == "Mej_tot_scaled2" and mask_y == "geo_entropy_below_10": dic['ymin'], dic['ymax'] = 0, 0.02 if v_n_y == "Mej_tot" and mask_y == "bern_geoend": if dic['yscale'] == "log": dic['ymin'], dic['ymax'] = 1e-3, 2e0 else: dic['ymin'], dic['ymax'] = 0, 3.2 if v_n_y == "Mej_tot" and mask_y == "geo_entropy_above_10": if dic['yscale'] == "log": dic['ymin'], dic['ymax'] = 1e-3, 2e0 else: dic['ymin'], dic['ymax'] = 0, .6 if v_n_y == "Mej_tot" and mask_y == "geo_entropy_below_10": if dic['yscale'] == "log": dic['ymin'], dic['ymax'] = 1e-2, 2e0 else: dic['ymin'], dic['ymax'] = 0, 1.2 if v_n_y == "Mej_tot_scaled" and mask_y == "bern_geoend": dic['ymin'], dic['ymax'] = 0, 3. if v_n_y == "Ye_ave" and mask_y == "geo": dic['ymin'], dic['ymax'] = 0.01, 0.35 if v_n_y == "Ye_ave" and mask_y == "bern_geoend": dic['ymin'], dic['ymax'] = 0.1, 0.4 if v_n_y == "vel_inf_ave" and mask_y == "geo": dic['ymin'], dic['ymax'] = 0.1, 0.3 if v_n_y == "vel_inf_ave" and mask_y == "bern_geoend": dic['ymin'], dic['ymax'] = 0.05, 0.25 # # if v_n_x == "Mdisk3Dmax": dic['xmin'], dic['xmax'] = 0.03, 0.30 if v_n_x == "Mb": dic['xmin'], dic['xmax'] = 2.8, 3.4 if v_n_x == "Mej_tot" and mask_x == "geo": dic['xmin'], dic['xmax'] = 0, 1.5 if v_n_x == "Mej_tot_scaled" and mask_x == "geo": dic['xmin'], dic['xmax'] = 0, 0.5 if v_n_x == "Mej_tot" and mask_x == "bern_geoend": dic['xmin'], dic['xmax'] = 0, 3.2 if v_n_x == "Mej_tot" and mask_x == "geo_entropy_above_10": if dic['xscale'] == "log": dic['xmin'], dic['xmax'] = 1e-3, 2e0 else: dic['xmin'], dic['xmax'] = 0, .6 if v_n_x == "Mej_tot" and mask_x == "geo_entropy_below_10": if dic['xscale'] == "log": dic['xmin'], dic['xmax'] = 1e-2, 2e0 else: dic['xmin'], dic['xmax'] = 0, 1.2 if v_n_x == "Mej_tot_scaled" and mask_x == "bern_geoend": dic['xmin'], dic['xmax'] = 0, 3. if v_n_x == "Ye_ave" and mask_x == "geo": dic['xmin'], dic['xmax'] = 0.01, 0.30 if v_n_x == "Ye_ave" and mask_x == "bern_geoend": dic['xmin'], dic['xmax'] = 0.1, 0.4 if v_n_x == "vel_inf_ave" and mask_x == "geo": dic['xmin'], dic['xmax'] = 0.1, 0.3 if v_n_x == "vel_inf_ave" and mask_x == "bern_geoend": dic['xmin'], dic['xmax'] = 0.05, 0.25 # # if eos == "SLy4": # dic['xmin'], dic['xmax'] = 380, 420 # dic['xticks'] = [390, 410] # if eos == "SFHo": # dic['xmin'], dic['xmax'] = 390, 430 # dic['xticks'] = [400, 420] # if eos == "BLh": # dic['xmin'], dic['xmax'] = 510, 550 # dic['xticks'] = [520, 540] # if eos == "LS220": # dic['xmin'], dic['xmax'] = 690, 730 # dic['xticks'] = [700, 720] # if eos == "DD2": # dic['xmin'], dic['xmax'] = 820, 860 # dic['xticks'] = [830, 850] # if eos == "SLy4": # dic['tick_params']['right'] = False # dic['yaxiscolor']["right"] = "lightgray" # elif eos == "DD2": # dic['tick_params']['left'] = False # dic['yaxiscolor']["left"] = "lightgray" # else: # dic['tick_params']['left'] = False # dic['tick_params']['right'] = False # dic['yaxiscolor']["left"] = "lightgray" # dic['yaxiscolor']["right"] = "lightgray" # # if eos != "SLy4" and eos != "DD2": # dic['yaxiscolor'] = {'left':'lightgray','right':'lightgray', 'label': 'black'} # dic['ytickcolor'] = {'left':'lightgray','right':'lightgray'} # dic['yminortickcolor'] = {'left': 'lightgray', 'right': 'lightgray'} # elif eos == "DD2": # dic['yaxiscolor'] = {'left': 'lightgray', 'right': 'black', 'label': 'black'} # # dic['ytickcolor'] = {'left': 'lightgray'} # # dic['yminortickcolor'] = {'left': 'lightgray'} # elif eos == "SLy4": # dic['yaxiscolor'] = {'left': 'black', 'right': 'lightgray', 'label': 'black'} # # dic['ytickcolor'] = {'right': 'lightgray'} # # dic['yminortickcolor'] = {'right': 'lightgray'} # # if eos != "SLy4": # dic['sharey'] = True if eos == "BLh": dic['xlabel'] = Labels.labels(v_n_x, mask_x) if eos == 'DD2': dic['cbar'] = {'location': 'right .03 .0', 'label': Labels.labels(v_n_col), # 'fmt': '%.1f', 'labelsize': 14, 'fontsize': 14} if v_n_col == "nsims": dic['cbar']['fmt'] = '%d' # o_plot.set_plot_dics.append(dic) # # i_col = i_col + 1 if do_plot_old_table: if v_n_x == 'Lambda': dic['xmin'], dic['xmax'] = 5, 1500 # LEGEND # o_plot.main() exit(0)
vsevolodnedora/prj_gw170817
scripts/legacy/plot_summary.py
plot_summary.py
py
63,511
python
en
code
0
github-code
50
18376053040
import numpy as np import matplotlib matplotlib.use("agg") from minivggnet import MiniVGGNet from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from keras.optimizers import SGD from keras.datasets import cifar10 import matplotlib.pyplot as plt import argparse ap = argparse.ArgumentParser() ap.add_argument("-o", "--output", help="plots output loc") args = vars(ap.parse_args()) print("[INFO] Loading the CIFAR10 dataset...") ((trainX, trainY), (testX, testY)) = cifar10.load_data() trainX = trainX.astype("float")/255.0 testX = testX.astype("float")/255.0 lb = LabelBinarizer() trainY = lb.fit_transform(trainY) testY = lb.fit_transform(testY) labelNames = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] print("[INFO] Compling the model...") print(np.shape(trainY)) input_h = trainX.shape[1] input_W = trainX.shape[2] input_d = trainX.shape[3] input_classes = trainY.shape[1] model = MiniVGGNet.build(input_h, input_W, input_d, input_classes) opt = SGD(0.05) model.compile(optimizer=opt, loss="categorical_crossentropy", metrics=["accuracy"]) print("[INFO] Training the network...") epochs = 40 H = model.fit(trainX, trainY, batch_size=64, epochs=epochs, verbose=1, shuffle=True) print("[INFO] Evaluating Network...") predictions = model.predict(testX, batch_size=64) print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), target_names=labelNames)) model.save("model.hdf5") plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, epochs), H.history["loss"], label="Loss") plt.plot(np.arange(0, epochs), H.history["val_loss"], label="Val_loss") plt.plot(np.arange(0, epochs), H.history["accuracy"], label="Accuracy") plt.plot(np.arange(0, epochs), H.history["val_accuracy"], labels="Val_accuracy") plt.title("Training Loss and Accuracy on CIFAR-10") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() plt.savefig(args["output"])
SalahSoliman/VGGNet
trainvgg.py
trainvgg.py
py
2,028
python
en
code
0
github-code
50
38302844005
from flask import Blueprint, render_template, request, flash, redirect, url_for from flask_login import login_required, current_user from db_manager import db_manager from prep_stocks import put_into_db stock = Blueprint('stock', __name__) def render_stocks(): cur = db_manager.get_cursor() cur.execute("""SELECT id, symbol, name, price, open_price, high_price, low_price, total FROM stocks1 ORDER BY name ASC;""") stocks = cur.fetchall() return render_template("stock2.html", stocks=stocks, user=current_user) @stock.route('/update-db') def update_db(): result = put_into_db() return result @stock.route('/stocks', methods=['GET', 'POST']) @login_required def render_stocks_from_db(): cur = db_manager.get_cursor() in_list = cur.execute("""select favorites.stock_id from favorites join stocks1 on stocks1.id=favorites.stock_id where favorites.user_id = %s""", (current_user.id,)) in_list = cur.fetchall() if request.method == 'POST': stock_id = request.form.get("add") view_id = request.form.get("symbol") info_id = request.form.get("name") search_id = request.form.get("search") search_id = search_id.lower() if stock_id: db_manager.add_favorite(current_user.id, stock_id) if in_list: for i in in_list: if i[0] == int(stock_id): flash("This stock is already in your favorites", category = 'error' ) return render_stocks() flash("This stock has been added to your favorites", category = 'success') return render_stocks() elif view_id: cur.execute("SELECT * FROM stocks1 WHERE symbol = %s", (view_id,)) stock_name = cur.fetchall() if stock_name: print("check") return redirect(url_for('hist.render_stock_history', symbol=view_id)) elif info_id: cur.execute("SELECT name FROM stocks1 WHERE name = %s", (info_id,)) stock_name = cur.fetchall() if stock_name: return redirect(url_for('info.render_info_from_db', name = info_id)) elif search_id: search_id = search_id.lower() cur.execute("SELECT * FROM stocks1 WHERE LOWER(symbol) LIKE %s", ('%' + search_id + '%',)) matching_stocks = cur.fetchall() if matching_stocks: return redirect(url_for('hist.render_stock_history', symbol = search_id)) else: flash('Stock not found.') return render_stocks()
jkw944/DIS_Project
MyWebApp/stocks.py
stocks.py
py
2,741
python
en
code
0
github-code
50
21833302791
import sys from sqlalchemy import create_engine import pandas as pd from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.model_selection import GridSearchCV from sklearn.base import BaseEstimator, TransformerMixin import pickle import os import numpy as np import pandas as pd import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('averaged_perceptron_tagger') class MessageLengthTransformer(BaseEstimator, TransformerMixin): """ In this class we create a transformer that calculates the Message Length for each message """ def fit(self, X, y=None): return self def transform(self, X): return np.array([len(x) for x in X]).reshape(-1,1) class StartingVerbExtractor(BaseEstimator, TransformerMixin): """ In this class we create a starting verb extractor """ def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return True return False def fit(self, X, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.starting_verb) return pd.DataFrame(X_tagged) def load_data(database_filepath): """ This function is used to load data """ path = 'sqlite:///' + database_filepath engine = create_engine(path) df = pd.read_sql_table(table_name='df', con=engine) X = df["message"] y = df.loc[:, "related":"direct_report"] return X, y, y.columns def tokenize(text): """ Tokenization function """ tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ Function used to define model parameters, define pipeline and setup grid search """ parameters = { 'clf__estimator': [ #AdaBoostClassifier(n_estimators=50, learning_rate=0.4), #AdaBoostClassifier(n_estimators=100, learning_rate=0.4), #AdaBoostClassifier(n_estimators=50, learning_rate=0.8), #AdaBoostClassifier(n_estimators=100, learning_rate=0.8), #AdaBoostClassifier(n_estimators=50, learning_rate=1), #AdaBoostClassifier(n_estimators=100, learning_rate=1), #RandomForestClassifier(n_estimators=50, criterion='entropy'), #RandomForestClassifier(n_estimators=100, criterion='entropy'), #RandomForestClassifier(n_estimators=50, criterion='gini'), #RandomForestClassifier(n_estimators=100, criterion='gini') RandomForestClassifier(n_estimators=10, criterion='gini'), RandomForestClassifier(n_estimators=10, criterion='entropy'), AdaBoostClassifier(n_estimators=10, learning_rate=1), AdaBoostClassifier(n_estimators=10, learning_rate=0.5) ] } pipeline = Pipeline([ ('features', FeatureUnion([ ('text_pipeline', Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()) ])), ('msg_length', MessageLengthTransformer()), ('starting_verb', StartingVerbExtractor()) ])), ('clf', MultiOutputClassifier(estimator=None)) ]) cv = GridSearchCV(pipeline, param_grid = parameters) return cv def evaluate_model(model, X_test, y_test, category_names): """ Function used to evaluate (print metrics) of the results obtained by the created model """ y_pred = model.predict(X_test) for i, category in enumerate(category_names): metrics = classification_report(y_test.iloc[i], y_pred[i]) print("""category: {} {} """.format(category, metrics)) def save_model(model, model_filepath): """ Function used to save the created model """ with open(model_filepath, 'wb') as file: pickle.dump(model, file) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, y, category_names = load_data(database_filepath) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, y_train) gs_model = model.best_estimator_ print('Evaluating model...') evaluate_model(gs_model, X_test, y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
gustavex/Udacity_Data_Scientist
04_disaster_response_pipeline/models/train_classifier.py
train_classifier.py
py
5,967
python
en
code
2
github-code
50
70085291677
import threading import ursina from calc import * from gui import Simulation from planet import Planet, Sky class Main: def __init__(self, app, planet_list=[]): # SET BASIC VARIABLES FOR ursina ------------------------------------------------------- self.app = app ursina.window.title = 'planet simulation' # set meta data for app ursina.window.borderless = True ursina.window.fullscreen = True ursina.window.exit_button.visible = False ursina.window.fps_counter.enabled = True self.planet_list = planet_list # list of all planets in the simulation # CREATION OF SUN --------------------------------------------------------------------- Planet(file_name='/textures/sun', planet_name="sun", planet_diameter=2.5, plannr=0) # CREATION OF SKY ---------------------------------------------------------------------- Sky() # CREATION OF SIMULATION --------------------------------------------------------------- simulation = Simulation(self.planet_list) # CREATION OF THREADS ------------------------------------------------------------------ for planet in self.planet_list: # For every planet, there is a thread, which calculates the current Position of its planet calc = Calc(planet) temp = threading.Thread(target=calc.get_coords, args=(planet,)) temp.start() # STARTS THE SIMULATION --------------------------------------------------------------- # runs simulation.update() constantly self.app.run()
DerBerlinr/Planet-Simulation
main.py
main.py
py
1,620
python
en
code
2
github-code
50
30297363580
# tree with class class Node: def __init__(self, data): self.data = data self.right = None self.left = None class Tree: def __init__(self, root): self.r = root root = None # inorder traversal def inorder_wrapper_traversal(self): self.inorder_Traversal(self.r) def inorder_Traversal(self, root): if root: self.inorder_Traversal(root.left) print(root.data) self.inorder_Traversal(root.right) def preorder_Traversal(self, root): if root: print(root.data) self.preorder_Traversal(root.left) self.preorder_Traversal(root.right) def postorder_Traversal(self, root): if root: self.postorder_Traversal(root.left) self.postorder_Traversal(root.right) print(root.data) if __name__ == "__main__": root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.right.right.left = Node(8) tree1 = Tree(root) tree1.inorder_wrapper_traversal()
dynstat/DataStructuresInPython
kanchan/Tree/tree_with_class.py
tree_with_class.py
py
1,184
python
en
code
0
github-code
50
45239525528
#!/usr/bin/env python3 from flask import Flask, render_template, request, flash, redirect, url_for from services import* from services.service import create_people, get_peoples, get_people, delete_people, edit_people, get_courses, people_exist app = Flask(__name__) app.secret_key = "mysecretkey" @app.route('/') def index(): peoples = get_peoples() courses = get_courses() return render_template('index.html', peoples=peoples, courses=courses, len_peoples=len(get_peoples())) @app.route('/', methods= ['GET','POST']) def add_people(): try: if request.method == 'POST': first_name = request.form['first_name'] last_name = request.form['last_name'] email = request.form['email'] course = request.form['course'] data = {"first_name": first_name,"last_name": last_name,"email": email,"courses": [{"id": course}]} if not people_exist(email): if first_name == "" or last_name == "" or email == "": flash('Complete todos los datos') return redirect(url_for('index')) else: create_people(data) peoples = get_peoples() courses = get_courses() flash('Alumno inscripto') return render_template('index.html', peoples=peoples, courses=courses, len_peoples=len(get_peoples())) else: if first_name == "" or last_name == "" or email == "": flash('Complete todos los datos') return redirect(url_for('index')) else: flash('El alumno ya existe') return redirect(url_for('index')) except (KeyError): flash('Complete todos datos') return redirect(url_for('index')) @app.route('/delete/<id>') def delete(id): delete_people(id) flash('Alumno eliminado') peoples = get_peoples() courses = get_courses() return render_template('index.html', peoples=peoples, courses=courses, len_peoples=len(get_peoples())) @app.route('/edit/<id>') def get_student(id): people = get_people(id) courses = get_courses() course = course_people(id) return render_template('edit.html', people=people, courses=courses, len_peoples=len(get_peoples()), course=course) @app.route('/update/<id>', methods= ['POST']) def update_people(id): if request.method == 'POST': first_name = request.form['first_name'] last_name = request.form['last_name'] email = request.form['email'] course = request.form['course'] data = {"first_name": first_name, "last_name": last_name, "email": email, "courses": [{"id": course}]} edit_people(id, data) flash('Alumno actualizado') peoples = get_peoples() courses = get_courses() return render_template('index.html', peoples=peoples, courses=courses, len_peoples=len(get_peoples())) def course_people(id): people = get_people(id) for cour in people['courses']: course = cour return course @app.route('/data/<id>') def data_people(id): people = get_people(id) peoples = get_peoples() courses = get_courses() course = course_people(id) return render_template('data.html', people=people, peoples=peoples, courses=courses, len_peoples=len(get_peoples()), course=course) if __name__ == '__main__': app.run(debug=True)
lordmaster11/Challege-Peoples
app.py
app.py
py
3,564
python
en
code
0
github-code
50
32786245734
# -*- coding: utf-8 -*- # @Author : wangtingyun # @Time : 2020/03/28 import sys from PyQt5.QtCore import QPropertyAnimation, Qt, QPoint, QEasingCurve, QTimer from PyQt5.QtWidgets import QWidget, QLabel, QApplication class MarqueeWidget(QWidget): """跑马灯控件""" def __init__(self, parent): super(MarqueeWidget, self).__init__(parent) self.setWindowFlags(self.windowFlags() | Qt.FramelessWindowHint) self.setAttribute(Qt.WA_TranslucentBackground) self.resize(200, 30) self.label_1 = QLabel(self) self.label_1.setGeometry(self.geometry()) self.label_2 = QLabel(self) self.label_2.setGeometry(self.geometry()) self.duration = 4000 self.spacing = 40 self.anim_1 = QPropertyAnimation(self.label_1, b'pos') self.anim_1.setEasingCurve(QEasingCurve.Linear) self.anim_1.setDuration(self.duration) self.anim_1.setLoopCount(-1) self.anim_2 = QPropertyAnimation(self.label_2, b'pos') self.anim_2.setEasingCurve(QEasingCurve.Linear) self.anim_2.setDuration(self.duration) self.anim_2.setLoopCount(-1) self.init_ui() self.start_move() def init_ui(self): self.label_1.setStyleSheet("QLabel{font-family: 'Microsoft YaHei'; font-size: 14px; color: #000000;}") self.label_1.setText('欢迎来到房间这里是房间名字测试的房间') self.label_1.adjustSize() self.label_2.setStyleSheet(self.label_1.styleSheet()) self.label_2.setText(self.label_1.text()) self.label_2.adjustSize() def start_move(self): self.anim_1.setStartValue(QPoint(0, self.label_1.y())) self.anim_1.setEndValue(QPoint(-(self.label_1.width() + self.spacing), self.label_1.y())) self.anim_2.setStartValue(QPoint(self.label_1.width() + self.spacing, self.label_2.y())) self.anim_2.setEndValue(QPoint(0, self.label_2.y())) self.anim_1.start() self.anim_2.start() if __name__ == '__main__': app = QApplication(sys.argv) window = QWidget() window.setWindowTitle('Demo') window.resize(300, 100) window.label = MarqueeWidget(window) window.label.move((window.width()-window.label.width())//2, (window.height()-window.label.height())//2) window.show() sys.exit(app.exec_())
aiwangtingyun/PythonDemo
component/marquee_widget.py
marquee_widget.py
py
2,358
python
en
code
0
github-code
50
32218884493
import pygame class Guy(pygame.sprite.Sprite): def __init__(self, *groups): super().__init__(*groups) self.image = pygame.image.load("data/enzo.png") # 16x16s self.image = pygame.transform.scale(self.image, [100, 100]) self.rect = pygame.Rect(50, 50, 100, 100) self.speed = 0 self.acceleration = 0.1 def update(self, *args): #LOGICA keys = pygame.key.get_pressed() if keys[pygame.K_w]: self.speed -= self.acceleration elif keys[pygame.K_s]: self.speed += self.acceleration else: self.speed *= 0.95 self.rect.y += self.speed if self.rect.top < 0: self.rect.top = 0 self.speed = 0 elif self.rect.bottom > 480: self.rect.bottom = 480 self.speed = 0
Ewertonalex/Jogo-Pygame-Enzo-vs-Zumbi
guy.py
guy.py
py
892
python
en
code
5
github-code
50
71116402715
#!/usr/bin/python import simplejson import urllib import urllib2 import sys apikey = "" url = "https://www.virustotal.com/vtapi/v2/file/report" parameters = {"resource": sys.argv[1], "apikey": apikey} data = urllib.urlencode(parameters) req = urllib2.Request(url, data) response = urllib2.urlopen(req) json = response.read() response_dict = simplejson.loads(json) if response_dict.get("response_code") == 1: sys.exit(response_dict.get("positives")) sys.exit(0)
FKilic/x-tier
X-TIER/scripts/virustotal/virustotal.py
virustotal.py
py
467
python
en
code
4
github-code
50
14591693671
def sum(a, b, c ): return a + b + c def printBoard(xState, oState): zero = 'X' if xState[0] else ('O' if oState[0] else 0) one = 'X' if xState[1] else ('O' if oState[1] else 1) two = 'X' if xState[2] else ('O' if oState[2] else 2) three = 'X' if xState[3] else ('O' if oState[3] else 3) four = 'X' if xState[4] else ('O' if oState[4] else 4) five = 'X' if xState[5] else ('O' if oState[5] else 5) six = 'X' if xState[6] else ('O' if oState[6] else 6) seven = 'X' if xState[7] else ('O' if oState[7] else 7) eight = 'X' if xState[8] else ('O' if oState[8] else 8) print(f"{zero} | {one} | {two} ") print(f"--|---|---") print(f"{three} | {four} | {five} ") print(f"--|---|---") print(f"{six} | {seven} | {eight} ") def checkWin(xState, oState): wins = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]] for win in wins: if(sum(xState[win[0]], xState[win[1]], xState[win[2]]) == 3): print("X Won the match") return 1 if(sum(oState[win[0]], oState[win[1]], oState[win[2]]) == 3): print("O Won the match") return 0 return -1 xState = [0, 0, 0, 0, 0, 0, 0, 0, 0] oState = [0, 0, 0, 0, 0, 0, 0, 0, 0] turn = 1 # 1 for X and 0 for O print("Welcome to Tic Tac Toe") while(True): printBoard(xState, oState) if(turn == 1): print("X's Chance") value = int(input("Please enter a value: ")) xState[value] = 1 else: print("O's Chance") value = int(input("Please enter a value: ")) oState[value] = 1 cwin = checkWin(xState, oState) if(cwin != -1): print("Match over") break turn = 1 - turn
saadhussain01306/Tic_tak_toe
project[1].py
project[1].py
py
1,793
python
en
code
1
github-code
50
14762107866
from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from .models import Profile, MyUser import os """ @receiver(post_save, sender=MyUser) def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance.username) else: #print('--->not found', created) #@shopowner_required @receiver(post_save, sender=MyUser) def save_profile(sender, instance, **kwargs): instance.profile.save() """ @receiver(pre_save, sender=Profile) def auto_delete_image_on_update(sender, instance, **kwargs): if not instance.pk: return False try: old_file = sender.objects.get(pk=instance.pk).image except sender.DoesNotExist: return False new_file = instance.image if not old_file == new_file: if os.path.isfile(instance.image.path): os.remove(old_file.path) r = [] k = [] r.append(new_file.path) k.append(old_file.path) if k != r: try: for i in k: if i not in r: os.remove(i) except: pass
armani24/gglocal
guido/users/signals.py
signals.py
py
1,186
python
en
code
0
github-code
50
31940036407
#!/usr/bin/env python #_*_ codig: utf8 _*_ import os, time, sqlite3 from watchdog.observers.polling import PollingObserver from watchdog.events import FileSystemEventHandler from Modules.constants import * def on_created(event): con=sqlite3.connect('data.db') cur=con.cursor() file_name=os.path.basename(event.src_path) r=cur.execute(f"select bytes from data where name like '{file_name}'").fetchall() if r==[]: file_size=os.path.getsize(f"{src_path}{file_name}") cur.execute(f"insert into data values('{file_name}', {file_size})") con.commit() print('Create', os.path.basename(event.src_path)) else: pass con.close() if __name__ == "__main__": event_handler = FileSystemEventHandler() event_handler.on_created = on_created observer = PollingObserver() observer.schedule(event_handler, src_path, recursive=False) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
mgarciasantamaria/uparoundv2
watchFolder.py
watchFolder.py
py
1,049
python
en
code
0
github-code
50
7252211669
