seq_id
stringlengths
4
11
text
stringlengths
113
2.92M
repo_name
stringlengths
4
125
sub_path
stringlengths
3
214
file_name
stringlengths
3
160
file_ext
stringclasses
18 values
file_size_in_byte
int64
113
2.92M
program_lang
stringclasses
1 value
lang
stringclasses
93 values
doc_type
stringclasses
1 value
stars
int64
0
179k
dataset
stringclasses
3 values
pt
stringclasses
78 values
26924932220
import os, sys import json import xml.etree.ElementTree as ET labels_trad = { 'bras levés' : 'arms_raised', 'combat' : 'fighting', 'action' : 'action', 'aucune' : 'none', 'se lever' : 'stand_up', 'se baisser' : 'bend_down', 's\'assoir' : 'sit_down', 'se coucher' : 'lie_down', 'chuter' : 'falling', 'déplacement' : 'movement', 'stationnaire' : 'stationary', 'lent' : 'slow', 'normal' : 'normal', 'rapide' : 'fast', 'posture' : 'posture', 'debout' : 'standing', 'assis sur un objet' : 'sitting_on_object', 'assis au sol' : 'sitting_on_ground', 'allongé' : 'lying_down', 'à genoux' : 'kneeling', 'penché' : 'bending', 'anormal' : 'unnatural', 'autre' : 'other', 'accroupi' : 'squatting', 'gestes' : 'gesture', 'aucuns' : 'none', 'false' : 'false', 'true' : 'true' } def add_track_to_coco_annotations(track, annotations, area): k = 0 n_track = len(annotations) for pose in track["poses"]: if pose["fully_occluded"] == "0": annotation = {} annotation["keypoints"] = pose["keypoints"] annotation["image_id"] = pose["image_id"] annotation["id"] = n_track + k annotation['iscrowd'] = 0 annotation['area'] = area annotations.append(annotation) k+=1 def add_track_to_action_annotations(track, annotations): k = 0 n_track = len(annotations) track_annotations = {} track_annotations["poses"] = [] for pose in track["poses"]: annotation = pose del annotation['fully_occluded'] annotation["category_id"] = 1 annotation["id"] = n_track + k annotation["num_keypoints"] = 14 track_annotations["poses"].append(annotation) k+=1 annotations.append(track_annotations) def add_xml_to_data(images, coco_annotations, action_annotations, xml_path): ''' Add datas from a xml to a dictionnary, empty at first :param dic Dictionary : target dictionary :param xml_path str : input data xml path ''' tree = ET.parse(xml_path) root = tree.getroot() n_images = len(images) k=0 video_name = root.find("meta").find("task").find("name").text width, height = root.find("meta").find("task").find("original_size").find("width").text, root.find("meta").find("task").find("original_size").find("height").text for child in root: if child.tag == "track": track_info = {} track_info["width"], track_info["height"] = width, height track_info["poses"] = [] for points in child: frame = int(points.attrib["frame"]) image_id = n_images + frame if frame > k - 1 : frame_id = str(frame).zfill(6) image = {} image["file_name"] = video_name.split(".")[0] + "_frame_" + frame_id + ".png" image["width"] = width image["height"] = height image["id"] = image_id images.append(image) k+=1 pose = {} pose["keypoints"] = convert_points_format(points.attrib["points"]) pose["image_id"] = image_id pose["labels"] = {} for pose_attrib in points: pose["labels"][labels_trad[pose_attrib.attrib["name"]]] = labels_trad[pose_attrib.text] pose["fully_occluded"] = points.attrib["occluded"] track_info["poses"].append(pose) add_track_to_coco_annotations(track_info, coco_annotations, int(width) * int(height) ) add_track_to_action_annotations(track_info,action_annotations ) def convert_points_format(points_str): new_str = points_str.replace(";", ",").split(",") str_keypoints = new_str[0:28] str_mask = new_str[28:42] keypoints = [] for k in range(0,len(str_keypoints), 2): if k < 28: keypoints.append(float(str_keypoints[k])) keypoints.append(float(str_keypoints[k+1])) keypoints.append(2) # visibility for k in range(len(str_mask)): mask_value = int(float(str_mask[k])) if mask_value == 2: keypoints[3*k + 2] = 1.1 elif mask_value == 1: keypoints[3*k + 2] = 1.2 return keypoints def to_json_coco(images, annotations_coco): coco_dic = {} coco_dic["images"] = images coco_dic["annotations"] = annotations_coco keypoints_categorie = {} keypoints_categorie["supercategory"] = "person" keypoints_categorie["id"] = 1 keypoints_categorie["name"] = "person" keypoints_categorie["keypoints"] = ["head", "neck", "left_shoulder", "right_shoulder", "left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", "left_knee", "right_knee", "left_ankle", "right_ankle"] keypoints_categorie["skeleton"] = [[0,1],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7],[1,8],[1,9],[8,10],[9,11], [10,12],[11,13]] coco_dic["categories"] = [keypoints_categorie] print("{} images, {} annotations".format(len(coco_dic["images"]), len(coco_dic["annotations"]))) return coco_dic if __name__ == '__main__': images, coco_annotations, action_annotations = [], [], [] add_xml_to_data(images, coco_annotations, action_annotations, sys.argv[1]) add_xml_to_data(images, coco_annotations, action_annotations, sys.argv[2]) add_xml_to_data(images, coco_annotations, action_annotations, sys.argv[3]) add_xml_to_data(images, coco_annotations, action_annotations, sys.argv[4]) print(len(coco_annotations)) json_tasks_coco = to_json_coco(images, coco_annotations) with open(sys.argv[5], "w") as outfile: json.dump(json_tasks_coco, outfile, indent=None) json_tasks_actions = to_json_coco(images, action_annotations) with open(sys.argv[6], "w") as outfile: json.dump(json_tasks_actions, outfile, indent=None)
anessabiri/test_version_nogit_15
transforms/cvat_to_coco.py
cvat_to_coco.py
py
6,034
python
en
code
0
github-code
50
28078196972
# -*- coding: utf-8 -*- """ @Author 坦克手贝塔 @Date 2023/5/17 10:01 """ from typing import List """ 输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回)。 示例 1: 输入:head = [1,3,2] 输出:[2,3,1] """ """ 思路:用列表把所有的值都存起来,再反序即可 """ # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: @staticmethod def reversePrint(head: ListNode) -> List[int]: nums = [] while head: nums.append(head.val) head = head.next return nums[::-1]
TankManBeta/LeetCode-Python
剑指Offer_06_easy.py
剑指Offer_06_easy.py
py
691
python
en
code
0
github-code
50
13420508024
from django.shortcuts import render, HttpResponse, redirect from .forms import MovimentacaoForm, LoginForm, PoupancaForm from .models import Movimentacao, Carteira, Poupanca from django.contrib import messages from django.contrib.auth import login, logout from usuario.models import Usuario # Create your views here. def saldo(request): if request.user.is_authenticated: saldo_usuario = Carteira.objects.filter(usuario_id=request.user.id).first() print(saldo_usuario) lista_movi = Movimentacao.objects.filter(usuario_id=request.user.id).order_by('id') entradas = lista_movi.filter(tipo_movimentacao="Entrada") despesas = lista_movi.filter(tipo_movimentacao="Despesa") if lista_movi.count() > 0: entradas_usuario = 0 entradas_usuario = sum([e.valor or 0 for e in entradas]) despesas_usuario = sum([d.valor or 0 for d in despesas]) saldo_usuario.saldo = entradas_usuario - despesas_usuario saldo_usuario.save() return saldo_usuario.saldo else: pass else: pass def index(request): if request.user.is_anonymous: return render(request, 'login.html') else: movimentacao = Movimentacao.objects.all() carteira = Carteira.objects.filter(usuario=request.user).first() saldo_do_usuario = saldo(request) context = { 'movimentacao' : movimentacao, 'carteira' : carteira , "saldo_do_usuario" : saldo_do_usuario } return render(request, 'index.html', context) def index_submit(request): if request.method == 'POST': print(request.POST) form = MovimentacaoForm(request.POST, request.FILES) print(form.is_valid()) if form.is_valid(): try: mov = Movimentacao.objects.create( valor = form.cleaned_data['valor'], usuario_id = form.cleaned_data['usuario'], carteira_id = form.cleaned_data['carteira'], descricao = form.cleaned_data['descricao'], data = form.cleaned_data['data'], tipo_movimentacao = form.cleaned_data['tipo_movimentacao'], ) mov.save() messages.success(request, 'Movimentação adicionada com sucesso') return redirect('index') except Exception as e: print(e) # print(form.cleaned_data['tipo_movimentacao']) messages.error(request,form.errors) return redirect('/') else: messages.error(request, form.errors) # print(form.errors) return redirect('/') def login_user(request): if request.user.is_authenticated: return redirect('/') return render(request, 'login.html') def login_submit(request): if request.method == 'POST': if request.POST: form = LoginForm(request.POST) if form.is_valid(): user = Usuario.objects.filter(email=form.cleaned_data['username']).first() print(user) print(Usuario.objects.filter(email=form.cleaned_data['username'])) if user: if user.check_password(form.cleaned_data['password']): messages.success(request, 'Logout realizado com sucesso') login(request, user) return redirect('pagina_inicial') else: messages.error(request, 'Usuário ou senha inválido') else: messages.error(request, 'Usuário ou senha inválido') messages.error('Erro ao logar') return render(request, 'login.html') def logout_user(request): if request.user.is_authenticated: logout(request) #messages.sucess(request, 'Logout realizado com sucesso') return redirect('login') #depois modificar para direcionar para página inicial, quando tiver uma def extrato(request): if request.user.is_authenticated: lista_mov = Movimentacao.objects.filter(usuario=request.user).order_by('-data') saldo_do_usuario = saldo(request) context = {'lista_mov' : lista_mov, 'saldo_do_usuario' : saldo_do_usuario} return render(request, 'extrato.html', context) else: return redirect('login') def pagina_inicial(request): if request.user.is_authenticated: saldo_do_usuario = saldo(request) context = {"saldo_do_usuario" : saldo_do_usuario } return render(request,'paginainicial.html', context) else: return redirect('login') def poupanca(request): if request.user.is_authenticated: lista_poupanca = Poupanca.objects.order_by('-id') context = {'lista_poupanca' : lista_poupanca} return render(request,'poupanca.html', context) else: return redirect('login') def nova_poupanca(request): if request.user.is_authenticated: lista_poupanca = Poupanca.objects.order_by('-id') context = {'lista_poupanca' : lista_poupanca} return render(request, "novapoupanca.html", context) else: return redirect('login') def nova_poupanca_submit(request): if request.user.is_authenticated: if request.method == 'POST': form = PoupancaForm(request.POST) print(form.is_valid()) if form.is_valid(): try: poup = Poupanca.objects.create( nome_poupanca = form.cleaned_data['nome_poupanca'], saldo_poupanca = form.cleaned_data['saldo_poupanca'], ) poup.save() messages.success(request, "Poupança criada com sucesso") lista_poupanca = Poupanca.objects.order_by('-id') context = {'lista_poupanca' : lista_poupanca} return render(request,'novapoupanca.html', context) except: messages.error(request,'Erro ao criar objeto') return render(request,'novapoupanca.html') else: messages.error(request, form.errors) return render(request,'novapoupanca.html') else: return render(request, 'novapoupanca.html', {'poup' : poup}) else: return redirect('login')
annydomingos/Supple
financeiro/views.py
views.py
py
6,435
python
pt
code
1
github-code
50
16486696564
import os raw_directory = '/home/julius/ScienceBowl/ScienceBowlFormat/raw' new_directory = '/home/julius/ScienceBowl/ScienceBowlFormat/new' def get_new_filename(short_filename): short_to_long = { 'astr': 'astronomy', 'genr': 'general_science', 'biol': 'biology', 'chem': 'chemistry', 'phys': 'physics', 'ersc': 'earth_and_space_science', } if short_filename in short_to_long.keys(): return short_to_long[short_filename] else: return 'unknown' def main(): cwd = os.getcwd() for raw_file in os.listdir(raw_directory): os.chdir(raw_directory) correct_choices = [ 'a)', 'b)', 'c)', 'd)', ] wrong_choices = { 'w)': 'a.', 'x)': 'b.', 'y)': 'c.', 'z)': 'd.', } wrong_answers = { 'W': 'A', 'X': 'B', 'Y': 'C', 'Z': 'D', } raw_filename = os.fsdecode(raw_file) if raw_filename.endswith(".txt"): short_filename = raw_filename[3:7] new_filename = get_new_filename(short_filename) + '.rtf' new_lines = [ 'Science Bowl ' + get_new_filename(short_filename).capitalize() + '\n', '\n', 'Multiple Choice\n', '\n' ] counter = 1 with open(file=raw_filename, mode='r', errors='ignore') as raw: between = False is_not_mc = False for raw_line in raw: # select relevant lines mid_line = raw_line if mid_line.startswith(' '): mid_line = mid_line[1:] if mid_line == '\n': continue new_line = mid_line if mid_line[:2] != 'z)' and mid_line[:2] != 'd)' and new_lines[-1][:2] == 'c.': new_lines.append('d. none of the above\n') if mid_line[:2] in correct_choices and not is_not_mc: new_line = mid_line[:1] + '.' + mid_line[2:] if new_line[:2] == 'a.': new_lines[-1] = new_lines[-1] + '\n' if new_line[2] != ' ': new_line = new_line[:2] + ' ' + new_line[2:] is_not_mc = False between = False elif mid_line[:2] in wrong_choices.keys() and not is_not_mc: new_line = wrong_choices[mid_line[:2]] + mid_line[2:] if new_line[:2] == 'a.': new_lines[-1] = new_lines[-1] + '\n' if new_line[2] != ' ': new_line = new_line[:2] + ' ' + new_line[2:] is_not_mc = False between = False elif mid_line.startswith('ANSWER:'): if is_not_mc: new_line = '' else: if mid_line[8] in wrong_answers.keys(): new_line = 'ANS: ' + wrong_answers[mid_line[8]] + '\n' else: new_line = 'ANS:' + mid_line[7:9] + '\n' new_line = new_line + 'TOP: ' + short_filename.upper() + '\n' is_not_mc = False between = False elif 'Short Answer:' in mid_line or 'True-False:' in mid_line: new_line = '' is_not_mc = True elif mid_line.startswith(short_filename.upper()) and 'Short Answer:' not in mid_line and \ 'True-False:' not in mid_line and 'Multiple Choice:' not in mid_line: new_line = '' is_not_mc = True elif mid_line.startswith(short_filename.upper()): new_line = str(counter) + '. ' + mid_line[26:-2] counter += 1 between = True elif is_not_mc: new_line = '' elif between: new_line = mid_line[:-2] else: new_line = '' if new_line != ' ': new_lines.append(new_line) os.chdir(new_directory) if counter <= 250: with open(new_filename, 'w+') as new: new.writelines(new_lines) else: top_lines = new_lines[:4] questions = new_lines[4:] count = 1 for num in range(len(questions)): if questions[num].startswith(str(count) + '. '): dot = questions[num].find('.') number = questions[num][:dot] remainder = int(number) % 250 if remainder == 0: remainder += 250 questions[num] = str(remainder) + questions[num][dot:] count += 1 cutoffs = [] limit = 1 for num in range(len(questions)): if questions[num].startswith('1. '): cutoffs.append(num) limit += 1 cutoffs.append(len(questions) - 1) index = 0 chunks = counter // 250 + 1 for chunk in range(chunks): chunk_filename = new_filename[:-4] + str(chunk+1) + '.rtf' start = cutoffs[index] end = cutoffs[index+1] with open(chunk_filename, 'w+') as new: new.writelines(top_lines) new.writelines(questions[start:end]) index += 1 os.chdir(cwd) if __name__ == '__main__': main()
juliustao/ScienceBowlFormat
format.py
format.py
py
6,198
python
en
code
1
github-code
50
72917307674
class Node: def __init__(self, data,seatno,present): self.data = data self.seatno=seatno self.next = None self.prev = None self.present=present class DoublyLinkedList: def __init__(self): self.head = None def append(self, new_data,seatno,present): new_node = Node(new_data,seatno,present) new_node.next = None if self.head is None: new_node.prev = None self.head = new_node return last = self.head while(last.next is not None): last = last.next last.next = new_node new_node.prev = last return def printList(self, node): print ("\nTraversal in forward direction") while(node is not None): print(node.data) last = node node = node.next def push(self, new_data,seatno,present): print("push start") new_node=Node(new_data,seatno,present) new_node.next=self.head new_node.prev=None if self.head is not None: self.head.prev = new_node self.head = new_node def deleteNodeend(self,node): print ("\nDelete last") while(node is not None): if node.next==None: last.next=None last=node node = node.next def deleteNodeFront(self,node): print("\nDelete Front") self.head=node.next node.next=None llist = DoublyLinkedList() seats=int(input("\nEnter number of seats")) for i in range(1,seats+1): llist.append(0,i,'') llist.printList(llist.head) llist.push(10,10,'new') llist.push(11,11,'new') llist.printList(llist.head) llist.deleteNodeend(llist.head) llist.printList(llist.head) llist.deleteNodeFront(llist.head) llist.printList(llist.head)
tanmay6414/Python
DSA_in_python/dequeue.py
dequeue.py
py
1,950
python
en
code
0
github-code
50
19031455400
import streamlit as st from main import get_graph, get_download_graph def graph(): pattern = st.text_input("Слово, которое мы хотим найти в сообщениях") time_from = st.text_input("от какого времени (указывать в формате год-месяц-день)") time_to = st.text_input("по какое время мы хотим найти (указывать в формате год-месяц-день)") max_thikness = st.text_input("параметр задает на сколько групп надо разбить уже отфильтрованные данные", value=10) border = st.text_input("порог фильтрации данных, если вы укажите 0,9 то получите 10% с конца" "(то есть последние 10% наибольших данных)", value=0.9) if (pattern and time_from and time_to) != "": st.graphviz_chart(get_graph(pattern=pattern, time_from=time_from, time_to=time_to, max_thikness=int(max_thikness), border=float(border))) st.download_button(label="Скачать граф", data=get_download_graph()) graph()
artem12345-png/CV
message_graph/server.py
server.py
py
1,252
python
ru
code
0
github-code
50
22617246797
from .HTTPClient import HTTPClient def autoFillFeatures(options=None): features = options.get('features', []) if options else [] if options and 'question' in options and 'question_answer' not in features: features.append('question_answer') return features class SceneXClient(HTTPClient): def __init__(self, headers=None): baseUrl = 'https://us-central1-causal-diffusion.cloudfunctions.net' defaultHeaders = { 'Content-Type': 'application/json', } mergedHeaders = defaultHeaders.update(headers) super().__init__(baseUrl=baseUrl, headers=defaultHeaders) def from_array(self, input, options=None): return { 'data': [ { 'image': i, 'features': autoFillFeatures(options), **(options or {}) } for i in input ] } def from_string(self, input, options=None): return { 'data': [ { 'image': input, 'features': autoFillFeatures(options), **(options or {}) } ] } def to_simplified_output(self, output): if not output.get('result') or any(x.get('text') != '' for x in output['result']) is False: raise Exception('Remote API Error, bad output: {}'.format(json.dumps(output))) return { 'results': [ { 'output': r['answer'] if 'answer' in r and r['answer'] is not None else r['text'], 'i18n': r['i18n'] } for r in output['result'] ] } def describe(self, data, options = None): raw_output = self.post('/describe', data) simplified_output = self.to_simplified_output(raw_output) if options and 'raw' in options: simplified_output['raw'] = raw_output return simplified_output
standardgalactic/jinaai-py
jinaai/clients/SceneXClient.py
SceneXClient.py
py
2,028
python
en
code
null
github-code
50
18553789292
from django.urls import path, include from .views import ( telegram_index, viber_index, ChannelListView, ChannelDetailView, ChannelFullDetailView, ChannelCreateView, ChannelUpdateView, ChannelDeleteView, BotUpdateView, BotCreateView, root_view, ajax_channels_update, ajax_get_channels, channel_list_view, ajax_webhook, ajax_get_moderators, ajax_unset_webhook, keyboards_constructor_view, statistics_view ) app_name = "bots-management" urlpatterns = [ path("", root_view, name="root"), path("ajax_get_channels/", ajax_get_channels, name='ajax_get_channels'), path("ajax_get_moderators/", ajax_get_moderators, name='ajax_get_moderators'), path("ajax_channels_update/", ajax_channels_update, name='ajax_channels_update'), path("channels_new/", channel_list_view, name="channel-list-new"), path("ajax_webhook/", ajax_webhook, name="ajax_webhook"), path("ajax_unset_webhook/", ajax_unset_webhook, name="ajax_unset_webhook"), path("channels/", ChannelListView.as_view(), name="channel-list"), path("channel/<str:slug>/", ChannelDetailView.as_view(), name="channel-detail"), path("channel_full/<str:slug>/", ChannelFullDetailView.as_view(), name="channel-full-detail"), path("channel_create/", ChannelCreateView.as_view(), name="channel-create"), path("channel_delete/<str:slug>/", ChannelDeleteView.as_view(), name="channel-delete"), path("channel_update/<str:slug>/", ChannelUpdateView.as_view(), name="channel-update"), path("channel/<str:slug>/bot_create/", BotCreateView.as_view(), name="bot-create"), path("channel/<str:slug>/bot_update/<int:pk>/", BotUpdateView.as_view(), name="bot-update"), path("keyboards_new", keyboards_constructor_view, name="keyboards-new"), path("statistics_new", statistics_view, name="statistics-new"), # actions with keyboards, related to certain channel path("channel/<str:slug>/", include("keyboards.urls", namespace="keyboards")), # bots and subscribers' analytics path("channel/<str:slug>/", include("analytics.urls", namespace="analytics")), # subscribers and messages path("subscribers/", include("subscribers.urls", namespace="subscribers")), # bots` mailings path("channel/<str:slug>/", include("bots_mailings.urls", namespace="mailings")), path("telegram_prod/<str:slug>/", telegram_index), path("viber_prod/<str:slug>/", viber_index), ]
wykyee/old-bot
bots_management/urls.py
urls.py
py
2,745
python
en
code
0
github-code
50
10733655437
from MovieLens import MovieLens from surprise import KNNBasic import heapq from collections import defaultdict from operator import itemgetter import socket def simpleUserCFGive(id): testSubject = str(id) k = 10 # Load our data set and compute the user similarity matrix ml = MovieLens() data = ml.loadMovieLensLatestSmall() trainSet = data.build_full_trainset() sim_options = {'name': 'cosine', 'user_based': True } model = KNNBasic(sim_options=sim_options) model.fit(trainSet) simsMatrix = model.compute_similarities() # Get top N similar users to our test subject # (Alternate approach would be to select users up to some similarity threshold - try it!) testUserInnerID = trainSet.to_inner_uid(testSubject) similarityRow = simsMatrix[testUserInnerID] similarUsers = [] for innerID, score in enumerate(similarityRow): if (innerID != testUserInnerID): similarUsers.append( (innerID, score) ) kNeighbors = heapq.nlargest(k, similarUsers, key=lambda t: t[1]) # Get the stuff they rated, and add up ratings for each item, weighted by user similarity candidates = defaultdict(float) for similarUser in kNeighbors: innerID = similarUser[0] userSimilarityScore = similarUser[1] theirRatings = trainSet.ur[innerID] for rating in theirRatings: candidates[rating[0]] += (rating[1] / 5.0) * userSimilarityScore # Build a dictionary of stuff the user has already seen watched = {} for itemID, rating in trainSet.ur[testUserInnerID]: watched[itemID] = 1 # Get top-rated items from similar users: s="\n"+str(id) pos = 0 for itemID, ratingSum in sorted(candidates.items(), key=itemgetter(1), reverse=True): if not itemID in watched: movieID = trainSet.to_raw_iid(itemID) s+=","+ml.getMovieName(int(movieID)) pos += 1 if (pos > 10): break file = open("E:\\Neeraj\\SimpleUserCFBase.txt", "r") alld=file.readlines() file.close() file1 = open("E:\\Neeraj\\SimpleUserCFBase.txt", "w") for r1 in alld: print(r1) u=r1.find(",") if(r1[0:u]==str(id)): pass else: file1.write(r1) file1.write(s) file1.close() print ("\nDone") def Main(): host = "127.0.0.3" port = 5000 mySocket = socket.socket() mySocket.bind((host,port)) while(True): mySocket.listen(10) conn, addr = mySocket.accept() print ("Connection from: " + str(addr)) data = conn.recv(1024).decode() print ("from connected user: " + str(data)) simpleUserCFGive(int(data)) conn.close() if __name__ == '__main__': Main() #simpleUserCFGive(2)
neerajrp1999/Movie-App-Including-recommender-system
SimpleUserCF/SimpleUserCF/SimpleUserCF.py
SimpleUserCF.py
py
3,023
python
en
code
0
github-code
50
16558263898
import gzip import itertools import os import time import sqlalchemy as sa from sqlalchemy.orm import sessionmaker from imicrobe.uproc_results.uproc_models import SampleToUproc, Uproc def main(): # connect to database on server # e.g. mysql+pymysql://load:<password>@localhost/load db_uri = os.environ.get('IMICROBE_DB_URI') imicrobe_engine = sa.create_engine(db_uri, echo=False) # reflect tables meta = sa.MetaData() meta.reflect(bind=imicrobe_engine) Session = sessionmaker(bind=imicrobe_engine) session = Session() drop_table(SampleToUproc, engine=imicrobe_engine) drop_table(Uproc, engine=imicrobe_engine) Uproc.__table__.create(imicrobe_engine) load_pfam_table(session=session, engine=imicrobe_engine) # how many rows in the Uproc table? uproc_row_count = session.query(Uproc).count() print('{} rows in the uproc table after inserting data from pfamA.txt.gz'.format(uproc_row_count)) load_dead_pfam(session=session, engine=imicrobe_engine) # how many rows in the Uproc table? uproc_row_count = session.query(Uproc).count() print('{} rows in the uproc table after inserting data from dead_family.txt.gz'.format(uproc_row_count)) def drop_table(table, engine): # delete the relationship table first try: table.__table__.drop(engine) print('dropped table "{}"'.format(table.__tablename__)) except Exception as e: print(e) def take(n, iterable): "Return first n items of the iterable as a list" return list(itertools.islice(iterable, n)) def grouper(iterable, n, fillvalue=None): "Collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue) def load_pfam_table(session, engine): debug = False line_group_length = 2000 pfamA_fp = 'data/pfamA.txt.gz' # had problems on myo with U+009D in PF01298 description # not a problem with imicrobe-vm on my laptop # this is the error: # UnicodeEncodeError: 'latin-1' codec can't encode characters in position 1089-1090: ordinal not in range(256) # why is 'latin-1' codec being used? # specifying encoding='latin-1' and errors='replace' solves the problem on myo with gzip.open(pfamA_fp, 'rt', encoding='latin-1', errors='replace') as pfamA_file: for line_group in grouper(pfamA_file.readlines(), line_group_length, fillvalue=None): line_counter = 0 t0 = time.time() for line in (line_ for line_ in line_group if line_ is not None): line_counter += 1 pfam_acc, pfam_identifier, pfam_aliases, pfam_name, _, _, _, _, description, *the_rest = line.strip().split('\t') if debug: print('pfam accession : {}'.format(pfam_acc)) print('pfam identifier : {}'.format(pfam_identifier)) print('pfam aliases : {}'.format(pfam_aliases)) print('pfam name : {}'.format(pfam_name)) print('description : {}'.format(description)) if session.query(Uproc).filter(Uproc.accession==pfam_acc).one_or_none(): pass #print('{} is already in the database'.format(pfam_acc)) else: # insert session.add( Uproc( accession=pfam_acc, identifier=pfam_identifier, name=pfam_name, description=description)) session.commit() print( 'committed {} rows in {:5.1f}s'.format( line_counter, time.time()-t0)) print('table "{}" has {} rows'.format(Uproc.__tablename__, session.query(Uproc).count())) def load_dead_pfam(session, engine): # there are some strange rows in this file debug = False dead_pfam_fp = 'data/dead_family.txt.gz' with gzip.open(dead_pfam_fp, 'rt') as dead_pfam_file: for line in dead_pfam_file: dead_pfam_accession, pfam_identifier, pfam_cause_of_death, *_ = line.strip().split('\t') if debug: print('************* line:\n\t{}'.format(line)) print(dead_pfam_accession) print(pfam_identifier) print(pfam_cause_of_death) print('\n') if session.query(Uproc).filter(Uproc.accession == dead_pfam_accession).one_or_none(): print('dead Pfam accession "{}" is already in table uproc'.format(dead_pfam_accession)) else: # insert session.add( Uproc( accession=dead_pfam_accession, identifier=pfam_identifier, name='dead', description=pfam_cause_of_death)) session.commit() print('table "{}" has {} rows'.format(Uproc.__tablename__, session.query(Uproc).count())) """ pfam_url = 'http://pfam.xfam.org' pfam_family_url = urllib.parse.urljoin(pfam_url, '/family') for sample_uproc_id_i in session.query(models.Sample_uproc.uproc_id).order_by(models.Sample_uproc.uproc_id).distinct().limit(10): print(sample_uproc_id_i) # is the PFAM annotation already in the database? if session.query(Uproc).filter(Uproc.pfam_annot_id == sample_uproc_id_i.uproc_id).one_or_none() is None: response = requests.get( url=pfam_family_url, params={'acc': sample_uproc_id_i, 'output': 'xml'}) response_root = ET.fromstring(response.text) description = response_root[0][1].text pfam_annot_i = Uproc(pfam_acc=sample_uproc_id_i, annot=description) session.add(pfam_annot_i) else: print('{} is already in Uproc table'.format(sample_uproc_id_i)) session.commit() session.close() """ if __name__ == '__main__': main()
hurwitzlab/imicrobe-data-loaders
imicrobe/load/uproc_results/load_pfam_table.py
load_pfam_table.py
py
6,158
python
en
code
0
github-code
50
29011691648
"""An interface for interacting with the num2vid config.json.""" import json from .errors import ConfigPathError, ConfigReadError class Config: """An interface for interacting with the num2vid config.json. :attr _path: path to the current instance's config json. :type _path: str :attr _config: python dictionary mirror of the json. :tpye _config: dict """ def __init__(self, path: str): """Initialize with config path. :param path: path to the config json. """ self._path = path self._config = self.load() def get(self, key: str, default: str = None) -> str: """Get value by key from current instance's config. :param key: key to retrieve. :param default: default value to return if key not found """ return self._config.get(key, default) @property def path(self) -> str: """Retrieve path to current instance's config json.""" return self._path def update(self, new_config_dict: dict) -> dict: """Update the instance dict. :param new_config_dict: dictionary of preferences to update. """ self._config.update(new_config_dict) return self._config def clear(self): """Reset the prefs json to an empty dict and save.""" self.save({}) def save(self, config_dict:dict) -> dict: """Apply given config_dict to disk and update isntance dict. :param config_dict: the dict to write to disk. """ try: with open(self._path, "w+") as config_fo: config_fo.write(json.dumps(config_dict)) except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError) as err: if isinstance(err, json.decoder.JSONDecodeError): raise ConfigReadError(err) raise ConfigPathError(err) self._config = config_dict return self._config def load(self) -> dict: """Retrieve the contents of config.json and set to the current instance.""" config_dict = {} try: with open(self._path, "r") as config_fo: config_dict = json.load(config_fo) except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError) as err: if isinstance(err, json.decoder.JSONDecodeError): raise ConfigReadError(err) raise ConfigPathError(err) self._config = config_dict return self._config
jacobmartinez3d/num2vid
num2vid/config.py
config.py
py
2,504
python
en
code
0
github-code
50
26255326658
#!/usr/bin/env python from twisted.internet import reactor from coherence.upnp.core import DIDLLite from coherence.upnp.core.ssdp import SSDPServer from coherence.upnp.core.msearch import MSearch from coherence.upnp.core.device import Device, RootDevice from coherence.extern import louie class DevicesListener(object): def __init__(self): self.ssdp = SSDPServer() self.msearch = MSearch(self.ssdp, test=False) self.devices = [] louie.connect(self.ssdp_detected, 'Coherence.UPnP.SSDP.new_device', louie.Any) louie.connect(self.ssdp_deleted, 'Coherence.UPnP.SSDP.removed_device', louie.Any) louie.connect(self.device_found, 'Coherence.UPnP.RootDevice.detection_completed', louie.Any) self.msearch.double_discover() def _get_device_by_id(self, id): found = None for device in self.devices: this_id = device.get_id() if this_id[:5] != 'uid:': this_id = this_id[5:] if this_id == id: found = device break return found def _get_device_by_usn(self, usn): found = None for device in self.devices: if device.get_usn() == usn: found = device break return found def ssdp_detected(self, device_type, infos, *args, **kwargs): print("Found ssdp %s"%(infos,)) if infos['ST'] == 'upnp:rootdevice': root = RootDevice(infos) else: root_id = infos['USN'][:-len(infos['ST']) - 2] root = self._get_device_by_id(root_id) device = Device(infos, root) # kicks off loading of the device info # which will call device_found callback def ssdp_deleted(self, device_type, infos, *args, **kwargs): device = self._get_device_with_usn(infos['USN']) if device: louie.send('Coherence.UPnP.Device.removed', None, usn=infos['USN']) self.devices.remove(device) device.remove() if infos['ST'] == 'upnp:rootdevice': louie.send('Coherence.UPnP.RootDevice.removed', None, usn=infos['USN']) def device_found(self, device): print("Found device %s"%(device,)) self.devices.append(device) for service in device.get_services(): print(" %s @ %s"%(service.get_type(), service.get_control_url())) if 'ContentDirectory' in service.get_type(): for actionname,action in service.get_actions().items(): if action.get_name() == 'Browse': d = action.call( ObjectID='0', BrowseFlag='BrowseDirectChildren', Filter='*', SortCriteria='', StartingIndex='0', RequestedCount='0' ) d.addCallback(self.browse_callback) def browse_callback(self, result): results = DIDLLite.DIDLElement.fromString(result['Result']).getItems() print([result.title for result in results]) def browse_error(self, error): print(error.getTraceback()) devices = DevicesListener() print("Beginning") reactor.run()
kpister/prompt-linter
data/scraping/repos/hufman~coherence_experiments/ssdp.py
ssdp.py
py
2,768
python
en
code
0
github-code
50
10539216817
