seq_id
stringlengths
4
11
text
stringlengths
113
2.92M
repo_name
stringlengths
4
125
sub_path
stringlengths
3
214
file_name
stringlengths
3
160
file_ext
stringclasses
18 values
file_size_in_byte
int64
113
2.92M
program_lang
stringclasses
1 value
lang
stringclasses
93 values
doc_type
stringclasses
1 value
stars
int64
0
179k
dataset
stringclasses
3 values
pt
stringclasses
78 values
70497094234
# coding=utf-8 import json import os from study.day12.file_path_manager import FilePathManager jsondata = ''' { "Uin":0, "UserName":"@c482d142bc698bc3971d9f8c26335c5c", "NickName":"小帅b", "HeadImgUrl":"/cgi-bin/mmwebwx-bin/webwxgeticon?seq=500080&username=@c482d142bc698bc3971d9f8c26335c5c&skey=@crypt_b0f5e54e_b80a5e6dffebd14896dc9c72049712bf", "DisplayName":"赵敏", "ChatRoomId":0, "KeyWord":"che", "EncryChatRoomId":"", "IsOwner":0 } ''' def json2dict(json_data): """将json字符串转化为python的字典对象""" return json.loads(json_data) def read2json(file_name): """读取json文件,并转换为字典/列表""" with open(file_name, "r", encoding="utf-8") as fp: dict = json.load(fp) print(dict) return dict def writer2json(file_name, dict): """将字典对象保存为json字符串""" # 删除旧文件 if file_name in os.listdir(): os.remove(file_name) # dumps()默认中文为ascii编码格式,ensure_ascii默认为Ture # 禁用ascii编码格式,返回的Unicode字符串,方便使用 json_str = json.dumps(dict, ensure_ascii=False) with open(file_name, "wb") as fp: fp.write(json_str.encode('utf-8')) if __name__ == "__main__": # 将json字符串转化为python的字典对象 my_friend = json2dict(jsondata) print("{} : {}".format(my_friend["NickName"], my_friend["DisplayName"])) file_manager = FilePathManager() file_manager.mkdir("/json/") file_name = "./json/my_friend.json" # 将字典对象保存为json字符串 writer2json(file_name, my_friend) # 读取json文件, 并转换为字典 / 列表 my_friend = read2json(file_name) print("{} : {}".format(my_friend["NickName"], my_friend["DisplayName"]))
Youngfellows/PythonStudy
study/day12/02_json_str_to_dict.py
02_json_str_to_dict.py
py
1,833
python
en
code
0
github-code
50
26193919219
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('esg_leipzig_homepage_2015', '0001_initial'), ] operations = [ migrations.AddField( model_name='event', name='css_class_name', field=models.CharField(choices=[('event-default', 'Grau'), ('event-primary', 'Dunkelblau'), ('event-success', 'Grün'), ('event-info', 'Hellblau'), ('event-warning', 'Gelb'), ('event-danger', 'Rot')], help_text='Die Farben entsprechen den Farben für Buttons, Labels usw. bei Twitter Bootstrap.', default='event-primary', verbose_name='Farbe', max_length=255), preserve_default=True, ), ]
ESG-Leipzig/Homepage-2015
esg_leipzig_homepage_2015/migrations/0002_event_css_class_name.py
0002_event_css_class_name.py
py
771
python
en
code
0
github-code
50
74960190875
from sklearn.preprocessing import MinMaxScaler import pandas as pd import numpy as np import torch def remove_max(x): x[x.argmax()] = np.median(x) print(x.argmax(), ":", x[x.argmax()], "=>", np.median(x)) return x def groupby_datapoint(df, gb='YYYYMMDD', target='Qty'): df_ts = df.groupby([gb])[target].sum().sort_index() df_ts = df_ts.reset_index() #df_ts[gb] = pd.to_datetime(df_ts[gb], format='%Y%m%d') df_ts[gb] = df_ts[gb].astype(int) df_ts.set_index([gb], inplace=True) df_ts.sort_index(inplace=True) return df_ts def windowed_dataset(y, input_window = 5, output_window = 1, stride = 1, num_features = 1): ''' create a windowed dataset : param y: time series feature (array) : param input_window: number of y samples to give model : param output_window: number of future y samples to predict : param stide: spacing between windows : param num_features: number of features (i.e., 1 for us, but we could have multiple features) : return X, Y: arrays with correct dimensions for LSTM : (i.e., [input/output window size # examples, # features]) ''' L = y.shape[0] num_samples = (L - input_window - output_window) // stride + 1 X = np.zeros([input_window, num_samples, num_features]) Y = np.zeros([output_window, num_samples, num_features]) for ff in np.arange(num_features): for ii in np.arange(num_samples): start_x = stride * ii end_x = start_x + input_window X[:, ii, ff] = y[start_x:end_x, ff] start_y = stride * ii + input_window end_y = start_y + output_window Y[:, ii, ff] = y[start_y:end_y, ff] return X, Y def numpy_to_torch(x): return torch.from_numpy(x).type(torch.Tensor)
CentralPark-gichan/AI_hub
수요예측 모델[한국타이어]/preprocessing.py
preprocessing.py
py
1,934
python
en
code
3
github-code
50
71498263194
def binarySearch(values, k): top = len(values)-1 bottom = 0 values.sort() print(values) found = False while(found != True): mid = (top+bottom) // 2 if(values[mid] == k): print(str(k) + " found at index: " + str(top)) found = True return True elif(values[mid] < k): bottom = mid + 1 elif(values[mid] > k): top = mid - 1 else: return "Not found" values = [1,2,3,4,5,6,7] binarySearch(values, 3)
timlaroche/PyCLRS
binarysearch.py
binarysearch.py
py
429
python
en
code
0
github-code
50
2348556791
import numpy as np from batch import Batch import scipy.io class Perceptron(): def __init__(self, X, Y): no_weights = X.shape[1] self.weights = np.random.uniform(0,size=[no_weights]) self.tresh = 0 self.X = X self.Y = Y self.l_rate = 0.025 self.train() def predict(self,X): Y = [] for x in X: Y.append(np.sign(np.dot(self.weights.T,x))) return np.squeeze(Y) def descent(self,x,y): y_hat = np.dot(self.weights.T,x) error = y-y_hat gradient = (self.l_rate/2) * error * x return gradient def train(self,batch_size=50): for ix in range(300): gradients = [] for b in range(batch_size): rx = np.random.randint(self.X.shape[0]) x = self.X[rx,:] y = self.Y[rx] gradient = self.descent(x,y) gradients.append(gradient) gradients = np.sum(np.array(gradients),0) self.weights += (1/batch_size) * np.squeeze(np.array([gradients])) # #mat = scipy.io.loadmat('trainingData.mat') # #data = mat['U'] #targets = np.squeeze(mat['v']) # # #p = Perceptron(data.shape[1]) # #p.train(data,targets,1) # #r = [np.sign(p.predict(data[ix,:]))==np.sign(targets[ix]) for ix in range(data.shape[0])] # #print('correct classified: {0}'.format(np.mean(r)))
NilusvanEdel/EnsembleMethods
decision_tree_constantin/perceptron.py
perceptron.py
py
1,202
python
en
code
2
github-code
50
18863045142
import pathlib import os import subprocess import json from functools import lru_cache class CuratedAppService: DIST_CURATED_APPS_FOLDER = "libboutique/curated_apps/dist" SCRIPT_CURATED_APPS_FOLDER = "libboutique/curated_apps/scripts" CURATED_APPS_APPLICATION_INDEX = "libboutique/curated_apps/dist/applications-en.json" def __init__(self): self._curated_apps_json = None def build_index(self, *_, **__): if self._curated_apps_json is None: command = ["sh", self._generate_path_to_build_index()] if subprocess.check_output(command, stderr=subprocess.PIPE): with open(self.CURATED_APPS_APPLICATION_INDEX, "r") as f: self._curated_apps_json = json.load(f) @lru_cache(maxsize=1) def _generate_path_to_build_index(self): return os.path.join(os.path.join(str(pathlib.Path.cwd()), self.SCRIPT_CURATED_APPS_FOLDER), "build.sh")
ubuntu-mate/python3-libboutique
libboutique/services/curated_app_service.py
curated_app_service.py
py
857
python
en
code
6
github-code
50
40232711881
"""__author__ = 唐宏进 """ if __name__ == '__main__': def fun1(): for x in range(10): return x # 0 < class 'int'> < class 'function' > print(fun1(),type(fun1()),type(fun1)) # 1.yield关键字 """ 只要函数中有yield关键字,那么这个函数就会变成一个生成器。 a.有yield的函数,在调用函数的时候不再是获取返回值, 而是产生一个生成器对象,生成器对象中保留的是函数体 b.当通过next获取生成器中的数据的时候,才会去执行函数体,执行到yield为止, 并且将yield后面的结果作为生成器的数据返回,同时记录结束的位置,下次再调用next的时候, 从上次结束的位置接着往后执行 """ def fun2(): print('abc') for x in range(10): yield x print('aaa') # 注意:函数中只要有yield,不管yield会不会执行到,函数的调用结果都是生成器 def fun3(x): print('abc') if x > 10: yield 100 return 20 # print(fun2(), type(fun2()), type(fun2)) # 这儿的fun2()是一个生成器 gen = fun2() print(next(gen)) print(next(gen)) print(next(gen)) gen2 = fun3(1) print(gen2) # 练习:写一个生成器,可以产生斐波那契数列 def fibo(): a = 0 b = 1 while True: yield b a,b = b,a+b gen3 = fibo() for _ in range(10): print(next(gen3)) # 生成器和生成式产生的对象就是迭代器 # 将列表转换成迭代器对象 iter1 = iter([1,2,3,4]) print(iter1) print(next(iter1)) print(next(iter1)) for item in iter1: print(item)
M0use7/python
day10-函数和文件操作/04-生成器.py
04-生成器.py
py
1,782
python
zh
code
0
github-code
50
7273497639
""" Schema aplicatiei: oferim o locatie si vrem sa vedem cate grade sunt acolo acum, si eventual alte date vrem sa trimitem aceste informatii o data pe ora la un cont de telegram """ # import the module import python_weather #pip install python-weather import asyncio import telegram #pip install python-telegram-bot - -upgrade token_telegram = '6003491369:AAH2kovznvZqCNKWTlIzehnVzhFsDkkcqH8' # from time import sleep # import os """i_1 = ia-mi datele de pe un site #astepte i_2 = print(1+3) i_3 = ia datele de pe site_2 #in mod clasic instructiunile se executa pe rand = sincroniza. #Cu asyncio se pot executa intr-un mod ASyncronizat, aprox pararalel""" async def getweather(cityx, idt): # declare the client. the measuring unit used defaults to the metric system (celcius, km/h, etc.) async with python_weather.Client(unit=python_weather.METRIC) as client: # fetch a weather forecast from a city weather = await client.get(cityx) # returns the current day's forecast temperature (int) text = f"In {cityx} temperatura actuala este {weather.current.temperature} grade Celsius" await telegram_send_message(chat_idx = idt, text_x = text) # get the weather forecast for a few days # for forecast in weather.forecasts: # print(forecast) # # # hourly forecasts # for hourly in forecast.hourly: # print(f' --> {hourly!r}') async def telegram_send_message(chat_idx, text_x): bot = telegram.Bot(token_telegram) async with bot: await bot.send_message(text = text_x, chat_id = chat_idx) chat_id_con = 1307289323 #programul va rula, apoi va astepta 60*60 secunde, adica ruleaza la fiecare ora. asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) #pentru MacOS comentati linia de mai sus asyncio.run(getweather(cityx = "Bucharest ", idt= chat_id_con)) #pentru uninstall, folositi pip uninstall nume_librarie
constantinus345/sda_47_con
weather_app.py
weather_app.py
py
1,969
python
en
code
0
github-code
50
28402807345
import logging.config from random import choice # from conf import * logging.config.dictConfig(LOG_CONFIG) logger = logging.getLogger('Utils') def dict_to_format_string(dct: dict) -> str: """Переводит словарь в строку, которую можно отправить в виде сообщения""" res = '' for key, val in dct.items(): res += key + '\n\n' + '\n'.join(['• ' + day for day in val]) + '\n\n' return res def generate_greeting(): """Генерирует приветствие из возможных вариантов, прописанных в конфиге""" what = choice(WHAT) which = choice(WHICH) who = choice(WHO) return f'{what}, {which} {who}!'
kosumosuSpb/tgbot_sun_it_people
utils.py
utils.py
py
747
python
ru
code
0
github-code
50
24497008116
from django.conf.urls import url from . import views from django.conf.urls import include, url from django.conf import settings from django.conf.urls.static import static media_root = getattr(settings, 'MEDIA_ROOT', '/media') app_name = 'polls' urlpatterns = [ url(r'^$',views.test), url(r'^vocabtest/$', views.vocabindex), url(r'vocabtest/result/$',views.vocabresult), url(r'compretest/$', views.compreindex), url(r'compretest/result/$',views.compreresult), url(r'mathtest/$',views.mathindex), url(r'mathtest/result/$',views.mathresult), url(r'^studentstd/$', views.std), url(r'compositiontest/$', views.Compositionindex), url(r'compositiontest/result/$', views.Compositionresult), url(r'dict/$',views.dict), url(r'dict/result/$',views.dictresult), url(r'count/$',views.count), url(r'ml/$',views.detect), url(r'user/$',views.user), url(r'^resource/$', views.resource, name='urlname') #(r'^user/(?P<username>\w{0,50})/$', views.profile_page,), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
ameyashirke13/Ld_detect
polls/urls.py
urls.py
py
1,053
python
en
code
0
github-code
50
18093083869
import spotipy from spotipy.oauth2 import SpotifyClientCredentials import time from graphviz import Graph import argparse g = Graph(format='png') parser = argparse.ArgumentParser() parser.add_argument("-p", "--primary", help="primary artist") parser.add_argument("-s", "--secondary", help="secondary artist") args = parser.parse_args() print(args) primary = args.primary secondary = args.secondary spotify = spotipy.Spotify(client_credentials_manager=SpotifyClientCredentials()) results1 = spotify.search(q='artist:' + primary, type='artist') items1 = results1['artists']['items'] if len(items1) > 0: artist1 = items1[0] print(artist1['name'], artist1['images'][0]['url']) results2 = spotify.search(q='artist:' + secondary, type='artist') items2 = results2['artists']['items'] if len(items2) > 0: artist2 = items2[0] print(artist2['name'], artist2['images'][0]['url']) relation_list = [] step = 1 with g.subgraph(name=f"STEP: {step}") as c: c.attr(color='blue') c.node(artist1["name"], fontcolor='red') artist_ids = [artist1["id"]] last_name = artist1["name"] flag = False readed = [] while flag == False: with g.subgraph(name=f"STEP: {step}") as cfor: cfor.attr(color='blue') for artist_id in artist_ids: last_name = spotify.artist(artist_id=artist_id)["name"] artist_id_tmp = [] relatetions = spotify.artist_related_artists(artist_id=artist_id) time.sleep(0.5) for relation in relatetions["artists"]: print(step, relation["name"], relation["id"]) if relation["id"] == artist2["id"]: print("!!!!!!TRUE!!!!!") flag = True cfor.node(relation["name"], fontcolor="red") cfor .edge(last_name, relation["name"]) break else: cfor.node(relation["name"]) cfor.edge(last_name, relation["name"]) flag = False # relation_list.append(relation) # relation_list = list(set (relation_list)) if relation["id"] in readed: readed.append(relation["id"]) readed = list(set(readed)) continue artist_id_tmp.append(relation["id"]) artist_id_tmp = list(set(artist_id_tmp)) readed.append(relation["id"]) readed = list(set(readed)) artist_ids = artist_id_tmp if flag == True: break step += 1 if step >= 6: break g.render('./graph', view=True)
mi-ki-ri/six-step
app.py
app.py
py
2,693
python
en
code
0
github-code
50
12650428269
import pandas as pd from rdkit.Chem.Descriptors import fr_benzene # type: ignore def fr_benzene_1000_heavy_atoms_count(mol): return 1000 * fr_benzene(mol) / mol.GetNumHeavyAtoms() # From https://github.com/rinikerlab/molecular_time_series/blob/55eb420ab0319fbb18cc00fe62a872ac568ad7f5/ga_lib_3.py#L323 DEFAULT_SIMPD_DESCRIPTORS = pd.DataFrame( [ { "name": "SA_Score", "function": "datamol.descriptors.sas", "target_delta_value": 0.10 * 2.8, }, { "name": "HeavyAtomCount", "function": "datamol.descriptors.n_heavy_atoms", "target_delta_value": 0.1 * 31, }, { "name": "TPSA", "function": "datamol.descriptors.tpsa", "target_delta_value": 0.15 * 88.0, }, { "name": "fr_benzene/1000 HeavyAtoms", "function": "splito.simpd.descriptors.fr_benzene_1000_heavy_atoms_count", "target_delta_value": -0.2 * 0.44, }, ] )
datamol-io/splito
splito/simpd/descriptors.py
descriptors.py
py
1,034
python
en
code
5
github-code
50
1532402723
import argparse import os import glob import ot from sklearn.manifold import TSNE import matplotlib.patheffects as PathEffects import seaborn as sns import numpy from tqdm import tqdm import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, TruncatedSVD from torch.utils.data import DataLoader from generate import gen_testloss, gen_training_accuracy import train_func as tf import utils import scipy def get_cost_matrix(feature1, feature2, metric= "cosine"): C = scipy.spatial.distance.cdist(feature1, feature2, metric=metric) return C def prolong_batch(batch_vector1, batch_vector2): gap = len(batch_vector1) - len(batch_vector2) assert gap >= 0 if gap == 0: return batch_vector1, batch_vector2 rest = abs(gap) step = len(batch_vector2) extend_list = [batch_vector2] while rest > step: extend_list.append(batch_vector2) rest = rest - step copied_samples = batch_vector2[-abs(rest):] extend_list.append(copied_samples) batch_vector2 = np.concatenate(extend_list, axis=0) return batch_vector1, batch_vector2 def align_batch(batch_vector1, batch_vector2): gap = len(batch_vector1) - len(batch_vector2) if gap >= 0: aligned_batch_vector1, aligned_batch_vector2 = prolong_batch(batch_vector1, batch_vector2) else: aligned_batch_vector1, aligned_batch_vector2 = prolong_batch(batch_vector2, batch_vector1) return aligned_batch_vector1, aligned_batch_vector2 def compare_feature(features_before, labels_before, features_after, labels_after, num_classes=4): num_sample = len(features_before) features_sort_before, labels_sort_before = utils.sort_dataset(features_before.numpy(), labels_before.numpy(), num_classes=num_classes, stack=False) features_sort_after, labels_sort_after = utils.sort_dataset(features_after.numpy(), labels_after.numpy(), num_classes=num_classes, stack=False) outer_scores = [] inner_scores = [] before_distr = [] after_distr = [] for class_feature_before, class_feature_after in zip(features_sort_before, features_sort_after): # inner class score _, s_b, _ = np.linalg.svd(class_feature_before) _, s_a, _ = np.linalg.svd(class_feature_after) inner_scores.append(np.log(numpy.prod(s_a[:10])/numpy.prod(s_b[:10]))) # between-class score class_num_before = len(class_feature_before) class_num_after = len(class_feature_after) aug = 2.0 * (class_num_after > class_num_before) - 1.0 minor = 2.0 * (class_num_before < num_sample/num_classes) - 1.0 before_distr.append(class_num_before/num_sample) after_distr.append(class_num_after/num_sample) class_num_samples = max(len(class_feature_before), len(class_feature_after)) aligned_class_feature_before, aligned_class_feature_after = \ align_batch(class_feature_before, class_feature_after) cost_matrix = get_cost_matrix(aligned_class_feature_before, aligned_class_feature_after) a = numpy.ones(class_num_samples) / class_num_samples b = numpy.ones(class_num_samples) / class_num_samples Wd = ot.emd2(a, b, cost_matrix) outer_scores.append(minor*aug*Wd) return inner_scores, outer_scores, before_distr, after_distr def tsne_vis(feature_origin, pre_labels_origin, feature_before, pre_labels_before, feature_after, pre_labels_after, \ path="tsne_figs"): num_samples = len(feature_origin) assert len(feature_origin) == len(feature_before) == len(feature_after) all_features = np.concatenate([feature_origin, feature_before, feature_after], axis=0) all_labels = np.concatenate([labels_origin, labels_before, labels_after], axis=0) tsne = TSNE(n_components=2, verbose=1, perplexity=10, n_iter=300, metric="cosine") tsne_res_all = tsne.fit_transform(all_features) tsne_res_before_mix = tsne_res_all[: 2*num_samples] tsne_res_after_mix = tsne_res_all[-2*num_samples:] pre_labels_before_mix = all_labels[: 2*num_samples] pre_labels_after_mix = all_labels[-2*num_samples:] tsne_res_org = tsne_res_all[: num_samples] tsne_res_before = tsne_res_all[num_samples: 2*num_samples] tsne_res_after = tsne_res_all[-num_samples:] tsne_list = [tsne_res_org, tsne_res_before, tsne_res_after, tsne_res_before_mix, tsne_res_after_mix] pre_labels_list = [pre_labels_origin, pre_labels_before, pre_labels_after, pre_labels_before_mix, pre_labels_after_mix] classes = [i for i in range(4)] name_list = ["tsne_res_org", "tsne_res_before", "tsne_res_after", "tsne_res_before_mix", "tsne_res_after_mix"] for i, (tsne_res, pre_labels) in enumerate(zip(tsne_list, pre_labels_list)): plt.figure(figsize=(10, 10)) for label in classes: indices = pre_labels == label plt.scatter(tsne_res[indices, 0], tsne_res[indices, 1], label=str(label)) plt.legend() plt.title(f"{name_list[i]}") plt.savefig(f"{path}/{name_list[i]}.png") plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Ploting') parser.add_argument('--model_dir', type=str, help='base directory for saving PyTorch model.') parser.add_argument('--before', type=str, help='before augmentation dir') parser.add_argument('--after', type=str, help='after augmentation dir') parser.add_argument('--epoch', type=int, default=None, help='which epoch for evaluation') args = parser.parse_args() params = utils.load_params(args.model_dir) net, epoch = tf.load_checkpoint(args.model_dir, args.epoch, eval_=True) transforms = tf.load_transforms('test') origin = tf.load_trainset("compare", transforms, file_path=args.before, max_imgNum=1000) trainloader_origin = DataLoader(origin, batch_size=64, num_workers=4) features_origin, labels_origin = tf.get_features(net, trainloader_origin) before = tf.load_trainset("compare", transforms, file_path=args.before, max_imgNum=1000) trainloader_before = DataLoader(before, batch_size=64, num_workers=4) features_before, labels_before = tf.get_features(net, trainloader_before) after = tf.load_trainset("compare", transforms, file_path=args.after, max_imgNum=1000) trainloader_after = DataLoader(after, batch_size=64, num_workers=4) features_after, labels_after = tf.get_features(net, trainloader_after) inner_score_org, outer_score_org, distr_org, distr_before = compare_feature(features_origin, labels_origin, features_before, labels_before, num_classes=before.num_classes) inner_score_sty, outer_score_sty, distr_org, distr_after = compare_feature(features_origin, labels_origin, features_after, labels_after, \ num_classes=before.num_classes) import csv file_name = "feature_compare_res.csv" with open(file_name, 'w', newline='') as csv_file: csv_writer = csv.writer(csv_file) names = ["class", "inner_org", "inner_sty", "inter_org", "inter_sty", "distr_org", "distr_before", "distr_after"] csv_writer.writerow(names), for i in range(before.num_classes): data = [i, inner_score_org[i], inner_score_sty[i], outer_score_org[i], outer_score_sty[i], \ distr_org[i], distr_before[i], distr_after[i]] csv_writer.writerow(data) print(f"class{i} | inner_org: {inner_score_org[i]} | inner_sty: {inner_score_sty[i]}") print(f"class{i} | inter_org: {outer_score_org[i]} | inter_sty: {outer_score_sty[i]}") print(f"class{i} | before_distr: {distr_before[i]} | after_distr: {distr_after[i]}") tsne_vis(features_origin, labels_origin, features_before, labels_before, features_after, labels_after) # tsne_vis(features_after, labels_after, "after.png")
Fusang-Wang/mcr2
compare.py
compare.py
py
7,976
python
en
code
null
github-code
50
4353031890
def display_diagonal_elements(matrix): diagonal = [] non_diagonal = [] upper_diagonal = [] lower_diagonal = [] rows = len(matrix) cols = len(matrix[0]) for i in range(rows): for j in range(cols): if i == j: diagonal.append(matrix[i][j]) else: non_diagonal.append(matrix[i][j]) if i < j: upper_diagonal.append(matrix[i][j]) elif i > j: lower_diagonal.append(matrix[i][j]) print("Diagonal elements:", diagonal) print("Non-diagonal elements:", non_diagonal) print("Upper diagonal elements:", upper_diagonal) print("Lower diagonal elements:", lower_diagonal) matrix = [] rows = int(input("Enter the number of rows: ")) cols = int(input("Enter the number of columns: ")) print("Enter the matrix elements:") for i in range(rows): row = [] for j in range(cols): element = int(input("Enter element at position ({}, {}): ".format(i, j))) row.append(element) matrix.append(row) display_diagonal_elements(matrix)
SAIKRISHNA239/EZ-TS-2
diagional elements.py
diagional elements.py
py
1,127
python
en
code
0
github-code
50
10503617394
import pandas as pd import numpy as np import matplotlib.pyplot as plt #uncomment the plt.show() function to display the charts. df = pd.read_csv('test1.csv') null_val=df.isnull().sum(axis = 0) print(null_val) null_val.plot(kind="barh") plt.tight_layout() plt.show() df_tmp = df['What is your gender?'] all_males = df_tmp.value_counts()[0] all_females = df_tmp.value_counts()[1] all_unk = df_tmp.value_counts()[2] male=0 female=0 ukn=0 for index, row in df.iterrows(): if(pd.isnull(row['When is your birthday (date)?'])): if row['What is your gender?'] == "male": male+=1 elif row['What is your gender?'] == "female": female+=1 else: ukn+=1 x = np.array(["all_males", "null_birthday", "all_females", "null_birthdays"]) y = np.array([all_males, male, all_females, female]) data=[['all_males',all_males], ['null_birthday',male],['all_female',all_females],['null_birthday',female]] df_gender_nulldate = pd.DataFrame(data,columns = ['Gender', 'Counts']) #print(df_gender_nulldate) plt.bar(x, y) #plt.show()
sfikouris/DM
task1/A1/plots.py
plots.py
py
1,089
python
en
code
0
github-code
50
11963146837
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def deleteDuplicates(self, head: Optional[ListNode]) -> Optional[ListNode]: node = head while node and node.next: temp = node.next while temp and node.val == temp.val: prev = temp temp = temp.next del prev node.next = temp node = node.next return head
duressa-feyissa/A2SV_Programming
0083-remove-duplicates-from-sorted-list/0083-remove-duplicates-from-sorted-list.py
0083-remove-duplicates-from-sorted-list.py
py
569
python
en
code
0
github-code
50
18207164077
#!/usr/bin/env python ## # ____ _ _ _ _ _ # | _ \ / \ | | | | | / \ # | |_) / _ \| | | | | / _ \ # | __/ ___ \ |_| | |___ / ___ \ # |_| /_/ \_\___/|_____/_/ \_\ # # # Personal # Artificial # Unintelligent # Life # Assistant # ## from paula.core import system from paula.core import outputs from . import sleep_conf as conf def go_to_sleep_mode(seconds): if seconds == 0: if not conf.DEBUG: cmd = "pm-suspend" system.call_silently(cmd, sudo=True) else: outputs.print_debug("going to sleep indefinitely") else: cmd = "sudo rtcwake --mode mem " if conf.DEBUG: cmd += "--dry-run " cmd += "--seconds " + str(seconds) if not conf.DEBUG: system.call_silently(cmd, sudo=True) else: system.call(cmd, sudo=True)
NorfairKing/PAULA-proof-of-concept
paula/sleep/sleep.py
sleep.py
py
901
python
en
code
5
github-code
50
7365275059
from models import Model from models.ajaxcomment import Ajaxcomment from models.comment import Comment from models.user import User class AjaxWeibo(Model): """ 微博类 """ def __init__(self, form, user_id=-1): super().__init__(form) self.content = form.get('content', '') self.user_id = form.get('user_id', user_id) @classmethod def add(cls, form, user_id): form['user_id'] = user_id w = cls.new(form) return w @classmethod def delete_with_comments(cls, user_id): cs = Ajaxcomment.find_all(weibo_id=user_id) for c in cs: Ajaxcomment.delete(c.id) return cls.delete(user_id) @classmethod def update(cls, form): weibo_id = int(form.get('id')) w = cls.find(weibo_id) valid_names = [ 'content', ] for key in form: if key in valid_names: setattr(w, key, form[key]) w.save() return w
Jeffreve/socket_web
models/ajaxweibo.py
ajaxweibo.py
py
1,046
python
en
code
0
github-code
50
20390876489