#%% import os import pandas as pd from ecg_arrythmia_analysis.code.dataloader import * from ecg_arrythmia_analysis.code.architectures import * from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau from sklearn.metrics import f1_score, accuracy_score #%% MODEL_PATH = 'models/' DATA_PATH = 'data/' CNN_SPECS = (4, [5, 3, 3, 3], [16, 32, 32, 256], 1) RCNN_SPECS = (4, 3, [3, 12, 48, 192], 2, 1) RNN_SPECS = (2, False, 3, 16, 256, 'LSTM', 2, 1) ENSEMBLE_SPECS = (2, 1024, 1) SPEC_LIST = {'cnn': CNN_SPECS, 'rcnn': RCNN_SPECS, 'rnn': RNN_SPECS, 'ensemble': ENSEMBLE_SPECS} #%% def architect(mode, data, type, run_id, type_ids=None): if isinstance(data, str): data = [data] if isinstance(type, str): type = [type] id = run_id # Testing if mode is 'training': optimizers = ['Adam'] # dropouts = [0.1, 0.5] # n_layers = [1, 2, 3] lr_list = [0.01, 0.001] for d in data: for t in type: for o in optimizers: for lr in lr_list: if o is 'Adam': opt = tf.keras.optimizers.Adam(lr) specs = SPEC_LIST[t] if d is 'mitbih': specs = list(specs) specs[-1] = 5 specs = tuple(specs) m = get_architecture(t, specs) training(m, opt, d, t, id) # Testing if mode is 'testing': for d in data: for t in type: specs = SPEC_LIST[t] if d is 'mitbih': specs = list(specs) specs[-1] = 5 specs = tuple(specs) m = get_architecture(t, specs) testing(m, d, t, id) if mode is 'ensemble': run_ensemble(data=data, type_ids=type_ids, id=run_id) if mode is 'visualization': pass #%% def training(model, opt, data, type, id): file_path = MODEL_PATH + type + '_' + data + '_' + str(id) + '.h5' if type is 'tfl': save = False print("Not saving best models... not implemented for submodules!") else: save = True checkpoint = ModelCheckpoint(file_path, monitor='val_acc', verbose=1, save_best_only=save, mode='max') early = EarlyStopping(monitor="val_acc", mode="max", patience=5, verbose=1) redonplat = ReduceLROnPlateau(monitor="val_acc", mode="max", patience=3, verbose=2) callbacks_list = [checkpoint, early, redonplat] if data is 'mitbih': Y, X, _, _ = get_mitbih() model.compile(optimizer=opt, loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['acc']) else: Y, X, _, _ = get_ptbdb() model.compile(optimizer=opt, loss=tf.keras.losses.binary_crossentropy, metrics=['acc']) if save: model.fit(X, Y, epochs=1, callbacks=callbacks_list, validation_split=0.1) else: # NO CHECKPOINTS FOR TFL -> due to using submodules the save-implementation broke model.fit(X, Y, callbacks=[early, redonplat], validation_split=0.1) model.save_weights(filepath=file_path) return model def testing(model, data, type, id): file_path = MODEL_PATH + type + '_' + data + '_' + str(id) + '.h5' print(file_path) if data is 'mitbih': _, _, Y_test, X_test = get_mitbih() else: _, _, Y_test, X_test = get_ptbdb() model.build(input_shape=(None, X_test.shape[1], X_test.shape[2])) model.load_weights(file_path) pred_test = model.predict(X_test) pred_test = np.argmax(pred_test, axis=-1) f1 = f1_score(Y_test, pred_test, average="macro") print("Test f1 score : %s " % f1) acc = accuracy_score(Y_test, pred_test) print("Test accuracy score : %s " % acc) return {'target': Y_test, 'prediction': pred_test} def get_architecture(type, specs): if type is 'cnn': return CNNmodel(specs) elif type is 'rcnn': return RCNNmodel(specs) elif type is 'rnn': return RNNmodel(specs) elif type is 'ensemble': return Ensemble_FFL_block(specs) #%% def load_models(data, type_ids): print(os.getcwd()) if isinstance(data, list): data = data[0] if isinstance(type_ids, tuple): type_ids = [type_ids] model_list = [] for ti in type_ids: t = ti[0] id = ti[1] file_path = MODEL_PATH + t + '_' + data + '_' + str(id) + '.h5' print(file_path) specs = SPEC_LIST[t] empty = get_architecture(t, specs) empty.build(input_shape=(None, 187, 1)) empty.load_weights(file_path) model_list.append(empty) return model_list # create stacked model input dataset as outputs from the ensemble def stacked_dataset(models, data): if data is 'mitbih': Y, X, Y_test, X_test = get_mitbih() else: Y, X, Y_test, X_test = get_ptbdb() stacked_X = None stacked_X_test = None for model in models: y = model.predict(X, verbose=0) y_test = model.predict(X_test, verbose=0) if stacked_X is None: stacked_X = y stacked_X_test = y_test else: stacked_X = np.dstack((stacked_X, y)) stacked_X_test = np.dstack((stacked_X_test, y_test)) stacked_X = stacked_X.reshape((stacked_X.shape[0], stacked_X.shape[1] * stacked_X.shape[2])) stacked_X_test = stacked_X_test.reshape((stacked_X_test.shape[0], stacked_X_test.shape[1] * stacked_X_test.shape[2])) return stacked_X, Y, stacked_X_test, Y_test def load_ensemble_nn(data): specs = SPEC_LIST['ensemble'] if data is 'mitbih': specs = list(specs) specs[-1] = 5 specs = tuple(specs) return Ensemble_FFL_block(specs) # specify settings def run_ensemble(data, type_ids, id=500, mode='nn'): # mode can be mean, logistic or nn # load all corresponding models into model-list models = load_models(data, type_ids) # predict datasets with models to generate new ensemble dataset X, Y, X_test, Y_test = stacked_dataset(models, data) if mode is 'nn': file_path = MODEL_PATH + 'ensemble_' + data[0] + '_' + str(id) + '.h5' model = load_ensemble_nn(data) opt = tf.keras.optimizers.Adam(0.001) checkpoint = ModelCheckpoint(file_path, monitor='val_acc', verbose=1, save_best_only=True, mode='max') early = EarlyStopping(monitor="val_acc", mode="max", patience=5, verbose=1) redonplat = ReduceLROnPlateau(monitor="val_acc", mode="max", patience=3, verbose=2) callbacks_list = [checkpoint, early, redonplat] if data is 'mitbih': model.compile(optimizer=opt, loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['acc']) else: model.compile(optimizer=opt, loss=tf.keras.losses.binary_crossentropy, metrics=['acc']) model.fit(X, Y, epochs=100, callbacks=callbacks_list, validation_split=0.1) model.predict(X_test, Y_test) # Todo: Use a simple mean of the predictions and a logistic regression for comparsion #%% def transfer_learning(data_tfl, data, type_id, id=700, freeze=True): tfl_model = load_models(data_tfl, type_id)[0] comb_model = tf.keras.Sequential() for j, layer in enumerate(tfl_model.layers): if layer.name is 'ffl_block': del_id = j for layer in tfl_model.layers[:-del_id]: # just exclude last layer from copying comb_model.add(layer) if freeze: for layer in comb_model.layers: layer.trainable = False ffl_block = load_ensemble_nn(data) comb_model.add(ffl_block) opt = tf.keras.optimizers.Adam(0.001) input_shape = (None, 187, 1) comb_model.build(input_shape) trained_model = training(comb_model, opt, data, 'tfl', id) output = testing(trained_model, data, 'tfl', id) df = pd.DataFrame.from_dict(output, orient="index") df.to_csv("results_tfl.csv")
adrianomartinelli/machine-learning-for-health-care
ecg_arrythmia_analysis/code/functions.py
functions.py
py
8,081
python
en
code
0
github-code
50
29774578297
import torch import numpy as np # Blender is right hand system def dataset_loader(): data = np.load('../ganyu_150.npz') # data = np.load('../tiny_nerf_data.npz') images = data['images'] poses = data['poses'] # camera to world focal = data['focal'] return images, poses, focal
Pokerlishao/MyNeRF
datasets/make_dataset.py
make_dataset.py
py
300
python
en
code
0
github-code
50
4595634845
from django.http import HttpResponseServerError from rest_framework.viewsets import ViewSet from rest_framework.response import Response from rest_framework import serializers, status from iimproveapi.models import Tag, User class TagsView(ViewSet): """iimproveapi tags view""" def retrieve(self, request, pk): """Handle GET requests for single tag type Returns: Response -- JSON serialized tag type """ try: tag = Tag.objects.get(pk=pk) serializer = TagSerializer(tag) serial_tag = serializer.data serial_tag['userId'] = serial_tag.pop('user_id') return Response(serial_tag) except Tag.DoesNotExist as ex: return Response({'message': 'Unable to fetch tag data. ' + ex.args[0]}, status=status.HTTP_404_NOT_FOUND) def list(self, request): """get my tags""" try: user_id = request.GET.get("userId") tags = Tag.objects.filter(user_id=user_id).values() serializer = TagSerializer(tags, many=True) serial_tag = serializer.data for tag in serial_tag: tag['userId'] = tag.pop('user_id') return Response(serial_tag) except Tag.DoesNotExist as ex: return Response({'message': 'Unable to get my tag data. ' + ex.args[0]}, status=status.HTTP_404_NOT_FOUND) def create(self, request): '''handels creation of my tags''' user_id = request.data['userId'] try: User.objects.get(id = user_id) tag = Tag.objects.create( title = request.data['title'], user_id = user_id ) serializer = TagSerializer(tag) return Response(serializer.data) except User.DoesNotExist as ex: return Response({'message': 'Unable to create tag. ' + ex.args[0]}, status=status.HTTP_401_UNAUTHORIZED) def destroy(self, request, pk): """Handle Delete """ tag = Tag.objects.get(pk=pk) tag.delete() return Response(None, status=status.HTTP_204_NO_CONTENT) class TagSerializer(serializers.ModelSerializer): """JSON serializer for tags """ class Meta: model = Tag fields = ('id', 'title', 'user_id')
nishayaraj/I-Improve-Server
iimproveapi/views/tags.py
tags.py
py
2,411
python
en
code
0
github-code
50
20698870729
from pyo import * CHORD = { 'maj7': [-12, -8, -5, -1], 'm7': [-12, -9, -5, -2], 'x7': [-12, -8, -5, -2], 'half_dim': [-12, -9, -6, -2] } s = Server() s.setInputDevice(3) # Steinberg in s.setOutputDevice(3) # Steinberg out s.setMidiInputDevice(99) s.boot() mic = Input().play().out() notes = Notein(poly=10, scale=0, first=0, last=127, channel=0, mul=1) harm_1, harm_3, harm_5, harm_7 = None, None, None, None def chord(chordType): global mic, CHORD, harm_1, harm_3, harm_5, harm_7 tones = CHORD[chordType] harm_1 = Harmonizer(mic, transpo=tones[0]).out() harm_3 = Harmonizer(mic, transpo=tones[1]).out() harm_5 = Harmonizer(mic, transpo=tones[2]).out() harm_7 = Harmonizer(mic, transpo=tones[3]).out() def handle_note_on(voice): pit = int(notes["pitch"].get(all=True)[voice]) if pit == 48: chord('maj7') print('Chord: maj7') elif pit == 49: chord('m7') print('Chord: m7') elif pit == 50: chord('x7') print('Chord: x7') elif pit == 51: chord('half_dim') print('Chord: half_dim') def handle_note_off(voice): global harm_1, harm_3, harm_5, harm_7 harm_1.stop() harm_3.stop() harm_5.stop() harm_7.stop() print('No chords.') tfon = TrigFunc(notes["trigon"], handle_note_on, arg=list(range(10))) tfoff = TrigFunc(notes["trigoff"], handle_note_off, arg=list(range(10))) s.start() s.gui(locals())
ancoopa/chords-machine
chord_machine.py
chord_machine.py
py
1,373
python
en
code
2
github-code
50
11069612230
import os import tempfile import unittest from unittest.mock import patch from click.testing import CliRunner from gramps.cli.clidbman import CLIDbManager from gramps.gen.dbstate import DbState from sqlalchemy.exc import IntegrityError from gramps_webapi.__main__ import cli from gramps_webapi.app import create_app from gramps_webapi.const import ENV_CONFIG_FILE, TEST_AUTH_CONFIG class TestPerson(unittest.TestCase): @classmethod def setUpClass(cls): cls.name = "Test Web API" cls.dbman = CLIDbManager(DbState()) _, _name = cls.dbman.create_new_db_cli(cls.name, dbid="sqlite") cls.config_file = tempfile.NamedTemporaryFile(delete=False) cls.user_db = tempfile.NamedTemporaryFile(delete=False) config = """TREE="Test Web API" SECRET_KEY="C2eAhXGrXVe-iljXTjnp4paeRT-m68pq" USER_DB_URI="sqlite:///{}" """.format( cls.user_db.name ) with open(cls.config_file.name, "w") as f: f.write(config) with patch.dict("os.environ", {ENV_CONFIG_FILE: cls.config_file.name}): cls.app = create_app() cls.app.config["TESTING"] = True cls.client = cls.app.test_client() cls.runner = CliRunner() @classmethod def tearDownClass(cls): cls.dbman.remove_database(cls.name) os.remove(cls.config_file.name) os.remove(cls.user_db.name) def test_add_delete_user(self): result = self.runner.invoke( cli, ["--config", self.config_file.name, "user", "add", "user", "123"] ) assert result.exit_code == 0 # try adding again result = self.runner.invoke( cli, ["--config", self.config_file.name, "user", "add", "user", "123"] ) assert result.exception result = self.runner.invoke( cli, ["--config", self.config_file.name, "user", "delete", "user"] ) assert result.exit_code == 0 # try deleting again result = self.runner.invoke( cli, ["--config", self.config_file.name, "user", "delete", "user"] ) assert result.exception
windmark/gramps-webapi
tests/test_cli.py
test_cli.py
py
2,131
python
en
code
null
github-code
50
26382057896
import os import setuptools from tools import get_requirements, get_readme, get_version def main(): path = os.path.dirname(os.path.abspath(__file__)) version = get_version() open( os.path.join(path, "kara_storage", "version.py"), "w" ).write('version = "%s"' % version) setuptools.setup( name="kara_storage", version=version, author="a710128", author_email="[email protected]", description="Kara Storage SDK", long_description=get_readme(), long_description_content_type="text/markdown", url="https://git.thunlp.vip/kara/kara-row-storage", packages=setuptools.find_packages(exclude=("tools",)), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Programming Language :: C++" ], python_requires=">=3.6", setup_requires=["wheel"], scripts=["scripts/kara_storage"], install_requires=get_requirements() ) if __name__ == "__main__": main()
a710128/kara-storage
setup.py
setup.py
py
1,061
python
en
code
7
github-code
50
8454219258
from django.urls import path from .views import RegisterView, RetrieveUserView, LogoutView from . import views urlpatterns = [ path('register', RegisterView.as_view()), path('me', RetrieveUserView.as_view()), path('login', views.LoginView,name="login"), path('logout', LogoutView.as_view()), path('verify_token',views.verify_token,name='verify_token'), path('profile_view/<int:id>',views.profile_view,name='profile_view'), path('addImage/<int:id>',views.addImage,name='addImage'), #adminside path('admin_login',views.admin_login,name='admin_login'), path('user_list',views.user_list,name='user_list'), path('edit_user/<int:id>',views.edit_user,name='edit_user'), path('update_user/<int:id>',views.update_user,name='update_user'), # path('edit_user/<int:id>',views.edit_user,name='edit_user'), path('delete_user/<int:id>',views.delete_user,name='delete_user'), ]
NithinKrishna10/Django-Rest-Framework-JWT-authentication
accounts/urls.py
urls.py
py
935
python
en
code
0
github-code
50
45009242698
# Author: Sheikh Rabiul Islam # Date: 07/10/2019; updated: 07/15/2019 # Purpose: preprocess data using all features; resample minority class; # save the fully processed data as numpy array (binary: data/____.npy) #import modules import pandas as pd import numpy as np import time from sklearn.utils import shuffle start = time.time() # import data dataset = pd.read_csv('data/combined_sampled.csv', sep=',', dtype='unicode') dataset = shuffle(dataset) dataset = dataset.iloc[:, 1:] # drop the first Unnamed 0 column #maximum finite value in any cell of the dataset. Infinity value in any cell is replaced with with this value. max_value = 655453030.0 # seperate the dependent (target) variaable X = dataset.iloc[:,0:-1].values X_columns = dataset.iloc[:,0:-1].columns.values y = dataset.iloc[:,-1].values #del(dataset) #X_bk = pd.DataFrame(data=X, columns =X_columns ) from sklearn.preprocessing import LabelEncoder df_dump_part1 = pd.DataFrame(X, columns=X_columns) df_dump_part2 = pd.DataFrame(y, columns=['Class']) df_dump = pd.concat([df_dump_part1,df_dump_part2], axis = 1) df_dump.to_csv("data/data_preprocessed_numerical.csv",encoding='utf-8', index = False) # keeping a backup of preprocessed numerical data. end = time.time() print("checkpoint 1:", end-start) start = time.time() # Encoding the Dependent Variable labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y) X = np.array(X, dtype=float) # this is required for checking infinite and null below #X_bk = pd.DataFrame(data=X, columns =X_columns ) # replace infinite with max_value, null with 0.0 for i in range(X.shape[0]): for j in range(X.shape[1]): k = X[i,j] if not np.isfinite(k): X[i,j] = max_value if np.isnan(k): X[i,j] = 0.0 # Feature Scaling (scaling all attributes/featues in the same scale) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_ = sc.fit_transform(X[:, 1:-1]) # except first and last column as first is index and last is class all X = np.hstack((X[:,[0,-1]],X_)) #append old index and class all in the beginning del X_ #add index to X to indentify the rows after split. index = np.arange(len(X)).reshape(len(X),1) X = np.hstack((index,X)) #########seperating training and test set ################## from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42,stratify=y) col_l = ['index','index_old', 'Class_all'] for i in range(1,len(X_columns)-1): #excluding index_old from X_columns ans it is already included col_l.append(X_columns[i]) #dump preprocessed trainset which includes (id, old index, class all, and class) df_dump_part1 = pd.DataFrame(X_train, columns=col_l) df_dump_part2 = pd.DataFrame(y_train, columns=['Class']) df_dump = pd.concat([df_dump_part1,df_dump_part2], axis = 1) df_dump.to_csv("data/data_preprocessed_numerical_train_all_features.csv",encoding='utf-8') #dump preprocessed testset which includes (id, old index, class all, and class) df_dump_part1 = pd.DataFrame(X_test, columns=col_l) df_dump_part2 = pd.DataFrame(y_test, columns=['Class']) df_dump = pd.concat([df_dump_part1,df_dump_part2], axis = 1) df_dump.to_csv("data/data_preprocessed_numerical_test_all_features.csv",encoding='utf-8') del df_dump_part1 del df_dump_part2 del df_dump end = time.time() print("checkpoint 2:", end-start) # index, old index, class all in X is no more needed; drop it start = time.time() X_train = np.delete(X_train,0,1) #drop index X_test = np.delete(X_test,0,1) X_train = np.delete(X_train,0,1) #drop old index X_test = np.delete(X_test,0,1) X_train = np.delete(X_train,0,1) #drop class all X_test = np.delete(X_test,0,1) del(X) # free some memory; encoded (onehot) data takes lot of memory del(y) # free some memory; encoded (onehot) data takes lot of memory #dump onehot encoded training data # save the fully processed data as binary for future use in any ML algorithm without any more preprocessing. np.save('data/data_fully_processed_X_train_all_features.npy',X_train) np.save('data/data_fully_processed_y_train_all_features.npy',y_train) print("Before OverSampling, counts of label '1': {}".format(sum(y_train==1))) print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train==0))) # save the fully processed data as binary for future use in any ML algorithm without any more preprocessing. np.save('data/data_fully_processed_X_test_all_features.npy',X_test) np.save('data/data_fully_processed_y_test_all_features.npy',y_test) end = time.time() print("checkpoint 3:", end-start) ################oversampling the minority class of training set ######### from imblearn.over_sampling import SMOTE # help available here: #https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html sm = SMOTE(random_state=42) X_train_res, y_train_res = sm.fit_sample(X_train, y_train) # save the fully processed data as binary for future use in any ML algorithm without any more preprocessing. np.save('data/data_fully_processed_X_train_resampled_all_features.npy',X_train_res) np.save('data/data_fully_processed_y_train_resampled_all_features.npy',y_train_res) print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape)) print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.shape)) print("After OverSampling, counts of label '1': {}".format(sum(y_train_res==1))) print("After OverSampling, counts of label '0': {}".format(sum(y_train_res==0)))
SheikhRabiul/domain-knowledge-aided-explainable-ai-for-intrusion-detection-and-response
data_preprocess_all_features.py
data_preprocess_all_features.py
py
5,596
python
en
code
1
github-code
50
874748908
class RobotInAGrid: """ 8.2 Robot in a Grid: Imagine a robot sitting on the upper left corner of grid with r rows and c columns. The robot can only move in two directions, right and down, but certain cells are "off limits" such that the robot cannot step on them. Design an algorithm to find a path for the robot from the top left to the bottom right. """ def __init__(self, stop_cells, r, c): """ :param r: rows in a grid :param c: cells in a grid """ self.grid_r = r - 1 self.grid_c = c - 1 self.stop_cells = set(stop_cells) def find_path(self): """ Algorithm to find a path for the robot from the top left to the bottom right. Algo: step right, if not possible, step left, if not possible go back """ # Path is a list of cells path = [(0, 0)] # Visited cells, from which we went right or left went_right: set = set() went_down: set = set() r = 0 c = 0 while (r, c) != (self.grid_r, self.grid_c): # Step right if possible and we have not already been there if c < self.grid_c \ and (r, c) not in went_right \ and (r, c + 1) not in self.stop_cells: went_right.add((r, c)) c += 1 path.append((r, c)) # Step down if possible and we have not already been there elif r < self.grid_r \ and (r, c) not in went_down \ and (r + 1, c) not in self.stop_cells: went_down.add((r, c)) r += 1 path.append((r, c)) # No way to go right or down, go back else: (r, c) = path.pop() return path
DmitryPukhov/pyquiz
pyquiz/ctci/dynamic/RobotInAGrid.py
RobotInAGrid.py
py
1,849
python
en
code
0
github-code
50
25822728887
imdb_file = input("Enter the name of the IMDB file ==> ").strip() print(imdb_file) counts = dict() for line in open(imdb_file, encoding = "ISO-8859-1"): words = line.strip().split('|') movie = words[1].strip() if movie in counts: if words[0] in counts[movie]: continue counts[movie].append(words[0]) continue counts[movie]=[words[0]] movies=sorted(counts) vals = sorted(counts.values()) #sorted by value max_val=max(vals,key=len) max_movie=[] ones_count=0 for index in range(len(movies)): movie = movies[index] if len(counts[movie])==1: ones_count+=1 for key,value in counts.items(): if value==max_val: max_movie.append(key) print(len(max_val)) print(max_movie[0]) print(ones_count)
emilyvroth/cs1
lecture/lecture17/part2.py
part2.py
py
758
python
en
code
0
github-code
50
70644985755
from flask_app import app from flask import render_template, request, redirect from flask_app.models.user import User @app.route("/") def index(): return render_template("index.html") @app.route("/read_all") def read_all(): return render_template("read(all).html", all_users = User.retrieve_all()) @app.route('/create_user', methods=['POST']) def add_user_to_db(): data = { "fn": request.form["fname"], "ln": request.form["lname"], "email": request.form["email"] } User.save(data) return redirect("/") @app.route('/create_new') def create_new_user(): return render_template("create.html") @app.route('/read_one/<int:id>') def read_one_page(id): data = { 'id': id } return render_template("read(one).html", one_user = User.retrieve_one(data)) @app.route('/edit_form/<int:id>') def editing_form(id): data = { 'id':id } return render_template("/user_edit.html", that_one_id = User.retrieve_one(data)) @app.route('/users_edit/<int:id>',methods = ['POST']) def user_edit(id): data = { "id": id, "fn": request.form["fname"], "ln": request.form["lname"], "email": request.form["email"] } User.update(data) return redirect(f'/read_one/{id}') @app.route('/delete_user/<int:id>') def delete_user(id): data = { 'id': id } User.destroy(data) return redirect('/')
Diaz1620/user_crud_mod
flask_app/controllers/users.py
users.py
py
1,422
python
en
code
0
github-code
50
72087571675
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bbs', '0001_initial'), ] operations = [ migrations.AlterField( model_name='comment', name='parent_comment', field=models.ForeignKey(related_name='p_comment', blank=True, to='bbs.Comment', null=True), ), ]
triaquae/py_training
OldboyBBS2/bbs/migrations/0002_auto_20150909_0238.py
0002_auto_20150909_0238.py
py
449
python
en
code
85
github-code
50
6790715267
# -*- coding: utf-8 -*- """ Created on Tue Jul 10 22:30:13 2018 @author: Zhang Xiang """ import numpy as np def loadData(filename): """导入数据""" dataMat = [] fr = open(filename) for line in fr.readlines(): curline = line.split('\t') curline = list(map(float, curline)) dataMat.append(curline) return dataMat def binsplitDataSet(dataMat, feature, value): """将数据分为左右两部分""" mat0 = dataMat[np.nonzero(dataMat[:, feature]>value)[0], :] mat1 = dataMat[np.nonzero(dataMat[:, feature]<=value)[0], :] return mat0, mat1 def solverLinear(dataSet): # 构造线性方程 m, n = np.shape(dataSet) X = np.matrix(np.ones((m, n))) y = np.matrix(np.ones((m, 1))) X[:, 1:] = dataSet[:, :n-1] y = dataSet[:, -1] xTx = X.T*X if np.linalg.det(xTx) == 0: print('This matrix is singular, try increasing the value of ops[1]') ws = xTx.I*(X.T*y) return ws, X, y def modelleaf(dataSet): # 对模型树叶节点的处理, 模型树的叶节点的返回值为线性回归方程的系数 ws, X, y = solverLinear(dataSet) return ws def modelErr(dataSet): # 模型树误差的计算 ws, X, y = solverLinear(dataSet) yHat = X*ws return sum(np.power(yHat - y, 2)) def ChooseBestSplit(dataSet, leafType = modelleaf, errType = modelErr, ops = (1, 4)): tolS = ops[0]; tolN = ops[1] if len(set(dataSet[:, -1].T.tolist()[0])) == 1: return None, leafType(dataSet) m,n = np.shape(dataSet) S = errType(dataSet) bestS = np.inf;bestIndex = 0;bestValue = 0 for featureIndex in range(n-1): for splitValue in set(dataSet[:,featureIndex].T.tolist()[0]): mat0, mat1 = binsplitDataSet(dataSet, featureIndex, splitValue) if (len(mat0)<tolN or len(mat1)<tolN): continue errS = errType(mat0) + errType(mat1) if errS < bestS: bestIndex = featureIndex bestS = errS bestValue = splitValue if (S - bestS) < tolS: return None, leafType(dataSet) mat0, mat1 = binsplitDataSet(dataSet, bestIndex, bestValue) if (len(mat0) < tolN or len(mat1) < tolN): return None, leafType(dataSet) return bestIndex, bestValue def CreatTree(dataSet, leafType = modelleaf, errType = modelErr, ops = (10, 100)): """构造树""" feat, val =ChooseBestSplit(dataSet, leafType, errType, ops) if feat == None: return val retTree = {} retTree['spInd'] = feat retTree['spVal'] = val lmat, rmat = binsplitDataSet(dataSet, feat, val) retTree['left'] = CreatTree(lmat, leafType, errType, ops) retTree['right'] = CreatTree(rmat, leafType, errType, ops) return retTree if __name__ == "__main__": # 建树过程, 条件ops控制树的大小 filename = r'E:\machinelearninginaction\Ch09\ex2.txt' dataMat = loadData(filename) dataMat = np.mat(dataMat) myTree = CreatTree(dataMat) print(myTree)
zhangxiangchn/Demo
Model Tree.py
Model Tree.py
py
3,132
python
en
code
3
github-code
50
10977899326
import logging import numpy as np from ibmfl.model.model_update import ModelUpdate from ibmfl.aggregator.fusion.iter_avg_fusion_handler import IterAvgFusionHandler logger = logging.getLogger(__name__) class PrejudiceRemoverFusionHandler(IterAvgFusionHandler): def fusion_collected_responses(self, lst_model_updates, key='weights'): """ Receives a list of model updates, where a model update is of the type `ModelUpdate`, using the values (indicating by the key) included in each model_update, it finds the mean. :param lst_model_updates: List of model updates of type `ModelUpdate` \ to be averaged. :type lst_model_updates: `list` :param key: A key indicating what values the method will aggregate over. :type key: `str` :return: results after aggregation :rtype: `list` """ v = [] for update in lst_model_updates: a = update.get(key) #Checks if LRwPRType4() appends 'None' to updates if a[len(a)-1] == None: v.append(np.array(a[:-1])) else: v.append(np.array(a)) results = np.mean(np.array(v), axis=0) return results.tolist()
SEED-VT/FedDebug
debugging-constructs/ibmfl/aggregator/fusion/prej_remover_fusion_handler.py
prej_remover_fusion_handler.py
py
1,248
python
en
code
7
github-code
50
4815676842
#!/usr/bin/env python # -*- coding: utf-8 -*- import pickle # creamos/abrimos el archivo acces donde se guardará los datos de acceso menos la contraseña, lo leemos y cerramos el archivo def lee(nombre): try: # leemos los datos del archivo acces.txt fin=open(nombre,"rb") list=pickle.load(fin) fin.close() # pendiente de investigar str=[i.rstrip() for i in list] return str except: # si al leer no existe el archivo con la excepcion creara el archivo y la lista vacia lst=[''] fin=open(nombre,"wb") pickle.dump(lst,fin) fin.close() str=[] return str def escribe(nombre,valores): fin=open(nombre, "wb") pickle.dump(valores,fin) fin.close()
Carlostlr/Gestor-empresa
general/archivos.py
archivos.py
py
809
python
es
code
0
github-code
50
72148543514
import streamlit as st import io import pdfplumber import openai from keys import OPEN_API_KEY # Set your API key openai.api_key = OPEN_API_KEY # Define the model you want to use MODEL_NAME = "text-davinci-003" MAX_TOKENS = 100 # Page Configuration st.set_page_config(page_title="PDF Summarizer", page_icon=":arrow_up:", layout="wide") # Header st.title("PDF Summarizer") def summarize_pdf_text(pdf_text: str) -> str: try: # Tokenize and split the text into manageable chunks if needed # For simplicity, this example does not include chunking logic # You might need to add logic to handle long texts # Call the OpenAI API to summarize response = openai.Completion.create( model=MODEL_NAME, prompt=f"Summarize this document with {MAX_TOKENS} max tokens: {pdf_text}", max_tokens=MAX_TOKENS, # Adjust based on your needs ) return response.choices[0].text.strip() except Exception as e: st.error(f"An error occurred: {e}") return "" def read_pdf(file): try: with pdfplumber.open(file) as pdf: pages = [page.extract_text() for page in pdf.pages] return "\n".join(pages) except Exception as e: st.error(f"Error reading PDF: {e}") return "" uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") if uploaded_file is not None: with st.spinner("Reading PDF..."): with io.BytesIO(uploaded_file.getbuffer()) as file_stream: pdf_text = read_pdf(file_stream) if pdf_text: with st.spinner("Summarizing..."): summary = summarize_pdf_text(pdf_text) st.markdown(summary)
mazalkov/baag.ai
src/baag/app.py
app.py
py
1,707
python
en
code
0
github-code
50
28103079549
# Calculadora Python calc = True while calc: entrada = input('Pressione "Enter" para continuar ou "sair" para encerrar o programa: ').lower() if entrada != 'sair': num1 = input('Digite um número: ') int_num1 = int(num1) oper = input('Digite a operação (+, -, /, *) >> ') num2 = input('Digite outro número: ') int_num2 = int(num2) if oper == '+': print(f'A soma de {num1} + {num2} é igual a: {int_num1+int_num2}') elif oper == '-': print(f'A subtração de {num1} - {num2} é igual a: {int_num1-int_num2}') elif oper == '/': print(f'A divisão entre {num1} / {num2} é igual a: {int_num1/int_num2}') elif oper == '*': print(f'A multiplicação de {num1} * {num2} é igual a: {int_num1*int_num2}') else: print('Ops, não entendi a operação.') else: calc = False print('Fim do programa.')