#!/usr/bin/python # coding: UTF-8 # original code URL https://github.com/xkumiyu/chainer-GAN-CelebA # revised by Nakkkkk(https://github.com/Nakkkkk) import numpy import chainer from chainer import cuda import chainer.functions as F import chainer.links as L def add_noise(h, sigma=0.2): xp = cuda.get_array_module(h.data) if chainer.config.train: return h + sigma * xp.random.randn(*h.shape) else: return h # Minibatch_Discriminationによるモード崩壊の防止(http://musyoku.github.io/2016/12/23/Improved-Techniques-for-Training-GANs/) class Minibatch_Discrimination(chainer.Chain): """ Minibatch Discrimination Layer Parameters --------------------- B: int number of rows of M C: int number of columns of M wscale: float std of normal initializer """ def __init__(self, B, C, wscale): super(Minibatch_Discrimination, self).__init__() self.b = B self.c = C with self.init_scope(): # initialozer to W w = chainer.initializers.Normal(wscale) # register Parameters self.t = L.Linear(in_size=None, out_size=B*C, initialW=w, nobias=True) # bias is required ? def __call__(self, x): """ Calucurate Minibatch Discrimination using broardcast. Parameters --------------- x: Variable input vector shape is (N, num_units) """ batch_size = x.shape[0] xp = x.xp activation = self.t(x) m = F.reshape(activation, (-1, self.b, self.c)) m = F.expand_dims(m, 3) m_T = F.transpose(m, (3, 1, 2, 0)) m, m_T = F.broadcast(m, m_T) l1_norm = F.sum(F.absolute(m-m_T), axis=2) # eraser to erase l1 norm with themselves eraser = F.expand_dims(xp.eye(batch_size, dtype="f"), 1) eraser = F.broadcast_to(eraser, (batch_size, self.b, batch_size)) o_X = F.sum(F.exp(-(l1_norm + 1e6 * eraser)), axis=2) # concatunate along channels or units return F.concat((x, o_X), axis=1) class Discriminator(chainer.Chain): def __init__(self, wscale=0.02, unrolling_steps=5): self.b, self.c = 32, 8 w = chainer.initializers.Normal(wscale) self.unrolling_steps = unrolling_steps super(Discriminator, self).__init__() with self.init_scope(): self.c0_0 = L.Convolution2D(3, 64, 3, stride=2, pad=1, initialW=w) self.c0_1 = L.Convolution2D(64, 128, 4, stride=2, pad=1, initialW=w) self.c1_0 = L.Convolution2D(128, 128, 3, stride=1, pad=1, initialW=w) self.c1_1 = L.Convolution2D(128, 256, 4, stride=2, pad=1, initialW=w) self.c2_0 = L.Convolution2D(256, 256, 3, stride=1, pad=1, initialW=w) self.c2_1 = L.Convolution2D(256, 512, 4, stride=2, pad=1, initialW=w) #self.c3_0 = L.Convolution2D(512, 512, 3, stride=1, pad=1, initialW=w) self.l4_0 = L.Linear(4 * 4 * 512, 128, initialW=w) self.md1 = Minibatch_Discrimination( B=self.b, C=self.c, wscale=wscale) #self.l4 = L.Linear(4 * 4 * 512, 1, initialW=w) self.l4 = L.Linear(None, 12, initialW=w) self.bn0_1 = L.BatchNormalization(128, use_gamma=False) self.bn1_0 = L.BatchNormalization(128, use_gamma=False) self.bn1_1 = L.BatchNormalization(256, use_gamma=False) self.bn2_0 = L.BatchNormalization(256, use_gamma=False) self.bn2_1 = L.BatchNormalization(512, use_gamma=False) self.bn3_0 = L.BatchNormalization(512, use_gamma=False) def cache_discriminator_weights(self): self.cached_weights = {} for name, param in self.namedparams(): with cuda.get_device(param.data): xp = cuda.get_array_module(param.data) self.cached_weights[name] = xp.copy(param.data) def restore_discriminator_weights(self): for name, param in self.namedparams(): with cuda.get_device(param.data): if name not in self.cached_weights: raise Exception() param.data = self.cached_weights[name] def __call__(self, x): h = add_noise(x) h = F.leaky_relu(add_noise(self.c0_0(h))) h = F.leaky_relu(add_noise(self.bn0_1(self.c0_1(h)))) h = F.leaky_relu(add_noise(self.bn1_0(self.c1_0(h)))) h = F.leaky_relu(add_noise(self.bn1_1(self.c1_1(h)))) h = F.leaky_relu(add_noise(self.bn2_0(self.c2_0(h)))) h = F.leaky_relu(add_noise(self.bn2_1(self.c2_1(h)))) #h = F.leaky_relu(add_noise(self.bn3_0(self.c3_0(h)))) h = self.l4_0(h) h = self.md1(h) h = self.l4(h) return h class Encoder(chainer.Chain): def __init__(self, wscale=0.02): w = chainer.initializers.Normal(wscale) super(Encoder, self).__init__() with self.init_scope(): self.c0_0 = L.Convolution2D(3, 64, 3, stride=2, pad=1, initialW=w) self.c0_1 = L.Convolution2D(64, 128, 4, stride=2, pad=1, initialW=w) self.c1_0 = L.Convolution2D(128, 128, 3, stride=1, pad=1, initialW=w) self.c1_1 = L.Convolution2D(128, 256, 4, stride=2, pad=1, initialW=w) self.c2_0 = L.Convolution2D(256, 256, 3, stride=1, pad=1, initialW=w) self.c2_1 = L.Convolution2D(256, 512, 4, stride=2, pad=1, initialW=w) self.c3_0 = L.Convolution2D(512, 512, 3, stride=1, pad=1, initialW=w) self.l4 = L.Linear(4 * 4 * 512, 100, initialW=w) self.bn0_1 = L.BatchNormalization(128, use_gamma=False) self.bn1_0 = L.BatchNormalization(128, use_gamma=False) self.bn1_1 = L.BatchNormalization(256, use_gamma=False) self.bn2_0 = L.BatchNormalization(256, use_gamma=False) self.bn2_1 = L.BatchNormalization(512, use_gamma=False) self.bn3_0 = L.BatchNormalization(512, use_gamma=False) def __call__(self, x): h = F.leaky_relu(self.c0_0(x)) h = F.leaky_relu(self.bn0_1(self.c0_1(h))) h = F.leaky_relu(self.bn1_0(self.c1_0(h))) h = F.leaky_relu(self.bn1_1(self.c1_1(h))) h = F.leaky_relu(self.bn2_0(self.c2_0(h))) h = F.leaky_relu(self.bn2_1(self.c2_1(h))) h = F.leaky_relu(self.bn3_0(self.c3_0(h))) h = self.l4(h) return h class EncoderGenerator(chainer.Chain): def __init__(self, wscale=0.02): super(EncoderGenerator, self).__init__() self.n_hidden = 100 with self.init_scope(): # Encoder w = chainer.initializers.Normal(wscale) self.c0_0 = L.Convolution2D(3, 64, 3, stride=2, pad=1, initialW=w) self.c0_1 = L.Convolution2D(64, 128, 4, stride=2, pad=1, initialW=w) self.c1_0 = L.Convolution2D(128, 128, 3, stride=1, pad=1, initialW=w) self.c1_1 = L.Convolution2D(128, 256, 4, stride=2, pad=1, initialW=w) self.c2_0 = L.Convolution2D(256, 256, 3, stride=1, pad=1, initialW=w) self.c2_1 = L.Convolution2D(256, 512, 4, stride=2, pad=1, initialW=w) self.c3_0 = L.Convolution2D(512, 512, 3, stride=1, pad=1, initialW=w) self.l4 = L.Linear(4 * 4 * 512, 100, initialW=w) self.bn0_1 = L.BatchNormalization(128, use_gamma=False) self.bn1_0 = L.BatchNormalization(128, use_gamma=False) self.bn1_1 = L.BatchNormalization(256, use_gamma=False) self.bn2_0 = L.BatchNormalization(256, use_gamma=False) self.bn2_1 = L.BatchNormalization(512, use_gamma=False) self.bn3_0 = L.BatchNormalization(512, use_gamma=False) # Generator self.l0 = L.Linear(100, 4 * 4 * 512, initialW=w) self.dc1 = L.Deconvolution2D(512, 256, 4, stride=2, pad=1, initialW=w) self.dc2 = L.Deconvolution2D(256, 128, 4, stride=2, pad=1, initialW=w) self.dc3 = L.Deconvolution2D(128, 64, 4, stride=2, pad=1, initialW=w) self.dc4 = L.Deconvolution2D(64, 3, 4, stride=2, pad=1, initialW=w) self.bn0 = L.BatchNormalization(4 * 4 * 512) self.bn1 = L.BatchNormalization(256) self.bn2 = L.BatchNormalization(128) self.bn3 = L.BatchNormalization(64) def make_hidden(self, batchsize): return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))\ .astype(numpy.float32) def __call__(self, x): # Encoder h = F.leaky_relu(self.c0_0(x)) h = F.leaky_relu(self.bn0_1(self.c0_1(h))) h = F.leaky_relu(self.bn1_0(self.c1_0(h))) h = F.leaky_relu(self.bn1_1(self.c1_1(h))) h = F.leaky_relu(self.bn2_0(self.c2_0(h))) h = F.leaky_relu(self.bn2_1(self.c2_1(h))) h = F.leaky_relu(self.bn3_0(self.c3_0(h))) h = self.l4(h) # Generator h = F.reshape(F.leaky_relu(self.bn0(self.l0(h))), (len(h), 512, 4, 4)) h = F.leaky_relu(self.bn1(self.dc1(h))) h = F.leaky_relu(self.bn2(self.dc2(h))) h = F.leaky_relu(self.bn3(self.dc3(h))) x = F.sigmoid(self.dc4(h)) return x
Nakkkkk/chainer-GAN-CelebA-anime-annotated
net.py
net.py
py
9,311
python
en
code
0
github-code
50
21021275299
from ..crawler import TableCrawler from ..entities import Party from ..utils import parse_vote_count URL = 'https://www.cec.gov.tw/pc/zh_TW/L4/n00000000000000000.html' TOTAL_SEATS = 34 def calculate_round_1(vote_counts): total_vote_count = sum(vote_counts.values()) result = sorted( ((name, TOTAL_SEATS * vote_count / total_vote_count) for name, vote_count in vote_counts.items()), key=lambda r: r[1] % 1, reverse=True, ) return result def calculate_round_2(round_1_result): remaining = TOTAL_SEATS - sum(int(row[1]) for row in round_1_result) result = [ Party(name, int(count) + 1) for name, count in round_1_result[:remaining] ] + [ Party(name, int(count)) for name, count in round_1_result[remaining:] ] return result def crawl(): crawler = TableCrawler(URL) info_list = crawler.crawl() vote_counts = { info['政黨']: parse_vote_count(info) for info in info_list if float(info['得票率%']) >= 5.0 } round_1_result = calculate_round_1(vote_counts) final_result = calculate_round_2(round_1_result) return final_result
uranusjr/electionpeeker
electionpeeker/sources/national.py
national.py
py
1,167
python
en
code
1
github-code
50
18525853716
from util import * from bs4 import BeautifulSoup import json years = [ ['2017', 'http://www.fortunechina.com/fortune500/c/2017-07/20/content_286785.htm'], ['2016', 'http://www.fortunechina.com/fortune500/c/2016-07/20/content_266955.htm'], ['2015', 'http://www.fortunechina.com/fortune500/c/2015-07/22/content_244435.htm'], ['2014', 'http://www.fortunechina.com/fortune500/c/2014-07/07/content_212535.htm'], ] def crawl_companys(): f = open('./files/companys', 'w') for year_item in years: req = build_request(year_item[-1]) res_text = req.text.encode("iso-8859-1").decode('utf-8') table = BeautifulSoup(res_text, 'lxml').find( 'table', {'id': 'yytable'}).find_all('tr') for tr in table[1:]: td_list = tr.find_all('td') line = [year_item[0]] for td in td_list: line.append(td.get_text()) url = tr.find('a').get('href') line.append(url) f.write(json.dumps(line, ensure_ascii=False)+'\n') f.close() def crawl_2013_companys(): page = 1 f = open('./files/companys', 'a') while page < 6: if page != 1: url = 'http://www.fortunechina.com/fortune500/c/2013-07/08/content_164375_{}.htm'.format( page) else: url = 'http://www.fortunechina.com/fortune500/c/2013-07/08/content_164375.htm' req = build_request(url) res_text = req.text.encode("iso-8859-1").decode('utf-8') table = BeautifulSoup(res_text, 'lxml').find( 'table', {'class': 'rankingtable'}).find_all('tr') for tr in table[1:]: td_list = tr.find_all('td') line = ['2013'] for td in td_list: line.append(td.get_text()) url = tr.find('a').get('href') line.append(url) f.write(json.dumps(line, ensure_ascii=False)+'\n') page+=1 f.close() def get_company_info(url): req=build_request(url) thisyeardata=BeautifulSoup(req.text,'lxml').find('div',{'class':'thisyeardata'}).find_all('tr') result={} for tr in thisyeardata: if '<table' in str(tr): continue if '国家' in str(tr): value=tr.find('td').get_text().replace('国家','').replace(':','').replace(':','').replace('\r','').replace('\n','').replace(' ','') result['国家']=value if '员工数' in str(tr): value=tr.find_all('td')[-1].get_text().replace('员工数','').replace(':','').replace(':','').replace('\r','').replace('\n','').replace(' ','') result['员工数']=value if '营业收入' in str(tr): value=tr.find_all('td')[1].get_text() result['营业收入']=value value=tr.find_all('td')[2].get_text() result['营业收入增减']=value if '利润' in str(tr) and '利润占比' not in str(tr): value=tr.find_all('td')[1].get_text() result['利润']=value value=tr.find_all('td')[2].get_text() result['利润增减']=value if '资产' in str(tr) and '资产收益' not in str(tr) and '资产控股' not in str(tr): value=tr.find_all('td')[1].get_text() result['资产']=value value=tr.find_all('td')[2].get_text() result['资产增减']=value if '股东权益' in str(tr): value=tr.find_all('td')[1].get_text() result['股东权益']=value value=tr.find_all('td')[2].get_text() result['股东权益增减']=value if '净利率' in str(tr): value=tr.find_all('td')[1].get_text() result['净利率']=value if '资产收益率' in str(tr): value=tr.find_all('td')[1].get_text() result['资产收益率']=value return result def crawl_info(): for line in open('./files/companys','r'): company=json.loads(line) try: info=get_company_info(company[-1]) except: f=open('./files/companys_fail','a') f.write(json.dumps(company, ensure_ascii=False)+'\n') f.close() continue info['base']=company f=open('./files/companys_info','a') f.write(json.dumps(info, ensure_ascii=False)+'\n') f.close() print(company) def load_companys(): headers=['name','国家'] year_list=['2013','2014','2015','2016','2017'] year_list.reverse() for info_key in ['排名','员工数','营业收入','营业收入增减','利润','利润增减','净利率','资产','资产增减','资产收益率','股东权益','股东权益增减']: for year in year_list: headers.append(year+' '+info_key) yield headers result={} for line in open('./files/companys_info','r'): company=json.loads(line) key=company['base'][3] key=sub_str(key,append=[' ']) year=company['base'][0] if key in result: result[key][year]=company else: result[key]={} result[key][year]=company for company_key in result: line=['',''] for year in year_list: if year not in result[company_key]: line.append('') continue line[0]=result[company_key][year]['base'][3] line[1]=result[company_key][year]['base'][-2] #当年排名 line.append(result[company_key][year]['base'][1]) for info_key in ['员工数','营业收入','营业收入增减','利润','利润增减','净利率','资产','资产增减','资产收益率','股东权益','股东权益增减']: for year in year_list: if year not in result[company_key]: line.append('') continue line.append(sub_str(result[company_key][year][info_key])) yield line #crawl_info() write_to_excel(load_companys(),'世界500强.xlsx')
19js/Nyspider
www.fortunechina.com/fortune500.py
fortune500.py
py
6,154
python
en
code
16
github-code
50
23814910118
import csv from datetime import datetime DEGREE_SYBMOL = u"\N{DEGREE SIGN}C" def format_temperature(temp): """Takes a temperature and returns it in string format with the degrees and celcius symbols. Args: temp: A string representing a temperature. Returns: A string contain the temperature and "degrees celcius." """ return f"{temp}{DEGREE_SYBMOL}" def convert_date(iso_string): # DONE! """Converts and ISO formatted date into a human readable format. Args: iso_string: An ISO date string.. Returns: A date formatted like: Weekday Date Month Year e.g. Tuesday 06 July 2021 """ x = datetime.fromisoformat(iso_string) # print(x.strftime("%A %d %B %Y")) return x.strftime("%A %d %B %Y") """ %A Weekday, full version Wednesday %d Day of month 31 %B Month name, full version December %Y Year, full version 2018 """ def convert_f_to_c(temp_in_farenheit): # DONE """Converts an temperature from farenheit to celcius. Args: temp_in_farenheit: float representing a temperature. Returns: A float representing a temperature in degrees celcius, rounded to 1dp. """ temp_in_c_float = ((float(temp_in_farenheit) - 32) * (5/9)) rounded_temp = round(temp_in_c_float,1) return rounded_temp def calculate_mean(weather_data): """Calculates the mean value from a list of numbers. Args: weather_data: a list of numbers. Returns: A float representing the mean value. """ #def calculate_mean(a, b): #total = a + b #mean = total / 2 #return mean #print(calculate_mean(3, 4))2 total = 0 for list_item in weather_data: total += float(list_item) mean_value = total / len(weather_data) return mean_value #print(calculate_mean([51.0, 58.2, 59.9, 52.4, 52.1, 48.4, 47.8, 53.43])) (to run the test while working in waether.py to determine what's being printed) def load_data_from_csv(csv_file): # DONE """Reads a csv file and stores the data in a list. Args: csv_file: a string representing the file path to a csv file. Returns: A list of lists, where each sublist is a (non-empty) line in the csv file. """ weather_data = [] with open(csv_file) as csv_file: # you can name csv_file anything reader = csv.reader(csv_file) for line in reader: if line != []: weather_data.append(line) weather_data_integer = weather_data[1:] # deletes 1st row from the tests (contains headings in string format)/data/example csv files for daily_data_format in weather_data_integer: daily_data_format[1] = int(daily_data_format[1]) # daily_data_format refers to the presentation of each line: (datetime_str, min_int, max_int) daily_data_format[2] = int(daily_data_format[2]) return weather_data_integer def find_min(weather_data): #[34,25, 18, 57, 69] """Calculates the minimum value in a list of numbers. Args: weather_data: A list of numbers. Returns: The minimum value and it's position in the list. """ if weather_data == []: return () else: min_value = weather_data[0] index = 0 min_index = 0 for num in weather_data: if float(num) <= float(min_value): min_value = float(num) min_index = index index += 1 return (min_value, min_index) def find_max(weather_data): """Calculates the maximum value in a list of numbers. Args: weather_data: A list of numbers. Returns: The maximum value and it's position in the list. """ if weather_data == []: return () else: max_value = weather_data[0] index = 0 max_index = 0 for num in weather_data: if float(num) >= float(max_value): max_value = float(num) max_index = index index += 1 return (max_value, max_index) def generate_summary(weather_data): """Outputs a summary for the given weather data. Args: weather_data: A list of lists, where each sublist represents a day of weather data. Returns: A string containing the summary information. My Notes: The lowest temperature will be 9.4°C, and will occur on Friday 02 July 2021. The highest temperature will be 20.0°C, and will occur on Saturday 03 July 2021. The average low this week is 12.2°C. The average high this week is 17.8°C. """ list_min = [] for list_all_mins in weather_data: list_min.append(list_all_mins[1]) list_max = [] for list_all_max in weather_data: list_max.append(list_all_max[2]) low_average = (calculate_mean(list_min)) high_average = (calculate_mean(list_max)) min_value, min_index = find_min(list_min) max_value, max_index = find_max(list_max) result = "" no_of_rows = len(weather_data) result = result + str(no_of_rows) + " Day Overview\n" result = result + " The lowest temperature will be " result = result + f"{format_temperature(convert_f_to_c(min_value))}" result = result + ", and will occur on " result = result + f"{convert_date(weather_data[min_index][0])}.\n" result = result + " The highest temperature will be " result = result + f"{format_temperature(convert_f_to_c(max_value))}" result = result + ", and will occur on " result = result + f"{convert_date(weather_data[max_index][0])}.\n" result = result + " The average low this week is " result = result + f"{format_temperature(convert_f_to_c(low_average))}.\n" result = result + " The average high this week is " result = result + f"{format_temperature(convert_f_to_c(high_average))}.\n" return result #Note: the below is added to see what information is printed when I run the weather.py. # print(generate_summary([ # ["2021-07-02T07:00:00+08:00", 49, 67], # ["2021-07-03T07:00:00+08:00", 57, 68], # ["2021-07-04T07:00:00+08:00", 56, 62], # ["2021-07-05T07:00:00+08:00", 55, 61], # ["2021-07-06T07:00:00+08:00", 53, 62] # ])) def generate_daily_summary(weather_data): """Outputs a daily summary for the given weather data. Args: weather_data: A list of lists, where each sublist represents a day of weather data. Returns: A string containing the summary information. My Notes: row refers to each input(unformatted) line; sections of the each row e.g. date,min,max 2021-07-02T07:00:00+08:00,49,67 2021-07-03T07:00:00+08:00,57,68 2021-07-04T07:00:00+08:00,56,62 2021-07-05T07:00:00+08:00,55,61 2021-07-06T07:00:00+08:00,53,62 [0 ,1,2] (sections of the list seperated by commas) """ result = "" # this represents output to be produced in string format for row in weather_data: result = result + "---- " result = result + f"{convert_date(row[0])}" result = result + " ----\n" result = result + " Minimum Temperature: " result = result + f"{format_temperature(convert_f_to_c(row[1]))}" + "\n" result = result + " Maximum Temperature: " result = result + f"{format_temperature(convert_f_to_c(row[2]))}" + "\n" result = result + "\n" return result
SheCodesAus/she-codes-python-weather-project-Rosie-Gul-codes
weather.py
weather.py
py
7,592
python
en
code
0
github-code
50
31158236285
# -*- coding: utf-8 -*- """ Created on Wed May 16 23:39:51 2012 @author: Maxim """ def getRandPrefix(fileExt = "", addSymbol = ""): from random import randrange from time import gmtime, strftime Time = int(strftime("%H%M%S", gmtime())) NamePrefix = str(Time+randrange(0,1e6,1)) + addSymbol if fileExt != "": NamePrefix = NamePrefix + "." + fileExt return(NamePrefix) h = getRandPrefix() print(h)
mishin/maxim-codes
getRandPrefix.py
getRandPrefix.py
py
470
python
en
code
0
github-code
50
43247112469
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import datetime import math import sys sys.path.append('/lib/python2.7/site-packages') import random import numpy as np import tensorflow as tf def print_debug(msg): if False: print(msg) WIDTH = 400 HEIGHT = 400 SELECTION_SIZE = 2 # 4 POPULATION_SIZE = 10 # 10 STEP = 200 # 200 GENERATION = 10000 # 1000 NUM_FOOD = 100 # 50 NUM_POISON = 0 # 0 MUTATION_BIAS = 1.0 SENSOR_LENGTH_WALL = 100 SENSOR_LENGTH_FOOD = 100 SENSOR_LENGTH_POISON = 100 AGENT_RADIUS = 20 AGENT_STEP_THETA = math.pi / 2 FOOD_RADIUS = 2 POISON_RADIUS = 2 INPUT_BIAS = 0.5 class Genome(object): NUM_FEATURE = 6 # [壁距離, 壁角度, 餌距離, 餌角度, 敵距離, 敵距離] # それぞれ1つしか認識できない NUM_HIDDEN_NODE = [2] # 各レイヤーのノード数 NUM_HIDDEN = len(NUM_HIDDEN_NODE) # レイヤー数 NUM_OUTPUT = 2 ARRAY = [NUM_FEATURE] + NUM_HIDDEN_NODE + [NUM_OUTPUT] LAYER = len(ARRAY) - 1 GENE_LENGTH = -1 MUTATION_RATE = 0.01 @classmethod def gene_length(cls): if 0 <= cls.GENE_LENGTH: return cls.GENE_LENGTH length = 0 for index, i in enumerate(cls.ARRAY[0: -1]): length += i * cls.ARRAY[index + 1] cls.GENE_LENGTH = length return cls.GENE_LENGTH def __init__(self, mutation_rate=None): length = self.gene_length() self._gene = np.random.rand(length).astype(np.float32) - np.random.rand(length).astype(np.float32) if mutation_rate: self._mutation_rate = mutation_rate else: self._mutation_rate = 1.0 / length self._fitness = 0.0 def _gene_layer_offset(self, layer): # layerのスタート地点までのオフセット length = 0 for index, i in enumerate(Genome.ARRAY[0: layer]): length += i * Genome.ARRAY[index + 1] return length def gene_layer(self, layer): start = self._gene_layer_offset(layer) end = self._gene_layer_offset(layer + 1) return self._gene[start:end] def mutate(self): length = len(self._gene) mutate = np.zeros(length).astype(np.float32) rand = np.random.rand(length) for i in range(length): if rand[i] <= self._mutation_rate: val = np.random.rand() - np.random.rand() print_debug("mutate[%d] = %f" % (i, val)) mutate[i] = val * MUTATION_BIAS else: mutate[i] = 0.0 self._gene += mutate def copy_gene(self): # deep copy return self._gene.copy() def set_gene(self, gene): self._gene = gene def set_fitness(self, fitness): self._fitness = fitness def get_fitness(self): return self._fitness class NN(object): def __init__(self, population): self._x, self._model = self._build_nn(population) @classmethod def _flatten(cls, population): # make flatten all genome info for GPU calculation size = len(population) gene_length = Genome.gene_length() index = 0 flat = np.zeros(size * gene_length) for layer in range(Genome.LAYER): for genome in population: arr = genome.gene_layer(layer) end = index + len(arr) flat[index:end] = arr index = end return flat @classmethod def _build_nn(cls, population): size = len(population) x = tf.placeholder(tf.float32, [size, None, Genome.NUM_FEATURE], name="input") genes = cls._flatten(population) print_debug("----genes-----") print_debug(genes) start = 0 length = size * Genome.NUM_FEATURE * Genome.NUM_HIDDEN_NODE[0] c1 = tf.constant(genes[start:length], dtype=tf.float32, shape=[size, Genome.NUM_FEATURE, Genome.NUM_HIDDEN_NODE[0]], name="layer1") w1 = tf.Variable(c1) x1 = 2 * tf.nn.sigmoid(tf.matmul(x, w1)) - 1 print_debug("----layer1[{}:{}]----".format(start, length)) print_debug(genes[start:length]) start = length length = start + size * Genome.NUM_HIDDEN_NODE[0] * Genome.NUM_OUTPUT c2 = tf.constant(genes[start:length], dtype=tf.float32, shape=[size, Genome.NUM_HIDDEN_NODE[0], Genome.NUM_OUTPUT], name="layer2") w2 = tf.Variable(c2) x2 = tf.nn.sigmoid(tf.matmul(x1, w2)) print_debug("----layer2[{}:{}]----".format(start, length)) print_debug(genes[start:length]) return x, x2 def eval(self, input): fetch = self._model.eval(feed_dict={self._x: input}) return fetch[:, 0] class GenePool(object): def __init__(self, size): self._generation = 0 # 世代数 self._selection_size = SELECTION_SIZE self._size = size self._population = [] # List[Genome] for i in range(size): self._population.append(Genome()) self._nn = None self._shuffle_arr = [i for i in range(self._size)] @classmethod def build_filename(cls, prefix): return prefix + "_p.npy" def save_population(self, ts): filename = './data/{}_{}_p.npy'.format(ts, self._generation) population = [[genome._gene, genome.get_fitness()] for genome in self._population] np.save(filename, population) def load_population(self, filename): arr = np.load(filename) for index, item in enumerate(arr): gene, fitness = item genome = self._population[index] # type Genome genome.set_gene(gene) genome.set_fitness(fitness) def get_genome(self, index): # type: (int) -> Genome return self._population[index] def print_all_genome(self): for genome in self._population: print(genome._gene) def init_world(self): self._nn = NN(self._population) def play(self, input): return self._nn.eval(input=input) def set_fitness(self, index, fitness): self._population[index].set_fitness(fitness) def get_fitness(self, index): return self._population[index].get_fitness() def get_elite_index(self): elite_index = 0 elite_fitness = 0 for index, genome in enumerate(self._population): fit = genome.get_fitness() if elite_fitness < fit: elite_fitness = fit elite_index = index return elite_index def mutation(self, elite_index=-1): for index, genome in enumerate(self._population): if index != elite_index: # print("Mutate[{}]: fitness={}".format(index, genome.get_fitness())) genome.mutate() def selection(self): self._generation += 1 self._tournament_selection() def _tournament_selection(self): random.shuffle(self._shuffle_arr) index_arr = self._shuffle_arr[0: self._selection_size] # print("tournament_index: {}".format(index_arr)) winner = self._population[index_arr[0]] # type: Genome losers = [] # List[Genome] for i in range(1, self._selection_size): winner_fitness = winner.get_fitness() challenger_index = index_arr[i] # print("challenger_index: {}".format(challenger_index)) challenger = self._population[challenger_index] # type: Genome challenger_fitness = challenger.get_fitness() if winner_fitness < challenger_fitness: loser = winner winner = challenger losers.append(loser) else: losers.append(challenger) # print("winner:loser = {}:{}".format(winner.get_fitness(), [loser.get_fitness() for loser in losers])) for loser in losers: # type: Genome winners_gene = winner.copy_gene() loser.set_gene(winners_gene) loser.set_fitness(winner.get_fitness()) return class World(object): POSITION_X = 0 POSITION_Y = 1 def __init__(self, id=0): self._id = id self._width = WIDTH self._height = HEIGHT self._agent_radius = AGENT_RADIUS # エージェントの半径 self._agent_speed = 5 self._agent_step_theta = AGENT_STEP_THETA # (rad) 1stepでの最大回転角度(10度) self._agent_sensor_strength_wall = SENSOR_LENGTH_WALL self._agent_sensor_strength_food = SENSOR_LENGTH_FOOD self._agent_sensor_strength_poison = SENSOR_LENGTH_POISON self._food_point = 10 self._poison_point = -10 self._food_radius = FOOD_RADIUS self._poison_radius = POISON_RADIUS def init(self, foods, poisons): self._agent_position = [WIDTH/2, HEIGHT/2] # スタート位置 self._agent_direction = 0 # 向いている方向(rad) self._agent_fitness = 0 self._foods = [] # [[1, 1], [1, 2]] # foodの位置 for food in foods: self._foods.append(list(food)) self._poisons = [] # [[10, 11], [12, 13]] # 毒位置 for poison in poisons: self._poisons.append(list(poison)) @staticmethod def meals(num, length): arr = np.random.rand(num * 2) * length meals = np.reshape(arr, (num, 2)) return meals.astype(np.int32) def get_fitness(self): return self._agent_fitness def _move_length(self, left, right): diff = right - left # 右方向が正 drive_strength = 1.0 - math.fabs(diff) move_length = drive_strength * self._agent_speed return move_length def _rotate(self, left, right): diff = left - right # 右方向が正 rotate_theta = diff * self._agent_step_theta return rotate_theta def move(self, output): # 引数はNNの出力(output) left, right = output rotate = self._rotate(left, right) move_length = self._move_length(left, right) self._agent_direction += rotate if math.pi * 2 < self._agent_direction: self._agent_direction = self._agent_direction - math.pi * 2 elif self._agent_direction < 0: self._agent_direction = self._agent_direction + math.pi * 2 diff_x = round(move_length * math.cos(self._agent_direction), 2) # 小数点2桁まで diff_y = round(move_length * math.sin(self._agent_direction), 2) # 小数点2桁まで current_x, current_y = self._agent_position next_x = current_x + diff_x next_y = current_y + diff_y next_x = min(self._width, max(0, next_x)) next_y = min(self._height, max(0, next_y)) self._agent_position[self.POSITION_X] = next_x self._agent_position[self.POSITION_Y] = next_y # print("[{}, {}] -> [{}, {}]".format(current_x, current_y, next_x, next_y)) return next_x - current_x, next_y - current_y def _sensor_diff(self, p1, p2): p1x = p1[self.POSITION_X] p1y = p1[self.POSITION_Y] p2x = p2[self.POSITION_X] p2y = p2[self.POSITION_Y] distance = math.sqrt((p2x - p1x)**2 + (p2y - p1y)**2) radian = math.atan2(p2y - p1y, p2x - p1x) radian = radian if 0 <= radian else 2 * math.pi + radian return distance, radian def _get_min_sensor_diff0(self, target_arr, sensor_length): distance, radian = min(target_arr, key=lambda x: x[0]) sensor_strength = 0.0 sensor_theta = 0.0 index = -1 if distance < sensor_length: sensor_strength = (sensor_length - distance) / sensor_length sensor_theta = radian for i, item in enumerate(target_arr): d, r = item if d == distance and r == radian: index = i break return sensor_strength, sensor_theta, index def _get_min_sensor_diff(self, target_arr, sensor_length): distance = 0 radian = 0 index = -1 agent_view_left = self._agent_direction - math.pi / 2 agent_view_right = self._agent_direction + math.pi / 2 for i, item in enumerate(target_arr): d, r = item if sensor_length <= d: continue if r <= agent_view_left or agent_view_right <= r: continue if index < 0: index = i distance = (sensor_length - d) / sensor_length radian = (self._agent_direction - r) / (math.pi / 2) elif d < distance: index = i distance = (sensor_length - d) / sensor_length radian = (self._agent_direction - r) / (math.pi / 2) return distance, radian, index def _collision(self, target_arr, sensor_length): index = -1 for i, item in enumerate(target_arr): d, r = item if sensor_length <= d: continue return i return index def eat(self, print_log=False): # エージェントにぶつかったら食べる pos = self._agent_position eaten_food = None # 餌との接触 if 0 < len(self._foods): eat_area_food = self._agent_radius + self._food_radius food_diff_arr = [self._sensor_diff(pos, food) for food in self._foods] findex = self._collision(food_diff_arr, eat_area_food) if 0 <= findex: eaten_food = self._foods.pop(findex) if print_log: print("eat: food[{}]={}".format(findex, eaten_food)) self._agent_fitness += self._food_point eaten_poison = None # 毒との接触 if 0 < len(self._poisons): eat_area_poison = self._agent_radius + self._food_radius poison_diff_arr = [self._sensor_diff(pos, poison) for poison in self._poisons] pindex = self._collision(poison_diff_arr, eat_area_poison) if 0 <= pindex: eaten_poison = self._poisons.pop(pindex) if print_log: print("eat: poison[{}]={}".format(pindex, eaten_poison)) self._agent_fitness += self._poison_point return eaten_food, eaten_poison def sensing(self): pos = self._agent_position x = pos[self.POSITION_X] y = pos[self.POSITION_Y] # 壁との距離と角度 wall_diff_arr = [self._sensor_diff(pos, wall) for wall in [[x, 0], [0, y], [x, self._height], [self._width, y]]] wall_sensor_strength, wall_sensor_theta, _ = self._get_min_sensor_diff(wall_diff_arr, self._agent_sensor_strength_wall) # 餌との距離と角度 food_sensor_strength = 0.0 food_sensor_theta = 0.0 if 0 < len(self._foods): food_diff_arr = [self._sensor_diff(pos, food) for food in self._foods] food_sensor_strength, food_sensor_theta, _ = self._get_min_sensor_diff(food_diff_arr, self._agent_sensor_strength_food) # 毒との距離と角度 poison_sensor_strength = 0.0 poison_sensor_theta = INPUT_BIAS # bias if 0 < len(self._poisons): poison_diff_arr = [self._sensor_diff(pos, poison) for poison in self._poisons] poison_sensor_strength, poison_sensor_theta, _ = self._get_min_sensor_diff(poison_diff_arr, self._agent_sensor_strength_poison) return np.array([wall_sensor_strength, wall_sensor_theta, food_sensor_strength, food_sensor_theta, poison_sensor_strength, poison_sensor_theta]).astype(np.float32) def save_meal(ts, foods, poisons): filename = './data/{}_m.npy'.format(ts) meals = [foods, poisons] np.save(filename, meals) def load_meal(filename): arr = np.load(filename) foods, poisons = arr return foods, poisons def train(gp, generation, size, step): ts = datetime.datetime.now().strftime("%H%M%S") num_food = NUM_FOOD num_poison = NUM_POISON foods = World.meals(num_food, WIDTH) poisons = World.meals(num_poison, WIDTH) save_meal(ts, foods, poisons) worlds = [World(i) for i in range(size)] for i in range(generation): print("# Generation: %d" % i) if i % 10 == 0: gp.save_population(ts) # gp.print_all_genome() # init world gp.init_world() for world in worlds: world.init(foods.copy(), poisons.copy()) sess = tf.Session() with sess.as_default(): tf.global_variables_initializer().run() input = np.zeros(Genome.NUM_FEATURE * size) for _ in range(step): move_arr = [] # set input array start = 0 for world in worlds: inp = world.sensing() end = start + len(inp) input[start:end] = inp start = end input_placeholder = np.reshape(input, (size, 1, Genome.NUM_FEATURE)) command = gp.play(input_placeholder) for index, world in enumerate(worlds): cmd = command[index] diff_x, diff_y = world.move(cmd) move_arr.append([diff_x, diff_y]) world.eat() # set fitness for index, world in enumerate(worlds): fit = world.get_fitness() print("Genome[{}]: fitness={}".format(index, fit)) gp.set_fitness(index, fit) gp.selection() elite_index = gp.get_elite_index() # elete strategy gp.mutation(elite_index=elite_index) def _draw_circle(c0, food, color="#ffffff"): x, y = food x1 = x - FOOD_RADIUS / 2 y1 = y - FOOD_RADIUS / 2 x2 = x + FOOD_RADIUS / 2 y2 = y + FOOD_RADIUS / 2 tag = "food{}".format(food) c0.create_oval(x1, y1, x2, y2, fill=color, outline=color, tags=tag) def play(gp, size, step, file, id, meal_file): foods, poisons = load_meal(meal_file) # foods = World.meals(NUM_FOOD, WIDTH) # poisons = World.meals(NUM_POISON, WIDTH) worlds = [World(i) for i in range(size)] gp.init_world() for world in worlds: world.init(foods.copy(), poisons.copy()) gp.load_population(file) import Tkinter as tk c0 = tk.Canvas(width=WIDTH, height=HEIGHT) c0.pack() # create agent agent_tag = 'agent' x1 = WIDTH / 2 - AGENT_RADIUS / 2 y1 = HEIGHT / 2 - AGENT_RADIUS / 2 x2 = WIDTH / 2 + AGENT_RADIUS / 2 y2 = HEIGHT / 2 + AGENT_RADIUS / 2 c0.create_oval(x1, y1, x2, y2, fill='#ff0000', tags=agent_tag) # create food for index, food in enumerate(foods): x, y = food x1 = x - FOOD_RADIUS / 2 y1 = y - FOOD_RADIUS / 2 x2 = x + FOOD_RADIUS / 2 y2 = y + FOOD_RADIUS / 2 tag = "food{}".format(food) print("create food: {}".format(tag)) c0.create_oval(x1, y1, x2, y2, fill='#000000', tags=tag) sess = tf.Session() with sess.as_default(): tf.global_variables_initializer().run() input = np.zeros(Genome.NUM_FEATURE * size) for _ in range(step): # set input array start = 0 spy_inpu = None for idx, world in enumerate(worlds): inp = world.sensing() if idx == id: spy_inpu = inp end = start + len(inp) input[start:end] = inp start = end input_placeholder = np.reshape(input, (size, 1, Genome.NUM_FEATURE)) command = gp.play(input_placeholder) cmd = command[id] x, y = worlds[id].move(cmd) print("in: {}, out: {}".format(spy_inpu, cmd)) # print("move=[{}, {}]".format(x, y)) food, poison = worlds[id].eat(print_log=True) if food: tag = "food{}".format(food) print("delete:{}".format(tag)) # c0.delete(tag) _draw_circle(c0, food) time.sleep(0.1) c0.move(agent_tag, x, y) c0.update() tk.mainloop() def show(filename): arr = np.load(filename) for index, item in enumerate(arr): print("{}:{}".format(index, list(item))) tf.app.flags.DEFINE_string("command", "train", "train, play, show") tf.app.flags.DEFINE_string("file", "./data/population.npy", "Population file") tf.app.flags.DEFINE_string("meal", "./data/population_m.npy", "Meal file") tf.app.flags.DEFINE_integer("index", 0, "Agent index") def main(args): flags = tf.app.flags.FLAGS time_start = time.time() np.random.seed(0) generation = GENERATION step = STEP # 各個体が何ステップ動くか size = POPULATION_SIZE # Population size gp = GenePool(size) if flags.command == 'train': train(gp, generation, size, step) elif flags.command == 'play': play(gp, size, step, flags.file, flags.index, flags.meal) elif flags.command == 'show': show(flags.file) time_end = time.time() print("time: {}s".format(time_end - time_start)) if __name__ == '__main__': tf.app.run()