""" Handles auth to Okta and returns SAML assertion """ # pylint: disable=C0325,R0912,C1801 # Incorporates flow auth code taken from https://github.com/Nike-Inc/gimme-aws-creds import sys import time import requests import re from codecs import decode from urllib.parse import parse_qs from urllib.parse import urlparse from bs4 import BeautifulSoup as bs try: from u2flib_host import u2f, exc from u2flib_host.constants import APDU_WRONG_DATA U2F_ALLOWED = True except ImportError: U2F_ALLOWED = False try: input = raw_input except NameError: pass class OktaAuth(): """ Handles auth to Okta and returns SAML assertion """ def __init__(self, okta_profile, verbose, logger, totp_token, okta_auth_config): self.okta_profile = okta_profile self.totp_token = totp_token self.logger = logger self.factor = "" self.verbose = verbose self._verify_ssl_certs = True self._preferred_mfa_type = None self._mfa_code = None self.https_base_url = "https://%s" % okta_auth_config.base_url_for(okta_profile) self.username = okta_auth_config.username_for(okta_profile) self.password = okta_auth_config.password_for(okta_profile) self.factor = okta_auth_config.factor_for(okta_profile) self.app_link = okta_auth_config.app_link_for(okta_profile) self.okta_auth_config = okta_auth_config self.session = None self.session_token = "" self.session_id = "" def primary_auth(self): """ Performs primary auth against Okta """ auth_data = { "username": self.username, "password": self.password } self.session = requests.Session() resp = self.session.post(self.https_base_url + '/api/v1/authn', json=auth_data) resp_json = resp.json() self.cookies = resp.cookies if 'status' in resp_json: if resp_json['status'] == 'MFA_REQUIRED': factors_list = resp_json['_embedded']['factors'] state_token = resp_json['stateToken'] session_token = self.verify_mfa(factors_list, state_token) elif resp_json['status'] == 'SUCCESS': session_token = resp_json['sessionToken'] elif resp_json['status'] == 'MFA_ENROLL': self.logger.warning("""MFA not enrolled. Cannot continue. Please enroll an MFA factor in the Okta Web UI first!""") exit(2) elif resp.status_code != 200: self.logger.error(resp_json['errorSummary']) exit(1) else: self.logger.error(resp_json) exit(1) return session_token def verify_mfa(self, factors_list, state_token): """ Performs MFA auth against Okta """ supported_factor_types = ["token:software:totp", "push"] if U2F_ALLOWED: supported_factor_types.append("u2f") supported_factors = [] for factor in factors_list: if factor['factorType'] in supported_factor_types: supported_factors.append(factor) else: self.logger.error("Unsupported factorType: %s" % (factor['factorType'],)) supported_factors = sorted(supported_factors, key=lambda factor: ( factor['provider'], factor['factorType'])) if len(supported_factors) == 1: session_token = self.verify_single_factor( supported_factors[0], state_token) elif len(supported_factors) > 0: if not self.factor: print("Registered MFA factors:") for index, factor in enumerate(supported_factors): factor_type = factor['factorType'] factor_provider = factor['provider'] if factor_provider == "GOOGLE": factor_name = "Google Authenticator" elif factor_provider == "OKTA": if factor_type == "push": factor_name = "Okta Verify - Push" else: factor_name = "Okta Verify" elif factor_provider == "FIDO": factor_name = "u2f" else: factor_name = "Unsupported factor type: %s" % factor_provider if self.factor: if self.factor == factor_provider: factor_choice = index self.logger.info("Using pre-selected factor choice \ from ~/.okta-aws") break else: print("%d: %s" % (index + 1, factor_name)) if not self.factor: factor_choice = int(input('Please select the MFA factor: ')) - 1 self.logger.info("Performing secondary authentication using: %s" % supported_factors[factor_choice]['provider']) session_token = self.verify_single_factor(supported_factors[factor_choice], state_token) else: print("MFA required, but no supported factors enrolled! Exiting.") exit(1) return session_token def verify_single_factor(self, factor, state_token): """ Verifies a single MFA factor """ req_data = { "stateToken": state_token } self.logger.debug(factor) if factor['factorType'] == 'token:software:totp': if self.totp_token: self.logger.debug("Using TOTP token from command line arg") req_data['answer'] = self.totp_token else: req_data['answer'] = input('Enter MFA token: ') post_url = factor['_links']['verify']['href'] resp = requests.post(post_url, json=req_data) resp_json = resp.json() if 'status' in resp_json: if resp_json['status'] == "SUCCESS": return resp_json['sessionToken'] elif resp_json['status'] == "MFA_CHALLENGE" and factor['factorType'] !='u2f': print("Waiting for push verification...") while True: resp = requests.post( resp_json['_links']['next']['href'], json=req_data) resp_json = resp.json() if resp_json['status'] == 'SUCCESS': return resp_json['sessionToken'] elif resp_json['factorResult'] == 'TIMEOUT': print("Verification timed out") exit(1) elif resp_json['factorResult'] == 'REJECTED': print("Verification was rejected") exit(1) else: time.sleep(0.5) if factor['factorType'] == 'u2f': devices = u2f.list_devices() if len(devices) == 0: self.logger.warning("No U2F device found") exit(1) challenge = dict() challenge['appId'] = resp_json['_embedded']['factor']['profile']['appId'] challenge['version'] = resp_json['_embedded']['factor']['profile']['version'] challenge['keyHandle'] = resp_json['_embedded']['factor']['profile']['credentialId'] challenge['challenge'] = resp_json['_embedded']['factor']['_embedded']['challenge']['nonce'] print("Please touch your U2F device...") auth_response = None while not auth_response: for device in devices: with device as dev: try: auth_response = u2f.authenticate(dev, challenge, resp_json['_embedded']['factor']['profile']['appId'] ) req_data.update(auth_response) resp = requests.post(resp_json['_links']['next']['href'], json=req_data) resp_json = resp.json() if resp_json['status'] == 'SUCCESS': return resp_json['sessionToken'] elif resp_json['factorResult'] == 'TIMEOUT': self.logger.warning("Verification timed out") exit(1) elif resp_json['factorResult'] == 'REJECTED': self.logger.warning("Verification was rejected") exit(1) except exc.APDUError as e: if e.code == APDU_WRONG_DATA: devices.remove(device) time.sleep(0.1) elif resp.status_code != 200: self.logger.error(resp_json['errorSummary']) exit(1) else: self.logger.error(resp_json) exit(1) return None def get_session(self, session_token): """ Gets a session cookie from a session token """ data = {"sessionToken": session_token} resp = self.session.post( self.https_base_url + '/api/v1/sessions', json=data).json() return resp['id'] def get_apps(self, session_id): """ Gets apps for the user """ sid = "sid=%s" % session_id headers = {'Cookie': sid} resp = self.session.get( self.https_base_url + '/api/v1/users/me/appLinks', headers=headers).json() aws_apps = [] for app in resp: # Hack to allow for more than one appName pattern if app['appName'] == "amazon_aws" or \ app['appName'] == "another_pattern" or \ app['appName'] == "and_another_pattern": aws_apps.append(app) if not aws_apps: self.logger.error("No AWS apps are available for your user. \ Exiting.") sys.exit(1) aws_apps = sorted(aws_apps, key=lambda app: app['sortOrder']) app_choice = 0 if len(aws_apps) == 1 else None if app_choice is None: print("Available apps:") for index, app in enumerate(aws_apps): app_name = app['label'] print("%d: %s" % (index + 1, app_name)) app_choice = int(input('Please select AWS app: ')) - 1 self.logger.debug("Selected app: %s" % aws_apps[app_choice]['label']) return aws_apps[app_choice]['label'], aws_apps[app_choice]['linkUrl'] def get_simple_assertion(self, html): soup = bs(html.text, "html.parser") for input_tag in soup.find_all('input'): if input_tag.get('name') == 'SAMLResponse': return input_tag.get('value') return None def get_mfa_assertion(self, html): soup = bs(html.text, "html.parser") if hasattr(soup.title, 'string') and re.match(".* - Extra Verification$", soup.title.string): state_token = decode(re.search(r"var stateToken = '(.*)';", html.text).group(1), "unicode-escape") else: self.logger.error("No Extra Verification") return None self.session.cookies['oktaStateToken'] = state_token self.session.cookies['mp_Account Settings__c'] = '0' self.session.cookies['Okta_Verify_Autopush_2012557501'] = 'true' self.session.cookies['Okta_Verify_Autopush_-610254449'] = 'true' api_response = self.stepup_auth(self.https_base_url + '/api/v1/authn', state_token) resp = self.session.get(self.app_link) return self.get_saml_assertion(resp) def get_saml_assertion(self, html): """ Returns the SAML assertion from HTML """ assertion = self.get_simple_assertion(html) or self.get_mfa_assertion(html) if not assertion: self.logger.error("SAML assertion not valid: " + assertion) exit(-1) return assertion def stepup_auth(self, embed_link, state_token=None): """ Login to Okta using the Step-up authentication flow""" flow_state = self._get_initial_flow_state(embed_link, state_token) while flow_state.get('apiResponse').get('status') != 'SUCCESS': flow_state = self._next_login_step( flow_state.get('stateToken'), flow_state.get('apiResponse')) return flow_state['apiResponse'] def _next_login_step(self, state_token, login_data): """ decide what the next step in the login process is""" if 'errorCode' in login_data: self.logger.error("LOGIN ERROR: {} | Error Code: {}".format(login_data['errorSummary'], login_data['errorCode'])) exit(2) status = login_data['status'] if status == 'UNAUTHENTICATED': self.logger.error("You are not authenticated -- please try to log in again") exit(2) elif status == 'LOCKED_OUT': self.logger.error("Your Okta access has been locked out due to failed login attempts.") exit(2) elif status == 'MFA_ENROLL': self.logger.error("You must enroll in MFA before using this tool.") exit(2) elif status == 'MFA_REQUIRED': return self._login_multi_factor(state_token, login_data) elif status == 'MFA_CHALLENGE': if 'factorResult' in login_data and login_data['factorResult'] == 'WAITING': return self._check_push_result(state_token, login_data) else: return self._login_input_mfa_challenge(state_token, login_data['_links']['next']['href']) else: raise RuntimeError('Unknown login status: ' + status) def _get_initial_flow_state(self, embed_link, state_token=None): """ Starts the authentication flow with Okta""" if state_token is None: response = self.session.get( embed_link, allow_redirects=False) url_parse_results = urlparse(response.headers['Location']) state_token = parse_qs(url_parse_results.query)['stateToken'][0] response = self.session.post( self.https_base_url + '/api/v1/authn', json={'stateToken': state_token}, headers=self._get_headers(), verify=self._verify_ssl_certs ) return {'stateToken': state_token, 'apiResponse': response.json()} def _get_headers(self): return { 'User-Agent': 'Okta-awscli/0.0.1', 'Accept': 'application/json', 'Content-Type': 'application/json' } def get_assertion(self): """ Main method to get SAML assertion from Okta """ self.session_token = self.primary_auth() self.session_id = self.get_session(self.session_token) if not self.app_link: app_name, app_link = self.get_apps(self.session_id) self.okta_auth_config.save_chosen_app_link_for_profile(self.okta_profile, app_link) else: app_name = None app_link = self.app_link self.session.cookies['sid'] = self.session_id resp = self.session.get(app_link) assertion = self.get_saml_assertion(resp) return app_name, assertion def _login_send_sms(self, state_token, factor): """ Send SMS message for second factor authentication""" response = self.session.post( factor['_links']['verify']['href'], json={'stateToken': state_token}, headers=self._get_headers(), verify=self._verify_ssl_certs ) self.logger.info("A verification code has been sent to " + factor['profile']['phoneNumber']) response_data = response.json() if 'stateToken' in response_data: return {'stateToken': response_data['stateToken'], 'apiResponse': response_data} if 'sessionToken' in response_data: return {'stateToken': None, 'sessionToken': response_data['sessionToken'], 'apiResponse': response_data} def _login_send_call(self, state_token, factor): """ Send Voice call for second factor authentication""" response = self.session.post( factor['_links']['verify']['href'], json={'stateToken': state_token}, headers=self._get_headers(), verify=self._verify_ssl_certs ) self.logger.info("You should soon receive a phone call at " + factor['profile']['phoneNumber']) response_data = response.json() if 'stateToken' in response_data: return {'stateToken': response_data['stateToken'], 'apiResponse': response_data} if 'sessionToken' in response_data: return {'stateToken': None, 'sessionToken': response_data['sessionToken'], 'apiResponse': response_data} def _login_send_push(self, state_token, factor): """ Send 'push' for the Okta Verify mobile app """ response = self.session.post( factor['_links']['verify']['href'], json={'stateToken': state_token}, headers=self._get_headers(), verify=self._verify_ssl_certs ) self.logger.info("Okta Verify push sent...") response_data = response.json() if 'stateToken' in response_data: return {'stateToken': response_data['stateToken'], 'apiResponse': response_data} if 'sessionToken' in response_data: return {'stateToken': None, 'sessionToken': response_data['sessionToken'], 'apiResponse': response_data} def _login_multi_factor(self, state_token, login_data): """ handle multi-factor authentication with Okta""" factor = self._choose_factor(login_data['_embedded']['factors']) if factor['factorType'] == 'sms': return self._login_send_sms(state_token, factor) elif factor['factorType'] == 'call': return self._login_send_call(state_token, factor) elif factor['factorType'] == 'token:software:totp': return self._login_input_mfa_challenge(state_token, factor['_links']['verify']['href']) elif factor['factorType'] == 'token': return self._login_input_mfa_challenge(state_token, factor['_links']['verify']['href']) elif factor['factorType'] == 'push': return self._login_send_push(state_token, factor) def _login_input_mfa_challenge(self, state_token, next_url): """ Submit verification code for SMS or TOTP authentication methods""" pass_code = self._mfa_code; if pass_code is None: pass_code = input("Enter verification code: ") response = self.session.post( next_url, json={'stateToken': state_token, 'passCode': pass_code}, headers=self._get_headers(), verify=self._verify_ssl_certs ) response_data = response.json() if 'status' in response_data and response_data['status'] == 'SUCCESS': if 'stateToken' in response_data: return {'stateToken': response_data['stateToken'], 'apiResponse': response_data} if 'sessionToken' in response_data: return {'stateToken': None, 'sessionToken': response_data['sessionToken'], 'apiResponse': response_data} else: return {'stateToken': None, 'sessionToken': None, 'apiResponse': response_data} def _check_push_result(self, state_token, login_data): """ Check Okta API to see if the push request has been responded to""" time.sleep(1) response = self.session.post( login_data['_links']['next']['href'], json={'stateToken': state_token}, headers=self._get_headers(), verify=self._verify_ssl_certs ) response_data = response.json() if 'stateToken' in response_data: return {'stateToken': response_data['stateToken'], 'apiResponse': response_data} if 'sessionToken' in response_data: return {'stateToken': None, 'sessionToken': response_data['sessionToken'], 'apiResponse': response_data} def _choose_factor(self, factors): """ gets a list of available authentication factors and asks the user to select the factor they want to use """ print("Multi-factor Authentication required.") # filter the factor list down to just the types specified in preferred_mfa_type if self._preferred_mfa_type is not None: factors = list(filter(lambda item: item['factorType'] == self._preferred_mfa_type, factors)) if len(factors) == 1: factor_name = self._build_factor_name(factors[0]) self.logger.info(factor_name, 'selected') selection = 0 else: print("Pick a factor:") # print out the factors and let the user select for i, factor in enumerate(factors): factor_name = self._build_factor_name(factor) if factor_name is not "": print('[ %d ] %s' % (i, factor_name)) selection = input("Selection: ") # make sure the choice is valid if int(selection) > len(factors): self.logger.error("You made an invalid selection") exit(1) return factors[int(selection)] @staticmethod def _build_factor_name(factor): """ Build the display name for a MFA factor based on the factor type""" if factor['factorType'] == 'push': return "Okta Verify App: " + factor['profile']['deviceType'] + ": " + factor['profile']['name'] elif factor['factorType'] == 'sms': return factor['factorType'] + ": " + factor['profile']['phoneNumber'] elif factor['factorType'] == 'call': return factor['factorType'] + ": " + factor['profile']['phoneNumber'] elif factor['factorType'] == 'token:software:totp': return factor['factorType'] + "( " + factor['provider'] + " ) : " + factor['profile']['credentialId'] elif factor['factorType'] == 'token': return factor['factorType'] + ": " + factor['profile']['credentialId'] else: return ("Unknown MFA type: " + factor['factorType'])
seajoshc/dockerfiles
terrata/hacked_okta_auth.py
hacked_okta_auth.py
py
22,599
python
en
code
0
github-code
50
44566172798
import pytest import os.path try: import pyarrow as pa arrow_version = pa.__version__ except ImportError as msg: print('Failed to import pyarrow: {}'.format(msg)) pa = None arrow_version = None import numpy as np from librmm_cffi import librmm as rmm from cudf.comm.gpuarrow import GpuArrowReader from cudf.dataframe import Series, DataFrame from cudf.tests.utils import assert_eq def read_data(): import pandas as pd basedir = os.path.dirname(__file__) datapath = os.path.join(basedir, 'data', 'ipums.pkl') try: df = pd.read_pickle(datapath) except Exception as excpr: if type(excpr).__name__ == 'FileNotFoundError': pytest.skip('.pkl file is not found') else: print(type(excpr).__name__) names = [] arrays = [] for k in df.columns: arrays.append(pa.Array.from_pandas(df[k])) names.append(k) batch = pa.RecordBatch.from_arrays(arrays, names) schema = batch.schema.serialize().to_pybytes() schema = np.ndarray(shape=len(schema), dtype=np.byte, buffer=bytearray(schema)) data = batch.serialize().to_pybytes() data = np.ndarray(shape=len(data), dtype=np.byte, buffer=bytearray(data)) darr = rmm.to_device(data) return df, schema, darr @pytest.mark.skipif(arrow_version is None, reason='need compatible pyarrow to generate test data') def test_fillna(): _, schema, darr = read_data() gar = GpuArrowReader(schema, darr) masked_col = gar[8] assert masked_col.null_count sr = Series.from_masked_array(data=masked_col.data, mask=masked_col.null, null_count=masked_col.null_count) dense = sr.fillna(123) np.testing.assert_equal(123, dense.to_array()) assert len(dense) == len(sr) assert dense.null_count == 0 def test_to_dense_array(): data = np.random.random(8) mask = np.asarray([0b11010110], dtype=np.byte) sr = Series.from_masked_array(data=data, mask=mask, null_count=3) assert sr.null_count > 0 assert sr.null_count != len(sr) filled = sr.to_array(fillna='pandas') dense = sr.to_array() assert dense.size < filled.size assert filled.size == len(sr) @pytest.mark.skipif(arrow_version is None, reason='need compatible pyarrow to generate test data') def test_reading_arrow_sparse_data(): pdf, schema, darr = read_data() gar = GpuArrowReader(schema, darr) gdf = DataFrame(gar.to_dict().items()) assert_eq(pdf, gdf)
yongsheng268/rapidsai-cudf
python/cudf/tests/test_sparse_df.py
test_sparse_df.py
py
2,576
python
en
code
0
github-code
50
26045700219
import sys import requests import json url = "http://k.episte.co/keywords/similars" def get_synonyms(infile, outfile, n): with open(infile, 'r') as jsonfile: data = json.load(jsonfile) output = {} for k in data['keywords']: r = requests.get(url, params={'positive': k, 'size': n}) output[k] = r.json() with open(outfile, 'w+') as out: json.dump(output,out) if __name__ == "__main__": n = sys.argv[3] infile = sys.argv[1] outfile = sys.argv[2] get_synonyms(infile, outfile, n)
ESHackathon/keyword_synonyms
keywords.py
keywords.py
py
545
python
en
code
1
github-code
50
17047373269
import json import trustlab.lab.config as config import time from asgiref.sync import sync_to_async from rest_framework.renderers import JSONRenderer from trustlab.consumers.chunk_consumer import ChunkAsyncJsonWebsocketConsumer from trustlab.models import * from trustlab.serializers.scenario_serializer import ScenarioSerializer from trustlab.lab.director import Director from trustlab.lab.connectors.mongo_db_connector import MongoDbConnector from trustlab.serializers.scenario_file_reader import ScenarioReader from trustlab.lab.config import MONGODB_URI class LabConsumer(ChunkAsyncJsonWebsocketConsumer): """ LabConsumer class, with sequential process logic of the Director in its receive_json method. It is therewith the main interface between User Agent and Director. """ async def connect(self): await self.accept() async def disconnect(self, close_code): if self.changed_evaluation_status: config.EVALUATION_SCRIPT_RUNS = False async def receive_json(self, content, **kwargs): if content['type'] == 'get_scenarios': try: scenarios_message = {'type': 'scenarios'} # ScenarioFactory throws AssertionError if no predefined scenarios could be loaded scenario_factory = ScenarioFactory(lazy_load=True) scenarios_message['scenario_groups'] = JSONRenderer().render( scenario_factory.get_scenarios_in_categories()).decode('utf-8') # for manipulation of scenarios via JS, send them also as JSON scenario_serializer = ScenarioSerializer(scenario_factory.scenarios, many=True) scenarios_message["scenarios"] = JSONRenderer().render(scenario_serializer.data).decode('utf-8') await self.send_json(scenarios_message) except AssertionError: await self.send_json({'type': 'error', 'message': 'No predefined scenarios could be loaded!'}) elif content['type'] == 'run_scenario': if 'agents' in content['scenario'].keys(): try: Scenario.correct_number_types(content['scenario']) except (ModuleNotFoundError, SyntaxError) as error: await self.send_json({ 'message': f'Scenario Description Error: {str(error)}', 'type': 'error' }) return serializer = ScenarioSerializer(data=content['scenario']) if serializer.is_valid(): director = Director(content['scenario']['name']) try: if config.TIME_MEASURE: reader_start_timer = time.time() reader_read = False if 'scenario_reset' in content and content['scenario_reset']: await self.mongodb_connector.reset_scenario(content['scenario']['name']) scenario_exists = await self.mongodb_connector.scenario_exists(content['scenario']['name']) if not scenario_exists: scenario_name_handler = ScenarioFileNames() files_for_names = scenario_name_handler.get_files_for_names() reader = ScenarioReader(content['scenario']['name'], files_for_names[content['scenario']['name']], self.mongodb_connector) await reader.read() if config.TIME_MEASURE: reader_read = True if config.TIME_MEASURE: reader_end_timer = time.time() # noinspection PyUnboundLocalVariable reader_time = reader_end_timer - reader_start_timer if reader_read else -1 await sync_to_async(config.write_scenario_status)(director.scenario_run_id, f"Database-Preparation took {reader_time} s") except (ValueError, AttributeError, TypeError, ModuleNotFoundError, SyntaxError) as error: await self.send_json({ 'message': f'Scenario Error: {str(error)}', 'type': 'error' }) return # if scenario_factory.scenario_exists(scenario.name): # try: # scenario = scenario_factory.get_scenario(scenario.name) # except RuntimeError as error: # await self.send_json({ # 'message': f'Scenario Load Error: {str(error)}', # 'type': 'error' # }) # return # # TODO: implement what happens if scenario is updated # else: # if len(scenario.agents) == 0: # await self.send_json({ # 'message': f'Scenario Error: Scenario transmitted is empty and not known.', # 'type': 'error' # }) # return # # TODO: implement save for new scenario as currently it won't be saved due to name only load # scenario_factory.scenarios.append(scenario) if 'scenario_only_read' in content and content['scenario_only_read']: await self.send_json({ 'scenario_run_id': director.scenario_run_id, 'type': 'read_only_done' }) return try: async with config.PREPARE_SCENARIO_SEMAPHORE: if config.TIME_MEASURE: preparation_start_timer = time.time() supervisor_amount = await director.prepare_scenario() await self.send_json({ 'scenario_run_id': director.scenario_run_id, 'type': "scenario_run_id" }) if config.TIME_MEASURE: preparation_end_timer = time.time() preparation_time = preparation_end_timer - preparation_start_timer await sync_to_async(config.write_scenario_status)(director.scenario_run_id, f"Preparation took {preparation_time} s") execution_start_timer = time.time() trust_log, trust_log_dict, agent_trust_logs, agent_trust_logs_dict = await director.run_scenario() if config.TIME_MEASURE: execution_end_timer = time.time() # noinspection PyUnboundLocalVariable execution_time = execution_end_timer - execution_start_timer await sync_to_async(config.write_scenario_status)(director.scenario_run_id, f"Execution took {execution_time} s") cleanup_start_timer = time.time() await director.end_scenario() await self.mongodb_connector.cleanup(content['scenario']['name'], director.scenario_run_id) if config.TIME_MEASURE: cleanup_end_timer = time.time() # noinspection PyUnboundLocalVariable cleanup_time = cleanup_end_timer - cleanup_start_timer await sync_to_async(config.write_scenario_status)(director.scenario_run_id, f"CleanUp took {cleanup_time} s") for agent in agent_trust_logs: agent_trust_logs[agent] = "".join(agent_trust_logs[agent]) log_message = { 'agents_log': json.dumps(agent_trust_logs), 'agents_log_dict': json.dumps(agent_trust_logs_dict), 'trust_log': "".join(trust_log), 'trust_log_dict': json.dumps(trust_log_dict), 'scenario_run_id': director.scenario_run_id, 'scenario_name': content['scenario']['name'], 'supervisor_amount': supervisor_amount, 'type': "scenario_results" } if config.TIME_MEASURE: # noinspection PyUnboundLocalVariable atlas_times = { 'preparation_time': preparation_time, 'execution_time': execution_time, 'cleanup_time': cleanup_time } if reader_read: # noinspection PyUnboundLocalVariable atlas_times['reader_time'] = reader_time log_message['atlas_times'] = atlas_times result_factory = ResultFactory() scenario_result = result_factory.get_result(director.scenario_run_id) scenario_result.atlas_times = atlas_times result_factory.save_dict_log_result(scenario_result) if self.copy_result_pys: result_factory = ResultFactory() result_factory.copy_result_pys(director.scenario_run_id) if 'is_evaluator' in content and content['is_evaluator']: await self.send_json({ 'scenario_run_id': director.scenario_run_id, 'scenario_name': content['scenario']['name'], 'supervisor_amount': supervisor_amount, 'type': "scenario_results" }) else: await self.send_json(log_message) except Exception as exception: await self.send_json({ 'message': str(exception), 'type': 'error' }) else: await self.send(text_data=json.dumps({ 'message': serializer.errors, 'type': 'error' })) elif content['type'] == 'get_scenario_results': result_factory = ResultFactory() current_id = content['scenario_run_id'] if config.validate_scenario_run_id(current_id): try: scenario_result = result_factory.get_result(current_id) result_message = { 'agents_log': json.dumps(scenario_result.agent_trust_logs), 'agents_log_dict': json.dumps(scenario_result.agent_trust_logs_dict), 'trust_log': "".join(scenario_result.trust_log), 'trust_log_dict': json.dumps(scenario_result.trust_log_dict), 'scenario_run_id': scenario_result.scenario_run_id, 'scenario_name': scenario_result.scenario_name, 'supervisor_amount': scenario_result.supervisor_amount, 'type': "scenario_results" } if config.TIME_MEASURE: result_message['atlas_times'] = scenario_result.atlas_times await self.send_json(result_message) except OSError as exception: await self.send_json({ 'message': "Scenario Result not found", 'exception': str(exception), 'type': 'scenario_result_error' }) else: await self.send_json({ 'message': "Scenario Run ID is not valid", 'type': 'scenario_result_error' }) elif content['type'] == 'register_eval_run' or content['type'] == 'lock_webUI': if content['type'] == 'register_eval_run': # only memorize the eval run if the webUI is not already registered self.changed_evaluation_status = not config.EVALUATION_SCRIPT_RUNS self.copy_result_pys = True config.EVALUATION_SCRIPT_RUNS = True await self.send_json({ 'message': 'Locked WebUI', 'type': content['type'] }) elif content['type'] == 'unregister_eval_run' or content['type'] == 'unlock_webUI': config.EVALUATION_SCRIPT_RUNS = False self.changed_evaluation_status = False await self.send_json({ 'message': 'Unlocked WebUI', 'type': content['type'] }) elif content['type'] == 'end_socket': await self.send_json(content) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.changed_evaluation_status = False self.copy_result_pys = False self.mongodb_connector = MongoDbConnector(MONGODB_URI)
zaman365/travos_trust_model
trustlab/consumers/lab_consumer.py
lab_consumer.py
py
13,452
python
en
code
0
github-code
50
20206520026
from view.commands.command import Command class SearchByID(Command): def __init__(self, presenter, view): """ Поиск заметки по идентификатору :param presenter: презентер :param view: представление """ super().__init__(presenter, view) super().set_description("Найти по ID") def execute(self): # принимает числовое значение идентификатора заметки, передает его # презентеру и выводит принятую заметку на экран, обрабатывает # исключения try: note_id = int(input('Введите ID заметки: ')) note = self.presenter.search_by_id(note_id) print(note) except ValueError: print('Некорректное значение, необходимо ввести число')
bunny-nun/git-advance-hw
view/commands/search/search_by_id.py
search_by_id.py
py
1,003
python
ru
code
0
github-code
50
70071774237
def main(): data = readFile(input().strip()) if data is None:return -1 lst = data["list"] n = data["n"] subs = getSubLists(lst,n) domins = [getDominant(sub) for sub in subs] result = getResult(domins,len(lst)) if writer("result.txt",result)==-1:return -1 def writer(outFile,output): try: with open(outFile,"w") as file: print(output) file.write(output) except: return -1 def getResult(domins,l): count = {} for i in domins: try: count[i]+=1 except: count[i]=1 keys = count.keys() return [count[i+1] if (i+1) in keys else 0 for i in range(l)] def getDominant(sub): count = {} for i in sub: try: count[i]+=1 except: count[i]=1 maxFreq = max(count.values()) dominant = min([key for key,val in count.items() if val==maxFreq]) return dominant def getSubLists(lst,n): l = len(lst) subs = [lst[i:i+n] for i in range(l-n+1)] return subs def readFile(inpFile): try: with open(inpFile) as file: lst = list(map(int,file.readline().rstrip().split())) n = int(file.readline().rstrip()) l = len(lst) if not 0<n<l: raise Exception except Exception as e: print(e) return return {"list":lst,"n":n} main()
samitha278/UoM-Labs
Programming Assignment 2/uom 2015 pp2/2015-PA2-A3-1 - D.List/D.List.py
D.List.py
py
1,476
python
en
code
0
github-code
50
9658908858
import pathlib import diffhtml import flask from flask import request from markupsafe import Markup app = flask.Flask( 'Diff-HTML Demo', template_folder=pathlib.Path(__file__).parent.joinpath('templates'), ) DEFAULT_A = """ I am the very model of a modern Major-General, I've information vegetable, animal, and mineral, I know the kings of England, and I quote the fights historical, From Marathon to Waterloo, in order categorical. """ DEFAULT_B = """ I am the very model of an anime individual, I've information on comical, unusual, and moe girl, I know the girls from galgames, and I quote the lines all chuunibyo, From Neo Eva to SAO, down to the very last detail. """ @app.route('/ndiff', methods=['GET', 'POST']) def ndiff(): a = request.form.get('a', DEFAULT_A) b = request.form.get('b', DEFAULT_B) try: cutoff = float(request.form.get('cutoff', 0.6)) except ValueError: cutoff = 0.6 context = { 'result': None, 'cutoff': cutoff, 'input': {'a': a, 'b': b}, } if request.method == 'POST': context['result'] = Markup('<br>').join(diffhtml.ndiff( a.splitlines(), b.splitlines(), cutoff=cutoff, )) return flask.render_template('ndiff.html', **context) @app.route('/') def home(): return flask.redirect(flask.url_for('ndiff')) if __name__ == '__main__': app.run()
uranusjr/diffhtml
demo/app.py
app.py
py
1,395
python
en
code
23
github-code
50
9604369230
"""Spezielle Tags für templates.""" from django.conf import settings from django.utils.module_loading import import_module from django import template from operator import itemgetter from Startseite.views import sysstatus from webpack_loader import utils from webpack_loader.exceptions import WebpackBundleLookupError from django.utils.safestring import mark_safe import json register = template.Library() @register.filter(name='genus') def genus(value, arg): """Genus > {{ value|genus:"maskulin,feminin,neutrum" }} Als Value wird 'm' oder 'f' erwartet sonst wird das Neutrum verwendet.""" if value == 'm': return arg.split(',')[0] if value == 'f': return arg.split(',')[1] return arg.split(',')[2] @register.filter(name='formatDuration') def formatDuration(value): """Formatiert "DurationField" > {{ value|formatDuration }} -> 00:00:00.000000 .""" total_seconds = int(value.total_seconds()) hours = total_seconds // 3600 minutes = (total_seconds % 3600) // 60 seconds = (total_seconds % 60) + value.total_seconds() - total_seconds return '{:02d}:{:02d}:{:09.6f}'.format(hours, minutes, seconds) @register.filter(name='toJson') def toJson(value): """Verwandelt Wert in Json > {{ value|toJson }} .""" return json.dumps(value) @register.filter def comma2dot(value): """Komma zu Punkt.""" return str(value).replace(",", ".") @register.filter(name='kategorienListeFilterFX') def kategorienListeFilterFX(value): """Für kategorienListeFilter.""" from django.apps import apps import re try: amodel = apps.get_model(value['app'], value['table']) aRet = [] for aentry in amodel.objects.all(): def repl(m): try: return str(getattr(aentry, m.group(1))) except: return '!err' aRet.append({'title': re.sub(r"!(\w+)", repl, value['title']), 'val': re.sub(r"!(\w+)", repl, value['val'])}) return aRet except Exception as e: print(e) return @register.assignment_tag(takes_context=True) def navbarMaker(context): """Erstellt Navigation.""" anavbar = [] for value in settings.INSTALLED_APPS: # Alle Installierten Apps durchgehen und nach navbar.py suchen. try: anavbar.extend(import_module("%s.navbar" % value).navbar(context.request)) except ImportError: pass return sorted(anavbar, key=itemgetter('sort')) @register.assignment_tag(takes_context=True) def getSysStatus(context): """Systemstatus.""" asysstatus = sysstatus(context.request) asysstatus['json'] = json.dumps(asysstatus) return asysstatus @register.assignment_tag def to_list(*args): """Wandelt Aufzählung in Liste um.""" return args @register.assignment_tag def add_to_list(alist, add): """Fügt Wert zu Liste.""" if alist: return alist + [add] else: return [add] @register.simple_tag def getFeldVal(alist, val): """Liest Wert aus einer Liste von Dictonarys aus.""" if alist: for aDict in alist: if 'name' in aDict and aDict['name'] == val: if 'value' in aDict: return aDict['value'] else: return return @register.simple_tag def obj_getattr(aobj, val): """Für kategorienListeFXData.""" def pObj_getattr(aobj, val): if 'all()' in val: # Der "all()" Teil ist Expermintell! Ungetestet! bAll, pAll = val.split('all()', 1) if pAll[:2] == '__': pAll = pAll[2:] if bAll[-2:] == '__': bAll = bAll[:-2] aData = [] for aktObj in pObj_getattr(aobj, bAll).all(): aData.append(pObj_getattr(aktObj, pAll)) return aData if '__' in val: avals = val.split('__') else: avals = [val] for aval in avals: if '()' in aval: aobj = getattr(aobj, aval[:-2])() else: aobj = getattr(aobj, aval) return aobj try: return pObj_getattr(aobj, val) except Exception as e: # print(e) # print(aobj) # print(dir(aobj)) return '' @register.filter def get_item(dictionary, key): """Wert aus Dictionary auslesen.""" return dictionary.get(key) @register.simple_tag(takes_context=True) def render(context, value): """Inline Template rendern.""" return template.engines['django'].from_string(value).render(context) # settings value @register.simple_tag def settings_value(name): """Einstellung auslesen.""" if name in getattr(settings, 'ALLOWED_SETTINGS_IN_TEMPLATES', ''): return getattr(settings, name, '') return '' @register.simple_tag def render_bundle(bundle_name, extension=None, config='DEFAULT', attrs=''): """Webpack loader.""" try: tags = utils.get_as_tags(bundle_name, extension=extension, config=config, attrs=attrs) except WebpackBundleLookupError as e: return'' return mark_safe('\n'.join(tags)) @register.filter def subtract(value, arg): return value - arg