marcelogabrielcn/udemy_python2023
aula27.py
aula27.py
py
983
python
pt
code
0
github-code
50
19873780444
#!/usr/bin/python from string import Template import stat import SCons def md5sum(filename): import hashlib f = file(filename,'rb') return hashlib.md5(f.read()).hexdigest() def md5sum_action(target, source, env): for i in range(len(source)): digest = md5sum(source[i].abspath) content = digest + ' ' + source[i].name + '\n' file(target[i].abspath, 'w').write(content) return 0 def md5sum_emitter(target, source, env): if len(target) < len(source): diff = len(source) - len(target) offset = len(target) for i in range(diff): s = source[offset + i] target.append(env.File(s.abspath + '.md5sum')) return (target, source) def generate(env, **kw): try: env['BUILDERS']['MD5SUMSTR'] env['BUILDERS']['MD5SUM'] except KeyError: md5str = "Caculating md5sum: $TARGETS" action = SCons.Action.Action(md5sum_action, '$MD5SUMSTR') env['MD5SUMSTR'] = md5str env['BUILDERS']['MD5SUM'] = env.Builder(action = action, emitter = md5sum_emitter, suffix = '.md5sum') def exists(env): try: import hashlib return True except: return False
LolHacksRule/popcap
osframework/source/site_scons/site_tools/md5sum.py
md5sum.py
py
1,306
python
en
code
5
github-code
50
9148368381
# -*- coding: utf-8 -*- import os import yaml from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.exc import IntegrityError, SQLAlchemyError import pysite.models from pysite.authmgr.models import Principal, Role def check_site(sites_dir, sitename): """ Checks integrity of a site. A site is integer if: - It has a matching subdirectory in SITES_DIR - It has a matching YAML file in SITES_DIR - Its master rc at least has settings for - ``max_size`` - Its master ACL has at least one entry for a file manager: - Permission "allow" - List of principals contains at least one role (i.e. the manager role) - Permission name is 'manage_files' - The manager role exists in the database - The manager role has at least one member :param site_dir: The SITE_DIR, e.g. as configured in the app's rc file :param sitename: Name of site to check :returns: Returns a dict with the collected information. Key ``rc`` has the loaded configuration (or None) and ``manager`` has details about the manager: It is a dict with keys ``rolename`` and ``principals``. And if errors or warnings occured, respective keys are set (if both of them are absent, everything went well). """ errors = [] warnings = [] dir_ = os.path.join(sites_dir, sitename) info = dict(rc=None, manager=dict(rolename=None, principals=None), errors=errors, warnings=warnings) sess = pysite.models.DbSession() def _check_dir(): if not os.path.exists(dir_): errors.append("Site directory does not exist: '{0}'".format( dir_)) return False if not os.path.isdir(dir_): errors.append("Site is not a directory: '{0}'".format( dir_)) return False return True def _load_rc(fn): with open(fn, 'r', encoding='utf-8') as fh: return yaml.load(fh) def _check_rc(rc): # Process all warnings without stopping if rc: if not 'max_size' in rc: warnings.append("Rc has 'max_size' not set. Default applies.") if not 'acl' in rc: warnings.append("Rc has no ACL.") else: warnings.append("Master rc has no settings") def _check_acl(acl): for ace in acl: if 'allow'.startswith(ace[0].lower()) \ and ace[2] == 'manage_files': rolename = ace[1][2:] if ace[1].startswith('r:') else ace[1] try: role = sess.query(Role).filter(Role.name == rolename).one() except NoResultFound: errors.append("Role '{0}' does not exist".format(rolename)) return False info['manager']['rolename'] = "{0} ({1})".format(role.name, role.id) info['_role'] = role return True # No role was set or allowed warnings.append("""ACL contains no role that is permitted 'manage_files'""") return True # still return True, this is a warning, no error def _check_rolemember(role): qry = sess.query(Principal).filter(Principal.roles.any( name=role.name)) principals = ["{0} ({1})".format(p.principal, p.id) for p in qry.all()] if not principals: errors.append("Role '{0}' has no members".format(role.name)) return False info['manager']['principals'] = principals return True if not _check_dir(): return info rc = _load_rc(dir_ + '.yaml') info['rc'] = rc _check_rc(rc) # this produces only warnings if rc and 'acl' in rc: if not _check_acl(rc['acl']): return info if '_role' in info: if not _check_rolemember(info['_role']): return info del info['_role'] return info def create_site(owner, sites_dir, data): """ Creates a site. The data must be a dict with this keys: - ``sitename``: Name of the site. This will be the name of the site's directory and its manager role. - ``title``: Optional. Title of the site. Will be written in the site's user rc. - ``master_rc``: Optional. Dict with settings for the master rc file. - ``role``: Optional. Name of the manager role. If omitted, the site's name is used. - ``principal``: Either a principal (string) of an existing principal, or a dict with data for a new principal. - ``site_template``: Optional. Specifies a site template that is copied to the new directory. If it starts with a path separator, e.g. `/', it is treated as an absolute path, else it is treated as the name of a template within ``var/site-templates``. If omitted, the template "default" is used. The data for a new principal must be a dict with these keys: ``principal``, ``email``, ``pwd``. Other keys may optionally be given, like ``first_name``, ``last_name``, ``display_name``, ``notes``. :param sites_dir: Directory where the site will be stored :param data: Data structure that describes the new site, see above. :returns: Dict with keys ``errors`` and ``warnings``. """ errors = [] warnings = [] msgs = [] info = dict(errors=errors, warnings=warnings, msgs=msgs) if 'sitename' not in data: errors.append("Key 'sitename' is missing from data") return info if 'principal' not in data: errors.append("Key 'principal' is missing from data") return info dir_ = os.path.join(sites_dir, data['sitename']) rolename = data['role'] if 'role' in data else data['sitename'] site_template = data.get('site_template', 'default') if not site_template.startswith(os.path.sep): root_dir = os.path.join(os.path.dirname(__file__), '..', '..') site_template = os.path.join(root_dir, 'var', 'site-templates', site_template) with open(site_template + '.yaml', 'r', encoding='utf-8') as fh: master_rc = yaml.load(fh) master_rc['acl'][0][1] = 'r:' + rolename if 'master_rc' in data: master_rc.update(data['master_rc']) fn = os.path.join(site_template, 'rc.yaml') with open(fn, 'r', encoding='utf-8') as fh: user_rc = yaml.load(fh) if 'title' in data: user_rc.update(dict(title=data['title'])) def _create_site_files(): import shutil try: fn = dir_ + '.yaml' # Ensure the site does not exist yet if os.path.exists(dir_): raise IOError("Site directory already exists: '{0}'" .format(dir_)) if os.path.exists(fn): raise IOError("Master rc file already exists: '{0}'" .format(fn)) # Copy template if site_template: shutil.copytree(site_template, dir_) msgs.append("Copied template " + site_template) else: # Site dir os.mkdir(dir_) # Top level dirs dirs = ['assets', 'cache', 'plugins', 'content'] for d in dirs: os.mkdir(os.path.join(dir_, d)) # Master rc file with open(fn, 'w', encoding='utf-8') as fh: yaml.dump(master_rc, fh, allow_unicode=True, default_flow_style=False) # User rc file if user_rc: fn = os.path.join(dir_, 'rc.yaml') with open(fn, 'w', encoding='utf-8') as fh: yaml.dump(user_rc, fh, allow_unicode=True, default_flow_style=False) return True except IOError as e: errors.append(e) return False def _create_role_and_principal(): import pysite.authmgr.manager as usrmanager sess = pysite.models.DbSession() try: role = sess.query(Role).filter(Role.name == rolename).one() msgs.append("Use existing role '{0}' ({1})".format( role.name, role.id)) except NoResultFound: role_data = dict( name=rolename, owner=owner, notes="Manager role for site '{0}'".format(data['sitename']) ) role = usrmanager.create_role(role_data) msgs.append("Created role '{0}' ({1})".format(role.name, role.id)) if isinstance(data['principal'], dict): data['principal']['owner'] = owner principal = usrmanager.create_principal(data['principal']) msgs.append("Created principal '{0}' ({1})".format( principal.principal, principal.id)) else: try: principal = sess.query(Principal).filter( Principal.principal == data['principal']).one() msgs.append("Use existing principal '{0}' ({1})".format( principal.principal, principal.id)) except NoResultFound: errors.append("Principal '{0}' not found".format( data['principal'])) return info try: # Save these here. If create_rolemember fails, the session is # aborted and we cannot access the attributes of the entities # in the except handler. princ = principal.principal rol = role.name usrmanager.create_rolemember(dict(principal_id=principal.id, role_id=role.id, owner=owner)) msgs.append("Set principal '{0}' as member of role '{1}'".format( principal.principal, role.name)) except IntegrityError: msgs.append("Principal '{0}' is already member of role '{1}'".format( princ, rol)) if not _create_site_files(): return info try: _create_role_and_principal() except SQLAlchemyError as e: errors.append(e) return info
dmdm/PySite
pysite/sitemgr/manager.py
manager.py
py
10,164
python
en
code
5
github-code
50
20334472449
import numpy as np def preprocess(dataset): data = np.array(dataset['data']) data = np.unique(data, axis=0) X = data[:, :-1] y = data[:, -1] X = X.astype(np.float64) y = y.astype(np.uint32) return X, y
MarioDudjak/OversamplingWorkflow
program/DatasetManagement/Preprocessing.py
Preprocessing.py
py
234
python
en
code
0
github-code
50
23534776330
import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import hiplot as hip import plotly.express as px #import altair as alt #sklearn from sklearn.preprocessing import MinMaxScaler from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.impute import KNNImputer def predict_linear_regression(df): #Fill up data with KNN my_imputer = KNNImputer(n_neighbors=5, weights='distance', metric='nan_euclidean') df_repaired = pd.DataFrame(my_imputer.fit_transform(df), columns=df.columns) # Data Preparation X = df_repaired.drop(["Potability"], axis=1) y = df_repaired["Potability"] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) # Train the Linear Regression model model = LinearRegression() model.fit(X_train, y_train) # Streamlit App st.title("Water Portability Prediction with Linear Regression") # Sidebar for user input c1 = st.columns(3) c2 = st.columns(3) c3 = st.columns(3) ph = c1[0].slider("pH Value", 0.0, 14.0, 7.0) hardness = c1[1].slider("Hardness", 0, 500, 250) solids = c1[2].slider("Solids", 0, 50000, 25000) chloramines = c2[0].slider("Chloramines", 0.0, 15.0, 7.5) sulfate = c2[1].slider("Sulfate", 0, 500, 250) conductivity = c2[2].slider("Conductivity", 100, 1000, 550) organic_carbon = c3[0].slider("Organic Carbon", 0, 50, 25) trihalomethanes = c3[1].slider("Trihalomethanes", 0.0, 150.0, 75.0) turbidity = c3[2].slider("Turbidity", 0.0, 10.0, 5.0) # Create a DataFrame for prediction input_data = { "ph": ph, "Hardness": hardness, "Solids": solids, "Chloramines": chloramines, "Sulfate": sulfate, "Conductivity": conductivity, "Organic_carbon": organic_carbon, "Trihalomethanes": trihalomethanes, "Turbidity": turbidity } input_df = pd.DataFrame([input_data]) # Predict using the model prediction = model.predict(input_df) # Display the prediction result st.header("Prediction Result") st.write(f"The predicted Potability is: {prediction[0]*100:.2f} %") # Optional: Show the model's metrics y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) st.header("Model Evaluation") st.write(f"Mean Absolute Error (MAE): {mae:.4f}") st.write(f"Mean Squared Error (MSE): {mse:.4f}") def predict_KNN(df): #Fill up data with KNN my_imputer = KNNImputer(n_neighbors=9, weights='distance', metric='nan_euclidean') df_repaired = pd.DataFrame(my_imputer.fit_transform(df), columns=df.columns) # Data Preparation X = df_repaired.drop(["Potability"], axis=1) y = df_repaired["Potability"] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) # Train the KNN model k = 9 # Choose the number of neighbors (you can change this) model = KNeighborsClassifier(n_neighbors=k) model.fit(X_train, y_train) # Streamlit App st.title("Water Portability Prediction with KNN") # Sidebar for user input c4 = st.columns(3) c5 = st.columns(3) c6 = st.columns(3) ph1 = c4[0].slider("pH value", 0.0, 14.0, 7.0) hardness1 = c4[1].slider("hardness", 0, 500, 250) solids1 = c4[2].slider("solids", 0, 50000, 25000) chloramines1 = c5[0].slider("chloramines", 0.0, 15.0, 7.5) sulfate1 = c5[1].slider("sulfate", 0, 500, 250) conductivity1 = c5[2].slider("conductivity", 100, 1000, 550) organic_carbon1 = c6[0].slider("organic carbon", 0, 50, 25) trihalomethanes1 = c6[1].slider("trihalomethanes", 0.0, 150.0, 75.0) turbidity1 = c6[2].slider("turbidity", 0.0, 10.0, 5.0) # Create a DataFrame for prediction input_data1 = { "ph": ph1, "Hardness": hardness1, "Solids": solids1, "Chloramines": chloramines1, "Sulfate": sulfate1, "Conductivity": conductivity1, "Organic_carbon": organic_carbon1, "Trihalomethanes": trihalomethanes1, "Turbidity": turbidity1 } input_df1 = pd.DataFrame([input_data1]) # Predict using the model prediction1 = model.predict_proba(input_df1) # Display the prediction result st.header("Prediction Result") st.write(f"The predicted Potability is: {prediction1[0][1]*100:.2f} %") # Optional: Show the model's metrics y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) st.header("Model Evaluation") st.write(f"Mean Absolute Error (MAE): {mae:.4f}") st.write(f"Mean Squared Error (MSE): {mse:.4f}") def predict_ml(df): x = df.drop(['Potability'], axis='columns') y = df.Potability features_scaler = MinMaxScaler() features = features_scaler.fit_transform(x) #features model_params = { 'linear_regression': { 'model': LinearRegression(), 'params': {} }, 'logistic_regression' : { 'model': LogisticRegression(solver='liblinear',multi_class='auto'), 'params': { 'C': [1,5,10] } }, 'svm': { 'model': SVC(gamma='auto'), 'params' : { 'C': [1,10,20,30,50], 'kernel': ['rbf','linear','poly'] } }, 'KNN' : { 'model': KNeighborsClassifier(), 'params': { 'n_neighbors': [3,7,11,13] } }, 'random_forest': { 'model': RandomForestClassifier(), 'params' : { 'n_estimators': [10,50,100] } } } scores = [] for model_name, mp in model_params.items(): clf = GridSearchCV(mp['model'], mp['params'], cv=5, return_train_score=False) clf.fit(features, y) scores.append({ 'model': model_name, 'best_score': abs(clf.best_score_), #abs should not be here, just for removing error, this is not correct, 'best_params': clf.best_params_ }) df_score = pd.DataFrame(scores,columns=['model','best_score','best_params']) # Create a bar plot fig, ax = plt.subplots() sns.barplot(x="model", y="best_score", data=df_score, ax=ax) plt.ylim(0, 1) plt.title("Model Scores") plt.xlabel("Model") # Rotate x-axis labels plt.xticks(rotation=90) plt.ylabel("Best Score") # Display the plot in Streamlit st.pyplot(fig) #write best scores st.write(df_score) def summary(df): # Columns Summary st.subheader('| SUMMARY') col1, col2 = st.columns([2, 1]) # column 1 - Describe with col1: st.write(df.describe()) # column 2 - Potability Pie with col2: col = len(df.columns)-1 st.write('PARAMETERS : ',col) row = len(df) st.write('TOTAL DATA : ', row) st.write("Potability Distribution (Pie Chart)") potability_counts = df['Potability'].value_counts() fig1, ax1 = plt.subplots() ax1.pie(potability_counts, labels=potability_counts.index, autopct='%1.1f%%', startangle=90) ax1.axis('equal') st.pyplot(fig1) def missingdata(df): # Columns Summary st.subheader('| SUMMARY') col1, col2 = st.columns([1, 2]) # column 1 - Describe missing data with col1: st.write(df.isnull().sum()) # column 2 - Potability Pie with col2: st.write('Heatmap of Missing Values: ') sns.heatmap(df.isna(), cmap="flare") #sns.heatmap(df.corr(), annot=True, cmap='coolwarm') heatmap_fig = plt.gcf() # Get the current figure st.pyplot(heatmap_fig) def fill_data_median(df): df_old = df col1, col2 = st.columns([1, 1]) # column 1 - Describe missing data with col1: st.write("Before Fillup (df.isna())") fig1, ax = plt.subplots() sns.heatmap(df_old.isna(), cmap="plasma") st.write(fig1) #Fill up data with median df['ph'].fillna(value=df['ph'].median(),inplace=True) df['Sulfate'].fillna(value=df['Sulfate'].median(),inplace=True) df['Trihalomethanes'].fillna(value=df['Trihalomethanes'].median(),inplace=True) # column 2 - Potability Pie with col2: st.write("After Fillup with Median (df.isna())") fig2, ax = plt.subplots() sns.heatmap(df.isna(), cmap="plasma") st.write(fig2) return df def fill_data_KNN(df): df_old = df col1, col2 = st.columns([1, 1]) # column 1 - Describe missing data with col1: st.write("Before Fillup (df.isna())") fig1, ax = plt.subplots() sns.heatmap(df_old.isna(), cmap="plasma") st.write(fig1) #Fill up data with KNN my_imputer = KNNImputer(n_neighbors=5, weights='distance', metric='nan_euclidean') df_repaired = pd.DataFrame(my_imputer.fit_transform(df_old), columns=df_old.columns) # column 2 - Potability Pie with col2: st.write("After Fillup with KNNImputer (df.isna())") fig2, ax = plt.subplots() sns.heatmap(df_repaired.isna(), cmap="plasma") st.write(fig2) return df_repaired def main(): #intro flag intro = 1; st.sidebar.title('CMSE 830 : Midterm Project') st.sidebar.write('Developed by Md Arifuzzaman Faisal') # st.header("Upload your CSV data file") # data_file = st.file_uploader("Upload CSV", type=["csv"]) # if data_file is not None: df = pd.read_csv("water_potability.csv") st.sidebar.header("Visualizations") #show info of the dataset visual1 = st.sidebar.checkbox('Exploratory Data Analysis (EDA)') if visual1: plot_options = ["Correlation Heat Map", "Joint Plot of Columns","Histogram of Column", "Pair Plot", "PairGrid Plot", "Box Plot of Column", "3D Scatter Plot"] selected_plot = st.sidebar.selectbox("Choose a plot type", plot_options) if selected_plot == "Correlation Heat Map": st.write("Correlation Heatmap:") #plt.figure(figsize=(10, 10)) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') heatmap_fig = plt.gcf() # Get the current figure st.pyplot(heatmap_fig) elif selected_plot == "Joint Plot of Columns": x_axis = st.sidebar.selectbox("Select x-axis", df.columns, index=0) y_axis = st.sidebar.selectbox("Select y-axis", df.columns, index=1) st.write("Joint Plot:") jointplot = sns.jointplot(data = df, x=df[x_axis], y=df[y_axis], hue="Potability") #sns.scatterplot(data = df, x=df[x_axis], y=df[y_axis], hue="Potability", ax=ax) st.pyplot(jointplot) elif selected_plot == "Histogram of Column": column = st.sidebar.selectbox("Select a column", df.columns) bins = st.sidebar.slider("Number of bins", 5, 100, 20) st.write("Histogram:") fig, ax = plt.subplots() sns.histplot(data=df, x=column, hue="Potability",bins=bins, kde=True) st.pyplot(fig) elif selected_plot == "Pair Plot": st.subheader("Pair Plot") selected_box = st.multiselect('Select variables:', [col for col in df.columns if col != 'Potability']) selected_data = df[selected_box + ['Potability']] # Add 'Potability' column all_columns = selected_data.columns exclude_column = 'Potability' dims = [col for col in all_columns if col != exclude_column] fig = px.scatter_matrix(selected_data, dimensions=dims, title="Pair Plot", color='Potability') fig.update_layout(plot_bgcolor="white") st.plotly_chart(fig) elif selected_plot == "PairGrid Plot": st.subheader("Pair Plot") selected_box = st.multiselect('Select variables:', [col for col in df.columns if col != 'Potability'],default=['ph']) selected_data = df[selected_box + ['Potability']] # Add 'Potability' column # Create a PairGrid g = sns.PairGrid(selected_data, hue='Potability') g.map_upper(plt.scatter) g.map_diag(plt.hist, histtype="step", linewidth=2, bins=30) g.map_lower(plt.scatter) g.add_legend() # Display the PairGrid plot st.pyplot(plt.gcf()) elif selected_plot == "Box Plot of Column": column = st.sidebar.selectbox("Select a column", df.columns) st.write("Box Plot:") fig, ax = plt.subplots() sns.boxplot(df[column], ax=ax) st.pyplot(fig) elif selected_plot == "3D Scatter Plot": x_axis = st.sidebar.selectbox("Select x-axis", df.columns, index=0) y_axis = st.sidebar.selectbox("Select y-axis", df.columns, index=1) z_axis = st.sidebar.selectbox("Select z-axis", df.columns, index=2) st.subheader("3D Scatter Plot") fig = px.scatter_3d(df, x=x_axis, y=y_axis, z=z_axis, color='Potability') st.plotly_chart(fig) intro = 0 st.sidebar.header("Missing Data Analysis") #show info of the dataset misdata = st.sidebar.checkbox('Summary of Missing Data') if misdata: missingdata(df) intro = 0 st.sidebar.header("Treatment of Missing Data") #show info of the dataset #fill_data = st.sidebar.checkbox('Fill Data') #if fill_data: #fill_median = st.sidebar.checkbox('Fill Data Using Median') #if fill_median: #df1 = fill_data_median(df) #predict_ml(df1) fill_KNN = st.sidebar.checkbox('Fill Data Using KNN Imputer') if fill_KNN: df2 = fill_data_KNN(df) #predict_ml(df2) intro = 0 st.sidebar.header("Prediction") #Predict with Linear Regression predict = st.sidebar.checkbox('Predict Potability Using Linear Regression') if predict: predict_linear_regression(df) intro = 0 #Predict with KNN predict = st.sidebar.checkbox('Predict Potability Using KNN') if predict: predict_KNN(df) intro = 0 #show about the dataset #show = st.sidebar.checkbox('Show Introduction') #if show: #intro=1; if intro: st.subheader("Water Potability! Is the water safe for drink?") #tabs intro_tab, goal_tab, describe_tab, hiplot_tab, significance_tab, con_tab = st.tabs(["Introduction", "Project Goal", "Describe the Dataset", "HiPlot", "Project Significance","Conclusion"]) with intro_tab: col1, col2 = st.columns([1, 1]) with col1: st.image("dw.jpg", caption="Is the water safe for drink?", use_column_width=True) with col2: st.write("Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection. This is important as a health and development issue at a national, regional and local level. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, since the reductions in adverse health effects and health care costs outweigh the costs of undertaking the interventions.") st.markdown('[Source : Kaggle Dataset](https://www.kaggle.com/datasets/adityakadiwal/water-potability)') # Add a slider for selecting the number of rows to display num_rows = st.slider("Number of Rows", 1, 3276, 100) # Display the selected number of rows st.write(f"Displaying top {num_rows} rows:") st.write(df.head(num_rows)) with goal_tab: st.write("The main objective of this mid-term project is to conduct a thorough analysis of the Water Quality dataset in order to assess the safety of water sources for consumption. Specifically, our aim is to develop a predictive model that can accurately determine the drinkability of water based on various comprehensive water quality parameters.") col1, col2 = st.columns([1, 1]) with col1: st.subheader('| SUMMARY') col = len(df.columns)-1 st.write('PARAMETERS : ',col) row = len(df) st.write('TOTAL DATA : ', row) st.write("Potability Distribution (Pie Chart)") potability_counts = df['Potability'].value_counts() fig1, ax1 = plt.subplots() ax1.pie(potability_counts, labels=potability_counts.index, autopct='%1.1f%%', startangle=90) ax1.axis('equal') st.pyplot(fig1) with col2: st.write("This research aims to determine if a comprehensive analysis of water quality parameters can accurately predict the drinkability of water sources. Additionally, we seek to understand how the findings from this analysis can contribute to addressing the critical concern of ensuring safe drinking water for everyone. The significance of this project lies in its potential to have a direct impact on public health and well-being. Access to clean and safe drinking water is a basic human right, and by conducting this analysis, we hope to provide valuable insights that can inform water management decisions and help ensure the provision of safe drinking water to communities in need.") with describe_tab: st.write(df.describe()) with hiplot_tab: # Convert the DataFrame to a HiPlot Experiment exp = hip.Experiment.from_dataframe(df) # Render the HiPlot experiment in Streamlit st.components.v1.html(exp.to_html(), width=900, height=600, scrolling=True) with significance_tab: col1, col2 = st.columns([1, 1]) with col1: st.write("This project holds great significance and is worthy of completion for multiple reasons.") st.write("Firstly, it addresses a social concern, which is safe drinking water. Access to safe water is essential for human health and well-being.") with col2: st.image("wc.jpg", use_column_width=True) st.write("Secondly, the analysis of the Water Quality dataset has the potential to save lives by identifying unsafe water sources. By using data analysis techniques, the project can detect patterns and indicators of water contamination, allowing for early intervention and prevention measures to be implemented.") st.write("Thirdly, the project offers valuable insights for water management and public health protection. By analyzing the dataset, it can provide information on the factors that contribute to water quality issues, enabling authorities and organizations to make informed decisions regarding water treatment, distribution, and policy-making.") st.write("Lastly, the development of a user-friendly web app provides a simple and accessible interface for accessing water drinkability predictions to a wide range of people.") with con_tab: st.write("In this project, we conducted a thorough Exploratory Data Analysis (EDA) on the water portability dataset. Through visualizations and statistical summaries, we gained valuable insights into the chemical attributes influencing water quality. Key factors such as pH levels, Chloramines, and Solids content were analyzed in depth. The correlation heatmap provided a clear understanding of feature relationships. This EDA serves as a solid foundation for further analysis and potential model development.") st.write("The dataset used in this project contains information on nine chemical attributes: pH, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic Carbon, Trihalomethanes, and Turbidity. These attributes were crucial in training our models to predict the water potability accurately.This concise conclusion highlights the main achievements of your EDA project, emphasizing the importance of the insights gained for future analyses or model development.") if __name__ == "__main__": main()
faisalece/CMSE830_Midterm_Project
app.py
app.py
py
21,083
python
en
code
0
github-code
50
16139769924
# 2022.01.21 import faiss class ProductQuantizer(): def __init__(self, n_codes, code_size=1): self.log_n_codes = (int)(np.log2(n_codes-1))+1 self.n_codes = pow(2, self.log_n_codes) self.code_size = code_size self.dim = -1 self.codebook = None def fit(self, X): X = X.reshape(-1, X.shape[-1]) self.dim = X.shape[-1] pq = faiss.ProductQuantizer(self.dim, self.code_size, self.log_n_codes) pq.train(X) self.codebook = faiss.vector_to_array(pq.centroids).reshape(pq.M, pq.ksub, pq.dsub) return self def predict(self, X): S = (list)(X.shape) S[-1] = -1 X = X.reshape(-1, X.shape[-1]) pq = faiss.ProductQuantizer(self.dim, self.code_size, self.log_n_codes) faiss.copy_array_to_vector(self.codebook.ravel(), pq.centroids) codes = pq.compute_codes(X) return codes.reshape(S) def inverse_predict(self, codes): S = (list)(codes.shape) S[-1] = -1 codes = codes.reshape(-1, codes.shape[-1]) pq = faiss.ProductQuantizer(self.dim, self.code_size, self.log_n_codes) faiss.copy_array_to_vector(self.codebook.ravel(), pq.centroids) X = pq.decode(codes) return X.reshape(S)
yifan-fanyi/Func-Pool
ProductQuantizer.py
ProductQuantizer.py
py
1,291
python
en
code
2
github-code
50
32053161555
# pip3.10 install openpyxl import openpyxl import io # Ruta al archivo byte descargado archivo_byte = 'data2.net_7e80c8ad-b3b2-4fd9-90e6-35791b123e5e' # Abre el archivo byte with open(archivo_byte, 'rb') as f: contenido_byte = io.BytesIO(f.read()) # Carga el archivo byte en openpyxl libro_excel = openpyxl.load_workbook(filename=contenido_byte) # Haz algo con el archivo de Excel hoja = libro_excel.active print(hoja['A1'].value) # Guarda el archivo de Excel libro_excel.save('newexcel2.xlsx')
GerardoRosas-27/examplesPy
converteByteToExcel.py
converteByteToExcel.py
py
504
python
es
code
0
github-code
50
27351665750
import socket import psutil dsk = psutil.disk_usage('/') F = dsk.free #Fに空き容量を代入 FM = F/1000000 #1000000で割ってmbの値にして代入 with socket.socket(socket.AF_INET,socket.SOCK_STREAM) as s: s.connect(('192.168.0.57', 50007)) #メッセージ s.sendall(b'Sensor Connected') data = s.recv(1024) print(repr(data)) print("空き容量(mb)", +FM)
KanekoTW/Python
socket/clienthdd.py
clienthdd.py
py
397
python
ja
code
0
github-code
50
7422846475
import random # prompt the user to enter the maximum number that can be guessed max_num = int(input("Masukkan angka terbesar yang diinginkan: ")) # randomly choose a number to be guessed number = random.randint(1, max_num) # set the initial number of guesses to zero num_guesses = 0 # set the initial range of possible numbers to be all numbers between 1 and max_num low = 1 high = max_num # prompt the user to start guessing print("Sedang mengacak sebuah angka antara 1 dan", max_num) # keep looping until the computer guesses the correct number while True: # have the computer make a guess guess = (low + high) // 2 # increment the number of guesses num_guesses += 1 # check if the guess is correct if guess == number: print("Komputer berhasil menebaknya! Angka acak yang kamu dapatkan adalah", number) print("Komputer membutuhkan", num_guesses, "tebakan untuk menebak angka yang benar.") break # give the computer a hint if its guess was too low or too high elif guess < number: print("Tebakan komputer terlalu rendah. Mengubah range angka yang memungkinkan.") low = guess elif guess > number: print("Tebakan komputer terlalu tinggi. Mengubah range angka yang memungkinkan.") high = guess
lunaticbugbear/guess-the-number
guess_computer.py
guess_computer.py
py
1,247
python
en
code
0
github-code
50
43161433239
from django.conf.urls import url from scouts.sub_tasks.api import views urlpatterns = ( # MoveOut Sub Tasks url(r'^move_out/remarks/$', views.MoveOutRemarkUpdateView.as_view()), url(r'^move_out/amenity_check/$', views.MoveOutAmenitiesCheckupRetrieveUpdateView.as_view()), # PropertyOnBoarding Sub Tasks url(r'^property_onboard/house_address/$', views.PropertyOnBoardHouseAddressCreateView.as_view()), url(r'^property_onboard/house_photos/$', views.PropertyOnBoardHousePhotosUploadView.as_view()), url(r'^property_onboard/house_amenities/$', views.PropertyOnBoardHouseAmenitiesUpdateView.as_view()), url(r'^property_onboard/house_basic_details/$', views.PropertyOnBoardHouseBasicDetailsCreateView.as_view()), url(r'^property_onboard/self_task/$', views.create_property_on_boarding_scout_task_by_scout_himself), )