adamrocker/ishinomakihackathon2017
al/app/al.py
al.py
py
21,938
python
en
code
0
github-code
50
41877022835
#Emrich-Micahel Perrier #Lab 16 from random import randrange def roll(): num = randrange(1,7) return num def main(): ones = 0 twos = 0 threes = 0 for i in range (30): num1 = roll() print(num1, end=" ") if num1 == 1: ones += 1 elif num1 == 2: twos += 1 elif num1 == 3: threes += 1 print() print("You have rolled", ones, "ones") print("You have rolled", twos, "twos") print("You have rolled", threes, "threes") def main2(): counter=[0,0,0,0,0,0,0,0,0,0,0,0,0] for i in range(1000): red = roll() green = roll() r = red+green counter[r] += 1 print(counter) for i in range(len(counter)): print(i, "\t",counter[i]) main2()
emrichmp/Python-Programs
DiceCounter.py
DiceCounter.py
py
801
python
en
code
0
github-code
50
29340197096
#!/usr/bin/python3 import sys import io if len(sys.argv)<3: print('Podaj nazwe pliku txt wej i wyj oraz liczbe - 1 > Z Windows -> Unix') print('2 Z Unix > Windows') sys.exit(1) with open(sys.argv[1], 'r') as file_input: content = file_input.read() if int(sys.argv[2]) == 1: with open(sys.argv[1], 'w', newline='\n') as output: output.write(content) elif int(sys.argv[2]) == 2: with open(sys.argv[1], 'w', newline='\r\n') as output: output.write(content)
TryUnder/DeTryRepo
University/Developer_Environment/Bash/Python/Zad_8.2.py
Zad_8.2.py
py
499
python
en
code
0
github-code
50
71074366556
# -*- coding: utf-8 -*- from environment import GraphicDisplay, Env class ValueIteration: def __init__(self, env): # 환경 객체 생성 self.env = env # 가치 함수를 2차원 리스트로 초기화 self.value_table = [[0.0] * env.width for _ in range(env.height)] # 감가율 self.discount_factor = 0.9 # 가치 이터레이션 # 벨만 최적 방정식을 통해 다음 가치 함수 계산 def value_iteration(self): next_value_table = [[0.0] * self.env.width for _ in range(self.env.height)] for state in self.env.get_all_states(): if state == [2, 2]: next_value_table[state[0]][state[1]] = 0.0 continue # 가치 함수를 위한 빈 리스트 value_list = [] # 가능한 모든 행동에 대해 계산 for action in self.env.possible_actions: next_state = self.env.state_after_action(state, action) reward = self.env.get_reward(state, action) next_value = self.get_value(next_state) value_list.append((reward + self.discount_factor * next_value)) # 최댓값을 다음 가치 함수로 대입 next_value_table[state[0]][state[1]] = round(max(value_list), 2) self.value_table = next_value_table # 현재 가치 함수로부터 행동을 반환 def get_action(self, state): action_list = [] max_value = -99999 if state == [2, 2]: return [] # 모든 행동에 대해 큐함수 (보상 + (감가율 * 다음 상태 가치함수))를 계산 # 최대 큐 함수를 가진 행동(복수일 경우 여러 개)을 반환 for action in self.env.possible_actions: next_state = self.env.state_after_action(state, action) reward = self.env.get_reward(state, action) next_value = self.get_value(next_state) value = (reward + self.discount_factor * next_value) if value > max_value: action_list.clear() action_list.append(action) max_value = value elif value == max_value: action_list.append(action) return action_list def get_value(self, state): return round(self.value_table[state[0]][state[1]], 2) if __name__ == "__main__": env = Env() value_iteration = ValueIteration(env) grid_world = GraphicDisplay(value_iteration) grid_world.mainloop()
rlcode/reinforcement-learning-kr
1-grid-world/2-value-iteration/value_iteration.py
value_iteration.py
py
2,586
python
ko
code
351
github-code
50
32592412403
import sys def isPrime(n): if n==1: return False else: for i in range(2, int(n**0.5)+1): if n%i == 0: return False return True A,B = map(int,sys.stdin.readline().split()) answer = [] for x in range(A,B+1): if isPrime(x): answer.append(x) for x in answer: print(x)
san9w9n/2020_WINTER_ALGO
1929.py
1929.py
py
359
python
en
code
0
github-code
50
23751705994
import customtkinter as ctk class LoadingBox(ctk.CTk): def __init__(self, title: str = "Loading..."): super().__init__() self.title(title) self.geometry("400x150") self.resizable(False, False) self.base_frame = ctk.CTkFrame(self) self.base_frame.pack(fill="both", expand=True, padx=10, pady=10) self.status_label = ctk.CTkLabel(self.base_frame, text="0%") self.status_label.pack(fill="both", expand=True, padx=10, pady=10) self.progress_bar = ctk.CTkProgressBar(self.base_frame) self.progress_bar.pack(fill="both", expand=True, padx=10, pady=20) def set_progress(self, progress: float, status: str = ""): self.progress_bar.set(progress) self.status_label.configure(text=f"{progress * 100:.0f}% {status}") def start(self): self.focus_force() self.mainloop()
Tremirre/CassandraRentalApp
rental/ui/loading.py
loading.py
py
887
python
en
code
0
github-code
50
18304840633
from openerp.osv import fields,osv from openerp.tools import sql from openerp.tools.translate import _ import openerp.addons.decimal_precision as dp import time from datetime import datetime, date from openerp.tools import DEFAULT_SERVER_DATE_FORMAT, DEFAULT_SERVER_DATETIME_FORMAT, float_compare class tms_expense_analysis(osv.osv): _name = "tms.expense.analysis" _description = "Travel Expenses Analisys" _auto = False _rec_name = 'name' _columns = { 'driver_helper' : fields.boolean('Driver Helper'), 'office_id' : fields.many2one('tms.office', 'Office', readonly=True), 'name' : fields.char('Name', size=64, readonly=True), 'date' : fields.date('Date', readonly=True), 'year' : fields.char('Year', size=4, readonly=True), 'day' : fields.char('Day', size=128, readonly=True), 'month' : fields.selection([('01',_('January')), ('02',_('February')), ('03',_('March')), ('04',_('April')), ('05',_('May')), ('06',_('June')), ('07',_('July')), ('08',_('August')), ('09',_('September')), ('10',_('October')), ('11',_('November')), ('12',_('December'))], 'Month',readonly=True), 'state' : fields.selection([ ('draft', 'Draft'), ('approved', 'Approved'), ('confirmed', 'Confirmed'), ('cancel', 'Cancelled') ], 'State',readonly=True), 'employee_id' : fields.many2one('hr.employee', 'Driver', readonly=True), 'unit_id' : fields.many2one('fleet.vehicle', 'Unit', readonly=True), 'unit_char' : fields.char('Unidad', size=64, readonly=True), 'currency_id' : fields.many2one('res.currency', 'Currency', readonly=True), 'product_id' : fields.many2one('product.product', 'Line', readonly=True), 'expense_line_description' : fields.char('Description', size=256, readonly=True), # 'travel_id' : fields.many2one('tms.travel', 'Travel', readonly=True), # 'route_id' : fields.many2one('tms.route', 'Route', readonly=True), # 'waybill_income' : fields.float('Waybill Amount', digits=(18,2), readonly=True), # 'travels' : fields.integer('Travels', readonly=True), 'qty' : fields.float('Qty', digits=(18,2), readonly=True), 'price_unit' : fields.float('Price Unit', digits=(18,4), readonly=True), 'subtotal' : fields.float('SubTotal', digits=(18,2), readonly=True), 'operation_id' : fields.many2one('tms.operation', 'Operation', readonly=True), } # _order = "office_id, date_order, name" def init(self, cr): sql.drop_view_if_exists(cr, 'tms_expense_analysis') cr.execute (""" CREATE OR REPLACE VIEW tms_expense_analysis as select b.id as id, a.driver_helper, a.office_id, a.name, a.date, to_char(date_trunc('day',a.date), 'YYYY') as year, to_char(date_trunc('day',a.date), 'MM') as month, to_char(date_trunc('day',a.date), 'YYYY-MM-DD') as day, a.state, a.employee_id, a.unit_id, fv.name as unit_char, a.currency_id, b.product_id, b.name expense_line_description, b.product_uom_qty qty, b.price_unit, b.price_subtotal subtotal, b.operation_id from tms_expense a inner join tms_expense_line b on a.id = b.expense_id left join fleet_vehicle fv on fv.id=a.unit_id --inner join tms_travel c on a.id = c.expense_id where a.state <> 'cancel' union select b.id as id, a.driver_helper, a.office_id, a.name, a.date, to_char(date_trunc('day',a.date), 'YYYY') as year, to_char(date_trunc('day',a.date), 'MM') as month, to_char(date_trunc('day',a.date), 'YYYY-MM-DD') as day, a.state, a.employee_id, a.unit_id, fv.name as unit_char, a.currency_id, b.product_id, b.name expense_line_description, b.product_uom_qty qty, b.price_unit, b.price_subtotal subtotal, b.operation_id from tms_expense a inner join tms_expense_line b on a.id = b.expense_id left join fleet_vehicle fv on fv.id=a.unit_id --inner join tms_travel c on a.id = c.expense2_id where a.state <> 'cancel' order by office_id, name, date ; """) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
jesramirez/tmsv8
tms_analysis/tms_expense_analysis.py
tms_expense_analysis.py
py
4,475
python
en
code
2
github-code
50
10733485967
from tkinter import * from tkinter import ttk from PIL import Image, ImageTk from Image_Event import TakeRating import getRecomentation as gR from ClientR import * root = Tk() root.geometry('1000x700') def page1R(): frame_2R.pack_forget() frame_3R.pack_forget() frame_4R.pack_forget() frame_1R.pack() panel_R.pack() def page2R(): frame_1R.pack_forget() frame_3R.pack_forget() frame_4R.pack_forget() frame_2R.pack() panel_R.pack() def page3R(): frame_1R.pack_forget() frame_2R.pack_forget() frame_4R.pack_forget() frame_3R.pack() panel_R.pack() def page4R(): frame_1R.pack_forget() frame_2R.pack_forget() frame_3R.pack_forget() frame_4R.pack() panel_R.pack() panel_R = PanedWindow(root, width=200, height=100) l=Label(panel_R,text="Recomment Bassed On:") l.grid(row=0, column=0) page1btnR = Button(panel_R, text="Like Base", command=page1R) page1btnR.grid(row=0, column=1) page2btnR = Button(panel_R, text="SimpleItemCF Base", command=page2R) page2btnR.grid(row=0, column=2) page3btnR = Button(panel_R, text="SimpleUserCF Base", command=page3R) page3btnR.grid(row=0, column=3) page4btnR = Button(panel_R, text="ContentRecs Base", command=page4R) page4btnR.grid(row=0, column=4) out=Button(panel_R, text="logOut", command=lambda:me(root)) out.grid(row=0, column=5) panel_R.pack() frame_1R = Frame(root,width=200, height=200 ) rec1=gR.likedbased() l=Label(frame_1R,text=rec1).pack() frame_2R = Frame(root,width=200, height=200 ) rec2=gR.SimpleItemCF() l2=Label(frame_2R,text=rec2).pack() frame_3R = Frame(root,width=200, height=200 ) rec3=gR.SimpleUserCF() l3=Label(frame_3R,text=rec3).pack() rec4=gR.ContentRecs() frame_4R = Frame(root,text=rec4,width=200, height=200 ) l4=Label(frame_4R).pack() frame_1R.pack() frame_1 = Frame(root,width=200, height=200 ) p=ImageTk.PhotoImage(Image.open("img/Toy_Story_poster.png").resize((200, 200), Image.ANTIALIAS)) b11=Button(frame_1, image=p,command=lambda:TakeRating(61)) b11.grid(row=0, column=0) p2=ImageTk.PhotoImage(Image.open("img/HHW.jpg").resize((200, 200), Image.ANTIALIAS)) b12=Button(frame_1,image=p2,command=lambda:TakeRating(161582)) b12.grid(row=0, column=1) p3=ImageTk.PhotoImage(Image.open("img/th.jpg").resize((200, 200), Image.ANTIALIAS)) b13=Button(frame_1, image=p3,command=lambda:TakeRating(161155)) b13.grid(row=0, column=2) p4=ImageTk.PhotoImage(Image.open("img/th (1).jpg").resize((200, 200), Image.ANTIALIAS)) b14=Button(frame_1, image=p4,command=lambda:TakeRating(160567)) b14.grid(row=0, column=3) p5=ImageTk.PhotoImage(Image.open("img/th (2).jpg").resize((200, 200), Image.ANTIALIAS)) b15=Button(frame_1, image=p5,command=lambda:TakeRating(160438)) b15.grid(row=0, column=4) p6=ImageTk.PhotoImage(Image.open("img/th (3).jpg").resize((200, 200), Image.ANTIALIAS)) b16=Button(frame_1, image=p6,command=lambda:TakeRating(160080)) b16.grid(row=1, column=0) p7=ImageTk.PhotoImage(Image.open("img/th (4).jpg").resize((200, 200), Image.ANTIALIAS)) b17=Button(frame_1, image=p7,command=lambda:TakeRating(159858)) b17.grid(row=1, column=1) p8=ImageTk.PhotoImage(Image.open("img/th (5).jpg").resize((200, 200), Image.ANTIALIAS)) b18=Button(frame_1, image=p8,command=lambda:TakeRating(159690)) b18.grid(row=1, column=2) p9=ImageTk.PhotoImage(Image.open("img/th (6).jpg").resize((200, 200), Image.ANTIALIAS)) b19=Button(frame_1, image=p9,command=lambda:TakeRating(158956)) b19.grid(row=1, column=3) p10=ImageTk.PhotoImage(Image.open("img/th (7).jpg").resize((200, 200), Image.ANTIALIAS)) b110=Button(frame_1, image=p10,command=lambda:TakeRating(36)) b110.grid(row=1, column=4) frame_2 = Frame(root, width=200, height=200 ) p11=ImageTk.PhotoImage(Image.open("img/th (8).jpg").resize((200, 200), Image.ANTIALIAS)) b11=Button(frame_2, image=p11,command=lambda:TakeRating(126)) b11.grid(row=0, column=0) p12=ImageTk.PhotoImage(Image.open("img/th (9).jpg").resize((200, 200), Image.ANTIALIAS)) b12=Button(frame_2, image=p12,command=lambda:TakeRating(95720)) b12.grid(row=0, column=1) p13=ImageTk.PhotoImage(Image.open("img/th (10).jpg").resize((200, 200), Image.ANTIALIAS)) b13=Button(frame_2, image=p13,command=lambda:TakeRating(93766)) b13.grid(row=0, column=2) p14=ImageTk.PhotoImage(Image.open("img/th (11).jpg").resize((200, 200), Image.ANTIALIAS)) b14=Button(frame_2, image=p14,command=lambda:TakeRating(95165)) b14.grid(row=0, column=3) p15=ImageTk.PhotoImage(Image.open("img/th (12).jpg").resize((200, 200), Image.ANTIALIAS)) b15=Button(frame_2, image=p15,command=lambda:TakeRating(95207)) b15.grid(row=0, column=4) p16=ImageTk.PhotoImage(Image.open("img/th (13).jpg").resize((200, 200), Image.ANTIALIAS)) b16=Button(frame_2, image=p16,command=lambda:TakeRating(95307)) b16.grid(row=1, column=0) p17=ImageTk.PhotoImage(Image.open("img/th (14).jpg").resize((200, 200), Image.ANTIALIAS)) b17=Button(frame_2, image=p17,command=lambda:TakeRating(95449)) b17.grid(row=1, column=1) p18=ImageTk.PhotoImage(Image.open("img/th (15).jpg").resize((200, 200), Image.ANTIALIAS)) b18=Button(frame_2, image=p18,command=lambda:TakeRating(95510)) b18.grid(row=1, column=2) p19=ImageTk.PhotoImage(Image.open("img/th (16).jpg").resize((200, 200), Image.ANTIALIAS)) b19=Button(frame_2, image=p19,command=lambda:TakeRating(95543)) b19.grid(row=1, column=3) p20=ImageTk.PhotoImage(Image.open("img/th (17).jpg").resize((200, 200), Image.ANTIALIAS)) b110=Button(frame_2, image=p20,command=lambda:TakeRating(95583)) b110.grid(row=1, column=4) frame_3 = Frame(root, width=200, height=200 ) p21=ImageTk.PhotoImage(Image.open("img/th (18).jpg").resize((200, 200), Image.ANTIALIAS)) b11=Button(frame_3, image=p21,command=lambda:TakeRating(95744)) b11.grid(row=0, column=0) p22=ImageTk.PhotoImage(Image.open("img/th (19).jpg").resize((200, 200), Image.ANTIALIAS)) b12=Button(frame_3, image=p22,command=lambda:TakeRating(95965)) b12.grid(row=0, column=1) p23=ImageTk.PhotoImage(Image.open("img/th (20).jpg").resize((200, 200), Image.ANTIALIAS)) b13=Button(frame_3, image=p23,command=lambda:TakeRating(96079)) b13.grid(row=0, column=2) p24=ImageTk.PhotoImage(Image.open("img/th (21).jpg").resize((200, 200), Image.ANTIALIAS)) b14=Button(frame_3, image=p24,command=lambda:TakeRating(96373)) b14.grid(row=0, column=3) p25=ImageTk.PhotoImage(Image.open("img/th (22).jpg").resize((200, 200), Image.ANTIALIAS)) b15=Button(frame_3, image=p25,command=lambda:TakeRating(99145)) b15.grid(row=0, column=4) p26=ImageTk.PhotoImage(Image.open("img/th (23).jpg").resize((200, 200), Image.ANTIALIAS)) b16=Button(frame_3, image=p26,command=lambda:TakeRating(100083)) b16.grid(row=1, column=0) p27=ImageTk.PhotoImage(Image.open("img/th (24).jpg").resize((200, 200), Image.ANTIALIAS)) b17=Button(frame_3, image=p27,command=lambda:TakeRating(100383)) b17.grid(row=1, column=1) p28=ImageTk.PhotoImage(Image.open("img/th (25).jpg").resize((200, 200), Image.ANTIALIAS)) b18=Button(frame_3, image=p28,command=lambda:TakeRating(104218)) b18.grid(row=1, column=2) p29=ImageTk.PhotoImage(Image.open("img/th (26).jpg").resize((200, 200), Image.ANTIALIAS)) b19=Button(frame_3, image=p29,command=lambda:TakeRating(106920)) b19.grid(row=1, column=3) p30=ImageTk.PhotoImage(Image.open("img/th (27).jpg").resize((200, 200), Image.ANTIALIAS)) b110=Button(frame_3, image=p30,command=lambda:TakeRating(108715)) b110.grid(row=1, column=4) frame_4 = Frame(root, width=200, height=200 ) p31=ImageTk.PhotoImage(Image.open("img/th (28).jpg").resize((200, 200), Image.ANTIALIAS)) b11=Button(frame_4, image=p31,command=lambda:TakeRating(109673)) b11.grid(row=0, column=0) p32=ImageTk.PhotoImage(Image.open("img/th (29).jpg").resize((200, 200), Image.ANTIALIAS)) b12=Button(frame_4, image=p32,command=lambda:TakeRating(110102)) b12.grid(row=0, column=1) p33=ImageTk.PhotoImage(Image.open("img/th (30).jpg").resize((200, 200), Image.ANTIALIAS)) b13=Button(frame_4, image=p33,command=lambda:TakeRating(111781)) b13.grid(row=0, column=2) p34=ImageTk.PhotoImage(Image.open("img/th (31).jpg").resize((200, 200), Image.ANTIALIAS)) b14=Button(frame_4, image=p34,command=lambda:TakeRating(112112)) b14.grid(row=0, column=3) p35=ImageTk.PhotoImage(Image.open("img/th (32).jpg").resize((200, 200), Image.ANTIALIAS)) b15=Button(frame_4, image=p35,command=lambda:TakeRating(112850)) b15.grid(row=0, column=4) p36=ImageTk.PhotoImage(Image.open("img/th (33).jpg").resize((200, 200), Image.ANTIALIAS)) b16=Button(frame_4, image=p36,command=lambda:TakeRating(112852)) b16.grid(row=1, column=0) p37=ImageTk.PhotoImage(Image.open("img/th (34).jpg").resize((200, 200), Image.ANTIALIAS)) b17=Button(frame_4, image=p37,command=lambda:TakeRating(113225)) b17.grid(row=1, column=1) p38=ImageTk.PhotoImage(Image.open("img/th (35).jpg").resize((200, 200), Image.ANTIALIAS)) b18=Button(frame_4, image=p38,command=lambda:TakeRating(113829)) b18.grid(row=1, column=2) p39=ImageTk.PhotoImage(Image.open("img/th (36).jpg").resize((200, 200), Image.ANTIALIAS)) b19=Button(frame_4, image=p39,command=lambda:TakeRating(114662)) b19.grid(row=1, column=3) p40=ImageTk.PhotoImage(Image.open("img/th (37).jpg").resize((200, 200), Image.ANTIALIAS)) b110=Button(frame_4, image=p40,command=lambda:TakeRating(114762)) b110.grid(row=1, column=4) def page1(): frame_2.pack_forget() frame_3.pack_forget() frame_4.pack_forget() frame_1.pack() panel_R.pack() def page2(): frame_1.pack_forget() frame_3.pack_forget() frame_4.pack_forget() frame_2.pack() panel_R.pack() def page3(): frame_2.pack_forget() frame_1.pack_forget() frame_4.pack_forget() frame_3.pack() panel_R.pack() def page4(): frame_2.pack_forget() frame_3.pack_forget() frame_1.pack_forget() frame_4.pack() panel_R.pack() panel_ .pack() panel_ = PanedWindow(root, width=200, height=100) page1btn = Button(panel_, text="Page 1", command=page1) page1btn.grid(row=0, column=0) page2btn = Button(panel_, text="Page 2", command=page2) page2btn.grid(row=0, column=1) page3btn = Button(panel_, text="Page 3", command=page3) page3btn.grid(row=0, column=2) page4btn = Button(panel_, text="Page 4", command=page4) page4btn.grid(row=0, column=3) panel_.pack() frame_1.pack() root.mainloop()
neerajrp1999/Movie-App-Including-recommender-system
Login/ClienPage/Home.py
Home.py
py
10,394
python
en
code
0
github-code
50
3210927870
import unittest class MajorityElement(unittest.TestCase): """ Given an array nums of size n, return the majority element. The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array. """ def majority_element(self, nums): """ :type nums: List[int] :rtype: int """ # alt solution # nums.sort() # return nums[len(nums)//2] majority = len(nums) / 2 dic = {} for n in nums: dic[n] = dic.get(n, 0) + 1 if dic[n] > majority: return n def test_majority(self): nums1 = [3,2,3] nums2 = [2,2,1,1,1,2,2] self.assertEqual(self.majority_element(nums1), 3) self.assertEqual(self.majority_element(nums2), 2)
EugeneStill/PythonCodeChallenges
majority_element.py
majority_element.py
py
863
python
en
code
0
github-code
50
8542534731
from COCODataUtility import COCODataCategories, COCODataImage, COCODataAnnotation, COCODataWriter categories = COCODataCategories() categories.add_category("Cabinet_Handle") categories.add_category("Cabinet_Door") data_writer = COCODataWriter(categories) image = COCODataImage(360, 640, 'angle13_Color.png') segmentation = [221,70,241,72,239,76,232,78,236,107,245,108,244,114,236,116,228,115,228,110,233,109,228,77,221,78] annotation = COCODataAnnotation(False, 'angle13_Color.png', segmentation, 'Cabinet_Handle') data_writer.add_image(image) data_writer.add_annotation(annotation) segmentation = [209,25,415,17,402,139,224,151] annotation = COCODataAnnotation(False, 'angle13_Color.png', segmentation, 'Cabinet_Door') data_writer.add_annotation(annotation) segmentation = [232,151,402,147,392,239,237,231] annotation = COCODataAnnotation(False, 'angle13_Color.png', segmentation, 'Cabinet_Door') data_writer.add_annotation(annotation) image = COCODataImage(360, 640, 'angle10_Color.png') segmentation = [229,82,247,80,249,86,244,87,247,94,250,119,253,123,250,129,244,129,237,129,234,126,237,121,246,120,243,98,241,92,237,88,232,90,228,87] annotation = COCODataAnnotation(False, 'angle10_Color.png', segmentation, 'Cabinet_Handle') data_writer.add_image(image) data_writer.add_annotation(annotation) segmentation = [215,35,406,14,393,131,231,169] annotation = COCODataAnnotation(False, 'angle10_Color.png', segmentation, 'Cabinet_Door') data_writer.add_annotation(annotation) segmentation = [221,152,393,139,385,230,232,246] annotation = COCODataAnnotation(False, 'angle10_Color.png', segmentation, 'Cabinet_Door') data_writer.add_annotation(annotation) data_writer.write_data('output.json')
JanusMaple/COCOData_Writer
COCODataUtility_Demo.py
COCODataUtility_Demo.py
py
1,701
python
en
code
2
github-code
50
32752491690
import json from pprint import pprint from bs4 import BeautifulSoup # Read database data - after it has been encoded in json json_data = open('db.json') data = json.load(json_data)[0]['hubot:storage'] macros = json.loads(data)['macros'] json_data.close() # Sort the data alphabetically macros = sorted(macros, key=lambda k: k['macro']) index = 0 count = 1 p_num = 1 while index < len(macros): # Generate Page Header page = '<!-- THIS FILE WAS AUTO-GENERATED - DO NOT EDIT THIS FILE -->' page = page + '<div class="container-2 col-lg-12">'; # Add the next 16 macros to the page while count <= 16 and index < len(macros): page = page + '<div class="item col-md-3"><img class="img-responsive" src="' + macros[index]['url'] + '"/><div class="col-md-3 item-title">' + macros[index]['macro'] + '</div></div>' count = count + 1 index = index + 1 page = page + '</div>' # Write the html page soup = BeautifulSoup(page) fo = open('www/gen/page_' + str(p_num) + '.html', "w+") fo.write(soup.prettify()) fo.close() # Increment Variables for next page p_num = p_num + 1 count = 1 # Build the paginator with open('www/index.html', 'r') as myfile: home = myfile.read() home_page = BeautifulSoup(home) paginator = home_page.find('ul', {"class":"pagination"}) paginator.clear() paginator.append('<li id="back" data-min="1"><a href="#">&laquo;</a></li>') paginator.append('<li id="1" class="p-btn active"><a href="#">1</a></li>') cur_page = 2 while cur_page < p_num: paginator.append('<li id="' + str(cur_page) + '" class="p-btn"><a href="#">' + str(cur_page) + '</a></li>') cur_page = cur_page + 1; paginator.append('<li id="next" data-max="' + str(p_num - 1) + '">' + '<a href="#">&raquo;</a></li>') # Write new paginator fo = open('www/index.html', "w+") fo.write(home_page.prettify(formatter=None)) fo.close()
ericluii/hubot-webserver
macro_html_gen.py
macro_html_gen.py
py
1,854
python
en
code
1
github-code
50
26584824757
from confluent_kafka import Consumer, Message from django.conf import settings KAFKA_RUNNING: bool = True def kafka_consumer_run() -> None: conf = { "bootstrap.servers": settings.KAFKA_BOOTSTRAP_SERVER, "group.id": settings.KAFKA_GROUP_ID, "auto.offset.reset": settings.KAFKA_OFFSET_RESET if hasattr(settings, "KAFKA_OFFSET_RESET") else "earliest", } consumer: Consumer = Consumer(conf) topics: list[str] = [key for key, _ in settings.KAFKA_TOPICS.items()] consumer.subscribe(topics) try: while KAFKA_RUNNING: msg: Message = consumer.poll(1.0) if msg is None: continue if msg.error(): print("Consumer error: {}".format(msg.error())) continue callback: str = settings.KAFKA_TOPICS.get(msg.topic()) if callback is None: print("No callback found for topic: {}".format(msg.topic())) continue # call the callback string as function dynamic_call_action(callback, consumer, msg) except Exception as e: print(e) finally: consumer.close() def kafka_consumer_shutdown() -> None: global KAFKA_RUNNING KAFKA_RUNNING = False def dynamic_call_action(action: str, consumer: Consumer, msg: Message) -> None: # get path removing last part splited by dot module_path: str = ".".join(action.split(".")[:-1]) # get path keeping last part splited by dot function_name: str = action.split(".")[-1] # import module try: module = __import__(module_path, fromlist=[function_name]) except: print("No module found for action: {}".format(action)) return # get function from module try: function = getattr(module, function_name) except: print("No function found for action: {}".format(action)) return # call function try: function(consumer=consumer, msg=msg) except: print("Error calling action: {}".format(action)) return
luizSilva976/django_kafka
django_kafka/consumer.py
consumer.py
py
2,091
python
en
code
null
github-code
50
11053824580
from odoo.tests.common import TransactionCase class TestSaleProject(TransactionCase): @classmethod def setUpClass(cls): super().setUpClass() cls.analytic_account_sale = cls.env['account.analytic.account'].create({ 'name': 'Project for selling timesheet - AA', 'code': 'AA-2030' }) # Create projects cls.project_global = cls.env['project.project'].create({ 'name': 'Global Project', 'analytic_account_id': cls.analytic_account_sale.id, }) cls.project_template = cls.env['project.project'].create({ 'name': 'Project TEMPLATE for services', }) cls.project_template_state = cls.env['project.task.type'].create({ 'name': 'Only stage in project template', 'sequence': 1, 'project_ids': [(4, cls.project_template.id)] }) # Create service products uom_hour = cls.env.ref('uom.product_uom_hour') cls.product_order_service1 = cls.env['product.product'].create({ 'name': "Service Ordered, create no task", 'standard_price': 11, 'list_price': 13, 'type': 'service', 'invoice_policy': 'order', 'uom_id': uom_hour.id, 'uom_po_id': uom_hour.id, 'default_code': 'SERV-ORDERED1', 'service_tracking': 'no', 'project_id': False, }) cls.product_order_service2 = cls.env['product.product'].create({ 'name': "Service Ordered, create task in global project", 'standard_price': 30, 'list_price': 90, 'type': 'service', 'invoice_policy': 'order', 'uom_id': uom_hour.id, 'uom_po_id': uom_hour.id, 'default_code': 'SERV-ORDERED2', 'service_tracking': 'task_global_project', 'project_id': cls.project_global.id, }) cls.product_order_service3 = cls.env['product.product'].create({ 'name': "Service Ordered, create task in new project", 'standard_price': 10, 'list_price': 20, 'type': 'service', 'invoice_policy': 'order', 'uom_id': uom_hour.id, 'uom_po_id': uom_hour.id, 'default_code': 'SERV-ORDERED3', 'service_tracking': 'task_in_project', 'project_id': False, # will create a project }) cls.product_order_service4 = cls.env['product.product'].create({ 'name': "Service Ordered, create project only", 'standard_price': 15, 'list_price': 30, 'type': 'service', 'invoice_policy': 'order', 'uom_id': uom_hour.id, 'uom_po_id': uom_hour.id, 'default_code': 'SERV-ORDERED4', 'service_tracking': 'project_only', 'project_id': False, }) def test_sale_order_with_project_task(self): SaleOrder = self.env['sale.order'].with_context(tracking_disable=True) SaleOrderLine = self.env['sale.order.line'].with_context(tracking_disable=True) partner = self.env['res.partner'].create({'name': "Mur en béton"}) sale_order = SaleOrder.create({ 'partner_id': partner.id, 'partner_invoice_id': partner.id, 'partner_shipping_id': partner.id, }) so_line_order_no_task = SaleOrderLine.create({ 'name': self.product_order_service1.name, 'product_id': self.product_order_service1.id, 'product_uom_qty': 10, 'product_uom': self.product_order_service1.uom_id.id, 'price_unit': self.product_order_service1.list_price, 'order_id': sale_order.id, }) so_line_order_task_in_global = SaleOrderLine.create({ 'name': self.product_order_service2.name, 'product_id': self.product_order_service2.id, 'product_uom_qty': 10, 'product_uom': self.product_order_service2.uom_id.id, 'price_unit': self.product_order_service2.list_price, 'order_id': sale_order.id, }) so_line_order_new_task_new_project = SaleOrderLine.create({ 'name': self.product_order_service3.name, 'product_id': self.product_order_service3.id, 'product_uom_qty': 10, 'product_uom': self.product_order_service3.uom_id.id, 'price_unit': self.product_order_service3.list_price, 'order_id': sale_order.id, }) so_line_order_only_project = SaleOrderLine.create({ 'name': self.product_order_service4.name, 'product_id': self.product_order_service4.id, 'product_uom_qty': 10, 'product_uom': self.product_order_service4.uom_id.id, 'price_unit': self.product_order_service4.list_price, 'order_id': sale_order.id, }) sale_order.action_confirm() # service_tracking 'no' self.assertFalse(so_line_order_no_task.project_id, "The project should not be linked to no task product") self.assertFalse(so_line_order_no_task.task_id, "The task should not be linked to no task product") # service_tracking 'task_global_project' self.assertFalse(so_line_order_task_in_global.project_id, "Only task should be created, project should not be linked") self.assertEqual(self.project_global.tasks.sale_line_id, so_line_order_task_in_global, "Global project's task should be linked to so line") # service_tracking 'task_in_project' self.assertTrue(so_line_order_new_task_new_project.project_id, "Sales order line should be linked to newly created project") self.assertTrue(so_line_order_new_task_new_project.task_id, "Sales order line should be linked to newly created task") # service_tracking 'project_only' self.assertFalse(so_line_order_only_project.task_id, "Task should not be created") self.assertTrue(so_line_order_only_project.project_id, "Sales order line should be linked to newly created project") self.assertEqual(self.project_global._get_sale_order_items(), self.project_global.sale_line_id | self.project_global.tasks.sale_line_id, 'The _get_sale_order_items should returns all the SOLs linked to the project and its active tasks.') sale_order_2 = SaleOrder.create({ 'partner_id': partner.id, 'partner_invoice_id': partner.id, 'partner_shipping_id': partner.id, }) sale_line_1_order_2 = SaleOrderLine.create({ 'product_id': self.product_order_service1.id, 'product_uom_qty': 10, 'product_uom': self.product_order_service1.uom_id.id, 'price_unit': self.product_order_service1.list_price, 'order_id': sale_order_2.id, }) task = self.env['project.task'].create({ 'name': 'Task', 'sale_line_id': sale_line_1_order_2.id, 'project_id': self.project_global.id, }) self.assertEqual(task.sale_line_id, sale_line_1_order_2) self.assertIn(task.sale_line_id, self.project_global._get_sale_order_items()) self.assertEqual(self.project_global._get_sale_orders(), sale_order | sale_order_2) def test_sol_product_type_update(self): partner = self.env['res.partner'].create({'name': "Mur en brique"}) sale_order = self.env['sale.order'].with_context(tracking_disable=True).create({ 'partner_id': partner.id, 'partner_invoice_id': partner.id, 'partner_shipping_id': partner.id, }) self.product_order_service3.type = 'consu' sale_order_line = self.env['sale.order.line'].create({ 'order_id': sale_order.id, 'name': self.product_order_service3.name, 'product_id': self.product_order_service3.id, 'product_uom_qty': 5, 'product_uom': self.product_order_service3.uom_id.id, 'price_unit': self.product_order_service3.list_price }) self.assertFalse(sale_order_line.is_service, "As the product is consumable, the SOL should not be a service") self.product_order_service3.type = 'service' self.assertTrue(sale_order_line.is_service, "As the product is a service, the SOL should be a service")
anhjean/beanbakery_v15
addons/sale_project/tests/test_sale_project.py
test_sale_project.py
py
8,446
python
en
code
5
github-code
50
22331897062