german-in-austria/dioeDB
app/Startseite/templatetags/dioeTags.py
dioeTags.py
py
4,802
python
en
code
2
github-code
50
12632545151
from django.contrib import admin from django.urls import path, include from Insta.views import (PostListView, PostDetailView, PostCreateView, PostUpdateView, PostDeleteView, UserProfile, EditProfile, ExploreView, SignupView, addLike, addComment, toggleFollow) urlpatterns = [ #path('admin/', admin.site.urls), #path('/', include('Insta.urls')), path('', PostListView.as_view(), name = 'home'), path('post/<int:pk>', PostDetailView.as_view(), name = 'post'), path('make_post/', PostCreateView.as_view(), name = 'make_post'), path('update_post/<int:pk>/', PostUpdateView.as_view(), name = 'edit_post'), path('delete_post/<int:pk>/', PostDeleteView.as_view(), name = 'delete_post'), path('auth/signup', SignupView.as_view(), name='signup'), path('user/<int:pk>', UserProfile.as_view(), name = 'profile'), path('edit_profile/<int:pk>', EditProfile.as_view(), name = 'edit_profile'), path('like', addLike, name = 'addLike'), path('comment', addComment, name = 'addComment'), path('togglefollow', toggleFollow, name = 'togglefollow'), path('explore', ExploreView.as_view(), name='explore'), ]
clareli9/InstagramDemo
Insta/urls.py
urls.py
py
1,194
python
en
code
0
github-code
50
20877344117
import open3d as o3d from os.path import join, exists from os import makedirs, listdir import numpy as np import cv2 from utils import * from pcd2mesh import pcd2mesh from sklearn.neighbors import NearestNeighbors depth_nbrs = None rgb_nbrs = None def depth_to_colormapjet(depth): depth_color = depth.copy() min_d, max_d = np.min(depth_color), np.max(depth_color) depth_color = depth_color * 255. / (max_d - min_d) depth_color = np.uint8(depth_color) depth_color = cv2.applyColorMap(depth_color, cv2.COLORMAP_JET) return depth_color def load_depth_and_cam(dir_depth, poses, timings, timestamp, K_parameters_depth): global depth_nbrs if not depth_nbrs: depth_nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(timings[:, 1].reshape(-1, 1)) _, frame_number_depth = depth_nbrs.kneighbors(np.array(float(timestamp) + 0 * (10 ** 4)).reshape(-1, 1)) frame_number_depth = frame_number_depth[0][0] filename_depth = join(dir_depth, '{:06d}.png'.format(frame_number_depth)) print(f"loading depth image {filename_depth}") depth = load_depth(filename_depth) M_depth = poses[frame_number_depth, 1:].reshape(4, 4).copy() K_depth = K_parameters_depth[:9].reshape(3, 3) # intrinsics # M_depth[:3, 3] *= 1000 M_depth = np.dot(axis_transform, np.linalg.inv(M_depth)) cam_depth = {} cam_depth['K_dist'] = K_depth cam_depth['M_dist'] = M_depth return depth, cam_depth def load_rgb_and_cam(dir_rgb, poses_rgb, timing_rgb, time_stamp, K_parameters_rgb): global rgb_nbrs if not rgb_nbrs: rgb_nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit( timing_rgb[:, 1].reshape(-1, 1)) _, frame_number_rgb = rgb_nbrs.kneighbors( np.array(float(time_stamp) + 0 * (10 ** 4)).reshape(-1, 1)) frame_number_rgb = frame_number_rgb[0][0] filename_rgb = join(dir_rgb, '{:06d}.png'.format(frame_number_rgb)) print(f"loading rgb image {filename_rgb}") rgb = cv2.imread(filename_rgb) K_color = K_parameters_rgb[:9].reshape(3, 3) M_color = poses_rgb[frame_number_rgb, 1:].reshape(4, 4).copy() cam_rgb = {} cam_rgb['M_origin'] = np.dot(axis_transform, np.linalg.inv(M_color)) # M_color[:3, 3] *= 1000 M_color = np.dot(axis_transform, np.linalg.inv(M_color)) cam_rgb['K_color'] = K_color cam_rgb['M_color'] = M_color return rgb, cam_rgb def create_point_cloud_from_depth(depth, cam_depth, remove_outlier=True, remove_close_to_cam=300): ''' output: point cloud in the depth frame ''' K_depth = cam_depth['K_dist'] img2d_converted = depthConversion(depth, K_depth[0][0], K_depth[0][2], K_depth[1][2]) # point depth to plane depth, basically, undistortion # img2d_converted_color = depth_to_colormapjet(img2d_converted) # plane depth color map jet # cv2.imshow('img2d_converted_color', img2d_converted_color) points = generatepointcloud(img2d_converted, K_depth[0][0], K_depth[1][1], K_depth[0][2], K_depth[1][2]) # in the depth coor pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) if remove_outlier: pcd, _ = pcd.remove_radius_outlier(nb_points=10, radius=50) pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=20,std_ratio=4.0) if remove_close_to_cam > 0: center = np.array([0, 0, 0]) R = np.eye(3) extent = np.array([remove_close_to_cam, remove_close_to_cam, remove_close_to_cam]) bb = o3d.geometry.OrientedBoundingBox(center, R, extent) close_points_indices = bb.get_point_indices_within_bounding_box(pcd.points) pcd = pcd.select_by_index(close_points_indices, invert=True) #select outside points return pcd def stitch_pcd(source, target, transformation): source.transform(transformation) # o3d.visualization.draw_geometries([source, target]) return source + target def main(): dir_seq = '../AnnaTrain' dir_depth = join(dir_seq, 'Depth') dir_rgb = join(dir_seq, 'Video') ####### loading from dataset ###### # Depth poses_depth = np.loadtxt(join(dir_depth, 'Pose.txt')) timing_depth = np.loadtxt(join(dir_depth, 'Timing.txt')) K_parameters_depth = np.loadtxt(join(dir_depth, 'Intrinsics.txt')) dist_coeffs = np.array(K_parameters_depth[9:14]).astype('float32') w_depth, h_depth = [int(x) for x in K_parameters_depth[-2:]] # RGB poses_rgb = np.loadtxt(join(dir_rgb, 'Pose.txt')) timing_rgb = np.loadtxt(join(dir_rgb, 'Timing.txt')) K_parameters_rgb = np.loadtxt(join(dir_rgb, 'Intrinsics.txt')) w_color, h_color = [int(x) for x in K_parameters_rgb[-2:]] ###### prepare for color map optimization ###### # we use a continuous frames of videos as input for Color Map Optimization # initization of containers debug_mode = True start_frame = 0 # the first frame of video total_depth_frames = 1 # total number of frames to be processed rgbd_images = [] # container for rgbd images camera_parameters = [] # container for camera intrinsic and extrinsic parameters whole_pcd = None # Collection of while point clouds pcd_list = [] ################ select images ################### for frame_number_depth in range(start_frame, start_frame+total_depth_frames): time_stamp = timing_rgb[frame_number_depth, 1] # find the nearest depth frame depth, cam_depth_calib = load_depth_and_cam(dir_depth, poses_depth, timing_depth, time_stamp, K_parameters_depth) K_depth = cam_depth_calib['K_dist'] depth_undistort = cv2.undistort(depth, K_depth, dist_coeffs, None, K_depth) if debug_mode: # visualize depth & undistorted depth cv2.imshow('depth_undistort', depth_to_colormapjet(depth_undistort)) cv2.imshow('depth', depth_to_colormapjet(depth)) # find the nearest rgb frame rgb, cam_rgb_calib = load_rgb_and_cam(dir_rgb, poses_rgb, timing_rgb, time_stamp, K_parameters_rgb) # build and store point cloud # NOTE: pcd_colored in the world frame, pcd still in the depth frame pcd = create_point_cloud_from_depth(depth_undistort, cam_depth_calib, remove_outlier=True, remove_close_to_cam=1500) # depth frame # pcd_colored = get_colored_pcd(pcd, rgb, cam_rgb_calib, cam_depth_calib) # o3d.visualization.draw_geometries([pcd_colored]) # Aligned Depth to be the same size with rgb image depth_aligned = map_depth_to_rgb(pcd, rgb, cam_rgb_calib, cam_depth_calib, reference='rgb') if debug_mode: # visualize aligned depth cv2.imshow('aligned depth', depth_to_colormapjet(depth_aligned)) # store RGBD of this frame depth = o3d.geometry.Image(depth_aligned.astype(np.uint16)) color = o3d.geometry.Image(rgb[:,:,::-1].astype(np.uint8)) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color, depth, depth_trunc=1000, convert_rgb_to_intensity=False) rgbd_images.append(rgbd_image) if debug_mode: cv2.imshow('rgb_color', rgb) cv2.imshow('rgb_depth', depth_to_colormapjet(np.array(rgbd_image.depth))) # store camera Intrinsic and Extrinsic parameters height, width = rgb.shape[:2] fx, fy, cx, cy = [cam_rgb_calib['K_color'][0,0], cam_rgb_calib['K_color'][1,1], cam_rgb_calib['K_color'][0,2], cam_rgb_calib['K_color'][1,2]] intrinsic = o3d.camera.PinholeCameraIntrinsic(width, height, fx, fy, cx, cy) extrinsic = cam_rgb_calib['M_color'] camera = o3d.camera.PinholeCameraParameters() camera.intrinsic = intrinsic camera.extrinsic = extrinsic camera_parameters.append(camera) # Stitch point clouds # use RGBD to generate new pcd, which can be correctly rendered in color_map_optimization pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,intrinsic) # transform pcd from depth frame to the world frame pcd.transform(np.linalg.inv(cam_rgb_calib['M_color'])) # # remove outliers (may need further parameter tuning) # pcd, _ = pcd.remove_radius_outlier(nb_points=200, radius=0.04) # pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=200,std_ratio=4.0) if debug_mode: # pcd_down = pcd.voxel_down_sample(voxel_size=0.005) # if not exists('./outputs'): makedirs('./outputs') # pcd_path = "outputs/frame" + str(frame_number_depth) + ".pcd" # o3d.io.write_point_cloud(pcd_path, pcd_down) o3d.visualization.draw_geometries([pcd]) # pcd_list.append(pcd) if whole_pcd is None: whole_pcd = pcd else: whole_pcd += pcd #################### ICP stitching ########################### # if whole_pcd is None: # whole_pcd = pcd # else: # pcd.estimate_normals() # whole_pcd.estimate_normals() # result_icp = o3d.pipelines.registration.registration_icp(pcd, whole_pcd, 0.1, np.identity(4), # o3d.pipelines.registration.TransformationEstimationPointToPlane()) # whole_pcd = stitch_pcd(pcd, whole_pcd, result_icp.transformation) #################### downsample and remove outliers ########################### # whole_pcd = whole_pcd.select_by_index(range(0,len(whole_pcd.points),10)) # whole_pcd, _ = whole_pcd.remove_statistical_outlier(nb_neighbors=50,std_ratio=8.0) # visualize and store the whole scene o3d.visualization.draw_geometries([whole_pcd]) pcd_down = whole_pcd.voxel_down_sample(voxel_size=0.005) if not exists('./outputs'): makedirs('./outputs') write_path = f"outputs/scene{start_frame}-{start_frame+total_depth_frames}" o3d.io.write_point_cloud(write_path+".pcd", pcd_down) pcd2mesh(write_path+".pcd") # RUN color map optimization camera_traj = o3d.camera.PinholeCameraTrajectory() camera_traj.parameters = camera_parameters mesh = o3d.io.read_triangle_mesh(write_path+".ply") with o3d.utility.VerbosityContextManager( o3d.utility.VerbosityLevel.Debug) as cm: mesh, camera_traj = o3d.pipelines.color_map.run_rigid_optimizer( mesh, rgbd_images, camera_traj, o3d.pipelines.color_map.RigidOptimizerOption( maximum_iteration=100, maximum_allowable_depth=2.5 * 1000000, depth_threshold_for_visibility_check=0.03, depth_threshold_for_discontinuity_check=0.1*1000000 )) print("show with cmop") o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True) # store optimized mesh o3d.io.write_triangle_mesh(f"{write_path}_cmop.ply", mesh) if __name__ == "__main__": main()
Ribosome-rbx/Color_Map_Optimization
color_map_optimization.py
color_map_optimization.py
py
11,580
python
en
code
1
github-code
50
30413103525
# https://zhuanlan.zhihu.com/p/38163970 import numpy as np from matplotlib import pyplot as plt fig = plt.figure() #定义新的三维坐标轴 ax1 = plt.axes(projection='3d') x1 = np.arange(-5,5,0.5) x2 = np.arange(-5,5,0.5) x1, x2 = np.meshgrid(x1, x2) Z = x1**2 - 2*x1+1+x2**2+4*x2+4 g1 = 10-x1-10*x2 g2 = 10*x1-x2-10 ax1.plot_surface(x1,x2,Z,cmap='rainbow') ax1.plot_surface(x1,x2,g1,cmap='rainbow') ax1.plot_surface(x1,x2,g2,cmap='rainbow') ax1.contour(x1,x2,Z, zdim='z',offset=-2,cmap='rainbow') #等高线图,要设置offset,为Z的最小值 plt.show()
shao1chuan/regression
机器学习/svm/kkt plot.py
kkt plot.py
py
572
python
en
code
1
github-code
50
9397338642
from torch.utils.data.dataset import Dataset import pandas as pd import numpy as np import torch import SimpleITK as sitk import random import sys sys.path.append('../') import utils as dmutils class ContinuousDataset(Dataset): """ Base class for a dataset for training on a continuous data stream """ def init(self, datasetfile, transition_phase_after, order, seed): """ Initialization for a continuous streaming dataset. :param datasetfile (str): filepath to the dataset csv :param transition_phase_after (float): fraction of images for each scanner after data from the next appears in stream :param order (list): order of scanners in data stream :param seed (int): seed to ensure reproducibility """ df = pd.read_csv(datasetfile) assert (set(['train']).issubset(df.split.unique())) np.random.seed(seed) res_dfs = list() for r in order: res_df = df.loc[df.scanner == r] res_df = res_df.loc[res_df.split == 'train'] res_df = res_df.sample(frac=1, random_state=seed) res_dfs.append(res_df.reset_index(drop=True)) combds = None new_idx = 0 for j in range(len(res_dfs) - 1): old = res_dfs[j] new = res_dfs[j + 1] old_end = int((len(old) - new_idx) * transition_phase_after) + new_idx if combds is None: combds = old.iloc[:old_end] else: combds = combds.append(old.iloc[new_idx + 1:old_end]) old_idx = old_end old_max = len(old) - 1 new_idx = 0 i = 0 while old_idx <= old_max and (i / ((old_max - old_end) * 2) < 1): take_newclass = np.random.binomial(1, min(i / ((old_max - old_end) * 2), 1)) if take_newclass: combds = combds.append(new.iloc[new_idx]) new_idx += 1 else: combds = combds.append(old.iloc[old_idx]) old_idx += 1 i += 1 combds = combds.append(old.iloc[old_idx:]) combds = combds.append(new.iloc[new_idx:]) combds.reset_index(inplace=True, drop=True) self.df = combds def __len__(self): return len(self.df) class LIDCContinuous(ContinuousDataset): def __init__(self, datasetfile, transition_phase_after=.8, order=['ges', 'geb', 'sie', 'time_siemens'], seed=None, cropped_to=(288, 288)): super(ContinuousDataset, self).__init__() self.init(datasetfile, transition_phase_after, order, seed) self.cropped_to = cropped_to self.df_multiplenodules = pd.read_csv('/project/catinous/lungnodules_allnodules.csv') def load_image(self, path, shiftx_aug=0, shifty_aug=0): dcm = sitk.ReadImage(path) img = sitk.GetArrayFromImage(dcm) if self.cropped_to is not None: w = img.shape[1] s1 = int((w - self.cropped_to[0]) / 2) e1 = int(s1 + self.cropped_to[0]) h = img.shape[2] s2 = int((h - self.cropped_to[1]) / 2) e2 = int(s2 + self.cropped_to[1]) img = img[:, s1 + shiftx_aug:e1 + shiftx_aug, s2 + shifty_aug:e2 + shifty_aug] img = dmutils.intensity_window(img, low=-1024, high=1024) img = dmutils.norm01(img) # return img[None, :, :] return np.tile(img, [3, 1, 1]) def load_annotation(self, elem, shiftx_aug=0, shifty_aug=0): dcm = sitk.ReadImage(elem.image) x = elem.x1 y = elem.y1 x2 = elem.x2 y2 = elem.y2 if self.cropped_to is not None: x -= (dcm.GetSize()[0] - self.cropped_to[0]) / 2 y -= (dcm.GetSize()[1] - self.cropped_to[1]) / 2 x2 -= (dcm.GetSize()[0] - self.cropped_to[0]) / 2 y2 -= (dcm.GetSize()[1] - self.cropped_to[1]) / 2 y -= shiftx_aug x -= shifty_aug y2 -= shiftx_aug x2 -= shifty_aug xs = [] x2s = [] ys = [] y2s = [] for i, row in self.df_multiplenodules.loc[self.df_multiplenodules.image == elem.image].iterrows(): x1_new = row.x1 - shifty_aug x2_new = row.x2 - shifty_aug y1_new = row.y1 - shiftx_aug y2_new = row.y2 - shiftx_aug if x1_new > 0 and x1_new < self.cropped_to[0] and y1_new > 0 and y1_new < self.cropped_to[1]: xs.append(x1_new) x2s.append(x2_new) ys.append(y1_new) y2s.append(y2_new) if xs == []: box = np.zeros((1, 4)) box[0, 0] = x box[0, 1] = y box[0, 2] = x2 box[0, 3] = y2 else: box = np.zeros((len(xs) + 1, 4)) box[0, 0] = x box[0, 1] = y box[0, 2] = x2 box[0, 3] = y2 for j, x in enumerate(xs): box[j + 1, 0] = x box[j + 1, 1] = ys[j] box[j + 1, 2] = x2s[j] box[j + 1, 3] = y2s[j] return box def __getitem__(self, index): elem = self.df.iloc[index] if self.cropped_to is None: shiftx_aug = 0 shifty_aug = 0 else: shiftx_aug = random.randint(-20, 20) shifty_aug = random.randint(-20, 20) img = self.load_image(elem.image, shiftx_aug, shifty_aug) annotation = self.load_annotation(elem, shiftx_aug, shifty_aug) target = {} target['boxes'] = torch.as_tensor(annotation, dtype=torch.float32) target['labels'] = torch.as_tensor([elem.bin_malignancy + 1] * len(annotation), dtype=torch.int64) target['image_id'] = torch.tensor([index] * len(annotation)) target['area'] = torch.as_tensor( ((annotation[:, 3] - annotation[:, 1]) * (annotation[:, 2] - annotation[:, 0]))) target['iscrowd'] = torch.zeros((len(annotation)), dtype=torch.int64) return torch.as_tensor(img, dtype=torch.float32), target, elem.scanner, elem.image class CardiacContinuous(ContinuousDataset): def __init__(self, datasetfile, transition_phase_after=.8, order=['Siemens', 'GE', 'Philips', 'Canon'], seed=None): super(ContinuousDataset, self).__init__() self.init(datasetfile, transition_phase_after, order, seed) self.outsize = (240, 196) def load_image(self, elem): img = np.load(elem.slicepath) mask = np.load(elem.slicepath[:-4] + '_gt.npy') if img.shape != self.outsize: img = dmutils.crop_center_or_pad(img, self.outsize[0], self.outsize[1]) mask = dmutils.crop_center_or_pad(mask, self.outsize[0], self.outsize[1]) return img[None, :, :], mask def __getitem__(self, index): elem = self.df.iloc[index] img, mask = self.load_image(elem) return torch.as_tensor(img, dtype=torch.float32), torch.as_tensor(mask, dtype=torch.long), elem.scanner, elem.slicepath
cirmuw/dynamicmemory
dataset/ContinuousDataset.py
ContinuousDataset.py
py
7,186
python
en
code
13
github-code
50
16198159058
import my_queue import time import random def simulate_line(till_show, max_time): pq = my_queue.Queue() tix_sold = [] for i in range(100): pq.enqueue("person" + str(i)) t_end = time.time() + till_show now = time.time() while now < t_end and not pq.is_empty(): now = time.time() r = random.randint(0, max_time) time.sleep(r) person = pq.dequeue() print(person) tix_sold.append(person) return tix_sold sold = simulate_line(5, 1) print(sold)
98shimpei/python_test
ticket.py
ticket.py
py
527
python
en
code
0
github-code
50
28720445234
# import tkinter as tk # # root = tk.Tk() # root.title('Languages') # root.geometry('500x300') # # v = tk.IntVar() # v.set(1) # # # def show_val(): # print(v.get()) # # # languages = [(1, "JAVA"), (2, "Python"), (3, "c#"), (4, "Javascript")] # tk.Label(root, text="""Choose Language you like most""", justify=tk.LEFT, padx=20).pack() # # for val, language in languages: # tk.Radiobutton(root, text=languages, value=val, variable=v, command=show_val, padx=20).pack(anchor=tk.W) # root.mainloop() import tkinter as tk root = tk.Tk() v = tk.IntVar() v.set(1) # initializing the choice, i.e. Python languages = [ ("Python", 1), ("Perl", 2), ("Java", 3), ("C++", 4), ("C", 5) ] def ShowChoice(): print(v.get()) tk.Label(root, text="""Choose your favourite programming language:""", justify=tk.LEFT, padx=20).pack() for val, language in enumerate(languages): tk.Radiobutton(root, text=language, padx=20, variable=v, command=ShowChoice, value=val).pack(anchor=tk.W) root.mainloop()
Yash-barot25/functions-timemodlues-ranges
TkinterHandsOn/Demo8.py
Demo8.py
py
1,199
python
en
code
0
github-code
50
17406595834
import re import pprint def get_new_loc(op, val, loc, acc): """updates accumulator and finds next line location""" if op == "jmp": loc += int(val) elif op == "acc": acc += int(val) loc += 1 else: loc += 1 return loc, acc def flip_op(op): """flips a jmp operation to nop and vice versa""" if op == "jmp": return "nop" elif op == "nop": return "jmp" else: return op def execute(loc, locs, acc, data, debug=False): """executes the commands in data""" while loc != (len(data) - 1): locs.append(loc) op, val = data[loc] loc, acc = get_new_loc(op, val, loc, acc) if loc in locs: if not debug: print(f"Infinite loop happens to {locs[-2]} to {loc}") print(f"Value of accumulator before infinite loop: {acc}") return (False, acc) print(f"Value of accumulator at completion: {acc}") return (True, acc) def debug(loc, locs, acc, data): """debugs the data to find infinite loop root cause""" while True: op, val = data[loc] new_op = flip_op(op) if new_op in ["nop", "jmp"]: tmp = data.copy() tmp[loc][0] = new_op res = execute(loc, locs, acc, data, True) if res[0]: break loc, acc = get_new_loc(op, val, loc, acc) print(f"Bug located at: {loc}") with open("data/day8.txt", "r") as f: data = f.readlines() data = [list(re.findall("^([a-z]+) ([\+\-]\d+)$", x)[0]) for x in data] locs = [] loc = 0 acc = 0 count = 0 mode = input("What mode to run boot code? 'normal' or debug ").lower() if mode == "normal": res = execute(loc, locs, acc, data) elif mode == "debug": debug(loc, locs, acc, data) else: raise TypeError("Incorrect input, enter either 'normal' or 'debug'")
JackNelson/advent-of-code
2020/day8.py
day8.py
py
1,996
python
en
code
0
github-code
50
36856186258
import string import json import pickle import itertools import collections import numpy as np import math TRAIN_PATH = "data/yelp_reviews_train.json" TEST_PATH = "data/yelp_reviews_test.json" DEV_PATH = "data/yelp_reviews_dev.json" STOPWORD_LIST = "data/stopword.list" TOP_K_FOR_FEATURE = 2000 NUM_FEATURE = 5 def preprocess_text(text, stopwords): # process sentence text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) text = text.translate(str.maketrans('', '', string.digits)) remain_list = [w for w in text.split() if w not in stopwords and w.isalpha()] return list(filter(None, remain_list)) def stars_to_mtx(star_list): # convert rating into a matrix of column 5 star_ndarray = np.asarray(star_list).T # need to subtract one so as to align with the index star_mtx = np.eye(NUM_FEATURE)[star_ndarray-1] return star_mtx def preprocess_train_into_dic(data, stopwords): # train_data.pickle data_dic = {'user_id':[], 'stars':[], 'text':[]} for d in data: data_dic["user_id"].append(d['user_id']) data_dic["stars"].append(d['stars']) processed_text = preprocess_text(d['text'], stopwords) data_dic["text"].append(processed_text) # save to pickle for further access with open('train_data.pickle', 'wb') as pkl: pickle.dump(data_dic, pkl, protocol=pickle.HIGHEST_PROTOCOL) return data_dic def preprocess_into_dic(data, filename, stopwords): # test_data/dev_data.pickle data_dic = {'user_id':[], 'text':[]} for d in data: data_dic["user_id"].append(d['user_id']) processed_text = preprocess_text(d['text'], stopwords) data_dic["text"].append(processed_text) # save to pickle for further access with open(filename+'.pickle', 'wb') as pkl: pickle.dump(data_dic, pkl, protocol=pickle.HIGHEST_PROTOCOL) return data_dic def get_data_stats(data_dic): # get CTF for token while printing out the stats tokens = itertools.chain.from_iterable(data_dic['text']) token_counter = collections.Counter(tokens) star_counter = collections.Counter(data_dic['stars']) print(token_counter.most_common(9)) print(star_counter) total_star = len(data_dic['stars']) for k in dict(star_counter): print("Star {} has percentage: {}%".format(k, 100*star_counter[k]/total_star)) # lastly save the corpus top 2000 word into pickle for ctf access with open('top'+str(TOP_K_FOR_FEATURE)+'CTFtoken.pickle', 'wb') as pkl: pickle.dump(dict(token_counter.most_common(TOP_K_FOR_FEATURE)), pkl, protocol=pickle.HIGHEST_PROTOCOL) def get_token_df(data_dic, if_save=True, shift=0): # get DF frequency into dictionary, shift allows the window to slide from the top common word # to some later word with more information df_dic = {} for text in data_dic['text']: unique_tkn = set(text) for tkn in unique_tkn: if tkn in df_dic: df_dic[tkn]+=1 else: df_dic[tkn]=1 sorted_df_dic = sorted(df_dic.items(), key=lambda t: t[1], reverse=True) top_df_dic = dict(sorted_df_dic[shift:TOP_K_FOR_FEATURE+shift]) if if_save: with open('top'+str(TOP_K_FOR_FEATURE+shift)+'DFtoken.pickle', 'wb') as pkl: pickle.dump(top_df_dic, pkl, protocol=pickle.HIGHEST_PROTOCOL) return dict(sorted_df_dic) def get_token_tfidf(data_dic): # get the tf*idf value for token, define idf as log((N+1)/df) tokens = itertools.chain.from_iterable(data_dic['text']) token_counter = collections.Counter(tokens) df_dic = get_token_df(data_dic, False) N = len(data_dic['text']) tfidf_dic = {} for t, df in df_dic.items(): idf = math.log((N+1)/df) tfidf = idf*token_counter[t] tfidf_dic[t] = tfidf sorted_tfidf_dic = sorted(tfidf_dic.items(), key=lambda t: t[1], reverse=True) top_tfidf_dic = dict(sorted_tfidf_dic[:TOP_K_FOR_FEATURE]) with open('top' + str(TOP_K_FOR_FEATURE) + 'TFIDFtoken.pickle', 'wb') as pkl: pickle.dump(top_tfidf_dic, pkl, protocol=pickle.HIGHEST_PROTOCOL) def get_token_idf(data_dic): # saving the idf value for all tokens, not limited to most frequent words df_dic = get_token_df(data_dic, False) N = len(data_dic['text']) idf_dic = {} for t, df in df_dic.items(): idf = math.log((N+1)/df) idf_dic[t] = idf with open('allIDFs.pickle', 'wb') as pkl_idf: pickle.dump(idf_dic, pkl_idf, protocol=pickle.HIGHEST_PROTOCOL) def run_preprocessing(): # aggregate function for data preprocessing # this function should only run once and all pickle files would be saved train_data = [json.loads(line) for line in open(TRAIN_PATH, 'r')] test_data = [json.loads(line) for line in open(TEST_PATH, 'r')] dev_data = [json.loads(line) for line in open(DEV_PATH, 'r')] with open(STOPWORD_LIST) as r: stopwords = r.read().split() print("Loading Train Data") train_dic = preprocess_train_into_dic(train_data, stopwords) print("Loading Dev Data") dev_dic = preprocess_into_dic(dev_data, "dev_data", stopwords) print("Loading Test Data") test_dic = preprocess_into_dic(test_data, "test_data", stopwords) # for train_data only, create token files for feature creation get_data_stats(train_dic) _ = get_token_df(train_dic) get_token_idf(train_dic) # get_token_tfidf(train_dic) def svm_preprocessing(feature_type, data_type): # specific preprocessing for SVM as the function takes in data of different format with open('{}_feature_{}.pickle'.format(feature_type, data_type), 'rb') as r: data = pickle.load(r) writer = open("SVM_{}_{}.txt".format(feature_type, data_type), "w") print("Writing {} for SVM {} data".format(feature_type, data_type)) for f in range(data.shape[0]): writer.write("0 ") for num, feature in zip(data[f].data, data[f].nonzero()[1]): writer.write("{}:{} ".format(feature+1, num)) writer.write("\n") writer.close() def svm_train_preprocessing(feature_type): # specific preprocessing for SVM as the function takes in data of different format # for training data, need different handling on labels with open('{}_feature_train.pickle'.format(feature_type), 'rb') as r: data = pickle.load(r) with open('train_data.pickle', 'rb') as data_train: train_dic = pickle.load(data_train) stars = train_dic['stars'] writer = open("SVM_{}_train.txt".format(feature_type), "w") for f in range(data.shape[0]): writer.write("{} ".format(stars[f])) for num, feature in zip(data[f].data, data[f].nonzero()[1]): writer.write("{}:{} ".format(feature+1, num)) writer.write("\n") writer.close()
sharonwx54/TextMining
NetflixReview/data_preprocess.py
data_preprocess.py
py
6,863
python
en
code
0
github-code
50
22312550501
# -*- coding: utf-8 -*- from rest_framework import relations from rest_framework.test import APIRequestFactory from ralph.api.serializers import ReversedChoiceField from ralph.api.tests.api import ( Car, CarSerializer, CarViewSet, ManufacturerSerializer2, ManufacturerViewSet ) from ralph.api.viewsets import RalphAPIViewSet from ralph.tests import RalphTestCase class ViewsetWithoutRalphPermission(RalphAPIViewSet): permission_classes = [] class ViewsetWithoutPermissionsForObjectFilter(RalphAPIViewSet): filter_backends = [] class TestRalphViewset(RalphTestCase): def setUp(self): super().setUp() self.request_factory = APIRequestFactory() def test_should_raise_attributeerror_when_ralph_permission_missing(self): with self.assertRaises(AttributeError): ViewsetWithoutRalphPermission() def test_should_raise_attributeerror_when_permission_for_object_filter_missing(self): # noqa with self.assertRaises(AttributeError): ViewsetWithoutPermissionsForObjectFilter() def test_get_serializer_class_should_return_base_when_safe_request(self): request = self.request_factory.get('/') cvs = CarViewSet() cvs.request = request self.assertEqual(cvs.get_serializer_class(), CarSerializer) def test_get_serializer_class_should_return_dynamic_when_not_safe_request(self): # noqa request = self.request_factory.post('/') cvs = CarViewSet() cvs.request = request serializer_class = cvs.get_serializer_class() self.assertEqual(serializer_class.__name__, 'CarSaveSerializer') self.assertEqual(serializer_class.Meta.model, Car) self.assertEqual(serializer_class.Meta.depth, 0) self.assertEqual( serializer_class.serializer_choice_field, ReversedChoiceField ) self.assertEqual( serializer_class.serializer_related_field, relations.PrimaryKeyRelatedField ) def test_get_serializer_class_should_return_defined_when_not_safe_request_and_save_serializer_class_defined(self): # noqa request = self.request_factory.patch('/') mvs = ManufacturerViewSet() mvs.request = request self.assertEqual(mvs.get_serializer_class(), ManufacturerSerializer2) class TestAdminSearchFieldsMixin(RalphTestCase): def test_get_filter_fields_from_admin(self): cvs = CarViewSet() self.assertEqual( cvs.filter_fields, ['manufacturer__name', 'year'] )
0x24bin/ralph
src/ralph/api/tests/test_viewsets.py
test_viewsets.py
py
2,558
python
en
code
null
github-code
50
17438254361
count=0 total=0 while True: n= int(input("Enter an integer (-1 to exit): ")) if n==-1: break count+=1 total+=n print(f"The sum of {count} number(s) is {total}.")