HalanxDev/Halanx-Scout-Backend
scouts/sub_tasks/urls.py
urls.py
py
852
python
en
code
0
github-code
50
11607558430
# ''' # Tema 1 _ Setup, Variabile, Tipuri de date # Exerciții Recomandate - grad de dificultate: Ușor . # 1. Revizualizează întâlnirea 1 și ia notițe în caz că ți-a scăpat ceva. # 2. Vizualizează din videoul ‘Primii pași în Programare’: # - Variabile și Tipuri; # - Operatori și Flow Control. # Astfel, la întâlnirea LIVE deja va fi a 2-a oară când vei auzi conceptele și sigur ți # se vor întipări mai bine în minte. # Link: https://www.itfactory.ro/8174437-intro-in-programare/ # ''' # ''' # TEMA 1 Exerciții obligatorii - grad de dificultate: Ușor spre Mediu: # ''' # 1. În cadrul unui comentariu, explică cu cuvintele tale ce este o variabilă. # O variabila este un tip de date stocata in memoria unui computer # ''' # 2. Declară și initializează câte o variabilă din fiecare din următoarele tipuri de # variabilă : # - string # - int # - float # - bool # Observație: Valorile vor fi alese de tine după preferințe. # ''' nume = 'Sergiu' prenume = 'Gavrila-Ursa' varsta = 39 inaltime = 1.79 saten = True # print('Ma numesc ' + nume + ' am varsta de ' + str(varsta) + ' ani ' + ' si inaltimea de ' + str(inaltime) + ' si sunt ' + str('saten')) # print(f'{nume} \n{varsta} \n{inaltime} \n{saten}') # 3. Utilizează funcția type pentru a verifica dacă au tipul de date așteptat. # nume = str('Sergiu') # print(type(nume)) # varsta = int('39') # print(type(varsta)) # inaltime = float(1.79) # print(type(inaltime)) # saten = bool(True) # print(type(saten)) ''' 4. Rotunjește ‘float’-ul folosind funcția round() și salvează această modificare în aceeași variabilă (suprascriere): - Verifică tipul acesteia. ''' # print(round(inaltime, 1)) # inaltime = float(1.7) # print(type(inaltime)) ''' 5. Folosește print() și printează în consola 4 propoziții folosind cele 4 variabile. Rezolvă nepotrivirile de tip prin ce modalitate dorești. ''' # print('Numele meu este ' + nume) # print('Am varsta de ' + str(varsta) + ' ani.') # print('Inaltimea mea este de ' + str(inaltime)) # print('Culoarea parului meu este satena ' + str(saten)) # ''' # 6. Citește de la tastatură: # - numele; # - prenumele. # Afișează: 'Numele complet are x caractere'. # ''' # nume = input('Introdu numele\n') # prenume = input('Introdu prenumele\n') # lung_nume = len(nume) + len(prenume) # print(f'Numele complet este {len(nume + prenume)}') ''' 7. Citește de la tastatură: - lungimea; - lățimea. Afișează: 'Aria dreptunghiului este x'. ''' # lungimea = int(input('Introdu lungimea\n')) # latimea = int(input('Introdu latimea\n')) # aria = lungimea * latimea # print('Aria dreptunghiului este', aria) ''' 8. Având stringul: 'Coral is either the stupidest animal or the smartest rock': - afișează de câte ori apare cuvântul 'the'; 9. Același string. ● Afișează de câte ori apare cuvântul 'the'; ● Printează rezultatul. ''' # narativ = 'Coral is either the stupidest animal or the smartest rock' # print(narativ.count(' the')) # print(narativ.replace('the', 'THE', 3)) ''' # 10. Același string. # ● Folosiți un assert ca să verificați dacă acest string conține doar numere. # ''' # narativ = 'Coral is either the stupidest animal or the smartest rock' # print(type(narativ)) # assert narativ == str('Coral is either the stupidest animal or the smartest rock') # print('narativul este un string') # assert narativ == int('Coral is either the stupidest animal or the smartest rock') # print('narativul contine doar numere') '''' Exerciții Opționale - grad de dificultate: Mediu spre greu (s-ar putea să ai nevoie de Google). ''' '''1. Exercițiu: - citește de la tastatură un string de dimensiune impară; - afișează caracterul din mijloc. ''' # cuvant = input('Introdu cuvantul\n') # lungime_cuvant = len(cuvant) # print(lungime_cuvant) # print(cuvant[2]) # print(f'Caracterul din mijloc este ') #-vezi tema rezolvat # # 2. Folosind assert, verifică dacă un string este palindrom. # x = input('palindrom\n') # assert x == x[::-1] # print('este un palindrom') ''' 3. Folosind o singură linie de cod : - citește un string de la tastatură (ex: 'alabala portocala'); - salvează fiecare cuvânt într-o variabilă; - printează ambele variabile pentru verificare. ''' # glasul_copilariei = input('Introdu\n') # print(glasul_copilariei) # glasul = input('Alabala\n') # copilariei = input('Portocala\n') # print(glasul) # print(copilariei) # print(glasul + ' ' + copilariei) ''' 4. Exercițiu: - citește un string de la tastatură (ex: alabala portocala); - salvează primul caracter într-o variabilă - indiferent care este el, încearcă cu 2 stringuri diferite; - capitalizează acest caracter peste tot, mai puțin pentru primul și ultimul caracter => alAbAlA portocAla. ''' # myStr = input('alabala portocala\n') # s = myStr[1:16].replace('a', 'A') # print(f'{myStr[0]}{s}{myStr[16]}') # # cu ajutorul Alinei ''' 5.Exercițiu: - citește un user de la tastatură; - citește o parolă; - afișează: 'Parola pt user x este ***** și are x caractere'; - ***** se va calcula dinamic, indiferent de dimensiunea parolei, trebuie să afișeze corect. eg: parola abc => *** parola abcd => **** ''' # User= input("User:") # Parola = input("Parola:") # Lungime_parola=len(Parola) # print(f'Parola pentru Userul {User} este {Lungime_parola * "*"} si are {len(Parola)} caractere') # # cu ajutorul lui Cosmin
GavrilaSergiuGVS/TESTGH
tema1.py
tema1.py
py
5,419
python
ro
code
0
github-code
50
23589033627
import telebot from django.shortcuts import render, redirect from django.http import HttpResponse from . import models # Create your views here. bot = telebot.TeleBot('5459935331:AAGVWpnqIK_bYMatPGDtqTWS8iPiWZgTJBc') def home_page(request): all_category = models.Category.objects.all() return render(request, 'index.html', {'all_categories': all_category}) def get_all_products(request): all_products = models.Product.objects.all() return render(request, 'product_index.html', {'all_products': all_products}) def get_exact_product(request, pk): current_product = models.Product.objects.get(product_name=pk) return render(request, 'get_exact_product_index.html', {'current_product': current_product}) def get_exact_category(request, pk): current_category = models.Category.objects.get(id=pk) category_products = models.Product.objects.filter(product_category = current_category) return render(request, 'get_exact_category_index.html', {'category_products': category_products}) def get_search_product(request, pk): current_product = models.Product.objects.get(product_name=pk) return render(request, 'search.html', {'current_product': current_product}) def search_exact_product(request): if request.method == 'POST': get_product = request.POST.get('search_product') try: models.Product.objects.get(product_name=get_product) return redirect(f'/search/{get_product}') except: return redirect('/') def add_product_to_user(request, pk): if request.method == 'POST': checker = models.Product.objects.get(id=pk) if checker.product_count >= int(request.POST.get('pr_count')): models.UserCart.objects.create(user_id=request.user.id, user_product = checker, user_product_quantity = request.POST.get('pr_count')).save() return redirect(f'/products/') else: return redirect(f'/product/{checker.product_name}') def get_exact_card(request): id = request.user.id all_card = models.UserCart.objects.filter(user_id = id) return render(request, 'user_card.html', {'all_card': all_card}) def delete_exact_user_cart(request, pk): product_to_delete = models.Product.objects.get(id = pk) models.UserCart.objects.filter(user_id=request.user.id, user_product = product_to_delete).delete() return redirect('/card') def shopping_cart(request): return render(request, 'registratsiya.html') def same_cart(request): if request.method == 'POST': user_id = 1006779184 total = 0 user = models.UserCart.objects.filter(user_id = request.user.id) text = ' --------- xaridor ----' text += f'firstname :{request.POST.get("firstname")} \nlastname:{request.POST.get("lastname")}\n' \ f'Email :{request.POST.get("email")}\nManzil :{request.POST.get("address")}\n' \ f'Tolov turi :{request.POST.get("address_oplata")}\n' text += '----- products-----' for users in user: text += f'Tovar :{users.user_product.product_name} \n' \ f'Narxi:{users.user_product.product_price}\n' \ f'Soni :{users.user_product_quantity}\nZakaz qilingan sanasi :{users.cart_date}\n' \ f'Xaridor :{users.user_id}\n' total = int(users.user_product_quantity) * float(users.user_product.product_price) + total text += f'summa = {total}\n' bot.send_message(user_id, text) models.UserCart.objects.filter(user_id=request.user.id).delete() return redirect('/card')
khurshid02/internet_magazin_django
main_page/views.py
views.py
py
3,801
python
en
code
0
github-code
50
8876495576
import click from flask import Flask from flask.cli import AppGroup # from .models.common import db # from flask_sqlalchemy import SQLAlchemy from app.models import ( db, Stock ) from app.logic.stock import stock_init_db stock_cli = AppGroup('stock') @stock_cli.command('init-db') def cmd_stock_init_db(): """ $ flask stock init-db --- populates stocks table """ stock_init_db() # DB Create based on Models mydb_cli = AppGroup('mydb') @mydb_cli.command('create_all') def db_create(): print(db) db.create_all() @mydb_cli.command('drop_all') def db_drop(): print(db) db.drop_all() def init_cli(application: Flask): application.cli.add_command(stock_cli) application.cli.add_command(mydb_cli)
jackalissimo/pipkoff
app/cli.py
cli.py
py
742
python
en
code
0
github-code
50
25588677373
# encoding: utf-8 from __future__ import absolute_import, division, print_function, unicode_literals import codecs import datetime import hashlib import logging import os import shutil import stat import sys import tempfile import unicodedata import unittest from os.path import join as j import mock from io import StringIO import bagit logging.basicConfig(filename="test.log", level=logging.DEBUG) stderr = logging.StreamHandler() stderr.setLevel(logging.WARNING) logging.getLogger().addHandler(stderr) # But we do want any exceptions raised in the logging path to be raised: logging.raiseExceptions = True def slurp_text_file(filename): with bagit.open_text_file(filename) as f: return f.read() class SelfCleaningTestCase(unittest.TestCase): """TestCase subclass which cleans up self.tmpdir after each test""" def setUp(self): super(SelfCleaningTestCase, self).setUp() self.starting_directory = ( os.getcwd() ) # FIXME: remove this after we stop changing directories in bagit.py self.tmpdir = tempfile.mkdtemp() if os.path.isdir(self.tmpdir): shutil.rmtree(self.tmpdir) shutil.copytree("test-data", self.tmpdir) def tearDown(self): # FIXME: remove this after we stop changing directories in bagit.py os.chdir(self.starting_directory) if os.path.isdir(self.tmpdir): # Clean up after tests which leave inaccessible files behind: os.chmod(self.tmpdir, 0o700) for dirpath, subdirs, filenames in os.walk(self.tmpdir, topdown=True): for i in subdirs: os.chmod(os.path.join(dirpath, i), 0o700) shutil.rmtree(self.tmpdir) super(SelfCleaningTestCase, self).tearDown() @mock.patch( "bagit.VERSION", new="1.5.4" ) # This avoids needing to change expected hashes on each release class TestSingleProcessValidation(SelfCleaningTestCase): def validate(self, bag, *args, **kwargs): return bag.validate(*args, **kwargs) def test_make_bag_sha1_sha256_manifest(self): bag = bagit.make_bag(self.tmpdir, checksum=["sha1", "sha256"]) # check that relevant manifests are created self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha1.txt"))) self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha256.txt"))) # check valid with two manifests self.assertTrue(self.validate(bag, fast=True)) def test_make_bag_md5_sha256_manifest(self): bag = bagit.make_bag(self.tmpdir, checksum=["md5", "sha256"]) # check that relevant manifests are created self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-md5.txt"))) self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha256.txt"))) # check valid with two manifests self.assertTrue(self.validate(bag, fast=True)) def test_make_bag_md5_sha1_sha256_manifest(self): bag = bagit.make_bag(self.tmpdir, checksum=["md5", "sha1", "sha256"]) # check that relevant manifests are created self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-md5.txt"))) self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha1.txt"))) self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha256.txt"))) # check valid with three manifests self.assertTrue(self.validate(bag, fast=True)) def test_validate_flipped_bit(self): bag = bagit.make_bag(self.tmpdir) readme = j(self.tmpdir, "data", "README") txt = slurp_text_file(readme) txt = "A" + txt[1:] with open(readme, "w") as r: r.write(txt) bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) # fast doesn't catch the flipped bit, since oxsum is the same self.assertTrue(self.validate(bag, fast=True)) self.assertTrue(self.validate(bag, completeness_only=True)) def test_validate_fast(self): bag = bagit.make_bag(self.tmpdir) self.assertEqual(self.validate(bag, fast=True), True) os.remove(j(self.tmpdir, "data", "loc", "2478433644_2839c5e8b8_o_d.jpg")) self.assertRaises(bagit.BagValidationError, self.validate, bag, fast=True) def test_validate_completeness(self): bag = bagit.make_bag(self.tmpdir) old_path = j(self.tmpdir, "data", "README") new_path = j(self.tmpdir, "data", "extra_file") os.rename(old_path, new_path) bag = bagit.Bag(self.tmpdir) self.assertTrue(self.validate(bag, fast=True)) with mock.patch.object(bag, "_validate_entries") as m: self.assertRaises( bagit.BagValidationError, self.validate, bag, completeness_only=True ) self.assertEqual(m.call_count, 0) def test_validate_fast_without_oxum(self): bag = bagit.make_bag(self.tmpdir) os.remove(j(self.tmpdir, "bag-info.txt")) bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag, fast=True) def test_validate_slow_without_oxum_extra_file(self): bag = bagit.make_bag(self.tmpdir) os.remove(j(self.tmpdir, "bag-info.txt")) with open(j(self.tmpdir, "data", "extra_file"), "w") as ef: ef.write("foo") bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag, fast=False) def test_validate_missing_directory(self): bagit.make_bag(self.tmpdir) tmp_data_dir = os.path.join(self.tmpdir, "data") shutil.rmtree(tmp_data_dir) bag = bagit.Bag(self.tmpdir) with self.assertRaises(bagit.BagValidationError) as error_catcher: bag.validate() self.assertEqual( "Expected data directory %s does not exist" % tmp_data_dir, str(error_catcher.exception), ) def test_validation_error_details(self): bag = bagit.make_bag( self.tmpdir, checksums=["md5"], bag_info={"Bagging-Date": "1970-01-01"} ) readme = j(self.tmpdir, "data", "README") txt = slurp_text_file(readme) txt = "A" + txt[1:] with open(readme, "w") as r: r.write(txt) bag = bagit.Bag(self.tmpdir) got_exception = False try: self.validate(bag) except bagit.BagValidationError as e: got_exception = True exc_str = str(e) self.assertIn( 'data/README md5 validation failed: expected="8e2af7a0143c7b8f4de0b3fc90f27354" found="fd41543285d17e7c29cd953f5cf5b955"', exc_str, ) self.assertEqual(len(e.details), 1) readme_error = e.details[0] self.assertEqual( 'data/README md5 validation failed: expected="8e2af7a0143c7b8f4de0b3fc90f27354" found="fd41543285d17e7c29cd953f5cf5b955"', str(readme_error), ) self.assertIsInstance(readme_error, bagit.ChecksumMismatch) self.assertEqual(readme_error.algorithm, "md5") self.assertEqual(readme_error.path, "data/README") self.assertEqual(readme_error.expected, "8e2af7a0143c7b8f4de0b3fc90f27354") self.assertEqual(readme_error.found, "fd41543285d17e7c29cd953f5cf5b955") if not got_exception: self.fail("didn't get BagValidationError") def test_validation_completeness_error_details(self): bag = bagit.make_bag( self.tmpdir, checksums=["md5"], bag_info={"Bagging-Date": "1970-01-01"} ) old_path = j(self.tmpdir, "data", "README") new_path = j(self.tmpdir, "data", "extra") os.rename(old_path, new_path) # remove the bag-info.txt which contains the oxum to force a full # check of the manifest os.remove(j(self.tmpdir, "bag-info.txt")) bag = bagit.Bag(self.tmpdir) got_exception = False try: self.validate(bag) except bagit.BagValidationError as e: got_exception = True exc_str = str(e) self.assertIn("Bag is incomplete: ", exc_str) self.assertIn( "bag-info.txt exists in manifest but was not found on filesystem", exc_str, ) self.assertIn( "data/README exists in manifest but was not found on filesystem", exc_str, ) self.assertIn( "data/extra exists on filesystem but is not in the manifest", exc_str ) self.assertEqual(len(e.details), 3) if e.details[0].path == "bag-info.txt": baginfo_error = e.details[0] readme_error = e.details[1] else: baginfo_error = e.details[1] readme_error = e.details[0] self.assertEqual( str(baginfo_error), "bag-info.txt exists in manifest but was not found on filesystem", ) self.assertIsInstance(baginfo_error, bagit.FileMissing) self.assertEqual(baginfo_error.path, "bag-info.txt") self.assertEqual( str(readme_error), "data/README exists in manifest but was not found on filesystem", ) self.assertIsInstance(readme_error, bagit.FileMissing) self.assertEqual(readme_error.path, "data/README") error = e.details[2] self.assertEqual( str(error), "data/extra exists on filesystem but is not in the manifest" ) self.assertTrue(error, bagit.UnexpectedFile) self.assertEqual(error.path, "data/extra") if not got_exception: self.fail("didn't get BagValidationError") def test_bom_in_bagit_txt(self): bag = bagit.make_bag(self.tmpdir) BOM = codecs.BOM_UTF8 if sys.version_info[0] >= 3: BOM = BOM.decode("utf-8") with open(j(self.tmpdir, "bagit.txt"), "r") as bf: bagfile = BOM + bf.read() with open(j(self.tmpdir, "bagit.txt"), "w") as bf: bf.write(bagfile) bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_missing_file(self): bag = bagit.make_bag(self.tmpdir) os.remove(j(self.tmpdir, "data", "loc", "3314493806_6f1db86d66_o_d.jpg")) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_handle_directory_end_slash_gracefully(self): bag = bagit.make_bag(self.tmpdir + "/") self.assertTrue(self.validate(bag)) bag2 = bagit.Bag(self.tmpdir + "/") self.assertTrue(self.validate(bag2)) def test_allow_extraneous_files_in_base(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(self.validate(bag)) f = j(self.tmpdir, "IGNOREFILE") with open(f, "w"): self.assertTrue(self.validate(bag)) def test_allow_extraneous_dirs_in_base(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(self.validate(bag)) d = j(self.tmpdir, "IGNOREDIR") os.mkdir(d) self.assertTrue(self.validate(bag)) def test_missing_tagfile_raises_error(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(self.validate(bag)) os.remove(j(self.tmpdir, "bagit.txt")) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_missing_manifest_raises_error(self): bag = bagit.make_bag(self.tmpdir, checksums=["sha512"]) self.assertTrue(self.validate(bag)) os.remove(j(self.tmpdir, "manifest-sha512.txt")) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_mixed_case_checksums(self): bag = bagit.make_bag(self.tmpdir, checksums=["md5"]) hashstr = {} # Extract entries only for the payload and ignore # entries from the tagmanifest file for key in bag.entries.keys(): if key.startswith("data" + os.sep): hashstr = bag.entries[key] hashstr = next(iter(hashstr.values())) manifest = slurp_text_file(j(self.tmpdir, "manifest-md5.txt")) manifest = manifest.replace(hashstr, hashstr.upper()) with open(j(self.tmpdir, "manifest-md5.txt"), "wb") as m: m.write(manifest.encode("utf-8")) # Since manifest-md5.txt file is updated, re-calculate its # md5 checksum and update it in the tagmanifest-md5.txt file hasher = hashlib.new("md5") contents = slurp_text_file(j(self.tmpdir, "manifest-md5.txt")).encode("utf-8") hasher.update(contents) with open(j(self.tmpdir, "tagmanifest-md5.txt"), "r") as tagmanifest: tagman_contents = tagmanifest.read() tagman_contents = tagman_contents.replace( bag.entries["manifest-md5.txt"]["md5"], hasher.hexdigest() ) with open(j(self.tmpdir, "tagmanifest-md5.txt"), "w") as tagmanifest: tagmanifest.write(tagman_contents) bag = bagit.Bag(self.tmpdir) self.assertTrue(self.validate(bag)) def test_unsafe_directory_entries_raise_error(self): bad_paths = None # This could be more granular, but ought to be # adequate. if os.name == "nt": bad_paths = ( r"C:\win32\cmd.exe", "\\\\?\\C:\\", "COM1:", "\\\\.\\COM56", "..\\..\\..\\win32\\cmd.exe", "data\\..\\..\\..\\win32\\cmd.exe", ) else: bad_paths = ( "../../../secrets.json", "~/.pgp/id_rsa", "/dev/null", "data/../../../secrets.json", ) hasher = hashlib.new("md5") corpus = "this is not a real checksum" hasher.update(corpus.encode("utf-8")) for bad_path in bad_paths: bagit.make_bag(self.tmpdir, checksums=["md5"]) with open(j(self.tmpdir, "manifest-md5.txt"), "wb+") as manifest_out: line = "%s %s\n" % (hasher.hexdigest(), bad_path) manifest_out.write(line.encode("utf-8")) self.assertRaises(bagit.BagError, bagit.Bag, self.tmpdir) def test_multiple_oxum_values(self): bag = bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "bag-info.txt"), "a") as baginfo: baginfo.write("Payload-Oxum: 7.7\n") bag = bagit.Bag(self.tmpdir) self.assertTrue(self.validate(bag, fast=True)) def test_validate_optional_tagfile(self): bag = bagit.make_bag(self.tmpdir, checksums=["md5"]) tagdir = tempfile.mkdtemp(dir=self.tmpdir) with open(j(tagdir, "tagfile"), "w") as tagfile: tagfile.write("test") relpath = j(tagdir, "tagfile").replace(self.tmpdir + os.sep, "") relpath.replace("\\", "/") with open(j(self.tmpdir, "tagmanifest-md5.txt"), "w") as tagman: # Incorrect checksum. tagman.write("8e2af7a0143c7b8f4de0b3fc90f27354 " + relpath + "\n") bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) hasher = hashlib.new("md5") contents = slurp_text_file(j(tagdir, "tagfile")).encode("utf-8") hasher.update(contents) with open(j(self.tmpdir, "tagmanifest-md5.txt"), "w") as tagman: tagman.write(hasher.hexdigest() + " " + relpath + "\n") bag = bagit.Bag(self.tmpdir) self.assertTrue(self.validate(bag)) # Missing tagfile. os.remove(j(tagdir, "tagfile")) bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_validate_optional_tagfile_in_directory(self): bag = bagit.make_bag(self.tmpdir, checksums=["md5"]) tagdir = tempfile.mkdtemp(dir=self.tmpdir) if not os.path.exists(j(tagdir, "tagfolder")): os.makedirs(j(tagdir, "tagfolder")) with open(j(tagdir, "tagfolder", "tagfile"), "w") as tagfile: tagfile.write("test") relpath = j(tagdir, "tagfolder", "tagfile").replace(self.tmpdir + os.sep, "") relpath.replace("\\", "/") with open(j(self.tmpdir, "tagmanifest-md5.txt"), "w") as tagman: # Incorrect checksum. tagman.write("8e2af7a0143c7b8f4de0b3fc90f27354 " + relpath + "\n") bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) hasher = hashlib.new("md5") with open(j(tagdir, "tagfolder", "tagfile"), "r") as tf: contents = tf.read().encode("utf-8") hasher.update(contents) with open(j(self.tmpdir, "tagmanifest-md5.txt"), "w") as tagman: tagman.write(hasher.hexdigest() + " " + relpath + "\n") bag = bagit.Bag(self.tmpdir) self.assertTrue(self.validate(bag)) # Missing tagfile. os.remove(j(tagdir, "tagfolder", "tagfile")) bag = bagit.Bag(self.tmpdir) self.assertRaises(bagit.BagValidationError, self.validate, bag) def test_sha1_tagfile(self): info = {"Bagging-Date": "1970-01-01", "Contact-Email": "[email protected]"} bag = bagit.make_bag(self.tmpdir, checksum=["sha1"], bag_info=info) self.assertTrue(os.path.isfile(j(self.tmpdir, "tagmanifest-sha1.txt"))) self.assertEqual( "f69110479d0d395f7c321b3860c2bc0c96ae9fe8", bag.entries["bag-info.txt"]["sha1"], ) def test_validate_unreadable_file(self): bag = bagit.make_bag(self.tmpdir, checksum=["md5"]) os.chmod(j(self.tmpdir, "data/loc/2478433644_2839c5e8b8_o_d.jpg"), 0) self.assertRaises(bagit.BagValidationError, self.validate, bag, fast=False) class TestMultiprocessValidation(TestSingleProcessValidation): def validate(self, bag, *args, **kwargs): return super(TestMultiprocessValidation, self).validate( bag, *args, processes=2, **kwargs ) @mock.patch( "bagit.VERSION", new="1.5.4" ) # This avoids needing to change expected hashes on each release class TestBag(SelfCleaningTestCase): def test_make_bag(self): info = {"Bagging-Date": "1970-01-01", "Contact-Email": "[email protected]"} bagit.make_bag(self.tmpdir, bag_info=info, checksums=["md5"]) # data dir should've been created self.assertTrue(os.path.isdir(j(self.tmpdir, "data"))) # check bagit.txt self.assertTrue(os.path.isfile(j(self.tmpdir, "bagit.txt"))) bagit_txt = slurp_text_file(j(self.tmpdir, "bagit.txt")) self.assertTrue("BagIt-Version: 0.97", bagit_txt) self.assertTrue("Tag-File-Character-Encoding: UTF-8", bagit_txt) # check manifest self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-md5.txt"))) manifest_txt = slurp_text_file(j(self.tmpdir, "manifest-md5.txt")).splitlines() self.assertIn("8e2af7a0143c7b8f4de0b3fc90f27354 data/README", manifest_txt) self.assertIn( "9a2b89e9940fea6ac3a0cc71b0a933a0 data/loc/2478433644_2839c5e8b8_o_d.jpg", manifest_txt, ) self.assertIn( "6172e980c2767c12135e3b9d246af5a3 data/loc/3314493806_6f1db86d66_o_d.jpg", manifest_txt, ) self.assertIn( "38a84cd1c41de793a0bccff6f3ec8ad0 data/si/2584174182_ffd5c24905_b_d.jpg", manifest_txt, ) self.assertIn( "5580eaa31ad1549739de12df819e9af8 data/si/4011399822_65987a4806_b_d.jpg", manifest_txt, ) # check bag-info.txt self.assertTrue(os.path.isfile(j(self.tmpdir, "bag-info.txt"))) bag_info_txt = slurp_text_file(j(self.tmpdir, "bag-info.txt")) bag_info_txt = bag_info_txt.splitlines() self.assertIn("Contact-Email: [email protected]", bag_info_txt) self.assertIn("Bagging-Date: 1970-01-01", bag_info_txt) self.assertIn("Payload-Oxum: 991765.5", bag_info_txt) self.assertIn( "Bag-Software-Agent: bagit.py v1.5.4 <https://github.com/LibraryOfCongress/bagit-python>", bag_info_txt, ) # check tagmanifest-md5.txt self.assertTrue(os.path.isfile(j(self.tmpdir, "tagmanifest-md5.txt"))) tagmanifest_txt = slurp_text_file( j(self.tmpdir, "tagmanifest-md5.txt") ).splitlines() self.assertIn("9e5ad981e0d29adc278f6a294b8c2aca bagit.txt", tagmanifest_txt) self.assertIn( "a0ce6631a2a6d1a88e6d38453ccc72a5 manifest-md5.txt", tagmanifest_txt ) self.assertIn("0a6ffcffe67e9a34e44220f7ebcb4baa bag-info.txt", tagmanifest_txt) def test_make_bag_sha1_manifest(self): bagit.make_bag(self.tmpdir, checksum=["sha1"]) # check manifest self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha1.txt"))) manifest_txt = slurp_text_file(j(self.tmpdir, "manifest-sha1.txt")).splitlines() self.assertIn( "ace19416e605cfb12ab11df4898ca7fd9979ee43 data/README", manifest_txt ) self.assertIn( "4c0a3da57374e8db379145f18601b159f3cad44b data/loc/2478433644_2839c5e8b8_o_d.jpg", manifest_txt, ) self.assertIn( "62095aeddae2f3207cb77c85937e13c51641ef71 data/loc/3314493806_6f1db86d66_o_d.jpg", manifest_txt, ) self.assertIn( "e592194b3733e25166a631e1ec55bac08066cbc1 data/si/2584174182_ffd5c24905_b_d.jpg", manifest_txt, ) self.assertIn( "db49ef009f85a5d0701829f38d29f8cf9c5df2ea data/si/4011399822_65987a4806_b_d.jpg", manifest_txt, ) def test_make_bag_sha256_manifest(self): bagit.make_bag(self.tmpdir, checksum=["sha256"]) # check manifest self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha256.txt"))) manifest_txt = slurp_text_file( j(self.tmpdir, "manifest-sha256.txt") ).splitlines() self.assertIn( "b6df8058fa818acfd91759edffa27e473f2308d5a6fca1e07a79189b95879953 data/loc/2478433644_2839c5e8b8_o_d.jpg", manifest_txt, ) self.assertIn( "1af90c21e72bb0575ae63877b3c69cfb88284f6e8c7820f2c48dc40a08569da5 data/loc/3314493806_6f1db86d66_o_d.jpg", manifest_txt, ) self.assertIn( "f065a4ae2bc5d47c6d046c3cba5c8cdfd66b07c96ff3604164e2c31328e41c1a data/si/2584174182_ffd5c24905_b_d.jpg", manifest_txt, ) self.assertIn( "45d257c93e59ec35187c6a34c8e62e72c3e9cfbb548984d6f6e8deb84bac41f4 data/si/4011399822_65987a4806_b_d.jpg", manifest_txt, ) def test_make_bag_sha512_manifest(self): bagit.make_bag(self.tmpdir, checksum=["sha512"]) # check manifest self.assertTrue(os.path.isfile(j(self.tmpdir, "manifest-sha512.txt"))) manifest_txt = slurp_text_file( j(self.tmpdir, "manifest-sha512.txt") ).splitlines() self.assertIn( "51fb9236a23795886cf42d539d580739245dc08f72c3748b60ed8803c9cb0e2accdb91b75dbe7d94a0a461827929d720ef45fe80b825941862fcde4c546a376d data/loc/2478433644_2839c5e8b8_o_d.jpg", manifest_txt, ) self.assertIn( "627c15be7f9aabc395c8b2e4c3ff0b50fd84b3c217ca38044cde50fd4749621e43e63828201fa66a97975e316033e4748fb7a4a500183b571ecf17715ec3aea3 data/loc/3314493806_6f1db86d66_o_d.jpg", manifest_txt, ) self.assertIn( "4cb4dafe39b2539536a9cb31d5addf335734cb91e2d2786d212a9b574e094d7619a84ad53f82bd9421478a7994cf9d3f44fea271d542af09d26ce764edbada46 data/si/2584174182_ffd5c24905_b_d.jpg", manifest_txt, ) self.assertIn( "af1c03483cd1999098cce5f9e7689eea1f81899587508f59ba3c582d376f8bad34e75fed55fd1b1c26bd0c7a06671b85e90af99abac8753ad3d76d8d6bb31ebd data/si/4011399822_65987a4806_b_d.jpg", manifest_txt, ) def test_make_bag_unknown_algorithm(self): self.assertRaises( ValueError, bagit.make_bag, self.tmpdir, checksum=["not-really-a-name"] ) def test_make_bag_with_empty_directory(self): tmpdir = tempfile.mkdtemp() try: bagit.make_bag(tmpdir) finally: shutil.rmtree(tmpdir) def test_make_bag_with_empty_directory_tree(self): tmpdir = tempfile.mkdtemp() path = j(tmpdir, "test1", "test2") try: os.makedirs(path) bagit.make_bag(tmpdir) finally: shutil.rmtree(tmpdir) def test_make_bag_with_bogus_directory(self): bogus_directory = os.path.realpath("this-directory-does-not-exist") with self.assertRaises(RuntimeError) as error_catcher: bagit.make_bag(bogus_directory) self.assertEqual( "Bag directory %s does not exist" % bogus_directory, str(error_catcher.exception), ) def test_make_bag_with_unreadable_source(self): os.chmod(self.tmpdir, 0) with self.assertRaises(bagit.BagError) as error_catcher: bagit.make_bag(self.tmpdir, checksum=["sha256"]) self.assertEqual( "Missing permissions to move all files and directories", str(error_catcher.exception), ) def test_make_bag_with_unreadable_subdirectory(self): # We'll set this write-only to exercise the second permission check in make_bag: os.chmod(j(self.tmpdir, "loc"), 0o200) with self.assertRaises(bagit.BagError) as error_catcher: bagit.make_bag(self.tmpdir, checksum=["sha256"]) self.assertEqual( "Read permissions are required to calculate file fixities", str(error_catcher.exception), ) def test_make_bag_with_unwritable_source(self): path_suffixes = ("", "loc") for path_suffix in reversed(path_suffixes): os.chmod(j(self.tmpdir, path_suffix), 0o500) with self.assertRaises(bagit.BagError) as error_catcher: bagit.make_bag(self.tmpdir, checksum=["sha256"]) self.assertEqual( "Missing