# mathesis.cup.gr course with title "Introduction to Python" # Project: Tic Tac Toe import random import time marker = {'Player 1': 'X', 'Player 2': 'O', } def display_board(board): #it prints the tic tac toe's state cell = 0 for i in range(3): firstLine = '+' for j in range(53): firstLine += '-' firstLine += '+' secondLine = '' for j in range(3): cell += 1 secondLine += '|' + str(cell) for k in range(15): secondLine += ' ' secondLine += '|' thirdLine = '' for j in range(3): thirdLine += '|' for k in range(8): thirdLine += ' ' c = 3 * (i - 1) + j - 6 thirdLine += board[c] for k in range(7): thirdLine += ' ' thirdLine += '|' fourthLine = '' for j in range(3): fourthLine += '|' for k in range(16): fourthLine += ' ' fourthLine += '|' fifthLine = '\n+' for j in range(53): fifthLine += '-' fifthLine += '+\n' print(firstLine, '\n', secondLine, '\n', thirdLine, '\n', fourthLine, fifthLine) def choose_first(): # it drews which player is going to play first # it returns 'Player 1' or 'Player 2' player = random.randint(1, 2) return 'Player ' + str(player) def display_score(score): # it prints the final score print('FINAL SCORE\nPlayer 1: {}\nPlayer 2: {}'.format(score.get('Player 1', 0), score.get('Player 2', 0))) def place_marker(board, marker, position): # it places the variable marker into board's position board[position] = marker def win_check(board,mark): # it returns True if symbol mark has formed a tic tac toe return (board[1] == mark and board[5] == mark and board[9] == mark) or \ (board[3] == mark and board[5] == mark and board[7] == mark) or \ (board[2] == mark and board[5] == mark and board[8] == mark) or \ (board[4] == mark and board[5] == mark and board[6] == mark) or \ (board[7] == mark and board[8] == mark and board[9] == mark) or \ (board[1] == mark and board[2] == mark and board[3] == mark) or \ (board[1] == mark and board[4] == mark and board[7] == mark) or \ (board[3] == mark and board[6] == mark and board[9] == mark) def board_check(board): # it returns False if there are still empty squares # and True in the opposite case. board[0] = '0' for b in board: if b == ' ': return False return True def player_choice(board, turn): # The player that variable turn represents, chooses a square # It returns an integer in the space [1, 9] # Here will be checked if there is already a value inside the square while True: number = input(turn + '[ ' + marker[turn] + ' ]: Choose a square: (1-9) ') # it is checked if input is an int try: numberInt = int(number) except: continue else: # it is checked if it belongs in the allowed space if numberInt < 1 or numberInt > 9: continue number = int(number) # finally it is checked if the corresponding cell is empty if board[number] == ' ': return number else: print('The chosen square is occupied') def replay(): # it asks the user if he wants to play again and it returns True if it is so while True: ans = input('Do you want to play again? (Yes/No)').lower().strip() if ans == 'yes': return True elif ans == 'no': return False def next_player(turn): # it returns the next player that plays split = turn.split() if split[1] == '1': return split[0] + ' 2' return split[0] + ' 1' def main(): score = {} # a dictionary with the players' score print('Let\'s start!\nBecomes lottery ', end = '') for t in range(10): print(".", flush='True', end=' ') time.sleep(0.2) print() # variable turn is referred to the player that plays turn = choose_first() print("\n" + turn + ' plays first.') # variable first is referred to the player that played first first = turn game_round = 1 # game round while True: # new game theBoard = [' '] * 10 game_on = True # game starts while game_on: display_board(theBoard) # display tic tac toe # player turn chooses a position position = player_choice(theBoard, turn) # is placed his choice place_marker(theBoard, marker[turn], position) if win_check(theBoard, marker[turn]): # a check if he has won display_board(theBoard) print(turn + ' won') score[turn] = score.get(turn, 0) + 1 game_on = False # a check if tableau has filled without a winner elif board_check(theBoard): display_board(theBoard) print('Draw!') game_on = False else: # else we continue with next player's move turn = next_player(turn) if not replay(): ending = '' if game_round>1 : ending = 's' print("After {} round{}".format(game_round, ending)) display_score(score) # exit ... final score break else : game_round += 1 # in next game the other player begins turn = next_player(first) first = turn main()
theomeli/Mathesis-apps
tic tac toe/tic_tac_toe.py
tic_tac_toe.py
py
5,744
python
en
code
0
github-code
50
27275885645
import json def get_command_help_string(serverid, userlevel, commandname): with open('servers.json', 'r') as f: servers = json.load(f) servername = servers[f'sid{serverid}']['servername'] disabledcommands = servers[f'sid{serverid}']['disabledcommands'] try: customcommands = servers[f'sid{serverid}']['customcommands'] except KeyError: customcommands = [] prefix = servers[f'sid{serverid}']['prefix'] # 0 = Everyone # 1 = Mod # 2 = Admin # 3 = Server Owner # 4 = Bot Owner if commandname == 'setprefix': messagestr = f'`{prefix}setprefix [prefix] <server|default>`: ' + \ 'Changes the bot command prefix. (userlevel: 2)\n' + \ '`[prefix]`: What to change the prefix to.\n' + \ '`<server|default>`: Specify whether or not to change the ' + \ 'server\'s command prefix, or the default prefix. If omitted, ' + \ 'defaults to `server`. (userlevel: 4)' elif commandname == 'setulrolenames': messagestr = f'`{prefix}setulrolenames [modrole] <adminrole>`: ' + \ 'Changes the moderator/admin role names. (userlevel: 2)\n' + \ '`[modrole]`: The moderator rolename.\n' + \ '`<adminrole>`: The admin role name. If omitted, ' + \ 'defaults to whatever the current admin role name is.' elif commandname == 'addquote': messagestr = f'`{prefix}addquote [quote ... ]`: ' + \ 'Adds a quote to the list. (userlevel: 1)\n' + \ '`[quote ... ]`: The quote to add.' elif commandname == 'delquote': messagestr = f'`{prefix}delquote [index|all]`: ' + \ 'Removes a quote from the list. (userlevel: 1)\n' + \ '`[index|all]`: Either a number corrosponding to the index ' + \ 'of the quote to be removed, or `all` (which deletes all quotes). ' elif commandname == 'quote': messagestr = f'`{prefix}quote <index|list>`: Prints a quote from the list. (userlevel: 0)\n' + \ '`<index|list>: Either a number corrosponding to the index of ' + \ 'the quote to be printed, or `list` (which PMs the user the quote list). ' + \ 'If ommitted, choses a random quote.' elif commandname == '8ball': messagestr = f'`{prefix}8ball [question ... ]`: ' + \ 'Prints out a random Magic 8-Ball response. (userlevel: 0)\n' + \ '`[question ... ]`: The question to ask the Magic 8-Ball.' elif commandname == 'help': messagestr = f'`{prefix}help <command>`: ' + \ 'PMs the user information about the commands this bot supports. (userlevel: 0)\n' + \ '`<command>`: A command to view information about. If ommitted, ' + \ 'PMs the user a list of commands that they can use.' elif commandname == 'toggle': messagestr = f'`{prefix}toggle [command]`: ' + \ 'Toggles on/off the specified command on the server. (userlevel: 2)\n' + \ '`[command]`: The command to toggle, without the prefix.' elif commandname == 'addcom': messagestr = f'`{prefix}addcom simple [userlevel] [reply-in-pm] [content ... ]`: ' + \ 'Adds a simple custom command to the server. (userlevel: 2)\n' + \ '`[name]`: The name of the command, without prefix.\n' + \ '`[userlevel]`: An integer corrosponding to the minimum userlevel ' + \ 'required to use the command. `0` for everyone, `1` for mod, `2` for admin, ' + \ '`3` for server owner, and `4` for bot owner.\n' + \ '`[reply-in-pm]`: Either `1` or `0`. If `1`, the command will reply to the user ' + \ 'in a PM rather than in the channel the command was used.\n' + \ '`[content ... ]`: The content the command will print when used.\n\n' messagestr += f'`{prefix}addcom quotesys [name] [userlevel] [addcomname] ' + \ '[addcomuserlevel] [delcomname] [delcomuserlevel]`: ' + \ 'Adds a custom quote system to the server. (userlevel: 2)\n' + \ '`[name]`: The name of the quote system, without command prefix.\n' + \ '`[userlevel]`: The minimum userlevel required to use the quote command.\n' + \ '`[addcomname]`: The name of the addquote command, without prefix..\n' + \ '`[addcomuserlevel]`: The minimum userlevel required to use the addquote command.\n' + \ '`[delcomname]`: The name of the delquote command, without prefix..\n' + \ '`[delcomuserlevel]`: The minimum userlevel required to use the delquote command.\n\n' messagestr += f'`{prefix}addcom quote [name] [userlevel]`: ' + \ 'Adds a custom quote system to the server without adding the ' + \ 'addquote and delquote commands. (userlevel: 2)\n' + \ '`[name]`: The name of the quote system, without command prefix.\n' + \ '`[userlevel]`: The minimum userlevel required to use the command. ' messagestr += f'`{prefix}addcom addquote [name] [userlevel] [quotesys]`: ' + \ 'Adds an addquote command for a custom quote system. (userlevel: 2)\n' + \ '`[name]`: The name of the command, without prefix.\n' + \ '`[userlevel]`: The minimum userlevel required to use the command.' + \ '`[quotesys]`: The name of the custom quote system this command will edit.\n\n' messagestr += f'`{prefix}addcom delquote [name] [userlevel] [quotesys]`: ' + \ 'Adds an delquote command for a custom quote system. (userlevel: 2)\n' + \ '`[name]`: The name of the command, without prefix.\n' + \ '`[userlevel]`: The minimum userlevel required to use the command.' + \ '`[quotesys]`: The name of the custom quote system this command will edit.' elif commandname == 'delcom': messagestr = f'`{prefix}delcom [command]`: ' + \ 'Removes a custom command from the server. (userlevel: 2)\n' + \ '`[command]`: The command to remove, without the prefix.' elif commandname == 'test': messagestr = f'`{prefix}test <args ... >`: Prints the arguments specified. (userlevel: 0)\n' + \ '`<args ... >`: The args to print.' elif commandname == 'tf': messagestr = f'`{prefix}tf`: Flip some tables. (╯°□°)╯︵ ┻━┻ (userlevel: 0)' elif commandname == 'eval': messagestr = f'`{prefix}eval [expression ... ]`: \n' + \ 'Takes the provided Python expression, `eval`s it, and shows the output. ' + \ '(userlevel: 4)' + \ '`[expression ... ]`: The expression to evaluate.' elif commandname == 'exec': messagestr = f'`{prefix}exec [code ... ]`: \n' + \ 'Takes the provided Python code, `exec`s it, and shows the output. (userlevel: 4)' + \ '`[code ... ]`: The code to execute.' elif commandname == 'userlevel': messagestr = f'`{prefix}userlevel`: Shows your userlevel. (userlevel: 0)\n' elif commandname == 'stats': messagestr = f'`{prefix}stats`: Shows some stats about the bot. (userlevel: 0)\n' + \ 'The stats shown: how many servers the bot is in, how many users ' + \ 'are online, how many times bot commands have been used, and the bot uptime.' elif commandname == 'src': messagestr = f'`{prefix}src [game] [category ... ]`: Gets the speedrun.com WR for a given game' + \ 'and category. (userlevel: 0)\n' + \ '`[game]`: The game to get the WR for.\n' + \ '`[category ... ]`: The category to get the WR for.\n' + \ 'Note that the category names are case-sensitive.' elif commandname != None: messagestr = 'There\'s no help informaiton available for that command. Either the command ' + \ 'just plain doesn\'t exist, or it\'s a server-specific custom command.' elif commandname == None: messagestr = f'**Unobtainibot commands available to you in {servername}**\n' + \ f'For more information on these commands, use `{prefix}help <command>`\n\n' if userlevel >= 4: messagestr += f'`[4] {prefix}eval`: Takes the provided Python expression and `eval`s it.\n' messagestr += f'`[4] {prefix}exec`: Takes the provided Python code, and `exec`s it.\n' if userlevel >= 2: messagestr += f'`[2] {prefix}changeprefix`: Changes the bot command prefix.\n' messagestr += f'`[2] {prefix}setulrolenames`: Changes the admin/mod role names.\n' messagestr += f'`[2] {prefix}toggle`: Toggles a command on or off.\n' messagestr += f'`[2] {prefix}addcom`: Adds a custom command to the server.\n' messagestr += f'`[2] {prefix}delcom`: Removes a custom command from the server.\n' if userlevel >= 1: messagestr += f'`[1] {prefix}addquote`: Adds a quote to the quote list.\n' messagestr += f'`[1] {prefix}delquote`: Removes a quote from the quote list.\n' if userlevel >= 0: messagestr += f'`[0] {prefix}help`: PMs the user info about the commands this bot supports.\n' if 'quote' not in disabledcommands: messagestr += f'`[0] {prefix}quote`: Prints a quote from the list.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}quote`: Prints a quote from the list.~~\n' if '8ball' not in disabledcommands: messagestr += f'`[0] {prefix}8ball`: Prints a random Magic 8-Ball response.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}8ball`: Prints a random Magic 8-Ball response.~~\n' if 'test' not in disabledcommands: messagestr += f'`[0] {prefix}test`: Prints the arguments specfied.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}test`: Prints the arguments specfied.~~\n' if 'tf' not in disabledcommands: messagestr += f'`[0] {prefix}tf`: Flips some tables. (╯°□°)╯︵ ┻━┻\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}tf`: Flips some tables. (╯°□°)╯︵ ┻━┻~~\n' if 'userlevel' not in disabledcommands: messagestr += f'`[0] {prefix}userlevel`: Shows your userlevel.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}userlevel`: Shows your userlevel.~~\n' if 'stats' not in disabledcommands: messagestr += f'`[0] {prefix}stats:` Shows some stats about the bot.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}stats:` Shows some stats about the bot.~~\n' if 'src' not in disabledcommands: messagestr += f'`[0] {prefix}src:` Gets the speedrun.com WR for a given game and category.\n' elif userlevel >= 2: messagestr += f'~~`[0] {prefix}src:` Gets the speedrun.com WR for a given game and category.~~\n' # custom commands for command in customcommands: if command['name'] not in disabledcommands: if userlevel >= int(command['userlevel']): if command['type'] == 'simple': messagestr += f'`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Simple custom command.\n' elif command['type'] == 'quote' or command['type'] == 'quotesys': messagestr += f'`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Custom quote system.\n' elif command['type'] == 'addquote': messagestr += f'`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Add quote to custom quote system ' + \ f'{command["content"]}.\n' elif command['type'] == 'delquote': messagestr += f'`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Remove quote from custom quote system ' + \ f'{command["content"]}.\n' elif userlevel >= 2: if userlevel >= int(command['userlevel']): if command['type'] == 'simple': messagestr += f'~~`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Simple custom command.~~\n' elif command['type'] == 'quote' or command['type'] == 'quotesys': messagestr += f'~~`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Custom quote system.~~\n' elif command['type'] == 'addquote': messagestr += f'~~`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Add quote to custom quote system ' + \ f'{command["content"]}.~~\n' elif command['type'] == 'delquote': messagestr += f'~~`[{command["userlevel"]}] ' + \ f'{prefix}{command["name"]}`: Remove quote from custom quote system ' + \ f'{command["content"]}.~~\n' return messagestr
Tiyenti/unobtainibot
commandhelp.py
commandhelp.py
py
14,255
python
en
code
1
github-code
50
7469977931
from korea_public_data.core.choices import ResponseType from korea_public_data.core.vars import default as var from korea_public_data.core.consts import data as const from korea_public_data.data.base import PublicDataBase class GetCovid19InfStateJson(PublicDataBase): """공공데이터활용지원센터_보건복지부 코로나19 감염 현황""" def __init__(self, service_key: str): # 상위 클래스 변수 적용 super().__init__() # 필수 설정 self.service_key = service_key # 변수(기본 값 적용) self.yesterday = var.DEFAULT_YESTERDAY_SEOUL_TIMEZONE self.start_at = self.yesterday.strftime("%Y%m%d") self.end_at = self.yesterday.strftime("%Y%m%d") self.page_no = var.DEFAULT_PAGE_NO self.num_of_rows = var.DEFAULT_PAGE_NUM_OF_ROWS # 상수 self.response_type = ResponseType.XML @property def url(self): return ( f'{const.COVID_INFECTION_STATUS_URL}' f'startCreateDt={self.start_at}&' f'endCreateDt={self.end_at}&' f'pageNo={self.page_no}&' f'numOfRows={self.num_of_rows}&' f'serviceKey={self.service_key}' ) def _data_valid(self): """데이터 이상여부 확인""" assert self.service_key, "서비스 키가 등록되지 않았습니다."
lee-lou2/korea-public-data
data/data_go_kr/covid_infection_status.py
covid_infection_status.py
py
1,384
python
en
code
18
github-code
50
70425535517
""" personalize neural architectures using data from test subjects This script retrains a pretrained neural network using additional data from test subjects. The pretrained network resulted from a PPG based training by the script 'ppg_training_mimic_iii.py'. Additional data can be the first 20 % of the test subject's data or be comprised of randomly drawn 20 %. Validation is performed using the remaining 80 % of the data. The script performs this personalization for a defined number of subjects separately and stores the results for further analysis. File: prepare_MIMIC_dataset.py Author: Dr.-Ing. Fabian Schrumpf E-Mail: [email protected] Date created: 8/10/2021 Date last modified: 8/10/2021 """ from os.path import join, expanduser, isfile from functools import partial import argparse import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices("GPU") for device in gpu_devices: tf.config.experimental.set_memory_growth(device, True) from tensorflow.keras.layers import ReLU from kapre import STFT, Magnitude, MagnitudeToDecibel import numpy as np from sklearn.model_selection import train_test_split import pandas as pd def read_tfrecord(example, win_len=1875): tfrecord_format = ( { 'ppg': tf.io.FixedLenFeature([win_len], tf.float32), 'label': tf.io.FixedLenFeature([2], tf.float32), 'subject_idx': tf.io.FixedLenFeature([1], tf.float32) } ) parsed_features = tf.io.parse_single_example(example, tfrecord_format) return parsed_features['ppg'], (parsed_features['label'][0], parsed_features['label'][1]), parsed_features['subject_idx'] def create_dataset(tfrecords_dir, tfrecord_basename, win_len=1875, batch_size=32, modus='train'): pattern = join(tfrecords_dir, modus, tfrecord_basename + "_" + modus + "_?????_of_?????.tfrecord") dataset = tf.data.TFRecordDataset.list_files(pattern) if modus == 'train': dataset = dataset.shuffle(100, reshuffle_each_iteration=True) dataset = dataset.interleave( tf.data.TFRecordDataset, cycle_length=800, block_length=100) else: dataset = dataset.interleave( tf.data.TFRecordDataset) dataset = dataset.map(partial(read_tfrecord, win_len=win_len), num_parallel_calls=4) dataset = dataset.shuffle(2048, reshuffle_each_iteration=True) dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE) dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.repeat() return dataset def ppg_personalization_mimic_iii(DataDir, ResultsDir, ModelFile, CheckpointDir, tfrecord_basename, experiment_name, win_len=875, batch_size=32, lr = None, N_epochs = 40, Nsamp=2.5e5, Ntrials = 30, RandomPick = True): pd_col_names = ['subject', 'SBP_true', 'DBP_true', 'SBP_est_prepers', 'DBP_est_prepers', 'SBP_est_postpers', 'DBP_est_postpers'] results = pd.DataFrame([], columns=pd_col_names) experiment_name = experiment_name + '_pers' # Load the test set from the .tfrecord files and save it as a .npz file for easier access if isfile(join(DataDir, experiment_name + "_dataset.npz")): npz_file = np.load(join(DataDir, experiment_name + "_dataset.npz")) ppg = npz_file['arr_0'] BP = npz_file['arr_1'] subject_idx = npz_file['arr_2'] else: # Load test dataset for personalization dataset = create_dataset(DataDir, tfrecord_basename, win_len=win_len, batch_size=batch_size, modus='test') dataset = iter(dataset) ppg = np.empty(shape=(int(Nsamp), int(win_len))) BP = np.empty(shape=(int(Nsamp), 2)) subject_idx = np.empty(shape=(int(Nsamp))) for i in range(int(Nsamp) // int(batch_size)): ppg_batch, BP_batch, subject_idx_batch = dataset.get_next() ppg[i * batch_size:(i + 1) * batch_size, :] = ppg_batch.numpy() BP[i * batch_size:(i + 1) * batch_size, :] = np.transpose(np.asarray(BP_batch)) subject_idx[i * batch_size:(i + 1) * batch_size] = np.squeeze(subject_idx_batch.numpy()) np.savez(join(DataDir, experiment_name + "_dataset.npz"), ppg, BP, subject_idx,['ppg', 'BP', 'subject_idx']) # draw test subjects randomly and save their ID for reproducibility subjects = np.unique(subject_idx) if isfile(join(ResultsDir,'ppg_personalization_subject_list.txt')): file = open(join(ResultsDir,'ppg_personalization_subject_list.txt'),'r') trial_subjects = file.read() trial_subjects = [int(float(i)) for i in trial_subjects.split('\n')[:-1]] else: trial_subjects = np.random.choice(subjects, size=Ntrials, replace=False) with open(join(ResultsDir,'ppg_personalization_subject_list.txt'),'w') as f: for item in trial_subjects: f.write(("%s\n" % item)) # perform personalization for each test subject for subject in trial_subjects: print(f'Processing subject {subject} of {len(trial_subjects)}') ppg_trial = ppg[subject_idx==subject,:] BP_trial = BP[subject_idx==subject,:] Nsamp_trial = BP_trial.shape[0] N_train = int(np.round(0.2*Nsamp_trial)) idx_test = np.arange(N_train+1,Nsamp_trial,2) ppg_test = ppg_trial[idx_test,:] BP_test = BP_trial[idx_test,:] ppg_trial = np.delete(ppg_trial, idx_test, axis=0) BP_trial = np.delete(BP_trial, idx_test, axis=0) # draw training data from the test subjct's data if RandomPick==True: idx_train, idx_val = train_test_split(range(ppg_trial.shape[0]), test_size=int(N_train), shuffle=True) ppg_train = ppg_trial[idx_train,:] BP_train = BP_trial[idx_train,:] ppg_val = ppg_trial[idx_val,:] BP_val = BP_trial[idx_val,:] else: ppg_train = ppg_trial[:N_train, :] BP_train = BP_trial[:N_train, :] ppg_val = ppg_trial[:N_train, :] BP_val = BP_trial[:N_train, :] # load model dependencies dependencies = { 'ReLU': ReLU, 'STFT': STFT, 'Magnitude': Magnitude, 'MagnitudeToDecibel': MagnitudeToDecibel } model = tf.keras.models.load_model(ModelFile, custom_objects=dependencies) # retrain only the last 7 layers for layer in model.layers[:-7]: layer.trainable = False if lr is None: opt = tf.keras.optimizers.Adam() else: opt = tf.keras.optimizers.Adam(learning_rate=lr) model.compile( optimizer=opt, loss=tf.keras.losses.mean_squared_error, metrics=[['mae'], ['mae']] ) checkpoint_cb = tf.keras.callbacks.ModelCheckpoint( filepath=CheckpointDir + experiment_name + '.h5', save_best_only=True, save_weights_only=True ) EarlyStopping_cb = tf.keras.callbacks.EarlyStopping( monitor='val_loss', patience=5, restore_best_weights=True ) # prediction on the test data prior to personalization SBP_val_prepers, DBP_val_prepers = model.predict(ppg_test) SBP_train = BP_train[:, 0] DBP_train = BP_train[:, 1] SBP_val = BP_val[:, 0] DBP_val = BP_val[:, 1] # perform personalization using 20% of the test subject's data history = model.fit(x=ppg_train, y=(SBP_train, DBP_train), epochs=N_epochs, batch_size=batch_size, shuffle=True, validation_data=(ppg_val, (SBP_val, DBP_val)), callbacks=[checkpoint_cb, EarlyStopping_cb]) # prediction on the test data after personalization model.load_weights(checkpoint_cb.filepath) SBP_val_postpers, DBP_val_postpers = model.predict(ppg_test) # save predictions for later analysis results = results.append(pd.DataFrame(np.concatenate(( subject*np.ones(shape=(BP_test.shape[0],1)), np.expand_dims(BP_test[:,0], axis=1), np.expand_dims(BP_test[:,1], axis=1), SBP_val_prepers, DBP_val_prepers, SBP_val_postpers, DBP_val_postpers ),axis=1), columns=pd_col_names)) if RandomPick == True: results.to_csv(join(ResultsDir, experiment_name + '_random.csv')) else: results.to_csv(join(ResultsDir, experiment_name + '_first.csv')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('ExpName', type=str, help="Name of the training preceeded by the repsective date in the format MM-DD-YYYY") parser.add_argument('DataDir', type=str, help="folder containing the train, val and test subfolders containing tfrecord files") parser.add_argument('ResultsDir', type=str, help="Directory in which results are stored") parser.add_argument('ModelPath', type=str, help="Path where the model file used for personalization is located") parser.add_argument('chkptdir', type=str, help="directory used for storing model checkpoints") parser.add_argument('--lr', type=float, default=0.003, help="initial learning rate (default: 0.003)") parser.add_argument('--batch_size', type=int, default=32, help="batch size used for training (default: 32)") parser.add_argument('--winlen', type=int, default=875, help="length of the ppg windows in samples (default: 875)") parser.add_argument('--epochs', type=int, default=1000, help="maximum number of epochs for training (default: 60)") parser.add_argument('--nsubj', type=int, default=20, help="Number subjects used for personalization (default :20)") parser.add_argument('--randompick', type=int, default=0, help="define wether data for personalization is drawn randomly (1) or comprises the first 20 %% of the test subject's data (0) (default: 0)") args = parser.parse_args() tfrecord_basename = 'MIMIC_III_ppg' ExpName = args.ExpName DataDir = args.DataDir ResultsDir = args.ResultsDir ModelPath = args.ModelPath CheckpointDir = args.chkptdir win_len = args.winlen lr = args.lr N_epochs = args.epochs N_trials = args.nsubj RandomPick = True if args.randompick == 1 else False ModelFile = join(ModelPath, ExpName + '_cb.h5') ppg_personalization_mimic_iii(DataDir, ResultsDir, ModelFile, CheckpointDir, tfrecord_basename, ExpNamewin_len=win_len, lr=lr, Ntrials=N_trials, N_epochs=N_epochs, RandomPick=False) #architecture = 'slapnicar' #date = "12-07-2021" #HomePath = expanduser("~") #experiment_name = "mimic_iii_ppg_nonmixed_pretrain" #ModelFile = join(HomePath, 'data', 'Sensors-Paper', 'ppg_pretrain', # date + "_" + architecture + "_" + experiment_name + '_cb.h5') #DataDir = join(HomePath,'data','MIMIC-III_BP', 'tfrecords_nonmixed') #ResultsDir = join(HomePath,'Arbeit','7_Paper', '2021_Sensors_BP_ML', 'results', 'ppg_personalization') #CheckpointDir = join(HomePath,'data','MIMIC-III_BP', 'checkpoints') #tfrecord_basename = 'MIMIC_III_ppg' #learning_rate = None #ppg_personalization_mimic_iii(DataDir, # ResultsDir, # ModelFile, # CheckpointDir, # tfrecord_basename, # date+'_' + architecture+ '_' +experiment_name, # win_len=875, # lr=learning_rate, # Ntrials=20, # N_epochs=100, # RandomPick=False)
Fabian-Sc85/non-invasive-bp-estimation-using-deep-learning
ppg_personalization_mimic_iii.py
ppg_personalization_mimic_iii.py
py
12,573
python
en
code
96
github-code
50
9445686087
from django.shortcuts import render, redirect from bs4 import BeautifulSoup import requests # Create your views here. def home(request): if request.method == "POST": url = request.POST.get("href") # Check url is under ptt domain if url[0:22] != "https://www.ptt.cc/bbs": url = "https://www.ptt.cc/bbs/" + url + "/index.html" if "index" in url: tag = 0 else: tag = 1 html = requests.get(url, cookies={"over18":"1"}) html.decoding = "utf-8" if html.status_code != 200: message = "輸入錯誤或查無此看板、文章,請重新輸入。" return render(request, 'appPttParser/home.html', {"message":message}) soup = BeautifulSoup(html.text, 'html.parser') soup_list = soup.find_all("a") image_list = [] if tag == 0: for atag in soup_list: if "M." in str(atag.get("href")): html = requests.get("https://www.ptt.cc" + str(atag.get("href")), cookies={"over18":"1"}) html.decoding = "utf-8" soup = BeautifulSoup(html.text, "html.parser") # article_url = "https://www.ptt.cc" + str(atag.get("href")) temp = ("https://www.ptt.cc" + str(atag.get("href")), soup.title.text) image_list.append(temp) img_tag = soup.find_all("a") for img in img_tag: if ".jpg" in str(img.get("href")) or ".png" in str(img.get("href")): image_list.append(str(img.get("href"))) else: temp = (url, soup.title.text) image_list.append(temp) for atag in soup_list: image_href = str(atag.get("href")) if ".jpg" in image_href or ".png" in image_href: image_list.append(image_href) return render(request, 'appPttParser/show_img.html', locals()) return render(request, 'appPttParser/home.html', locals()) def show_img(request): return render(request, 'appPttParser/show_img.html')
MatsuiLin101/ml101-site
appPttParser/views.py
views.py
py
2,170
python
en
code
0
github-code
50
8148804844
import os import json import dotenv import openai import streamlit as st from streamlit_chat import message # .env file must have OPENAI_API_KEY and OPENAI_API_BASE dotenv.load_dotenv() openai.api_type = "azure" openai.api_base = os.getenv("OPENAI_API_BASE") openai.api_version = "2023-03-15-preview" openai.api_key = os.getenv("OPENAI_API_KEY") system_msg = """ You're a creative and detail-oriented Product Naming Specialist. You're responsible for developing and executing naming strategies for our products and services. You have a deep understanding of brand identity and positioning, as well as experience in developing compelling and memorable product names. """ examples = """ """ ENGINE = "chatgpt" TEMPERATURE = 0.9 MAX_TOKENS = 200 TOP_P = 1 FREQUENCY_PENALTY = 1.0 PRESENCE_PENALTY = 1.0 st.set_page_config(page_title="Creative Product Naming Assistant", page_icon=":robot_face:", layout="wide", initial_sidebar_state="collapsed") if "IsBegin" not in st.session_state: st.session_state["IsBegin"] = False if "history_conversations" not in st.session_state: st.session_state["history_conversations"] = [] st.write("# Creative Product Naming Assistant") # define custom function to run the openai.ChatCompletion.create function def run(history: list or None, user_msg: str): if history is None: messages = [{"role":"system", "content":system_msg}, {"role":"user","content":user_msg}] st.session_state.history_conversations.append({"role":"system", "content":system_msg}) st.session_state.history_conversations.append({"role":"user","content":user_msg}) else: messages = history + [{"role":"user","content":user_msg}] st.session_state.history_conversations.append({"role":"user","content":user_msg}) res = openai.ChatCompletion.create( engine=ENGINE, messages = messages, temperature=TEMPERATURE, max_tokens=MAX_TOKENS, top_p=TOP_P, frequency_penalty=FREQUENCY_PENALTY, presence_penalty=PRESENCE_PENALTY, n=1 ) st.session_state.history_conversations.append({"role":"assistant", "content":res.choices[0].message['content']}) # sidebar for system messages and examples with st.sidebar: examples_tab, system_tab = st.tabs(["examples", "system"]) # samples with examples_tab: st.header("Examples") examples = st.text_input(label="Add examples") with system_tab: st.header("System messages") system_msg = st.text_area(label="Edit system message", value=system_msg) # display history conversations with st.container(): # create a input using streamlit user_msg = st.text_input(label="Type your message here", value="") # create a button using streamlit if st.button("Send"): if st.session_state["IsBegin"] == False: st.session_state["IsBegin"] = True run(history = None, user_msg = user_msg) else: run(history = st.session_state.history_conversations, user_msg = user_msg) if st.session_state["IsBegin"] == True: # display history conversations in reverse order for i in range(len(st.session_state.history_conversations)-1, -1, -1): if st.session_state.history_conversations[i]["role"] == "user": message(st.session_state.history_conversations[i]["content"], is_user=True, key=str(i)) elif st.session_state.history_conversations[i]["role"] == "assistant": message(st.session_state.history_conversations[i]["content"], key=str(i)) elif st.session_state.history_conversations[i]["role"] == "system": message(st.session_state.history_conversations[i]["content"], key=str(i)) with st.container(): st.info(st.session_state.history_conversations) if len(st.session_state.history_conversations) > 0: # download chat history as json file # download as json file st.download_button(label="Save chat history", data=json.dumps(st.session_state.history_conversations), file_name="chat_history.json", mime="application/json")
hyssh/azure-openai-quickstart
quickstart-learnfast/creative-product-naming-assistant/app.py
app.py
py
4,098
python
en
code
2
github-code
50
39512273388
import math with open('14/input2.txt', 'rt') as fp: lines = fp.readlines(); class Reaction: def __init__(self, formula): self.components = {} components, output = formula.split('=>') self.parseComponents(components) self.quantity, self.reagent = output.strip().split(' ') self.quantity = int(self.quantity) def parseComponents(self, componentLine): for component in componentLine.strip().split(','): qty, reagent = component.strip().split(' ') self.components[reagent] = int(qty) def calculateOre(reaction): totalOre = 0 for c in reaction.components.keys(): if c != 'ORE': qty, ore = calculateOre(reactions[c]) qty += excess.get(c, 0) totalOre += math.ceil(reaction.components[c]/qty) * ore if qty > reaction.components[c]: excess[c] = qty - reaction.components[c] else: return reaction.quantity, reaction.components[c] return reaction.quantity, totalOre reactions = {} excess = {} for l in lines: r = Reaction(l) reactions[r.reagent] = r print(calculateOre(reactions['FUEL']))
dshookowsky/adventOfCode
2019/14/14a.py
14a.py
py
1,188
python
en
code
0
github-code
50
29621436523
# -*- coding:utf-8 -*- import json import os.path as osp class DatasetLoader: def __init__(self, qas_path, owl_path): self.owl_path = owl_path self.qas_path = qas_path self.owls = dict() # {scene_name: owl_contents} self.qas = self.load_qa_scenario(qas_path) # qas: {'FloorPlan1_S0.json": { # "10": { # 'existence': ["Exsistence/Bread/10", false], # 'counting':[], 'attribute':[], 'relation':[],'agenthave':[], 'include':[] # }}} self.scene_names = ['FloorPlan'+str(sn) for sn in range(1, 31)] def __len__(self): pass def load_qa_scenario(self, path): with open(path, 'r') as f: qas = json.load(f) return qas def generator(self): for fname, qa_steps in self.qas.items(): room_name = fname.split('_')[0] # "FloorPan30_S0.json" seed_name = fname.split('_')[1].split('.')[0] room_dir = osp.join(self.owl_path, room_name, seed_name) owl_path = osp.join(room_dir, fname.split('.')[0]+'_T') # "FloorPan30_S0" for step, qa_set in qa_steps.items(): try: with open(owl_path+step+'.owl') as f: # 그냥 step 안쓰고 하나 빼준 이유는 gt에 비해 pred가 항상 하나씩 적은데, 알고리즘적으로 하나 스텝이 딸리는거가틈 owl = f.read() except: print(f'no file !! [{owl_path+step+".owl"}') # (str(int(step)-1)) continue yield (qa_set, owl, room_dir) if __name__ == '__main__': ''' p = os.listdir('./results/owl') with open(os.path.join('./results/owl', p[0])) as f: a = f.read() qa = h5py.File('./existence.h5') print(list(qa['questions']['question'])) ''' dataset = DatasetLoader(qas_path='/home/ailab/DH/ai2thor/datasets/qa_scenario.json', owl_path='/home/ailab/DH/ai2thor/datasets/gsg_pred/owl') for i, (qa_set, owl, room_name) in enumerate(dataset.generator()): print(qa_set) print(room_name) print(owl) break
donghyeops/3D-SGG
VeQA/dataset_loader.py
dataset_loader.py
py
2,304
python
en
code
2
github-code
50
72088335514