HiMAIayas/SIIT_Lab
GTS123 (Intro To ComProg)/lab7 (while loop)/lab7_9.py
lab7_9.py
py
190
python
en
code
0
github-code
50
30098709852
from lxml import etree class XPATH_CONTEXT (object): def __init__ (self, file_path, ns_prefix = None): self.doc = etree.parse (file_path) if ns_prefix: self.nsmap = {ns_prefix : self.doc.getroot().nsmap [None]} else: self.nsmap = None def attribute (self, xpath): attrib_list = self.node_list (xpath) if len (attrib_list): return attrib_list [0] else: return None def text (self, xpath): attrib_list = self.node_list (xpath) if len (attrib_list): return attrib_list [0].text else: return None def node_list (self, xpath): return self.doc.xpath (xpath, namespaces = self.nsmap) def int_value (self, xpath): result = self.doc.xpath (xpath, namespaces = self.nsmap) if isinstance (result, float): return int (result) else: return None
finnianr/Eiffel-Loop-safe
tool/python-support/eiffel_loop/xml/xpath.py
xpath.py
py
794
python
en
code
1
github-code
50
6351621109
import machine from time import sleep from ssd1306 import SSD1306_I2C class Pantalla: def __init__(self, pin1=5, pin2=4): '''Init display''' i2c = machine.I2C(scl=machine.Pin(pin1), sda=machine.Pin(pin2)) self.oled = SSD1306_I2C(128, 32, i2c) self.clear() def clear(self, color=0): '''Borra el contenido de la pantalla, color puede ser 0(negro) o 1(blanco)''' self.oled.fill(color) self.pos = 0 def texto(self, texto): inicio = 0 self.oled.text(texto, inicio, self.pos) self.oled.show() self.pos += 10
katmai1/microesp
pantalla.py
pantalla.py
py
609
python
es
code
0
github-code
50
18243852987
budget = float(input()) statist = int(input()) clothes_number = float(input()) decor = 0.1 * budget if statist >= 150: clothes_price = clothes_number * 0.9 * statist else: clothes_price = clothes_number * statist outcome = clothes_price + decor needed = outcome - budget have = budget - outcome if outcome > budget: print(f' Not enough money!') print(f' Wingard needs {needed:.2f} leva more.') if budget >= outcome: print(f' Action!') print(f' Wingard starts filming with {have:.2f} leva left.')
gajev/programming_basics
Conditional_statements_lab/Godzilla_vs_kong.py
Godzilla_vs_kong.py
py
551
python
en
code
0
github-code
50
1169656225
import molsysmt as msm import os import shutil from pathlib import Path data_dir = Path('../../../data') # Purge files_to_be_purged = [ 'pdb/5zmz.pdb', 'mmtf/5zmz.mmtf', ] for filename in files_to_be_purged: filepath = Path(data_dir, filename) if os.path.isfile(filepath): os.remove(filepath) # Make msm.convert('pdb_id:5zmz', to_form='5zmz.pdb') shutil.move('5zmz.pdb', Path(data_dir, 'pdb/5zmz.pdb')) msm.convert('pdb_id:5zmz', to_form='5zmz.mmtf') shutil.move('5zmz.mmtf', Path(data_dir, 'mmtf/5zmz.mmtf')) print('DONE')
uibcdf/MolSysMT
molsysmt/systems/make/5zmz.py
5zmz.py
py
573
python
en
code
11
github-code
50
73735252956
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector from scrapy.http import Request from douban.items import HuanQiuChina, DaoMuBiJi class Douban(scrapy.Spider): name = 'huanqiu_china' start_urls = ['http://china.huanqiu.com/'] def parse(self, response): media_xpath = '/html/body/div[4]/div[1]/div[7]/div[1]/ul/li/a' title_xpath = './dl/dt/h3/text()' content_xpath = './@href' medias = response.xpath(media_xpath) for media in medias: try: title = media.xpath(title_xpath).extract()[0] content = media.xpath(content_xpath).extract()[0] item = HuanQiuChina() item['title'] = title item['content'] = content print(item) yield item except: continue class DaoMuBiJiSpider(scrapy.Spider): name = 'daomubiji' start_urls = ['http://www.daomubiji.com/dao-mu-bi-ji-%s' % num for num in range(1, 8)] def parse(self, response): selector = Selector(response) book = selector.xpath('/html/body/div[1]/div/h1/text()').extract()[0] chaptors = selector.xpath('/html/body/section/div[2]/div/article/a') for chaptor in chaptors: chaptor.xpath('./text()').extract()[0].split(' ') bookTitle, chaptorNum, chaptorName = chaptor.xpath('./text()').extract()[0].split(' ') url = chaptor.xpath('./@href').extract()[0] item = DaoMuBiJi() item['book'] = book item['bookTitle'] = bookTitle item['chaptorNum'] = chaptorNum item['chaptorName'] = chaptorName item['url'] = url yield Request(url, callback=self.parseContent, meta={'item': item}) def parseContent(self, response): selector = Selector(response) item = response.meta['item'] html = selector.xpath('/html/body/section/div[1]/div/article').extract()[0] item['content'] = html yield item
zhannglei/douban
douban/spiders/spider.py
spider.py
py
2,060
python
en
code
0
github-code
50
13139475765
__author__ = 'jwilliams' import os import lib #user defined vars path = 'L:\\cbt_video_published\\content\\'; lesson = 'EL-2-Current' code = 'FM' #setting code will check an entire product, set to 'HU-', 'IFR-', 'EG-' ect.. dir = path + lesson + "\\" os.chdir(dir) if code: result = lib.check_product(code) else: print('checking the lesson ' + dir + '....') result = lib.check_lesson() print("\nNOT USED:") for file in result: print(file)
GibsonStudio/pythonProjects
find_unused_in_html/main.py
main.py
py
479
python
en
code
0
github-code
50
12041162217
import sys import datetime windowName = "SpaceX Booster Use/Reuse Beholder" chartName = "SpaceX Core History" spaceXCreationDate = datetime.date(2002, 5, 6) colors = { 'EXPENDED': '#bbbbbb', 'HOP': '#d9ff5e', 'OCEAN': '#053fff', 'RTLS': '#06b700', 'ASDS': '#56b9f7', 'RUD': '#ff0000', 'REUSE': '#b3e6ff', 'DAYS': '#3a84fc', 'HEAVY': 'none', } legend = [ {'icons': [[colors['EXPENDED'], 'black', 'o']], 'label': "No landing"}, {'icons': [[colors['HOP'], 'black', 'o']], 'label': "Grasshopper hop"}, {'icons': [[colors['OCEAN'], 'black', 'o']], 'label': "Ocean landing"}, {'icons': [[colors['RTLS'], 'black', 'o']], 'label': "RTLS landing"}, {'icons': [[colors['ASDS'], 'black', 'o']], 'label': "ASDS landing"}, {'icons': [['none', 'red', 'o']], 'label': "Failed landing"}, {'icons': [[colors['RUD'], 'red', 'x']], 'label': "RUD"}, {'icons': [['none', 'black', '^']], 'label': "Dragon"}, {'icons': [['none', 'black', '*']], 'label': "Starlink"}, {'icons': [[colors['REUSE'], 'none', 'none']], 'label': "Reuse"}, {'icons': [[colors['HEAVY'], 'none', 'black']], 'label': "Falcon Heavy"}, ] if len(sys.argv) != 2 or str.lower(sys.argv[1]) not in {'all', 'f1', 'f9', 'ft'}: print("Usage : py sburb.py [mode] with mode = all, F1, F9 or FT (case-insensitive)") exit() mode = str.lower(sys.argv[1]) def getCoreNumbers(): return [core.number for core in cores] def getActiveCoreNumbers(): return [core.number for core in cores if core.active] def getFirstCores(): firstCores = [] for core in cores: if core.version not in [firstCore.version for firstCore in firstCores]: firstCores.append(core) return firstCores def getLaunchesByCore(core): return [launch.date for launch in launches if core in launch.cores] def pickLaunchColor(launch, landingIndex): location = launch.landings[landingIndex][0] if (launch.hop == True): color = colors['HOP'] elif (location in {"No attempt"}): color = colors['EXPENDED'] elif (location in {"Ocean"}): color = colors['OCEAN'] elif (location in {"Original JRTI", "JRTI", "OCISLY"}): color = colors['ASDS'] elif (location in {"Land (parachutes)", "LZ-1", "LZ-2", "LZ-4"}): color = colors['RTLS'] else: color = 'black' return color
rinoldm/SBURB
data.py
data.py
py
2,314
python
en
code
7
github-code
50
2472224163
# Import the dependencies. import configparser from datetime import datetime from uuid import uuid4 from pathlib import Path import os # Import client library classes. from influxdb_client import Authorization, InfluxDBClient, Permission, PermissionResource, Point, WriteOptions from influxdb_client.client.authorizations_api import AuthorizationsApi from influxdb_client.client.bucket_api import BucketsApi from influxdb_client.client.query_api import QueryApi from influxdb_client.client.write_api import SYNCHRONOUS from influxdb_client.domain.dialect import Dialect from .sensor import SensorImit # Get the configuration key-value pairs. path = Path(__file__) ROOT_DIR = path.parent.absolute() config_path = os.path.join(ROOT_DIR, "config.ini") config = configparser.ConfigParser() config.read(config_path) def createauthorization(device_id) -> Authorization: influxdb_client = InfluxDBClient(url=config.get('APP', 'INFLUX_URL'), token=config.get('APP', 'INFLUX_TOKEN'), org=config.get('APP', 'INFLUX_ORG')) authorization_api = AuthorizationsApi(influxdb_client) # get bucket_id from bucket buckets_api = BucketsApi(influxdb_client) buckets = buckets_api.find_bucket_by_name(config.get('APP', 'INFLUX_BUCKET')) # function returns only 1 bucket bucket_id = buckets.id org_id = buckets.org_id desc_prefix = f'IoTCenterDevice: {device_id}' org_resource = PermissionResource(org_id=org_id, id=bucket_id, type="buckets") #print(org_resource) read = Permission(action="read", resource=org_resource) write = Permission(action="write", resource=org_resource) permissions = [write, read] #print('org_id', org_id) #print('permissions', permissions) #print('desc_prefix', desc_prefix) authorization = Authorization(org_id=org_id, permissions=permissions, description=desc_prefix) print(authorization) request = authorization_api.create_authorization(authorization) return request def create_device(device_id=None): config = configparser.ConfigParser() config.read('config.ini') influxdb_client = InfluxDBClient(url=config.get('APP', 'INFLUX_URL'), token=config.get('APP', 'INFLUX_TOKEN'), org=config.get('APP', 'INFLUX_ORG')) if device_id is None: device_id = str(uuid4()) write_api = influxdb_client.write_api(write_options=SYNCHRONOUS) point = Point('deviceauth') \ .tag("deviceId", device_id) \ .field('key', f'fake_auth_id_{device_id}') \ .field('token', f'fake_auth_token_{device_id}') client_response = write_api.write(bucket=config.get('APP', 'INFLUX_BUCKET_AUTH'), record=point) # write() returns None on success if client_response is None: return device_id # Return None on failure return None def get_device(device_id=None) -> {}: influxdb_client = InfluxDBClient(url=config.get('APP', 'INFLUX_URL'), token=config.get('APP', 'INFLUX_TOKEN'), org=config.get('APP', 'INFLUX_ORG')) # Queries must be formatted with single and double quotes correctly query_api = QueryApi(influxdb_client) device_filter = '' if device_id: device_id = str(device_id) device_filter = f'r.deviceId == "{device_id}" and r._field != "token"' else: device_filter = f'r._field != "token"' flux_query = f'from(bucket: "{config.get("APP", "INFLUX_BUCKET_AUTH")}") ' \ f'|> range(start: 0) ' \ f'|> filter(fn: (r) => r._measurement == "deviceauth" and {device_filter}) ' \ f'|> last()' response = query_api.query(flux_query) result = [] for table in response: for record in table.records: try: 'updatedAt' in record except KeyError: record['updatedAt'] = record.get_time() record[record.get_field()] = record.get_value() result.append(record.values) return result def write_measurements(device_id): influxdb_client = InfluxDBClient(url=config.get('APP', 'INFLUX_URL'), token=config.get('APP', 'INFLUX_TOKEN'), org=config.get('APP', 'INFLUX_ORG')) write_api = influxdb_client.write_api(write_options=SYNCHRONOUS) virtual_device = SensorImit() coord = virtual_device.geo() point = Point("environment") \ .tag("device", device_id) \ .tag("TemperatureSensor", "virtual_bme280") \ .tag("HumiditySensor", "virtual_bme280") \ .tag("PressureSensor", "virtual_bme280") \ .field("Temperature", virtual_device.generate_measurement()) \ .field("Humidity", virtual_device.generate_measurement()) \ .field("Pressure", virtual_device.generate_measurement()) \ .field("Lat", coord['latitude']) \ .field("Lon", coord['longitude']) \ .time(datetime.utcnow()) print(f"Writing: {point.to_line_protocol()}") client_response = write_api.write(bucket=config.get('APP', 'INFLUX_BUCKET'), record=point) # write() returns None on success if client_response is None: # TODO Maybe also return the data that was written return device_id # Return None on failure return None def get_measurements(query): influxdb_client = InfluxDBClient(url=config.get('APP', 'INFLUX_URL'), token=config.get('APP', 'INFLUX_TOKEN'), org=config.get('APP', 'INFLUX_ORG')) query_api = QueryApi(influxdb_client) result = query_api.query_csv(query, dialect=Dialect( header=True, delimiter=",", comment_prefix="#", annotations=['group', 'datatype', 'default'], date_time_format="RFC3339")) response = [] for row in result: #response += (',').join(row) + ('\n') response.append(row) return response #@app.route('/api/devices/<string:device_id>', methods=['GET', 'POST']) def api_get_device(device_id): if request.method == "OPTIONS": # CORS preflight return _build_cors_preflight_response() return _corsify_actual_response(jsonify(devices.get_device(device_id))) # брать запрос в бд отсюда # device_filter = f'r.device == "testdevice"' # query = f'from(bucket: "{config.get("APP", "INFLUX_BUCKET")}") ' \ # f'|> range(start: 0, stop: now()) ' \ # f'|> filter(fn: (r) => {device_filter} and r._field == "Temperature")' \ # '|> sort(columns: ["_time"]) ' # # #r._measurement == "environment" and # data = get_measurements(query) # # формирование списков значений с данными и временем # time_index = data[3].index('_time') # meas_index = data[3].index('_value') # time = list() # meas = list() # for l in data: # print(l) # for i in range(len(data[4:-1])): # time.append(data[4+i][time_index]) # meas.append(data[4+i][meas_index]) # print(time) # print(meas)
olegtemirbulatov/sensors
sensorslist/devices.py
devices.py
py
7,382
python
en
code
0
github-code
50
23999549107
bl_info = { "name": "Bizualizer", "description": "Create a simple vizualizer for audio", "author": "doakey3", "version": (1, 0, 3), "blender": (2, 7, 8), "wiki_url": "https://github.com/doakey3/Bizualizer", "tracker_url": "https://github.com/doakey3/Bizualizer/issues", "category": "Animation", "location": "Properties > Scene"} import bpy import math import ntpath import time import sys class BizualizerUI(bpy.types.Panel): bl_space_type = "PROPERTIES" bl_region_type = "WINDOW" bl_label = "Bizualizer" bl_context = "scene" def draw(self, context): layout = self.layout scene = bpy.context.scene row = layout.row() row.prop(scene,'bz_audiofile',icon="SOUND") row = layout.row() row.prop(scene,'bz_audio_channel') row = layout.row() row.operator("sequencerextra.bz_audio_to_sequencer", icon="SEQ_SEQUENCER") row.operator("sequencerextra.bz_audio_remove",icon="CANCEL") row = layout.row() row.prop(scene,'bz_bar_count') row.prop(scene,'bz_bar_width') row = layout.row() row.prop(scene,'bz_amplitude') row.prop(scene,'bz_spacing') row = layout.row() split = row.split() col_a = split.column(align=True) col_a.prop(scene,'bz_use_radial') col_b = split.column(align=True) col_b.prop(scene,'bz_radius') if scene.bz_use_radial: col_b.enabled = True else: col_b.enabled = False row = layout.row() row.operator("object.bz_generate",icon="RADIO") class AudioToVSE(bpy.types.Operator): bl_idname = "sequencerextra.bz_audio_to_sequencer" bl_label = "Add Audio to VSE" bl_description = "Adds the audio file to the VSE" @classmethod def poll(self, context): scene = context.scene if scene.bz_audiofile == '': return False else: return True def execute(self, context): scene = context.scene audiofile = bpy.path.abspath(scene.bz_audiofile) name = ntpath.basename(audiofile) chan = scene.bz_audio_channel start = 1 if not scene.sequence_editor: scene.sequence_editor_create() sound_strip = scene.sequence_editor.sequences.new_sound( 'bz_' + name,audiofile,chan,start) return {'FINISHED'} class RemoveBZAudio(bpy.types.Operator): bl_idname = "sequencerextra.bz_audio_remove" bl_label = "Remove Audio" bl_description = "Adds the audio file to the VSE" @classmethod def poll(self, context): scene = context.scene if scene.bz_audiofile == '': return False else: return True def execute(self, context): scene = context.scene audiofile = bpy.path.abspath(scene.bz_audiofile) name = ntpath.basename(audiofile) all_strips = list(sorted( bpy.context.scene.sequence_editor.sequences_all, key=lambda x: x.frame_start)) bpy.ops.sequencer.select_all(action='DESELECT') count = 0 for strip in all_strips: if strip.name.startswith('bz_' + name): strip.select = True bpy.ops.sequencer.delete() return {'FINISHED'} class GenerateVizualizer(bpy.types.Operator): bl_idname = "object.bz_generate" bl_label = "(re)Generate Vizualizer" bl_description = "Generates visualizer bars and animation" @classmethod def poll(self, context): scene = context.scene if scene.bz_audiofile == '': return False else: return True def execute(self, context): scene = context.scene scene.frame_current = 1 bar_count = scene.bz_bar_count bar_width = scene.bz_bar_width amplitude = scene.bz_amplitude spacing = scene.bz_spacing radius = scene.bz_radius audiofile = bpy.path.abspath(scene.bz_audiofile) digits = str(len(str(bar_count))) noteStep = 120.0/bar_count a = 2**(1.0/12.0) l = 0.0 h = 16.0 bpy.ops.object.select_all(action='DESELECT') #Remove any visualizer bars in the scene count = 0 while count < len(scene.objects): if scene.objects[count].name.startswith('bz_bar'): scene.objects[count].select = True bpy.ops.object.delete() else: count += 1 wm = context.window_manager wm.progress_begin(0, 100.0) context.area.type = 'GRAPH_EDITOR' for i in range(0, bar_count): #Add a plane with it's origin = center name = 'bz_bar' + (("%0" + digits + "d") % i) mesh = bpy.data.meshes.new(name) bar = bpy.data.objects.new(name,mesh) scene.objects.link(bar) bar.select = True scene.objects.active = bar verts = [(-1,2,0), (1,2,0), (1,0,0), (-1,0,0)] faces = [(3,2,1,0)] mesh.from_pydata(verts,[],faces) mesh.update() loc = [0.0, 0.0, 0.0] #If radial, rotate the bar around an angle if scene.bz_use_radial: angle = -2 * i * math.pi/bar_count bar.rotation_euler[2] = angle loc[0] = -math.sin(angle) * radius loc[1] = math.cos(angle) * radius else: loc[0] = (i * spacing) - ((bar_count * spacing)/2) #Set the bar's current location bar.location = (loc[0], loc[1], loc[2]) #Scale the plane on x and y axis bar.scale.x = bar_width bar.scale.y = amplitude bpy.ops.object.transform_apply( location=False, rotation=False, scale=True) #Insert a scaling keyframe and lock the x and z axis bpy.ops.anim.keyframe_insert_menu(type='Scaling') bar.animation_data.action.fcurves[0].lock = True bar.animation_data.action.fcurves[2].lock = True l = h h = l*(a**noteStep) bpy.ops.graph.sound_bake( filepath=audiofile, low=(l),high=(h)) active = bpy.context.active_object active.animation_data.action.fcurves[1].lock = True bar.select = False progress = 100 * (i/bar_count) wm.progress_update(progress) update_progress("Generating Vizualizer", progress/100.0) wm.progress_end() update_progress("Generating Vizualizer", 1) context.area.type = 'PROPERTIES' scene.objects.active = None return {'FINISHED'} def update_progress(job_title, progress): length = 20 # modify this to change the length block = int(round(length*progress)) msg = "\r{0}: [{1}] {2}%".format(job_title, "#"*block + "-"*(length-block), round(progress*100, 2)) if progress >= 1: msg += " DONE\r\n" sys.stdout.write(msg) sys.stdout.flush() def initprop(): bpy.types.Scene.bz_audiofile = bpy.props.StringProperty( name = "Audio File", description = "Define path of the audio file", subtype = 'FILE_PATH', ) bpy.types.Scene.bz_audio_channel = bpy.props.IntProperty( name = "Audio Channel", description="Channel where audio will be added", default=1, min=1) bpy.types.Scene.bz_bar_count = bpy.props.IntProperty( name = "Bar Count", description="The number of bars to make", default=64, min=1) bpy.types.Scene.bz_bar_width = bpy.props.FloatProperty( name = "Bar Width", description="The width of the bars", default=0.8, min=0) bpy.types.Scene.bz_amplitude = bpy.props.FloatProperty( name = "Amplitude", description="Amplitude of visualizer bars", default=24.0, min=0) bpy.types.Scene.bz_use_radial = bpy.props.BoolProperty( name = "Use Radial", description="Use a circular vizualizer", default=False) bpy.types.Scene.bz_radius = bpy.props.FloatProperty( name = "Radius", description="Radius of the radial vizualizer", default=20, min=0) bpy.types.Scene.bz_spacing = bpy.props.FloatProperty( name = "Spacing", description="Spacing between bars", default=2.25, min=0) def register(): bpy.utils.register_class(BizualizerUI) bpy.utils.register_class(AudioToVSE) bpy.utils.register_class(GenerateVizualizer) bpy.utils.register_class(RemoveBZAudio) initprop() def unregister(): bpy.utils.unregister_class(BizualizerUI) bpy.utils.unregister_class(AudioToVSE) bpy.utils.unregister_class(RemoveBZAudio) bpy.utils.unregister_class(GenerateVizualizer) del bpy.types.Scene.bz_audiofile del bpy.types.Scene.bz_bar_count del bpy.types.Scene.bz_bar_width del bpy.types.Scene.bz_amplitude del bpy.types.Scene.bz_spacing del bpy.types.Scene.bz_use_radial del bpy.types.Scene.bz_radius
JT-a/blenderpython279
scripts/addons_extern/bizualizer.py
bizualizer.py
py
9,526
python
en
code
5
github-code
50
3723862412
import random import time class SF(): def regiun(self): '''生成身份证前六位''' #列表里面的都是一些地区的前六位号码 first_list = ['362402','362421','362422','362423','362424','362425','362426','362427','362428','362429','362430','362432','110100','110101','110102','110103','110104','110105','110106','110107','110108','110109','110111'] first = random.choice(first_list) return first def year(self): '''生成年份''' now = time.strftime('%Y') #1948为第一代身份证执行年份,now-18直接过滤掉小于18岁出生的年份 second = random.randint(1948,int(now)-18) age = int(now) - second return second def month(self): '''生成月份''' three = random.randint(1,12) #月份小于10以下,前面加上0填充 if three < 10: three = '0' + str(three) return three else: return three def day(self): '''生成日期''' four = random.randint(1,31) # 日期小于10以下,前面加上0填充 if four < 10: four = '0' + str(four) return four else: return four def randoms(self): '''生成身份证后四位''' # 后面序号低于相应位数,前面加上0填充 five = random.randint(1,9999) if five < 10: five = '000' + str(five) return five elif 10 < five < 100: five = '00' + str(five) return five elif 100 < five < 1000: five = '0' + str(five) return five else: return five #随机身份证号码 def sf(self): first = self.regiun() second = self.year() three = self.month() four = self.day() last = self.randoms() IDcard = str(first)+str(second)+str(three)+str(four)+str(last) return IDcard #随机姓名 def name(self): xing = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏陶姜' ming = '豫章故郡洪都新府星分翼轸地接衡庐襟三江而带五湖' X = random.choice(xing)#在xing中随机选择一个字符串 M = ''.join(random.choice(ming) for i in range(2))# n = X+M return n #随机手机号码 def phone(self): headList = ["130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "147", "150", "151", "152", "153", "155", "156", "157", "158", "159", "186", "187", "188", "189"] return (random.choice(headList) + "".join(random.choice("0123456789") for i in range(8))) #随机银行卡 def bankcard(self): card_id = '62' for i in range(17): ran = str(random.randint(0, 9)) card_id += ran return card_id #随机电子邮箱 def get_email(self): email_suf = random.choice( ['@163.com', '@qq.com', '@126.com', '@sina.com', '@sina.cn', '@soho.com', '@yeah.com']) phone = self.phone() email = phone + email_suf return email if __name__ == '__main__': a = SF() print(a.get_email())
zguo0601/drg
common/sf_xm.py
sf_xm.py
py
3,303
python
en
code
0
github-code
50
15485978789
import json import pytest from gviz_data_table.table import Table valid_schema = ( {'id':'age', 'type':int, 'label':'Age'}, {'id':'name', 'type':str, 'label':'Name'} ) schema_missing_id = ( {'type':int}, {'name':'age', 'type':int} ) bob = (18, 'Bob') sally = (20, 'Sally') def test_conditional(): import sys if sys.version_info < (2, 7): with pytest.raises(ImportError): from collections import OrderedDict def test_constructor(): table = Table() assert list(table.schema.keys()) == [] assert table.rows == [] def test_invalid_options(): table = Table() with pytest.raises(ValueError): table.options = 1 with pytest.raises(ValueError): table.options = [1, 2, 3] def test_options(): table = Table() table.options = dict(bar='baz') assert table.options == {'bar':'baz'} def test_missing_id(): with pytest.raises(TypeError): Table(schema_missing_id) def test_duplicate_column(): table = Table(valid_schema) with pytest.raises(ValueError): table.add_column('age', int) def test_add_column(): table = Table() table.add_column(**valid_schema[0]) table.add_column(**valid_schema[1]) assert table.schema['age'].id == "age" assert table.schema['name'].type == str with pytest.raises(TypeError): table.add_column('height') def test_add_column_with_existing_data(): table = Table(valid_schema) table.append(bob) with pytest.raises(ValueError): table.add_column('size', str) def test_insert_row_no_columns(): table = Table() with pytest.raises(ValueError): table.append(('Bob', )) def test_insert_row(): table = Table(valid_schema) table.append(bob) row = table.rows.pop() assert row['age'].value == 18 assert row['name'].value == 'Bob' def test_with_label(): table = Table(valid_schema) table.append(bob) rows = table.rows row = rows.pop() assert row['name'].label is None harry = (17, ('Harry', 'Big Man')) table.append(harry) row = rows.pop() assert row['age'].value == 17 assert row['name'].value == 'Harry' assert row['name'].label == 'Big Man' def test_cell_options(): table = Table(valid_schema) jack = [17, ('Jack', 'Beanstalk', dict(key='value'))] table.append(jack) row = table.rows.pop() assert row['name'].options == {'key':'value'} kate = [26, dict(value='Kate', options={'hair':'long'})] table.append(kate) row = table.rows.pop() assert row['name'].value == 'Kate' assert row['name'].label == None assert row['name'].options == {'hair':'long'} def test_insert_rows(): table = Table(valid_schema) table.extend([bob, (20, 'Sally')]) rows = table.rows row = rows.pop() assert row['name'].value == 'Sally' row = rows.pop() assert row['age'].value == 18 def test_invalid_row(): table = Table(valid_schema) with pytest.raises(ValueError): table.append([1, 2, 3]) def test_dictionary_interface(): table = Table(options={'foo':'bar'}) expected = dict(rows=[], cols=[], p={'foo':'bar'}) assert dict(table) == expected def test_encode(): table = Table() expected = {"rows": [], "cols": []} result = table.encode() assert json.loads(result) == expected def test_source(): table = Table() google = DummyGoogleObject() google.visualization = DummyGoogleObject() google.visualization.Query = DummyGoogleObject() result = eval(table.source()) expected = {"status": "OK", "table": {"rows": [], "cols": []}, "reqId": 0, "version": 0.6} assert result == expected class DummyGoogleObject(object): """ Just allows namespaces to mimic the Google API """ def setResponse(self, arg): return arg