permissions to move all files and directories", str(error_catcher.exception), ) def test_make_bag_with_unreadable_file(self): os.chmod(j(self.tmpdir, "loc", "2478433644_2839c5e8b8_o_d.jpg"), 0) with self.assertRaises(bagit.BagError) as error_catcher: bagit.make_bag(self.tmpdir, checksum=["sha256"]) self.assertEqual( "Read permissions are required to calculate file fixities", str(error_catcher.exception), ) def test_make_bag_with_data_dir_present(self): os.mkdir(j(self.tmpdir, "data")) bagit.make_bag(self.tmpdir) # data dir should now contain another data dir self.assertTrue(os.path.isdir(j(self.tmpdir, "data", "data"))) def test_bag_class(self): info = {"Contact-Email": "[email protected]"} bag = bagit.make_bag(self.tmpdir, bag_info=info, checksums=["sha384"]) self.assertIsInstance(bag, bagit.Bag) self.assertEqual( set(bag.payload_files()), set( [ "data/README", "data/si/2584174182_ffd5c24905_b_d.jpg", "data/si/4011399822_65987a4806_b_d.jpg", "data/loc/2478433644_2839c5e8b8_o_d.jpg", "data/loc/3314493806_6f1db86d66_o_d.jpg", ] ), ) self.assertEqual( list(bag.manifest_files()), ["%s/manifest-sha384.txt" % self.tmpdir] ) def test_bag_string_representation(self): bag = bagit.make_bag(self.tmpdir) self.assertEqual(self.tmpdir, str(bag)) def test_has_oxum(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(bag.has_oxum()) def test_bag_constructor(self): bag = bagit.make_bag(self.tmpdir) bag = bagit.Bag(self.tmpdir) self.assertEqual(type(bag), bagit.Bag) self.assertEqual(len(list(bag.payload_files())), 5) def test_is_valid(self): bag = bagit.make_bag(self.tmpdir) bag = bagit.Bag(self.tmpdir) self.assertTrue(bag.is_valid()) with open(j(self.tmpdir, "data", "extra_file"), "w") as ef: ef.write("bar") self.assertFalse(bag.is_valid()) def test_garbage_in_bagit_txt(self): bagit.make_bag(self.tmpdir) bagfile = """BagIt-Version: 0.97 Tag-File-Character-Encoding: UTF-8 ================================== """ with open(j(self.tmpdir, "bagit.txt"), "w") as bf: bf.write(bagfile) self.assertRaises(bagit.BagValidationError, bagit.Bag, self.tmpdir) def test_make_bag_multiprocessing(self): bagit.make_bag(self.tmpdir, processes=2) self.assertTrue(os.path.isdir(j(self.tmpdir, "data"))) def test_multiple_meta_values(self): baginfo = {"Multival-Meta": [7, 4, 8, 6, 8]} bag = bagit.make_bag(self.tmpdir, baginfo) meta = bag.info.get("Multival-Meta") self.assertEqual(type(meta), list) self.assertEqual(len(meta), len(baginfo["Multival-Meta"])) def test_unicode_bag_info(self): info = { "Test-BMP": "This element contains a \N{LATIN SMALL LETTER U WITH DIAERESIS}", "Test-SMP": "This element contains a \N{LINEAR B SYMBOL B049}", } bagit.make_bag(self.tmpdir, bag_info=info, checksums=["md5"]) bag_info_txt = slurp_text_file(j(self.tmpdir, "bag-info.txt")) for v in info.values(): self.assertIn(v, bag_info_txt) def test_unusual_bag_info_separators(self): bag = bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "bag-info.txt"), "a") as f: print("Test-Tag: 1", file=f) print("Test-Tag:\t2", file=f) print("Test-Tag\t: 3", file=f) print("Test-Tag\t:\t4", file=f) print("Test-Tag\t \t: 5", file=f) print("Test-Tag:\t \t 6", file=f) bag = bagit.Bag(self.tmpdir) bag.save(manifests=True) self.assertTrue(bag.is_valid()) self.assertEqual(bag.info["Test-Tag"], list(map(str, range(1, 7)))) def test_default_bagging_date(self): info = {"Contact-Email": "[email protected]"} bagit.make_bag(self.tmpdir, bag_info=info) bag_info_txt = slurp_text_file(j(self.tmpdir, "bag-info.txt")) self.assertTrue("Contact-Email: [email protected]" in bag_info_txt) today = datetime.date.strftime(datetime.date.today(), "%Y-%m-%d") self.assertTrue("Bagging-Date: %s" % today in bag_info_txt) def test_missing_tagmanifest_valid(self): info = {"Contact-Email": "[email protected]"} bag = bagit.make_bag(self.tmpdir, bag_info=info, checksums=["md5"]) self.assertTrue(bag.is_valid()) os.remove(j(self.tmpdir, "tagmanifest-md5.txt")) self.assertTrue(bag.is_valid()) def test_carriage_return_manifest(self): with open(j(self.tmpdir, "newline\r"), "w") as whatever: whatever.write("ugh") bag = bagit.make_bag(self.tmpdir) self.assertTrue(bag.is_valid()) def test_payload_permissions(self): perms = os.stat(self.tmpdir).st_mode # our tmpdir should not be writeable by group self.assertEqual(perms & stat.S_IWOTH, 0) # but if we make it writeable by the group then resulting # payload directory should have the same permissions new_perms = perms | stat.S_IWOTH self.assertTrue(perms != new_perms) os.chmod(self.tmpdir, new_perms) bagit.make_bag(self.tmpdir) payload_dir = j(self.tmpdir, "data") self.assertEqual(os.stat(payload_dir).st_mode, new_perms) def test_save_bag_to_unwritable_directory(self): bag = bagit.make_bag(self.tmpdir, checksum=["sha256"]) os.chmod(self.tmpdir, 0) with self.assertRaises(bagit.BagError) as error_catcher: bag.save() self.assertEqual( "Cannot save bag to non-existent or inaccessible directory %s" % self.tmpdir, str(error_catcher.exception), ) def test_save_bag_with_unwritable_file(self): bag = bagit.make_bag(self.tmpdir, checksum=["sha256"]) os.chmod(os.path.join(self.tmpdir, "bag-info.txt"), 0) with self.assertRaises(bagit.BagError) as error_catcher: bag.save() self.assertEqual( "Read permissions are required to calculate file fixities", str(error_catcher.exception), ) def test_save_manifests(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(bag.is_valid()) bag.save(manifests=True) self.assertTrue(bag.is_valid()) with open(j(self.tmpdir, "data", "newfile"), "w") as nf: nf.write("newfile") self.assertRaises(bagit.BagValidationError, bag.validate, bag, fast=False) bag.save(manifests=True) self.assertTrue(bag.is_valid()) def test_save_manifests_deleted_files(self): bag = bagit.make_bag(self.tmpdir) self.assertTrue(bag.is_valid()) bag.save(manifests=True) self.assertTrue(bag.is_valid()) os.remove(j(self.tmpdir, "data", "loc", "2478433644_2839c5e8b8_o_d.jpg")) self.assertRaises(bagit.BagValidationError, bag.validate, bag, fast=False) bag.save(manifests=True) self.assertTrue(bag.is_valid()) def test_save_baginfo(self): bag = bagit.make_bag(self.tmpdir) bag.info["foo"] = "bar" bag.save() bag = bagit.Bag(self.tmpdir) self.assertEqual(bag.info["foo"], "bar") self.assertTrue(bag.is_valid()) bag.info["x"] = ["a", "b", "c"] bag.save() b = bagit.Bag(self.tmpdir) self.assertEqual(b.info["x"], ["a", "b", "c"]) self.assertTrue(bag.is_valid()) def test_save_baginfo_with_sha1(self): bag = bagit.make_bag(self.tmpdir, checksum=["sha1", "md5"]) self.assertTrue(bag.is_valid()) bag.save() bag.info["foo"] = "bar" bag.save() bag = bagit.Bag(self.tmpdir) self.assertTrue(bag.is_valid()) def test_save_only_baginfo(self): bag = bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "data", "newfile"), "w") as nf: nf.write("newfile") bag.info["foo"] = "bar" bag.save() bag = bagit.Bag(self.tmpdir) self.assertEqual(bag.info["foo"], "bar") self.assertFalse(bag.is_valid()) def test_make_bag_with_newline(self): bag = bagit.make_bag(self.tmpdir, {"test": "foo\nbar"}) self.assertEqual(bag.info["test"], "foobar") def test_unicode_in_tags(self): bag = bagit.make_bag(self.tmpdir, {"test": "♡"}) bag = bagit.Bag(self.tmpdir) self.assertEqual(bag.info["test"], "♡") def test_filename_unicode_normalization(self): # We need to handle cases where the Unicode normalization form of a # filename has changed in-transit. This is hard to do portably in both # directions because OS X normalizes *all* filenames to an NFD variant # so we'll start with a basic test which writes the manifest using the # NFC form and confirm that this does not cause the bag to fail when it # is written to the filesystem using the NFD form, which will not be # altered when saved to an HFS+ filesystem: test_filename = "Núñez Papers.txt" test_filename_nfd = unicodedata.normalize("NFD", test_filename) os.makedirs(j(self.tmpdir, "unicode-normalization")) with open(j(self.tmpdir, "unicode-normalization", test_filename_nfd), "w") as f: f.write("This is a test filename written using NFD normalization\n") bag = bagit.make_bag(self.tmpdir) bag.save() self.assertTrue(bag.is_valid()) # Now we'll cause the entire manifest file was normalized to NFC: for m_f in bag.manifest_files(): contents = slurp_text_file(m_f) normalized_bytes = unicodedata.normalize("NFC", contents).encode("utf-8") with open(m_f, "wb") as f: f.write(normalized_bytes) for alg in bag.algorithms: bagit._make_tagmanifest_file(alg, bag.path, encoding=bag.encoding) # Now we'll reload the whole thing: bag = bagit.Bag(self.tmpdir) self.assertTrue(bag.is_valid()) def test_open_bag_with_missing_bagit_txt(self): bagit.make_bag(self.tmpdir) os.unlink(j(self.tmpdir, "bagit.txt")) with self.assertRaises(bagit.BagError) as error_catcher: bagit.Bag(self.tmpdir) self.assertEqual( "Expected bagit.txt does not exist: %s/bagit.txt" % self.tmpdir, str(error_catcher.exception), ) def test_open_bag_with_malformed_bagit_txt(self): bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "bagit.txt"), "w") as f: os.ftruncate(f.fileno(), 0) with self.assertRaises(bagit.BagError) as error_catcher: bagit.Bag(self.tmpdir) self.assertEqual( "Missing required tag in bagit.txt: BagIt-Version, Tag-File-Character-Encoding", str(error_catcher.exception), ) def test_open_bag_with_invalid_versions(self): bagit.make_bag(self.tmpdir) for v in ("a.b", "2.", "0.1.2", "1.2.3"): with open(j(self.tmpdir, "bagit.txt"), "w") as f: f.write("BagIt-Version: %s\nTag-File-Character-Encoding: UTF-8\n" % v) with self.assertRaises(bagit.BagError) as error_catcher: bagit.Bag(self.tmpdir) self.assertEqual( "Bag version numbers must be MAJOR.MINOR numbers, not %s" % v, str(error_catcher.exception), ) def test_open_bag_with_unsupported_version(self): bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "bagit.txt"), "w") as f: f.write("BagIt-Version: 2.0\nTag-File-Character-Encoding: UTF-8\n") with self.assertRaises(bagit.BagError) as error_catcher: bagit.Bag(self.tmpdir) self.assertEqual("Unsupported bag version: 2.0", str(error_catcher.exception)) def test_open_bag_with_unknown_encoding(self): bagit.make_bag(self.tmpdir) with open(j(self.tmpdir, "bagit.txt"), "w") as f: f.write("BagIt-Version: 0.97\nTag-File-Character-Encoding: WTF-8\n") with self.assertRaises(bagit.BagError) as error_catcher: bagit.Bag(self.tmpdir) self.assertEqual("Unsupported encoding: WTF-8", str(error_catcher.exception)) class TestFetch(SelfCleaningTestCase): def setUp(self): super(TestFetch, self).setUp() # All of these tests will involve fetch.txt usage with an existing bag # so we'll simply create one: self.bag = bagit.make_bag(self.tmpdir) def test_fetch_loader(self): with open(j(self.tmpdir, "fetch.txt"), "w") as fetch_txt: print( "https://photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg - data/nasa/PIA21390.jpg", file=fetch_txt, ) self.bag.save(manifests=True) self.bag.validate() self.assertListEqual( [ ( "https://photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg", "-", "data/nasa/PIA21390.jpg", ) ], list(self.bag.fetch_entries()), ) self.assertListEqual( ["data/nasa/PIA21390.jpg"], list(self.bag.files_to_be_fetched()) ) self.assertListEqual( ["data/nasa/PIA21390.jpg"], list(self.bag.compare_fetch_with_fs()) ) def test_fetch_validation(self): with open(j(self.tmpdir, "fetch.txt"), "w") as fetch_txt: print( "https://photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg - data/nasa/PIA21390.jpg", file=fetch_txt, ) self.bag.save(manifests=True) with mock.patch.object(bagit.Bag, "validate_fetch") as mock_vf: self.bag.validate() self.assertTrue( mock_vf.called, msg="Bag.validate() should call Bag.validate_fetch()" ) def test_fetch_unsafe_payloads(self): with open(j(self.tmpdir, "fetch.txt"), "w") as fetch_txt: print( "https://photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg - /etc/passwd", file=fetch_txt, ) self.bag.save(manifests=True) expected_msg = 'Path "/etc/passwd" in "%s/fetch.txt" is unsafe' % self.tmpdir # We expect both validate() and fetch entry iteration to raise errors on security hazards # so we'll test both: with self.assertRaises(bagit.BagError) as cm: self.bag.validate() self.assertEqual(expected_msg, str(cm.exception)) # Note the use of list() to exhaust the fetch_entries generator: with self.assertRaises(bagit.BagError) as cm: list(self.bag.fetch_entries()) self.assertEqual(expected_msg, str(cm.exception)) def test_fetch_malformed_url(self): with open(j(self.tmpdir, "fetch.txt"), "w") as fetch_txt: print( "//photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg - data/nasa/PIA21390.jpg", file=fetch_txt, ) self.bag.save(manifests=True) expected_msg = ( "Malformed URL in fetch.txt: //photojournal.jpl.nasa.gov/jpeg/PIA21390.jpg" ) with self.assertRaises(bagit.BagError) as cm: self.bag.validate_fetch() self.assertEqual(expected_msg, str(cm.exception)) class TestCLI(SelfCleaningTestCase): @mock.patch('sys.stderr', new_callable=StringIO) def test_directory_required(self, mock_stderr): testargs = ["bagit.py"] with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 2) self.assertIn( "error: the following arguments are required: directory", mock_stderr.getvalue() ) @mock.patch('sys.stderr', new_callable=StringIO) def test_not_enough_processes(self, mock_stderr): testargs = ["bagit.py", "--processes", "0", self.tmpdir] with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 2) self.assertIn( "error: The number of processes must be greater than 0", mock_stderr.getvalue() ) @mock.patch('sys.stderr', new_callable=StringIO) def test_fast_flag_without_validate(self, mock_stderr): bag = bagit.make_bag(self.tmpdir) testargs = ["bagit.py", "--fast", self.tmpdir] with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 2) self.assertIn( "error: --fast is only allowed as an option for --validate!", mock_stderr.getvalue() ) def test_invalid_fast_validate(self): bag = bagit.make_bag(self.tmpdir) os.remove(j(self.tmpdir, "data", "loc", "2478433644_2839c5e8b8_o_d.jpg")) testargs = ["bagit.py", "--validate", "--completeness-only", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 1) self.assertIn( "%s is invalid: Payload-Oxum validation failed." % self.tmpdir, captured.records[0].getMessage() ) def test_valid_fast_validate(self): bag = bagit.make_bag(self.tmpdir) testargs = ["bagit.py", "--validate", "--fast", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 0) self.assertEqual( "%s valid according to Payload-Oxum" % self.tmpdir, captured.records[0].getMessage() ) @mock.patch('sys.stderr', new_callable=StringIO) def test_completeness_flag_without_validate(self, mock_stderr): bag = bagit.make_bag(self.tmpdir) testargs = ["bagit.py", "--completeness-only", self.tmpdir] with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 2) self.assertIn( "error: --completeness-only is only allowed as an option for --validate!", mock_stderr.getvalue() ) def test_invalid_completeness_validate(self): bag = bagit.make_bag(self.tmpdir) old_path = j(self.tmpdir, "data", "README") new_path = j(self.tmpdir, "data", "extra_file") os.rename(old_path, new_path) testargs = ["bagit.py", "--validate", "--completeness-only", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 1) self.assertIn( "%s is invalid: Bag is incomplete" % self.tmpdir, captured.records[-1].getMessage() ) def test_valid_completeness_validate(self): bag = bagit.make_bag(self.tmpdir) testargs = ["bagit.py", "--validate", "--completeness-only", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 0) self.assertEqual( "%s is complete and valid according to Payload-Oxum" % self.tmpdir, captured.records[0].getMessage() ) def test_invalid_full_validate(self): bag = bagit.make_bag(self.tmpdir) readme = j(self.tmpdir, "data", "README") txt = slurp_text_file(readme) txt = "A" + txt[1:] with open(readme, "w") as r: r.write(txt) testargs = ["bagit.py", "--validate", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 1) self.assertIn("Bag validation failed", captured.records[-1].getMessage()) def test_valid_full_validate(self): bag = bagit.make_bag(self.tmpdir) testargs = ["bagit.py", "--validate", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 0) self.assertEqual( "%s is valid" % self.tmpdir, captured.records[-1].getMessage() ) def test_failed_create_bag(self): os.chmod(self.tmpdir, 0) testargs = ["bagit.py", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() self.assertEqual(cm.exception.code, 1) self.assertIn( "Failed to create bag in %s" % self.tmpdir, captured.records[-1].getMessage() ) def test_create_bag(self): testargs = ["bagit.py", self.tmpdir] with self.assertLogs() as captured: with self.assertRaises(SystemExit) as cm: with mock.patch.object(sys, 'argv', testargs): bagit.main() for rec in captured.records: print(rec.getMessage()) self.assertEqual(cm.exception.code, 0) class TestUtils(unittest.TestCase): def setUp(self): super(TestUtils, self).setUp() if sys.version_info >= (3,): self.unicode_class = str else: self.unicode_class = unicode def test_force_unicode_str_to_unicode(self): self.assertIsInstance(bagit.force_unicode("foobar"), self.unicode_class) def test_force_unicode_pass_through(self): self.assertIsInstance(bagit.force_unicode("foobar"), self.unicode_class) def test_force_unicode_int(self): self.assertIsInstance(bagit.force_unicode(1234), self.unicode_class) if __name__ == "__main__": unittest.main()
LibraryOfCongress/bagit-python
test.py
test.py
py
49,635
python
en
code
198
github-code
50
4682107697
from dal_select2.views import Select2QuerySetView from django.http import JsonResponse from django.utils import timezone from rest_framework.fields import IntegerField, DateField from rest_framework.serializers import Serializer from rest_framework.views import APIView from the_redhuman_is.models import Worker from the_redhuman_is.services.delivery import retrieve from the_redhuman_is.services.delivery.utils import ObjectNotFoundError from the_redhuman_is.views import delivery from the_redhuman_is.views.backoffice_app.auth import bo_api from utils import date_time class MapRequestAutocomplete(Select2QuerySetView, APIView): def get_queryset(self): zone_id = self.forwarded.get('zone') delivery_requests, _, _ = retrieve.get_requests_on_map_querysets( timezone.localdate(), self.request.user, zone_id, ) if self.q: delivery_requests = delivery_requests.filter_by_text(self.q) return delivery_requests.order_by( 'pk' ).values( 'pk', 'driver_name', ) def get_result_value(self, result): return str(result['pk']) def get_result_label(self, result): return f"{result['pk']} {result['driver_name']}" class MapWorkerAutocomplete(Select2QuerySetView, APIView): def get_queryset(self): zone_id = self.forwarded.get('zone') _, workers, _ = retrieve.get_requests_on_map_querysets( timezone.localdate(), self.request.user, zone_id, ) if self.q: workers = workers.filter_by_text(self.q) return workers.order_by( 'full_name' ).values( 'pk', 'full_name', ) def get_result_value(self, result): return str(result['pk']) def get_result_label(self, result): return result['full_name'] class ZoneSerializer(Serializer): zone = IntegerField(min_value=1, source='zone_id', allow_null=True, default=None) @bo_api(['GET']) def requests_on_map(request): serializer = ZoneSerializer(data=request.GET) serializer.is_valid(raise_exception=True) return JsonResponse( retrieve.get_requests_on_map( user=request.user, date=timezone.localdate(), **serializer.validated_data ) ) class WorkerMapDataSerializer(Serializer): worker = IntegerField(min_value=1, source='worker_id') date = DateField(input_formats=[date_time.DATE_FORMAT]) @bo_api(['GET']) def worker_map_data(request): serializer = WorkerMapDataSerializer(data=request.GET) serializer.is_valid(raise_exception=True) worker_id = serializer.validated_data['worker_id'] try: worker = Worker.objects.get(pk=worker_id) except Worker.DoesNotExist: raise ObjectNotFoundError(f'Работник {worker_id} не найден.') return JsonResponse( delivery.worker_on_map_link(worker, serializer.validated_data['date']) )
yaykarov/Gettask
the_redhuman_is/views/backoffice_app/delivery/requests_on_map.py
requests_on_map.py
py
3,040
python
en
code
0
github-code
50
34655456874
_author_ = 'jake' _project_ = 'leetcode' # https://leetcode.com/problems/largest-rectangle-in-histogram/ # Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, # find the area of largest rectangle in the histogram. # For each bar, find the largest rectangle including that bar as the lowest bar. # An index is popped from the stack when a lower bar to the right is found. # We calculate the largest area with the bar at the popped index as the height (lowest bar in rectangle). # Width is determined by the closest lower bar to the left and right. # Time - O(n) # Space - O(n) class Solution(object): def largestRectangleArea(self, heights): """ :type heights: List[int] :rtype: int """ max_area = 0 heights = [0] + heights + [0] # stack will not be empty and last genuine bar will be popped stack = [0] # indices of bars in non-decreasing height order for i, bar in enumerate(heights[1:], 1): while heights[stack[-1]] > bar: # pop taller off stack height = heights[stack.pop()] # form rectangle with popped bar determining height width = i - stack[-1] - 1 # i and stack[-1] - 1 are the first lower bars on left and right max_area = max(max_area, height * width) stack.append(i) return max_area
jakehoare/leetcode
python_1_to_1000/084_Largest_Rectangle_in_Histogram.py
084_Largest_Rectangle_in_Histogram.py
py
1,437
python
en
code
49
github-code
50
34884768649
""" 输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 """ class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def buildTree(self, preorder, inorder) -> TreeNode: # 1.根据前序遍历确树的根节点 # 2. 根据中序遍历顺序 找到两个子树的集合 if not preorder or not inorder: return None root_val = preorder[0] # 根节点的值 root = TreeNode(root_val) #根节点创建node index_root = inorder.index(root_val) inorder_left_subtree = inorder[:index_root] inorde_right_subtree = inorder[index_root+1:] preorder_left_subtree = preorder[1:1+len(inorder_left_subtree)] preorder_rigth_subtree = preorder[-len(inorde_right_subtree):] root.left = self.buildTree(preorder_left_subtree,inorder_left_subtree) root.right =self.buildTree(preorder_rigth_subtree, inorde_right_subtree) return root
Dong98-code/leetcode
codes/got-Offer/07.buildTree.py
07.buildTree.py
py
1,119
python
en
code
0
github-code
50
32570914038
import pyark.cva_client as cva_client from protocols.protocol_7_3.cva import ReportEventType, Transaction import logging import pandas as pd REPORT_EVENT_TYPES = [ReportEventType.genomics_england_tiering, ReportEventType.candidate, ReportEventType.reported, ReportEventType.questionnaire] class CasesClient(cva_client.CvaClient): _BASE_ENDPOINT = "cases" def __init__(self, **params): cva_client.CvaClient.__init__(self, **params) def count(self, **params): """ :type params: dict :rtype: int """ params['count'] = True return self.get_cases(**params) def get_cases_ids(self, as_data_frame=False, max_results=None, **params): """ :type as_data_frame: bool :type max_results: int :type params: dict :rtype: generator """ params['include'] = ["identifier", "version"] return self._paginate( endpoint=self._BASE_ENDPOINT, as_data_frame=as_data_frame, max_results=max_results, transformer=lambda x: "{}-{}".format(x["identifier"], x["version"]), **params) def get_cases(self, as_data_frame=False, max_results=None, include_all=True, **params): """ :type as_data_frame: bool :type max_results: int :param include_all: use False for the default minimal representation of case, it will be faster :type include_all: bool :type params: dict :rtype: generator """ if params.get('count', False): results, next_page_params = self._get(self._BASE_ENDPOINT, **params) return results[0] else: if include_all: params['include'] = [self._INCLUDE_ALL] return self._paginate( endpoint=self._BASE_ENDPOINT, as_data_frame=as_data_frame, max_results=max_results, **params) def get_summary(self, as_data_frame=False, params_list=[], **params): """ :type as_data_frame: bool :type params_list: list :rtype: dict | pd.DataFrame """ if params_list: self._params_sanity_checks(params_list) for p in params_list: p.update(params) results_list = [self.get_summary(as_data_frame=as_data_frame, **p) for p in params_list] return self._render_multiple_results(results_list, as_data_frame=as_data_frame) else: results, _ = self._get("{endpoint}/summary".format(endpoint=self._BASE_ENDPOINT), **params) if not results: logging.warning("No summary found") return None assert len(results) == 1, "Unexpected number of summaries" return self._render_single_result(results, as_data_frame=as_data_frame, indexes=params) def delete(self, case_id, case_version): path = "{endpoint}/{case_id}/{case_version}".format( endpoint=self._BASE_ENDPOINT, case_id=case_id, case_version=case_version ) results, _ = self._delete(path) result = self._render_single_result(results) return Transaction.fromJsonDict(result) if result else None @staticmethod def _params_sanity_checks(params_list): if not all(isinstance(p, dict) for p in params_list): raise ValueError("Cannot accept a list of 'params' combined with other parameters. " + "Include all parameters in the list") keys = None for p in params_list: if keys is None: keys = set(p.keys()) else: if len(set(p.keys()).difference(keys)) > 0: raise ValueError("Cannot accept a list of 'params' with different lists of filters") def get_case(self, identifier, version, as_data_frame=False, include_all=True, **params): """ :type as_data_frame: bool :type identifier: str :type version: str :type include_all: bool :rtype: dict | pd.DataFrame """ if include_all: params['include'] = [self._INCLUDE_ALL] results, _ = self._get("{endpoint}/{identifier}/{version}".format( endpoint=self._BASE_ENDPOINT, identifier=identifier, version=version), **params) if not results: logging.warning("No case found with id-version {}-{}".format(identifier, version)) return None assert len(results) == 1, "Unexpected number of cases returned when searching by identifier" return self._render_single_result(results, as_data_frame=as_data_frame) def get_case_by_identifiers(self, identifiers, as_data_frame=False, include_all=True, **params): """ :type as_data_frame: bool :type identifiers: list :type include_all: bool :rtype: list | pd.DataFrame """ if include_all: params['include'] = [self._INCLUDE_ALL] results, _ = self._get("{endpoint}/{identifiers}".format( endpoint=self._BASE_ENDPOINT, identifiers=",".join(identifiers)), **params) return self._render(results, as_data_frame=as_data_frame) def search(self, query): results, _ = self._get("{endpoint}/search/{query}".format(endpoint=self._BASE_ENDPOINT, query=query)) return self._render(results, as_data_frame=False) def get_similar_cases_by_case(self, case_id, case_version, as_data_frame=False, **params): """ :type as_data_frame: bool :type case_id: str :type case_version: int :type params: dict :rtype: list | pd.DataFrame """ results, _ = self._get([self._BASE_ENDPOINT, case_id, case_version, "similar-cases"], **params) if not results: logging.warning("No similar cases found") return None return self._render(results, as_data_frame=as_data_frame) def get_similar_cases_by_phenotypes(self, phenotypes, as_data_frame=False, **params): """ :type as_data_frame: bool :type phenotypes: list :type params: dict :rtype: list | pd.DataFrame """ params['hpoIds'] = phenotypes results, _ = self._get([self._BASE_ENDPOINT, "phenotypes", "similar-cases"], **params) if not results: logging.warning("No similar cases found") return None return self._render(results, as_data_frame=as_data_frame) def get_shared_variants_cases_by_case(self, case_id, case_version, report_event_type, **params): """ :type case_id: str :type case_version: int :type report_event_type: ReportEventType :type limit: int :type params: dict :rtype: list """ assert report_event_type in REPORT_EVENT_TYPES, \ "Invalid report event type provided '{}'. Valid values: {}".format(report_event_type, REPORT_EVENT_TYPES) params['type'] = report_event_type results, _ = self._get([self._BASE_ENDPOINT, case_id, case_version, "shared-variants"], **params) if not results: logging.warning("No cases sharing {} variants found".format(report_event_type)) return None return results def get_shared_genes_cases_by_case(self, case_id, case_version, report_event_type, **params): """ :type case_id: str :type case_version: int :type report_event_type: ReportEventType :type params: dict :rtype: list """ assert report_event_type in REPORT_EVENT_TYPES, \ "Invalid report event type provided '{}'. Valid values: {}".format(report_event_type, REPORT_EVENT_TYPES) params['type'] = report_event_type results, _ = self._get([self._BASE_ENDPOINT, case_id, case_version, "shared-genes"], **params) if not results: logging.warning("No cases sharing {} genes found".format(report_event_type)) return None return results def get_shared_variants_counts(self, variant_ids, **params): """ :type variant_ids: list :type params: dict :rtype: list """ variant_coordinates = [v.toJsonDict() for v in self.variants().variant_ids_to_coordinates(variant_ids)] results, _ = self._post([self._BASE_ENDPOINT, "shared-variants-counts"], variant_coordinates, **params) return results def get_phenosim_matrix(self, as_data_frame=False, **params): """ :type as_data_frame: bool :rtype: list | pd.DataFrame """ results, _ = self._get("{endpoint}/similarity-matrix".format(endpoint=self._BASE_ENDPOINT), **params) if not results: logging.warning("No similarity matrix found") return None return self._render(results, as_data_frame=as_data_frame) def get_pedigree(self, identifier, version, as_data_frame=False): results, _ = self._get("{endpoint}/{identifier}/{version}".format( endpoint="pedigrees", identifier=identifier, version=version)) if not results: logging.warning("No pedigree found with id-version {}-{}".format(identifier, version)) return None assert len(results) == 1, "Unexpected number of pedigrees returned when searching by identifier" return self._render_single_result(results, as_data_frame=as_data_frame) def get_clinical_report(self, identifier, version, as_data_frame=False): results, _ = self._get("{endpoint}/{identifier}/{version}".format( endpoint="clinical-reports", identifier=identifier, version=version)) if not results: logging.warning("No clinical report found with id-version {}-{}".format(identifier, version)) return None assert len(results) == 1, "Unexpected number of clinical reports returned when searching by identifier" return self._render_single_result(results, as_data_frame=as_data_frame) def get_rd_exit_questionnaire(self, identifier, version, as_data_frame=False): results, _ = self._get("{endpoint}/{identifier}/{version}".format( endpoint="rare-disease-exit-questionnaires", identifier=identifier, version=version)) if not results: logging.warning("No questionnaire found with id-version {}-{}".format(identifier, version)) return None assert len(results) == 1, "Unexpected number of questionnaires returned when searching by identifier" return self._render_single_result(results, as_data_frame=as_data_frame) def get_cancer_participant(self, identifier, version, as_data_frame=False): results, _ = self._get("{endpoint}/{identifier}/{version}".format( endpoint="participants", identifier=identifier, version=version)) if not results: logging.warning("No cancer participant found with id-version {}-{}".format(identifier, version)) return None assert len(results) == 1, "Unexpected number of cancer participants returned when searching by identifier" return self._render_single_result(results, as_data_frame=as_data_frame)