from collections import defaultdict from typing import Union class Graph: """ Undirected graph data structure """ def __init__(self, connections): self.graph = defaultdict(set) self.add_connections(connections) def add_connections(self, connections): """ Add connections (list of tuple pairs) to graph """ for node1, node2 in connections: self.add(node1, node2) def add(self, node1, node2): """ Add connection between node1 and node2 """ self.graph[node1].add(node2) self.graph[node2].add(node1) def is_connected(self, node1, node2): """ Is node1 directly connected to node2 """ return node1 in self.graph and node2 in self.graph[node1] def __str__(self): return '{}({})'.format(self.__class__.__name__, dict(self.graph)) def transform_graph(source_graph_repr: Union[list, dict, 'Graph'], representation: str) -> Union[dict, list, 'Graph']: if isinstance(source_graph_repr, list): vertices = [] for n, i in enumerate(source_graph_repr): for m, j in enumerate(i): if j: edge = sorted((n, m)) if edge not in vertices: vertices.append(edge) class_graph = Graph(vertices) elif isinstance(source_graph_repr, dict): vertices = [] for i in source_graph_repr: for j in source_graph_repr[i]: edge = sorted((i, j)) if edge not in vertices: vertices.append(edge) class_graph = Graph(vertices) elif isinstance(source_graph_repr, Graph): class_graph = source_graph_repr if representation == 'matrix': matrix_graph = [] for v in class_graph.graph.values(): adjacent = [0] * len(class_graph.graph) for i in v: adjacent[i] = 1 matrix_graph.append(adjacent) return matrix_graph elif representation == 'adjacency': return dict(class_graph.graph) elif representation == 'class': return class_graph # Пример для проверки - один и тот же граф в разных представлениях matrix_graph = [[0, 1, 1, 0, 0, 0], [1, 0, 0, 1, 1, 0], [1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 1, 0]] adjacency_list_graph = {0: [1, 2], 1: [0, 3, 4], 2: [0, 5], 3: [1], 4: [1, 5], 5: [2, 4]} vertices = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (4, 5)] class_graph = Graph(vertices) print(transform_graph(matrix_graph, 'class'))
BunnyNoBugs/Classroom-Year-3
midterm_test/graph_representation.py
graph_representation.py
py
2,843
python
en
code
2
github-code
50
16549532158
import requests import warnings def results_to_names(results, include_synonyms=True): """Takes OLS term query returns list of all labels and synonyms""" out = [] for t in results['_embedded']['terms']: out.append(t['label']) if include_synonyms and t['synonyms']: out.extend(t['synonyms']) # Consider being more conservative # and only selecting synonyms # of a certain type return out def curie_2_obo_ontology(curie): cp = curie.split(':') if not len(cp) == 2: raise Exception("{} is not a curie".format(curie)) db = cp[0] # acc = cp[1] ontology = db.lower() return ontology class OLSQueryWrapper: # Should probably (re)-consider using pip install ols-client. def __init__(self): self.api_base = "https://www.ebi.ac.uk/ols/api/ontologies" self.upper_ont_filters = {} def set_upper_ont_filter(self, ont, upper_bound_term): if not (ont in self.upper_ont_filters.keys()): self.upper_ont_filters[ont] = set() self.upper_ont_filters[ont].update(set( results_to_names( self.query(upper_bound_term, 'ancestors')))) def set_upper_ont_filter_cl_cell(self): self.set_upper_ont_filter('cl', 'CL:0000548') def set_upper_ont_filter_fbbt_cell(self): self.set_upper_ont_filter('fbbt', 'FBbt:00007002') def _gen_query_url(self, curie, query, id_field='id'): """Use curie to generate OBO-style ontology identifier Check whether ontology exists return query URL query may be: terms, descendants, parents, children, ancestors. terms query requires id_field='obo_id'""" cp = curie.split(':') if not len(cp) == 2: raise Exception("{} is not a curie".format(curie)) db = cp[0] # acc = cp[1] ontology = db.lower() if ontology == 'bfo' and query == 'properties': ontology = 'ro' if self.check_ontology(ontology): return '/'.join([self.api_base, ontology, query + '?' + id_field + '=' + curie]) # Yuk - can id be passed as data? else: return False def check_ontology(self, o): """Check whether ontology 'o' is known to OLS. Returns boolean.""" r = requests.get('/'.join([self.api_base, o])) # Exception handling is a bit crude. if r.status_code == 200: j = r.json() if "ontologyId" in j.keys() and j['ontologyId'] == o: return True warnings.warn("The ontology %s is not known to OLS" % o) return False def query(self, curie, query): """curie must be a valid OBO curie e.g. CL:0000017 query may be: terms, descendants, parents, children, ancestors returns JSON or False.""" # TODO: Extend to work for non OBO Library ontologies (pass a curie map) # TODO: Add paging # TODO: For terms query - add backup query for properties. ### For terms query, treating curie as OBO ID: id_field = 'id' if query == 'terms': id_field = 'obo_id' url = self._gen_query_url(curie, query, id_field=id_field) # print(url) if not url: return False response = requests.get(url) if response.status_code == 404: if query == "terms": query = "properties" url = self._gen_query_url(curie, query, id_field=id_field) if not url: return False # print(url) response = requests.get(url) if response.status_code == 404: warnings.warn("Content not found: %s" % curie) else: warnings.warn("Content not found: %s" % curie) elif response.status_code == 200: results = response.json() if not ('_embedded' in results.keys()) or not ('terms' in results['_embedded'].keys()): warnings.warn("No term returned.") # TODO: Improve warnings error handling. # This is very unsatisfactory - but this has to cover both empty results lists # and unrecognised query word return results else: raise ConnectionError(" %s (%s) on query for %s. " "" % (response.status_code, response.reason, curie)) def get_ancestor_labels(self, curie): al = self.query(curie, 'ancestors') if al: obo = curie_2_obo_ontology(curie) if obo == 'cl': if not 'cl' in self.upper_ont_filters.keys(): self.set_upper_ont_filter_cl_cell() if obo == 'fbbt': if not 'fbbt' in self.upper_ont_filters.keys(): self.set_upper_ont_filter_cl_cell() if obo in self.upper_ont_filters.keys(): return set(results_to_names(al)) - set(self.upper_ont_filters[obo]) else: return results_to_names(al) else: return [] def get_term(self, curie): # url = self.gen_query_url(curie, 'terms', id_field='obo_id') # r = requests.get(url) return self.query(curie, query='terms')
HumanCellAtlas/matrix_semantic_map
src/matrix_semantic_map/OLS_tools.py
OLS_tools.py
py
5,445
python
en
code
1
github-code
50
71057046876
#!/usr/bin/env python import sys import re # Simple Python script that takes PlatformIO's compiler errors and maps them to # output that can be understood by the Actions runner. re_err = re.compile(r"^([^:]+):([0-9]+):([0-9]+): error: (.*)$") # Parameters are strings of the form # path_prefix:replacement_prefix:line_offset # Where all paths starting with path_prefix will be replced with replacement_prefix, # and if such a replacement takes place, the line number will be shifted by line_offset. # That allows taking care for inserted code like the #include <Arduino.h> mappings = [] for arg in sys.argv[1:]: parts = arg.split(":", 2) mappings.append((*parts[0:2], 0 if len(parts)==2 else int(parts[2]))) for line in sys.stdin: print(line, end="") m = re_err.match(line.strip()) if m is not None: name = m.group(1) lineno = int(m.group(2)) for mapping in mappings: if name.startswith(mapping[0]): name = mapping[1] + name[len(mapping[0]):] lineno += mapping[2] print("::error file={name},line={line},col={col}::{message}".format( name=name, line=lineno, col=m.group(3), message=m.group(4) ))
fhessel/esp32_https_server
extras/ci/scripts/pio-to-gh-log.py
pio-to-gh-log.py
py
1,157
python
en
code
292
github-code
50
40241578160
import FWCore.ParameterSet.Config as cms externalLHEProducer = cms.EDProducer("EmbeddingLHEProducer", src = cms.InputTag("selectedMuonsForEmbedding","",""), vertices = cms.InputTag("offlineSlimmedPrimaryVertices","","SELECT"), particleToEmbed = cms.int32(15), rotate180 = cms.bool(False), mirror = cms.bool(False), studyFSRmode = cms.untracked.string("reco") ) makeexternalLHEProducer = cms.Sequence( externalLHEProducer)
cms-sw/cmssw
TauAnalysis/MCEmbeddingTools/python/EmbeddingLHEProducer_cfi.py
EmbeddingLHEProducer_cfi.py
py
448
python
en
code
985
github-code
50
16164098320
from os import sep with open(f'inputs{sep}day_3.txt') as rf: lines = [line.strip() for line in rf.readlines()] class Claim: def __init__(self, owner=None, origin=None, span=None): self.owner = owner self.origin = origin self.x = int(origin[0]) self.w = int(span[0]) self.y = int(origin[1]) self.h = int(span[1]) self.span = span def get_area(self): return int(self.span[0])*int(self.span[1]) def make_claims(claim_set): claims = set() for c in claim_set: cs = c.split() owner = int(cs[0][1:]) origin = tuple(cs[2][:-1].split(",")) span = tuple(cs[3].split("x")) claims.add(Claim(owner, origin, span)) return claims if __name__ == '__main__': elf_claims = make_claims(lines) #Part 1: def make_board(claim_set): tiles = {} for claim in elf_claims: for i in range(claim.x, claim.x + claim.w): for j in range(claim.y, claim.y + claim.h): if not f"{i},{j}" in tiles: tiles[f"{i},{j}"] = 1 else: tiles[f"{i},{j}"] += 1 return tiles, len([v for v in tiles.values() if v > 1]) print(make_board(elf_claims)[1]) #Answer: 100595 #Part 2: def get_lonely_claim(claim_set): tiles = make_board(elf_claims)[0] all_alone = True for claim in claim_set: for i in range(claim.x, claim.x + claim.w): for j in range(claim.y, claim.y + claim.h): if tiles[f"{i},{j}"] != 1: all_alone = False if not all_alone: break if not all_alone: break if all_alone: return claim.owner all_alone = True print(get_lonely_claim(elf_claims)) #Answer: 415
Nathansbud/AdventOfCode
2018/day_3.py
day_3.py
py
1,832
python
en
code
1
github-code
50
29596572847
from gevent import monkey monkey.patch_all() import logging logging.basicConfig(level=logging.DEBUG) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("blockchain").setLevel(logging.DEBUG) logging.getLogger("channel_manager").setLevel(logging.DEBUG) log = logging.getLogger(__name__) from microraiden.make_helpers import make_paywalled_proxy from requests.exceptions import ConnectionError from web3 import HTTPProvider, Web3 from flask import Flask import config import sys import uwsgi import gevent from bs4 import BeautifulSoup from flask import make_response import io from microraiden.examples.demo_proxy.fortunes import PaywalledFortune class MyPaywalledFortune(PaywalledFortune): def __init__(self, path, cost, filepath): super(MyPaywalledFortune, self).__init__(path, cost, filepath) html_tmpl = io.open('web/fortunes_tmpl.html', 'r', encoding='utf8').read() self.soup_tmpl = BeautifulSoup(html_tmpl, 'html.parser') def get(self, url): headers = {'Content-Type': 'text/html; charset=utf-8'} text = self.fortunes.get() return make_response(self.generate_html(text), 200, headers) def generate_html(self, text): div = self.soup_tmpl.find('div', {"id" : "fortunes-text"}) div.h1.string = text return str(self.soup_tmpl) # # This is an example of a simple uwsgi/Flask app using Microraiden to pay for the content. # Set up the configuration values in config.py (at least you must set PRIVATE_KEY, RPC_PROVIDER). # if config.PRIVATE_KEY is None: log.critical("config.py: PRIVATE_KEY is not set") sys.exit(1) if config.RPC_PROVIDER is None: log.critical("config.py: RPC_PROVIDER is not set") sys.exit(1) # create a custom web3 provider - parity/geth runs in another container/on another host try: web3 = Web3(HTTPProvider(config.RPC_PROVIDER, request_kwargs={'timeout': 60})) network_id = web3.version.network except ConnectionError: log.critical("Ethereum node isn't responding. Restarting after %d seconds." % (config.SLEEP_RELOAD)) gevent.sleep(config.SLEEP_RELOAD) uwsgi.reload() # create flask app app = Flask(__name__) # create microraiden app microraiden_app = make_paywalled_proxy(config.PRIVATE_KEY, config.STATE_FILE, web3=web3, flask_app=app) # add some content microraiden_app.add_content(MyPaywalledFortune("fortunes_en", 1, "microraiden/data/fortunes")) microraiden_app.add_content(MyPaywalledFortune("fortunes_cn", 1, "microraiden/data/chinese")) # only after blockchain is fully synced the app is ready to serve requests microraiden_app.channel_manager.wait_sync()
ilhanu/ether-academy
Code_research/microraiden/docker/uwsgi/app/app.py
app.py
py
2,702
python
en
code
0
github-code
50
26489706317
###################################################################################### ### Gene set enrichment analysis with GSEAPY ###################################################################################### ### Author: Carlos Arevalo ### Email: [email protected] ### PROGRAM DESCRIPTION ### Program takes as input a DTU table from DrimSeq or any other differential expression/usage analysis ### containing "symbol", "gene_padj" and "log2fcp" and perform gene-set enrichment analysis (GSEA) and ### pre-rank GSEA (pGSEA) using the GSEAPY package. Program outputs a main table for GSEA and pGSEA, ### respectively. Analysis can be perform on both individual or a list of libraries. Some Human test ### libabries include 'GO_Biological_Process_2021', 'GO_Molecular_Function_2021', 'GO_Cellular_Component_2021', ### 'KEGG_2021_Human', 'Reactome_2022', and 'MSigDB_Hallmark_2020' ### INSTALLATION ### pip install gseapy ### conda install -c bioconda gseapy ### PROGRAM USAGE #python .../gsea/compute_gsea.py \ # -i drimseq_deltaPSI_padj_results.txt \ # -s "Human" \ # -c "global" \ # -l GO_Biological_Process_2021 GO_Molecular_Function_2021 GO_Cellular_Component_2021 KEGG_2021_Human Reactome_2022 MSigDB_Hallmark_2020 \ # -t 1.5 \ # -e 0.5 \ # -n 10 \ # -o /gsea_output/ ###################################################################################### import gseapy as gp from gseapy.plot import barplot, dotplot from gseapy import enrichment_map from gseapy.plot import gseaplot import matplotlib.pyplot as plt import networkx as nx import pandas as pd import numpy as np import sys import os import argparse import warnings class CommandLine(): def __init__(self, inOpts=None): self.parser = argparse.ArgumentParser( description = "compute_gsea.py - computes GSEA using GSEAPY package", epilog = "Program epilog - please provide corrections and implementations for the program", add_help = True, prefix_chars = "-", usage = "%(prog)s [options] -option1[default] <input>output") self.parser.add_argument("-i", "--input", type=str, required=True, help='Input data in the form of table/data-frame') self.parser.add_argument("-s", "--organism", type=str, required=True, help='Organism for analysis') self.parser.add_argument("-c", "--condition", type=str, required=True, help='Condition label') self.parser.add_argument("-l", "--library", type=str, nargs='+', required=True, help='Library list') self.parser.add_argument("-t", "--threshold", type=float, required=True, help='Log2 FC threshold for significant genes selection') self.parser.add_argument("-e", "--enrich_threshold", type=float, required=True, help='Threshold for enrichment analysis') self.parser.add_argument("-p", "--pval_threshold", type=float, required=True, help='Log2 FC threshold for significant genes selection') self.parser.add_argument("-n", "--terms", type=int, required=True, help='Number of top terms to plot') self.parser.add_argument("-o", "--output", type=str, required=True, help='Output directory for results') if inOpts is None: self.args = self.parser.parse_args() else: self.args = self.parser.parse_args(inOpts) class computeGSEA(): def readData(inFile, threshold, pval): ''' Read input data ''' warnings.filterwarnings("ignore") df = pd.read_csv(inFile, header=None, sep="\t") df.columns = df.iloc[0] df = df[1:] df.reset_index(drop=True, inplace=True) temp_df = df[["symbol", "gene_padj", "log2fc", "feature_id"]] temp_df['gene_padj'] = temp_df['gene_padj'].astype(float) temp_df['log2fc'] = temp_df['log2fc'].astype(float) temp_sig = temp_df.loc[temp_df.gene_padj < pval] #0.05] down_df = temp_sig[(temp_sig.log2fc < -threshold)] up_df = temp_sig[(temp_sig.log2fc > threshold)] data = pd.concat([up_df, down_df]) return data def readPrerank(data, threshold, pval): ''' Read input data ''' warnings.filterwarnings("ignore") df = pd.read_csv(data, header=None, index_col=0, sep="\t") df.columns = df.iloc[0] df = df[1:] df.reset_index(drop=True, inplace=True) temp_df = df[["symbol", "gene_padj", "log2fc"]] temp_df['gene_padj'] = temp_df['gene_padj'].astype(float) temp_df['log2fc'] = temp_df['log2fc'].astype(float) temp_sig = temp_df.loc[temp_df.gene_padj < pval] #0.05] down_df = temp_sig[(temp_sig.log2fc < -threshold)] up_df = temp_sig[(temp_sig.log2fc > threshold)] data = pd.concat([up_df, down_df]) data['rank'] = data['gene_padj']*data['log2fc'] temp_sorted = data.sort_values('rank', ascending=False) uniq_df = temp_sorted.drop_duplicates(subset=['symbol']) data = pd.DataFrame() data[1] = list(uniq_df["rank"]) data.index = list(uniq_df["symbol"]) return data def readPositives(data, threshold, pval): ''' Get genes with positive LFC values ''' warnings.filterwarnings("ignore") df = pd.read_csv(data, header=None, index_col=0, sep="\t") df.columns = df.iloc[0] df = df[1:] df.reset_index(drop=True, inplace=True) temp_df = df[["symbol", "gene_padj", "log2fc"]] temp_df['gene_padj'] = temp_df['gene_padj'].astype(float) temp_df['log2fc'] = temp_df['log2fc'].astype(float) temp_sig = temp_df.loc[temp_df.gene_padj < pval] #0.05] pos_df = temp_sig[(temp_sig.log2fc > threshold)] pos_df['rank'] = pos_df['gene_padj']*pos_df['log2fc'] temp_sorted_pos = pos_df.sort_values('rank', ascending=False) uniq_pos = temp_sorted_pos.drop_duplicates(subset=['symbol']) pos_data = pd.DataFrame() pos_data[1] = list(uniq_pos["rank"]) pos_data.index = list(uniq_pos["symbol"]) return pos_data def readNegatives(data, threshold, pval): ''' Get genes with negative LFC values ''' warnings.filterwarnings("ignore") df = pd.read_csv(data, header=None, index_col=0, sep="\t") df.columns = df.iloc[0] df = df[1:] df.reset_index(drop=True, inplace=True) temp_df = df[["symbol", "gene_padj", "log2fc"]] temp_df['gene_padj'] = temp_df['gene_padj'].astype(float) temp_df['log2fc'] = temp_df['log2fc'].astype(float) temp_sig = temp_df.loc[temp_df.gene_padj < pval] #0.05] down_df = temp_sig[(temp_sig.log2fc < -threshold)] down_df['rank'] = (-1)*down_df['gene_padj']*down_df['log2fc'] temp_sorted = down_df.sort_values('rank', ascending=False) uniq_down = temp_sorted.drop_duplicates(subset=['symbol']) down_data = pd.DataFrame() down_data[1] = list(uniq_down["rank"]) down_data.index = list(uniq_down["symbol"]) return down_data def df2List(df): """ Convert dataframe or series to list """ warnings.filterwarnings("ignore") temp_df = pd.DataFrame() gene_list = pd.unique(list(df["symbol"])).tolist() gene_list = [x for x in gene_list if str(x) != 'nan'] temp_df[0] = gene_list return(temp_df) def enrichR(gene_list, gene_set, organism, threshold, layout, output): """ Peforms enrichr analysis """ enr = gp.enrichr(gene_list=gene_list, gene_sets=gene_set, organism=organism, no_plot=True, cutoff=threshold, outdir='{output_dir}{label}_enrichr_analysis'.format(output_dir=output, label=layout) ) enr_results = enr.results enr_results = enr_results[enr_results["Adjusted P-value"] < 0.05] return(enr_results) def barPlot(df, title, top_term, layout, output): """ Plots pathways barplot """ plot = barplot(df, column="Adjusted P-value", size=10, top_term=top_term, title=title) plot.figure.savefig('{output_dir}{label}_enrichment_barplot.png'.format( output_dir=output, label=layout), bbox_inches="tight", dpi=600) def dotPlot(df, title, top_term, layout, output): """ Plots pathways dotplot """ plot2 = dotplot(df, size=10, top_term=top_term, title=title, marker='o', show_ring=False, cmap="seismic",) plot2.figure.savefig( '{output_dir}{label}_enrichment_dotplot.png'.format( output_dir=output, label=layout), bbox_inches="tight", dpi=600) def enrichmentPlot(df, top_term, output): """ Plot enrichment analysis for a defined number of terms """ results = df.sort_index().head() terms = df.Term for i in range(1, top_term): term = terms[i] plot = gseaplot(rank_metric=df.ranking, term = df.Term[i], **df[terms[i]]) plot.figure.savefig( '{output_dir}term_{label}_gsea_plot.png'.format(output_dir=output, label=term), bbox_inches="tight", dpi=600) def prerankGSEA(rank_df, gset, top_term, layout, output): """ Enrichr libraries are supported by prerank module. Just provide the name use 4 process to acceralate the permutation speed """ prerank = gp.prerank(rnk=rank_df, gene_sets=gset, threads=4, min_size=10, max_size=1000, processes=4, permutation_num=100, ascending=False, outdir='{output_dir}{label}_prerank_report'.format(output_dir=output, label=layout), format='png', seed=6, verbose=True) return prerank def enrichmentMap(df, layout, output): """ Performs enrichment mapping """ nodes, edges = enrichment_map(df) graph = nx.from_pandas_edgelist(edges, source='src_idx', target='targ_idx', edge_attr=['jaccard_coef', 'overlap_coef', 'overlap_genes']) fig, ax = plt.subplots(figsize=(7, 7)) pos = nx.layout.spiral_layout(graph) nx.draw_networkx_nodes(graph, pos=pos, cmap=plt.cm.RdYlBu, node_color=list(nodes.NES), node_size=list(nodes.Hits_ratio*1000)) nx.draw_networkx_labels(graph, pos=pos, labels=nodes.Term.to_dict()) edge_weight = nx.get_edge_attributes(graph, 'jaccard_coef').values() nx.draw_networkx_edges(graph, pos=pos, width=list(map(lambda x: x*10, edge_weight)), edge_color='#CDDBD4') plt.savefig( '{output_dir}{label}_pca_projection.png'.format(output_dir=output, label=layout), bbox_inches="tight", dpi=600) def main(incl=None): if incl is None: command_line = CommandLine() if command_line.args.input: output = command_line.args.output if not os.path.isdir(output): os.mkdir(output) inFile = command_line.args.input organism = command_line.args.organism library = command_line.args.library condition = command_line.args.condition lfc_threshold = command_line.args.threshold enrich_threshold = command_line.args.enrich_threshold pval_threshold = command_line.args.pval_threshold top_terms = command_line.args.terms sets = '_'.join(library) print("Computing global enrichment analysis...") input_data = computeGSEA.readData(inFile, threshold=lfc_threshold, pval=pval_threshold) gene_list = computeGSEA.df2List(input_data) enrich = computeGSEA.enrichR(gene_list=gene_list, gene_set=library, organism=organism, threshold=enrich_threshold, layout=condition, output=output) computeGSEA.barPlot(df=enrich, title="test", top_term=top_terms, layout=condition, output=output) computeGSEA.dotPlot(df=enrich, title="test", top_term=top_terms, layout=condition, output=output) prerank_df = computeGSEA.readPrerank(data=inFile, threshold=lfc_threshold, pval=pval_threshold) prerank = computeGSEA.prerankGSEA(rank_df=prerank_df, gset=library, top_term=top_terms, layout="all", output=output) prerank_res = prerank.res2d print("Computing positives and negatives only enrichment analysis...") pos_prerank_df = computeGSEA.readPositives(data=inFile, threshold=lfc_threshold, pval=pval_threshold) neg_prerank_df = computeGSEA.readNegatives(data=inFile, threshold=lfc_threshold, pval=pval_threshold) pos_prerank = computeGSEA.prerankGSEA(rank_df=pos_prerank_df, gset=library, top_term=top_terms, layout="positive", output=output) neg_prerank = computeGSEA.prerankGSEA(rank_df=neg_prerank_df, gset=library, top_term=top_terms, layout="negative", output=output) pos_prerank_res = pos_prerank.res2d neg_prerank_res = neg_prerank.res2d prerank_sig = prerank_res.loc[prerank_res["FDR q-val"]<0.05] pos_prerank_sig = pos_prerank_res.loc[pos_prerank_res["FDR q-val"]<0.05] neg_prerank_sig = neg_prerank_res.loc[neg_prerank_res["FDR q-val"]<0.05] if not prerank_sig.empty: computeGSEA.enrichmentMap(df=prerank, layout=condition, output=output) computeGSEA.enrichmentPlot(df=prerank, top_term=10, output=output) if prerank_sig.empty: print("\033[1mNo significant pre-rank terms found.\n") if not pos_prerank_sig.empty: computeGSEA.enrichmentMap(df=pos_prerank, layout=condition, output=output) computeGSEA.enrichmentPlot(df=pos_prerank, top_term=10, output=output) if pos_prerank_sig.empty: print("\033[1mNo significant positive pre-rank terms found.\n") if not neg_prerank_sig.empty: computeGSEA.enrichmentMap(df=neg_prerank, layout=condition, output=output) computeGSEA.enrichmentPlot(df=neg_prerank, top_term=10, output=output) if neg_prerank_sig.empty: print("\033[1mNo significant negative pre-rank terms found.\n") print("\033[1mGSEA and prerank GSEA analysis complete.\n") if __name__ == '__main__': main()
caeareva/DM-DASE
gsea/compute_gsea_program.py
compute_gsea_program.py
py
13,621
python
en
code
0
github-code
50
34088264915
import os import discord from dotenv import load_dotenv import logging from services import get_matches_by_date from random import choice load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') handler = logging.FileHandler(filename='discord.log', encoding='utf-8', mode='w') intents = discord.Intents.default() intents.message_content = True client = discord.Client(intents=intents) @client.event async def on_ready(): print(f'We have logged in as {client.user}') @client.event async def on_message(message): if message.author == client.user: return if message.content.startswith('!hello'): greeting = choice(["Hi", "Hello", "Hey"]) await message.channel.send(f'{greeting} {message.author.display_name}!') if message.content.startswith('!matches'): try: date = message.content.split(" ")[1] except IndexError: date = "" await message.channel.send(get_matches_by_date(date)) @client.event async def on_message_edit(before, after): await before.channel.send(f'Soy un botón pero {before.author.display_name} había escrito "{before.content}"') client.run(TOKEN, log_handler=handler, log_level=logging.DEBUG)
IgnacioCurti/discord_bot
bot.py
bot.py
py
1,204
python
en
code
0
github-code
50
72061712156
import sys sys.setrecursionlimit(10**5) input = sys.stdin.readline n, m = map(int, input().split()) A = [[] for _ in range(n+1)] visited = [False]*(n+1) def dfs(v): visited[v] = True for i in A[v]: if not visited[i]: # 아직 방문 안한애들 방문 dfs(i) for _ in range(m): s, e = map(int, input().split()) A[s].append(e) A[e].append(s) # 양방향으로 에지 더해주기 cnt = 0 for i in range(1, n+1): if not visited[i]: cnt += 1 dfs(i) print(cnt)
cherrie-k/algorithm-python
백준/Silver/11724. 연결 요소의 개수/연결 요소의 개수.py
연결 요소의 개수.py
py
562
python
ko
code
0
github-code
50
13299875084
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Aug 17 14:22:17 2018 @author: Soumya """ import cv2 import numpy as np original_img = cv2.imread('img2.jpg') original_img = cv2.resize(original_img, (600,923)) resized_img = cv2.resize(original_img, (300,600)) box_vector ='0 0.10083333333333333 0.6522210184182016 0.20166666666666666 0.08017334777898158' box_info = box_vector.split(' ') class_pred = float(box_info[0]) x_center = float(box_info[1]) y_center = float(box_info[2]) width = float(box_info[3]) height = float(box_info[4]) x_center_big = x_center * 600 y_center_big = y_center * 923 height_big = height *923 width_big = width *600 x_center_small = x_center * 300 y_center_small = y_center * 600 height_small = height *600 width_small = width *300 def get_coordinates(x_cent,y_cent,height,width,img_shape): # img_shape = (height, width) img_height, img_width = img_shape x_cent = x_cent * img_width y_cent = y_cent * img_height height = height * img_height width = width * img_width x1 = x_cent - (width/2) x2 = x_cent + (width/2) x3 = x2 x4 = x1 y1 = y_cent - (height/2) y4 = y_cent + (height/2) y2 = y1 y3 = y4 # order specified based on cv2.drawContours requirement box = np.array([[x3,y3], [x4,y4], [x1,y1], [x2,y2]]) return box box = get_coordinates(x_center,y_center,height,width,(923,600)) box = np.int0(box) small_box = get_coordinates(x_center,y_center,height,width,(600,300)) small_box = np.int0(small_box) # Drawing the boxes original_img = cv2.drawContours(original_img, [box], 0,(255,0,0),2) resized_img = cv2.drawContours(resized_img, [small_box], 0,(255,0,0),2) cv2.imshow('original', original_img) cv2.imshow('resized', resized_img) cv2.waitKey(0) cv2.destroyAllWindows()
rounakskm/Annotation-Detector
box_draw.py
box_draw.py
py
1,842
python
en
code
0
github-code
50
18525716526
import json import re import time from bs4 import BeautifulSoup import requests import openpyxl import random import threading import os def get_headers(): pc_headers = { "X-Forwarded-For": '%s.%s.%s.%s' % (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)), "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Encoding": "gzip, deflate", "Accept-Language": "en-US,en;q=0.5", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36" } return pc_headers def get_proxies_abuyun(): proxyHost = "http-dyn.abuyun.com" proxyPort = "9020" # 代理隧道验证信息 proxyUser = '' proxyPass = '' proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % { "host": proxyHost, "port": proxyPort, "user": proxyUser, "pass": proxyPass, } proxies = { "http": proxyMeta, "https": proxyMeta, } return proxies class NetWorkError(Exception): pass def build_request(url, headers=None, proxies=None): if headers is None: headers = get_headers() for i in range(5): try: response = requests.get( url, headers=headers, proxies=get_proxies_abuyun(), timeout=15) return response except Exception as e: if '429' in str(e): time.sleep(random.randint(0, 1000)/1000.0) continue raise NetWorkError def write_to_excel(lines, filename, write_only=True): excel = openpyxl.Workbook(write_only=write_only) sheet = excel.create_sheet() for line in lines: sheet.append(line) excel.save(filename) def current_time(): now_time = time.strftime('%Y-%m-%d %H:%M:%S') return now_time def get_products(): need_urls = ['https://www.adidas.com.cn/plp/list.json?pf=25-40%2C25-60%2C25-60&pr=-&fo=p25%2Cp25&pn={}&pageSize=120&p=%E7%94%B7%E5%AD%90-%E4%B8%AD%E6%80%A7&isSaleTop=false', 'https://www.adidas.com.cn/plp/list.json?ni=112&pf=25-82%2C25-60%2C25-60&pr=-&fo=p25%2Cp25&pn={}&pageSize=120&p=%E5%A5%B3%E5%AD%90-%E4%B8%AD%E6%80%A7&isSaleTop=false', 'https://www.adidas.com.cn/plp/list.json?ni=139&pf=25-160%2C25-220%2C24-250%2C24-239%2C24-39&pr=-&fo=p25%2Cp25%2Cp24%2Cp24%2Cp24&pn={}&pageSize=120&p=%E7%94%B7%E7%AB%A5-%E5%A5%B3%E7%AB%A5-%E5%A4%A7%E7%AB%A5%EF%BC%888-14%E5%B2%81%EF%BC%89-%E5%B0%8F%E7%AB%A5%EF%BC%884-8%E5%B2%81%EF%BC%89-%E5%A9%B4%E7%AB%A5%EF%BC%880-4%E5%B2%81%EF%BC%89&isSaleTop=false'] result = [] for base_url in need_urls: page = 1 failed_times = 0 while True: try: url = base_url.format(page) + '&_=' + \ str(int(time.time() * 1000)) req = build_request(url) res = json.loads(req.text) return_obj = res['returnObject'] if 'view' not in return_obj: break except Exception as e: print(current_time(), '[get_products][request error]', url, e) failed_times += 1 if failed_times == 3: break continue failed_times = 0 try: items = return_obj['view']['items'] except Exception as e: break for item in items: base_info = {} try: base_info['title'] = item['t'] except: base_info['title'] = '-' try: base_info['s_title'] = item['st'] except: base_info['s_title'] = '' try: base_info['original_price'] = item['lp'] except: base_info['original_price'] = '-' try: base_info['real_price'] = item['sp'] except: base_info['real_price'] = '-' base_info['code'] = item['c'] result.append(base_info) print(current_time(), '[get_products]', 'Url', url, 'OK') page += 1 return result def get_ava_sku(item_id): sku_str = "[]" for i in range(3): try: url = 'https://www.adidas.com.cn/productGetItemIvts/{}.json?_={}'.format( item_id, str(int(time.time() * 1000))) req = build_request(url) res_text = req.text data = json.loads(res_text) sku_str = data['skuStr'] break except: continue result = json.loads(sku_str) return result def get_product_info(url): req = build_request(url) soup = BeautifulSoup(req.text, 'lxml') item_id = soup.find("input", {"id": 'itemId'}).get("value") color = soup.find("input", {'id': 'colorDisPaly'}).get('value') try: login_info=soup.find('div',{'class':'login-text'}).find('p').get_text() except Exception as e: login_info='' table = soup.find('div', {'class': 'overview product-size'}).find_all("li") product_size = [] for li in table: display_size = li.get_text() size_id = li.get('ipi') product_size.append([size_id, display_size]) ava_list = get_ava_sku(item_id) sku_info = [] for item in product_size: for ava_sku in ava_list: if item[0] in ava_sku['properties']: sku_info.append([item[1], ava_sku['availableQty']]) break return { 'color': color, 'login_info':login_info, 'sku_info': sku_info } class AdidasProduct(threading.Thread): def __init__(self, base_info): super(AdidasProduct, self).__init__() self.base_info = base_info self.pdp_url = self.base_info[-1] def run(self): try: self.product = get_product_info(self.pdp_url) except Exception as e: print(current_time(), '[get_product_info][error]', self.pdp_url, e) self.product = {'color': '','login_info':'', 'sku_info': []} self.lines = [] if len(self.product['sku_info']) == 0: self.lines.append(self.base_info + [self.product['color'],self.product['login_info']]) else: for sku_item in self.product['sku_info']: line = self.base_info + [self.product['color'],self.product['login_info']] + sku_item self.lines.append(line) def load_products(): products = get_products() keys = ['title', 's_title', 'original_price', 'real_price', 'code'] items = [] for product in products: item = [] for key in keys: value = product[key] item.append(value) item.append('https://www.adidas.com.cn/item/' + product['code']) items.append(item) if len(items) < 5: continue yield items items = [] yield items def crawl(): result = [] counter = 0 for products in load_products(): tasks = [] for item in products: task = AdidasProduct(item) tasks.append(task) for task in tasks: task.start() for task in tasks: task.join() for task in tasks: result += task.lines counter += 1 print(current_time(), '[get_product_info][OK]', task.pdp_url, counter) current_dir = os.getcwd() write_to_excel(result, current_dir+'/files/' + current_time().replace(':', '_')+'_adidas' + '.xlsx') crawl()
19js/Nyspider
www.adidas.com.cn/adidas.py
adidas.py
py
7,820
python
en
code
16
github-code
50
1376076143