GoogleCloudPlatform/hellodashboard
gviz_data_table/tests/test_table.py
test_table.py
py
3,832
python
en
code
11
github-code
50
23230063846
# -*- coding: utf-8 -*- """ Created on Tue Jul 16 15:16:29 2019 @author: Andy """ import matplotlib.pyplot as plt import numpy as np im_path = '..\\..\\EXPERIMENTS\\Italy\\data\\adsa\\20190701_1k2f_60c_volume_ref.bmp' area = 5.19/3.6 * 7.58/3.6 # mm^2 im = plt.imread(im_path) im_bw = im[:,:,0] == 0 plt.imshow(im_bw*255) vol_pix = 0 for r in range(im_bw.shape[0]): w_pix = sum(im_bw[r,:]) vol_pix += np.pi*(w_pix/2)**2 w_im_mm = 7.58/3.6 # width of the image in mm measured in powerpoint w_im_pix = im.shape[1] # width of image in pixels pix2mm = w_im_mm / w_im_pix vol_uL = vol_pix*pix2mm**3 print('volume of drop is %f uL.' % vol_uL) # compute drop area num_white = np.sum(im_bw) num_tot = im_bw.shape[0] * im_bw.shape[1] num_black = (num_tot - num_white) drop_area = area*num_black/num_tot print("drop area = %f mm^2" % drop_area)
andylitalo/g-adsa
src/util_clicking/compute_area.py
compute_area.py
py
852
python
en
code
0
github-code
50
27005882350
import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from numpy import exp from arch import arch_model from sklearn.metrics import mean_squared_error from statsmodels.tsa.arima.model import ARIMA from scipy import stats from datetime import datetime import warnings import yfinance as yf warnings.filterwarnings("ignore") def LB(ts, lags=[12], g=0): result = sm.stats.diagnostic.acorr_ljungbox(ts, lags=lags, model_df=g, return_df=True) return result.iloc[-1]['lb_pvalue'] def LBdf(ts, lags=[12], g=0): result = sm.stats.diagnostic.acorr_ljungbox(ts, lags=lags, model_df=g, return_df=True) return result def ACF(ts, lags=24, title='ACF'): sm.graphics.tsa.plot_acf(ts, auto_ylims=True, lags=lags, title=title) def PACF(ts, lags=24, title='PACF'): sm.graphics.tsa.plot_pacf(ts, auto_ylims=True, lags=lags, title=title) def ADFT(ts, alpha=0.05, l=12, caption='The time series'): from statsmodels.tsa.stattools import adfuller result = adfuller(ts, maxlag=l) print('*************************') print('ADF Test on stationarity') print(f'ADF Statistic: {result[0]}') print(f'p-value: {result[1]}') if result[1] <= alpha: print(f'{caption} is stationary.') else: print(f'{caption} is not stationary.') return def check_series(rt, alpha=0.05, caption=None): ADFT(rt) LB = sm.stats.diagnostic.acorr_ljungbox(rt, lags=[12,24], return_df=True) print('*************************') print(f'Ljung-Box Test on Serial Correlation - {caption}') print(LB) if (LB['lb_pvalue']>alpha).sum() > 0: print('H0 is not rejected.') print('There is no serial correlation.') else: print('H0 is rejected') print('There is serial correlation.') at = rt-np.mean(rt) print('*************************') print(f'Ljung-Box Test on ARCH effect - {caption}') LB2 = sm.stats.diagnostic.acorr_ljungbox(at**2, lags=[12,24], return_df=True) print(LB2) if (LB2['lb_pvalue']>alpha).sum() > 0: print('H0 is not rejected.') print('There is no ARCH effect.') else: print('H0 is rejected') print('There is ARCH effect.') return def arma_grid_aic(X, mp=5, d=0, mq=5, caption='rt'): target = [] for k in range(d+1): for i in range(mp): for j in range(mq): print(f'Calculating...p={i},d={k},q={j}') model = ARIMA(X, order=(i,k,j)) model_fit = model.fit() QM = LB(model_fit.resid, g=i+j) if QM > 0.05: target.append([(i,k,j), model_fit.aic, model_fit.bic]) tdf = pd.DataFrame(target, columns=['order','aic','bic']).sort_values(by='aic') try: print(f'{tdf.order.iloc[0]} is the best combination for {caption}') return tdf, tdf.order.iloc[0] except: print('Cannot find appropriate model') return tdf, 'N/A' df = yf.Ticker('0005.hk').history(period='max') # dfw = yf.Ticker('0005.hk').history(period='max', interval='1wk').dropna() # dfm = yf.Ticker('0005.hk').history(period='max', interval='1mo').dropna() df = df[df.Volume!=0].dropna() # df['R_Open'] = df['Open'].pct_change() df['R_High'] = df['High'].pct_change() df['R_Low'] = df['Low'].pct_change() df['R_Close'] = df['Close'].pct_change() # df['r_Open'] = np.log(df['R_Open']+1) df['r_High'] = np.log(df['R_High']+1) df['r_Low'] = np.log(df['R_Low']+1) df['r_Close'] = np.log(df['R_Close']+1) n = len(df) c = df.index.get_loc('2016').start train_high, test_high = df['r_High'][1:c], df['r_High'][c:] order_high = (6,0,0) mh = ARIMA(train_high, order=order_high).fit() print(mh.summary()) print(LB(mh.resid, [10], g=sum(order_high))) print(LB(mh.resid**2, [10], g=sum(order_high))) at_h = mh.resid mh_garch = arch_model(at_h, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit() print(mh_garch.summary()) print(LB(mh_garch.std_resid, [20])) print(LB(mh_garch.std_resid**2, [20])) train_low, test_low = df['r_Low'][1:c], df['r_Low'][c:] order_low = (2,0,0) ml = ARIMA(train_low, order=order_low).fit() print(ml.summary()) print(LB(ml.resid, [10], g=sum(order_low))) print(LB(ml.resid**2, [10], g=sum(order_low))) at_l = ml.resid ml_garch = arch_model(at_l, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit() print(ml_garch.summary()) print(LB(ml_garch.std_resid, [20])) print(LB(ml_garch.std_resid**2, [20])) train_close, test_close = df['r_Close'][1:c], df['r_Close'][c:] order_close = ([1,4,9,11],0,0) mc = ARIMA(train_close, order=order_close).fit() print(mc.summary()) print(LB(mc.resid, [10], g=4)) print(LB(mc.resid**2, [10], g=4)) at_c = mc.resid mc_garch = arch_model(at_c, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit() print(mc_garch.summary()) print(LB(mc_garch.std_resid, [20])) print(LB(mc_garch.std_resid**2, [20])) rh = [] rh_se = [] rl = [] rl_se = [] rc = [] rc_se = [] c1 = c while c1 < n: # predicting High print(f'Forecasting {df.index[c1]}') dh = df['r_High'][1:c1] model_high = ARIMA(dh, order=order_high).fit() rh.append(model_high.get_forecast(1).predicted_mean.iloc[0]) model_high_garch = arch_model(model_high.resid, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit(update_freq=0, disp='off') rh_se.append(np.sqrt(model_high_garch.forecast().variance['h.1'].iloc[-1])) # predicting Low dl = df['r_Low'][1:c1] model_low = ARIMA(dl, order=order_low).fit() rl.append(model_low.get_forecast(1).predicted_mean.iloc[0]) model_low_garch = arch_model(model_low.resid, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit(update_freq=0, disp='off') rl_se.append(np.sqrt(model_low_garch.forecast().variance['h.1'].iloc[-1])) # predicting Close dc = df['r_Close'][1:c1] model_close = ARIMA(dc, order=order_close).fit() rc.append(model_close.get_forecast(1).predicted_mean.iloc[0]) model_close_garch = arch_model(model_close.resid, mean='Zero', vol='GARCH', p=1, q=1, dist='Normal').fit(update_freq=0, disp='off') rc_se.append(np.sqrt(model_close_garch.forecast().variance['h.1'].iloc[-1])) c1 += 1 df_sim = df[df.index.get_loc('2016').start:] df_sim['rhat_High'] = rh df_sim['rhat_High_se'] = rh_se df_sim['rhat_Low'] = rl df_sim['rhat_Low_se'] = rl_se df_sim['rhat_Close'] = rc df_sim['rhat_Close_se'] = rc_se df_sim = pd.concat([df_sim, df.loc['2015-12-31'].to_frame().T]).sort_index() df_sim['Phat_High'] = df_sim['High'].shift(1)*np.exp(df_sim['rhat_High']) df_sim['Phat_Low'] = df_sim['Low'].shift(1)*np.exp(df_sim['rhat_Low']) df_sim['Phat_Close'] = df_sim['Close'].shift(1)*np.exp(df_sim['rhat_Close']) df_sim['Phat_High_upper'] = df_sim['High'].shift(1)*np.exp(df_sim['rhat_High']+1.96*df_sim['rhat_High_se']) df_sim['Phat_High_lower'] = df_sim['High'].shift(1)*np.exp(df_sim['rhat_High']-1.96*df_sim['rhat_High_se']) df_sim['Phat_Low_upper'] = df_sim['Low'].shift(1)*np.exp(df_sim['rhat_Low']+1.96*df_sim['rhat_Low_se']) df_sim['Phat_Low_lower'] = df_sim['Low'].shift(1)*np.exp(df_sim['rhat_Low']-1.96*df_sim['rhat_Low_se']) df_sim['Phat_Close_upper'] = df_sim['Close'].shift(1)*np.exp(df_sim['rhat_Close']+1.96*df_sim['rhat_Close_se']) df_sim['Phat_Close_lower'] = df_sim['Close'].shift(1)*np.exp(df_sim['rhat_Close']-1.96*df_sim['rhat_Close_se']) d = df_sim[1:] P_High_percent = sum((d.High<=d.Phat_High_upper) & (d.High>=d.Phat_High_lower))/len(d)*100 P_Low_percent = sum((d.Low<=d.Phat_Low_upper) & (d.Low>=d.Phat_Low_lower))/len(d)*100 P_Close_percent = sum((d.Close<=d.Phat_Close_upper) & (d.Close>=d.Phat_Close_lower))/len(d)*100 # Strategy A sa = df_sim[['High','Low','Close','r_Close','rhat_Close']][1:] sa['Order'] = ((sa['rhat_Close']>0).astype(int)-(sa['rhat_Close']<0).astype(int)).shift(1) sa['Order_Price']=sa['Close'].shift(1) sa['Order_Success']=0 bdf = sa[sa.Order==1] sa.loc[sa.Order==1, 'Order_Success'] = (bdf['Order_Price']>=bdf['Low']).astype(int) sdf = sa[sa.Order==-1] sa.loc[sa.Order==-1, 'Order_Success'] = (sdf['Order_Price']<=sdf['High']).astype(int) sa['Trade_Price']=0 sa.loc[sa.Order_Success==1, 'Trade_Price'] = sa.loc[sa.Order_Success==1, ['High','Order_Price']].min(axis=1) sa['Transaction'] = (-sa.Order*sa.Trade_Price).fillna(0) sa['Cash'] = sa.Transaction.cumsum().fillna(0) sa['Position'] = (sa.Order*sa.Order_Success).cumsum().fillna(0) sa['Balance'] = sa.Cash+sa.Position*sa.Close # fig, ax = plt.subplots() # ax3 = ax.twinx() # sa.Close.plot(ax=ax, style='b-') # sa.Balance.plot(ax=ax3, style='r-') # # Plotting Pt # Pt.plot(title='Stock price over time', ax=ax[0]) # pt = np.log(Pt) # Rt = Pt.pct_change().dropna() # Rt.plot(title='Return over time', ax=ax[1]) # rt = pt.diff().dropna() # rt.plot(title='r(t) over time', ax=ax[2]) # Plotting # ra_HO = df['High']/df['Open'] # ra_LO = df['Low']/df['Open'] # ra_CO = df['Close']/df['Open'] # check_series(ra_HO[c1:c], caption='Ratio High/Open') # check_series(ra_LO[c1:c], caption='Ratio Low/Open') # check_series(ra_CO[c1:c], caption='Ratio Close/Open') # ACF(ra_HO.iloc[:c]) # PACF(ra_HO.iloc[:c]) # ACF(ra_HO.diff().dropna().iloc[:c]) # PACF(ra_HO.diff().dropna().iloc[:c]) # ACF(ra_LO.iloc[:c]) # PACF(ra_LO.iloc[:c]) # ACF(ra_LO.diff().dropna().iloc[:c]) # PACF(ra_LO.diff().dropna().iloc[:c]) # ACF(ra_CO.iloc[:c]) # PACF(ra_CO.iloc[:c]) # model_rho = ARIMA(ra_HO, order=(0,1,1)).fit() # # model_rho = ARIMA(ra_HO, order=(1,1,3)).fit() # # LB(model_rho.resid, g=4) # LB(model_rho.resid, g=1) # LB(model_rho.resid**2) # model_rlo = ARIMA(ra_LO, order=([1,3,4],1,1)).fit() # LB(model_rlo.resid, g=4) # LB(model_rlo.resid**2) # model_rco = ARIMA(ra_CO[:c], order=([1,4,5,9,11],0,0)).fit() # LB(model_rco.resid, g=5) # LB(model_rco.resid**2) # check_series(df['r_Open'][1:], caption='r_Open') # check_series(df['r_High'][1:], caption='r_High') # check_series(df['r_Low'][1:], caption='r_Low') # check_series(df['r_Close'][1:], caption='r_Close') # best_high = arma_grid_aic(df['r_High'][1:c], 7, 7, caption='r_High') # best_low = arma_grid_aic(df['r_Low'][1:c], 7, 7, caption='r_Low') # best_open = arma_grid_aic(df['r_Open'][1:c], 7, 7, caption='r_Open') # best_close = arma_grid_aic(df['r_Close'][1:c], 7, 7, caption='r_Close') # model_BH = ARIMA(df['r_High'][1:c], order=best_high).fit() # LB(model_BH.resid, [15], g=sum(best_high)) # LB(model_BH.resid**2, [15], g=sum(best_high)) # model_BL = ARIMA(df['r_Low'][1:c], order=best_low).fit() # LB(model_BL.resid, [15], g=sum(best_low)) # LB(model_BL.resid**2, [15], g=sum(best_low)) # model_BO = ARIMA(df['r_Open'][1:c], order=best_open).fit() # LB(model_BO.resid, [15], g=sum(best_open)) # LB(model_BO.resid**2, [15], g=sum(best_open)) # model_BC = ARIMA(df['r_Close'][1:c], order=best_close).fit() # LB(model_BC.resid, [15], g=sum(best_close)) # rh = [] # rh_se = [] # rl = [] # rl_se = [] # c1 = c # while c1 < n: # # predicting High # print(f'Forecasing {df.index[c]}') # dh = ra_HO[1:c1] # model_high = ARIMA(dh, order=(0,1,1)).fit() # rh.append(model_high.get_forecast(1).predicted_mean.iloc[0]) # rh_se.append(model_high.get_forecast(1).se_mean.iloc[0]) # # p_high_hat = df['High'][c-1]*exp(r_high_hat) # # ph.append(p_high_hat) # # predicting Low # dl = ra_LO[1:c1] # model_low = ARIMA(dl, order=(0,1,1)).fit() # rl.append(model_low.get_forecast(1).predicted_mean.iloc[0]) # rl_se.append(model_low.get_forecast(1).se_mean.iloc[0]) # # p_low_hat = df['Low'][c-1]*exp(r_low_hat) # # pl.append(p_low_hat) # c += 1 # df_sim = df[df.index.get_loc('2016').start:] # df_sim['Predicted_raHO'] = rh # df_sim['Predicted_raHO_se'] = rh_se # df_sim['Predicted_raLO'] = rl # df_sim['Predicted_raLO_se'] = rl_se # df_sim = pd.concat([df_sim, df.loc['2015-12-31'].to_frame().T]).sort_index()
cwk0507/MSDM
MSDM5053/Project/Working/HSBC (2).py
HSBC (2).py
py
12,097
python
en
code
0
github-code
50
40991595889
""" Calculate the z-score """ __author__ = "Matt DeSaix" # libraries import numpy as np from WGSassign import zscore_cy def AD_summary(L, AD, i, n_threshold, single_read_threshold): AD_GL_dict = {} for s in np.arange(AD.shape[0]): # The key is the allele depth combination key = tuple([AD[s,2*i], AD[s,2*i+1]]) if key not in AD_GL_dict.keys(): AD_GL_dict[key] = [[L[s,2*i], L[s,2*i+1], (1 - L[s,2*i] - L[s,2*i+1])]] else: AD_GL_dict[key].append([L[s,2*i], L[s,2*i+1], (1 - L[s,2*i] - L[s,2*i+1])]) AD_summary_dict = {} for key, value in AD_GL_dict.items(): AD_summary_dict[key] = [len(value), np.mean(AD_GL_dict[key], axis = 0)] AD_summary_array = np.empty((len(AD_summary_dict.keys()), 4), dtype = np.int32) for j in range(len(list(AD_summary_dict.keys()))): key = list(AD_summary_dict.keys())[j] a1 = list(list(AD_summary_dict.keys())[j])[0] a2 = list(list(AD_summary_dict.keys())[j])[1] n_loci = AD_summary_dict[key][0] AD_summary_array[j,:] = [a1, a2, a1+a2, n_loci] if single_read_threshold: AD_filtered = AD_summary_array[AD_summary_array[:,2] == 1] else: AD_filtered = AD_summary_array[(AD_summary_array[:,3] > n_threshold) & (AD_summary_array[:,2] != 0)] assert( AD_filtered.shape[0] != 0), "No loci were kept! Too stringent filtering?" assert( AD_filtered.shape[0] != 1), "Not enough loci were kept! Too stringent filtering?" dict_sum = AD_filtered[:,0] + AD_filtered[:,1] dl, dl_counts = np.unique(dict_sum, return_counts=True) dl_keep = dl[dl < dl_counts] AD_array = AD_filtered[np.in1d(AD_filtered[:,2], dl_keep)] return AD_summary_dict, AD_array def get_L_keep(L, AD, AD_summary_dict, AD_array, i): L_keep = np.empty(AD.shape[0], dtype = np.int32) for s in np.arange(AD.shape[0]): Ar = AD[s,2*i] Aa = AD[s,2*i+1] observed_A = len(np.argwhere((AD_array[:,0] == Ar) & (AD_array[:,1] == Aa))) if observed_A != 1: L_keep[s] = 0 else: key = tuple([AD[s,2*i], AD[s,2*i+1]]) max_id = np.argwhere(AD_summary_dict[key][1] == np.max(AD_summary_dict[key][1]))[0][0] L_ind_full = [L[s,2*i], L[s,2*i+1], (1 - L[s,2*i] - L[s,2*i+1])] if np.abs(AD_summary_dict[key][1][max_id] - L_ind_full[max_id]) > 0.01: L_keep[s] = 0 else: L_keep[s] = 1 L_keep_final = np.argwhere(L_keep == 1).reshape(-1).astype(np.int32) loci_kept = L_keep_final.shape[0] return L_keep_final, loci_kept def get_factorials(AD_array, AD_summary_dict, e): AD_factorial = np.zeros((AD_array.shape[0], 3), dtype = np.float32) AD_like = np.zeros((AD_array.shape[0], 3), dtype = np.float32) AD_index = np.zeros((np.max(AD_array[:,0])+1, np.max(AD_array[:,1])+1), dtype = np.int32) for i in range(AD_factorial.shape[0]): Ar = AD_array[i,0] Aa = AD_array[i,1] ad_index = np.argwhere((AD_array[:,0] == Ar) & (AD_array[:,1] == Aa))[0][0] AD_index[Ar, Aa] = ad_index Dl = Aa + Ar ad_factorial = np.math.factorial(Dl) / (np.math.factorial(Aa)*np.math.factorial(Ar)) P_r_a0 = ad_factorial*((1.0-e)**Ar)*(e**Aa) P_r_a1 = ad_factorial*((0.5)**Dl) P_r_a2 = ad_factorial*((1.0-e)**Aa)*(e**Ar) AD_factorial[i,:] = [P_r_a0, P_r_a1, P_r_a2] AD_like[i:] = AD_summary_dict[tuple([Ar, Aa])][1] return AD_factorial, AD_like, AD_index def get_expected_W_l(L, L_keep, A, AD, AD_array, AD_factorial, AD_like, AD_index, t, i): W_l_obs_array = np.zeros(L_keep.shape[0], dtype = np.float32) W_l_array = np.zeros(L_keep.shape[0], dtype = np.float32) zscore_cy.expected_W_l(L, L_keep, A, AD, AD_array, AD_factorial, AD_like, AD_index, t, i, W_l_obs_array, W_l_array) # for s_index in range(L_keep.shape[0]): # s = L_keep[s_index] # A_sk = A[s,k] # P_gl = [(1-A_sk)*(1-A_sk), 2*A_sk*(1-A_sk), A_sk*A_sk] # f_gl = [L[s,2*i] * P_gl[0],L[s,2*i+1] * P_gl[1],(1-L[s,2*i]-L[s,2*i+1]) * P_gl[2]] # f_gl_log = np.log(f_gl[0] + f_gl[1] + f_gl[2]) # W_l_obs_list[s_index] = f_gl_log # # Getting the total depth # Dl = AD[s,2*i] + AD[s,2*i+1] # for Aa in np.arange(Dl+1): # Ar = Dl - Aa # ad_index = np.argwhere((AD_array[:,0] == Ar) & (AD_array[:,1] == Aa))[0][0] # W_l[s_index] = W_l[s_index] + f_gl_log * P_gl[0] * AD_factorial[ad_index,0] * AD_like[ad_index,0] # W_l[s_index] = W_l[s_index] + f_gl_log * P_gl[1] * AD_factorial[ad_index,1] * AD_like[ad_index,1] # W_l[s_index] = W_l[s_index] + f_gl_log * P_gl[2] * AD_factorial[ad_index,2] * AD_like[ad_index,2] W_l_obs = np.sum(W_l_obs_array, dtype=np.float32) return W_l_obs, W_l_array def get_var_W_l(L, L_keep, A, AD, AD_array, AD_factorial, AD_like, AD_index, W_l_array, t, i): var_W_l_array = np.zeros(L_keep.shape[0], dtype = np.float32) zscore_cy.variance_W_l(L, L_keep, A, AD, AD_array, AD_factorial, AD_like, AD_index, t, i, var_W_l_array, W_l_array) # for s_index in range(L_keep.shape[0]): # s = L_keep[s_index] # A_sk = A[s,k] # P_gl = [(1-A_sk)*(1-A_sk), 2*A_sk*(1-A_sk), A_sk*A_sk] # f_gl = [L[s,2*i] * P_gl[0],L[s,2*i+1] * P_gl[1],(1-L[s,2*i]-L[s,2*i+1]) * P_gl[2]] # f_gl_log = np.log(f_gl[0] + f_gl[1] + f_gl[2]) # # Getting the total depth # Dl = AD[s,2*i] + AD[s,2*i+1] # for Aa in np.arange(Dl+1): # Ar = Dl - Aa # ad_index = np.argwhere((AD_array[:,0] == Ar) & (AD_array[:,1] == Aa))[0][0] # var_W_l[s_index] = var_W_l[s_index] + (W_l[s_index]-f_gl_log)**2 * P_gl[0] * AD_factorial[ad_index,0] * AD_like[ad_index,0] # var_W_l[s_index] = var_W_l[s_index] + (W_l[s_index]-f_gl_log)**2 * P_gl[1] * AD_factorial[ad_index,1] * AD_like[ad_index,1] # var_W_l[s_index] = var_W_l[s_index] + (W_l[s_index]-f_gl_log)**2 * P_gl[2] * AD_factorial[ad_index,2] * AD_like[ad_index,2] return var_W_l_array
mgdesaix/WGSassign
WGSassign/zscore.py
zscore.py
py
5,775
python
en
code
3
github-code
50
31612041978
# Program szyfruje i deszyfruje zahardkowana wiadomosc # Aes tszyfruje bloki co 16 bitow wiec musimy uzupelnic znaki (funkcja dopelnienie do16) from Crypto.Cipher import AES import codecs def dopelnienie_do16(zmienna): result = zmienna + (16-len(zmienna))*']' return result key = b"Sixteen byte key" cipher = AES.new(key) text1 = "dupa" text2 = "siemanko" text3 = "jacie" text1 = dopelnienie_do16(text1) text2 = dopelnienie_do16(text2) text3 = dopelnienie_do16(text3) szyfr1 = cipher.encrypt(text1) szyfr2 = cipher.encrypt(text2) szyfr3 = cipher.encrypt(text3) print(szyfr1) print(szyfr2) print(szyfr3) #uzywamy tego samego klucza do dekrypcji (algorytm synchroniczny) plain1 = cipher.decrypt(szyfr1) plain2 = cipher.decrypt(szyfr2) plain3 = cipher.decrypt(szyfr3) print(plain1) print(plain2) print(plain3)
KBITSecurity/Notes
Programming/Python/UsingScripts/AES.py
AES.py
py
828
python
pl
code
0
github-code
50
40108172990
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.a = cms.ESSource("PoolDBESSource", DBParameters = cms.PSet( messageLevel = cms.untracked.int32(0), authenticationPath = cms.untracked.string('.') ), toGet = cms.VPSet(cms.PSet( record = cms.string('PedestalsRcd'), tag = cms.string('mytest'), label = cms.untracked.string('lab3d') ), cms.PSet( record = cms.string('PedestalsRcd'), tag = cms.string('pedtag'), label = cms.untracked.string('PEDPED') ), cms.PSet( record = cms.string('anotherPedestalsRcd'), tag = cms.string('anothermytest'), label = cms.untracked.string('Three') )), connect = cms.string('sqlite_file:test.db') ) process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(3), timetype = cms.string('runnumber'), firstValue = cms.uint64(1), interval = cms.uint64(1) ) process.prod = cms.EDAnalyzer("PedestalsByLabelAnalyzer") process.p = cms.Path(process.prod)
cms-sw/cmssw
CondCore/ESSources/test/python/print_ped_bylabel_cfg.py
print_ped_bylabel_cfg.py
py
1,051
python
en
code
985
github-code
50
72770423834
import itertools #given a list of numbers and a number k, #print out the sum of any two numbers in the list = k num = [10,15,3,7] mylst = list(itertools.combinations(num,r=2)) print (mylst) def to_k(lst,k): for num1, num2 in lst: if num1 +num2 == k: print (f" found: {num1} + {num2} = {k}") else: print (None) if __name__ =="__main__": print ("calling main") to_k(mylst,17)
JieCMarshall/mylearning
Data_Alg_Exer/iterations.py
iterations.py
py
432
python
en
code
0
github-code
50
73221936154
import os import torch import torch.nn as nn from transformers import Trainer from typing import Optional from transformers import AutoTokenizer from video_chatgpt.model import VideoChatGPTLlamaForCausalLM # from peft import PeftModel from video_chatgpt.constants import * def unwrap_model(model: nn.Module) -> nn.Module: """ Recursively unwraps a model from potential containers (as used in distributed training). Args: model (`torch.nn.Module`): The model to unwrap. """ # since there could be multiple levels of wrapping, unwrap recursively if hasattr(model, "module"): return unwrap_model(model.module) else: return model class VideoChatGPTTrainer(Trainer): def _save(self, output_dir: Optional[str] = None, state_dict=None): if getattr(self.args, 'tune_mm_mlp_adapter', False): # Save the model _state_dict = state_dict if _state_dict is None: # Only save the model itself if we are using distributed training model_to_save = unwrap_model(self.model) _state_dict = model_to_save.state_dict() ## NEW CODE ## try: model = model_to_save except: model = self.model # model.save_pretrained("50salads_finetuned_videochatgpt") # tokenizer = AutoTokenizer.from_pretrained('mmaaz60/LLaVA-7B-Lightening-v1-1') # model = VideoChatGPTLlamaForCausalLM.from_pretrained('mmaaz60/LLaVA-7B-Lightening-v1-1', low_cpu_mem_usage = True, torch_dtype =torch.float16) # mm_use_vid_start_end = True # # Add tokens to tokenizer # tokenizer.add_tokens([DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True) # if mm_use_vid_start_end: # tokenizer.add_tokens([DEFAULT_VID_START_TOKEN, DEFAULT_VID_END_TOKEN], special_tokens=True) # # Resize token embeddings of the model # model.resize_token_embeddings(len(tokenizer)) # model = PeftModel.from_pretrained(model, '50salads_finetuned_videochatgpt') # model = model.merge_and_unload() # os.system('rm -r 50salads_finetuned_videochatgpt') # model.save_pretrained("50salads_finetuned_videochatgpt") ## NEW CODE ## model.save_pretrained("breakfast_finetuned_videochatgpt") weight_to_save = {} keys_to_match = ['positional_encodings', 'embed_tokens', 'norm', 'input_layernorm', 'post_attention_layernorm'] for k, v in _state_dict.items(): # if any(key_match in k for key_match in keys_to_match): weight_to_save[k] = v current_folder = output_dir.split('/')[-1] parent_folder = os.path.dirname(output_dir) if current_folder.startswith('checkpoint-'): mm_projector_folder = os.path.join(parent_folder, "model") os.makedirs(mm_projector_folder, exist_ok=True) torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) else: torch.save(weight_to_save, os.path.join(output_dir, f'model.bin'), ) # super(VideoChatGPTTrainer, self)._save(output_dir, state_dict)
Muhammad4hmed/VideoLlama
video_chatgpt/train/llava_trainer.py
llava_trainer.py
py
3,312
python
en
code
0
github-code
50
34749491204
def dask_setup(worker): import os from cachetools import LRUCache def get_classads(): fname = os.getenv("_CONDOR_JOB_AD") if not fname: return {} d = {} with open(fname) as fh: for line in fh: if "=" not in line: continue k, v = line.split("=", 1) d[k.strip()] = v.strip().lstrip('"').strip('"') return d worker.classads = get_classads() worker.tree_cache = LRUCache(75) def numtreescached_metric(worker): if hasattr(worker,"tree_cache"): return len(list(worker.tree_cache.keys())) return 0 worker.metrics["numtreescached"] = numtreescached_metric try: # Load some imports initially import coffea.processor import coffea.executor except: pass
mhl0116/cscbkg
cachepreload.py
cachepreload.py
py
875
python
en
code
0
github-code
50
5100305823
import os def split_file(file_path, output_dir, chunk_size=50*1024*1024): if not os.path.exists(output_dir): os.makedirs(output_dir) file_name = os.path.basename(file_path) file_size = os.path.getsize(file_path) num_chunks = (file_size // chunk_size) + 1 with open(file_path, 'rb') as infile: for i in range(num_chunks): chunk_file_name = f"{file_name}.part{i+1}.txt" chunk_file_path = os.path.join(output_dir, chunk_file_name) with open(chunk_file_path, 'wb') as outfile: outfile.write(infile.read(chunk_size)) print(f"Created chunk: {chunk_file_path}") if __name__ == "__main__": large_file_path = "../wikipedia-dump/cs-articles-utf8/cs-articles.txt" output_directory = "export" split_file(large_file_path, output_directory)
benhmoore/reduce-llm
preprocessing/seperator.py
seperator.py
py
843
python
en
code
0
github-code
50
74368632154
#coding=utf-8 # 命令行命令, 批量tex转换 import sys import texf_topng import os def texf_topng_batch(filedir, den="200"): if not os.path.isdir(filedir): print("Need a dir with only tex files") return absfiledir = os.path.abspath(filedir) os.chdir(absfiledir) for root, dirs, files in os.walk(absfiledir): for name in files: try: texf_topng.tex_framed_topng(name, den) except Exception as e: print(e) argn = len(sys.argv) if argn == 1: print("Need a dir with only tex files.") elif argn == 2: texf_topng_batch(sys.argv[1]) elif argn == 3: texf_topng_batch(sys.argv[1], sys.argv[2]) else: print("Too many arguments.")