genomicsengland/pyark
pyark/subclients/cases_client.py
cases_client.py
py
11,220
python
en
code
1
github-code
50
3059198420
import numpy as np from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Conv2D, Dropout, BatchNormalization, MaxPooling2D, Flatten x_train = np.load('../data/image/brain/npy/keras66_train_x.npy') x_val = np.load('../data/image/brain/npy/keras66_val_x.npy') x_test = np.load('../data/image/brain/npy/keras66_test_x.npy') y_train = np.load('../data/image/brain/npy/keras66_train_y.npy') y_val = np.load('../data/image/brain/npy/keras66_val_y.npy') y_test = np.load('../data/image/brain/npy/keras66_test_y.npy') print(x_train.shape, y_train.shape) print(x_val.shape, y_val.shape) print(x_test.shape, y_test.shape) model = Sequential() model.add(Conv2D(64, 3, padding='same', activation='relu', input_shape=(150,150,3))) model.add(BatchNormalization()) model.add(Conv2D(128,3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64,3, activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(3)) model.add(Conv2D(32,3, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(16, activation='relu')) model.add(Dense(1,activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint es = EarlyStopping(monitor = 'val_loss', patience = 50) lr = ReduceLROnPlateau(monitor = 'val_loss', patience = 5, factor = 0.5, verbose = 1) filepath = 'c:/data/modelcheckpoint/keras62_1_checkpoint_{val_loss:.4f}-{epoch:02d}.hdf5' cp = ModelCheckpoint(filepath, save_best_only=True, monitor = 'val_loss') history = model.fit(x_train,y_train, epochs=500, validation_data=(x_val,y_val),callbacks=[es]) result = model.evaluate(x_test, y_test) print(result) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] import matplotlib.pyplot as plt epochs = len(acc) x_axis = range(0,epochs) fig, ax = plt.subplots() ax.plot(x_axis, acc, label='train') ax.plot(x_axis, val_acc, label='val') ax.legend() plt.ylabel('acc') plt.title('acc') # plt.show() fig, ax = plt.subplots() ax.plot(x_axis, loss, label='train') ax.plot(x_axis, val_loss, label='val') ax.legend() plt.ylabel('loss') plt.title('loss') plt.show()
SunghoonSeok/Study
keras2/keras66_4_load_npy_fit.py
keras66_4_load_npy_fit.py
py
2,463
python
en
code
2
github-code
50
32266419487
import requests import time from data import TOKEN API_URL: str = 'https://api.telegram.org/bot' BOT_TOKEN: str = TOKEN TEXT: str = 'Мы законектились!' MAX_COUNTER: int = 100 offset: int = -2 counter: int = 0 chat_id: int while counter < MAX_COUNTER: print('attempt =', counter) #Чтобы видеть в консоли, что код живет updates = requests.get(f'{API_URL}{BOT_TOKEN}/getUpdates?offset={offset + 1}').json() if updates['result']: print(updates['result']) for result in updates['result']: offset = result['update_id'] chat_id = result['message']['from']['id'] requests.get(f'{API_URL}{BOT_TOKEN}/sendMessage?chat_id={chat_id}&text={TEXT}') time.sleep(1) counter += 1 ##if updates['result'] если все ок то updates['result'] будет в таком JSON формате # [ # { # 'update_id': 792864391, # 'message': { # 'message_id': 44, # 'from': { # 'id': 413281115, # 'is_bot': False, # 'first_name': '...', # 'username': 'username22549', # 'language_code': 'ru' # }, # 'chat': { # 'id': 413281115, # 'first_name': '...', # 'username': 'username22549', # 'type': 'private' # }, # 'date': 1675094450, # 'text': 'пр' # } # } # ]
geronda94/aiogram_learning
experiments_with_token/simle_requests.py
simle_requests.py
py
1,394
python
ru
code
0
github-code
50
37935322797
import scrapy import logging from scrapy.contrib.spiders import Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.selector import HtmlXPathSelector class StackOverflowSpider(scrapy.Spider): name = 'stackoverflow' start_urls = ['http://www.mirrorkart.com/Buy-Designers-Mirrors-online'] rules = ( Rule(SgmlLinkExtractor(allow=(), restrict_xpaths=('//ul[@class="pagination"]/li',)), callback="parse", follow=True), ) def parse(self, response): for href in response.css('.product-thumb .image a::attr(href)'): full_url = response.urljoin(href.extract()) yield scrapy.Request(full_url, callback=self.parse_product) def parse_product(self, response): yield { 'title': response.css('h1::text').extract_first(), 'image': response.css('.thumbnails a::attr(href)').extract_first(), 'desc' : response.css('div[id="tab-description"] p').extract(), 'link': response.url, }
amititash/hc_scrapy
tmp_spider.py
tmp_spider.py
py
966
python
en
code
0
github-code
50
44323507785
import pickle from typing import Any import numpy as np def load_pickle(filepath: str) -> Any: """Load a pickle file Args: filepath (str): path to pickle file """ with open(filepath, "rb") as pickle_file: data = pickle.load(pickle_file) return data def min_max_normalize(a: np.ndarray, dim=None) -> np.ndarray: """Normalize an array to [0, 1] If dim is not None, normalize along that dimension. Else scalar normalize everything Args: a (np.ndarray): array to normalize dim (int, optional): dimension to normalize. Defaults to None. Returns: np.ndarray: normalized array """ if dim is not None: return (a - a.min(dim=dim, keepdims=True)) / ( a.max(dim=dim, keepdims=True) - a.min(dim=dim, keepdims=True) ) else: return (a - a.min()) / (a.max() - a.min())
AntoineRichard/LunarDiffusion
dem_zoomer/utils/data_utils.py
data_utils.py
py
900
python
en
code
0
github-code
50
25249220807
# -*- coding: utf-8 -*- """ Created on Wed Oct 6 10:29:13 2021 @author: Oscar """ """ # Calulate the sum of squares of however many natural numbers def squaresum(n): #Initiate a variable for holding the sums sm = 0 # Iterate the addition of each individual squares from 1 to n+1 number for i in range(1, n+1): sm = sm + (i*i) # Adding each iteration of , for example 2x2 to 1x1 etc return sm #returns the value of the summation #Drivers for the program n = 100 print(squaresum(n)) """ # Calculate the sum of the squares of the first 20 odd natural numbers #Natural number: Numbers used" for counti"ng (1,2,3,4",5,...) # User input command n = int(input("Print sum of square of first odd numbres up to the following number:")) # Input must be an integer, hence "int" def squaresum(n): #Initiate a variable for holding the sums sm = 0 # Iterate the addition of each individual squares from 1 to n+1 number for i in range(1, n+1): # determine in i in range(1, n+1) is odd if (i % 2 != 0): # Modulo Operator "%" finds the remainder of the specified values sm = sm + (i*i) # Adding each iteration of , for example 2x2 to 1x1 etc return sm #returns the value of the summation #Drivers for the program print("Sum of Squares of odd numbers from 1 to", n, "is :",squaresum(n))
oliver779/Computational_Methods_Course
Sum of Squares.py
Sum of Squares.py
py
1,392
python
en
code
0
github-code
50
29362569826
# ************************************************************************************************* # quant_momentum_strategy # # The goal of this script is to delop a investing strategy that recommends an equal weight # portfolio of the 50 stocks with the highest price momentum. # # Following @nickmccullum Algorithmic Trading in Python course. Available at: # https://github.com/nickmccullum/algorithmic-trading-python # # API documentation: https://iexcloud.io/docs/api/ import numpy import pandas import requests import math from scipy import stats import xlsxwriter stocks = pandas.read_csv('sp_500_stocks.csv') from secrets import IEX_CLOUD_API_TOKEN # variable in secret file symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/stats/?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() # GET stock data from IEX API in batches ###################################### def chunks(lst, n): '''Yield succesive n-sized chinks from lst.''' for i in range(0, len(lst), n): yield lst[i:i+n] stock_chunks = list(chunks(stocks['Ticker'], 100)) #Chunkify stocks for batch api calls stock_strings = [] for i in range(0, len(stock_chunks)): stock_strings.append(','.join(stock_chunks[i])) # Create DataFrame dataframe_columns = ['Ticker', 'Stock Price', 'One-Year Price Return', 'Shares to Buy'] dataframe = pandas.DataFrame(columns = dataframe_columns) for stock_string in stock_strings: # GET all stock stats batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?symbols={stock_string}&types=price,stats&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for stock in stock_string.split(','): #Fill each stock row in the dataframe dataframe = dataframe.append( pandas.Series( [ stock, #Ticker data[stock]['price'], #Stock price data[stock]['stats']['year1ChangePercent'], #One-Year Price Return 'N/A' #Shares to Buy ], index = dataframe_columns ), ignore_index = True ) # Removing low momentum stocks ################################################ dataframe.sort_values('One-Year Price Return', ascending = False, inplace = True) dataframe = dataframe[:50] dataframe.reset_index(inplace = True) # Calculate the number of shares to buy ####################################### def get_portfolio_size(): portfolio_incorrect = True while portfolio_incorrect: portfolio_size = input('Enter value of portfolio: ') #Calculate number of shares to buy try: portfolio_size = float(portfolio_size) portfolio_incorrect = False except ValueError: print('Error: Enter a number! \n') return portfolio_size position_size = get_portfolio_size() / len(dataframe.index) for i in range(0, len(dataframe)): dataframe.loc[i, 'Shares to Buy'] = math.floor(position_size / dataframe.loc[i, 'Stock Price']) print(dataframe)
Dialvive/Python-Algorithmic-Trading
quantitative-momentum-strategy/quant_momentum_strategy.py
quant_momentum_strategy.py
py
3,190
python
en
code
0
github-code
50
16751400524
n1=float(input("Ingresa el primer numero: ")) n2=float(input("Ingresa el segundo numero: ")) print("Son iguales?",n1==n2) print("Son iguales?",n1!=n2) ## cadena=input("Escribe una cadena") lon=len(cadena) print("es mayor que 3 y menor que 10?",3<lon<10) ## NumeroMagico=12345679 NumeroUsuario=int(input("ingresa un numero entero entre 1 y 9: ")) NumeroUsuario*=9 NumeroMagico*=NumeroUsuario print("Numero Magico: ",NumeroMagico) ## comando="Salir" if comando=="Entrar": print("Entrar") elif comando=="saluda": print("hola") elif comando=="Salir": print("Salir") else: print("comando no reconocido") pass
jesusRL96/python_curso
2.py
2.py
py
607
python
es
code
0
github-code
50
26241642628
# -*- coding: utf-8 -*- import logging import openai from modelcache.adapter.adapter_query import adapt_query from modelcache.adapter.adapter_insert import adapt_insert from modelcache.adapter.adapter_remove import adapt_remove class ChatCompletion(openai.ChatCompletion): """Openai ChatCompletion Wrapper""" @classmethod def create_query(cls, *args, **kwargs): def cache_data_convert(cache_data, cache_query): return construct_resp_from_cache(cache_data, cache_query) try: return adapt_query( cache_data_convert, *args, **kwargs ) except Exception as e: return str(e) @classmethod def create_insert(cls, *args, **kwargs): try: return adapt_insert( *args, **kwargs ) except Exception as e: return str(e) @classmethod def create_remove(cls, *args, **kwargs): try: return adapt_remove( *args, **kwargs ) except Exception as e: logging.info('adapt_remove_e: {}'.format(e)) return str(e) def construct_resp_from_cache(return_message, return_query): return { "modelcache": True, "hitQuery": return_query, "data": return_message, "errorCode": 0 }
kpister/prompt-linter
data/scraping/repos/codefuse-ai~CodeFuse-ModelCache/modelcache~adapter~adapter.py
modelcache~adapter~adapter.py
py
1,417
python
en
code
0
github-code
50
73638395356
__author__ = 'Canon' from PIL import Image from StringIO import StringIO def crop_save_img(filename, data, x1, y1, x2, y2): imgIO = StringIO(data) img = Image.open(imgIO) croped_img = img.crop((x1, y1, x2, y2)) dot_pos = filename.rfind('.') absfilename = filename[:dot_pos] croped_img.save(absfilename+'.jpg', 'JPEG')
silentcanon/Anya
service/photo.py
photo.py
py
344
python
en
code
0
github-code
50
25507326314
# Python program to identify the identifier # import re module # re module provides support # for regular expressions import re # Make a regular expression # for identify valid identifier regex = "^[A-Za-z_][A-Za-z0-9_]*" # Define a function for # identifying valid identifier def check(word): keywords = [ "int", "double", "auto", "break", "case", "char", "const", "continue", "default", "do", "else", "enum", "extern", "float", "for", "goto", "if", "long", "register", "return", "short", "signed", "sizeof", "static", "struct", "switch", "typedef", "union", "unsigned", "void", "volatile", "while", ] # pass the regular expression # and the string in search() method if re.search(regex, word): if word in keywords: print("It is a c keyword") else: print("Valid Identifier") else: print("Invalid Identifier") # Driver Code if __name__ == "__main__": character = input("Enter a string: ") check(character)
roshanxshrestha/college-codes
4-TOC/5cidentifiers.py
5cidentifiers.py
py
1,249
python
en
code
0
github-code
50
7440046301
import cv2 import matplotlib.pyplot as plt def plt_imshow(title="image", img=None, figsize=(8, 5)): plt.figure(figsize=figsize) if type(img) == list: if type(title) == list: titles = title else: titles = [] for i in range(len(img)): titles.append(title) for i in range(len(img)): if len(img[i].shape) <= 2: rgbImg = cv2.cvtColor(img[i], cv2.COLOR_GRAY2RGB) else: rgbImg = cv2.cvtColor(img[i], cv2.COLOR_BGR2RGB) plt.subplot(1, len(img), i + 1), plt.imshow(rgbImg) plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show() else: if len(img.shape) < 3: rgbImg = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) else: rgbImg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(rgbImg) plt.title(title) plt.xticks([]), plt.yticks([]) plt.show()
lee-lou2/ocr
utils/image_show.py
image_show.py
py
1,001
python
en
code
2
github-code
50
12042695517
from sklearn.datasets import fetch_20newsgroups from collections import Counter import re import spacy from tqdm import tqdm import string import numpy as np def count_words(data): nlp = spacy.load('en_core_web_sm') counter = Counter() for sentence in tqdm(data.data): sentence = sentence.lower().translate(str.maketrans('', '', string.punctuation)) sentence = re.sub("\W+", " ", sentence) words = [token.lemma_ for token in nlp(sentence) if not token.is_stop and not token.is_punct and len(token.text) > 3] counter += Counter(words) return counter def count_nouns(data): nlp = spacy.load('en_core_web_sm') counter = Counter() for sentence in tqdm(data.data): sentence = sentence.lower().translate(str.maketrans('', '', string.punctuation)) sentence = re.sub("\W+", " ", sentence) nouns = [token.lemma_ for token in nlp(sentence) if token.pos_ == 'NOUN' and len(token.text) > 3] counter += Counter(nouns) return counter def keep_most_frequent(sci_count, politics_count, top_k): words = set() for word in dict(sci_count.most_common(top_k)).keys(): words.add(word) for word in dict(politics_count.most_common(top_k)).keys(): words.add(word) return list(words) if __name__ == '__main__': sci_data = fetch_20newsgroups(subset='train', categories=['sci.crypt', 'sci.electronics','sci.space'], remove=('headers', 'footers', 'quotes'), ) politics_data = fetch_20newsgroups(subset='train', categories=['talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc'], remove=('headers', 'footers', 'quotes'), ) # sci_count = count_words(sci_data) # politics_count = count_words(politics_data) sci_count = count_nouns(sci_data) politics_count = count_nouns(politics_data) words = keep_most_frequent(sci_count, politics_count, 100) prob_xy = np.zeros((len(words), 2), dtype=np.float32) prob_xy[:, 0] = np.array([sci_count[word] for word in words]) prob_xy[:, 1] = np.array([politics_count[word] for word in words]) prob_xy /= prob_xy.sum() np.save("./prob_nouns_docs_full", prob_xy) np.save("./nouns_full", np.array(words))
nviolante25/mva
neuroscience/project/src/preprocess.py
preprocess.py
py
2,460
python
en
code
0
github-code
50
3319870177
class LLQueue: class Node: def __init__(self, data=None, next=None, prev=None) -> None: self.data = data if data != None else None self.next = next if next != None else None self.prev = prev if prev != None else None def __init__(self, items=None) -> None: # dummy nodes self.head = self.Node() self.tail = self.Node(prev=self.head) self.head.next = self.tail if items != None: for e in items: self.enQueue(e) def enQueue(self, data): # append ต่อท้าย rear = self.tail.prev rear.next = self.Node(data, self.tail, rear) self.tail.prev = rear.next def deQueue(self): if self.isEmpty(): return print("Queue is Empty") else: dq = self.head.next self.head.next = dq.next return dq.data def isEmpty(self): return self.head.next == self.tail def peek(self): return self.head.next.data def __len__(self): if self.isEmpty(): return 0 else: t = self.head.next size = 0 while t.next != self.tail: size += 1 return size def __str__(self) -> str: if self.isEmpty(): return '' else: t = self.head.next s = [] while t != self.tail: s.append(str(t.data)) t = t.next return ' '.join(s) data = [10, 10,10,10,10,10,10,10,10,10,10,10,10,10,10] q = LLQueue(data) qq = LLQueue() print(f"q = {q}") print(f"qq = {qq}") while not q.isEmpty(): qq.enQueue(q.deQueue()) print(f"q = {q}") print(f"qq = {qq}") while not qq.isEmpty(): q.enQueue(qq.deQueue()) print(f"qq = {qq}") print(f"q = {q}")
erumtw/oods-in-practice
5_LinkedList/Untitled-1.py
Untitled-1.py
py
1,876
python
en
code
0
github-code
50
37454116649
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import re import time from pprint import pprint from warnings import warn from datetime import datetime import itertools import inspect from bidi import algorithm as bidi import matplotlib.dates as mdates import matplotlib.ticker as ticker from urllib.request import urlopen from bs4 import BeautifulSoup import general_utils.utils as utils import Scrapper.ScrapperTools as st ############## MAIN FUNCTIONS ############## def data_description(df): sources = np.unique(df['source']) n = len(sources) f, axs = plt.subplots(2, n) # counters per source bar_per_source(axs[0,0], df, ylab='Articles\n(black = partially blocked contents)', fun=lambda d: d.shape[0], title='\nArticles per Source') bar_per_source(axs[0,1], df, ylab='Words [x1000]\n(black = partially blocked contents)', fun=lambda d: sum(len(l.split()) for t in d['text'].values for l in t.split('\n')) / 1e3, title='BASIC DATA DESCRIPTION\nWords per Source') # remove blocked haaretz texts before next analysis df = df[np.logical_not(df['blocked'])] # sections per source articles_per_section =\ [df[np.logical_and(df.source==src,df.section==sec)].shape[0] for src in sources for sec in np.unique(df[df.source==src].section)] axs[0,2].pie([df[df.source==src].shape[0] for src in sources], labels=sources, colors=utils.DEF_COLORS[:3], startangle=90, frame=True, counterclock=False) patches,_ = axs[0,2].pie(articles_per_section, radius=0.75, startangle=90, counterclock=False) centre_circle =\ plt.Circle((0, 0), 0.5, color='black', fc='white', linewidth=0) axs[0,2].add_artist(centre_circle) axs[0,2].set_title('\nSources and Sections', fontsize=14) axs[0,2].legend( patches, [bidi.get_display(sec) for src in sources for sec in np.unique(df[df.source==src].section)], ncol=5, loc='upper right', bbox_to_anchor=(1, 0.11), fontsize=8 ) # dates & authors date_hist(axs[1,0], df) author_concentration(axs[1,1], df) top_authors(axs[1,2], df) # draw utils.draw() def validity_tests(df): sources = np.unique(df['source']) blocked_contents = (1-check_haaretz_blocked_text(df[df['source'] == 'haaretz'])\ / np.sum(df['source']=='haaretz')) * 100 df = df[np.logical_not(df['blocked'])] n = {src: np.sum(df['source'] == src) for src in sources} # get anomalies bad_types = {src: verify_valid(df[df['source']==src], {'date':datetime,'blocked':np.bool_}) for src in sources} bad_lengths = {src: check_lengths(df[df['source']==src]) for src in sources} bad_tokens = {src: verify_hebrew_words(df[df['source']==src]) for src in sources} # plot anomalies f, axs = plt.subplots(3, len(sources)) for i, src in enumerate(sources): tit = ('DATA SANITY TESTS\n' if i==int(len(sources)/2) else '\n') +\ f'[{src:s}] Invalid field types' +\ (f'\n(out of {blocked_contents:.0f}% unblocked articles)' if src=='haaretz' else '\n') utils.barplot(axs[0, i], bad_types[src].keys(), 100 * np.array(tuple(bad_types[src].values())) / n[src], vertical_xlabs=True, title=tit, ylab='Having invalid type [%]', ylim=(0, 100)) sp = inspect.getfullargspec(check_lengths) limits = list(itertools.chain.from_iterable(sp[3][0].values())) for i, src in enumerate(sources): utils.barplot(axs[1, i], [a+f'\n({b:.0f} chars)' for a,b in zip(bad_lengths[src].keys(),limits)], 100 * np.array(tuple(bad_lengths[src].values())) / n[src], vertical_xlabs=True, title=f'[{src:s}] Suspicious string-field lengths', ylab='Having invalid length [%]', ylim=(0, 100)) utils.barplot(axs[2,0], sources, [100*(1-bad_tokens[src][0]) for src in sources], xlab='Source', ylab='Words without numbers\nor Hebrew letters [%]') utils.barplot(axs[2,1], sources, [100*(1-bad_tokens[src][1]) for src in sources], xlab='Source', ylab='Words of length <=1 [%]') for i in range(2,len(sources)): utils.clean_figure(axs[2,i]) # draw utils.draw() def lengths_analysis(df, by=None): f, axs = plt.subplots(3, 3) # remove blocked haaretz texts before analysis df = df[np.logical_not(df['blocked'])] # count units df['words_per_text'] = count_words(df.text) df['words_per_title'] = count_words(df.title) df['words_per_subtitle'] = count_words(df.subtitle) df['characters_per_text'] = [len(s) for s in df.text] df['sentences_per_text'] = count_sentences(df.text) df['paragraphs_per_text'] = count_paragraphs(df.text) df['characters_per_title'] = [len(s) for s in df.title] df['unique_words_per_100_words'] =\ [100*len(np.unique(list(filter(None,re.split(' |\t|\n\r|\n',s))))) / len(list(filter(None,re.split(' |\t|\n\r|\n',s)))) for s in df.text] df['characters_per_word'] =\ [len(s)/len(list(filter(None,re.split(' |\t|\n\r|\n',s)))) for s in df.text] # plot columns = ('words_per_text', 'words_per_subtitle', 'words_per_title', 'characters_per_text', 'sentences_per_text', 'paragraphs_per_text', 'characters_per_title', 'unique_words_per_100_words', 'characters_per_word') for i,col in enumerate(columns): ax = axs[int(i/3),i%3] bp = df.boxplot(ax=ax, column=col, by=['source']+([by] if by else []), return_type='both', patch_artist=True) colors = np.repeat(('blue','red','green'), int(len(bp[0][1]['boxes'])/3)) for box, color in zip(bp[0][1]['boxes'], colors): box.set_facecolor(color) ax.set_xlabel('')#'Source', fontsize=12) ax.set_ylabel(col.replace('_',' ').capitalize(), fontsize=12) if by: ax.set_xticklabels( [bidi.get_display( t._text.replace('(', '').replace(')', '').replace(', ', '\n') ) for t in ax.get_xticklabels()], rotation=90) if i==0: ax.set_title('TOKENS COUNT', fontsize=14) else: ax.set_title('') # draw utils.draw() ############## LOAD DATA ############## def load_data(path, sheets=('ynet', 'mako', 'haaretz'), filter_str=('source','title','text'), force_string=('title','subtitle','text','url','link_title', 'author','section','source'), verbose=1): df = st.load_data_frame(path, sheets=sheets, verbose=verbose) for h in filter_str: df = df[[(isinstance(t, str) and len(t)>0) for t in df[h].values]] pd.options.mode.chained_assignment = None for col in force_string: df.loc[[not isinstance(s,str) for s in df[col]], col] = '' df['blocked'] = [src=='haaretz' and txt.endswith('...') for src,txt in zip(df['source'], df['text'])] return df ############## DEDICATED FUNCTIONS ############## def date_hist(ax, df, old_thresh=np.datetime64(datetime(2019,3,1))): dts = [str(dt) if str(dt)=='NaT' else str(dt)[:4] if dt<old_thresh else str(dt)[:10] for dt in df.date] dts_vals = sorted(list(set(dts))) sources = np.unique(df.source) date_count = {src: [np.sum(sc==src and dt==dt_val for sc,dt in zip(df.source,dts)) for dt_val in dts_vals] for src in sources} bottom = np.array([0 for _ in dts_vals]) for i,src in enumerate(sources): utils.barplot(ax, dts_vals, date_count[src], bottom=bottom, title='Dates', ylab='Articles', vertical_xlabs=True, label=src, colors=('b','r','g')[i], plot_bottom=False) bottom += date_count[src] ax.legend(loc='upper left') def author_concentration(ax, df): n = 0 for k,src in enumerate(np.unique(df.source)): # calculate d = df[df.source==src] authors = np.array(sorted(list(set([str(a) for a in d.author[d.author!='']])))) arts_per_aut = np.array([np.sum(d.author==a) for a in authors]) ids = sorted(range(len(arts_per_aut)), key=lambda i: arts_per_aut[i], reverse=True) authors = authors[ids] arts_per_aut = arts_per_aut[ids] arts_per_aut = np.cumsum(arts_per_aut) n = max(n,len(authors)) # plot ax.plot(list(range(len(arts_per_aut))), 100*arts_per_aut/d.shape[0], ('b-','r-','g-')[k], label=src) ax.set_title('Authors', fontsize=14) ax.set_xlabel('K', fontsize=12) ax.set_ylabel( 'Number of articles by most active K authors [%]\n'+ '(not reaching 100% due to unknown authors)', fontsize=12) ax.set_xlim((0,n)) ax.set_ylim((0,100)) ax.legend() def top_authors(ax, df, n=5): sources = np.unique(df.source) top_authors = {} top_authors_arts = {} for k,src in enumerate(sources): # calculate d = df[df.source==src] authors = np.array(sorted(list(set([str(a) for a in d.author[d.author!='']])))) arts_per_aut = np.array([np.sum(d.author==a) for a in authors]) ids = sorted(range(len(arts_per_aut)), key=lambda i: arts_per_aut[i], reverse=True) top_authors[src] = authors[ids[:n]] top_authors_arts[src] = arts_per_aut[ids[:n]] # plot width = 1/(n+1) for i in range(n): rects = ax.bar( np.arange(len(sources))+i*width, [top_authors_arts[src][i] for src in sources], width ) for rect,src in zip(rects,sources): height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., height+0.5, f'{bidi.get_display(top_authors[src][i]):s}', ha='center', va='bottom', rotation=90) ax.set_ylabel('Articles', fontsize=12) ax.set_xlabel('Top Authors', fontsize=12) ax.set_xticks(np.arange(len(sources)) + n*width/2) ax.set_xticklabels(sources) def verify_valid(df, types=()): ''' Count invalid entries - either empty (default) or invalid type. :param df: data frame :param types: dictionary of columns and their desired types :return: count of invalid entries per column (as dictionary) ''' bad = {} for col in df.columns: if col in types: bad[col] = np.sum([not isinstance(x, types[col]) for x in df[col]]) else: bad[col] = np.sum([not x for x in df[col]]) return bad def check_lengths(df, lengths={'section': (2, 20), 'title': (10, 6 * 30), 'subtitle': (10, 6 * 70), 'date': (6, 12), 'author': (2, 30), 'text': (6 * 60, np.inf)}): exceptional_length = {} for l in lengths: exceptional_length['short_'+l] =\ np.sum([isinstance(s,str) and len(s)<lengths[l][0] for s in df[l]]) exceptional_length['long_'+l] =\ np.sum([isinstance(s,str) and len(s)>lengths[l][1] for s in df[l]]) return exceptional_length def verify_hebrew_words(df): heb = np.mean( [any('א'<=c<='ת' or '1'<=c<='9' for c in w) for w in list( filter(None, re.split(' | - |\t|\n\r|\n', ' '.join(df.text) ))) ]) word = np.mean( [len(w)>=2 for w in list( filter(None, re.split(' | - |\t|\n\r|\n', ' '.join(df.text) ))) ]) return (word, heb) def check_haaretz_blocked_text(df): assert (all(src == 'haaretz' for src in df['source'])) return np.sum([s.endswith('...') for s in df['text']]) ############## GENERAL TOOLS ############## def bar_per_source(ax, df, fun, ylab, title, colors='black', bcolors=utils.DEF_COLORS): sources = np.unique(df.source) utils.barplot( ax, sources, [fun(df[np.logical_and(df.source==src,df.blocked)]) for src in sources], bottom= [fun(df[np.logical_and(df.source==src,np.logical_not(df.blocked))]) for src in sources], ylab=ylab, title=title, colors=colors, bcolors=bcolors ) def count_words(txt, sep=' | - |\t|\n\r|\n'): return utils.count(txt,sep) def count_sentences(txt, sep='\. |\.\n|\.\r'): return utils.count(txt,sep) def count_paragraphs(txt, sep='\n|\n\r'): return utils.count(txt,sep) ############## MAIN ############## if __name__ == "__main__": df = load_data(r'..\Data\articles') utils.info(df) data_description(df.copy()) validity_tests(df.copy()) lengths_analysis( df[df.section.isin(('חדשות','כלכלה','כסף','ספורט','אוכל'))].copy(), by='section') plt.show()
ido90/News
Analyzer/BasicAnalyzer.py
BasicAnalyzer.py
py
13,277
python
en
code
1
github-code
50
12272900226
import argparse def load(filepath): """Loads data from file to database""" try: with open(filepath) as file_: for line in file_: print(line) except FileNotFoundError as e: print(f"File not found {e}") def main(): parser = argparse.ArgumentParser( description="Dunder Mifflin Rewards CLI", epilog="Enjoy and use with caution!", ) parser.add_argument( "subcommand", type=str, help="the subcommand to run", choices=("load", "show", "send"), default="help" ) parser.add_argument( "filepath", type=str, help="file path to load from", default=None ) args = parser.parse_args() globals()[args.subcommand](args.filepath) if __name__ == "__main__": main()
brunoades/dundie-rewards
dundie/__main__.py
__main__.py
py
836
python
en
code
0
github-code
50
28609719527