import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np from gym import spaces from gym_rlf.envs.rlf_env import RLFEnv, MIN_PRICE, MAX_PRICE from gym_rlf.envs.Parameters import LotSize, TickSize, sigma, kappa, alpha, factor_alpha, factor_sensitivity, factor_sigma, p_e, M, K # Stable Baselines recommends to normalize continuous action space because the Baselines # agents only sample actions from a standard Gaussian. # We use a space normalizer to rescale the action space to [-LotSize * K, LotSize * K]. ACTION_SPACE_NORMALIZER = LotSize * K MAX_HOLDING = LotSize * M class APTEnv(RLFEnv): def __init__(self): super(APTEnv, self).__init__('apt_plots/') # Use a Box to represent the action space with the first param being # (trade of the security) and the second param being (trade of the factor security). self.action_space = spaces.Box( low=np.array([-1, -1]), high=np.array([1, 1]), shape=(2,)) # Use a Box to represent the observation space with params: (position of the security), # (position of the factor security) and (price of the security). # The price of the factor security is hidden. self.observation_space = spaces.Box( low=np.array([-MAX_HOLDING, -MAX_HOLDING, MIN_PRICE]), high=np.array([MAX_HOLDING, MAX_HOLDING, MAX_PRICE]), shape=(3,)) def _next_price(self, p, p_f): rn1 = np.random.normal(0, 1., 1)[0] rn2 = np.random.normal(0, 1., 1)[0] factor_return = factor_alpha + factor_sigma * rn1 p_f_new = (1 + factor_return) * p_f p_f_new = min(p_f_new, MAX_PRICE) p_f_new = max(p_f_new, MIN_PRICE) r = alpha + factor_sensitivity * factor_return + sigma * rn2 p_new = (1 + r) * p p_new = min(p_new, MAX_PRICE) p_new = max(p_new, MIN_PRICE) return p_new, p_f_new def reset(self): super(APTEnv, self).reset() self._factor_prices = np.zeros(self._L + 2) self._factor_prices[0] = p_e self._factor_positions = np.zeros(self._L + 2) return self._get_state() def _get_state(self): return np.array([self._positions[self._step_counts], self._factor_positions[self._step_counts], self._prices[self._step_counts]]) def step(self, action): ac1 = action[0] * ACTION_SPACE_NORMALIZER ac2 = action[1] * ACTION_SPACE_NORMALIZER old_pos = self._positions[self._step_counts] old_factor_pos = self._factor_positions[self._step_counts] old_price = self._prices[self._step_counts] old_factor_price = self._factor_prices[self._step_counts] self._step_counts += 1 new_pos = self._positions[self._step_counts] =\ max(min(old_pos + ac1, MAX_HOLDING), -MAX_HOLDING) new_factor_pos = self._factor_positions[self._step_counts] =\ max(min(old_factor_pos + ac2, MAX_HOLDING), -MAX_HOLDING) new_price, new_factor_price =\ self._prices[self._step_counts], self._factor_prices[self._step_counts] =\ self._next_price(old_price, old_factor_price) trade_size = abs(new_pos - old_pos) + abs(new_factor_pos - old_factor_pos) cost = TickSize * (trade_size + 1e-2 * trade_size**2) PnL = (new_price - old_price) * old_pos + (new_factor_price - old_factor_price) * old_factor_pos - cost self._costs[self._step_counts] = cost self._profits[self._step_counts] = PnL + cost self._rewards[self._step_counts] = PnL - .5 * kappa * PnL**2 return self._get_state(), self._rewards[self._step_counts], self._step_counts >= self._L + 1, {} def render(self, mode='human'): super(APTEnv, self).render() t = np.linspace(0, self._L + 1, self._L + 2) fig, axs = plt.subplots(5, 1, figsize=(16, 40), constrained_layout=True) axs[0].plot(t, self._prices) axs[1].plot(t, self._factor_prices) axs[2].plot(t, self._positions) axs[3].plot(t, self._factor_positions) axs[4].plot(t, np.cumsum(self._rewards)) axs[0].set_ylabel('price') axs[1].set_ylabel('factor price') axs[2].set_ylabel('position') axs[3].set_ylabel('factor position') axs[4].set_ylabel('cumulative P/L') plt.title('Out-of-sample simulation of RL agent') plt.xlabel('steps') plt.savefig('{}/plot_{}.png'.format(self._folder_name, self._render_counts)) plt.close() plt.plot(t, np.cumsum(self._costs), label='cumulative costs') plt.plot(t, np.cumsum(self._profits), label='cumulative profits') plt.legend() plt.savefig('{}/costs_and_profits_plot_{}.png'.format(self._folder_name, self._render_counts)) plt.close()
sophiagu/RLF
gym-rlf/gym_rlf/envs/apt_env.py
apt_env.py
py
4,557
python
en
code
7
github-code
50
20548981126
def equilibrium(A): for i in range(len(A)): sl = 0 for il in range(i): sl += A[il] for ir in range(i+1, len(A)): sl -= A[ir] if sl == 0: return i return -1 def equilibrium_optimised(A): if len(A)==1: return 1 left_sum = 0 right_sum = sum(A[1:]) idx = 1 while idx < len(A): left_sum += A[idx-1] right_sum -= A[idx] if left_sum == right_sum: return idx+1 idx += 1 return -1 A = [] print(equilibrium_optimised(A))
shivang98/DS-Algo-Practice
equilibrium_index.py
equilibrium_index.py
py
573
python
en
code
0
github-code
50
30913849710
# Pedir un numero y devolver los numeros primos desde el 0 hasta el ingresado por el usuario def numeros_primos(num): for i in range(2, num - 1): if num % i == 0: return False return True def primos_hasta(num): primos = [] for i in range(3, num + 1): resultado = numeros_primos(i) if resultado == True: primos.append(i) return primos resultado= primos_hasta(39) print(resultado)
fedemoretto11/apuntes-python
Ejercicios practicos 2/ejercicio_practico_2.py
ejercicio_practico_2.py
py
425
python
es
code
1
github-code
50
21078475346
from flask import Blueprint, Flask, redirect, render_template, request import repositories.human_repository as human_repo import repositories.zombie_repository as zombie_repo import repositories.biting_repository as biting_repo from models.biting import Biting bitings_blueprint = Blueprint("bitings", __name__) import repositories.biting_repository as biting_repository # INDEX @bitings_blueprint.route("/bitings") def bites(): bitings = biting_repository.select_all() return render_template("bitings/index.html", bitings=bitings) # NEW @bitings_blueprint.route("/bitings/new") def new_bite(): humans = human_repo.select_all() zombies = zombie_repo.select_all() return render_template("bitings/new.html", humans=humans, zombies=zombies) # CREATE @bitings_blueprint.route("/bitings", methods=["POST"]) def create_bite(): human = request.form["human_id"] zombie = request.form["zombie_id"] humans = human_repo.select(human) zombies = zombie_repo.select(zombie) bite = Biting(humans, zombies) biting_repository.save(bite) return redirect("/bitings") # EDIT @bitings_blueprint.route("/bitings/<id>/edit") def edit_bite(id): humans = human_repo.select_all() zombies = zombie_repo.select_all() biting = biting_repo.select(id) return render_template('bitings/edit.html', humans=humans, zombies=zombies, biting=biting) # UPDATE @bitings_blueprint.route("/bitings/<id>", methods=["POST"]) def update_bite(id): human = request.form["human_id"] zombie = request.form["zombie_id"] humans = human_repo.select(human) zombies = zombie_repo.select(zombie) bite = Biting(humans, zombies, id) biting_repository.update(bite) return redirect("/bitings") # DELETE @bitings_blueprint.route("/bitings/<id>/delete", methods=["POST"]) def delete_bite(id): biting_repo.delete(id) return redirect("/bitings")
fionaberkery/zombie_land
controllers/bitings_controller.py
bitings_controller.py
py
1,896
python
en
code
0
github-code
50
36106666135
# remove duplicate elememts from list list_l=[1,3,7,5,6,4,7,8,6,4] list_set=set(list_l) print(list(list_set)) # dynamic list_l=[] list_b=int(input()) for i in range(list_b): list_c=int(input("enter the values")) list_l.append(list_c) print(list_l) # read N lines of input and create a nested list each lines as a list list_a=[1,2,3] list_b=[4,5,6] list_c=[6,7,3] list_d=list[list[list_a],list[list_b],list[list_c]] print(list_d) # Min and Max values in the list of Tuples tuple_1=(22,13,24,15) tuple_2=(23,45,67,46) list_tup=list(tuple_1) list_tup1=list(tuple_2) for each in list_tup: for each2 in list_tup1: if each<each2: print("max Number") else: print("Min Number")
mathekeerthana/Capstone
Lists.py
Lists.py
py
768
python
en
code
0
github-code
50
38139517895
import tkinter as tk from PIL import Image, ImageTk from lib.modString import addString, minusString class drop: """ @ parent: frame that the "drop" is on @ name: string representing the drop's name @ raid_boss: the boss that drops 'drop' @ r, c: position in the grid @ cur count @ total count ######################################## @ parent: frame @ name: string, name of item drop @ raid_boss: boss class, name of boss that this drop belongs to @ cur_count: string, current count @ total_count: string, total @ label: label, total(current) displayed """ def __init__(self, parent, name, raid_boss, r, c, total='0', cur='0'): self.parent = parent self.name = name self.raid_boss = raid_boss self.cur_count = cur self.total_count = total self.label = tk.Label(parent, text=self.paint(), font=("Arial", 12)) image = Image.open("img/"+raid_boss.name+"/"+self.name+".jpg") photo = ImageTk.PhotoImage(image) l = tk.Label(parent, image=photo) l.image = photo l.grid(row=r, column=c) l.bind('<Button-1>', self.increment) l.bind('<Button-3>', self.decrement) self.label.grid(row=r+1, column=c) def increment(self, event=None): self.cur_count = addString(self.cur_count, '1') self.total_count = addString(self.total_count, '1') self.label['text'] = self.paint() self.raid_boss.total = addString(self.raid_boss.total, '1') self.raid_boss.cur = addString(self.raid_boss.cur, '1') self.raid_boss.count_label['text'] = self.raid_boss.paint() def paint(self): return self.cur_count+'('+self.total_count+')' def decrement(self, event=None): if self.cur_count == '0' or self.total_count == '0': return self.cur_count = minusString(self.cur_count, '1') self.total_count = minusString(self.total_count, '1') self.label['text'] = self.paint() self.raid_boss.total = minusString(self.raid_boss.total, '1') self.raid_boss.cur = minusString(self.raid_boss.cur, '1') self.raid_boss.count_label['text'] = self.raid_boss.paint()
villestring/GBF-Blue-chest-counter
lib/drop.py
drop.py
py
1,993
python
en
code
0
github-code
50
21943173149
from datetime import datetime class ParserBS(): item_order = 1 current_page = 1 sequential_errors = 0 def get_all_specifications(self, page, url): specification_elements = page.select('div#detailSpecContent div#Specs fieldset dl') specifications = dict() try: for element in specification_elements: obj = self.get_field_set_content(element) specifications.update(obj) specifications.update({ 'platform_id': self.get_platform_id(url), 'images_urls': self.get_images(page), 'url': url, 'platform': 'NewEgg', 'item_order': self.item_order, 'crawled_date': datetime.now().strftime("%d/%m/%Y %H:%M:%S") }) except: if self.sequential_errors < 10: self.sequential_errors = self.sequential_errors + 1 print('-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-') print('Error when Crawling Component : ' + str(self.item_order-1)) print('Component Url: ' + url) print('Component Current Page: ' + self.current_page) self.get_all_specifications(page, url) else: exit() if self.sequential_errors > 0: self.sequential_errors = 0 print('======================================') print('Crawled Components: ' + str(self.item_order)) self.item_order = self.item_order + 1 return specifications def get_field_set_content(self, element): titleElement = element.select('dt a') title = '' if len(title) == 0: title = element.select('dt')[0].getText() else: title = titleElement[0].getText() content = element.select('dd')[0].getText() obj = dict() obj.update({ title: content }) return obj def get_maximum_page(self, page): maximum_page = page.select('span.list-tool-pagination-text strong')[0].text.split('/')[1] self.maximum_page = int(maximum_page) return self.maximum_page def get_platform_id(self, url): splitted = url.split('/') return splitted[len(splitted)-1] def get_images(self, response): images_elements = response.select('div.objImages ul.navThumbs img') images = [] for image_element in images_elements: images.append(image_element.attrs['src'].replace('CompressAll35', '')) return images def get_all_components(self, response): components = response.select('.items-view>.item-container:not(.is-feature-item)') print('======================================') print('Page Components: ' + str(len(components))) return components def get_url_from_component(self, response): return response.select('a.item-title')[0].attrs['href'] def get_next_page_url(self, url): next_page_url = url.replace(f'Page-{self.current_page}', f'Page-{self.current_page+1}') self.next_page(next_page_url) return next_page_url def next_page(self, next_page_url): self.current_page = self.current_page + 1 print('######################################') print('######### Crawling Next Page: ' + str(self.current_page)) print('######### Next Page Url: ' + next_page_url) print('######################################')
eduardosbcabral/HWParts-Crawler
beautiful_soup/parser_bs.py
parser_bs.py
py
3,566
python
en
code
0
github-code
50
74417402076
import matplotlib.pyplot as plt, numpy as np, pandas as pd # general functions for plotting # Tim Tyree # 7.23.2021 def PlotTextBox(ax,text,text_width=150.,xcenter=0.5,ycenter=0.5,fontsize=20, family='serif', style='italic',horizontalalignment='center', verticalalignment='center', color='black',use_turnoff_axis=True,**kwargs): txt=ax.text(xcenter,ycenter,text,horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, transform = ax.transAxes, fontsize=fontsize, color='black', wrap=True,**kwargs) txt._get_wrap_line_width = lambda : text_width if use_turnoff_axis: ax.axis('off') def text_plotter_function(ax,data): text=data # ax.text(0.5, 0.5, text, family='serif', style='italic', ha='right', wrap=True) PlotTextBox(ax,text,fontsize=10) return True def format_plot_general(**kwargs): return format_plot(**kwargs) def format_plot(ax=None,xlabel=None,ylabel=None,fontsize=20,use_loglog=False,xlim=None,ylim=None,use_bigticks=True,**kwargs): '''format plot formats the matplotlib axis instance, ax, performing routine formatting to the plot, labeling the x axis by the string, xlabel and labeling the y axis by the string, ylabel ''' if not ax: ax=plt.gca() if use_loglog: ax.set_xscale('log') ax.set_yscale('log') if xlabel: ax.set_xlabel(xlabel,fontsize=fontsize,**kwargs) if ylabel: ax.set_ylabel(ylabel,fontsize=fontsize,**kwargs) if use_bigticks: ax.tick_params(axis='both', which='major', labelsize=fontsize,**kwargs) ax.tick_params(axis='both', which='minor', labelsize=0,**kwargs) if xlim: ax.set_xlim(xlim) if ylim: ax.set_xlim(ylim) return True def FormatAxes(ax,x1label,x2label,title=None,x1lim=None,x2lim=None,fontsize=16,use_loglog=False,**kwargs): if x1lim is not None: ax.set_xlim(x1lim) if x2lim is not None: ax.set_ylim(x2lim) if title is not None: ax.set_title(title,fontsize=fontsize) format_plot(ax, x1label, x2label, fontsize=fontsize, use_loglog=use_loglog,**kwargs) return True def plot_horizontal(ax,xlim,x0,Delta_thresh=1.,use_Delta_thresh=False): #plot the solid y=0 line x=np.linspace(xlim[0],xlim[1],10) ax.plot(x,0*x+x0,'k-') if use_Delta_thresh: #plot the dotted +-Delta_thresh lines ax.plot(x,0*x+Delta_thresh+x0,'k--',alpha=0.7) ax.plot(x,0*x-Delta_thresh+x0,'k--',alpha=0.7) return True
timtyree/bgmc
python/lib/viewer/bluf/plot_func.py
plot_func.py
py
2,515
python
en
code
0
github-code
50
22541760133
''' 将上周没有航班信息的机场数据在下周在爬取一遍 ''' import codecs import pandas as pd import csv import requests import re import json import pymysql as py def readCSV2List(filePath): try: file=open(filePath,'r',encoding="gb18030")# 读取以utf-8 context = file.read() # 读取成str list_result=context.split("\n")# 以回车符\n分割成单独的行 #每一行的各个元素是以【,】分割的,因此可以 length=len(list_result) for i in range(length): list_result[i]=list_result[i].split(",") return list_result except Exception : print("文件读取转换失败,请检查文件路径及文件编码是否正确") finally: file.close();# 操作完成一定要关闭 list1 = readCSV2List(r'D:\no.csv') list3 = [] def flg_code(): list2 = list1[1:-1] for i in list2: list3.append(i[2]) flg_code() def getConnection(): return py.connect(host='localhost', user='root', password='hh226752',db = 'flightradar24', charset = 'utf8' ) # 加载数据库中数据 conn = getConnection() cur = conn.cursor() cn = cur.execute('select * from test') rows = cur.fetchall() rows = list(rows) airport_info = [] for i in rows: list1 = list(i) airport_info.append(list1) url = 'https://www.flightradar24.com/data/airports/{}/routes' None_info_Airport=[] to_csv = [] for i in list3: try: new_url = url.format(i) headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.81 Safari/537.36'} response = requests.get(url=new_url, headers=headers,verify=True) html = response.text L = re.search('arrRoutes=\[(.*?)\]', html, re.S).group(1) ss = re.findall('{.*?}', L) for j in ss: l = json.loads(j) flg_code = l['iata'] # 机场代码 flg_name = l['name'] # 机场名称 flg_city = l['city'] # 机场所在城市 flg_country = l['country'] # 机场所在国家 flg_lat = l['lat'] # 机场的经度 flg_lon = l['lon'] # 机场的纬度 list2 = [i,flg_country,flg_name,flg_code,flg_city,flg_lat,flg_lon] to_csv.append(list2) print(flg_country,flg_code,flg_name,flg_city,flg_lat,flg_lon) except AttributeError: None_info_Airport.append(i) #print('没有航线信息的机场:',i) # to_csv = [] # for i in airport_info: # for k in list3: # if k in i: # to_csv.append(i[1:]) # print(to_csv) # # 新增机场数据 name = ['起飞机场代码','国家名称','机场名称','机场代码','机场经度','机场纬度'] test = pd.DataFrame(columns=name, data=to_csv) test.to_csv('D:\新增机场信息列表.csv') # 得到一个list 以后, 通过list里面的每个元素 在主表中查找信息,然后写入新的csv 或者mysql 数据库中 # list 里面有499个数据, select * from test where airports_code = '?' # 表名 test 列名airprots_code list1 = [] 通过 list1 中元素, 在airport_code 中查出全部信息来
kidword/spider
机场抓取信息/检查.py
检查.py
py
3,166
python
en
code
2
github-code
50
42198469647
#!/usr/bin/env python3 import sys import os.path import re read_mapped = 0 total_reads = 0 def load_annotations(infile): ret = {} with open(infile, 'r') as f: data = f.read().split('\n') for line in data: if not line: continue entries = line.split(',') ret.setdefault(entries[0], entries[1:]) return ret def load_resfams_metadata(infile): ret = {} with open(infile, 'r') as f: data = f.read().split('\n')[1:] for line in data: if not line: continue entry = line.split('\t') ret[entry[0]] = entry[1] return ret def load_domains(infile): ret = {} with open(infile, 'r') as f: data = f.read().split('\n') for line in data: if line.startswith('#') or not line: continue entry = line.split() contig = entry[-3].replace('>', '') locs = [int(x) for x in entry[0].split('|')[-2:]] ret.setdefault(contig, []).append((int(locs[0]), int(locs[1]), entry[3])) return ret def parse_cigar(s): length = 0 ret = re.findall(r'(\d+)([A-Z=]{1})', s) universe = {'X', 'P', 'I', 'N', 'D', '=', 'M'} for occ, op in ret: if op in universe: length += int(occ) return length class SamParser: """This object takes as input a SAM file path and constructs an iterable that outputs hash-mapping of header to sequence information. Only one line will be held in memory at a time using this method. """ def __init__(self, filepath): """ constructor @param filepath: filepath to the input raw SAM file. """ if os.path.exists(filepath): # if file is a file, read from the file self.sam_file = str(filepath) self.stdin = False elif not sys.stdin.isatty(): # else read from standard in self.stdin = True else: raise ValueError("Parameter filepath must be a SAM file") self.current_line = None self.reads_mapping = 0 self.reads_total = 0 self.header_lens = {} def __iter__(self): return self @property def _iterate(self): # Skip all leading whitespace while True: if self.stdin: sam_line = sys.stdin.readline() # read from stdin else: sam_line = self.sam_file.readline() # read from file if not sam_line: return # End of file if sam_line[0] != '@': # these lines are the actual reads self.reads_total += 1 temp = sam_line.split() if (int(temp[1]) & 4) == 0: self.reads_mapping += 1 return temp[2], temp[0], int(temp[3]), temp[5] # RefName, header, 1-start, CIGAR self.sam_file.close() # catch all in case this line is reached assert False, "Should not reach this line" def __next__(self): if not self.stdin and type(self.sam_file) is str: # only open file here if sam_file is a str and not fileIO self.sam_file = open(self.sam_file, "r") value = self._iterate if not value: # close file on EOF if not self.stdin: self.sam_file.close() global reads_mapped global total_reads reads_mapped = self.reads_mapping total_reads = self.reads_total raise StopIteration() else: return value if __name__ == '__main__': counts = {} output_annot = "" D = load_domains(sys.argv[1]) A = load_annotations(sys.argv[2]) R = load_resfams_metadata(sys.argv[3]) total = sys.argv[4] param_string = sys.argv[1].split('/')[-2].replace('_', ',') for refname, simulated, start, cigar in SamParser('-'): if simulated[0:2] == 'gi': continue # RefName, 1-start, CIGAR, RefLen, ReadSeq stop = start + parse_cigar(cigar) - 1 header = '-'.join(simulated.split('-')[:-2]) class_annot = A[header][0] output_annot = class_annot if refname not in D: continue model_hits = set() for triplets in D[refname]: if max(start, triplets[0]) <= min(stop, triplets[1]): if R[triplets[2]] != 'NA': model_hits.add(triplets[2]) if model_hits: for target in model_hits: class_target = R[target] if class_annot == class_target: counts.setdefault(simulated, 0) if counts[simulated] < 2: counts[simulated] += 1 sys.stdout.write('resfams,{},{},{},{},{}\n'.format( param_string, 0, output_annot, str(sum([y for y in counts.values()])), total ))
lakinsm/meta-marc-publication
scripts/count_num_classified_resfams.py
count_num_classified_resfams.py
py
4,101
python
en
code
1
github-code
50
37324197795
from turtle import* def drSquare(le, color): shape("turtle") pencolor(color) for i in range(4): forward(le) left(90) # mainloop() # drSquare(100,"red") for i in range(30): drSquare(i * 5, 'red') left(17) penup() forward(i * 2) pendown()
huyhieu07/nguyenhuyhieu-c4e-16-labs-
lab03/nhap.py
nhap.py
py
293
python
en
code
0
github-code
50
43598959090
from flask import Flask,request,abort import dataset import json import datetime app=Flask(__name__) db = dataset.connect('sqlite:///data/nobel_winners.db') @app.route('/api/winners') def get_country_data(): print('Request args:'+str(dict(request.args))) query_dict={} for key in ['country','category','year']: arg=request.args.get(key) if arg: query_dict[key]=arg winners = list(db['winners'].find(**query_dict)) if winners: return dumps(winners) abort(404) class JSONDateTimeEncoder(json.JSONEncoder): def default(self,obj): if(isinstance(obj,(datetime.date,datetime.datetime))): return obj.isoformat() else: return json.JSONEncoder.default(self,obj) def dumps(obj): return json.dumps(obj,cls=JSONDateTimeEncoder) if __name__=='__main__': app.run(port=8000,debug=True)
nationcall/dataviz
D3/data_viz_JS_py/flask_serve/server_sql.py
server_sql.py
py
804
python
en
code
0
github-code
50
18259038033
#from player import Player #tim = Player("Tim") from enemy import Enemy , Troll, Vampyre, Vampyreking dracula = Vampyreking("Dracula") print(dracula) dracula.take_damage(12) print(dracula) #random_monster = Enemy("Basic Enemy",12,1) #print(random_monster) #random_monster.take_damage(4) #print(random_monster) #random_monster.take_damage(8) #print(random_monster) #random_monster.take_damage(9) #print(random_monster) print("*********************************** \n \n") ugly_troll = Troll("pug") print("ugly troll-{}".format(ugly_troll)) another_troll = Troll("UG") print("Another troll-{}".format(another_troll)) another_troll.take_damage(10) #brother = Troll("Urg") #print(brother) ugly_troll.grant() vamp = Vampyre("vald") print(vamp) vamp.take_damage(5) #while vamp.alive: # vamp.take_damage(1) # print(vamp)
sarangp323/counting_freq
python_oops/inherit.py
inherit.py
py
892
python
en
code
0
github-code
50
18161154203
from config_joker import Config, JsonFileSource def example(): config = Config( sources=[ JsonFileSource( file_path='./examples/json/config.json', config_path='external_config_key[0].config' ) ] ) print(config.required(key='external_key[0]key')) if __name__== '__main__': example()
joaopedromgoulart/config-joker
examples/json/example_config_json.py
example_config_json.py
py
373
python
en
code
0
github-code
50
40775602339
# -*- coding: utf-8 -*- """ Created on Mon Oct 11 14:34:06 2021 @author: bhs89 """ import turtle import random turtle.clearscreen() tt = turtle.Turtle() scr = turtle.Screen() image1 = 'muji.gif' image2 = 'brown-line.gif' image3 = 'kakao_lion.gif' scr.addshape(image1) scr.addshape(image2) scr.addshape(image3) t1 = turtle.Turtle() t1.shape(image1) t1.penup() t1.goto(-300,300) t1.pendown() t2 = turtle.Turtle() t2.shape(image2) t2.penup() t2.goto(-300,0) t2.pendown() t3 = turtle.Turtle() t3.shape(image3) t3.penup() t3.goto(-300,-300) t3.pendown() for i in range(100): speed1 = random.randint(1, 10) t1.forward(speed1) speed2 = random.randint(1, 10) t2.forward(speed2) speed3 = random.randint(1, 10) t3.forward(speed3) turtle.done()
Bae-hong-seob/2021-2-University_2_2
빅데이터언어/실습/racing.py
racing.py
py
815
python
en
code
0
github-code
50
22497232452
# -*- coding: utf-8 -*- import logging import math import os import random import time import urllib from collections import Counter import requests os.makedirs("logs", exist_ok=True) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 5.1; rv:14.0) Gecko/20100101 Firefox/14.0.1', 'Referer': 'http://google.com' } requests_session = requests.Session() requests_session.headers.update(headers) quotes_file = open('raisin/quotes', 'r') quotes = quotes_file.readlines() quote_index = 0 random.shuffle(quotes) def random_quote(sender): global quote_index reply = quotes[quote_index].strip('\r\n') quote_index += 1 if '/me' in reply: reply = '\x01%s\x01' % reply return reply.replace('%s', sender).replace('/me', 'ACTION') def flatten(l): return [item for sublist in l for item in sublist] def pastebin(text): # [!] Assumes text has been decoded to utf-8 text = text.encode('utf-8') params = urllib.urlencode({'api_dev_key': '07a1c8f8a60611c983b2345ea38c1123', 'api_paste_code': text, 'api_option': 'paste'}) paste = urllib.urlopen('http://pastebin.com/api/api_post.php', params).read() return paste.replace('.com/', '.com/raw.php?i=') def sprunge(text): # [!] Assumes text has been decoded to utf-8 text = text.encode('utf-8') params = urllib.urlencode({'sprunge': text}) paste = urllib.urlopen('http://sprunge.us', params).read() return paste.lstrip(' ') def is_number(message): return message.replace('.', '', 1).isdigit() # Shannon entropy def entropy(message): counts = Counter(message) l = len(message) return -sum(count / l * math.log(count / l, 2) for count in counts.values()) def logger(name): console_formatting_string = "%(asctime)s %(name)s: %(message)s" if name in ("bot", "parser"): console_formatting_string = "%(asctime)s %(message)s" console_formatter = logging.Formatter(console_formatting_string) console_handler = logging.StreamHandler() console_handler.setFormatter(console_formatter) console_handler.setLevel(logging.INFO) file_formatter = logging.Formatter("%(asctime)s %(message)s") file_handler = logging.FileHandler(f"logs/{name}.log") file_handler.setFormatter(file_formatter) file_handler.setLevel(logging.DEBUG) logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) logger.addHandler(console_handler) logger.addHandler(file_handler) return logger
superseal/raisin
raisin/utils.py
utils.py
py
2,483
python
en
code
0
github-code
50
24314432477
import os import torch import pickle as pkl from collections import Counter from torchtext.vocab import Vocab from eval import Model, load_checkpoint, load_vocabs from model import get_pbg, save_vocab BASE_PATH = './models/unified' def unify_ents(e1, e2): e = set(e1).union(set(e2)) e.remove('<unk>') e.remove('<pad>') return e def create_vocabs(ents, rel_vocab): ent_vocab = Vocab(Counter(ents)) vectors = get_pbg(ents, '../../embeddings', 'unified_embs.txt') ent_vocab.set_vectors(vectors.stoi, vectors.vectors, vectors.dim) save_vocab(os.path.join(BASE_PATH, 'vocab.pkl'), ent_vocab, rel_vocab) def combine_models(model1, model2, beta=0.5): params1 = dict(model1) params2 = dict(model2) for name in params2.keys(): if name in params1: if name == 'ent_embedding.weight' or name == 'rel_embedding.weight': continue print('Combining layer {}... {} {}'.format(name, params1[name].data.size(), params2[name].data.size())) params1[name].data.copy_((1-beta)*params2[name].data + beta*params1[name].data) return params1 if __name__ == '__main__': model_names = ['wiki_gold_1M', 'gold_openie_50k_docs_balanced', 'openie_50k_docs'] model_paths = ['./models/{}'.format(name) for name in model_names] wikidata, combined, wikipedia = [load_checkpoint(os.path.join(path, 'best_model.pt')) for path in model_paths] (ent_wikidata, rel_wikidata), (_, _), (ent_wikipedia, rel_wikipedia) = [load_vocabs(os.path.join(path, 'vocab.pkl')) for path in model_paths] state_dict = combine_models(wikidata.state_dict(), combined.state_dict(), beta=0.8) state_dict = combine_models(state_dict, wikipedia.state_dict(), beta=0.5) state_dict['ent_embedding.weight'] = wikipedia.state_dict()['ent_embedding.weight'] state_dict['rel_embedding.weight'] = wikipedia.state_dict()['rel_embedding.weight'] umodel = Model(200, len(ent_wikipedia), len(rel_wikipedia), 200) umodel.load_state_dict(state_dict) torch.save(umodel.state_dict(), os.path.join(BASE_PATH, 'best_model.pt'))
rahular/coref-rl
wiki/reward/combine_models.py
combine_models.py
py
2,120
python
en
code
9
github-code
50
39291268405
import dash from dash import dcc, html import dash_bootstrap_components as dbc app = dash.Dash(__name__,external_stylesheets=[dbc.themes.SLATE],use_pages=True) server=app.server app.config.suppress_callback_exceptions=True sidebar=dbc.Nav( [ dbc.NavLink( [ html.Div(page["name"],className="ms-2",style={'textAlign' : 'center', 'color':'linen'}), ], href=page["path"], active="exact", ) for page in dash.page_registry.values() ], vertical=True, pills=True, className="btn-outline-light", ) app.layout = dbc.Container([ dbc.Row([ dbc.Col(html.Div("Roasting Terminal", style={'fontSize':50,'textAlign' : 'center','color' : 'linen'}, className='text-m-center mb-m-4')), ]), # html.Div([ # dcc.Link(page['name']+" | ",href=page['path']) # for page in dash.page_registry.values() # ]), html.Hr(), dbc.Row( [ dbc.Col([ sidebar ],xs=4,sm=4,md=2,lg=2,xl=2,xxl=2), dbc.Col( [ dash.page_container ],xs=8,sm=8,md=10,lg=10,xl=10,xxl=10) ] ) ], fluid=True) if __name__ == '__main__' : app.run_server(debug=True)
DuaneIndustries/CoffeeRoasteryDash
app.py
app.py
py
1,355
python
en
code
0
github-code
50
32115819718
import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * class Main(QMainWindow): def __init__(self, parent = None): QMainWindow.__init__(self, parent) self.InitUi() def InitUi(self): ql = QLabel(self) ql.setText("<font color=\"blue\">Hello</font><font color=\"red\">Hello</font>") def main(): app = QApplication(sys.argv) main_window = Main() main_window.show() app.exec_() if __name__ == "__main__": main()
MinTimmy/Data_Structure
First_semester/Demo1/all/test7.py
test7.py
py
522
python
en
code
0
github-code
50
23889431271
#!/usr/bin/env python2.7 from __future__ import print_function import sys, os, glob, logging from argparse import ArgumentParser from BaseSpacePy.api.BaseSpaceAPI import BaseSpaceAPI from BaseSpacePy.model.QueryParameters import QueryParameters as qp list_options = qp({'Limit': 1024}) logging.basicConfig( level=logging.INFO, format='[%(asctime)s] %(message)s', datefmt='%d/%m/%Y %H:%M:%S', ) bs = BaseSpaceAPI() user = bs.getUserById('current') logging.info("User Name: %s", user) projects = bs.getProjectByUser(list_options) project_list = [project.Name for project in projects] cli = ArgumentParser() cli.add_argument('project', nargs='?', help='Which project to download files from. When not specified, list projects instead.') cli.add_argument('--dry-run', '-n', action='store_true', help='Only show which files would be downloaded without downloading them.') cli.add_argument('--dir', '-d', default='.', help='Directory to download samples to.') args = cli.parse_args() if not args.project: print(*project_list, sep='\n') sys.exit(0) p = args.project try: idx = project_list.index(p) project = projects[idx] except ValueError: logging.error( '%r is not in your projects. Available projects are:\n%s', p, '\n'.join(project_list), ) sys.exit(1) # get already downloaded fastq downloaded = {f.split('/')[-1] for f in glob.glob(args.dir + '/*fastq.gz')} logging.info("Retrieving samples from project %s", p) samples = project.getSamples(bs, list_options) logging.info("Samples for this project: %s", samples) for sample in samples: logging.info("Retrieving files in sample %s", sample) for f in sample.getFiles(bs): if f.Name not in downloaded: logging.info("Downloading file %s", f.Name) if args.dry_run: continue f.downloadFile(bs, args.dir)
Teichlab/basespace_fq_downloader
download_fq_from_basespace.py
download_fq_from_basespace.py
py
1,886
python
en
code
4
github-code
50
18356819426
import pathlib import pytest BASE_PATH = pathlib.Path('docssrc/source/') def plot(path): _path = BASE_PATH / path name = _path.name _path = _path.parent def wraps(fn): @pytest.mark.skipif( (_path / (name + '.png')).exists() and (_path / (name + '.svg')).exists(), reason=f'Output plot already exists, {_path / name}' ) def inner(*args, **kwargs): fig = fn(*args, **kwargs) _path.mkdir(exist_ok=True, parents=True) fig.savefig(str(_path / (name + '.png'))) fig.savefig(str(_path / (name + '.svg'))) return inner return wraps
Peilonrayz/dice_stats
docssrc/source/_plots/env.py
env.py
py
665
python
en
code
3
github-code
50
28077578353
# int, float, str, bool # int -> str; str -> int # float -> str; str -> float j = 7 k = str(j) a = float(input()) b = float(input()) print(a + b, a - b, a * b, a / b, a ** b) c = 7 d = 8.4 print(c + d, type(c + d)) # bool: True, False # все что пустое и все что 0 => False, все остальное - True print(bool("123"), bool(""), bool(123), bool(0.0)) print(bool("0"))
GerasimovRM/MMSP
lesson2/1.py
1.py
py
401
python
ru
code
0
github-code
50
25192773855
from flask import Blueprint, jsonify, request from models import Departement, Role, RoleSchema, User, db #blueprint setup role = Blueprint('role',__name__) @role.route('/AddRole', methods = ['POST']) def AddRole(): req_Json = request.json name = req_Json['name'] nameDepartement= req_Json['nameDepartement'] departement = Departement.query.filter_by(name=nameDepartement).first() idDepartement = departement.id role = Role(name,idDepartement,nameDepartement) try: db.session.add(role) db.session.commit() except Exception: return "0" #Name already used return "1" #Add successfully @role.route('/UpdateRole/<int:_id>', methods = ['PUT']) def UpdateRole(_id): req_Json = request.json role = Role.query.get(_id) users = User.query.filter_by(role = role.name) role.name = req_Json['name'] role.nameDepartement= req_Json['nameDepartement'] try: for u in users: u.role = role.name departement = Departement.query.filter_by(name=role.nameDepartement).first() role.idDepartement = departement.id db.session.commit() except Exception: return "0" #Name already used return '1' #Role updated !! @role.route('/GetAllRole', methods = ['GET']) def GetAllRole(): roles = Role.query.all() role_schema = RoleSchema(many=True) output = role_schema.dump(roles) return jsonify({'Roles' : output}) @role.route('/GetListRoleByDepartement/<string:_DepartementName>', methods = ['GET']) def GetListRoleByDepartement(_DepartementName): roles = Role.query.filter( Role.nameDepartement == _DepartementName ) role_schema = RoleSchema(many=True) output = role_schema.dump(roles) return jsonify({'Roles' : output}) @role.route('/DeleteRole/<int:_id>', methods = ['DELETE']) def DeleteRole(_id): role = Role.query.get(_id) users = User.query.filter_by(role = role.name) for u in users: u.role = "Null" db.session.delete(role) db.session.commit() return '1' #SubCategory deleted !!