IshmaelHeathcliff/find-inline-formulae
ttpb.py
ttpb.py
py
744
python
en
code
0
github-code
50
38020566206
def busquedaLineal(lista,encontrar): isInList = False for elemento in lista: if elemento == encontrar: isInList = True return isInList listaEntrada = [2,12,34,5,11,59,4,3,1] valorEncontrar = int(input('ingrese un número : ')) listaEntrada.sort() print(busquedaLineal(listaEntrada, valorEncontrar)) import busquedabinaria as bi import time import random as rd listaEntrada = [] for i in range (9990000): listaEntrada.append(rd.randint(1,100000)) encontrar = 59 listaEntrada.sort() inicio = time.time() busquedaLineal(listaEntrada, encontrar) deltaLineal = time.time() - inicio inicio = time.time() bi.busquedaBinaria(listaEntrada, encontrar) deltaBinario = time.time() - inicio print(deltaBinario,deltaLineal)
weincoder/algoritmos202101
clases/algoritmos/busquedaLineal.py
busquedaLineal.py
py
747
python
es
code
1
github-code
50
19831926647
__author__ = 'Alessio' from project import app import logging.handlers from logging import FileHandler, Formatter from datetime import * class Logging(logging.FileHandler): @classmethod def __init__(self,user_connect_=None): self.user_connect = user_connect_ self.application = app\ @classmethod def create_login_info(self,user,time,url): self.logging = FileHandler('icollect_info.log') self.logging.setLevel(logging.DEBUG) self.logging.setFormatter(Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) self.application.logger.addHandler(self.logging) create_dict_to_loggin_info = dict({'user_connect':user,'time':time,'url':url}) self.application.logger.info('Info LogIn' + ":" + str(create_dict_to_loggin_info)) @classmethod def create_logout_info(self,user,time): self.logging = FileHandler('icollect_info.log') self.logging.setLevel(logging.DEBUG) self.logging.setFormatter(Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) self.application.logger.addHandler(self.logging) create_dict_to_loggin_info = dict({'user_connect':user,'time':time}) self.application.logger.info('Info Logout' + ":" + str(create_dict_to_loggin_info)) if __name__ == '__main__': pass
Sirbin/icollectweb
project/Loggin_Debug.py
Loggin_Debug.py
py
1,347
python
en
code
0
github-code
50
24975343920
import numpy as np class resultsStats: def __init__(self, collisionTable,lastHops ,numNodes,seedList,time,seed = 256,threshold = 0.9): self.threshold = threshold self.seed = seed self.time = sum(time[0:self.seed])/len(time[0:self.seed]) self.maxHop = max(lastHops[0:self.seed]) if(type(collisionTable) == list): self.collsionTable = self.tansform_to_dic(collisionTable) else: self.collsionTable = self.lowerBoundDiameter(collisionTable) self.completeSeedList = seedList self.numNodes = numNodes self.totalCouples = self.totalCouples() self.couplesPercentage = self.totalCouplesPercentage() self.avgDistance = self.avgDistance() self.lowerBoundDiameter = len(self.collsionTable.keys())-1 self.effectiveDiameter = self.effectiveDiameter() def tansform_to_dic(self,m): new_matrix = [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))] dic = {} for i in range(0,len(new_matrix)): dic[str(i)] = new_matrix[i][:] return(dic) def lowerBoundDiameter(self,collisionTable): newCollisionTable = {} for hop in range(0,self.maxHop+1): newCollisionTable[str(hop)] = collisionTable[str(hop)] return(newCollisionTable) def totalCouples(self): overallCollsions = self.collsionTable[str(self.maxHop)][0:self.seed] numTotalCollisions = sum(overallCollsions) totalCouplesReachable = numTotalCollisions * self.numNodes / self.seed return (totalCouplesReachable) def totalCouplesPercentage(self): couplesPercentage = self.totalCouples * self.threshold return (couplesPercentage) def avgDistance(self): sumAvg = 0 for hop in range(0,self.maxHop+1): collisions = self.collsionTable[str(hop)][0:self.seed] totalCollisions = sum(collisions) if(hop != 0): previousHop = hop - 1 previousCollisions = self.collsionTable[str(previousHop)][0:self.seed] previousTotalCollisions = sum(previousCollisions) couplesReachable = totalCollisions * self.numNodes / self.seed previousCouplesReachable = previousTotalCollisions * self.numNodes / self.seed couplesReachableForHop = couplesReachable - previousCouplesReachable sumAvg += hop*couplesReachableForHop return(sumAvg/self.totalCouples) def interpolate(self,y0,y1,y): if(y1-y0 == 0): return(0) return (y - y0) / (y1 - y0) def effectiveDiameter(self): if(len(self.collsionTable.values())==0): return(0) d = 1 numCollisions = sum(self.collsionTable[str(self.lowerBoundDiameter)][0:self.seed]) while(sum(self.collsionTable[str(d)][0:self.seed])/numCollisions < self.threshold): d += 1 collisionsD = sum(self.collsionTable[str(d)][0:self.seed]) previousCollisionsD = sum(self.collsionTable[str(d - 1)][0:self.seed]) couplesD = collisionsD * self.numNodes / self.seed previousCouplesD = previousCollisionsD * self.numNodes / self.seed interpolation = self.interpolate(previousCouplesD,couplesD,self.couplesPercentage) result = (d - 1) + interpolation if (result < 0): result = 0 return result def printStats(self): print("----------- STATS -----------") print("Seed number ", self.seed) print("Avg distance %.20f" %self.avgDistance) print("Total couples %.20f" %self.totalCouples) print("Total couples percentage %.20f" %self.couplesPercentage) print("Lowerbound diameter ", self.lowerBoundDiameter) print("Effective diameter %.20f" %self.effectiveDiameter) print("-----------------------------") def get_stats(self,additionalInfo = None): if(additionalInfo!= None): additionalInfo['avg_distance'] = self.avgDistance additionalInfo['total_couples'] = self.totalCouples additionalInfo['total_couples_perc'] = self.couplesPercentage additionalInfo['lower_bound'] = self.lowerBoundDiameter additionalInfo['effective_diameter'] = self.effectiveDiameter additionalInfo['treshold'] = self.threshold additionalInfo['num_seed'] = self.seed additionalInfo['time'] = self.time #additionalInfo['seedsList'] = self.transform_seedlist(self.completeSeedList) else: additionalInfo ={ 'avg_distance':self.avgDistance, 'total_couples': self.totalCouples, 'total_couples_perc':self.couplesPercentage, 'lower_bound': self.lowerBoundDiameter, 'effective_diameter':self.effectiveDiameter, 'treshold':self.threshold, 'num_seed':self.seed, 'time': self.time #'seedsList':self.transform_seedlist(self.completeSeedList) } return(additionalInfo) def transform_seedlist(self,seedListString): seedList = [] for seed in seedListString.split(","): if(seed != ""): seedList.append(seed) newSeedList = "" for seed in seedList[0:self.seed]: newSeedList += seed newSeedList += "," return(newSeedList)
BigDataLaboratory/MHSE
analyze_results/src/objects/stats.py
stats.py
py
5,525
python
en
code
4
github-code
50
33026470883
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Auteur : Aelaig COURNEZ - Flora GUES - Yann LAMBRECHTS - Romain SAFRAN # Librairies importee import numpy as np import pandas import struct import glob import os import time import datetime as dt from pyproj import Proj, transform #--------------------------------------------------------------------------------# # LECTURE ET SAUVEGARDE DES DONNEES EA400 # # Cas ou les donnees de positionnement sont enregistrees dans les trames NME0. # # # # Ce code a pour but de lire des fichiers issus d'acquisitions EA400 # # de les decoder et de les enregistrer sous forme de fichiers h5. # # Pour utiliser ce script, il suffit de specifier le dossier ou se trouvent # # les fichiers .raw et .out via la variable d'entree dir_path (main) # # ainsi que le dossier de sortie out_path ou l'on souhaite que les donnees # # soit enregistrees. # #--------------------------------------------------------------------------------# #-------- FONCTIONS PERMETTANT DE DECODER LES DIFFERENTES TRAMES -------- def decode_CON0(data): """ Cette fonction permet de decoder les trames CON0. Parametres ---------- data : string trame CON0 - portion de fichier binaire Sortie ------- decode_data : dictionary dictionnaire comprenant l'ensemble des parametres d'acquisition """ trame = data[:4] if trame == b'CON0': decode_data={} decode_data["DateTime"] = struct.unpack('<Q', data[4:4+8])[0] decode_data["SurveyName"] = struct.unpack('<128s', data[12:12+128])[0].decode('ascii').strip('\x00') decode_data["TransectName"] = struct.unpack('<128s', data[140:140+128])[0].decode('ascii').strip('\x00') decode_data["SounderName"] = struct.unpack('<128s', data[168:168+128])[0].decode('ascii').strip('\x00') decode_data["Spare"] = struct.unpack('128s', data[296:296+128])[0].decode('ascii').strip('\x00') # ecart de 100 bits...(?) decode_data["TransducerCount"] = struct.unpack('<I', data[524:524+4])[0] # transducer 1 = 38kHz decode_data["ChannelId_38"] = struct.unpack('128s', data[528:528+128])[0].decode('ascii').strip('\x00') decode_data["BeamType_38"] = struct.unpack('<l', data[656:656+4])[0] decode_data["Frequency_38"] = struct.unpack('<f', data[660:660+4])[0] decode_data["Gain_38"] = struct.unpack('<f', data[664:664+4])[0] decode_data["EquivalentBeamAngle_38"] = struct.unpack('<f', data[668:668+4])[0] # transducer 2 = 200kHz decode_data["ChannelId_200"] = struct.unpack('128s', data[848:848+128])[0].decode('ascii').strip('\x00') decode_data["BeamType_200"] = struct.unpack('<l', data[976:976+4])[0] decode_data["Frequency_200"] = struct.unpack('<f', data[980:980+4])[0] decode_data["Gain_200"] = struct.unpack('<f', data[984:984+4])[0] decode_data["EquivalentBeamAngle_200"] = struct.unpack('<f', data[988:988+4])[0] return decode_data def decode_RAW0(data): """ Cette fonction permet de decoder les trames RAW0. Parametres ---------- data : string trame RAW0 - portion de fichier binaire Sortie ------- decode_data : dictionary dictionnaire comprenant l'ensemble des donnees associees a un ping/une mesure """ trame = data[:4] if trame == b'RAW0': decode_data={} decode_data["DateTime"] = struct.unpack('<Q', data[4:4+8])[0] decode_data["Channel"] = struct.unpack('<h', data[12:12+2])[0] decode_data["Mode"] = struct.unpack('<h', data[14:14+2])[0] decode_data["TransducerDepth"] = struct.unpack('<f', data[16:16+4])[0] decode_data["Frequency"] = struct.unpack('<f', data[20:20+4])[0] decode_data["TransmitPower"] = struct.unpack('<f', data[24:24+4])[0] decode_data["PulseLength"] = struct.unpack('<f', data[28:28+4])[0] decode_data["BandWidth"] = struct.unpack('<f', data[32:32+4])[0] decode_data["SampleInterval"] = struct.unpack('<f', data[36:36+4])[0] decode_data["SoundVelocity"] = struct.unpack('<f', data[40:40+4])[0] decode_data["AbsorptionCoefficient"] = struct.unpack('<f', data[44:44+4])[0] decode_data["Heave"] = struct.unpack('<f', data[48:48+4])[0] decode_data["Tx_Roll"] = struct.unpack('<f', data[52:52+4])[0] decode_data["Tx_Pitch"] = struct.unpack('<f', data[56:56+4])[0] decode_data["Temperature"] = struct.unpack('<f', data[60:60+4])[0] decode_data["Spare1"] = struct.unpack('<h', data[64:64+2])[0] decode_data["Spare2"] = struct.unpack('<h', data[66:66+2])[0] decode_data["Rx_Roll"] = struct.unpack('<f', data[68:68+4])[0] decode_data["Rx_Pitch"] = struct.unpack('<f', data[72:72+4])[0] decode_data["Offset"] = struct.unpack('<l', data[76:76+4])[0] decode_data["Count"] = struct.unpack('<l', data[80:80+4])[0] decode_data["Power"] = [] for i in range(decode_data["Count"]): decode_data["Power"].append(struct.unpack('<h', data[84+i*2:84+i*2+2])[0]*10*np.log10(2)/256) return decode_data def decode_NME0(data): """ Cette fonction permet de decoder les trames NME0 /!\ return None si line_[0]!='$GPGGA' Parametres ---------- data : string trame NME0 - portion de fichier binaire Sorties ------- data_traj : list of float donnees de postionnement [date en secondes, latitude, longitude, altitude] """ trame = data[:4] if trame == b'NME0': trames = data[12:].decode('ascii').split('\n') for line_ in trames: line_=line_.split(',') if line_[0]=='$GPGGA': sec_txt = line_[1].split(".")[0] secondes = int(sec_txt[-2:]) + int(sec_txt[-4:-2])*60 + int(sec_txt[:-4])*3600 lat=float(line_[2]) lat=lat//100+(lat-lat//100*100)/60 if line_[3]=='S': lat=-lat lon=float(line_[4]) lon = lon // 100 + (lon - lon // 100*100) / 60 if line_[5]=='W': lon=-lon data_traj = [secondes, lat, lon, float(line_[9])+float(line_[11])] return data_traj def decode_DEP0(data): """ Cette fonction permet de decoder les trames DEP0. Parametres ---------- data : string trame DEP0 - portion de fichier binaire Sortie ------- decode_data : dictionary dictionnaire comprenant les donnes utiles : detection du fond et BS calcule par Kongsberg """ trame = data[:4] if trame == b'DEP0': decode_data={} decode_data["DateTime"] = struct.unpack('<Q', data[4:4+8])[0] decode_data["NbChannel"] = struct.unpack('<I', data[12:12+4])[0] # transducer 1 = 38kHz decode_data["Depth_38"] = struct.unpack('<f', data[16:16+4])[0] decode_data["BS_38"] = struct.unpack('<f', data[20:20+4])[0] decode_data["Param2_38"] = struct.unpack('<f', data[24:24+4])[0] # transducer 2 = 200kHz decode_data["Depth_200"] = struct.unpack('<f', data[28:28+4])[0] decode_data["BS_200"] = struct.unpack('<f', data[32:32+4])[0] decode_data["Param2_200"] = struct.unpack('<f', data[36:36+4])[0] return decode_data #--------------- FONCTIONS PERMETTANT DE LIRE LES DONNEES ------------------ def read_RAWfile(f,line,channel,survey_date,range_detection,depth_max_toSave): """ Cette fonction permet de lire un fichier .raw, puis elle enregistre les donnees dans des dictionnaires. Parametres ---------- f : .raw file fichier .raw issu de l'EA400 et ouvert grace a : open(filepath, 'rb') line : string identifiant du fichier de donnees, ici nom de la ligne, par ex : 'L0006' channel : list of int liste des canaux que l'on souhaite lire, par ex : [1,2] [1], ou [2] avec {1:38kHz ; 2:200kHz} survey_date : datetime date a laquelle a ete realisee le leve (jour), par ex : dt.datetime(year=2020,month=10,day=7,hour = 0,minute = 0,second = 0) range_detection : list of int intervalle de profondeur utilise pour la detection du fond, par ex : [5,100] depth_max_toSave : int profondeur seuil pour la sauvegarde des donnees, ne pas sauvegarder si la profondeur est superieure au seuil Sorties ------- d_param : dictionary dictionnaire comprenant tous les parametres d'acquisition respectifs a une ligne de leve d_power : dictionary dictionnaire comprenant l'ensemble des donnees acoustiques mesurees pendant une ligne d_traj : dictionary dictionnaire comprenant l'ensemble des donnees de positionnement recueillies pendant une ligne """ #-------------Definition des variables ----------- nb_con , nb_tag , nb_nme , nb_raw , nb_svp , nb_dep = 0,0,0,0,0,0 # compteurs de trames ping=0 # compteur de ping # Sauvegarde des donnees NME0 Trajectoire_time = [] # liste des temps trajectoire Trajectoire_lat,Trajectoire_lon,Trajectoire_z=[],[],[] # listes des latitudes, longitudes et altitudes # Origine des dates origine_1601 = dt.datetime(year=1601,month=1,day=1,hour = 0,minute = 0,second = 0) # Dictionnaires a remplir d_power = {} d_param = {} d_traj = {} #-------------------------------------------------- data = f.read(4 * 1) # Debut de la lecture des donnees while len(data)==4 : # Tant qu'il y a toujours des donnees a lire # on lit la longueur de la trame precisee au debut lengths, = struct.unpack('<l', data) # on isole la trame dans data data = f.read(lengths*1) trame = data[:4] if trame == b'CON0': nb_con+=1 # on decode la trame CON0 decoded_CON0 = decode_CON0(data) elif trame == b'TAG0': nb_tag+=1 elif trame == b'NME0': nb_nme+=1 # on decode la trame NME0 decoded_NME0 = decode_NME0(data) if decoded_NME0 != None: Trajectoire_time.append(survey_date + dt.timedelta(seconds = decoded_NME0[0])) Trajectoire_lat.append(decoded_NME0[1]) Trajectoire_lon.append(decoded_NME0[2]) Trajectoire_z.append(decoded_NME0[3]) elif trame == b'SVP0': nb_svp+=1 elif trame == b'DEP0': nb_dep+=1 elif trame == b'RAW0': nb_raw+=1 # on decode la trame RAW0 decoded_RAW0 = decode_RAW0(data) # Variables dateTime_ms = (decoded_RAW0["DateTime"]) // 10 # conversion de l'heure de dixieme de ms en ms sample_int = decoded_RAW0["SampleInterval"] sound_vel = decoded_RAW0["SoundVelocity"] power = decoded_RAW0["Power"] # Conversion des profondeurs en indices i_max_save = round( 2*depth_max_toSave / (sample_int * sound_vel)) # i_borne_prof i_min_detect = round( 2*range_detection[0] / (sample_int * sound_vel)) i_max_detect = round( 2*range_detection[1] / (sample_int * sound_vel)) if decoded_RAW0["Channel"]==channel: # si la trame est dans la frequence choisie if len(power)!=0: ping += 1 # Detection du fond = max de puissance dans l'intervalle range_detection save_power_list = power[:i_max_save+1] # puissance a sauvegarder detect_power_list = power[i_min_detect:i_max_detect+1] # puissance pour detection du fond max_power = max(detect_power_list) # maximum de puissance dans detect_power_list i_max_power = i_min_detect + detect_power_list.index(max_power) # indice du max prof_max_power = i_max_power * sample_int * sound_vel / 2 # profondeur du max # - - - Stockage des donnees dans les dictionnaires d_param et d_power - - - # # extraction de Power dans un dictionnaire dont la clef est le nom de la ligne # sous forme de dataframe dont l'index est le numero du ping if line not in d_power: # lorsqu'on traite un nouveau fichier, on crée un nouveau DataFrame dans d_power # Initialisation du DataFrame pour d_param, definition des variables d_param[line] = pandas.DataFrame( columns= ['SurveyName','TransectName','SounderName','TransducerCount', 'Frequency_38','Gain_38','EquivalentBeamAngle_38', 'Frequency_200','Gain_200','EquivalentBeamAngle_200', 'Channel','Frequency', 'SampleInterval','SoundVelocity','PulseLength', 'BandWidth','AbsorptionCoefficient','Count', 'Mode','DepthMaxSave','DepthMinDetect','DepthMaxDetect']) # Enregistrement des metadonnees dans d_param d_param[line].loc['param'] = [decoded_CON0['SurveyName'],decoded_CON0['TransectName'],decoded_CON0['SounderName'],decoded_CON0['TransducerCount'], decoded_CON0['Frequency_38'],decoded_CON0['Gain_38'],decoded_CON0['EquivalentBeamAngle_38'], decoded_CON0['Frequency_200'],decoded_CON0['Gain_200'],decoded_CON0['EquivalentBeamAngle_200'], channel,decoded_RAW0["Frequency"], decoded_RAW0['SampleInterval'],decoded_RAW0['SoundVelocity'],decoded_RAW0['PulseLength'], decoded_RAW0['BandWidth'],decoded_RAW0['AbsorptionCoefficient'],decoded_RAW0['Count'], decoded_RAW0['Mode'],depth_max_toSave,range_detection[0],range_detection[1]] # Initialisation du DataFrame pour d_power, definition des variables d_power[line] = pandas.DataFrame( columns= ['DateTime','Power','PowerDetectInterval','PowerMax','Depth', 'TransmitPower','Mode','TransducerDepth', 'Heave','Tx_Roll','Tx_Pitch','Spare1','Spare2', 'Rx_Roll','Rx_Pitch','Offset']) # Enregistrement des donnees dans d_power d_power[line].loc[ping,'DateTime'] = origine_1601 + dt.timedelta(microseconds = dateTime_ms) d_power[line].loc[ping,'Power'] = save_power_list d_power[line].loc[ping,'PowerDetectInterval'] = detect_power_list d_power[line].loc[ping,'PowerMax'] = max_power d_power[line].loc[ping,'Depth'] = prof_max_power d_power[line].loc[ping,'TransmitPower'] = decoded_RAW0['TransmitPower'] d_power[line].loc[ping,'Mode'] = decoded_RAW0['Mode'] d_power[line].loc[ping,'TransducerDepth'] = decoded_RAW0['TransducerDepth'] d_power[line].loc[ping,'Heave'] = decoded_RAW0['Heave'] d_power[line].loc[ping,'Tx_Roll'] = decoded_RAW0['Tx_Roll'] d_power[line].loc[ping,'Tx_Pitch'] = decoded_RAW0['Tx_Pitch'] d_power[line].loc[ping,'Spare1'] = decoded_RAW0['Spare1'] d_power[line].loc[ping,'Spare2'] = decoded_RAW0['Spare2'] d_power[line].loc[ping,'Rx_Roll'] = decoded_RAW0['Rx_Roll'] d_power[line].loc[ping,'Rx_Pitch'] = decoded_RAW0['Rx_Pitch'] d_power[line].loc[ping,'Offset'] = decoded_RAW0['Offset'] # - - - end Stockage - - - # data = f.read(4 * 1) # Poursuite de la lecture # on lit la longueur de la trame precisee à la fin lengthf, = struct.unpack('<l', data) if lengthf != lengths: # on verifie que l'identifiant est le même au début et à la fin raise Exception('Length problem') data = f.read(4 * 1) # Poursuite de la lecture #----------------- FIN BOUCLE WHILE ----------------- # # - - - Stockage des metadonnees et des donnees de positionnement dans d_traj - - - # if line not in d_traj: # Initialisation du DataFrame pour d_traj, definition des variables d_traj[line] = pandas.DataFrame( columns= ['DateTime','lon','lat','X','Y','z']) # - Conversion des coordonnees de WGS84 en Lambert93 - # outProj = Proj('epsg:2154') inProj = Proj('epsg:4326') lon, lat = np.array(Trajectoire_lon), np.array(Trajectoire_lat) X_L93,Y_L93 = transform(inProj,outProj,lat,lon) # Enregistrement des donnees dans d_traj d_traj[line]['DateTime'] = Trajectoire_time d_traj[line]['lon'] = Trajectoire_lon # Sauvegarde des coordonnees en WGS84 d_traj[line]['lat'] = Trajectoire_lat d_traj[line]['X'] = X_L93 # Sauvegarde des coordonnees en Lambert93 d_traj[line]['Y'] = Y_L93 d_traj[line]['z'] = Trajectoire_z # # - - - end - - - # # Nombre de trames au total nb_tot = nb_con + nb_tag + nb_nme + nb_raw + nb_svp + nb_dep # Affiche le nom du fichier traite et le nombre de trames qu'il contient print('\nFichier : ',f.name) print('nb_tot : ',nb_tot,'\nnb_con : ' ,nb_con, '\nnb_tag : ',nb_tag , '\nnb_nme : ',nb_nme , '\nnb_raw : ',nb_raw ,'\nnb_svp : ', nb_svp,'\nnb_dep : ',nb_dep) return d_param,d_power,d_traj def read_OUTfile(f,line): """ Cette fonction permet de lire un fichier .out, puis elle enregistre les donnees pertinentes dans des dictionnaires. Parametres ---------- f : .raw file fichier .raw issu de l'EA400 et ouvert grace a : open(filepath, 'rb') line : string identifiant du fichier de donnees, ici nom de la ligne, par ex : 'L0006' Sorties ------- d_out : dictionary dictionnaire comprenant les donnees presentes dans les trames DEP0 : detection du fond et valeur de BS Kongberg """ #-------------Definition des variables ----------- nb_con , nb_tag , nb_nme , nb_raw , nb_svp , nb_dep = 0,0,0,0,0,0 # compteurs de trames # Initialisation des listes L_time , L_depth38, L_depth200, L_BS38, L_BS200 = [],[],[],[],[] # Origine des dates origine_1601 = dt.datetime(year=1601,month=1,day=1,hour = 0,minute = 0,second = 0) # Dictionnaire a remplir d_out = {} #------------------------------------------------- data = f.read(4 * 1) # Debut de la lecture des donnees while len(data)==4 : # Tant qu'il y a toujours des donnees a lire # on lit la longueur de la trame precisee au debut lengths, = struct.unpack('<l', data) # on isole la trame dans data data = f.read(lengths*1) trame = data[:4] if trame == b'CON0': nb_con+=1 elif trame == b'TAG0': nb_tag+=1 elif trame == b'NME0': nb_nme+=1 decode_NME0(data) elif trame == b'RAW0': nb_raw+=1 elif trame == b'SVP0': nb_svp+=1 elif trame == b'DEP0': nb_dep+=1 # on decode la trame DEP0 decoded_DEP0 = decode_DEP0(data) time_ms = (decoded_DEP0['DateTime']) //10 # conversion des dates en ms L_time.append(origine_1601 + dt.timedelta(microseconds = time_ms)) L_depth38.append(decoded_DEP0['Depth_38']) L_depth200.append(decoded_DEP0['Depth_200']) L_BS38.append(decoded_DEP0['BS_38']) L_BS200.append(decoded_DEP0['BS_200']) data = f.read(4 * 1) # Poursuite de la lecture # on lit la longueur de la trame precisee à la fin lengthf, = struct.unpack('<l', data) if lengthf != lengths: # on vérifie que l'identifiant est le même au début et à la fin raise Exception('Length problem') data = f.read(4 * 1) # Poursuite de la lecture #----------------- FIN BOUCLE WHILE ----------------- if line not in d_out: d_out[line] = pandas.DataFrame( columns= ['DateTime','Depth_38','Depth_200','BS_38','BS_200']) # Enregistrement des donnees dans d_out d_out[line]['DateTime'] = L_time d_out[line]['Depth_38'] = L_depth38 d_out[line]['Depth_200'] = L_depth200 d_out[line]['BS_38'] = L_BS38 d_out[line]['BS_200'] = L_BS200 # Nombre de trames au total nb_tot = nb_con + nb_tag + nb_nme + nb_raw + nb_svp + nb_dep # Affiche le nom du fichier traite et le nombre de trames qu'il contient print('\nFichier : ',f.name) print('nb_tot : ',nb_tot,'\nnb_con : ' ,nb_con, '\nnb_tag : ',nb_tag , '\nnb_nme : ',nb_nme , '\nnb_raw : ',nb_raw ,'\nnb_svp : ', nb_svp,'\nnb_dep : ',nb_dep) return d_out def check_FileExists(filepath): """ Cette fonction permet de verifier qu'aucun fichier n'est ecrase involontairement lors d'une sauvegarde. Parametres ---------- filepath : string Chemin vers le fichier qu'on souhaite sauvegarde Sorties ------- Save : boolean False si un fichier existe donc on desactive la sauvegarde True si ce fichier n'existe pas, sauvegarde possible """ Save = True # Activation de la sauvegarde if os.path.exists(filepath) : # on verifie de ne pas ecraser un fichier existant print('Vous allez ecraser le fichier '+filepath+',\nvoulez vous le remplacer par celui que vous generez maintenant ?') print('Appuyez sur [y] ou [n], et tapez entrer dans la console.') action_doublon = input('->') if action_doublon == 'n': Save = False # On desactive la sauvegarde if action_doublon == 'y': Save = True return Save def save_RAWbdd(outpath,channel,d_param,d_power,d_traj): """ Cette fonction permet de sauvegarder les donnees des fichiers .RAW rassemblees dans les dictionnaires dans des fichiers h5. Parametres ---------- outpath : string chemin vers le dossier de sortie channel : int canal a sauvegarder, par ex : 1->38kHz et 2->200kHz d_param : dictionary dictionnaire comprenant tous les parametres d'acquisition respectifs a une ligne de leve d_power : dictionary dictionnaire comprenant l'ensemble des donnees acoustiques mesurees pendant une ligne d_traj : dictionary dictionnaire comprenant l'ensemble des donnees de positionnement recueillies pendant une ligne """ # Prise en compte de la frequence if channel ==1: str_freq = '_38kHz' else : str_freq = '_200kHz' for ligne in d_power: # on parcourt les fichiers/lignes traitees fic_h5_data = ligne +str_freq+ '_data.h5' # nom du fichier de sortie rassemblant les donnees # Verification pour ne pas ecraser de fichier Save = check_FileExists(outpath + fic_h5_data) if Save : # Sauvegarde # Creation d'un fichier de sortie h5 store = pandas.HDFStore(outpath + fic_h5_data) store['data'] = d_power[ligne] store['trajectoire'] = d_traj[ligne] store['param'] = d_param[ligne] store.close() return None def runDECODEandSAVE_RAWfiles(filesRAW_to_read,out_path,channels,survey_date,range_detection,depth_max_toSave): """ Cette fonction permet d'executer la lecture et la sauvegarde des fichiers .RAW dans des fichiers h5. Parametres ---------- filesRAW_to_read : list of string liste des chemins vers les fichiers .raw a lire out_path : string chemin vers le repertoire de sortie channels : list of int liste des canaux que l'on souhaite lire, par ex : [1,2] [1], ou [2] avec {1:38kHz ; 2:200kHz} survey_date : datetime date a laquelle a ete realisee le leve (jour), par ex : dt.datetime(year=2020,month=10,day=7,hour = 0,minute = 0,second = 0) range_detection : list of int intervalle de profondeur utilise pour la detection du fond, par ex : [5,100] depth_max_toSave : int profondeur seuil pour la sauvegarde des donnees, ne pas sauvegarder si la profondeur est superieure au seuil """ for channel in channels : # on parcout les canaux for file in filesRAW_to_read : # on parcourt les fichiers de donnees .raw line = os.path.basename(file)[:5] print('-> Lecture du fichier RAW, Ligne : '+line+' Canal : '+str(channel)) # Ouverture du fichier f = open(file, 'rb') # lecture et remplissage de dictionnaires : d_power,d_param,d_traj = read_RAWfile(f,line,channel,survey_date,range_detection,depth_max_toSave) print('Lecture achevee') print('-> Sauvegarde du fichier RAW, Ligne : '+line+' Canal : '+str(channel)) # Enregistrement des donnees dans des fichiers h5 save_RAWbdd(out_path,channel,d_param,d_power,d_traj) print('Sauvegarde achevee') return None def runDECODEandSAVE_OUTfiles(filesOUT_to_read,out_path): """ Cette fonction permet d'executer la lecture et la sauvegarde des fichiers .out dans des fichiers h5. Parametres ---------- filesOUT_to_read : list of string list des chemins vers les fichiers a lire out_path : string chemin vers le repertoire de sortie """ for file in filesOUT_to_read : # on parcourt les fichiers .out a lire line = os.path.basename(file)[:5] print('-> Lecture du fichier OUT, Ligne : '+line) # Ouverture du fichier fic = open(file, 'rb') # lecture et remplissage de dictionnaire : d_out = read_OUTfile(fic,line) print('Lecture achevee') print('-> Sauvegarde du fichier OUT, Ligne : '+line) out_file = out_path + line + '_ref.txt' # Verification pour ne pas ecraser de fichier if check_FileExists(out_file): # Creation d'un fichier de metadata d_out[line].to_csv(out_file ,sep = ' ', index=False) print('Sauvegarde achevee') return None if __name__ == '__main__': t_start = time.time() # Debut du temps de calcul # Chemins vers les repertoires de donnees dir_path = './data/' # repertoire d'entree ->>> A SPECIFIER filesRAW_to_read = glob.glob(dir_path+'*.raw') # Ensemble des fichiers RAW a traiter filesOUT_to_read = glob.glob(dir_path+'*.out') # Ensemble des fichiers OUT a traiter out_path = './fic_h5/' # repertoire de sortie ->>> A SPECIFIER # Variables # Date du leve /!\ a modifier 07/10/2020 ou 23/10/2020 ->>> A SPECIFIER survey_date = dt.datetime(year=2020,month=10,day=7,hour = 0,minute = 0,second = 0) channels = [1,2] # canaux à lire {1:38kHz ; 2:200kHz} ->>> A SPECIFIER range_detection = [5,100] # intervalle de profondeur pour la recherche du fond (en m) depth_max_toSave = 100 # profondeur max sauvegardee dans les fichiers h5 (en m) # Lecture et Sauvegarde des fichiers .RAW runDECODEandSAVE_RAWfiles(filesRAW_to_read,out_path,channels,survey_date,range_detection,depth_max_toSave) # Lecture et Sauvegarde des fichiers .OUT runDECODEandSAVE_OUTfiles(filesOUT_to_read,out_path) # Affichage du temps de calcul t_end = time.time() # Fin du temps de calcul print('\nCalculation time : ',round((t_end-t_start)/60),'min')
cournez-ensta/Projet_Classification_2021
Scripts_Python/decode_and_save_EA400data_with_NME0.py
decode_and_save_EA400data_with_NME0.py
py
29,607
python
fr
code
0
github-code
50
22417742951
from alumina.config.userModel import AluminaUserModel from django.shortcuts import render from ATUJobPortal.config.authentication import Authentication from django.http.response import HttpResponseRedirect def aluminaApplicationController(request): auth = Authentication(request) msg = None errorMessage = None userDetails = None sort = None noApplication = True if auth.authMap["authorize"]: userId = auth.authMap["userId"] userDetails = AluminaUserModel.userModel(userId) print(userDetails) else: return HttpResponseRedirect("/account/logout") if request.method == "GET": sort = request.GET.get("sort") if sort is None: sort = "pending" # checking for no application for application in userDetails.get("allApplicationsList"): if application.get("status") == sort: noApplication = False break return render(request, 'aluminaApplications.html', {"heading": "Alumina All Application | ATU Job Portal", "auth": auth.authMap, "msg": msg, "userDetails": userDetails, "errorMessage": errorMessage, "sort": sort, "noApplication": noApplication, "tabName": "application"})
tmsoft96/ATUJobPortal
alumina/controllers/aluminaApplicationController.py
aluminaApplicationController.py
py
1,402
python
en
code
1
github-code
50
15142269500
import cv2 as cv import numpy as np image_width = 480 image_height = 640 def sort_points(points): points = points.reshape((4, 2)) points_new = np.zeros((4, 1, 2), dtype=np.int32) _sum = points.sum(1) _diff = np.diff(points, axis=1) points_new[0] = points[np.argmin(_sum)] points_new[3] = points[np.argmax(_sum)] points_new[1] = points[np.argmin(_diff)] points_new[2] = points[np.argmax(_diff)] return points_new def apply_warp(image, points): points = sort_points(points) pts1 = np.float32(points) pts2 = np.float32([[0, 0], [image_width, 0], [0, image_height], [image_width, image_height]]) matrix = cv.getPerspectiveTransform(pts1, pts2) output = cv.warpPerspective(image, matrix, (image_width, image_height)) crop = output[20:output.shape[0]-20, 20:output.shape[1]-20] crop = cv.resize(crop, (image_width, image_height)) return crop def get_contours(image): biggest_contour = np.array([]) max_area = 0 contours, _ = cv.findContours(image, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE) for contour in contours: area = cv.contourArea(contour) if area > 5000: perimeter = cv.arcLength(contour, True) approx = cv.approxPolyDP(contour, 0.02*perimeter, True) if area > max_area and len(approx) == 4: biggest_contour = approx max_area = area cv.drawContours(img_contour, biggest_contour, -1, (0, 255, 0), 20) return biggest_contour def process(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) blur = cv.GaussianBlur(gray, (5, 5), 1) canny = cv.Canny(blur, 200, 200) kernel = np.ones((5, 5), dtype='uint8') dilated = cv.dilate(canny, kernel, iterations=2) eroded = cv.erode(dilated, kernel, iterations=1) return eroded cap = cv.VideoCapture(0) while True: _, img = cap.read() cv.resize(img, (image_width, image_height)) img_contour = img.copy() mod_img = process(img) largest_contour = get_contours(mod_img) warped_image = np.zeros_like(img) if len(largest_contour) > 0: warped_image = apply_warp(img, largest_contour) cv.imshow('result', warped_image) cv.imshow('flow', img_contour) if cv.waitKey(1) & 0xFF == ord('q'): break