import os from PyQt4 import QtGui, uic from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.QtWebKit import QWebView from qgis.gui import * import plotly from plotly.graph_objs import Scatter, Box, Layout FORM_CLASS, _ = uic.loadUiType(os.path.join( os.path.dirname(__file__), 'ui/data_plot_dialog_base.ui')) class DataPlotDialog(QtGui.QDialog, FORM_CLASS): def __init__(self, parent=None): """Constructor.""" super(DataPlotDialog, self).__init__(parent) # Set up the user interface from Designer. # After setupUI you can access any designer object by doing # self.<objectname>, and you can use autoconnect slots - see # http://qt-project.org/doc/qt-4.8/designer-using-a-ui-file.html # #widgets-and-dialogs-with-auto-connect self.setupUi(self) self.scatterButton.clicked.connect(self.ScatterPlot) self.boxplotButton.clicked.connect(self.BoxPlot) self.barplotButton.clicked.connect(self.BarPlot) self.histogramplotButton.clicked.connect(self.HistogramPlot) self.pieplotButton.clicked.connect(self.PiePlot) self.scatter3DButton.clicked.connect(self.Scatter3DPlot) self.distplotButton.clicked.connect(self.DistPlot) self.polarButton.clicked.connect(self.PolarPlot) # Each function is linked to the button and it imports and allows to run the code of that plot type # Open scatter plot dialog def ScatterPlot(self): import plots.scatter_dialog as Scatter dlg = Scatter.ScatterPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open boxplot dialog def BoxPlot(self): import plots.box_dialog as Box dlg = Box.BoxPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open barplot dialog def BarPlot(self): import plots.bar_dialog as Bar dlg = Bar.BarPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open histogram dialog def HistogramPlot(self): import plots.histogram_dialog as Histogram dlg = Histogram.HistogramPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open pie plot dialog def PiePlot(self): import plots.pie_dialog as Pie dlg = Pie.PiePlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open scatter 3D plot dialog def Scatter3DPlot(self): import plots.scatter3D_dialog as Scatter3D dlg = Scatter3D.Scatter3DPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open distplot dialog def DistPlot(self): import plots.distplot_dialog as Dist dlg = Dist.DistPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_() # Open polar plot dialog def PolarPlot(self): import plots.polar_plot_dialog as Polar dlg = Polar.PolarPlotDialog() # show the dialog dlg.show() # Run the dialog event loop dlg.exec_()
mdouchin/DataPlot
data_plot_dialog.py
data_plot_dialog.py
py
3,341
python
en
code
0
github-code
50
20296661811
import logging from google.protobuf.json_format import MessageToDict, ParseDict from serving.core.error_code import ExistBackendError, RunTimeException, CreateAndLoadModelError, ListOneBackendError, \ ReloadModelOnBackendError, TerminateBackendError from serving.core import error_reply from ..core import backend from ..interface import backend_pb2 as be_pb2 from ..interface import backend_pb2_grpc as be_pb2_grpc from ..interface import common_pb2 as c_pb2 class Backend(be_pb2_grpc.BackendServicer): def ListSupportedType(self, request, context): return be_pb2.SupportedReply(support="not implemented") def ListRunningBackends(self, request, context): try: ret = backend.listAllBackends() return ParseDict(ret, be_pb2.BackendList()) except Exception as e: logging.exception(e) return be_pb2.BackendList() def InitializeBackend(self, request, context): try: ret = backend.initializeBackend(MessageToDict(request), passby_model=None) return ParseDict(ret, c_pb2.ResultReply()) except CreateAndLoadModelError as e: return error_reply.error_msg(c_pb2, CreateAndLoadModelError, exception=e) except Exception as e: logging.exception(e) return error_reply.error_msg(c_pb2, RunTimeException, msg="failed to initialize backend: {}".format(repr(e))) def ListBackend(self, request, context): try: ret = backend.listOneBackend(MessageToDict(request)) return ParseDict(ret, be_pb2.BackendStatus()) except ListOneBackendError as e: return error_reply.error_msg(c_pb2, ListOneBackendError, exception=e) except Exception as e: logging.exception(e) return be_pb2.BackendStatus() def ReloadModelOnBackend(self, request, context): try: ret = backend.reloadModelOnBackend(MessageToDict(request)) return ParseDict(ret, c_pb2.ResultReply()) except ReloadModelOnBackendError as e: return error_reply.error_msg(c_pb2, ReloadModelOnBackendError, exception=e) except Exception as e: logging.exception(e) return error_reply.error_msg(c_pb2, RunTimeException, msg="failed to (re)load model on backend: {}".format(repr(e))) def TerminateBackend(self, request, context): try: backend.terminateBackend(MessageToDict(request)) return c_pb2.ResultReply(code=0, msg="") except TerminateBackendError as e: return error_reply.error_msg(c_pb2, TerminateBackendError, exception=e) except Exception as e: logging.exception(e) return error_reply.error_msg(c_pb2, RunTimeException, msg="failed to terminate backend: {}".format(repr(e))) def CreateAndLoadModel(self, request, context): try: ret = backend.createAndLoadModel(MessageToDict(request)) return ParseDict(ret, c_pb2.ResultReply()) except ExistBackendError as e: return error_reply.error_msg(c_pb2, ExistBackendError, exception=e) except Exception as e: logging.exception(e) return error_reply.error_msg(c_pb2, RunTimeException, msg=repr(e)) def CreateAndLoadModelV2(self, request, context): try: ret = backend.createAndLoadModelV2(MessageToDict(request)) return ParseDict(ret, c_pb2.ResultReply()) except ExistBackendError as e: return error_reply.error_msg(c_pb2, ExistBackendError, exception=e) except Exception as e: logging.exception(e) return error_reply.error_msg(c_pb2, RunTimeException, msg=repr(e))
JK-97/ai-serving
src/serving/handler/backend.py
backend.py
py
3,878
python
en
code
2
github-code
50
42015918298
import json import urllib from settings import SERVER_BASE_URL HEADERS = {'Content-Type': 'application/json'} def get_nodes(http_client, noun): noun = urllib.quote_plus(noun) result = http_client.get('''{0}/nodes?where={{"noun": "{1}"}}'''.format(SERVER_BASE_URL, noun), headers=HEADERS) items = result.json()['_items'] return items[0]['_id'] if items else [] def post_nodes(http_client, noun, show): payload = dict( noun=noun, show=show, noun_usages=[] ) result = http_client.post('{0}/nodes'.format(SERVER_BASE_URL), data=json.dumps(payload), headers=HEADERS) return result
mpmenne/global-hack-II
gh2insertworker/nodes.py
nodes.py
py
635
python
en
code
0
github-code
50
42596275000
import numpy as np import dolfin from dolfin import * from mpi4py import MPI as pyMPI comm = pyMPI.COMM_WORLD mpi_comm = MPI.comm_world #load mesh,boundaries and coefficients from file mark = {"Internal":0, "wall": 1,"inlet": 2,"outlet": 3 } #read mesh and boundaries from file mesh = Mesh() hdf = HDF5File(mesh.mpi_comm(), "mesh_boundaries.h5", "r") hdf.read(mesh, "/mesh", False) boundaries = MeshFunction('size_t', mesh, mesh.topology().dim() - 1) hdf.read(boundaries, "/boundaries") hdf.close() #read viscosity coefficient from file mu_ele = FunctionSpace(mesh, "DG", 0) mu = Function(mu_ele) hdf = HDF5File(mesh.mpi_comm(), "mesh_coeffs.h5", "r") hdf.read(mu, "/mu") hdf.close() #output viscosity to paraview XDMFFile(mpi_comm, "coeff_preview.xdmf").write_checkpoint(mu, "coeffs", 0) #Define Taylor-Hood element and function space P2 = VectorElement("Lagrange", mesh.ufl_cell(), 2) P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1) TH = P2 * P1 W = FunctionSpace(mesh, TH) # Define variational problem (u, p) = TrialFunctions(W) (v, q) = TestFunctions(W) ds = dolfin.Measure('ds',domain=mesh,subdomain_data=boundaries) n = dolfin.FacetNormal(mesh) #Define boundary condition p_in = dolfin.Constant(1.0) # pressure inlet p_out = dolfin.Constant(0.0) # pressure outlet noslip = dolfin.Constant([0.0]*mesh.geometry().dim()) # no-slip wall #Boundary conditions # No-slip Dirichlet boundary condition for velocity bc0 = DirichletBC(W.sub(0), noslip, boundaries, mark["wall"]) bcs = [bc0] #Neumann BC gNeumann = - p_in * inner(n, v) * ds(mark["inlet"]) + \ - p_out * inner(n, v) * ds(mark["outlet"]) #Body force f = Constant([0.0]*mesh.geometry().dim()) a = mu*inner(grad(u), grad(v))*dx + div(v)*p*dx + q*div(u)*dx # The sign of the pressure has been flipped for symmetric system L= inner(f, v)*dx + gNeumann U = Function(W) solve(a == L, U, bcs) uh, ph = U.split() #Output solution p,u to paraview dolfin.XDMFFile("pressure.xdmf").write_checkpoint(ph, "p") dolfin.XDMFFile("velocity.xdmf").write_checkpoint(uh, "u") flux = [dolfin.assemble(dolfin.dot(uh, n)*ds(i)) for i in range(len(mark))] if comm.Get_rank() == 0: for key, value in mark.items(): print("Flux_%s= %.15lf"%(key,flux[value]))
BinWang0213/TemporaryProject
hdg_test/2d/cg_test.py
cg_test.py
py
2,253
python
en
code
1
github-code
50
24020092678
import os import mne import yaml import json import pickle import numpy as np import scipy as sp import pandas as pd import nibabel as nb import matplotlib.pyplot as plt from inspect import getsourcefile from .acquisition import Acquisition2kHz, Acquisition10kHz # quick function for coreg checking def plot_overlay(image, compare, title, thresh=None): """Define a helper function for comparing plots.""" image = nb.orientations.apply_orientation( np.asarray(image.dataobj), nb.orientations.axcodes2ornt( nb.orientations.aff2axcodes(image.affine))).astype(np.float32) compare = nb.orientations.apply_orientation( np.asarray(compare.dataobj), nb.orientations.axcodes2ornt( nb.orientations.aff2axcodes(compare.affine))).astype(np.float32) if thresh is not None: compare[compare < np.quantile(compare, thresh)] = np.nan fig, axes = plt.subplots(1, 3, figsize=(12, 4)) fig.suptitle(title) for i, ax in enumerate(axes): ax.imshow(np.take(image, [image.shape[i] // 2], axis=i).squeeze().T, cmap='gray') ax.imshow(np.take(compare, [compare.shape[i] // 2], axis=i).squeeze().T, cmap='gist_heat', alpha=0.5) ax.invert_yaxis() ax.axis('off') fig.tight_layout() class Patient: """Patient is a single patient, with electrodes in fixed positions, containing multiple runs of sEEG data as well as pre-op T1w and post-op CT anatomical images """ # instance attributes def __init__(self, subject, raw_dir, derivatives_dir): """[summary] Args: subject ([type]): [description] raw_dir ([type]): [description] derivatives_dir ([type]): [description] """ self.subject = subject self.raw_dir = raw_dir self.derivatives_dir = derivatives_dir self.raw_func_dir = os.path.join(raw_dir, self.subject, 'func') self.raw_anat_dir = os.path.join(raw_dir, self.subject, 'anat') self.preprocessing_dir = os.path.join( derivatives_dir, 'prep', self.subject, 'func') self.localization_dir = os.path.join( derivatives_dir, 'prep', self.subject, 'loc') self.tfr_dir = os.path.join( derivatives_dir, 'tfr', self.subject, 'func') self.prf_dir = os.path.join( derivatives_dir, 'pRF', self.subject, 'func') self.subjects_dir = os.path.join(derivatives_dir, 'freesurfer') for d in (self.preprocessing_dir, self.localization_dir, self.tfr_dir, self.prf_dir): os.makedirs(d, exist_ok=True) self.filepath = os.path.abspath(getsourcefile(lambda: 0)) with open(os.path.join(os.path.split(os.path.split(self.filepath)[0])[0], 'analysis', 'config.yml'), 'r') as yf: self.analysis_settings = yaml.safe_load(yf) def __repr__(self): return f'Patient "{self.subject}" at "{self.raw_dir}", derivatives at {self.derivatives_dir}' # instance method def gather_acquisitions(self): self.acquisitions = [] for run, acq in zip(range(1, self.analysis_settings['nr_runs']+1), self.analysis_settings['acquisition_types']): if acq == '2kHz': this_run = Acquisition2kHz(raw_dir=self.raw_func_dir, run_nr=run, patient=self, task=self.analysis_settings['task']) elif acq == '10kHz': this_run = Acquisition10kHz(raw_dir=self.raw_func_dir, run_nr=run, patient=self, task=self.analysis_settings['task']) self.acquisitions.append(this_run) def preprocess(self): # 1. resample # 2. notch filter # 3. t0 at 't' press # 4. tfr from t0 to end of last bar pass for acq in self.acquisitions: preprocessed_fn = acq.raw_filename.replace( 'bids', 'derivatives/prep').replace('.edf', '_ieeg.fif.gz') acq.notch_resample_cut( resample_frequency=self.analysis_settings['preprocessing']['downsample_frequency'], notch_filter_frequencies=self.analysis_settings['preprocessing']['notch_frequencies'], raw_file_name=None, output_file_name=preprocessed_fn) acq.preprocessed_fn = preprocessed_fn tfr_fn = preprocessed_fn.replace( 'prep', 'tfr').replace('.fif.gz', '.h5') acq.tfr(raw_file_name=acq.preprocessed_fn, tfr_logspace_low=self.analysis_settings['preprocessing']['tfr_logspace_low'], tfr_logspace_high=self.analysis_settings['preprocessing']['tfr_logspace_high'], tfr_logspace_nr=self.analysis_settings['preprocessing']['tfr_logspace_nr'], tfr_subsampling_factor=self.analysis_settings[ 'preprocessing']['tfr_subsampling_factor'], output_filename=tfr_fn) acq.tfr_fn = tfr_fn def find_electrode_positions(self, which_run=0, method='flirt'): # 1. check if freesurfer has run # 2. run MNE coregistration # 3. save electrode positions in stereotypical format # follow: https://mne.tools/stable/auto_tutorials/clinical/10_ieeg_localize.html#sphx-glr-auto-tutorials-clinical-10-ieeg-localize-py # and: https://mne.tools/stable/auto_tutorials/clinical/20_seeg.html """ # on the server: mkdir /tank/shared/tmp/prf-seeg && singularity run --cleanenv -B /tank -B /scratch /tank/shared/software/bids_apps/fmriprep-20.2.6.simg --skip_bids_validation --participant-label 002 --anat-only --nthreads 30 --omp-nthreads 30 --fs-license-file /tank/shared/software/freesurfer_dev/license.txt --notrack -w /tank/shared/tmp/prf-seeg /scratch/2021/prf-seeg/data/bids/ /scratch/2021/prf-seeg/data/derivatives participant # and for manual/flirt reg: mri_convert derivatives/freesurfer/sub-001/mri/T1.mgz derivatives/freesurfer/sub-001/mri/T1.nii.gz flirt -interp sinc -searchcost mutualinfo -in bids/sub-001/anat/sub-001_CT.nii.gz -ref derivatives/freesurfer/sub-001/mri/T1.nii.gz -omat derivatives/prep/sub-001/loc/CT2T1w_flirt.mat -out derivatives/prep/sub-001/loc/CT2T1w_flirt.nii.gz """ CT_orig = nb.load(os.path.join( self.raw_anat_dir, f'{self.subject}_CT.nii.gz')) T1w_orig = nb.load(os.path.join( self.raw_anat_dir, f'{self.subject}_T1w.nii.gz')) T1w_FS = nb.load(os.path.join(self.subjects_dir, self.subject, 'mri', 'T1.mgz')) if method == 'mne': self.reg_affine, _ = mne.transforms.compute_volume_registration(CT_orig, T1w_FS, pipeline='rigids') self.CT_aligned = mne.transforms.apply_volume_registration( CT_orig, T1w_FS, self.reg_affine) elif method == 'flirt': self.reg_affine = np.loadtxt(os.path.join(self.derivatives_dir, 'prep', 'loc', f'CT2T1w_flirt.mat'), delimiter='\t') self.CT_aligned = nb.load(os.path.join(self.derivatives_dir, 'prep', 'loc', f'CT2T1w_flirt.nii.gz')) else: raise NotImplementedError(f'method {method} not implemented') self.gather_acquisitions() self.acquisitions[which_run]._read_raw() self.subj_trans = mne.coreg.estimate_head_mri_t(subject=self.subject, subjects_dir=self.subjects_dir) self.subj_mni_fiducials = mne.coreg.get_mni_fiducials(subject=self.subject, subjects_dir=self.subjects_dir) self.subj_trans.save(os.path.join(self.localization_dir, 'subj-trans.fif')) np.savetxt(os.path.join(self.localization_dir, f'reg_affine_CT2T1w_{method}.tsv'), self.reg_affine, delimiter='\t') # self.CT_aligned.to_filename(os.path.join(self.localization_dir, 'CT2T1w.nii.gz')) # with open(os.path.join(self.localization_dir, 'subj_mni_fiducials.pkl'), 'w') as f: # pickle.dump(self.subj_mni_fiducials, f) gui = mne.gui.locate_ieeg(self.acquisitions[which_run].raw.info, self.subj_trans, self.CT_aligned, subject=self.subject, subjects_dir=self.subjects_dir)
spinoza-centre/prf-seeg
prfseeg/patient.py
patient.py
py
8,674
python
en
code
2
github-code
50
32115803578
import csv def setAmount(): data_string = [] with open('500_constituents_financial.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') check = False for row in csv_reader: if check: data_string.append(row) check = True return data_string def output_file(data_string): csvfile = None with open("demofile2.csv", "w") as csvfile: A = [ "Symbol", "Name", "Sector", "Price", "Price/Earnings", "Dividend Yield", "Earnings/Share", "52 Week Low", "52 Week High", "Market Cap", "dag", "Price/Sales", "Price/Book", "SEC Filings"] writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(A) print(data_string) writer.writerows(data_string) # for i in data_string: # temp = [] # for j in i: # t = "" # if j != ',': # t += j # else: # temp.append(t) # t = "" # #print(temp) # writer.writerows(temp) print(123) data = setAmount() print(123) output_file(data) print(123)
MinTimmy/Data_Structure
First_semester/Demo1/all/test10.py
test10.py
py
1,176
python
en
code
0
github-code
50
38409639622
import boto3 import email import json import urllib.parse from datetime import datetime from sms_spam_classifier_utilities import one_hot_encode from sms_spam_classifier_utilities import vectorize_sequences region = 'us-east-1' s3_client = boto3.client('s3') sagemaker_client = boto3.client('runtime.sagemaker') ses_client = boto3.client('ses', region_name=region) def lambda_handler(event, context): # Get the object from the event bucket = event['Records'][0]['s3']['bucket']['name'] print(event['Records'][0]['s3']['bucket']['name']) key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'], encoding='utf-8') try: response = s3_client.get_object(Bucket=bucket, Key=key) body = response['Body'].read().decode('utf-8') # Extract contents from email email_contents = email.message_from_string(body) email_datetime = email_contents.get('Date') email_datetime = email_datetime[:email_datetime.find('-')-1] dt = datetime.strptime(email_datetime, '%a, %d %b %Y %H:%M:%S') email_date = str(dt.date()) email_time = str(dt.time()) email_recipient = email_contents.get('To') email_sender = email_contents.get('From') email_sender = email_sender[email_sender.find('<')+1:-1] email_subject = email_contents.get('Subject') email_body = '' if email_contents.is_multipart(): for payload in email_contents.get_payload(): if payload.get_content_type() == 'text/plain': email_body = payload.get_payload() else: email_body = email_contents.get_payload() email_body = email_body.replace("\r", " ").replace("\n", " ") # Prepare input for sagemaker endpoint endpoint_name = 'sms-spam-classifier-mxnet-2022-11-17-23-51-03-470' detector_input = [email_body] vocabulary_length = 9013 one_hot_detector_input = one_hot_encode(detector_input, vocabulary_length) encoded_detector_input = vectorize_sequences(one_hot_detector_input, vocabulary_length) detector_input = json.dumps(encoded_detector_input.tolist()) # Get a response from the sagemaker endpoint and decode it response = sagemaker_client.invoke_endpoint(EndpointName=endpoint_name, ContentType='application/json', Body=detector_input) results = response['Body'].read().decode('utf-8') results_json = json.loads("" + results + "") # Get the class and confidence percentage if(results_json['predicted_label'][0][0]==1.0): spam_class = 'SPAM' else: spam_class = 'HAM' confidence_score = str(results_json['predicted_probability'][0][0]*100) confidence_score = confidence_score.split('.')[0] # Send the email through SES SES_email_body = email_body if len(SES_email_body) > 240: SES_email_body = SES_email_body[:240] SES_email_line1 = 'We received your email sent on ' + email_date + ' at ' + email_time + ' with the subject ' + email_subject + '.\n\n' SES_email_line2 = 'Here is a 240 character sample of the email body:\n' SES_email_line3 = SES_email_body + '\n\n' SES_email_line4 = 'The email was categorized as ' + spam_class + ' with a ' + confidence_score + '% confidence.' SES_email = SES_email_line1 + SES_email_line2 + SES_email_line3 + SES_email_line4 charset = "UTF-8" response = ses_client.send_email( Destination={ "ToAddresses": [ email_sender, ], }, Message={ "Body": { "Text": { "Charset": charset, "Data": SES_email, } }, "Subject": { "Charset": charset, "Data": "Spam Detector Results", }, }, Source="[email protected]", ) return "success" except Exception as e: print(e) raise e
reganbragg/cloud-hw3-ML-spam-detector
Lambda/lambda_function.py
lambda_function.py
py
4,305
python
en
code
1
github-code
50
11017700567
"""Our main visual theme""" import os import serge.blocks.themes W, H = 800, 600 theme = serge.blocks.themes.Manager() theme.load({ 'main': ('', { # Main properties 'screen-height': H, 'screen-width': W, 'screen-title': 'bomberman', 'screen-icon-filename': 'icon.png', 'screenshot-size': (0, 0, W, H), 'start-level': 4, # Ending screen 'end-colour': (255, 255, 0), 'end-size': 20, 'end-font': 'main', 'end-position': (W / 2, H / 2), 'end-icon-position': (W / 2, H / 2 - 50), 'pre-stop-pause': 1.5, 'tween-world-time': 0.3, # Mute button 'mute-button-alpha': 0.4, 'mute-button-position': (W - 30, H - 30), # FPS display 'fps-x': 50, 'fps-y': H-30, 'fps-colour': (255, 255, 0), 'fps-size': 12, # Screenshot interval (s) 'auto-screenshots': False, 'screenshot-path': os.path.join('..', '..', '..', 'sandbox', 'screenshots'), 'screenshot-interval': 5, # Simulation properties 'simulation-on': False, 'simulation-rtf': 10, 'simulation-fps': 1, 'simulation-auto-restart': False, 'store-action-replay': True, # Board properties 'board-size': (19, 19), 'board-cell-size': (20, 20), 'board-blanks': ['tiles-4', ], 'board-destructible': ['tiles-2'], 'board-position': (W / 2, H / 2), 'board-replay-rectangle': (W / 2 - 200, H / 2 - 200, 400, 400), 'board-replay-max-frames': 500, 'footstep-h-sprite': 'tiles-15', 'footstep-v-sprite': 'tiles-10', # Sprite names 'bomb-sprite': 'tiles-11', 'explosion-sprite': 'tiles-14', 'gore-sprite': 'tiles-9', 'number-gore': 4, # Bomb properties 'bomb-fuse-time': 2, 'explosion-time': 1, 'explosion-propagation-time': 0.1, 'explosion-propagation-distance': 3, 'after-explosion-sprite': 'tiles-4', 'explosion-sprites': ['tiles-%d' % i for i in range(21, 26)], 'explosion-velocity': (10, 20), 'explosion-angular': 0, 'explosion-number': 6, 'explosion-range': 20, 'bomb-blast-sprite': 'tiles-14', 'number-bomb-blasts': 4, # Block properties 'block-sprites': ['tiles-%d' % i for i in range(26, 31)], 'block-number': 6, 'block-velocity': (180, 190), 'block-angular-velocity': (-500, 500), 'block-range': 400, 'block-gravity': (0, +1000), # Result properties 'result-colour': (255, 255, 0), 'result-font-size': 42, 'result-position': (W / 2, H / 2 - 40), 'result-font': 'main', # Result properties 'result-reason-colour': (255, 255, 0), 'result-reason-font-size': 36, 'result-reason-position': (W / 2, H / 2), 'result-reason-font': 'main', # Next properties 'next-colour': (255, 255, 0), 'next-font-size': 25, 'next-position': (W / 2, H / 2 + 80), 'next-font': 'main', # Flag display properties 'flag-status-position': (3 * W / 4 + 80, 55), 'flag-time-limit': 20, 'flag-sprite-name': 'tiles-34', 'flag-zoom': 2.0, 'flag-position-width': 75, 'flag-position-offset-x': 10, 'flag-position-offset-y': -4, # Player properties 'player-colour': (255, 255, 0), 'player-highlight-colour': (255, 0, 0), 'player-highlight-time': 1100, 'player-font-size': 25, 'fixed-font-width': 20, 'player-position': (W / 6 - 32, 16), 'player-heart-position': (W / 6 + 46, 16), 'player-font': 'main', 'player-move-interval': 0.15, 'ai-position': (W / 6 - 32, 70), 'ai-heart-position': (W / 6 + 46, 70), 'score-panel-position': (W / 6 - 22, 55), # AI properties 'ai-move-interval': 0.25, 'ai-wait-cycles': 0, 'ai-bomb-probability': 0.5, 'ai-squares-view': 2, 'ai-look-ahead': 2, 'all-ai': False, 'ai-show-destinations': True, 'ai-show-unsafe': True, 'ai-unsafe-colour': (0, 0, 0, 100), 'ai-strategy-flip-probability': 0.05, # Properties of the debug ui 'ai-1-colour': (255, 0, 0), 'ai-1-destination-colour': (255, 0, 0, 100), 'ai-1-font-size': 12, 'ai-1-position': (50, 200), 'ai-1-font': 'DEFAULT', 'ai-2-colour': (0, 255, 0), 'ai-2-destination-colour': (0, 255, 0, 100), 'ai-2-font-size': 12, 'ai-2-position': (50, 250), 'ai-2-font': 'DEFAULT', # Smack talk properties 'smack-icon-position': (120, 520), 'smack-bubble-position': (W / 2, 520), 'smack-text-colour': (0, 0, 0), 'smack-text-font-size': 15, 'smack-text-position': (W / 2, 530), 'smack-text-font': 'main', 'smack-hide-interval': 5, 'smack-line-length': 30, 'smack-delay': 3, 'smack-offset': 5, # Death animations 'result-start-y': -100, 'result-end-y': H / 2 - 40, 'result-duration': 300.0, 'result-delay': 100.0, 'result-reason-start-y': 650, 'result-reason-end-y': H / 2, 'result-reason-duration': 300.0, 'result-reason-delay': 100.0, 'next-start-x': -1000, 'next-end-x': W / 2, 'next-duration': 350.0, 'next-delay': 500.0, 'chunk-number': 20, 'chunk-velocity': (400, 600), 'chunk-angular-velocity': (-500, 500), 'chunk-gravity': (0, +1000), 'chunk-sprites': ['tiles-%d' % i for i in range(16, 21)], # Random items creation # 'random-item-low-time': 10, # 'random-item-high-time': 15, 'random-item-names': ['Bomb', 'Heart', 'Bomb', 'RedHeart', 'MultiBomb', 'Flag'], 'random-item-low-time': 2, 'random-item-high-time': 4, # 'random-item-names': ['MultiBomb'], 'random-item-tween-time': 500.0, # Gift box 'gift-box-position': (W / 2, 55), 'gift-box-sprite-position': (-20, -20), 'gift-box-sprite-zoom': 3.0, 'gift-box-cycle-time': 0.5, 'gift-box-cycles': (5, 10), 'initial-number-hearts': 3, # Movement 'default-movement-weight': 10.0, 'heart-movement-weight': 0.1, 'flag-movement-weight': 0.01, 'heart-grab-distance': 10, 'flag-grab-distance': 20, }), 'start-screen': ('sub-screen', { # Version text 'version-position': (W/2, H-10), 'version-colour': (50, 50, 50), 'version-font-size': 12, # Start button 'start-position': (W/2, H-120), 'start-colour': (255, 255, 0, 255), 'start-font-size': 48, # Help button 'help-position': (W-150, H-40), 'help-colour': (0, 255, 0, 255), 'help-font-size': 24, # Credits button 'credits-position': (150, H-40), 'credits-colour': (0, 255, 0, 255), 'credits-font-size': 24, # Achievements button 'achievements-position': (W/2, H-40), 'achievements-colour': (0, 255, 0, 255), 'achievements-font-size': 24, # Volume 'volume': 0.1, # Face 'face-position': (W / 2 - 150, H / 2 - 28), 'face-probability': 0.4, # Smack talk properties 'smack-icon-position': (-120, -520), # Hide off screen 'smack-bubble-position': (W / 2 + 150, H / 2 - 28), 'smack-text-position': (W / 2 + 150, H / 2 - 28), 'smack-delay': 1, 'smack-offset': 3, # Appearing item sprite 'item-start-position': (-150, H / 2 - 50), 'item-end-position': (170, H / 2 - 50), 'item-zoom': 5, 'item-animation-time': 750, }), 'sub-screen': ('main', { # Logo and title 'logo-position': (W/2, 60), 'title': 'A Bomberman Clone', 'title-position': (W/2, 120), 'title-colour': (213, 47, 41), 'title-font-size': 25, 'title-font': 'main', # Back button 'back-colour': (255, 255, 0, 255), 'back-font-size': 24, }), 'help-screen': ('sub-screen', { # Help text 'text-position': (W/2, H/2), 'back-position': (W-100, H-40), # Key text 'keys-title-position': (W/2, 180), 'keys-title-colour': (212, 196, 148), 'keys-title-font-size': 25, 'keys-title-font': 'main', # Music text 'music-title-position': (W/2, 450), 'music-title-colour': (212, 196, 148), 'music-title-font-size': 25, 'music-title-font': 'main', # Volume 'vol-down-position': (W / 2 - 80, 500), 'vol-up-position': (W / 2 + 80, 500), 'vol-position': (W / 2, 500), 'volume-colour': (212, 196, 148), 'volume-font': 'main', 'volume-size': 40, 'vol-change-amount': 10, }), 'level-screen': ('start-screen', { # Help text 'text-position': (W/2, H/2), # Grid properties 'grid-size': (5, 1), 'grid-width': 650, 'grid-height': 200, 'grid-position': (W / 2, H / 2 - 70), # Title properties 'title-colour': (255, 255, 0, 255), 'title-font-size': 15, 'title-font': 'main', 'title-offset-y': 70, # Random level button 'random-level-position': (W / 2, H / 2 + 100), # Back button 'back-position': (W/2, H-40), # Resume button 'resume-position': (W/2, H-90), }), 'random-level-screen': ('sub-screen', { # Back button 'back-position': (W/2, H-40), # Resume button 'resume-position': (W/2, H-90), # Generate button 'generate-position': (680, H/2 - 20), # Select button 'select-position': (680, H/2 + 40), # Size menu 'size-width': 160, 'size-height': 140, 'size-item-width': 140, 'size-item-height': 40, 'size-position': (100, H/2 - 40), 'size-font-size': 18, # Space menu 'space-width': 160, 'space-height': 100, 'space-position': (100, H/2 + 130), 'space-item-width': 150, 'space-item-height': 40, 'space-font-size': 18, # Menu properties 'menu-on-colour': (89, 81, 77), 'menu-off-colour': (89, 81, 77, 10), 'menu-font-colour': (255, 255, 0), 'menu-mouse-over-colour': (162, 146, 114), 'menu-font-size': 18, 'menu-font': 'main', # Level preview 'level-preview-width': 300, 'level-preview-height': 300, 'level-preview-position': (W/2, H/2 + 35), # Size options 'size-options': { 'Small': (11, 11), 'Medium': (15, 15), 'Large': (19, 19), }, # Space options 'space-options': { 'Open': (1, 1), 'Blocked': (10, 4), }, }), 'action-replay-screen': ('start-screen', { # Transport bar 'bar-width': 660, 'bar-height': 80, 'bar-background-colour': (0, 0, 0, 150), 'bar-position': (W / 2, H - 80), # Replay display 'replay-position': (W / 2, H / 2), 'replay-slow-fps': 15, 'replay-normal-fps': 50, 'replay-fast-fps': 150, 'replay-width': 400, 'replay-height': 400, # Current frame display 'current-colour': (255, 255, 0, 50), 'current-font-size': 12, 'current-position': (W / 2, 50), 'current-font': 'main', # Slider properties 'slider-back-position': (W / 2, 50) }), 'credits-screen': ('sub-screen', { # Author 'author-title-colour': (148, 8, 42), 'author-title-font-size': 24, 'author-title-position': (W/2, 170), 'author-colour': (212, 196, 148), 'author-font-size': 32, 'author-position': (W/2, 210), 'url-colour': (156, 140, 116), 'url-font-size': 14, 'url-position': (W/2, 230), # Music 'music-title1-colour': (148, 8, 42), 'music-title1-font-size': 20, 'music-title1-position': (W/2, 260), 'music-title2-colour': (148, 8, 42), 'music-title2-font-size': 18, 'music-title2-position': (W/2, 280), 'music-colour': (212, 196, 148), 'music-font-size': 16, 'music-position': (W/2, 300), # Sound 'sound-title1-colour': (148, 8, 42), 'sound-title1-font-size': 20, 'sound-title1-position': (W*3/4, 420), 'sound-title2-colour': (212, 196, 148), 'sound-title2-font-size': 18, 'sound-title2-position': (W*3/4, 440), # Built using 'built-title-colour': (148, 8, 42), 'built-title-font-size': 20, 'built-title-position': (W/4, 420), 'built-colour': (212, 196, 148), 'built-font-size': 16, 'built-position': (W/4, 440), # Engine 'engine-title-colour': (148, 8, 42), 'engine-title-font-size': 20, 'engine-title-position': (W/4, 480), 'engine-colour': (212, 196, 148), 'engine-font-size': 16, 'engine-position': (W/4, 500), # Engine version 'engine-version-colour': (156, 140, 116), 'engine-version-font-size': 10, 'engine-version-position': (W/4, 520), # Fonts 'font-title1-colour': (148, 8, 42), 'font-title1-font-size': 20, 'font-title1-position': (W*3/4, 480), 'font-title2-colour': (148, 8, 42), 'font-title2-font-size': 18, 'font-title2-position': (W*3/4, 500), 'font-colour': (212, 196, 148), 'font-font-size': 16, 'font-position': (W*3/4, 520), # 'back-position': (100, H-40), }), 'achievements': ('main', { # Properties of the achievements system 'banner-duration': 5, 'banner-position': (175, 525), 'banner-size': (300, 50), 'banner-backcolour': (0, 0, 0, 50), 'banner-font-colour': (255, 255, 0, 255), 'banner-name-size': 14, 'banner-description-size': 8, 'banner-name-position': (-100, -18), 'banner-description-position': (-100, 0), 'banner-font-name': 'DEFAULT', 'banner-graphic-position': (-125, 0), 'time-colour': (255, 255, 255, 100), 'time-size': 10, 'time-position': (-100, 24), 'logo-position': (400, 50), 'screen-background-sprite': None, 'screen-background-position': (400, 300), 'grid-size': (2, 5), 'grid-width': 800, 'grid-height': 400, 'grid-position': (400, 320), 'back-colour': (255, 255, 255, 255), 'back-font-size': 20, 'back-font-name': 'DEFAULT', 'back-position': (400, 560), 'back-sound': 'click', }), '__default__': 'main', }) G = theme.getProperty