sofieneMoka/GED_APP_BACKEND
views/role.py
role.py
py
2,105
python
en
code
1
github-code
50
24800009720
#!/usr/bin/python3 # -*- coding: utf-8 -*- from utils import CSV import time from connections import Mysql from interfaces import Field ############ Etapa 1 mysqlClient = Mysql() # utilCsv = CSV() tableName="planilha_dyego" dm1Name="dm1_dyego" dm2Name="dm2_dyego" whereEmptyName="nome = ''" whereEmptyEmail="email = ''" whereEmptyPwd="pwd = ''" whereEmptyIp="ip = ''" whereEmptyDate="data = ''" whereEmptyHour="hora = ''" csvPath="access.csv" """ fields = [] fields.append( Field('id', 'INT NOT NULL AUTO_INCREMENT') ) fields.append( Field('nome', 'VARCHAR(100)') ) fields.append( Field('email', 'VARCHAR(100)') ) fields.append( Field('pwd', 'VARCHAR(30)') ) fields.append( Field('ip', 'VARCHAR(30)') ) fields.append( Field('data', 'VARCHAR(30)') ) fields.append( Field('hora', 'VARCHAR(30)') ) mysqlClient.createTable(tableName=tableName, fields=fields) mysqlClient.showListDatabaseNames() dataToInsert = utilCsv.openCsvByName(csvPath) mysqlClient.insertManyIntoPlanilhaDyego(dataToInsert) mysqlClient.showListDataByTable(tableName) """ ############ Etapa 2 """ print('Show empty name') mysqlClient.getByTableAndWhere(tableName, whereEmptyName) print('Show empty email') mysqlClient.getByTableAndWhere(tableName, whereEmptyEmail) print('Show empty pwd') mysqlClient.getByTableAndWhere(tableName, whereEmptyPwd) print('Show empty ip') mysqlClient.getByTableAndWhere(tableName, whereEmptyIp) print('Show empty date') mysqlClient.getByTableAndWhere(tableName, whereEmptyDate) print('Show empty hour') mysqlClient.getByTableAndWhere(tableName, whereEmptyHour) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyName) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyEmail) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyPwd) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyIp) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyDate) mysqlClient.deleteByTableAndWhere(tableName, whereEmptyHour) """ """ fields = [] fields.append( Field('id', 'INT NOT NULL AUTO_INCREMENT') ) fields.append( Field('nome', 'VARCHAR(100)') ) fields.append( Field('email', 'VARCHAR(100)') ) fields.append( Field('pwd', 'VARCHAR(30)') ) mysqlClient.createTable(tableName=dm1Name, fields=fields) fields = [] fields.append( Field('id', 'INT NOT NULL AUTO_INCREMENT') ) fields.append( Field('ip', 'VARCHAR(30)') ) fields.append( Field('data', 'VARCHAR(30)') ) fields.append( Field('hora', 'VARCHAR(30)') ) mysqlClient.createTable(tableName=dm2Name, fields=fields) fields = ['nome', 'email', 'pwd'] mysqlClient.copyTableFields(tableName1=dm1Name, tableName2=tableName, fields=fields) fields = ['ip', 'data', 'hora'] mysqlClient.copyTableFields(tableName1=dm2Name, tableName2=tableName, fields=fields) """ fields = ['ip', 'data'] mysqlClient.showMoreThanOne(tableName, fields)
dyegocaldeira/bigdata
app-rds.py
app-rds.py
py
2,815
python
en
code
0
github-code
50
9875537328
import random class GeneratingRandomness: def __init__(self): self.min_num = 100 self.result_string = '' self.check = ["000", "001", "010", "011", "100", "101", "110", "111"] self.balance = 1000 def take_input(self): list_collector = [] while True: random_string = input('Print a random string containing 0 or 1:\n') for item in random_string: if item == '1' or item == '0': list_collector.append(int(item)) if len(list_collector) < self.min_num: print(f'Current data length is {len(list_collector)}, {self.min_num - len(list_collector)} symbols left') continue else: self.result_string = ''.join(str(k) for k in list_collector) print('Final data string:') print(self.result_string + '\n') break def calculate(self): string_list = [self.result_string[i:i + 4] for i in range(0, len(self.result_string))] res_dict = {} for triad_def in self.check: # set the default value to (0, 0) res_dict.setdefault(triad_def, (0, 0)) for triad in string_list: if triad[:3] in self.check: if len(triad) == 4 and triad.endswith('0'): result = (res_dict.get(triad[:3])[0] + 1, res_dict.get(triad[:3])[-1]) res_dict.update({triad[:3]: result}) elif len(triad) == 4 and triad.endswith('1'): result = (res_dict.get(triad[:3])[0], res_dict.get(triad[:3])[-1] + 1) res_dict.update({triad[:3]: result}) return res_dict def prediction(self): print("You have $1000. Every time the system successfully predicts your next press, you lose $1.") print("Otherwise, you earn $1. Print \"enough\" to leave the game. Let's go!") while True: entered_string = input('\nPrint a random string containing 0 or 1:\n\n') if entered_string.isnumeric(): prediction_string = random.choice(self.check) for i in range(0, len(entered_string) - 3): next_num = '0' if self.calculate().get(entered_string[0 + i:3 + i])[0] > \ self.calculate().get(entered_string[0 + i:3 + i])[1] else '1' prediction_string += next_num[0] self.calculate_accuracy(prediction_string, entered_string) elif entered_string == 'enough': print('Game over!') break else: continue def calculate_accuracy(self, prediction_string, entered_string): print(f'prediction:\n{prediction_string}\n') money = 0 guessed_counter = 0 for item in range(3, len(prediction_string)): if prediction_string[item] == entered_string[item]: guessed_counter += 1 money += 1 else: money -= 1 guess_percentage = round(guessed_counter / (len(prediction_string) - 3) * 100, 2) self.balance = self.balance - money print(f'Computer guessed right {guessed_counter} out of {len(prediction_string) - 3} symbols ({guess_percentage} %)') print(f'Your balance is now ${self.balance}') return guess_percentage if __name__ == '__main__': rand = GeneratingRandomness() rand.take_input() rand.prediction()
sergo8/Generating_Randomness
Generating Randomness/task/predictor/predictor.py
predictor.py
py
3,547
python
en
code
0
github-code
50
70173602715
import faiss # make faiss available import numpy as np import time def IVFPQMultiGpu(config): print("IVFPQMultiGpu, ", config) d = config['dimension'] # dimension nb = config['db_size'] # database size nq = config['query_num'] # nb of queries k = config['top_k'] config_gpus = config['gpus'] ngpus = faiss.get_num_gpus() print("number of GPUs:", ngpus, ",running on gpus:", config_gpus) gpus = range(config_gpus) res = [faiss.StandardGpuResources() for _ in gpus] vres = faiss.GpuResourcesVector() vdev = faiss.IntVector() for i, res in zip(gpus, res): vdev.push_back(i) vres.push_back(res) index_list = [] for i in range(config['db_num']): # Using an IVFPQ index np.random.seed(i) xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. nlist = config['nlist'] m = config['sub_quantizers'] code = config['bits_per_code'] # begin_time = time.time() quantizer = faiss.IndexFlatL2(d) # the other index index_ivfpq = faiss.IndexIVFPQ(quantizer, d, nlist, m, code) # here we specify METRIC_L2, by default it performs inner-product search # build the index gpu_index_ivfpq = faiss.index_cpu_to_gpu_multiple( vres, vdev, index_ivfpq) gpu_index_ivfpq.referenced_objects = res assert not gpu_index_ivfpq.is_trained gpu_index_ivfpq.train(xb) # add vectors to the index assert gpu_index_ivfpq.is_trained gpu_index_ivfpq.add(xb) # add vectors to the index print(i, ",size = ", gpu_index_ivfpq.ntotal) index_list.append(gpu_index_ivfpq) return index_list
egliu/faiss-quick-demo
src/gpufaiss/ivfpqmultigpu.py
ivfpqmultigpu.py
py
1,827
python
en
code
0
github-code
50
40843949822
def is_prime(num): return primes[num] def calc_score(num, name): if name == "daewoong": enemy = "gyuseong" else: enemy = "daewoong" if not is_prime(num): if len(maximum_3num[enemy]) < 3: score[enemy] += 1000 else: score[enemy] += min(maximum_3num[enemy]) elif num in numbers[name] or num in numbers[enemy]: score[name] -= 1000 else: numbers[name].add(num) if len(maximum_3num[name]) < 3: maximum_3num[name].append(num) else: maximum_3num[name].append(num) maximum_3num[name].remove(min(maximum_3num[name])) max_num = 5000000 primes = [True] * max_num primes[0] = False primes[1] = False for i in range(2, int(max_num ** 0.5) + 1): if not primes[i]: continue for j in range(2 * i, max_num, i): primes[j] = False names = ["daewoong", "gyuseong"] score = {name: 0 for name in names} numbers = {name: set() for name in names} maximum_3num = {name: [] for name in names} N = int(input()) for i in range(N): d, g = map(int, input().split()) calc_score(d, names[0]) calc_score(g, names[1]) if score[names[0]] > score[names[1]]: print("소수의 신 갓대웅") elif score[names[0]] < score[names[1]]: print("소수 마스터 갓규성") else: print("우열을 가릴 수 없음")
hellouz818/AlgorithmStudy
김원호/5회차/소수게임.py
소수게임.py
py
1,376
python
en
code
1
github-code
50
14832397675
rows, columns = [int(x) for x in input().split(', ')] matrix = [] total_sum = 0 for row_index in range(rows): matrix.append([int(x) for x in input().split(', ')]) for col_index in range(columns): total_sum += matrix[row_index][col_index] print(total_sum) print(matrix)
Pavlina-G/Softuni-Python-Advanced
04. Multidimensional lists/Lab/01_2sum_matrix_elements.py
01_2sum_matrix_elements.py
py
296
python
en
code
0
github-code
50
11201796104
# Python from __future__ import annotations from dataclasses import KW_ONLY, dataclass from dataclasses import field as set_field from typing import TYPE_CHECKING # SD-WebUI from modules import sd_models, sd_vae # Local from sd_advanced_grid.utils import clean_name, get_closest_from_list, logger, parse_range_float, parse_range_int # ################################### Types ################################## # if TYPE_CHECKING: from collections.abc import Callable from modules.processing import StableDiffusionProcessing as SD_Proc # ################################# Constants ################################ # SHARED_OPTS = [ "CLIP_stop_at_last_layers", "code_former_weight", "face_restoration_model", "eta_noise_seed_delta", "sd_vae", "sd_model_checkpoint", "uni_pc_order", "use_scale_latent_for_hires_fix", ] # ######################### Axis Modifier Interpreter ######################## # @dataclass class AxisOption: label: str type: type[str | int | float | bool] _: KW_ONLY field: str | None = None min: float = 0.0 max: float = 1.0 choices: Callable[..., list[str]] | None = None toggles: str | None = None cost: float = 0.2 _valid: list[bool] = set_field(init=False, default_factory=list) _values: list[str] | list[int] | list[float] | list[bool] = set_field(init=False, default_factory=list) _index: int = set_field(init=False, default=0) @staticmethod def apply_to(field: str, value: AxisOption.type, proc: SD_Proc): if field in SHARED_OPTS: proc.override_settings[field] = value else: setattr(proc, field, value) def _apply(self, proc: SD_Proc): value = self._values[self._index] if self.type is None: return if self.toggles is None or value != "Default": AxisOption.apply_to(self.id, value, proc) if self.toggles: if self.choices: AxisOption.apply_to(self.toggles, value != "None", proc) else: AxisOption.apply_to(self.toggles, True, proc) def apply(self, proc: SD_Proc): """tranform the value on the Processing job with the current selected value""" if self._valid[self._index] is False: raise RuntimeError(f"Value not valid for {self.label}: {self.value}") try: self._apply(proc) except Exception as exc: raise RuntimeError(f"{self.value} could not be applied on {self.label}") from exc def next(self): if self._index + 1 < self.length: self._index += 1 return True self._index = 0 return False @property def id(self): # pylint: disable=invalid-name return self.field if self.field is not None else clean_name(self.label) @property def length(self): return len(self._values) @property def values(self): """list of possible value""" return self._values.copy() @property def value(self): """value to be applied""" return self._values[self._index] @property def is_valid(self): if not self._valid: return None return all(self._valid) @property def index(self): return self._index def dict(self): return {"label": self.label, "param": self.id, "values": self.values} def set(self, values: str = "") -> AxisOption: """format input from a string to a list of value""" has_double_pipe = "||" in values value_list = [val.strip() for val in values.split("||" if has_double_pipe else ",") if val.strip()] if self.type == int: self._values = parse_range_int(value_list) elif self.type == float: self._values = parse_range_float(value_list) else: self._values = [value for value in map(self._format_value, value_list) if value not in {"", None}] # type: ignore return self def unset(self): self._index = 0 self._values = [] self._valid = [] def _format_value(self, value: str) -> AxisOption.type: cast_value = None if self.type == int: cast_value = int(value) elif self.type == float: cast_value = round(float(value), 8) elif self.type == bool: cast_value = str(value).lower() if cast_value in {"true", "yes", "1", "on"}: cast_value = True elif cast_value in {"false", "no", "0", "off"}: cast_value = False elif self.type == str and self.choices is not None: valid_list = self.choices() cast_value = get_closest_from_list(value, valid_list) else: cast_value = value return cast_value def validate(self, value: AxisOption.type) -> None: """raise an error if the data type is incorrect""" same_type = isinstance(value, self.type) if self.type in (int, float): if not same_type: raise RuntimeError(f"Must be a {self.type} number") if self.min is not None and value < self.min: # type: ignore raise RuntimeError(f"Must be at least {self.min}") if self.max is not None and value > self.max: # type: ignore raise RuntimeError(f"Must not exceed {self.max}") if self.type == bool and not same_type: raise RuntimeError("Must be either 'True' or 'False'") if self.type == str and self.choices is not None and (not same_type or not value): raise RuntimeError("Not found in the list") if not same_type: raise RuntimeError("Must be a valid type") def validate_all(self, quiet: bool = True, **_): def validation(value): try: self.validate(value) except RuntimeError as err: return f"'{err} for: {value}'" return None result = [validation(value) for value in self._values] if any(result): errors = [err for err in result if err] if not quiet: raise RuntimeError(f"Invalid parameters in {self.label}: {errors}") logger.warn(f"Invalid parameters in {self.label}", errors) self._valid = [err is None for err in result] @dataclass class AxisNothing(AxisOption): type: None = None def _apply(self, _): return @property def is_valid(self): return True @dataclass class AxisModel(AxisOption): _: KW_ONLY cost: float = 1.0 # change of checkpoints is too heavy, do it less often def validate(self, value: str): info = sd_models.get_closet_checkpoint_match(value) if info is None: raise RuntimeError("Unknown checkpoint") @dataclass class AxisVae(AxisOption): _: KW_ONLY cost: float = 0.7 def validate(self, value: str): if value in {"None", "Automatic"}: return if sd_vae.vae_dict.get(value, None) is None: raise RuntimeError("Unknown VAE") @dataclass class AxisReplace(AxisOption): _: KW_ONLY cost: float = 0.5 # to allow prompt to be replaced before string manipulation _values: list[str] = set_field(init=False, default_factory=list) __tag: str = set_field(init=False, default="") def _apply(self, proc): """tranform the value on the Processing job""" value = str(self._values[self._index]) proc.prompt = proc.prompt.replace(self.__tag, value) proc.negative_prompt = proc.negative_prompt.replace(self.__tag, value) def validate_all(self, quiet: bool = True, **kwargs): proc = kwargs.pop("proc", None) if proc is None: return error = "" if not self.__tag: error = "Values not set or invalid format" elif self.__tag not in proc.prompt and self.__tag not in proc.negative_prompt: error = f"Tag '{self.__tag}' not found in all prompts" if error: if quiet: logger.warn(error) else: raise RuntimeError(error) else: self._valid = [True] * self.length def set(self, values: str = "") -> AxisOption: """ Promt_replace can handle different format sunch as: - 'one, two, three' => ['one=one', 'one=two', 'one=three'] - 'TAG=one, two, three' => ['TAG=one', 'TAG=two', 'TAG=three'] - 'TAG=one, TAG=two, TAG=three' => ['TAG=one', 'TAG=two', 'TAG=three'] - 'TAG-one || TAG=two, three || TAG=four' => ['TAG=one', 'TAG=two, three', 'TAG=four'] """ has_double_pipe = "||" in values value_list = [val.strip() for val in values.split("||" if has_double_pipe else ",")] for value_pair in value_list: value = [string.strip() for string in value_pair.split("=", maxsplit=1)] if len(value) == 1 and value[0]: tag = self.__tag or value[0] self._values.append(value[0]) elif value[0]: tag = self.__tag or value[0] self._values.append(value[1]) else: continue self.__tag = tag self.label = self.label.replace("TAG", self.__tag) return self def unset(self): super().unset() self.label = self.label.replace(self.__tag, "TAG") self.__tag = ""
micky2be/a1111-sd-advanced-grid
sd_advanced_grid/grid_settings.py
grid_settings.py
py
9,531
python
en
code
1
github-code
50
26268082638
import os import re from pathlib import Path import openai import pandas import numpy as np import tiktoken EMBEDDING_MODEL = "text-embedding-ada-002" EMBEDDING_CTX_LENGTH = 8191 EMBEDDING_ENCODING = "cl100k_base" MAX_EMBEDDINGS = 1536 MAX_TOKENS = 1600 GPT_MODEL = "gpt-3.5-turbo" def get_embedding(text, model=EMBEDDING_MODEL): return openai.Embedding.create(input=text, model=model)["data"][0]["embedding"] def list_document_files(): # return all markdown files under jekyll/_cci2 folder folder_path = Path("./docs") md_files = folder_path.glob("*.md") files = [f for f in md_files] return files def parse(filepath): with open(filepath) as f: raw = f.read() meta = {"filepath": filepath} # parse metadata if raw.startswith("---"): raw_header, body = raw.split("---", 2)[1:] for raw_line in raw_header.split("\n"): line = raw_line.strip() if ":" in line: key, val = line.split(":", 1) meta[key.strip()] = val.strip(" \"'") else: body = raw title = meta["title"] if "title" in meta else meta["filename"] body = f"# {title}\n{body}" sections = re.findall("[#]{1,4} .*\n", body) split_txt = "-=-=-=-=-=" # TODO: ignore "Next Step" for section in sections: body = body.replace(section, split_txt) # TODO: strip `{: header }` contents = [x.strip() for x in body.split(split_txt)] headers = [x.strip("# \n") for x in sections] sections_tuple = zip(headers, contents) # skip short sections sections_tuple = [(x, y) for x, y in sections_tuple if len(y.strip()) > 30] return meta, sections_tuple def get_document_embeddings(files): embeddings = [] for f in files: _, section_tuple = parse(f) for header, section in section_tuple: print("calculating embeddings:", str(f), header) embeddings.append( { "title": str(f), "header": header, "section": section, "emb": get_embedding(section), } ) return embeddings def save_embeddings_to_csv(embeddings): cols = ("title", "header", "section") + tuple(range(MAX_EMBEDDINGS)) rows = [] for emb in embeddings: # print("processing csv:", emb["title"], emb["header"]) new_row = [emb["title"], emb["header"], emb["section"]] for i in range(MAX_EMBEDDINGS): new_row.append(emb["emb"][i]) rows.append(new_row) export_df = pandas.DataFrame(rows, columns=cols) export_df.to_csv("embeddings.csv", index=False) def cal_embeddings(): OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not OPENAI_API_KEY: raise Exception("OPENAI_API_KEY is not set") files = list_document_files() embeddings = get_document_embeddings(files) save_embeddings_to_csv(embeddings) def vector_projection(a, b): # calculate similarity of two vectors return np.dot(np.array(a), np.array(b)) def convert_embeddings_from_str(emb): embeddings = [] for i in range(MAX_EMBEDDINGS): embeddings.append(float(emb[str(i)])) return embeddings def get_relevant_sections(input_emb, document_emb): distance = [] for index, row in document_emb.iterrows(): distance.append( (vector_projection(input_emb, convert_embeddings_from_str(row)), index) ) # return the top 10 most relevant sections rows_index = [i[1] for i in sorted(distance, reverse=True)[:10]] relevant_sections = document_emb.loc[rows_index] return [s["section"] for _, s in relevant_sections.iterrows()] def get_all_embeddings_from_csv(): embeddings = pandas.read_csv("embeddings.csv") return embeddings def num_tokens(text): encoding = tiktoken.encoding_for_model(GPT_MODEL) return len(encoding.encode(text)) def construct_context(sections): # Ensure context token length < max tokens context = sections[0] length = num_tokens(context) for section in sections[1:]: section_len = num_tokens(section) if length + section_len > MAX_TOKENS: break context += section length += section_len return context def request(prompt, context=""): # Send request to OpenAI API print("Asking ChatGPT...") messages = [ { "role": "system", "content": "You're a CircleCI doc assistant. \ Answer the question based on the context provided.", }, {"role": "assistant", "content": context}, {"role": "user", "content": prompt}, ] chat_completion = openai.ChatCompletion.create(model=GPT_MODEL, messages=messages) print(chat_completion.choices[0].message.content) print("\n") def start_chatting(): while True: user_input = input("Please enter your prompt: ") if user_input == "exit": break if not user_input: continue input_emb = get_embedding(user_input) # TODO: cache document embeddings document_embeddings = get_all_embeddings_from_csv() relevant_sections = get_relevant_sections(input_emb, document_embeddings) context = construct_context(relevant_sections) request(user_input, context) if __name__ == "__main__": # cal_embeddings() start_chatting()
kpister/prompt-linter
data/scraping/repos/liamchzh~circleci-docs-assistant/doc-assistant.py
doc-assistant.py
py
5,549
python
en
code
0
github-code
50
72147729114
from django.urls import path # from . import views from das_admin import views urlpatterns = [ path('index',views.index,name='index'), path('',views.login,name='login'), path('register',views.register,name='register'), path('profile',views.profile,name='profile'), path('patient_list',views.patient_list,name='patient_list'), path('doctor_list',views.doctor_list,name='doctor_list'), path('appointment_list',views.appointment_list,name='appointment_list'), path('doctor_profile',views.doctor_profile,name='doctor_profile'), path('doctor_deactive/<int:id>',views.doctor_deactive,name='doctor_deactive'), path('doctor_active/<int:id>',views.doctor_active,name='doctor_active'), path('blank_page',views.blank_page,name='blank_page'), path('components',views.components,name='components'), path('data_tables',views.data_tables,name='data_tables'), path('error_404',views.error_404,name='error_404'), path('error_500',views.error_500,name='error_500'), path('forgot_password',views.forgot_password,name='forgot_password'), path('form_basic_inputs',views.form_basic_inputs,name='form_basic_inputs'), path('form_horizontal',views.form_horizontal,name='form_horizontal'), path('form_input_groups',views.form_input_groups,name='form_input_groups'), path('form_mask',views.form_mask,name='form_mask'), path('form_validation',views.form_validation,name='form_validation'), path('form_vertical',views.form_vertical,name='form_vertical'), path('invoice_report',views.invoice_report,name='invoice_report'), path('invoice',views.invoice,name='invoice'), path('lock_screen',views.lock_screen,name='lock_screen'), path('reviews',views.reviews,name='reviews'), path('settings',views.settings,name='settings'), path('tables_basic',views.tables_basic,name='tables_basic'), path('transactions_list',views.transactions_list,name='transactions_list'), ]
mayuri0610/python
PROJECT/Self Project/Dr.Appoinment System/CORE/das_admin/urls.py
urls.py
py
1,952
python
en
code
0
github-code
50
10678997325
#!/usr/bin/env python3 import random import sys import common LENGTH = 4 COLORS = ['R', 'V', 'B', 'J', 'N', 'M', 'O', 'G'] def choices(e, n): """Renvoie une liste composée de n éléments tirés de e avec remise On pourrait utiliser random.choices, mais cette fonction n'est pas disponible dans les versions plus anciennes de Python """ return [random.choice(e) for i in range(n)] def evaluation (attempt,solution): """ Fonction qui compare l'essai proposé par codebreaker à la solution de référence de codemaker. Les arguments sont donc l'essai de codebreaker et la solution de codemaker. Renvoie un couple de deux entiers: le nombre de bonnes couleurs bien placées et le nombre de bonnes couleurs mal placées. """ #on commence par s'assurer que la combinaison proposée ait une longueur valide if len(attempt) != len(solution): sys.exit("Erreur : les deux combinaisons n'ont pas la même longueur") sol=[] #on transforme solution sous forme de liste afin de pouvoir modifier chaque caractère indépendamment for j in range(len(solution)): sol.append(solution[j]) #on initilise le nombre de plot bien placés à 0 pbp=0 #on initialise le nombre de plot bien et mal placés 0 pbmp=0 #on commence par chercher les plots bien placés en comparant le ième élément de solution avec le ième élément d'attempt for i in range(len(attempt)): if attempt[i]== sol[i]: pbp += 1 #si les deux sont les mêmes on implémente pbp #pour connaître les plots mal placés, on parcourt et compare tous les élément de solution pour chaque élément d'attempt for k in range(len(sol)): #si l'un des éléments d'attempt est le même que le ième élément de solution if attempt[i] == sol[k]: #on remplace ce caractère par une chaîne vide car s'il est présent plusieurs fois dans attempt il faut le compter qu'une seule fois sol[k]='' pbmp += 1 #puis on implémente pbmp break #on passe directement à la boucle suivante puisqu'on a trouvé une correspondance pmp=pbmp-pbp #enfin pour avoir uniquement les plots mal placés on soustrait le nombre de plots bien placés return (pbp,pmp) def donner_possibles(attempt,evaluation): """ Arguments: essai proposé par codebreaker puis l'evaluation renvoyée par codemaker pour cet essai. Renvoie l'ensemble des solutions encore possibles après la première évaluation. """ import itertools #on créer combi_possible en variable globale afin de ne pas recommencer à zéro à chaque fois que codebreaker fait un essai global combi_possibles #on rentre dans combi_possible toutes les combinaisons possibles de 4 couleurs parmis 8 avec l'ordre qui compte produit=itertools.product(COLORS,repeat=LENGTH) combi_possibles=set([chaine(q) for q in produit]) return maj_possibles(combi_possibles,attempt,evaluation) def chaine (q): """ Cette fonction permet de prendre un tuple de 4 lettres pour le mettre sous la forme d'une seule chaîne de 4 caractères. L'argument est donc un quadruplet du type ('J','B','B','G') et renvoie une chaîne de caractère du type 'JBBG'. """ combinaison='' #on initialise la variable dans laquelle on mettra notre chaîne de caractères #pour chaque élément de l'argument for i in q: combinaison+=i #on l'ajoute à la chaîne de caractère return combinaison def maj_possibles(combi_possibles,attempt,evaluation): """ Prend en arguments le set des combinaisons encore possibles, le dernier essai effectué et l'évaluation associée. Renvoie une mise-à-jour des combinaisons encore possibles en prenant en compte le nouvel essai et son évaluation. """ poss=combi_possibles.copy() #pour chaque élement de combi_possible for i in poss: #on regarde ce que renvoie l'évaluation du ième élément de combi_possible avec le dernier essai #si l'évaluation est différente de celle renvoyée par codemaker if common.evaluation(attempt,i)!=evaluation: #on supprime l'élément de combi_possible combi_possibles.remove(i) return combi_possibles
Margob29/mastermind
common.py
common.py
py
4,405
python
fr
code
0
github-code
50
8943094478
# program to execute all dependancies of task before execution of task itself class Task: def __init__(self, name, dependancies = None): self.name = name self.dependancies = dependancies self.state = False def execute(self): if self.dependancies is not None: for task in self.dependancies: if task.state is False: task.execute() print('executing : ' + self.name) self.state = True def main(): task_e = Task('E') task_d = Task('D', [task_e]) task_a = Task('A') task_b = Task('B', [task_a]) task_c = Task('C', [task_b, task_a, task_d]) task_f = Task('F', [task_c]) task_f.execute() main()
ch374n/python-programming
recursion/dependancies.py
dependancies.py
py
629
python
en
code
0
github-code
50
41426028197
from math import sqrt import numpy as np def proj_length(v, v_on): on_norm = np.linalg.norm(v_on) v_len = np.linalg.norm(v) projection_len = 0 rejection_len = 0 if on_norm > 0.01: projection_len = np.dot(v, v_on) / on_norm if v_len > abs(projection_len): rejection_len = sqrt(v_len ** 2 - projection_len ** 2) return projection_len, rejection_len def find_foci(arr_pts): # not necessary for foci calc, just additional animation _pts_search_animations = [] # shuffle to improve main axis search, can be optimized pts = np.copy(arr_pts) np.random.shuffle(pts) pts_len = len(pts) pt_average = np.sum(pts, axis=0) / pts_len vec_major = pt_average * 0 minor_max, major_max = 0, 0 # may be improved with overlapped pass, # when max calcs are started after delay when axis is less random for pt_cur in pts: vec_cur = pt_cur - pt_average proj_len, rej_len = proj_length(vec_cur, vec_major) if proj_len < 0: vec_cur = -vec_cur vec_major += (vec_cur - vec_major) / pts_len major_max = max(major_max, abs(proj_len)) minor_max = max(minor_max, rej_len) _pts_search_animations += [[pt_cur, np.copy(vec_major)]] # if both very close, i.e. cloud is sphere, may happen if major_max < minor_max: major_max, minor_max = minor_max, major_max vec_major_unit = vec_major / np.linalg.norm(vec_major) vec_foci = vec_major_unit * sqrt(major_max ** 2 - minor_max ** 2) foci_1 = pt_average + vec_foci foci_2 = pt_average - vec_foci return foci_1, foci_2, _pts_search_animations def find_ellipsoid(arr_pts): foci_1, foci_2, _pts_search_animations = find_foci(arr_pts) string_pro_calc = 0 for pt_cur in arr_pts: cur_pt_radius = np.linalg.norm(pt_cur - foci_1) + np.linalg.norm(pt_cur - foci_2) string_pro_calc = max(string_pro_calc, cur_pt_radius) return foci_1, foci_2, string_pro_calc, _pts_search_animations
halt9k/bounded-ellipsoid
src/bounded_ellipsoid_alg.py
bounded_ellipsoid_alg.py
py
2,041
python
en
code
2
github-code
50
16106954536
#!/usr/bin/env python # coding: utf-8 # In[1]: #pip install orjson #pip install tqdm #pip install scipy import json import re import numpy as np #from tqdm import notebook import collections from tqdm import tqdm from scipy import sparse # In[2]: #"data/stopword.list" def get_stop_words(path): stop_word = set() list_file = open(path, 'r').read().split("\n") for line in list_file: stop_word.add(line) return stop_word # In[3]: def tokenize(text, stop_word): text_tokens = [] text = re.sub('[^\s\w]|\w*\d\w*', '', text).split() #reference : https://greeksharifa.github.io/%EC%A0%95%EA%B7%9C%ED%91%9C%ED%98%84%EC%8B%9D(re)/2018/08/04/regex-usage-05-intermediate/ for token in text: if token not in stop_word: text_tokens.append(token.strip()) return text_tokens # In[4]: #data_path='data/yelp_reviews_train.json' def extract(data_path): tmp_token=[] tmp_star = [] tmp_rating = [] stop_word=get_stop_words("data/stopword.list") lines = open(data_path, 'r').read().split("\n") for line in tqdm(lines): if line == "": continue review = json.loads(line) str_token = tokenize(review['text'].lower(),stop_word) tmp_token.append(str_token) np_star = np.zeros(5) rating = int(review['stars']) np_star[rating - 1] = 1 tmp_star.append(np_star) tmp_rating.append(rating) return tmp_token,tmp_star,tmp_rating # In[5]: #data_path='data/yelp_reviews_train.json' def dev_extract(data_path): tmp_token=[] stop_word=get_stop_words("data/stopword.list") lines = open(data_path, 'r').read().split("\n") for line in tqdm(lines): if line == "": continue review = json.loads(line) str_token = tokenize(review['text'].lower(),stop_word) #print(str_token) tmp_token.append(str_token) return tmp_token # In[6]: token,star,rating=extract('data/yelp_reviews_train.json') # In[7]: '''score=[0,0,0,0,0] for i in star: score+=i print("score : ",score) print("ratio :", score/sum(score))''' # In[8]: train_token=token[:int(len(token)*0.8)] train_star=star[:int(len(token)*0.8)] train_rating=rating[:int(len(token)*0.8)] test_token=token[int(len(token)*0.8):] test_star=star[int(len(token)*0.8):] test_rating=rating[int(len(token)*0.8):] # In[9]: len(train_rating) # In[10]: def CTF_dict_new(token,CTF_vocab): dic={} C=collections.Counter(token) for i in set(token): if i in CTF_vocab: dic[CTF_vocab.index(i)]=C[i] return dic # In[11]: def DF_dict_new(token,DF_vocab): dic={} C=collections.Counter(token) for i in set(token): if i in DF_vocab: dic[DF_vocab.index(i)]=C[i] return dic # In[12]: def get_txt(path): tmp=[] f=open(path,'r') while True: line = f.readline() if not line: break tmp.append(line.rstrip('\n')) f.close() return tmp # In[13]: def CTF(token): vocab_freq={} for i in tqdm(range(len(token))): tokens=token[i] for w in tokens: try: vocab_freq[w]+=1 except: vocab_freq[w]=1 sorted_v = sorted(vocab_freq.items(), key=lambda kv: kv[1],reverse=True) vocab_freq = collections.OrderedDict(sorted_v) CTF_vocab=[x for x in vocab_freq] CTF_vocab=CTF_vocab[:2000] return CTF_vocab # In[14]: def DF(token): DF = {} for i in range(len(token)): tokens = token[i] for w in tokens: try: DF[w].add(i) except: DF[w] = {i} for i in DF: DF[i]=len(DF[i]) sorted_df = sorted(DF.items(), key=lambda kv: kv[1],reverse=True) DF_freq = collections.OrderedDict(sorted_df) DF_vocab=[x for x in DF_freq] DF_vocab=DF_vocab[:2000] return DF_vocab # In[15]: def get_CTF_matrix(token,CTF_vocab): import time start=time.time() row_ctf=[] col_ctf=[] data_ctf=[] n=0 for i in tqdm(token): dic=CTF_dict_new(i,CTF_vocab) row_ctf.extend([n]*len(dic)) col_ctf.extend(dic.keys()) data_ctf.extend(dic.values()) del dic n+=1 print("CTF_MATRIX DONE : ", time.time()-start) CTF_mtx=sparse.csr_matrix((data_ctf, (row_ctf, col_ctf)), shape=(len(token), 2000)) return CTF_mtx # In[16]: def get_DF_matrix(token,DF_vocab): import time start=time.time() row_df=[] col_df=[] data_df=[] n=0 for i in tqdm(token): dic=DF_dict_new(i,DF_vocab) row_df.extend([n]*len(dic)) col_df.extend(dic.keys()) data_df.extend(dic.values()) del dic n+=1 print("DF_MATRIX DONE : ",time.time()-start) DF_mtx=sparse.csr_matrix((data_df, (row_df, col_df)), shape=(len(token), 2000)) return DF_mtx # In[17]: import random def logistic_regression(train_mtx, list_star,rating,test_mtx,test_rating): label_mtx = np.array(list_star) # use gradient ascent to update model alpha = 0.003 lamda = 0.5 steps = 100000 #batch_size=5000 model_gd = gradient_ascent(train_mtx, label_mtx, alpha, lamda, steps,rating,test_mtx,test_rating) return model_gd def gradient_ascent(train_mtx, label_mtx, alpha, lamda, steps,rating,test_mtx,test_rating): import math rmse_list=[] # initialize matrix w test_rating=np.array(test_rating,dtype=float) model_mtx = np.zeros((5, 2000)) row_size = train_mtx.shape[0] for step in range(0, steps): alpha *= 1 / (1 + alpha * lamda * step) pick = random.sample(range(row_size), 8000) sgd_mtx = train_mtx[pick, :] sgd_label = label_mtx[pick, :] e_wx = np.exp(sgd_mtx * model_mtx.transpose()) e_sum = np.sum(e_wx, axis=1) e_div = (e_wx.transpose() / e_sum).transpose() sgd_sub = np.subtract(sgd_label, e_div) gradient = alpha * (sgd_sub.transpose() * sgd_mtx - lamda * model_mtx) model_mtx += gradient exp_wx = np.exp(model_mtx * test_mtx.transpose()) cond_prob = exp_wx / np.sum(exp_wx, axis=0) label = np.array([[1], [2], [3], [4], [5]]) soft_pred = np.sum(label * cond_prob, axis=0) rmse = math.sqrt(np.sum(np.square(soft_pred - test_rating)/soft_pred.shape[0])) rmse_list.append(float(rmse)) rmse_list=rmse_list[-20:] #print(np.array(rmse_list)) #print(step,rmse) print(rmse) if step > 20: if np.array(rmse_list).max()- np.array(rmse_list).min()<0.001: print('converge') print(step) print(rmse_list) break #if np.sqrt(np.sum(np.square(gradient))) < 0.00001: #break return model_mtx # In[18]: def validate_model(model_mtx, eval_mtx, eval_label): import math row_size = eval_mtx.shape[0] exp_wx = np.exp(model_mtx * eval_mtx.transpose()) cond_prob = exp_wx / np.sum(exp_wx, axis=0) hard_pred = np.argmax(cond_prob, axis=0) + 1 correct = np.sum(hard_pred == eval_label) acc = (correct + 0.0) / row_size label = np.array([[1], [2], [3], [4], [5]]) soft_pred = np.sum(label * cond_prob, axis=0) rmse = math.sqrt(np.sum(np.square(soft_pred - eval_label)/soft_pred.shape[0])) return print('ACC :', acc, ' RMSE :', rmse) # In[19]: def write(model_mtx, test_mtx,save_path): row_size = test_mtx.shape[0] f = open(save_path, 'w') label = np.array([1, 2, 3, 4, 5]) for line in range(row_size): exp_wx = np.exp(model_mtx * test_mtx[line, :].transpose()) cond_prob = exp_wx / np.sum(exp_wx) hard_pred = np.argmax(cond_prob) + 1 soft_pred = np.sum(label * cond_prob.transpose()) f.write(str(hard_pred) + " " + str(soft_pred) + "\n") # In[20]: def write_no_lb(preds,save_path): f = open(save_path, 'w') for line in preds: f.write(str(line)+" "+"0"+"\n") # # DEV & TEST # In[21]: dev_token=dev_extract('data/yelp_reviews_dev.json') # In[22]: '''ttest_token=dev_extract('data/yelp_reviews_test.json')''' # # DF # In[23]: #train_token, test_token #train_rating test_rating #train_star test_star # In[24]: DF_vocab=DF(train_token) # In[25]: DF_train_mtx=get_DF_matrix(train_token,DF_vocab) DF_test_mtx=get_DF_matrix(test_token,DF_vocab) # In[26]: pred_df_mtx=logistic_regression(DF_train_mtx,train_star,train_rating,DF_test_mtx,test_rating) # In[27]: validate_model(pred_df_mtx,DF_train_mtx,train_rating) # In[28]: #predict(pred_df_mtx,DF_mtx,'results/train_df.txt') # In[29]: '''dev_DF_mtx=get_DF_matrix(dev_token,DF_vocab)''' # In[30]: def write(model_mtx, test_mtx,save_path): row_size = test_mtx.shape[0] f = open(save_path, 'w') label = np.array([1, 2, 3, 4, 5]) for line in range(row_size): exp_wx = np.exp(model_mtx * test_mtx[line, :].transpose()) cond_prob = exp_wx / np.sum(exp_wx) hard_pred = np.argmax(cond_prob) + 1 soft_pred = np.sum(label * cond_prob.transpose()) f.write(str(hard_pred) + " " + str(soft_pred) + "\n") # In[31]: #test_DF_mtx=get_matrix(test_token,"DF") # In[32]: '''write(pred_df_mtx,dev_DF_mtx,'lr_dev_df.txt')''' # In[33]: #write(pred_df_mtx,test_DF_mtx,'results/lr_test_df.txt') # In[34]: from sklearn.svm import LinearSVC import time # initialise the SVM classifier DF_classifier = LinearSVC(dual=False) # train the classifier start = time.time() DF_classifier.fit(DF_train_mtx, train_rating) print(time.time()-start) # In[35]: df_svm_preds = DF_classifier.predict(DF_train_mtx) '''write_no_lb(df_svm_preds,'results/svm_train_df.txt')''' # In[36]: '''dev_df_svm_preds = DF_classifier.predict(dev_DF_mtx) write_no_lb(dev_df_svm_preds,'svm_dev_df.txt')''' # In[37]: '''test_df_svm_preds = DF_classifier.predict(test_DF_mtx) write_no_lb(test_df_svm_preds,'results/svm_test_df.txt')''' # In[38]: correct = np.sum(df_svm_preds == train_rating) print("DF-SVM-ACC :",(correct + 0.0) / len(df_svm_preds)) # # CTF # In[39]: CTF_vocab=CTF(train_token) # In[40]: CTF_train_mtx=get_CTF_matrix(train_token,CTF_vocab) CTF_test_mtx=get_CTF_matrix(test_token,CTF_vocab) # In[41]: pred_ctf_mtx=logistic_regression(CTF_train_mtx,train_star,train_rating,CTF_test_mtx,test_rating) # In[42]: validate_model(pred_ctf_mtx,CTF_train_mtx,train_rating) # In[43]: dev_CTF_mtx=get_CTF_matrix(dev_token,DF_vocab) # In[44]: #write(pred_ctf_mtx,dev_CTF_mtx,'lr_dev_ctf.txt') # In[ ]: # In[45]: from sklearn.svm import LinearSVC import time # initialise the SVM classifier CTF_classifier = LinearSVC(dual=False) # train the classifier start = time.time() CTF_classifier.fit(CTF_train_mtx, train_rating) print(time.time()-start) # In[46]: ctf_svm_preds = CTF_classifier.predict(CTF_train_mtx) # In[47]: correct = np.sum(ctf_svm_preds == train_rating) print("DF-SVM-ACC :",(correct + 0.0) / len(ctf_svm_preds)) # In[48]: '''dev_ctf_svm_preds = CTF_classifier.predict(dev_CTF_mtx) write_no_lb(dev_ctf_svm_preds,'svm_dev_ctf.txt')''' # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]: # In[ ]:
814yk/Yelp-Rating-Prediction
CTF_DF.py
CTF_DF.py
py
11,329
python
en
code
1
github-code
50
38133489680
import tkinter as tk from tkinter import * win = tk.Tk() win.geometry('') win.title('.:.Calculator.:.') win.geometry('400x600+550+100') win.resizable(0, 0) screentxt = '' def my_btndot(): global screentxt screentxt += str('.') lbl.config(text=screentxt) def my_btn0(): global screentxt screentxt += str(0) lbl.config(text=screentxt) def my_btn1(): global screentxt screentxt += str(1) lbl.config(text=screentxt) def my_btn2(): global screentxt screentxt += str(2) lbl.config(text=screentxt) def my_btn3(): global screentxt screentxt += str(3) lbl.config(text=screentxt) def my_btn4(): global screentxt screentxt += str(4) lbl.config(text=screentxt) def my_btn5(): global screentxt screentxt += str(5) lbl.config(text=screentxt) def my_btn6(): global screentxt screentxt += str(6) lbl.config(text=screentxt) def my_btn7(): global screentxt screentxt += str(7) lbl.config(text=screentxt) def my_btn8(): global screentxt screentxt += str(8) lbl.config(text=screentxt) def my_btn9(): global screentxt screentxt += str(9) lbl.config(text=screentxt) def my_btnclear(): global lbl global screentxt screentxt = '' lbl.config(text=screentxt) def my_btnadd(): global screentxt screentxt += str('+') lbl.config(text=screentxt) def my_btnminus(): global screentxt screentxt += str('-') lbl.config(text=screentxt) def my_btndivide(): global screentxt screentxt += str('/') lbl.config(text=screentxt) def my_btnmulti(): global screentxt screentxt += str('*') lbl.config(text=screentxt) def my_btnback(): global screentxt if len(screentxt)>0: txtlist = list(screentxt) txtlist.remove(txtlist[-1]) screentxt = ''.join(txtlist) lbl.config(text=screentxt) def my_btnEqual(): global screentxt screentxt = str(eval(screentxt)) lbl.config(text=screentxt) lbl = tk.Label(win, bg='#B22222', fg='#FFD700', font=10) lbl.place(height=100, width=400, x=0, y=0) btn0 = tk.Button(win, text='0', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn0) btn0.place(height=100, width=200, x=0, y=500) btn1 = tk.Button(win, text='1', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn1) btn1.place(height=100, width=100, x=0, y=400) btn2 = tk.Button(win, text='2', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn2) btn2.place(height=100, width=100, x=100, y=400) btn3 = tk.Button(win, text='3', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn3) btn3.place(height=100, width=100, x=200, y=400) btn4 = tk.Button(win, text='4', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn4) btn4.place(height=100, width=100, x=0, y=300) btn5 = tk.Button(win, text='5', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn5) btn5.place(height=100, width=100, x=100, y=300) btn6 = tk.Button(win, text='6', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn6) btn6.place(height=100, width=100, x=200, y=300) btn7 = tk.Button(win, text='7', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn7) btn7.place(height=100, width=100, x=0, y=200) btn8 = tk.Button(win, text='8', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn8) btn8.place(height=100, width=100, x=100, y=200) btn9 = tk.Button(win, text='9', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btn9) btn9.place(height=100, width=100, x=200, y=200) btnclear = tk.Button(win, text='C', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnclear) btnclear.place(height=100, width=200, x=0, y=100) btnback = tk.Button(win, text=u'\u232B', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnback) btnback.place(height=100, width=100, x=200, y=100) btnEqual = tk.Button(win, text='=', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnEqual) btnEqual.place(height=100, width=100, x=300, y=500) btndot = tk.Button(win, text='.', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btndot) btndot.place(height=100, width=100, x=200, y=500) btndivide = tk.Button(win, text='÷', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btndivide) btndivide.place(height=100, width=100, x=300, y=400) btnmulti = tk.Button(win, text='x', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnmulti) btnmulti.place(height=100, width=100, x=300, y=300) btnadd = tk.Button(win, text='+', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnadd) btnadd.place(height=100, width=100, x=300, y=200) btnminus = tk.Button(win, text='-', bg='#2F4F4F', fg='#FFD700', font=5, command=my_btnminus) btnminus.place(height=100, width=100, x=300, y=100) win.mainloop()
yazdanghasemi/Tools_For_Restuarant
Calculator_version1.py
Calculator_version1.py
py
4,950
python
en
code
0
github-code
50
33168831099
import RPi.GPIO as GPIO leftWheelPins = ((11, 13, 15), (12, 16, 18)) rightWheelPins = ((33, 35, 37), (36, 38, 40)) def setupWheels(): for pins in leftWheelPins + rightWheelPins: GPIO.setup(pins[0], GPIO.OUT, initial=GPIO.LOW) GPIO.setup(pins[1], GPIO.OUT) GPIO.setup(pins[2], GPIO.OUT) def enablePins(pins): for pin_set in pins: GPIO.output(pin_set[0], GPIO.HIGH) def disablePins(pins): for pin_set in pins: GPIO.output(pin_set[0], GPIO.LOW) def rightWheels(direction): enablePins(rightWheelPins) if direction == "forward": GPIO.output(rightWheelPins[0][1], GPIO.HIGH) GPIO.output(rightWheelPins[0][2], GPIO.LOW) GPIO.output(rightWheelPins[1][1], GPIO.LOW) GPIO.output(rightWheelPins[1][2], GPIO.HIGH) elif direction == "backward": GPIO.output(rightWheelPins[0][1], GPIO.LOW) GPIO.output(rightWheelPins[0][2], GPIO.HIGH) GPIO.output(rightWheelPins[1][1], GPIO.HIGH) GPIO.output(rightWheelPins[1][2], GPIO.LOW) else: disablePins(rightWheelPins) def leftWheels(direction): enablePins(leftWheelPins) if direction == "forward": GPIO.output(leftWheelPins[0][1], GPIO.LOW) GPIO.output(leftWheelPins[0][2], GPIO.HIGH) GPIO.output(leftWheelPins[1][1], GPIO.LOW) GPIO.output(leftWheelPins[1][2], GPIO.HIGH) elif direction == "backward": GPIO.output(leftWheelPins[0][1], GPIO.HIGH) GPIO.output(leftWheelPins[0][2], GPIO.LOW) GPIO.output(leftWheelPins[1][1], GPIO.HIGH) GPIO.output(leftWheelPins[1][2], GPIO.LOW) else: disablePins(leftWheelPins) def forward(wheels): if wheels == "right-wheels": rightWheels("forward") elif wheels == "left-wheels": leftWheels("forward") else: rightWheels("forward") leftWheels("forward") def backward(wheels): if wheels == "right-wheels": rightWheels("backward") elif wheels == "left-wheels": leftWheels("backward") else: rightWheels("backward") leftWheels("backward") def stop(wheels): if wheels == "right-wheels": rightWheels("stop") elif wheels == "left-wheels": leftWheels("stop") else: rightWheels("stop") leftWheels("stop") def turn(direction): if direction == "right": forward("left-wheels") backward("right-wheels") else: forward("right-wheels") backward("left-wheels")
Sohan-Dillikar/Raspberry_Pi_Bluetooth_RC_Car
Main_Code/wheels.py
wheels.py
py
2,511
python
en
code
0
github-code
50
46965044858
import requests import json class Networks: polka = ["polkadot", 10] kusama = ["kusama", 12] westend = ['westend', 12] address = "13mAjFVjFDpfa42k2dLdSnUyrSzK8vAySsoudnxX2EKVtfaq" current_network = Networks.polka url = "https://api.subquery.network/sq/ef1rspb/fearless-wallet" headers = {'Content-Type': 'application/json'} with open('./history_query.json') as f: history_elements_query = json.load(f) data = json.dumps(history_elements_query) subquery_req = requests.request("POST", url, headers=headers, data=data) history = json.loads(subquery_req.text) subscan_url = "https://{}.api.subscan.io/api/scan/extrinsics".format(current_network[0]) subscan_data = '{"address": "%s","row": 100,"page": 0}' % (address) subscan_req = requests.request("POST", subscan_url, headers=headers, data=subscan_data) result = subscan_req.json() print(result)
novasamatech/substrate-history-comparer
old/history_elements_calc.py
history_elements_calc.py
py
938
python
en
code
0
github-code
50
8971051726
from tkinter import * from quiz_brain import QuizBrain THEME_COLOR = "#375362" TEXT_FONT = ("Arial", 20, "italic") class QuizInterface: def __init__(self, quiz_brain: QuizBrain): self.quiz = quiz_brain self.window = Tk() self.window.title("Quizzler") self.window.config(padx=20, pady=20, bg=THEME_COLOR) self.score_label = Label(text="Score: 0", bg=THEME_COLOR, fg="white") self.score_label.grid(row=0, column=1) self.canvas = Canvas(width=300, height=250, bg="white") self.question_text = self.canvas.create_text(150, 125, width=280, text="Some text here", fill=THEME_COLOR, font=TEXT_FONT) self.canvas.grid(row=1, column=0, columnspan=2, pady=50) image_true = PhotoImage(file="images/true.png") self.true_button = Button(image=image_true, highlightthickness=0, command=self.click_true) self.true_button.grid(row=2, column=0) image_false = PhotoImage(file="images/false.png") self.false_button = Button(image=image_false, highlightthickness=0, command=self.click_false) self.false_button.grid(row=2, column=1) self.get_next_question() self.window.mainloop() def get_next_question(self): self.canvas.config(bg="white") if self.quiz.still_has_questions(): self.score_label.config(text=f"Score: {self.quiz.score}") q_text = self.quiz.next_question() self.canvas.itemconfig(self.question_text, text=q_text) else: self.canvas.itemconfig(self.question_text, text="You've reached the end of the quiz") self.true_button.config(state="disabled") self.false_button.config(state="disabled") def click_true(self): self.give_feedback(self.quiz.check_answer("True")) def click_false(self): self.give_feedback(self.quiz.check_answer("False")) def give_feedback(self, is_right): if is_right: self.canvas.config(bg="green") else: self.canvas.config(bg="red") self.window.after(1000, self.get_next_question)
angelov-g/100-days-of-code
intermediate-plus/gui-quiz/ui.py
ui.py
py
2,334
python
en
code
2
github-code
50
32497366630
import sys import ctypes from datetime import datetime from os import makedirs, remove from os.path import basename, splitext, join, exists from numpy import concatenate, copy from numpy.lib.stride_tricks import as_strided import spacepy from spacepy import pycdf TIME_VARIABLE = 'Epoch' VARIABLES = ['BY_GSM', 'BZ_GSM', 'flow_speed', 'Vx', 'Vy', 'Vz'] REQUIRED_SAMPLING = 60000 CDF_EPOCH = pycdf.const.CDF_EPOCH.value CDF_DOUBLE = pycdf.const.CDF_DOUBLE.value CDF_UINT1 = pycdf.const.CDF_UINT1.value GZIP_COMPRESSION = pycdf.const.GZIP_COMPRESSION GZIP_COMPRESSION_LEVEL1 = ctypes.c_long(1) GZIP_COMPRESSION_LEVEL9 = ctypes.c_long(9) CDF_CREATOR = "EOX:average_omni_hr_1min.py [%s-%s, libcdf-%s]" % ( spacepy.__name__, spacepy.__version__, "%s.%s.%s-%s" % tuple( v if isinstance(v, int) else v.decode('ascii') for v in pycdf.lib.version ) ) METADATA = { 'Epoch': { 'type': CDF_EPOCH, 'attributes': { "DESCRIPTION": "Epoch time", "UNITS": "-", }, }, "BY_GSM": { "type": CDF_DOUBLE, "nodata": 9999.99, "attributes": { "DESCRIPTION": "1AU IP By (nT), GSM", "UNITS": "nT" } }, "BZ_GSM": { "type": CDF_DOUBLE, "nodata": 9999.99, "attributes": { "DESCRIPTION": "1AU IP Bz (nT), GSM", "UNITS": "nT" } }, "Vx": { "type": CDF_DOUBLE, "nodata": 99999.9, "attributes": { "DESCRIPTION": "Vx Velocity, GSE", "UNITS": "km/s" } }, "Vy": { "type": CDF_DOUBLE, "nodata": 99999.9, "attributes": { "DESCRIPTION": "Vy Velocity, GSE", "UNITS": "km/s" } }, "Vz": { "type": CDF_DOUBLE, "nodata": 99999.9, "attributes": { "DESCRIPTION": "Vz Velocity, GSE", "UNITS": "km/s" } }, "flow_speed": { "type": CDF_DOUBLE, "nodata": 99999.9, "attributes": { "DESCRIPTION": "flow speed, GSE", "UNITS": "km/s" } } } METADATA.update({ "Count_" + variable: { "type": CDF_UINT1, "attributes": { "DESCRIPTION": "Averaging window number of samples of %s" % variable, "UNITS": "-" } } for variable in VARIABLES }) class CommandError(Exception): """ Command error exception. """ def usage(exename, file=sys.stderr): """ Print usage. """ print("USAGE: %s <output-dir> [<input-file-list>]" % basename(exename), file=file) print("\n".join([ "DESCRIPTION:", " Perform the delayed 20min averaging of the OMNI 1min data. ", " (20min window box-car filter with 10min delay) ", " The input files are passed either from the standard input (default) ", " or via file. The output files are written in the given output " " directory", ]), file=file) def parse_inputs(argv): """ Parse input arguments. """ argv = argv + ['-'] try: output_dir = argv[1] input_files = argv[2] except IndexError: raise CommandError("Not enough input arguments!") return output_dir, input_files def main(output_dir, input_files): """ Main function. """ def _get_output_filename(filename, suffix): base, ext = splitext(basename(filename)) return join(output_dir, "%s%s%s" % (base, suffix, ext)) makedirs(output_dir, exist_ok=True) file_list = sys.stdin if input_files == "-" else open(input_files) with file_list: previous = None for input_ in (line.strip() for line in file_list): output = _get_output_filename(input_, "_avg20min_delay10min") print("%s -> %s" % (input_, output)) process_file(output, input_, previous) previous = input_ def process_file(filename_out, filename_in, filename_in_previous=None): """ Process single file. """ sources = [basename(filename_in)] time_in, data_in = read_data(filename_in) if filename_in_previous: time_prev, data_prev = read_data(filename_in_previous, slice(-20, None)) time_in, data_in = merge_data((time_prev, time_in), (data_prev, data_in)) sources = [basename(filename_in_previous)] + sources check_timeline(time_in) time_out, data_out = process_data(time_in, data_in) write_data(filename_out, time_out, data_out, { "TITLE": "OMNI HR 1min, 20min window average with 10min delay", "SOURCES": sources, }) def process_data(time, data): """ Perform the actual averaging. """ result = {} for variable in VARIABLES: input_ = data[variable] nodata = METADATA[variable]['nodata'] output, counts = boxcar(input_, input_ != nodata, 20) result[variable] = output result["Count_" + variable] = counts return time[20:], result def boxcar(data, mask, size): """ Boxcar filter. """ def _reshape(array): return as_strided( array, shape=(array.size - size, size + 1), strides=(array.itemsize, array.itemsize), writeable=False ) data = copy(data) data[~mask] = 0.0 count = _reshape(mask).sum(axis=1) average = _reshape(data).sum(axis=1) / count return average, count def write_data(filename, time, data, extra_attrs=None): """ Write data to the output file. """ with cdf_open(filename, "w") as cdf: _write_global_attrs(cdf, extra_attrs) _set_variable(cdf, TIME_VARIABLE, time) for variable in data: _set_variable(cdf, variable, data[variable]) def _set_variable(cdf, variable, data): meta = METADATA[variable] cdf.new( variable, data, meta['type'], dims=data.shape[1:], compress=GZIP_COMPRESSION, compress_param=GZIP_COMPRESSION_LEVEL1, ) cdf[variable].attrs.update(meta['attributes']) def _write_global_attrs(cdf, extra_attrs=None): cdf.attrs.update({ "CREATOR": CDF_CREATOR, "CREATED": ( datetime.utcnow().replace(microsecond=0) ).isoformat() + "Z", }) cdf.attrs.update(extra_attrs or {}) def read_data(filename, array_slice=Ellipsis): """ Read the input data. """ with cdf_open(filename) as cdf: return cdf.raw_var(TIME_VARIABLE)[array_slice], { variable: cdf.raw_var(variable)[array_slice] for variable in VARIABLES } def check_timeline(time): """ Check regular data sampling. """ dtime = time[1:] - time[:-1] if (dtime != REQUIRED_SAMPLING).any(): print("sampling:", dtime.min(), dtime.max()) raise ValueError("Irregular sampling detected!") def merge_data(time, data): """ Merge input data arrays. """ return concatenate(time), { variable: concatenate([item[variable] for item in data]) for variable in VARIABLES } def cdf_open(filename, mode="r"): """ Open a new or existing CDF file. Allowed modes are 'r' (read-only) and 'w' (read-write). A new CDF file is created if the 'w' mode is chosen and the file does not exist. The returned object is a context manager which can be used with the `with` command. NOTE: for the newly created CDF files the pycdf.CDF adds the '.cdf' extension to the filename if it does not end by this extension already. """ if mode == "r": cdf = pycdf.CDF(filename) elif mode == "w": if exists(filename): remove(filename) pycdf.lib.set_backward(False) # produce CDF version 3 cdf = pycdf.CDF(filename, "") else: raise ValueError("Invalid mode value %r!" % mode) return cdf if __name__ == "__main__": if not sys.argv[1:]: usage(sys.argv[0], file=sys.stderr) else: try: sys.exit(main(*parse_inputs(sys.argv))) except CommandError as error: print("ERROR: %s" % error, file=sys.stderr) usage(sys.argv[0], file=sys.stderr)
ESA-VirES/VirES
preprocessing/average_omni_hr_1min.py
average_omni_hr_1min.py
py
8,107
python
en
code
2
github-code
50
30243598632
# using size to predict price import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model import pandas as pd from sklearn.metrics import mean_squared_error def myCode(): data = pd.read_csv("./houses.csv") # Needs to reshape to be a 2D array with values.reshape(-1,1) x = data.iloc[:, 0].values.reshape(-1,1) print(x) y = data.iloc[:, 2].values.reshape(-1,1) print(y) # Fit model model = linear_model.LinearRegression() model.fit(x,y) # I think this is wrong. # should be np.mean(abs(predictied_prices-data.price)) print(mean_squared_error(x, model.predict(x))) # Create random values to predict on. You can also just do this with the normal data. x_plot = np.arange(0, 968) x_plot = x_plot.reshape(-1, 1) # Predict on those points, # print(model.predict(x_plot)) y_predicted = model.predict(x_plot) # Plot input, then output xIn = pd.Series(280).to_frame() yOut = model.predict(xIn) print(f"Price on 280: {yOut}") plt.scatter(xIn, yOut, color='k') # Scatter x and y plt.scatter(x, y) # Then plot the predicted line based of random numbers put into the model. plt.plot(x_plot, y_predicted, color='red') plt.show() """ def hisCode(): import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model data = pd.read_csv("c:/data/houses.csv", header=None) data.columns = ['living_space', 'size_of_property', 'price'] degree = 5 model = np.poly1d(np.polyfit(data.living_space, data.price, degree)) predicted_prices = model(data.living_space) print_data = np.linspace(0, np.max(data.living_space), 100) plt.figure() plt.scatter(data.living_space, data.price) plt.plot(print_data, model(print_data), c="black") plt.ylim(min(data.price) * 0.8, max(data.price) * 1.2) plt.show() err = np.mean(np.abs(predicted_prices - data.price)) print(f'The MAE is {err}') house280 = model(280) print(f'The prediction for a house of size 280 is {house280}') """ if __name__ == "__main__": myCode() # hisCode()
FinnianHBLR/Datascience-projects
week4.py
week4.py
py
2,156
python
en
code
0
github-code
50
8441423009
''' Write a program to determine whether an employee is owed any overtime. You should ask the user how many hours the employee worked this week, as well as the hourly wage for this employee. If the employee worked more than 40 hours, you should print a message which says the employee is due some additional pay, as well as the amount due. The additional amount owed is 1.5x the employees hourly wage for each hour worked over the 40 hours. Double overtime is 2x standard wage and is achieved after 80 hours are worked in a week. ''' def overtime_calculator(): while True: try: hours_worked_this_week = float(input("How many hours did you work this week?: ")) break except ValueError: print("Enter a numerical value (5 or 5.0, but not five).") continue while True: try: hourly_wage = float(input("What is your hourly wage?: ")) break except ValueError: print("Enter a numerical value (5 or 5.0, but not five).") continue if hours_worked_this_week > 80: standard_earnings = 40 * hourly_wage overtime_earnings = 40 * (hourly_wage * 1.1) double_overtime_earnings = (hours_worked_this_week - 80) * (hourly_wage * 2) total_weekly_earnings = standard_earnings + overtime_earnings + double_overtime_earnings print(f"You earned {double_overtime_earnings} in double overtime, plus {overtime_earnings} in overtime earnings, and {standard_earnings} at your standard rate. Your total earnings this week is: {total_weekly_earnings}.") elif hours_worked_this_week > 40: standard_earnings = 40 * hourly_wage overtime = (hours_worked_this_week - 40) * (hourly_wage * 1.5) total_pay = standard_earnings + overtime print(f"You earned {overtime} in overtime pay this week. Total pay earned this week is {total_pay}.") else: earnings = hours_worked_this_week * hourly_wage print("This week you earned: $", earnings, ". With no overtime.") overtime_calculator()
sauuyer/python-practice-projects
day5-overtime-calculator.py
day5-overtime-calculator.py
py
2,082
python
en
code
0
github-code
50
28590685007
from arclet.alconna import Alconna, Args, CommandMeta from arclet.alconna.graia import Match, alcommand from bce.option import Option from bce.public.api import balance_chemical_equation from graia.ariadne.app import Ariadne from graia.ariadne.message.chain import MessageChain from graia.ariadne.message.element import Source from graia.ariadne.model import Group, Member from graia.ariadne.util.cooldown import CoolDown from graiax.shortcut.saya import dispatch from rainaa.perm import Ban, PermissionDispatcher alc = Alconna( "!配平", Args["main_args", str], meta=CommandMeta( "配平化学方程式", example="!配平 C6H12O6+O2=CO2+H2O", fuzzy_match=True, ), ) @alcommand(alc, send_error=True) @dispatch(CoolDown(1.5)) @dispatch(PermissionDispatcher(Ban("balance", ["本群还没开放"]))) async def setu( app: Ariadne, group: Group, message: MessageChain, member: Member, source: Source, main_args: Match[str], ): exp = main_args.result try: resp = balance_chemical_equation(exp, Option()) if isinstance(resp, str): await app.send_group_message( group, f"配平完成\n{resp}", quote=source, ) except Exception as e: await app.send_group_message( group, f"配平失败\n{str(e)}", quote=source, )
linyunze/RainAa
module/balance.py
balance.py
py
1,426
python
en
code
0
github-code
50
21554328390
from PyQt5 import QtCore, QtWidgets, QtGui from collections import deque from ..const import * class logViewerWidget: def __init__(self, parent: QtWidgets.QWidget, name: str, pos: QtCore.QRect): self.widget = QtWidgets.QTextBrowser(parent) self.widget.setGeometry(pos) self.widget.setObjectName(name) self.log = deque() self.scrollBar = self.widget.verticalScrollBar() def setText(self, text: any): if type(text) is not str: text = str(text) self.log.append(text) if len(self.log) > LOG_ROW_NUMBER: self.log.popleft() self.widget.setText("\n".join(self.log)) self.scrollBar.setValue(self.scrollBar.maximum())
s-ktmy/nitfc-openCampus_2020
src/Widget/logViewerWidget.py
logViewerWidget.py
py
725
python
en
code
0
github-code
50
22058705964
#!/bin/python import sys from collections import Counter def makingAnagrams(s1, s2): c1 = Counter(s1) c2 = Counter(s2) for x in set(c1).intersection(set(c2)): curr = min(c1[x],c2[x]) c1[x] -= curr c2[x] -= curr return sum(c1.values())+sum(c2.values()) # Complete this function s1 = raw_input().strip() s2 = raw_input().strip() result = makingAnagrams(s1, s2) print(result)
thesharpshooter/hackerrank
strings/makingAnagrams.py
makingAnagrams.py
py
420
python
en
code
0
github-code
50
44098013268
from selenium import webdriver from selenium.webdriver.chrome.service import Service as ChromeService from webdriver_manager.chrome import ChromeDriverManager from MainPageCalculator import Calculator def test_calculator(): browser = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install())) calculator = Calculator(browser) calculator.input_secund('45') calculator.click_button_7() calculator.click_button_plus() calculator.click_button_8() calculator.click_button_equally() calculator.wait_result(46, '15') assert calculator.test_result_of_sum() == '15'
Julia2810/homeworks
ДЗ7/Task_2/test_result_on_calculator.py
test_result_on_calculator.py
py
611
python
en
code
0
github-code
50
33763552438
import torch import torch.nn as nn import torch.nn.functional as F from cwlayers import CWConv2d, CWLinear class MnistCwConv(nn.Module): def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def __init__(self): super(MnistCwConv, self).__init__() self.conv1 = CWConv2d(1, 10, kernel_size=5) self.conv2 = CWConv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = CWLinear(320, 50) self.fc2 = CWLinear(50, 10) self._initialize_weights() def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1)
sytelus/NNExp
NNExp/pytorch/mnist/mnist_cwconv.py
mnist_cwconv.py
py
1,342
python
en
code
1
github-code
50
4095520800
""" Summation of primes Problem 10 The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. """ import math def is_prime(x): if x%2 == 0 and x!=2: return False for i in range(3, int(math.sqrt(x))+1, 2): if x%i == 0: return False return True sum_of_primes = 2 for i in range(3, 2000000): if is_prime(i): print(i) sum_of_primes += i print(sum_of_primes)
reddynt/project-euler-solutions
10-summation of primes.py
10-summation of primes.py
py
469
python
en
code
0
github-code
50
72825087835
import csv import operator import pdb import os import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--tsv_file', type=str, required=True, help='Please set a tsv file you want to parsse.') args = parser.parse_args() return args def main(filename, root_path): with open(filename) as papers: music_tech_papers = csv.DictReader(papers, dialect='excel-tab') #get items in column f = music_tech_papers.fieldnames paths = [] accumulated_table = [] num_paper = 0 structure = [] for entry in music_tech_papers: # get attributes from table mother_group = entry[f[0]] child_group = entry[f[1]] publication_year = entry[f[2]] author = entry[f[3]] title = entry[f[4]] title_url = entry[f[5]] abstract= entry[f[6]] source_code = entry[f[7]] source_code_url= entry[f[8]] data_set1 = entry[f[9]] data_set_url1 = entry[f[10]] data_set2 = entry[f[11]] data_set_url2 = entry[f[12]] data_set3 = entry[f[13]] data_set_url3 = entry[f[14]] demo1 = entry[f[15]] demo_url1 = entry[f[16]] demo2 = entry[f[17]] demo_url2 = entry[f[18]] path = file_destination(mother_group, child_group, root_path) paths.append(path) create_md(path, publication_year, title, title_url, author, abstract, data_set1, data_set_url1, data_set2, data_set_url2, data_set3, data_set_url3, source_code, source_code_url, demo1, demo_url1, demo2, demo_url2) structure.append((mother_group, child_group)) # complete_data_table = group_dataset_table(mother_group, child_group, # data_set1, data_set_url1, # data_set2, data_set_url2, # data_set3, data_set_url3, # accumulated_table) print('check_{}'.format(filename)) num_paper += 1 paths = list(dict.fromkeys(paths)) # pure_structure = list(dict.fromkeys(structure)) for path in paths: merge_mds(path) def group_dataset_table(mother, child, data_set1, data_set_url1, data_set2, data_set_url2, data_set3, data_set_url3, accumuated_list): temp = [data_set1, data_set2, data_set3] content = [i for i in temp if i != ''] if len(content) == 0: return accumuated_list elif len(content) == 1: table_line = '|' + mother + '|' + child + '|[' + data_set1 + '](' + data_set_url1 + ')|' \ + '|' + '|' + '|' +'|' \ + '|' + '|' + '|' + '|' return accumuated_list.append(table_line) elif len(content) == 2: table_line = '|' + mother + '|' + child + '|[' + data_set1 + '](' + data_set_url1 + ')|' \ + '|[' + data_set2 + '](' + data_set_url2 + ')|' \ + '|' + '|' + '|' + '|' return accumuated_list.append(table_line) elif len(content) == 3: table_line = '|' + mother + '|' + child + '|' + data_set1 + '|' + data_set_url1 + '|' \ + '|[' + data_set2 + '](' + data_set_url2 + ')|' \ + '|[' + data_set3 + '](' + data_set_url3 + ')|' return accumuated_list.append(table_line) # '|' + + '|' + + '|' + + '|' + + '|' def merge_mds(path_to_mds): md_list_temp = os.listdir(path_to_mds) md_list = sorted(md_list_temp, reverse=True) readme_name = "README.md" with open(path_to_mds+readme_name, "w+") as readme: for md in md_list: with open(path_to_mds+md) as temp: readme.write(temp.read()) if md != "README.md": os.remove(path_to_mds+md) readme.close() return 0 def file_destination(mother_group, child_group, root_path): return root_path + mother_group + '/' + child_group + '/' def create_md(path, publication_year, title, title_url, author, abstract, data_set1, data_set_url1, data_set2, data_set_url2, data_set3, data_set_url3, source_code, source_code_url, demo1, demo_url1, demo2, demo_url2): filename = title + ".md" data = [data_set1, data_set_url1, data_set2, data_set_url2, data_set3, data_set_url3] source = [source_code, source_code_url] demo = [demo1, demo_url1, demo2, demo_url2] print(path + publication_year + filename) with open(path+publication_year+filename,"w+") as paper_md: line_title = "# " + ' ' + '['+ title +']' +'('+ title_url+')' + '\n' line_author = "**Author**: " + author + '\n' + '\n' line_year = "**Year**: " + publication_year + '\n' line_abstract = ">**Abstract**: " + abstract +'\n' + '\n' line_dataset = "**Data Set**: " line_sourcecode = "**Source Code**: " line_demo = "**Demo**: " for i in range(0,len(data)): if data[i] == '': if i == 0: line_dataset += "Not availabe, " break else: break elif i % 2 == 0: line_dataset += '['+ data[i] +']' + '(' + data[i+1] +'), ' line_dataset = line_dataset[:-2] + "\n\n" # TODO fix here; source code column is redundant. for i in range(0,len(source)): if source[i] == '': if i == 0: line_sourcecode += "Not availabe, " break else: break elif i % 2 == 0: line_sourcecode += '['+ source[i] +']' + '(' + source[i+1] +'), ' line_sourcecode = line_sourcecode[:-2] + "\n\n" for i in range(0,len(demo)): if demo[i] == '': if i == 0: line_demo += "Not availabe, " break else: break elif i % 2 == 0: line_demo += '['+ demo[i] +']' + '(' + demo[i+1] +'), ' line_demo = line_demo[:-2] + "\n\n" paper_md.write(line_title) paper_md.write(line_author) paper_md.write(line_year) paper_md.write(line_abstract) paper_md.write(line_dataset) paper_md.write(line_sourcecode) paper_md.write(line_demo) paper_md.close() return 0 def sort_papers_by_year(filename): with open(filename, "r+") as mixing: mixing_tsv = csv.DictReader(mixing, dialect='excel-tab') f = mixing_tsv.fieldnames sorted_mixing = sorted(mixing_tsv, key=operator.itemgetter('Publication Year'), reverse=True) mixing.seek(0) writer = csv.DictWriter(mixing, delimiter='\t', dialect='excel-tab', fieldnames=f) writer.writeheader() for row in sorted_mixing: writer.writerow(row) mixing.truncate() mixing.close() def create_main_md(): # first block + structure.md + end_block.md with open("../README.md", "w+") as readme, open("../first_block.md") as first_block_md, \ open("../structure.md") as structure_md, open("../end_block.md") as end_block: readme.write(first_block_md.read()) readme.write(structure_md.read()) readme.write(end_block.read()) if __name__ == "__main__": file = get_args() root_path = '../' sort_papers_by_year(file.tsv_file) main(file.tsv_file, root_path) create_main_md()
Hyon0930/MusicTechPapers
src/organise_papers.py
organise_papers.py
py
7,714
python
en
code
1
github-code
50
40085189624
import argparse from dataclasses import dataclass import os.path import re import sys from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow from googleapiclient.discovery import build from googleapiclient.errors import HttpError @dataclass class Date: """ A custom date implementation because sometimes we only know the birthday but not the year. """ day: int month: int year: int def __repr__(self): out = f"{self.day:02d}.{self.month:02d}" if self.year is not None: out += f".{self.year}" return out @dataclass class Person: name: str birthdate: Date google_id: str google_etag: str def parse_input(input): (name, datetext) = input.split(":") name = name.strip() datetext = datetext.strip() # Parse european date format dd.mm.yyy (eg: 23.11.2000) # Note the year is optional here. if re.match(r"\d{2}\.\d{2}(\.\d{4})?", datetext): (day, month, _, year) = re.search( r"(\d{2})\.(\d{2})(\.(\d{4}))?", datetext ).groups() date = Date(day, month, year) # Parse ISO format yyyy-mm-dd (eg: 2000-11-23) elif re.match(r"(\d{4})-(\d{2})-(\d{2})", datetext): (year, month, day) = re.match(r"(\d{4})-(\d{2})-(\d{2})", datetext).groups() date = Date(int(day), int(month), int(year)) # Date parsing error else: print( "ERROR: I cannot parse the date.\n" "I can only read dates in the european or ISO format.\n" "Examples: 2000-11-23, 23.11.2000, 23.11 (when year is unknonw)", file=sys.stderr, ) exit(1) return Person(name, date, None, None) def google_auth(): # If modifying these scopes, delete the file token.json. SCOPES = ["https://www.googleapis.com/auth/contacts"] creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists("token.json"): creds = Credentials.from_authorized_user_file("token.json", SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file("credentials.json", SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open("token.json", "w") as token: token.write(creds.to_json()) return creds def parse_google_person(p): google_id = p["resourceName"] google_etag = p["etag"] name = p["names"][0]["displayName"] date = None try: dateinfo = p["birthdays"][0]["date"] day = dateinfo["day"] month = dateinfo["month"] date = Date(day, month, None) year = dateinfo["year"] date = Date(day, month, year) except KeyError: pass return Person(name, date, google_id, google_etag) def find_person(service, target): req = service.people().searchContacts( query=target.name, readMask="names,birthdays", pageSize=64 ) results = req.execute() try: persons = list( map(lambda r: parse_google_person(r["person"]), results["results"]) ) except KeyError: persons = [] if len(persons) == 0: print("The name didn't match anyone in your contacts.") exit(0) elif len(persons) == 1: person = persons[0] # If the name is not the same ask if it is the correct person if target.name.lower() != person.name.lower(): print("Is this the person you meant? (Y/n)") print(f"{person.name}: {person.birthdate}") answer = input("> ") if answer.lower() != "y": exit(0) elif person.birthdate is not None: print( "The person already has a birthday, do you want to override it? (Y/n)" ) print(f"{person.name}: {person.birthdate}") answer = input("> ") if answer.lower() != "y": exit(0) # If the person already has a birthday ask if it should be overwritten return person else: print("Which of them should be updated:") for (n, person) in enumerate(persons): print(f"[{n}] {person.name}: {person.birthdate}") selection = int(input("> ")) return persons[selection] def update_person(service, person: Person): body = { "etag": person.google_etag, "birthdays": [ { "date": { "day": person.birthdate.day, "month": person.birthdate.month, "year": person.birthdate.year, }, }, ], } try: result = ( service.people() .updateContact( resourceName=person.google_id, body=body, updatePersonFields="birthdays", ) .execute() ) except HttpError as e: print("🔥 Google responded with an error updating the contact:") print(e) exit(1) updated_person = parse_google_person(result) print(f"🎉 Updated {updated_person.name}: {updated_person.birthdate}") def main(): # Create an argument parser parser = argparse.ArgumentParser( description="Annotate google contacts with birthdays." ) parser.add_argument("input", type=str) args = parser.parse_args() # Parse the person and new birthdate person = parse_input(args.input) # Authenticate with the google API creds = google_auth() service = build("people", "v1", credentials=creds) try: # Find the requested person in the contacts and store the google id found_person = find_person(service, person) person.name = found_person.name person.google_id = found_person.google_id person.google_etag = found_person.google_etag # Update the birthday update_person(service, person) except (KeyboardInterrupt, EOFError): pass if __name__ == "__main__": main()
flofriday/scripts
bdmaker/bdmaker.py
bdmaker.py
py
6,472
python
en
code
0
github-code
50
30723639812
from datetime import datetime from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from research_models import * from pandas import read_excel import numpy engine = create_engine('sqlite:///research.db') Session = sessionmaker(bind=engine) session = Session() def load_funding_resource(input_file, sheet_name=None): """ Read funding resources from the input file and add to the db if not exist. :param input_file: :param sheet_name: :return None: """ df = read_excel(input_file, sheet_name=sheet_name) for source_name in df[df.columns[1]]: src_ = session.query(FundingSource).filter( FundingSource.source == source_name).first() if src_ is None: funding_source = FundingSource(source=source_name) session.add(funding_source) session.commit() ''' staff = Staff( #staff_fname = row['first name'], #staff_lname = row['last name'], staff_email = row['all main researcher email'] ) department = Department( department_name=row['all department'] ) ''' #session.add(staff) #session.add(department) def load_funding_agency(input_file, sheet_name=None): df = read_excel(input_file, sheet_name=sheet_name) for agency_name in df[df.columns[2]]: ag = session.query(FundingAgency).filter( FundingAgency.name == agency_name).first() if ag is None: agency = FundingAgency(name=agency_name) session.add(agency) session.commit() def load_research_project(input_file, sheet_name=None): """ Load project information to the db. :param input_file: :param sheet_name: :return None: """ df = read_excel(input_file, sheet_name=sheet_name) for idx, project in df[[df.columns[4], df.columns[5]]].iterrows(): th_name, en_name = project en_name = en_name.strip() if not isinstance(en_name, float) else None th_name = th_name.strip() if not isinstance(th_name, float) else None if not th_name: # None or empty string th_name = en_name if th_name and en_name: p = ResearchProject(title_th=th_name, title_en=en_name) session.add(p) session.commit() def load_researcher(input_file, sheet_name=None): """ :param input_file: :param sheet_name: :return: """ research_df = read_excel('samplefunding.xlsx',sheet_name='funding') for ix,row in research_df.iterrows(): research = Research( research_title_th = row['research title thai'], research_title_en = row['research title eng'], # research_field = row['research_field'], # research_budget_thisyear = row['research_budget_thisyear'], est_funding = row['amount fund'], research_startdate = row['start date'], research_enddate = row['end date'], # duration = row['duration'], research_contract = row['research contract'] ) session.add(research) session.commit() #st = session.query(Staff).filter(Staff.staff_email=='napat.son').first() #st = session.query(Staff).filter(Staff.staff_email==row['staff_email']).first() #st.staff_id #int(datetime.strftime(row['research_startdate'], '%Y%m%d')) if __name__ == '__main__': # load_funding_resource('samplefunding.xlsx', 'funding') # load_funding_agency('samplefunding.xlsx', 'funding') load_research_project('samplefunding.xlsx', 'funding')
likit/sandbox
load_data.py
load_data.py
py
3,544
python
en
code
0
github-code
50