chaos-6666/cv-projects
doc_scan.py
doc_scan.py
py
2,298
python
en
code
0
github-code
50
25953188511
import keras from keras.models import load_model from agent.agent import Agent from functions import * import sys if len(sys.argv) != 4: print('Usage: python evaluate.py [stock] [model] [window_size]') exit() stock_name, model_name, window_size = sys.argv[1], sys.argv[2], int(sys.argv[3]) agent = Agent(window_size, 10, True, model_name) data = getStockDataVec(stock_name)[-600000:] l = len(data) - 1 state = getState(data, 0, window_size + 1) total_profit = 0 agent.inventory = [] for t in range(l): action = agent.choose_action(state) # sit next_state = getState(data, t + 1, window_size + 1) profit = 0 reward = 0 if 1 == action: # buy agent.inventory.append(data[t]) print(f'Buy: {formatPrice(data[t])}') elif 2 == action and len(agent.inventory): # sell for bought_price in agent.inventory: profit += data[t] - bought_price agent.inventory = [] reward = max(profit, 0) total_profit += profit print(f'Sell: {formatPrice(data[t])} | Profit: {formatPrice(profit)}') done = True if t == l - 1 else False agent.store_transition(state, action, reward, next_state) state = next_state if done: print('-'*50) print(f'Total Profit: {formatPrice(total_profit)}') print('-'*50)
goho302jo03/nn_model
q-trader/evaluate.py
evaluate.py
py
1,327
python
en
code
0
github-code
50
8147050964
from PIL import Image, ImageDraw import math import random import numpy as np import matplotlib.pyplot as plt random_seed = 123456789 random.seed(random_seed) def to_rgb(image): rgb = image.convert("RGB") width = image.width height = image.height matrix = np.zeros((width, height, 3)) for x in range(width): for y in range(height): matrix[x, y, :] = rgb.getpixel((x, y)) return matrix def to_gray(rgb): return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140]) def add_noise(matrix, noise_level): noise = np.random.randn(matrix.shape[0], matrix.shape[1]) * noise_level matrix = matrix + noise matrix[matrix > 255] = 255 matrix[matrix < 0] = 0 return matrix def to_binary(matrix, threshold): result = np.array(matrix) result[matrix > threshold] = 1 result[matrix <= threshold] = -1 return result def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def gibbs_sampling(input_, num_iters = 5, J = 1): DX = [-1, 1, 0, 0] DY = [0, 0, -1, 1] X = np.zeros(input_.shape) X[:, :] = input_[:, :] width = X.shape[0] height = X.shape[1] for iter in range(num_iters): X_next = np.zeros(X.shape) for x in range(width): for y in range(height): agree = 0 disagree = 0 for i in range(len(DX)): x_ = x + DX[i] y_ = y + DY[i] if x_ >= 0 and x_ < width and y_ >= 0 and y_ < height: if X[x_][y_] == X[x][y]: agree += 1 else: disagree += 1 eta = X[x][y] * (agree - disagree) prob = sigmoid(2 * J * eta) sample = np.random.rand() if sample <= prob: X_next[x][y] = 1 else: X_next[x][y] = -1 X = X_next return X image = Image.open("jim_simons.jpg").convert('LA') matrix = to_gray(to_rgb(image)) noised_matrix = add_noise(matrix, noise_level = 25) X = to_binary(noised_matrix, threshold = 50) X_gibbs = gibbs_sampling(X, num_iters = 5, J = 1) plt.subplot(1, 3, 1) plt.imshow(matrix.transpose()) plt.title('Original') plt.subplot(1, 3, 2) plt.imshow(X.transpose() * 255) plt.title("White noised") plt.subplot(1, 3, 3) plt.imshow(X_gibbs.transpose() * 255) plt.title("Gibbs sampling on 2D Ising model") plt.show() gibbs_1 = gibbs_sampling(X, num_iters = 1, J = 1) gibbs_3 = gibbs_sampling(X, num_iters = 3, J = 1) gibbs_5 = gibbs_sampling(X, num_iters = 5, J = 1) plt.subplot(1, 4, 1) plt.imshow(X.transpose() * 255) plt.title("White noised") plt.subplot(1, 4, 2) plt.imshow(gibbs_1.transpose() * 255) plt.title('Gibbs sampling (1 iteration)') plt.subplot(1, 4, 3) plt.imshow(gibbs_3.transpose() * 255) plt.title("Gibbs sampling (3 iterations)") plt.subplot(1, 4, 4) plt.imshow(gibbs_5.transpose() * 255) plt.title("Gibbs sampling (5 iterations)") plt.show()
HyTruongSon/Dirichlet_Process
ising_gibbs.py
ising_gibbs.py
py
2,661
python
en
code
0
github-code
50
28612570847
import os from tkinter import * import tkinter.messagebox as tkMessageBox from idlelib.container import Container, TabbedContainer, ProxyContainer class FileList: # N.B. this import overridden in PyShellFileList. from idlelib.EditorWindow import EditorWindow def __init__(self, root): self.root = root self.dict = {} self.inversedict = {} self.containers = {} self.tab_container = None self.using_tabs = True self.vars = {} # For EditorWindow.getrawvar (shared Tcl variables) def open(self, filename, action=None): assert filename filename = self.canonize(filename) if os.path.isdir(filename): # This can happen when bad filename is passed on command line: tkMessageBox.showerror( "File Error", "%r is a directory." % (filename,), master=self.root) return None key = os.path.normcase(filename) if key in self.dict: edit = self.dict[key] edit.wakeup() return edit if action: # Don't create window, perform 'action', e.g. open in same window return action(filename) else: edit = self.EditorWindow(self, filename, key) if edit.good_load: return edit else: edit._close() return None def new_container(self, own_window=False): "Return a new Container for a component" if self.using_tabs and not own_window: if self.tab_container is None: self.tab_container = TabbedContainer(self) return ProxyContainer(self.tab_container) else: return Container(self) def register_editor_window(self, win, key=None): self.inversedict[win] = key if key: self.dict[key] = win def already_open(self, filename): assert filename filename = self.canonize(filename) if not os.path.isdir(filename): key = os.path.normcase(filename) return key in self.dict return False def gotofileline(self, filename, lineno=None): edit = self.open(filename) if edit is not None and lineno is not None: edit.gotoline(lineno) def new(self, filename=None): return self.EditorWindow(self, filename) def new_topwindow(self, event=None): self.tab_container = None return self.new() def close_all_callback(self, *args, **kwds): for edit in list(self.inversedict): reply = edit.close() if reply == "cancel": break return "break" def keep_running(self): "Application should stay running while any editors are open" return len(self.inversedict) > 0 def unregister_maybe_terminate(self, edit): try: key = self.inversedict[edit] except KeyError: print("Don't know this EditorWindow object. (close)") return if key: del self.dict[key] del self.inversedict[edit] if not self.inversedict: self.root.quit() def filename_changed_edit(self, edit): edit.saved_change_hook() try: key = self.inversedict[edit] except KeyError: print("Don't know this EditorWindow object. (rename)") return filename = edit.io.filename if not filename: if key: del self.dict[key] self.inversedict[edit] = None return filename = self.canonize(filename) newkey = os.path.normcase(filename) if newkey == key: return if newkey in self.dict: conflict = self.dict[newkey] self.inversedict[conflict] = None tkMessageBox.showerror( "Name Conflict", "You now have multiple edit windows open for %r" % (filename,), master=self.root) self.dict[newkey] = edit self.inversedict[edit] = newkey if key: try: del self.dict[key] except KeyError: pass self.root.after_idle(self.filenames_changed) # note: replacement for WindowList.add def add_container(self, container): container.w.after_idle(self.filenames_changed) self.containers[str(container)] = container # note: replacement for WindowList.delete def delete_container(self, container): if self.tab_container == container: self.tab_container = None try: del self.containers[str(container)] except KeyError: # Sometimes, destroy() is called twice pass self.filenames_changed() # note: replaces callbacks from WindowList; whereas those needed to be # explicitly registered for and unregistered from, here we just send # the notice to every component def filenames_changed(self): "Callback when one or more filenames changed" for w in self.inversedict.keys(): w.filenames_changed() def add_windows_to_menu(self, menu): list = [] for key in self.containers: container = self.containers[key] try: title = container.get_title() except TclError: continue list.append((title, key, container)) list.sort() for title, key, container in list: if container.component is not None: menu.add_command(label=title, command=container.component.wakeup) def configuration_will_change(self): "Callback from configuration dialog before settings are applied." for w in self.inversedict.keys(): w.configuration_will_change() def configuration_changed(self): "Callback from configuration dialog after settings are applied." for w in self.inversedict.keys(): w.configuration_changed() def apply_breakpoints(self, applycmd): "Callback from debugger asking each editor to apply it's breakpoints" for w in self.inversedict.keys(): try: # only PyShellEditorWindow will support this callback w.apply_breakpoints(applycmd) except Exception: pass def rebuild_recent_files_menu(self, rf_list): "Called when all editors need to rebuild their recent files menus" for w in self.inversedict.keys(): w.rebuild_recent_files_menu(rf_list) def canonize(self, filename): if not os.path.isabs(filename): try: pwd = os.getcwd() except OSError: pass else: filename = os.path.join(pwd, filename) return os.path.normpath(filename) def _test(): from idlelib.EditorWindow import fixwordbreaks import sys root = Tk() fixwordbreaks(root) root.withdraw() flist = FileList(root) if sys.argv[1:]: for filename in sys.argv[1:]: flist.open(filename) else: flist.new() if flist.inversedict: root.mainloop() if __name__ == '__main__': _test()
roseman/idle
FileList.py
FileList.py
py
7,409
python
en
code
48
github-code
50
36603213242
import unittest from unittest import mock import pandas as pd from exabel_data_sdk.client.api.data_classes.entity import Entity from exabel_data_sdk.client.api.data_classes.entity_type import EntityType from exabel_data_sdk.client.api.entity_api import EntityApi from exabel_data_sdk.client.client_config import ClientConfig from exabel_data_sdk.stubs.exabel.api.data.v1.all_pb2 import SearchEntitiesResponse, SearchTerm from exabel_data_sdk.util.resource_name_normalization import ( _assert_no_collision, _validate_mic_ticker, get_namespace_from_resource_identifier, normalize_resource_name, to_entity_resource_names, ) class TestResourceNameNormalization(unittest.TestCase): def test_basic(self): self.assertEqual("abc_Inc_", normalize_resource_name("abc, Inc.")) self.assertEqual("abcXYZ0189-_", normalize_resource_name("abcXYZ0189-_")) self.assertEqual("_l_", normalize_resource_name("-Øl?.")) long_name = "".join(str(i) for i in range(50)) self.assertEqual(long_name[:64], normalize_resource_name(long_name)) self.assertRaises(ValueError, normalize_resource_name, "") def test_entity_type_uppercase_existing_mapping(self): data = pd.Series(["abc, Inc.", "abcXYZ0189-_", "", "-Øl?."], name="BRAND") expected = pd.Series( [ "entityTypes/BRAND/entities/acme.abc_Inc_", "entityTypes/BRAND/entities/acme.abcXYZ0189-_", None, "entityTypes/BRAND/entities/acme._l_", ], name="entity", ) entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.get_entity_type_iterator.side_effect = self._list_entity_types_uppercase result = to_entity_resource_names(entity_api, data, namespace="acme").names pd.testing.assert_series_equal(expected, result) def test_entity_type_uppercase_not_existing_mapping(self): data = pd.Series(["abc, Inc.", "abcXYZ0189-_", "", "-Øl?."], name="BRAND") expected = pd.Series( [ "entityTypes/brand/entities/acme.abc_Inc_", "entityTypes/brand/entities/acme.abcXYZ0189-_", None, "entityTypes/brand/entities/acme._l_", ], name="entity", ) entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.get_entity_type_iterator.side_effect = self._list_entity_types result = to_entity_resource_names(entity_api, data, namespace="acme").names pd.testing.assert_series_equal(expected, result) def test_global_entity_type_mapping(self): data = pd.Series(["I_DE", "I_US", "", "abcXYZ0189"], name="country") expected = pd.Series( [ "entityTypes/country/entities/I_DE", "entityTypes/country/entities/I_US", None, "entityTypes/country/entities/abcXYZ0189", ], name="entity", ) entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.get_entity_type_iterator.side_effect = self._list_entity_types result = to_entity_resource_names(entity_api, data, namespace="acme").names pd.testing.assert_series_equal(expected, result) def test_validate_mic_ticker(self): self.assertTrue(_validate_mic_ticker("A:A")) self.assertFalse(_validate_mic_ticker(":A")) self.assertFalse(_validate_mic_ticker("A:")) self.assertFalse(_validate_mic_ticker("A:A:A")) self.assertFalse(_validate_mic_ticker("A::A")) self.assertFalse(_validate_mic_ticker("A")) def test_isin_mapping(self): data = pd.Series(["US87612E1064", "DE000A1EWWW0", "US87612E1064"], name="isin") expected = pd.Series( [ "entityTypes/company/entities/target_inc", "entityTypes/company/entities/adidas_ag", "entityTypes/company/entities/target_inc", ], name="entity", ) search_terms = [ SearchTerm(field="isin", query="US87612E1064"), SearchTerm(field="isin", query="DE000A1EWWW0"), ] entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.search.entities_by_terms.return_value = [ SearchEntitiesResponse.SearchResult( terms=[search_terms[0]], entities=[ Entity("entityTypes/company/entities/target_inc", "Target, Inc.").to_proto(), ], ), SearchEntitiesResponse.SearchResult( terms=[search_terms[1]], entities=[ Entity("entityTypes/company/entities/adidas_ag", "Adidas Ag").to_proto(), ], ), ] result = to_entity_resource_names(entity_api, data, namespace="acme").names call_args_list = entity_api.search.entities_by_terms.call_args_list self.assertEqual(1, len(call_args_list)) self.assertEqual( "entityTypes/company", call_args_list[0][1]["entity_type"], "Arguments not as expected", ) self.assertSequenceEqual( search_terms, call_args_list[0][1]["terms"], "Arguments not as expected", ) pd.testing.assert_series_equal(expected, result) def test_isin_mapping_with_entity_mapping(self): data = pd.Series(["US87612E1064", "do_not_search_for"], name="isin") entity_mapping = { "isin": {"do_not_search_for": "entityTypes/company/entities/was_not_searched_for"} } expected = pd.Series( [ "entityTypes/company/entities/target_inc", "entityTypes/company/entities/was_not_searched_for", ], name="entity", ) search_terms = [ SearchTerm(field="isin", query="US87612E1064"), ] entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.search.entities_by_terms.return_value = [ SearchEntitiesResponse.SearchResult( terms=[search_terms[0]], entities=[ Entity("entityTypes/company/entities/target_inc", "Target, Inc.").to_proto(), ], ), ] result = to_entity_resource_names( entity_api, data, namespace="acme", entity_mapping=entity_mapping ).names call_args_list = entity_api.search.entities_by_terms.call_args_list self.assertEqual(1, len(call_args_list)) self.assertEqual( "entityTypes/company", call_args_list[0][1]["entity_type"], "Arguments not as expected", ) self.assertSequenceEqual( search_terms, call_args_list[0][1]["terms"], "Arguments not as expected", ) pd.testing.assert_series_equal(expected, result) def test_entity_mapping(self): company_data = pd.Series(["TGT US", "ADI GE"], name="bloomberg_ticker") brand_data = pd.Series( [ "should_be_mapped_not_normalized", "should be mapped not normalized", "should#be#mapped#not#normalized", ], name="brand", ) entity_mapping = { "bloomberg_ticker": { "TGT US": "entityTypes/company/entities/target_inc", "ADI GE": "entityTypes/company/entities/adidas_ag", }, "brand": { "should_be_mapped_not_normalized": "entityTypes/company/entities/brand", "should be mapped not normalized": "entityTypes/company/entities/other_brand", "should#be#mapped#not#normalized": "entityTypes/company/entities/another_brand", }, } expected_companies = pd.Series( ["entityTypes/company/entities/target_inc", "entityTypes/company/entities/adidas_ag"], name="entity", ) expected_brands = pd.Series( [ "entityTypes/company/entities/brand", "entityTypes/company/entities/other_brand", "entityTypes/company/entities/another_brand", ], name="entity", ) entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.get_entity_type_iterator.side_effect = self._list_entity_types company_result = to_entity_resource_names( entity_api, company_data, namespace="acme", entity_mapping=entity_mapping ).names self.assertFalse(entity_api.search_for_entities.called) pd.testing.assert_series_equal(expected_companies, company_result) brand_result = to_entity_resource_names( entity_api, brand_data, namespace="acme", entity_mapping=entity_mapping ).names pd.testing.assert_series_equal(expected_brands, brand_result) def test_micticker_mapping(self): # Note that "NO?COLON" and "TOO:MANY:COLONS" are illegal mic:ticker identifiers, # since any legal identifier must contain exactly one colon. # The to_entity_resource_names function will print a warning for such illegal identifiers, # and they will not result in any searches towards the Exabel API. mic_tickers = [ "XOSL:TEL", "XNAS:AAPL", "NO?COLON", "TOO:MANY:COLONS", "XOSL:ORK", "MANY:HITS", "NO:HITS", ] data = pd.Series( mic_tickers, name="mic:ticker", ) expected = pd.Series( [ "entityTypes/company/entities/telenor_asa", "entityTypes/company/entities/apple_inc", None, None, "entityTypes/company/entities/orkla_asa", None, None, ], name="entity", ) search_terms = [] for mic, ticker in map(lambda x: x.split(":"), mic_tickers[:2] + mic_tickers[4:]): search_terms.append(SearchTerm(field="mic", query=mic)) search_terms.append(SearchTerm(field="ticker", query=ticker)) entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.search.entities_by_terms.return_value = [ SearchEntitiesResponse.SearchResult( terms=[search_terms[0]], entities=[ Entity("entityTypes/company/entities/telenor_asa", "Telenor ASA").to_proto(), ], ), SearchEntitiesResponse.SearchResult( terms=[search_terms[1]], entities=[ Entity("entityTypes/company/entities/apple_inc", "Apple, Inc.").to_proto(), ], ), SearchEntitiesResponse.SearchResult( terms=[search_terms[4]], entities=[ Entity("entityTypes/company/entities/orkla_asa", "Orkla ASA").to_proto(), ], ), # Result for "MANY:HITS" SearchEntitiesResponse.SearchResult( terms=[search_terms[5]], entities=[ Entity("entityTypes/company/entities/orkla_asa", "Orkla ASA").to_proto(), Entity("entityTypes/company/entities/telenor_asa", "Telenor ASA").to_proto(), ], ), # Result for "NO:HITS" SearchEntitiesResponse.SearchResult( terms=[search_terms[6]], entities=[], ), ] result = to_entity_resource_names(entity_api, data, namespace="acme").names pd.testing.assert_series_equal(expected, result) # Check that the expected searches were performed call_args_list = entity_api.search.entities_by_terms.call_args_list self.assertEqual(1, len(call_args_list)) self.assertEqual( "entityTypes/company", call_args_list[0][1]["entity_type"], "Arguments not as expected", ) self.assertSequenceEqual( search_terms, call_args_list[0][1]["terms"], "Arguments not as expected", ) def test_name_collision(self): bad_mapping = {"Abc!": "Abc_", "Abcd": "Abcd", "Abc?": "Abc_"} self.assertRaises(ValueError, _assert_no_collision, bad_mapping) good_mapping = {"Abc!": "Abc_1", "Abcd": "Abcd", "Abc?": "Abc_2"} _assert_no_collision(good_mapping) def test_mapping_with_duplicated_entity_identifiers_should_not_fail(self): search_terms = [ SearchTerm(field="bloomberg_ticker", query="TGT US"), SearchTerm(field="bloomberg_ticker", query="TGT UK"), ] entity_api = mock.create_autospec(EntityApi(ClientConfig(api_key="123"))) entity_api.search.entities_by_terms.return_value = [ SearchEntitiesResponse.SearchResult( terms=[search_terms[0]], entities=[ Entity("entityTypes/company/entities/F_000C7F-E", "Target, Inc.").to_proto(), ], ), SearchEntitiesResponse.SearchResult( terms=[search_terms[1]], entities=[ Entity("entityTypes/company/entities/F_000C7F-E", "Target, Inc.").to_proto(), ], ), ] def _list_entity_types(self): return iter( [ EntityType("entityTypes/brand", "", "", False), EntityType("entityTypes/country", "", "", True), ] ) def _list_entity_types_uppercase(self): return iter( [ EntityType("entityTypes/BRAND", "", "", False), ] ) def test_preserve_namespace(self): mock_entity_api = mock.create_autospec(EntityApi) identifiers = pd.Series( [ "ns.entity", "otherns.entity", "global_entity", ], name="global_entity_type", ) normalized = to_entity_resource_names( mock_entity_api, identifiers, namespace="ns", check_entity_types=False, preserve_namespace=True, ).names expected = pd.Series( [ "entityTypes/global_entity_type/entities/ns.entity", "entityTypes/global_entity_type/entities/otherns.entity", "entityTypes/global_entity_type/entities/global_entity", ], name="entity", ) pd.testing.assert_series_equal(expected, normalized) def test_preserve_namespace__infer_namespace(self): mock_entity_api = mock.create_autospec(EntityApi) identifiers = pd.Series( [ "ns.entity", "other_entity", ], name="ns.entity_type", ) normalized = to_entity_resource_names( mock_entity_api, identifiers, namespace="ns", check_entity_types=False, preserve_namespace=True, ).names expected = pd.Series( [ "entityTypes/ns.entity_type/entities/ns.entity", "entityTypes/ns.entity_type/entities/ns.other_entity", ], name="entity", ) pd.testing.assert_series_equal(expected, normalized) def test_get_namespace_from_entity_type_name(self): self.assertEqual("ns", get_namespace_from_resource_identifier("ns.entity_type")) self.assertEqual(None, get_namespace_from_resource_identifier("entity_type")) def test_get_namespace_from_entity_type_name__invalid_name_should_fail(self): self.assertRaises( ValueError, get_namespace_from_resource_identifier, "ns.ns2.entity_type", )
Exabel/python-sdk
exabel_data_sdk/tests/util/test_resource_name_normalization.py
test_resource_name_normalization.py
py
16,285
python
en
code
5
github-code
50
6994254119
import numpy as np import pandas as pd from sklearn import linear_model class PolynomialRegression: def __init__(self,degree, Data): self.degree = degree self.regr = linear_model.LinearRegression() self.dataset = pd.read_csv(Data, sep=" ") self.y = self.dataset.iloc[:,-1:].values XValues = self.dataset.iloc[:,0:-1].values newX = XValues.copy() for i in range(2, self.degree + 1): newX = np.concatenate((newX, XValues**i), axis = 1) self.X = newX def train_Model(self): self.regr.fit(self.X, self.y) def predict(self, x): newX = np.zeros(x.shape) for i in range(2, self.degree + 1): newX = np.concatenate((newX, x**i), axis = 1) return self.regr.predict(newX) def score(self): return self.regr.score(self.X, self.y) data = 'Data.txt' maxScore = -1 bestDegree = 0 for i in range(1, 15): model = PolynomialRegression(i, data) model.train_Model() score = model.score() if(score > maxScore): maxScore = score bestDegree = i print(bestDegree) print(maxScore) model = PolynomialRegression(bestDegree, data) model.train_Model() out = "" out = out + str(model.regr.intercept_[0]) aux = 0 for d in range(1, bestDegree + 1): for i in range(0, 15): out = out + " + " + str(model.regr.coef_[0][aux]) + " * Math.Pow(sensorData[" + str(i) + "], " + str(d) + ")" aux += 1 f = open("model.txt", "w") f.write(out) f.close
JuanBC9/UnityCar-AI-
Assets/Scripts/PolynomialRegression.py
PolynomialRegression.py
py
1,521
python
en
code
0
github-code
50
39980500210
import cv2 as cv import os import numpy as np import matplotlib.pyplot as plt import sys from pathlib import Path from src.body_measure import draw_slice_data from src.util import preprocess_image import argparse if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument("-f", "--front_img", required=True, help="front image path") ap.add_argument("-s", "--side_img", required=True, help="side image path") ap.add_argument("-d", "--data", required=True, help="all measurement data including slices, contour, width, height") args = vars(ap.parse_args()) path_f = args['front_img'] path_s = args['side_img'] data_path = args['data'] img_f = cv.imread(path_f) if img_f is None: print('front image does not exist', file=sys.stderr) exit() img_s = cv.imread(path_s) if img_s is None: print('side image does not exist', file=sys.stderr) exit() print(path_f) print(path_s) img_f = preprocess_image(img_f) img_s = preprocess_image(img_s) data = np.load(data_path) contour_f = data.item().get('contour_f') contour_s = data.item().get('contour_s') segments_f = data.item().get('landmark_segment_f') segments_s = data.item().get('landmark_segment_s') seg_dst_f = data.item().get('landmark_segment_dst_f') seg_dst_s = data.item().get('landmark_segment_dst_s') measurements = data.item().get('measurement') segments_height = data.item().get('landmark_segment_height') if contour_f is None or contour_s is None or segments_f is None or segments_s is None: print('missing measurement data', file=sys.stderr) exit() draw_slice_data(img_f, contour_f, segments_f) draw_slice_data(img_s, contour_s, segments_s) print('length of segment in front and side image\n') for id, width in seg_dst_f.items(): #if id in ['Height', 'CollarBust', 'CollarWaist', 'InsideLeg']: # continue if id in seg_dst_s: depth = seg_dst_s[id] else: depth = -1 print("landmark segment id = {0:30} : width = {1:20}, depth = {2:20}".format(id, width, depth)) print('\n\n') print('segment relative height\n') for id, val in segments_height.items(): print("relative height value of segment {0:30} = {1:20}".format(id, val)) print('\n\n') print('body measurements in height unit\n') for id, val in measurements.items(): print("measurement type = {0:30} : value = {1:20}".format(id, val)) #for id, distance in measure_f.items(): # if id in ['CollarBust', 'CollarWaist', 'InsideLeg']: # print("slice id = {0:30} : distance = {1:20}".format(id, distance)) plt.subplot(121) plt.imshow(img_f[:,:,::-1]) plt.subplot(122) plt.imshow(img_s[:,:,::-1]) plt.show()
amitbend/body_measure
src/viz_measurement_result.py
viz_measurement_result.py
py
2,863
python
en
code
3
github-code
50
1465408384
import heapq import sys input = sys.stdin.readline print = sys.stdout.write v, e = map(int, input().split()) a = int(input()) graph = {i: [] for i in range(1, v + 1)} for _ in range(e): i, j, w = map(int, input().split()) graph[i].append((j, w)) dis = {k: float('inf') for k in graph.keys()} dis[a] = 0 hq = [(dis[a], a)] while hq: cur_dis, cur_x = heapq.heappop(hq) if cur_dis > dis[cur_x]: continue for i, w in graph[cur_x]: new_dis = cur_dis + w if dis[i] > new_dis: dis[i] = new_dis heapq.heappush(hq, (new_dis, i)) for i in range(1, v + 1): if dis[i] == float('inf'): print('INF\n') continue print(str(dis[i]) + '\n')
kkg5/algorithm
step/shortest_path/1753_최단경로.py
1753_최단경로.py
py
723
python
en
code
0
github-code
50
74937154396
from django.urls import path, include from rest_framework import routers from . import views router = routers.DefaultRouter() router.register(r'tests', views.TestView) urlpatterns = [ path('', views.index, name='index'), path('random', views.random, name='random'), path('router/', include(router.urls)) ]
filipweidemann/testing-heroku-deployment
blog/urls.py
urls.py
py
320
python
en
code
0
github-code
50
40237107262
from ..parse_json import parse from pathlib import Path def more_about_health(make_intimate_comfortable, user_dont_know): msg_id = "about_health.0" path = ( Path("consultation_bot/bot/user_dont_know/data/") / "data_more_about_health.json" ) DEFAULT_ACTIONS = { "default-1": (make_intimate_comfortable,), "default-2": (more_about_health, *(make_intimate_comfortable, user_dont_know)), } parse(path, msg_id, DEFAULT_ACTIONS)
mary-zh555/Consultation_bot
consultation_bot/bot/user_dont_know/more_about_health.py
more_about_health.py
py
484
python
en
code
0
github-code
50
17553389056
class Points: def __init__(self,x,y): self.x = x self.y = y def getDistance(self,other): #两点之间距离公式 return ((self.x - other.x) ** 2+(self.y - other.y) ** 2)**0.5 def type_triangle(self,p2,p3): self_p2 = self.getDistance(p2) self_p3 = self.getDistance(p3) p2_p3 = p2.getDistance(p3) #对三条边进行排序,即可直接用三边定理排出非三角形情况 if self_p2 > self_p3: self_p2,self_p3 = self_p3,self_p2 if self_p3 > p2_p3: self_p3,p2_p3 = p2_p3,self_p3 if self_p2 + self_p3 <= p2_p3 or p2_p3 - self_p2 >=self_p3: return print("不是三角形") elif self_p2 ** 2 + self_p3 ** 2 < p2_p3 ** 2: return print("锐角三角形") elif self_p2 ** 2 + self_p3 ** 2 == p2_p3 ** 2: return print("直角三角形") elif self_p2 ** 2 + self_p3 ** 2 > p2_p3 ** 2: return print("钝角三角形") if __name__ == '__main__': pt1 = Points(2,3) pt2 = Points(4,5) pt3 = Points(0,0) dis12 = pt1.getDistance(pt2) dis13 = pt1.getDistance(pt3) dis23 = pt2.getDistance(pt3) print(dis12,dis13,dis23) pt1.type_triangle(pt2,pt3)
HongwuQz/PythonHmwk
BigData/6.2/BigData6.2.py
BigData6.2.py
py
1,294
python
en
code
1
github-code
50
40699599039
curr = 0 maxcals = 0 data = [] def process_input(line): global maxcals, curr, data if len(line) >0: curr += int(line) else: data.append(curr) curr = 0 def load_data(filename): global data, curr with open (filename, 'r') as file: lines = file.readlines() for line in lines: process_input(line.strip()) data.append(curr) def partA(): global data print("Part A") print(max(data)) def partB(): global data print("Part B") sorted = data.sort() print(sum(data[-3:])) def main(): inputfile = "./input01a.txt" #inputfile = "./sample.txt" load_data(inputfile) partA() partB() main()
likwidoxigen/PythonExercises
AdventOfCode/2022/01/01.py
01.py
py
716
python
en
code
0
github-code
50
10261374824
from tkinter import* from timeit import default_timer fenêtre = Tk() can=Canvas(fenêtre,bg="white",height=100,width=150) can.pack() def chronomètre(): now = default_timer() - début minutes,secondes = divmod (now, 60) heures,minutes = divmod(minutes,60) str_time = "%d:%02d:%02d"%(heures,minutes,secondes) can.itemconfigure(text_clock, text=str_time) fenêtre.after(1000, chronomètre) début = default_timer() text_clock = can.create_text(65,25) chronomètre() fenêtre.mainloop()
pauld01/amazing-maze
src/chronometre-master/chrono fonctionnel avec simple fenêtre graphique.py
chrono fonctionnel avec simple fenêtre graphique.py
py
512
python
fr
code
0
github-code
50
15327825624