IndexErrorCoders/PygamesCompilation
IE_games_2/bombr-0.3/game/theme.py
theme.py
py
14,528
python
en
code
2
github-code
50
19524836247
from urllib import request import http.cookiejar import re def getXsrf(data): cer = re.compile('name=\"_xsrf\" value=\"(.*)\"', flags=0) strlist = cer.findall(data) return strlist[0] def makeMyOpener(head={ 'Connection': 'Keep-Alive', 'Accept': 'text/html, application/xhtml+xml, */*', 'Accept-Language': 'en-US,en;q=0.8,zh-Hans-CN;q=0.5,zh-Hans;q=0.3', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko' }): cookie_jar = http.cookiejar.CookieJar() opener = request.build_opener(request.HTTPCookieProcessor(cookie_jar)) header = [] for key, value in head.items(): elem = (key, value) header.append(elem) opener.addheaders = header return opener opener = makeMyOpener() uop = opener.open('http://www.zhihu.com', timeout=2) data = uop.read().decode() xsrf = getXsrf(data) print("xsrf:" + xsrf)
minghzhang007/python-learn
pythondemo1/crawler/demo4.py
demo4.py
py
900
python
en
code
0
github-code
50
19942848799
from socket import MSG_CONFIRM from nonebot.adapters.onebot.v11 import Bot, MessageEvent, MessageSegment from nonebot import on_command from jmcomic import * from jmcomic.jm_option import * jm = on_command("jm", aliases={"JM"}, priority=2, block=True) search = on_command("search", priority=2, block=True) jm_option = create_option('/root/nonebot/kou/config/option.yml') @jm.handle() async def jm_sender(bot: Bot, event: MessageEvent): plain_msg = str(event.get_message()) uid = plain_msg.split(' ')[1] try: await jm.send(message='bot加载中') msg = search_jm_album(uid) print(msg) # await pixiv.send(message=msg) gid = event.get_session_id() gid = int(gid[6:15]) print(gid) # for i in range(len(msg)): await bot.send_group_forward_msg(group_id=gid, messages=msg) except Exception as e: print(e) await jm.send(message=str(e)) await jm.send(message='发送失败') @search.handle() async def jm_search(bot: Bot, event: MessageEvent): plain_msg = str(event.get_message()) keyword = plain_msg.split(' ')[1] try: await jm.send(message='bot搜索中') msg = search_jm_album_by_keyword(keyword) print(msg) gid = event.get_session_id() gid = int(gid[6:15]) print(gid) await bot.send_group_forward_msg(group_id=gid, messages=msg) except Exception as e: print(e) await jm.send(message=str(e)) await jm.send(message='发送失败') def search_jm_album_by_keyword(keyword): uin = 425831926 name = '雪豹' client = jm_option.build_jm_client() search_page: JmSearchPage = client.search_album( search_query=keyword, page=1) forward_msg = [] for album_id, title in search_page: msg = { "type": "node", "data": { "name": name, "uin": uin, "content": f'[{album_id}]: {title}' } } forward_msg.append(msg) return forward_msg def search_jm_album(id): uin = 425831926 name = '雪豹' client = jm_option.build_jm_client() search_page = client.search_album(search_query=id) album: JmAlbumDetail = search_page.single_album title = album.title author = album.author tags = album.keywords page_count = album.page_count msg = f'title: {title}\nauthor: {author}, page:{page_count}\ntags: {tags}\n' print(msg) forward_msg = [ { "type": "node", "data": { "name": name, "uin": uin, "content": msg } } ] def download(p): p: JmPhotoDetail = client.get_photo_detail(p.photo_id, False) client.ensure_photo_can_use(p) decode_image = jm_option.download_image_decode img_save_path = "/root/jm/download/tmp.jpg" client.download_by_image_detail(p[0], img_save_path, decode_image) msg = { "type": "node", "data": { "name": name, "uin": uin, "content": MessageSegment.image("file:///root/jm/download/tmp.jpg") } } forward_msg.append(msg) multi_thread_launcher( iter_objs=album, apply_each_obj_func=download ) return forward_msg
kyoshiki214/nonebot_kou
src/plugins/jm/__init__.py
__init__.py
py
3,410
python
en
code
0
github-code
50
27386022394
# sort() method = used with lists # sort() function = used with iterables student = ["Squidward", "Sandy", "Patrick", "Spongebob", "Mr. Krabs"] #Only works with lists not tuples student.sort() #alphabetical order. student.sort(reverse=True) will do reverse alphabetical order for i in student: print (i) print() #For tuples students1 = ["Squidward", "Sandy", "Patrick", "Spongebob", "Mr. Krabs"] sorted_students1 = sorted(students1) #sorted function. Putting sorted(students1, reverse=True) will give reverse order for i in sorted_students1: print(i) print() #list of tuples students2 = [("Squidward", "F", 60), ("Sandy", "A", 33), ("Patrick","D", 36), ("Spongebob","B", 20), ("Mr.Krabs","C", 78)] #Alphabetical order by first object in tuple students2.sort() for i in students2: print(i) print() #Alphabetical by grade grade = lambda grades:grades[1] students2.sort(key=grade) # sorts current list. Can use students2.sort(key=grade, reverse=True) to reverse alphabetical order for i in students2: print(i) print() #alphabetical by age age = lambda ages:ages[2] students2.sort(key=age) # sorts current list. Can use students2.sort(key=age, reverse=True) to reverse alphabetical order for i in students2: print(i) print() #for tuples people = (("Bob","Driver",22), ("Fred","Unemployed",18), ("Ted",'Student',15), ("Ben","Clerk",25)) employment_status = lambda job:job[1] sorted_Employment_status = sorted(people, key=employment_status) for i in sorted_Employment_status: print (i)
18gwoo/Python-Practice
BroCode52_Python_Sort.py
BroCode52_Python_Sort.py
py
1,597
python
en
code
0
github-code
50
17403548098
#!/home/mark/phd/venv/bin/python # coding: utf-8 """Function to persist experiment results.""" from typing import Dict from typing import Any from typing import Optional import torch as th from hashlib import sha256 from base64 import b64encode from os import makedirs from os.path import isdir from os.path import basename from os.path import getctime from json import dumps from json import dump from glob import glob Params = Dict[str, Any] HASH_LEN: int = 10 def save_tensor(t: th.Tensor, path: str, params: Optional[Params]=None, overwrite:bool=False) -> None: """Save a tensor. Parameters: t: Tensor to save path: Place to save tensor to (includes filename) overwrite: Overwrite the last save. """ path = get_path_with_hash(path, params) file_name: int = 0 if isdir(path): last_file = get_last_file(path) file_name = int(basename(last_file)) + int(not overwrite) else: makedirs(path) with open(f'{path}/params.json', 'w') as f: dump(params, f) th.save(t, f'{path}/{file_name}') def load_tensor(path: str, params: Optional[Params]) -> th.Tensor: """Load all the tensors into a stack.""" path = get_path_with_hash(path, params) files = glob(f'{path}/*') return th.stack([th.tensor(th.load(f)) for f in files]) def load_last_tensor(path: str, params: Optional[Params]) -> Optional[th.Tensor]: """Load only the last saved tensor.""" path = get_path_with_hash(path, params) f = get_last_file(path) return th.load(f) if f else None def get_last_file(path: str) -> Optional[str]: try: path = max(glob(f'{path}/*'), key=getctime) except ValueError: path = None return path def get_path_with_hash(path: str, params: Optional[Params]) -> str: if params is not None: h = hash_p(params) return f'{path}_{h}' if params else path def hash_p(params: Params) -> str: s: str = dumps(params) h: str = sha256(s.encode()).hexdigest() b64: bytes = b64encode(h.encode()) return b64.decode('utf-8')[:HASH_LEN]
MarkTuddenham/pytorch_research
pytorch_research/persist.py
persist.py
py
2,139
python
en
code
0
github-code
50
42577337398
def flatten(list): return aflatten(list, []) def aflatten(list, a): for i in list: print(i) try: if len(i)>1: a=aflatten(i,a) except: a.append(i) return a print(flatten([[1,1],2,[1,1]]))
RamonRomeroQro/ProgrammingPractice
code/FlattenNestedList.py
FlattenNestedList.py
py
265
python
en
code
1
github-code
50
40209166347
#! /usr/bin/env python import argparse import os import sys import json import math import pickle import torch import numpy as np from scipy.stats import entropy from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForQuestionAnswering from models import ElectraQA parser = argparse.ArgumentParser(description='Get all command line arguments.') parser.add_argument('--batch_size', type=int, default=32, help='Specify the training batch size') parser.add_argument('--predictions_save_path', type=str, help="Where to save predicted values") def sig(x): return 1/(1+np.exp(-x)) def main(args): if not os.path.isdir('CMDs'): os.mkdir('CMDs') with open('CMDs/train.cmd', 'a') as f: f.write(' '.join(sys.argv) + '\n') f.write('--------------------------------\n') dev_data = load_dataset('squad_v2', split='validation') print(len(dev_data)) electrasquad2 = "ahotrod/electra_large_discriminator_squad2_512" electrasquad1 = "mrm8488/electra-large-finetuned-squadv1" huggingface_model = electrasquad1 tokenizer = AutoTokenizer.from_pretrained(huggingface_model) model = AutoModelForQuestionAnswering.from_pretrained(huggingface_model) count = 0 # span_predictions = {} entropy_on = [] entropy_off = [] pred_start_probs = [] pred_end_probs = [] for ex in dev_data: count+=1 print(count) # if count<3105: # continue # if count==3200: # break question, passage, qid = ex["question"], ex["context"], ex["id"] inputs = tokenizer.encode_plus(question, passage, add_special_tokens=True, return_tensors="pt") inp_ids = inputs["input_ids"] if inp_ids.shape[1] > 512: # print("in here") inputs["input_ids"] = inputs["input_ids"][:,:512] inp_ids = inp_ids[:,:512] # start_logits, end_logits = model(**inputs) start_logits, end_logits = model(input_ids=inp_ids) # answer_start = torch.argmax(start_logits) # answer_end = torch.argmax(end_logits) inp_ids = inputs["input_ids"].tolist()[0] # answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inp_ids[answer_start:answer_end+1])) # if answer == "[CLS]": # answer = "" # span_predictions[qid] = answer start_logits = sig(torch.squeeze(start_logits).detach().cpu().numpy()) end_logits = sig(torch.squeeze(end_logits).detach().cpu().numpy()) start_probs = start_logits / np.sum(start_logits) end_probs = end_logits / np.sum(end_logits) pred_start_probs.append(start_probs) pred_end_probs.append(end_probs) sep = tokenizer.convert_ids_to_tokens(inp_ids).index("[SEP]") resp_start = start_probs[sep+1:-1] / np.sum(start_probs[sep+1:-1]) resp_end = end_probs[sep+1:-1] / np.sum(end_probs[sep+1:-1]) entrop = ((entropy(resp_start, base=2) + entropy(resp_end, base=2)) / 2) / math.log(len(resp_start), 2) # print(entrop) # with open(args.predictions_save_path + "predictions.json", 'w') as fp: # json.dump(span_predictions, fp) if len(ex["answers"]["text"])==0: entropy_off.append(entrop) # print(question) # print(passage) # print(ex["answers"]["text"]) # print(answer) else: entropy_on.append(entrop) print(np.mean(entropy_on)) print(np.std(entropy_on)) print(np.mean(entropy_off)) print(np.std(entropy_off)) with open(args.predictions_save_path +"start_probs.txt", "wb") as fp: pickle.dump(pred_start_probs, fp) with open(args.predictions_save_path +"end_probs.txt", "wb") as fp: pickle.dump(pred_end_probs, fp) # pred_start_logits = [] # pred_end_logits = [] # count = 0 # for item in dl: # print(count) # count+=1 # inp_id = item[0].to(device) # with torch.no_grad(): # start_logits, end_logits = model(inp_id) # b_start_logits = start_logits.detach().cpu().numpy().tolist() # # pred_start_logits += b_start_logits # b_end_logits = end_logits.detach().cpu().numpy().tolist() # if len(pred_start_logits)==0: # pred_start_logits += b_start_logits # pred_end_logits += b_end_logits # else: # pred_start_logits.extend(b_start_logits) # pred_end_logits.extend(b_end_logits) # # pred_end_logits += b_end_logits # pred_start_logits, pred_end_logits = np.asarray(pred_start_logits), np.asarray(pred_end_logits) # Save all necessary file (in order to be able to ensemble) # np.savetxt(args.predictions_save_path + "pred_start_logits_all.txt", pred_start_logits) # np.savetxt(args.predictions_save_path + "pred_end_logits_all.txt", pred_end_logits) if __name__ == '__main__': args = parser.parse_args() main(args)
VatsalRaina/question_answering_squad2
combo_electra/entropy_large.py
entropy_large.py
py
5,053
python
en
code
0
github-code
50
13194295159
""" You're given the root node of a Binary Tree. Write a function that returns true if this Binary Tree is height balanced and false if it isn't. A Binary Tree is height balanced if for each node in the tree, the difference between the height of its left subtree and the height of its right subtree is at most 1. Each Binary Tree node has an integer value, a left child node and a right child node. Children nodes can either be Binary Tree node themselves or NULL/None. """ # Recursive approach # Time: O(n) | Space: O(h) ########################### # This approach recursively traverses every node and checks the balance status and height between its left and right # subtrees. # For each node, it returns the balance status in the form of array. 0th index represents whether the # left and right subtree is balanced or not. 1st index represents the height of the current node from leaf. # # If the tree is null, its by default balanced. So we return True. # Call get_height_balance function with root node --> get_height_balance(node). # This returns an array as [X, Y]. X -> Balance status (True/False), Y -> Height # return the 0th index value # # Declare a function --> get_height_balance(node) # If the node is null # return [True, 0] (null nodes are always balanced) # recursively call get_height_balance on left subtree -> left_subtree_height_balance # recursively call get_height_balance on right subtree -> right_subtree_height_balance # Initialize is_balanced = False # If balance status for both left and right subtree are True and absolute difference between their heights are <= 1 # Set is_balanced = True # Set height as maximum of left and right subtree heights + 1 # return [is_balanced, height] ########################### class BinaryTree: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right def heightBalancedBinaryTree(tree): if not tree: return True is_tree_balanced = get_height_balance(tree) return is_tree_balanced[0] def get_height_balance(node): if not node: return [True, 0] left_subtree_height_balance = get_height_balance(node.left) right_subtree_height_balance = get_height_balance(node.right) is_balanced = False if (left_subtree_height_balance[0] and right_subtree_height_balance[0]) and (abs(left_subtree_height_balance[1] - right_subtree_height_balance[1]) <= 1): is_balanced = True height = max(left_subtree_height_balance[1], right_subtree_height_balance[1]) + 1 return [is_balanced, height]
rageshn/AlgoExpert
BinaryTrees/height-balanced-binary-tree.py
height-balanced-binary-tree.py
py
2,620
python
en
code
0
github-code
50
12415513344
import numpy as np import os import turtle import time import random import pyaudio import sys import struct from datetime import datetime # Config INITIAL_TAP_THRESHOLD = 0.010 FORMAT = pyaudio.paInt16 SHORT_NORMALIZE = (1.0/32768.0) CHANNELS = 2 RATE = 44100 INPUT_BLOCK_TIME = 0.05 INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME) OVERSENSITIVE = 15.0/INPUT_BLOCK_TIME UNDERSENSITIVE = 120.0/INPUT_BLOCK_TIME MAX_TAP_BLOCKS = 0.15/INPUT_BLOCK_TIME pa = pyaudio.PyAudio() # Background screen = turtle.Screen() screen.title("CPEN 441 Experiment") screen.setup(width = 1.0, height = 1.0, startx=None, starty=None) screen.bgcolor("black") screen.tracer(0) screen.bgpic('bgd.png') f = open("distraction_data.txt", "a") f.write(f'\nExperiment at {datetime.now()}\n') def makeTurtle(shape, color, shapesizeX, shapesizeY, posX, posY): t = turtle.Turtle() t.speed(0) t.penup() t.shape(shape) t.pencolor("black") t.color(color) t.shapesize(shapesizeX, shapesizeY) t.setpos(posX, posY) return t # Status status = 0 status = turtle.Turtle() status.speed(0) status.penup() status.hideturtle() status.color("white") status.goto(0, 330) status.write("Press Enter to start", align="center", font=("Arial", 24, "normal")) # grass = makeTurtle('square', 'green', 31, 50, -200, 50) # track = makeTurtle('square', 'grey', 10, 50, -200, 50) # start = makeTurtle('square', 'black', 10, 1, -640, 50) # end = makeTurtle('square', 'black', 10, 1, 230, 50) # Player Sprites snail_red = 'snail_red.gif' snail_blue = 'snail_blue.gif' screen.addshape(snail_red) screen.addshape(snail_blue) p1 = makeTurtle(snail_red, 'red', 1, 1, -570, -20) p2 = makeTurtle(snail_blue, 'blue', 1, 1, -530, 50) # Audio bar player 1 bar1 = makeTurtle('square', 'white', 20, 1, 450, 50) level1 = makeTurtle('square', 'red', 0.5, 1, 450, -145) # Audio bar player 2 bar2 = makeTurtle('square', 'white', 20, 1, 550, 50) level2 = makeTurtle('square', 'blue', 0.5, 1, 550, 0) # RNG distractor coor = [(-744, -354), (-744, 373), (729, -354), (729, 373)] beep = makeTurtle('square', 'white', 1, 1, coor[0][0], coor[0][1]) beep.hideturtle() screen.update() def get_mouse_click_coor(x, y): print(x, y) turtle.onscreenclick(get_mouse_click_coor) p = pyaudio.PyAudio() def get_rms( block ): count = len(block)/2 format = "%dh"%(count) shorts = struct.unpack( format, block ) np_arr = np.array([shorts]) np_arr = np_arr * SHORT_NORMALIZE np_arr = np.square(np_arr) return 100 * np.sqrt(np.sum(np_arr) / count) / 0.4 def find_input_device(): device_index = 3 # Hardcoded # for i in range( pa.get_device_count() ): # devinfo = pa.get_device_info_by_index(i) # print( "Device %d: %s"%(i,devinfo["name"]) ) # for keyword in ["mic","input"]: # if keyword in devinfo["name"].lower(): # print( "Found an input: device %d - %s"% (i,devinfo["name"]) ) # device_index = i # return device_index # if device_index == None: # print( "No preferred input found; using default input device." ) return device_index def open_mic_stream(): device_index = find_input_device() stream = pa.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, input_device_index = device_index, frames_per_buffer = INPUT_FRAMES_PER_BLOCK) return stream def updateBeep(coor, t, old): idx = random.randint(0, 3) while(old == idx): idx = random.randint(0, 3) x, y = coor[idx] t.setpos(x, y) return idx user_timer_start = -1 def store_user_timer(): global user_timer_start if(user_timer_start != -1): f.write(f'{(datetime.now() - user_timer_start).total_seconds()}\n') started = False def start_game(): global started status.clear() started = True screen.listen() screen.onkey(store_user_timer, "space") screen.onkey(start_game, "Return") stream = open_mic_stream() amplitude = 0 x1, y1 = p1.pos() x2, y2 = p2.pos() xl1, yl1 = level1.pos() xl2, yl2 = level2.pos() old = datetime.now() new = datetime.now() idx = 0 iteration = 0 while(x1 < 90 and x2 < 130): if(started): new = datetime.now() diff = (new - old).total_seconds() if(amplitude < 10): delX1 = 5 elif(amplitude < 20): delX1 = 7 elif(amplitude < 50): delX1 = 20 elif(amplitude < 100): delX1 = 30 level1.setpos(xl1, yl1 + amplitude * 400 / 100) level2.setpos(xl2, yl2 + amplitude * 20 / 100) p1.setpos(x1 + delX1, y1) p2.setpos(x2 + 10, y2) if(diff//3 == 1): old = new idx = updateBeep(coor, beep, idx) user_timer_start = datetime.now() beep.showturtle() iteration = 0 if(iteration == 3): beep.hideturtle() iteration += 1 time.sleep(0.2) block = stream.read(INPUT_FRAMES_PER_BLOCK) amplitude = get_rms(block) x1, y1 = p1.pos() x2, y2 = p2.pos() screen.update() else: screen.update() p1.setpos(x1, y1) p2.setpos(x2, y2) if(x1 >= 90 and x2 >= 130): score_string = "It's a tie!" elif(x1 >= 90): score_string = "Team 1 won!" else: score_string = "Team 2 won!" status.clear() status.write(score_string, align="center", font=("Arial", 24, "normal")) # screen.mainloop() time.sleep(3) f.write(f'Status: {score_string}\n') f.close()
T4w51f/StadiumExperiment
module_4_experiment.py
module_4_experiment.py
py
5,645
python
en
code
0
github-code
50
72926904475
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.label import Label from kivy.uix.button import Button from kivy.uix.scrollview import ScrollView from kivy.core.audio import SoundLoader import csv import math class RadioApp(App): def build(self): self.title = 'Offline Radio App' layout = BoxLayout(orientation='vertical') # Load radio station data from CSV self.radio_stations = [] with open('radio_stations.csv', 'r') as file: reader = csv.reader(file) next(reader) # Skip header for row in reader: self.radio_stations.append(row) # Display radio stations in a ScrollView scroll_view = ScrollView() station_list = BoxLayout(orientation='vertical', size_hint_y=None) for station in self.radio_stations: station_button = Button(text=station[0], size_hint_y=None, height=44) station_button.bind(on_press=self.play_station) station_list.add_widget(station_button) scroll_view.add_widget(station_list) layout.add_widget(Label(text="Available FM Stations")) layout.add_widget(scroll_view) self.audio_player = None return layout def play_station(self, instance): station_name = instance.text for station in self.radio_stations: if station[0] == station_name: if self.audio_player: self.audio_player.stop() self.audio_player = SoundLoader.load('audio/' + station[0] + '.mp3') if self.audio_player: self.audio_player.play() def get_user_location(self): # Implement logic to use Android's Location API or Geolocation API here # This will involve requesting user's permission for location access # and then retrieving the user's latitude and longitude # For example, using Google's Geolocation API (requires API key): api_key = 'YOUR_GOOGLE_API_KEY' url = f'https://www.googleapis.com/geolocation/v1/geolocate?key={api_key}' response = requests.post(url) location_data = response.json() user_latitude = location_data['location']['lat'] user_longitude = location_data['location']['lng'] return user_latitude, user_longitude def calculate_distance(self, lat1, lon1, lat2, lon2): # Calculate distance between two coordinates using Haversine formula radius = 6371 # Earth's radius in kilometers dlat = math.radians(lat2 - lat1) dlon = math.radians(lon2 - lon1) a = math.sin(dlat / 2) ** 2 + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) ** 2 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) distance = radius * c return distance def search_radio_stations(self): user_latitude, user_longitude = self.get_user_location() max_distance_km = 10 # Maximum distance to consider stations available available_stations = [] for station in self.radio_stations: station_name, company, frequency, station_latitude, station_longitude = station station_latitude = float(station_latitude) station_longitude = float(station_longitude) distance = self.calculate_distance(user_latitude, user_longitude, station_latitude, station_longitude) if distance <= max_distance_km: available_stations.append(station_name) print("Available FM Stations in Vicinity:") print(available_stations) if __name__ == '__main__': RadioApp().run()
Turyamureeba/radio
radio.py
radio.py
py
3,721
python
en
code
0
github-code
50
72087492955
def nb_voyelles(chaine): "Retourner le nombre de voyelles présentes dans une chaîne donnée" liste_voyelles = ["a", "A", "e", "E", "i","I", "o","O", "u","U", "y","Y"] # Liste qui contient les voyelles (en maj. et en min.) auxquelles seront comparés les caractères de la chaîne n_voyelles = 0 # Nombre de voyelles dans la chaîne for caractere in chaine: # Pour chaque caractère de la chaîne for voyelle in liste_voyelles: if caractere == voyelle: n_voyelles += 1 return n_voyelles chaine = input("Tapez un mot ou des caractères quelconques :") i = 0 while i < len(chaine): compter_voyelles = nb_voyelles(chaine) i+= 1 print(compter_voyelles, "voyelle(s) trouvée(s)")
terenceithaque/stage-python-2022-2023
nb_voyelles.py
nb_voyelles.py
py
763
python
fr
code
0
github-code
50
21277287943
''' Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You may assume NO duplicates in the array. Example [1,3,5,6], 5 → 2 [1,3,5,6], 2 → 1 [1,3,5,6], 7 → 4 [1,3,5,6], 0 → 0 Challenge O(log(n)) time ''' class Solution: def searchInsert(self, A, target): if not A or A[0] >= target: return 0 if A[-1] < target: return len(A) start, end = 0, len(A) - 1 while start + 1 < end: mid = start + (end - start) // 2 if A[mid] >= target: end = mid else: start = mid if A[start] >= target: return start return end
dragonforce2010/interview-algothims
lecture_basic/Lecture2.Binary_Search/60. Search Insert Position.py
60. Search Insert Position.py
py
782
python
en
code
19
github-code
50
15981818502
import pickle import pprint import time from selenium import webdriver def save_cookies(driver, location): pickle.dump(driver.get_cookies(), open(location, "wb")) def load_cookies(driver, location, url=None): cookies = pickle.load(open(location, "rb")) driver.delete_all_cookies() # have to be on a page before you can add any cookies, any page - does not matter which driver.get("https://google.com" if url is None else url) for cookie in cookies: if isinstance(cookie.get('expiry'), float):#Checks if the instance expiry a float cookie['expiry'] = int(cookie['expiry'])# it converts expiry cookie to a int driver.add_cookie(cookie) def delete_cookies(driver, domains=None): if domains is not None: cookies = driver.get_cookies() original_len = len(cookies) for cookie in cookies: if str(cookie["domain"]) in domains: cookies.remove(cookie) if len(cookies) < original_len: # if cookies changed, we will update them # deleting everything and adding the modified cookie object driver.delete_all_cookies() for cookie in cookies: driver.add_cookie(cookie) else: driver.delete_all_cookies() # Path where you want to save/load cookies to/from aka C:\my\fav\directory\cookies.txt cookies_location = "E:\Development\Webdriver-Tutorials\cookies.txt" # Initial load of the domain that we want to save cookies for chrome = webdriver.Chrome() chrome.get("https://www.hackerrank.com/login") chrome.find_element_by_xpath("//input[@id='login']").send_keys("infunig1986") chrome.find_element_by_xpath("(//input[@id='password'])[2]").send_keys("TestUserAccount") chrome.find_element_by_xpath("(//button[@name='commit'])[2]").click() save_cookies(chrome, cookies_location) chrome.quit() # Load of the page you cant access without cookies, this one will fail chrome = webdriver.Chrome() chrome.get("https://www.hackerrank.com/settings/profile") # Load of the page you cant access without cookies, this one will go through chrome = webdriver.Chrome() load_cookies(chrome, cookies_location) chrome.get("https://www.hackerrank.com/settings/profile") # chrome = webdriver.Chrome() # chrome.get("https://google.com") # time.sleep(2) # pprint.pprint(chrome.get_cookies()) # print "=========================\n" # # delete_cookies(chrome, domains=["www.google.com"]) # pprint.pprint(chrome.get_cookies()) # print "=========================\n" # # delete_cookies(chrome) # pprint.pprint(chrome.get_cookies())
ArturSpirin/YouTube-WebDriver-Tutorials
Cookies.py
Cookies.py
py
2,582
python
en
code
44
github-code
50
74816851036
import argparse import txaio txaio.use_twisted() from autobahn.twisted.util import sleep from autobahn.wamp.types import PublishOptions from autobahn.twisted.wamp import ApplicationSession, ApplicationRunner from autobahn.wamp.serializer import JsonSerializer, CBORSerializer, MsgPackSerializer class ClientSession(ApplicationSession): async def onJoin(self, details): print('Client session joined: {}'.format(details)) topic = 'com.example.topic1' def on_event(i): print('Event received: {}'.format(i)) await self.subscribe(on_event, topic) for i in range(5): self.publish(topic, i, options=PublishOptions(acknowledge=True, exclude_me=False)) await sleep(1) self.leave() def onLeave(self, details): print('Client session left: {}'.format(details)) self.config.runner.stop() self.disconnect() def onDisconnect(self): print('Client session disconnected.') from twisted.internet import reactor reactor.stop() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-d', '--debug', action='store_true', help='Enable debug output.') parser.add_argument('--url', dest='url', type=str, default="ws://localhost:8080/ws", help='The router URL, eg "ws://localhost:8080/ws" or "rs://localhost:8081" (default: "ws://localhost:8080/ws").') parser.add_argument('--realm', dest='realm', type=str, default="realm1", help='The realm to join (default: "realm1").') parser.add_argument('--serializer', dest='serializer', type=str, default="json", help='Serializer to use, one of "json", "cbor", "msgpack", "all" or "unspecified" (default: "unspecified")') args = parser.parse_args() # start logging if args.debug: txaio.start_logging(level='debug') else: txaio.start_logging(level='info') # explicitly select serializer if args.serializer == 'unspecified': serializers = None else: serializers = [] if args.serializer in ['cbor', 'all']: serializers.append(CBORSerializer()) if args.serializer in ['msgpack', 'all']: serializers.append(MsgPackSerializer()) if args.serializer in ['json', 'all']: serializers.append(JsonSerializer()) # any extra info we want to forward to our ClientSession (in self.config.extra) extra = {} # now actually run a WAMP client using our session class ClientSession runner = ApplicationRunner(url=args.url, realm=args.realm, extra=extra, serializers=serializers) runner.run(ClientSession, auto_reconnect=True)
crossbario/crossbar-examples
stats/client.py
client.py
py
2,951
python
en
code
169
github-code
50
11939063154
__all__ = ['unet_v', 'unet_v2', 'hourglass_wres', 'hourglass_wores', 'unet_v_synth', 'unet_v2_synth', 'hourglass_wres_synth', 'hourglass_wores_synth', 'unet_v_tr', 'hourglass_wres_tr', 'unet_v_k5', 'hourglass_wres_k5', 'unet_v_patch', 'hourglass_wres_patch']
shiveshc/NIDDL
cnn_archs/__init__.py
__init__.py
py
402
python
en
code
4
github-code
50
32826423573
import logging import logging.config from logging.handlers import RotatingFileHandler def init_service_logger(): logger = logging.getLogger('TRANSFER-LOGGER') logging.getLogger('TRANSFER-LOGGER').addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) fh = logging.FileHandler(f"/home/doc/OraclePostgreTransfer/logs/transfer.log", encoding="UTF-8") # fh = RotatingFileHandler(cfg.LOG_FILE, encoding="UTF-8", maxBytes=100000000, backupCount=5) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) logger.info('TRANSFER-LOGGER started') return logger log = init_service_logger()
Shamil-G/OraclePostgreTransfer
util/logger.py
logger.py
py
715
python
en
code
0
github-code
50