# -*- coding: utf-8 -*- """ Created on Wed Dec 11 15:27:44 2019 @author: KAMPFF-LAB-ANALYSIS3 """ import numpy as np import matplotlib.pyplot as plt import random import seaborn as sns #from filters import * import os #os.sys.path.append('/home/kampff/Repos/Pac-Rat/libraries') os.sys.path.append('D:/Repos/Pac-Rat/libraries') import parser_library as prs import behaviour_library as behaviour ### Load pre-processed data rat_summary_table_path = 'F:/Videogame_Assay/AK_40.2_Pt.csv' hardrive_path = r'F:/' Level_2_post = prs.Level_2_post_paths(rat_summary_table_path) sessions_subset = Level_2_post # Specify paths session = sessions_subset[2] session_path = os.path.join(hardrive_path,session) mua_path = os.path.join(session_path +'/MUA_250_to_2000.bin') save_path = os.path.join(hardrive_path, session_path +'/mua') # Probe from superficial to deep electrode, left side is shank 11 (far back) probe_map=np.array([[103,78,81,118,94,74,62,24,49,46,7], [121,80,79,102,64,52,32,8,47,48,25], [123,83,71,104,66,84,38,6,26,59,23], [105,69,100,120,88,42,60,22,57,45,5], [101,76,89,127,92,67,56,29,4,37,9], [119,91,122,99,70,61,34,1,39,50,27], [112,82,73,97,68,93,40,3,28,51,21], [107,77,98,125,86,35,58,31,55,44,14], [110,113,87,126,90,65,54,20,2,43,11], [117,85,124,106,72,63,36,0,41,15,16], [114,111,75,96,116,95,33,10,30,53,17]]) flatten_probe = probe_map.flatten() # Load MUA (binned to frames) mua_flat_f32 = np.fromfile(mua_path, dtype=np.float32) mua_channels = np.reshape(mua_flat_f32, (121,-1)) mua = np.reshape(mua_channels, (11,11,-1)) # Compute full movie median (as baseline) mua_median = np.median(mua, 2) # Compute full movie stdev (to z-score) mua_std = np.std(mua, 2) # Subtract median (zero baseline) and divide by std (z-score) mua_zeroed = np.zeros(np.shape(mua)) mua_z_score = np.zeros(np.shape(mua)) for r in range(11): for c in range(11): mua_zeroed[r,c,:] = (mua[r,c,:] - mua_median[r,c]) mua_z_score[r,c,:] = (mua[r,c,:] - mua_median[r,c]) / mua_std[r,c] # Plot z-score avg mua_avg = np.mean(mua_z_score, 2) # Get events of intererest indices touch_path = os.path.join(session_path + '/events/RatTouchBall.csv') reward_path = os.path.join(session_path + '/events/TrialEnd.csv') ball_on_path = os.path.join(session_path + '/events/BallOn.csv') video_csv = os.path.join(session_path + '/Video.csv') trial_start_path = os.path.join(session_path + '/events/TrialStart.csv') video_time = behaviour.timestamp_CSV_to_pandas(video_csv) touch_time = behaviour.timestamp_CSV_to_pandas(touch_path) reward_time = behaviour.timestamp_CSV_to_pandas(reward_path) ball_time = behaviour.timestamp_CSV_to_pandas(ball_on_path) trial_time = behaviour.timestamp_CSV_to_pandas(trial_start_path) touching_light = behaviour.closest_timestamps_to_events(video_time, touch_time) reward = behaviour.closest_timestamps_to_events(video_time, reward_time) ball_on = behaviour.closest_timestamps_to_events(video_time, ball_time) start = behaviour.closest_timestamps_to_events(video_time, trial_time) events_list = [touching_light,reward]#ball_noticed] # Average around event events = events_list[0] mua_event0_avg = np.mean(mua_zeroed[:, :, events], 2) events = events_list[1] mua_event1_avg = np.mean(mua_zeroed[:, :, events], 2) #events = events_list[2] #mua_event2_avg = np.mean(mua_zeroed[:, :, events], 2) # Display plt.figure(figsize=(13,4)) plt.subplot(1,2,1) plt.imshow(mua_event0_avg, vmin=-2.0, vmax=7) plt.title('touching_light') plt.colorbar(fraction=0.046, pad=0.04) #plt.colorbar() plt.subplot(1,2,2) plt.imshow(mua_event1_avg, vmin=-2.0, vmax=7) plt.colorbar(fraction=0.046, pad=0.04) plt.title('reward') plt.show() plt.subplot(1,3,3) plt.imshow(mua_event1_avg, vmin=-1.0, vmax=10.0) plt.title('ball_on') plt.subplot(1,3,3) # Save "movie around event" for i in range(-240, 240): # Average around event (shifted by i) events = np.array(events_list[0]) + i mua_event0_avg = np.mean(mua_zeroed[:, :, events], 2) events = np.array(events_list[1]) + i mua_event1_avg = np.mean(mua_zeroed[:, :, events], 2) events = np.array(events_list[2]) + i mua_event2_avg = np.mean(mua_zeroed[:, :, events], 2) events = np.array(events_list[2]) - 20000 + i mua_event3_avg = np.mean(mua_zeroed[:, :, events], 2) # Create figure plt.figure() plt.subplot(2,2,1) plt.imshow(mua_event0_avg, vmin=-1.0, vmax=12.0) plt.subplot(2,2,2) plt.imshow(mua_event1_avg, vmin=-1.0, vmax=12.0) plt.subplot(2,2,3) plt.imshow(mua_event2_avg, vmin=-1.0, vmax=12.0) plt.subplot(2,2,4) plt.imshow(mua_event3_avg, vmin=-1.0, vmax=12.0) # Save figure figure_path = save_path + '/event_avg_' + str(i+1000) + '.png' plt.savefig(figure_path) plt.close('all') events_list = [touching_light,reward,ball_on,start] # Average around event events = events_list[0] mua_event0_avg = np.mean(mua_zeroed[:, :, events], 2) events = events_list[1] mua_event1_avg = np.mean(mua_zeroed[:, :, events], 2) events = events_list[2] mua_event2_avg = np.mean(mua_zeroed[:, :, events], 2) event_1 = np.array(events_list[0]) event_2 = np.array(events_list[1]) # ##if the lenght of the trial start is longer remove the last value #if len(event_1)>len(event_2): # event_1 = event_1[:-1] event_diff = abs(event_2 - event_1) final_array= np.zeros((11,11,len(event_1))) #i=15 has a problem it gives empty array. for i, idx in enumerate(event_1): test_avg = mua_zeroed[:, :, idx:idx+ event_diff[i]] avg = np.nanmean(test_avg,2) final_array[:,:,i]=avg final_avg = np.nanmean(final_array,2) label_ball_noticed = 'D:/ShaderNavigator/annotations/AK_33.2/2018_04_29-15_43/Video.csv' label = np.genfromtxt(label_ball_noticed,dtype=str,delimiter = ',', usecols = 0) ball_noticed = np.genfromtxt(label_ball_noticed,dtype=int,delimiter = ',', usecols = 1) yes_trials = [] for l,lab in enumerate(label): if lab == 'yes': yes_trials.append(l) test_frames = frame[yes_trials] event_1_test= event_1[yes_trials] event_2_test= event_2[yes_trials] #ball on to noticed event_1 = np.array(events_list[4]) event_2 = np.array(events_list[0]) event_1 = event_1[yes_trials] event_2 = event_2[yes_trials] # ##if the lenght of the trial start is longer remove the last value #if len(event_1)>len(event_2): # event_1 = event_1[:-1] event_diff = abs(event_2 - event_1) final_array= np.zeros((11,11,len(event_1))) #i=15 has a problem it gives empty array. for i, idx in enumerate(event_1): test_avg = mua_zeroed[:, :, idx:idx+ event_diff[i]] avg = np.nanmean(test_avg,2) final_array[:,:,i]=avg final_avg = np.nanmean(final_array,2) #################################################### events_list = [touching_light, reward, ball_on, start, ball_noticed] event_1 = np.array(events_list[0]) offset = 240 new_mua = np.zeros((121,offset*2)) mua_zeroed_reshaped = np.reshape(mua_zeroed, (121,-1)) for ch, channel in enumerate(flatten_probe): intermediate_ch_mua = np.zeros((len(event_1),offset*2)) for i, idx in enumerate(event_1): test = mua_zeroed_reshaped[ch, idx-offset:idx+offset] intermediate_ch_mua[i,:]= test avg_mua = np.nanmean(intermediate_ch_mua,0) new_mua[ch,:]=avg_mua for i, ch in enumerate(new_mua): plt.plot( ch+ i*2) plt.figure() avg_new_mua=np.mean(new_mua,0) #noticed to touch
kampff-lab/Pac-Rat
scripts/ephys/MUA_heatmap.py
MUA_heatmap.py
py
7,674
python
en
code
0
github-code
50
1156440255
from molsysmt._private.exceptions import * from molsysmt.api_forms.common_gets import * import numpy as np from molsysmt import puw from molsysmt.native.molecular_system import molecular_system_components form_name='molsysmt.TrajectoryDict' from_type='class' is_form={ } info=["",""] has = molecular_system_components.copy() for ii in ['coordinates','box']: has[ii]=True def this_dict_is_TrajectoryDict(item): from molsysmt.native.trajectory_dict import is_trajectory_dict return is_trajectory_dict(item) def to_molsysmt_Structures(item, molecular_system=None, atom_indices='all', structure_indices='all'): from molsysmt.native.io.trajectory import from_TrajectoryDict as TrajectoryDict_to_molsysmt_Structures tmp_item, tmp_molecular_system = TrajectoryDict_to_molsysmt_Structures(item, None, atom_indices=atom_indices, structure_indices=structure_indices) return tmp_item, tmp_molecular_system def to_file_trjpk(item, molecular_system=None, atom_indices='all', structure_indices='all', output_filename=None): import pickle as pickle # lengths with nm values and times in ps if atom_indices is 'all': if item['coordinates'] is not None: n_atoms = item['coordinates'].shape[1] else: n_atoms = 0 else: n_atoms = atom_indices.shape[0] if structure_indices is 'all': if item['coordinates'] is not None: n_structures = item['coordinates'].shape[0] elif tmp_item['box'] is not None: n_structures = item['box'].shape[0] elif tmp_item['time'] is not None: n_structures = item['time'].shape[0] else: n_structures = 0 else: n_structures = structure_indices.shape[0] fff = open(output_filename, 'wb') pickle.dump(n_atoms, fff) pickle.dump(n_structures, fff) if 'coordinates' in item: if item['coordinates'] is not None: coordinates = item['coordinates'] if structure_indices is not 'all': coordinates = coordinates[structure_indices,:,:] elif atom_indices is not 'all': coordinates = coordinates[:,atom_indices,:] coordinates = puw.get_value(coordinates, to_unit='nm') else: coordinates = None else: coordinates = None pickle.dump(coordinates, fff) del(coordinates) if 'box' in item: if item['box'] is not None: box = item['box'] if structure_indices is not 'all': box = box[structure_indices,:,:] box = puw.get_value(box, to_unit='nm') else: box = None else: box = None pickle.dump(box, fff) del(box) if 'time' in item: if item['time'] is not None: time = item['time'] if structure_indices is not 'all': time = time[structure_indices] time = puw.get_value(time, to_unit='ps') else: time = None else: time = None pickle.dump(time, fff) del(time) if 'step' in item: if item['step'] is not None: step = item['step'] if structure_indices is not 'all': step = step[structure_indices] else: step = None else: step = None pickle.dump(step, fff) del(step) fff.close() tmp_item = output_filename if molecular_system is not None: tmp_molecular_system = molecular_system.combine_with_items(tmp_item) else: tmp_molecular_system = None return tmp_item, tmp_molecular_system def to_molsysmt_TrajectoryDict(item, molecular_system=None, atom_indices='all', structure_indices='all', copy_if_all=True): tmp_molecular_system = None if (atom_indices is 'all') and (structure_indices is 'all'): if copy_if_all: tmp_item = extract(item) if molecular_system is not None: tmp_molecular_system = molecular_system.combine_with_items(tmp_item) else: tmp_item = item if molecular_system is not None: tmp_molecular_system = molecular_system else: tmp_item = extract(item, atom_indices=atom_indices, structure_indices=structure_indices) if molecular_system is not None: tmp_molecular_system = molecular_system.combine_with_items(tmp_item, atom_indices=atom_indices, structure_indices=structure_indices) return tmp_item, tmp_molecular_system def extract(item, atom_indices='all', structure_indices='all'): if (atom_indices is 'all') and (structure_indices is 'all'): from copy import deepcopy tmp_item = deepcopy(item) else: raise NotImplementedError() return tmp_item def merge(item_1, item_2): raise NotImplementedError def add(to_item, item): raise NotImplementedError def append_structures(item, step=None, time=None, coordinates=None, box=None): raise NotImplementedError() def concatenate_structures(item, step=None, time=None, coordinates=None, box=None): raise NotImplementedError ###### Get ## atom def get_atom_id_from_atom(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_atom_name_from_atom(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_atom_type_from_atom(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_group_index_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_component_index_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_chain_index_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_molecule_index_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_entity_index_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_inner_bonded_atoms_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_inner_bonds_from_atom (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_coordinates_from_atom(item, indices='all', structure_indices='all'): tmp_coordinates = item['coordinates'] if structure_indices is not 'all': tmp_coordinates = tmp_coordinates[structure_indices,:,:] if indices is not 'all': tmp_coordinates = tmp_coordinates[:,indices,:] return tmp_coordinates ## group def get_group_id_from_group(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_group_name_from_group(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_group_type_from_group(item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## component def get_component_id_from_component (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_component_name_from_component (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_component_type_from_component (item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## molecule def get_molecule_id_from_molecule (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_molecule_name_from_molecule (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_molecule_type_from_molecule (item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## chain def get_chain_id_from_chain (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_chain_name_from_chain (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_chain_type_from_chain (item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## entity def get_entity_id_from_entity (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_entity_name_from_entity (item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_entity_type_from_entity (item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## system def get_n_atoms_from_system(item, indices='all', structure_indices='all'): output = None if 'coordinates' in item: output = item['coordinates'].shape[1] return output def get_n_groups_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_components_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_chains_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_molecules_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_entities_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_n_bonds_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_box_from_system(item, indices='all', structure_indices='all'): output=None if 'box' in item: len_shape = len(item['box'].shape) if len_shape==3: if structure_indices is 'all': output=item['box'] else: output=item['box'][structure_indices,:,:] elif len_shape==2: if structure_indices is 'all': n_structures=get_n_structures_from_system(item) else: n_structures=len(structure_indices) output=np.tile(item['box'], (n_structures, 1, 1)) return output def get_box_shape_from_system(item, indices='all', structure_indices='all'): from molsysmt.pbc import box_shape_from_box_vectors output = None box = get_box_from_system(item, indices=indices, structure_indices=structure_indices) if box is not None: output = box_shape_from_box_vectors(box) return output def get_box_lengths_from_system(item, indices='all', structure_indices='all'): from molsysmt.pbc import box_lengths_from_box_vectors output = None box = get_box_from_system(item, indices=indices, structure_indices=structure_indices) if box is not None: output = box_lengths_from_box_vectors(box) return output def get_box_angles_from_system(item, indices='all', structure_indices='all'): from molsysmt.pbc import box_angles_from_box_vectors output = None box = get_box_from_system(item, indices=indices, structure_indices=structure_indices) if box is not None: output = box_angles_from_box_vectors(box) return output def get_box_volume_from_system(item, indices='all', structure_indices='all'): from molsysmt.pbc import box_volume_from_box_vectors output = None box = get_box_from_system(item, indices=indices, structure_indices=structure_indices) if box is not None: output = box_volume_from_box_vectors(box) return output def get_time_from_system(item, indices='all', structure_indices='all'): output = None if structure_indices is 'all': output = item['time'] else: output = item['time'][structure_indices] return output def get_step_from_system(item, indices='all', structure_indices='all'): output = None if structure_indices is 'all': output = item['step'] else: output = item['step'][structure_indices] return output def get_n_structures_from_system(item, indices='all', structure_indices='all'): output = None if structure_indices is 'all': if 'coordinates' in item: output=item['coordinates'].shape[0] elif 'box' in item: len_shape = len(item['box'].shape) if len_shape==3: output=item['box'].shape[0] elif len_shape==2: output=1 else: output=structure_indices.shape[0] return output def get_bonded_atoms_from_system(item, indices='all', structure_indices='all'): raise NotWithThisFormError() ## bond def get_bond_order_from_bond(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_bond_type_from_bond(item, indices='all', structure_indices='all'): raise NotWithThisFormError() def get_atom_index_from_bond(item, indices='all', structure_indices='all'): raise NotWithThisFormError() ###### Set ## atom def set_coordinates_to_atom(item, indices='all', structure_indices='all', value=None): length_unit = puw.get_unit(item['coordinates']) value = puw.convert(value, to_unit=length_unit) if indices is 'all': if structure_indices is 'all': item['coordinates']=value else: item['coordinates'][structure_indices,:,:]=value else: if structure_indices is 'all': item['coordinates'][:,indices,:]=value else: item['coordinates'][np.ix_(indices,structure_indices)]=value pass ## system def set_box_to_system(item, indices='all', structure_indices='all', value=None): raise NotImplementedError def set_coordinates_to_system(item, indices='all', structure_indices='all', value=None): raise NotImplementedError
uibcdf/MolSysMT
attic/api_forms/api_molsysmt_TrajectoryDict.py
api_molsysmt_TrajectoryDict.py
py
13,530
python
en
code
11
github-code
50
19317832681
from sklearn.metrics import auc, roc_curve import matplotlib.pyplot as plt def plot_roc_auc(y_true, y_pred, savepath=None): if type(y_true) in (list, tuple) and type(y_pred) in (list, tuple): assert len(y_true) == len(y_pred) if len(y_true) > 5: raise ValueError('Up to 5 lines supported.') colors = ('b', 'g', 'c', 'm', 'y') for i, (split_y_true, split_y_pred) in enumerate(zip(y_true, y_pred)): fpr, tpr, threshold = roc_curve(split_y_true, split_y_pred) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label=f'Split {i}, AUC = %0.4f' % roc_auc, color=colors[i]) else: fpr, tpr, threshold = roc_curve(y_true, y_pred) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label='AUC = %0.4f' % roc_auc) plt.title('Receiver Operating Characteristic') plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') if savepath is not None: plt.savefig(savepath) else: plt.show()
mmikolajczak/recommendation_system_hetrec2011_movielens
recommendations_system/experiments_scripts/plotting.py
plotting.py
py
1,130
python
en
code
5
github-code
50
73752449436
from django.urls import path, include from .views import CategoryList, CategoryDetail, EventList, EventDetail, SeatList, SeatDetail, SeatCategoryList, SeatCategoryDetail, EventImageList, EventImageDetail, EventListForCategory from apps.accounts.signals import create_category_api, create_event_api from . import views accounts_urlpatterns = [ path('api/v1/', include('djoser.urls')), path('api/v1/', include('djoser.urls.authtoken')), path('categories/', CategoryList.as_view(), name='category-list'), path('categories/<int:pk>/', CategoryDetail.as_view(), name='category-detail'), path('events/', EventList.as_view(), name='event-list'), path('events/<int:pk>/', EventDetail.as_view(), name='event-detail'), path('seats/', SeatList.as_view(), name='seats-list'), path('seats/<int:pk>/', SeatDetail.as_view(), name='seats-detail'), path('seatcategory/', SeatCategoryList.as_view(), name='seatcategory-list'), path('seatcategory/<int:pk>/', SeatCategoryDetail.as_view(), name='seatcategory-detail'), path('eventimage/', EventImageList.as_view(), name='EventImage-list'), path('EventImage/<int:pk>/', EventImageDetail.as_view(), name='EventImage-detail'), path('create_category_api/', create_category_api, name='create-category-api'), path('create_event_api/', create_event_api, name='create_event_api'), path('categories/<int:category_id>/events/', EventListForCategory.as_view(), name='category-events-list'), path('search-events/', views.search_events, name='search_events'), ]
FakirHerif/react-django
backend/server/apps/accounts/urls.py
urls.py
py
1,557
python
en
code
2
github-code
50
38239478292
## 1. The Range ## import pandas as pd houses = pd.read_table('AmesHousing_1.txt') def range(a): return ( max(a) - min(a) ) k = houses['Yr Sold'].value_counts().reset_index() range_by_year ={} for i in k['index']: hou =houses[houses['Yr Sold']==i] range_by_year[i] = range(hou['SalePrice']) one = False two = True ## 2. The Average Distance ## C = [1,1,1,1,1,1,1,1,1,21] sum1 =0 for i in C : sum1 = sum1 + i mean = sum1/len(C) dist =0 for i in C : dist = dist + (i-mean) avg_distance = dist/len(C) print(avg_distance) ## 3. Mean Absolute Deviation ## C = [1,1,1,1,1,1,1,1,1,21] sum1 =0 for i in C : sum1 = sum1 + i mean = sum1/len(C) dist =0 for i in C : dist = dist + abs(i-mean) mad = dist/len(C) print(mad) ## 4. Variance ## C = [1,1,1,1,1,1,1,1,1,21] def variancecal(a): sum1 =0 for i in a : sum1 = sum1 + i mean = sum1/len(a) squared_distance =[] dist =0 for i in a : squared_distance.append(abs(i-mean)**2) return squared_distance K= variancecal(C) variance_C = sum(K)/len(K) ## 5. Standard Deviation ## from math import sqrt C = [1,1,1,1,1,1,1,1,1,21] def StdDeviationcal(a): sum1 =0 for i in a : sum1 = sum1 + i mean = sum1/len(a) squared_distance =[] dist =0 for i in a : squared_distance.append((i-mean)**2) vari = sum(squared_distance)/len(squared_distance) return sqrt(vari) standard_deviation_C = StdDeviationcal(C) ## 6. Average Variability Around the Mean ## def standard_deviation(array): reference_point = sum(array) / len(array) distances = [] for value in array: squared_distance = (value - reference_point)**2 distances.append(squared_distance) variance = sum(distances) / len(distances) return sqrt(variance) k = houses['Yr Sold'].value_counts().reset_index() range_by_year ={} for i in k['index']: hou = houses[houses['Yr Sold'] ==i] range_by_year[i] = standard_deviation(hou['SalePrice']) print(range_by_year) greatest_variability = max(range_by_year, key = range_by_year.get) lowest_variability = min(range_by_year , key =range_by_year.get) ## 7. A Measure of Spread ## sample1 = houses['Year Built'].sample(50, random_state = 1) sample2 = houses['Year Built'].sample(50, random_state = 2) def standard_deviation(array): reference_point = sum(array) / len(array) distances = [] for value in array: squared_distance = (value - reference_point)**2 distances.append(squared_distance) variance = sum(distances) / len(distances) return sqrt(variance) sample1.plot.hist() plt.show() sample2.plot.hist() plt.show() bigger_spread = 'sample 2' st_dev1 =standard_deviation(sample1) st_dev2 = standard_deviation(sample2) ## 8. The Sample Standard Deviation ## def standard_deviation(array): reference_point = sum(array) / len(array) distances = [] for value in array: squared_distance = (value - reference_point)**2 distances.append(squared_distance) variance = sum(distances) / len(distances) return sqrt(variance) import matplotlib.pyplot as plt list_std=[] for i in range(5000): sam = houses['SalePrice'].sample(10, random_state =i) list_std.append(standard_deviation(sam)) plt.hist(list_std) plt.axvline(standard_deviation(houses['SalePrice'])) plt.show() ## 9. Bessel's Correction ## def standard_deviation(array): reference_point = sum(array) / len(array) distances = [] for value in array: squared_distance = (value - reference_point)**2 distances.append(squared_distance) variance = sum(distances) / (len(distances)-1) return sqrt(variance) import matplotlib.pyplot as plt st_devs = [] for i in range(5000): sample = houses['SalePrice'].sample(10, random_state = i) st_dev = standard_deviation(sample) st_devs.append(st_dev) plt.hist(st_devs) plt.axvline(standard_deviation(houses['SalePrice'])) ## 10. Standard Notation ## sample = houses.sample(100, random_state = 1) from numpy import std, var pandas_stdev = sample['SalePrice'].std(ddof = 1) # default ddof = 1 numpy_stdev = std(sample['SalePrice'], ddof = 1) # default ddof = 0 equal_stdevs = pandas_stdev == numpy_stdev pandas_var = sample['SalePrice'].var(ddof = 1) # default ddof = 1 numpy_var = var(sample['SalePrice'], ddof = 1) #default ddof = 0 equal_vars = pandas_var == numpy_var ## 11. Sample Variance — Unbiased Estimator ## population = [0, 3, 6] samples = [[0,3], [0,6], [3,0], [3,6], [6,0], [6,3] ] from numpy import var, std pop_var = var(population, ddof = 0) pop_std = std(population, ddof = 0) st_devs = [] variances = [] for sample in samples: st_devs.append(std(sample, ddof = 1)) variances.append(var(sample, ddof = 1)) mean_std = sum(st_devs) / len(st_devs) mean_var = sum(variances) / len(variances) equal_stdev = pop_std == mean_std equal_var = pop_var == mean_var
nemkothari/Statistics-Intermediate
Measures of Variability-308.py
Measures of Variability-308.py
py
5,124
python
en
code
0
github-code
50
38585374633
import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' import datetime from common.buffer import PrioritizedBuffer import torch.nn as nn import torch.autograd as autograd import torch.nn.functional as F import random import gym import numpy as np from tqdm import tqdm import torch import matplotlib.pyplot as plt import rl_utils class ConvDQN(nn.Module): def __init__(self, input_dim, output_dim): super(ConvDQN, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.fc_input_dim = self.feature_size() self.conv = nn.Sequential( nn.Conv2d(self.input_dim, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU() ) self.fc = nn.Sequential( nn.Linear(self.fc_input_dim, 128), nn.ReLU(), nn.Linear(128, 256), nn.ReLU(), nn.Linear(256, self.output_dim) ) def forward(self, state): features = self.conv_net(state) features = features.view(features.size(0), -1) qvals = self.fc(features) return qvals def feature_size(self): return self.conv_net(autograd.Variable(torch.zeros(1, *self.input_dim))).view(1, -1).size(1) class Qnet(torch.nn.Module): ''' 只有一层隐藏层的Q网络 ''' def __init__(self, state_dim, action_dim): super(Qnet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, 64) self.fc2 = torch.nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) # 隐藏层使用ReLU激活函数 return self.fc2(x) class PERAgent: def __init__(self, env, use_conv=False, learning_rate=3e-4, gamma=0.99, buffer_size=10000): self.env = env self.gamma = gamma self.replay_buffer = PrioritizedBuffer(buffer_size) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if use_conv: self.model = ConvDQN(self.env.observation_space.shape[0], env.action_space.n).to(self.device) else: self.model = Qnet(self.env.observation_space.shape[0], env.action_space.n).to(self.device) self.optimizer = torch.optim.Adam(self.model.parameters()) self.MSE_loss = nn.MSELoss() def get_action(self, state, eps=0.0): state = torch.FloatTensor(state).float().unsqueeze(0).to(self.device) qvals = self.model.forward(state) action = np.argmax(qvals.cpu().detach().numpy()) if (np.random.rand() > eps): return self.env.action_space.sample() return action def _sample(self, batch_size): return self.replay_buffer.sample(batch_size) def _compute_TDerror(self, batch_size): transitions, idxs, IS_weights = self._sample(batch_size) states, actions, rewards, next_states, dones = transitions states = torch.FloatTensor(states).to(self.device) actions = torch.LongTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).to(self.device) next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(dones).to(self.device) IS_weights = torch.FloatTensor(IS_weights).to(self.device) curr_Q = self.model.forward(states).gather(1, actions.unsqueeze(1)) curr_Q = curr_Q.squeeze(1) next_Q = self.model.forward(next_states) max_next_Q = torch.max(next_Q, 1)[0] expected_Q = rewards.squeeze(1) + self.gamma * max_next_Q td_errors = torch.pow(curr_Q - expected_Q, 2) * IS_weights return td_errors, idxs def update(self, batch_size): td_errors, idxs = self._compute_TDerror(batch_size) # update model td_errors_mean = td_errors.mean() self.optimizer.zero_grad() td_errors_mean.backward() self.optimizer.step() # update priorities for idx, td_error in zip(idxs, td_errors.cpu().detach().numpy()): self.replay_buffer.update_priority(idx, td_error) env_id = "CartPole-v1" env_name = "CartPole-v1" num_episodes = 1000 batch_size = 64 env = gym.make(env_id) agent = PERAgent(env, use_conv=False) return_list = [] for i in range(10): with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): episode_return = 0 state = env.reset() done = False while not done: action = agent.get_action(state) next_state, reward, done, _ = env.step(action) agent.replay_buffer.push(state, action, reward, next_state, done) state = next_state episode_return += reward # 当buffer数据的数量超过一定值后,才进行Q网络训练 if len(agent.replay_buffer) > batch_size: agent.update(batch_size) return_list.append(episode_return) if (i_episode + 1) % 10 == 0: pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:]) }) pbar.update(1) algorithm = "PER_DQN" fileName = "../result/{}_{}_{}.npy".format(algorithm,env_name,datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")) np.save(fileName,return_list) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('PerDQN on {}'.format(env_id)) plt.show() mv_return = rl_utils.moving_average(return_list, 9) plt.plot(episodes_list, mv_return) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('PerDQN moving_average on {}'.format(env_id)) plt.show()
cgl-dong/my_rl
hand/PER_DQN2.py
PER_DQN2.py
py
5,999
python
en
code
0
github-code
50
28371073407
"""Processing environment to store, retrieve, and add aliases.""" from __future__ import annotations import os.path Aliases: dict[str, list[str]] = {} alias_relative_file: str = "../../config/alias.txt" def alias_exists_for(name: str): return name in Aliases.keys() def command_for_alias(name: str): return Aliases[name].copy() def create_alias(name: str, command: list[str]): """Create a new alias. \n Parameters: `name`: the name of the alias `command`: the command that the alias runs""" if len(name) == 0: raise ValueError("Malformed or missing name: %r" % name) if len(command) == 0: raise ValueError("Malformed or missing command: %r" % command) Aliases[name] = command def display_all() -> str: """Display all known aliases.""" data = "" longest_alias = max(len(a) for a in Aliases) + 2 for alias, command in Aliases.items(): data += (alias + ":").ljust(longest_alias) + " ".join(command) + "\n" return data def _get_alias_file() -> str: """Determine where the aliases are being stored.""" full_file_path = os.path.dirname(__file__) full_file_path = os.path.abspath( os.path.join(full_file_path, alias_relative_file) ) return full_file_path def load_aliases(): """Load the current alias data from its file.""" full_file_path = _get_alias_file() with open(full_file_path, "r") as f: for line in f.readlines(): if len(line) == 0: continue alias_name, command = line.strip(" \n").split(" ", 1) create_alias(alias_name, command.split()) def save_aliases(): """Save the current alias data to the file.""" alias_file_data = "" for key, value in Aliases.items(): alias_file_data += "%s %s\n" % (key, " ".join(value)) full_file_path = _get_alias_file() with open(full_file_path, "w") as f: f.write(alias_file_data) load_aliases()
AD417/LEDControl
internals/command/Alias.py
Alias.py
py
1,940
python
en
code
0
github-code
50
40509752290
class Solution: def maxProfit(self, prices: list[int]) -> int: left = 0 right = 1 difference = 0 while right < len(prices): currentProfit = prices[right] - prices[left] if prices[left] < prices[right]: difference = max(currentProfit, difference) else: left = right right += 1 return difference if __name__ == "__main__": sol = Solution() print(sol.maxProfit([7, 9, 5, 6, 3, 2]))
Yahoo002/pythonDSA
bestTimeToBuyAndSellStock.py
bestTimeToBuyAndSellStock.py
py
513
python
en
code
0
github-code
50
42243745118
import sys from itertools import count from collections import defaultdict lines = sys.stdin.readlines() target = lines.pop(-1).strip() lines.pop(-1) rep = defaultdict(list) rev = defaultdict(list) for line in lines: f, t = line.strip().split(' => ') rep[f].append(t) rev[t].append(f) dis = set() def apply(tr, new, old, rep): for f, ts in rep.items(): l = len(f) i = 0 while True: p = tr.find(f, i) if p < 0: break for t in ts: s = tr[:p] + t + tr[p+l:] if not (s in old): new.add(s) i = p+1 return new print(len(apply(target, set(), set(), rep))) # Exploding """ prev = set([target]) old = set().union(prev) for n in count(1): new = set() for t in prev: apply(t, new, old, rev) if 'e' in new: print(n) break prev = new old = old.union(prev) """ # Cheat code mls = sum(map(lambda s: s.isupper(), target)) print(mls - (target.count("Rn") + target.count("Ar") + 2*target.count("Y") + 1))
ShuP1/AoC
src/2015/19.py
19.py
py
1,103
python
en
code
0
github-code
50
27991925985
import numpy as np import tensorflow.compat.v2 as tf from tensorflow.compat.v2.experimental import dtensor from tf_keras import backend from tf_keras.dtensor import integration_test_utils from tf_keras.dtensor import layout_map as layout_map_lib from tf_keras.dtensor import test_util from tf_keras.optimizers import adam from tf_keras.utils import tf_utils class MnistTest(test_util.DTensorBaseTest): def setUp(self): super().setUp() backend.enable_tf_random_generator() tf_utils.set_random_seed(1337) global_ids = test_util.create_device_ids_array((2,)) local_device_ids = np.ravel(global_ids).tolist() mesh_dict = { device: tf.experimental.dtensor.Mesh( ["batch"], global_ids, local_device_ids, test_util.create_device_list((2,), device), ) for device in ("CPU", "GPU", "TPU") } self.mesh = self.configTestMesh(mesh_dict) def test_mnist_training(self): layout_map = layout_map_lib.LayoutMap(self.mesh) with layout_map.scope(): model = integration_test_utils.get_model() optimizer = adam.Adam(learning_rate=0.001, mesh=self.mesh) optimizer.build(model.trainable_variables) train_losses = integration_test_utils.train_mnist_model_batch_sharded( model, optimizer, self.mesh, num_epochs=3, steps_per_epoch=20, global_batch_size=64, ) # Make sure the losses are decreasing self.assertEqual(train_losses, sorted(train_losses, reverse=True)) def test_model_fit(self): layout_map = layout_map_lib.LayoutMap(self.mesh) with layout_map.scope(): model = integration_test_utils.get_model() optimizer = adam.Adam(learning_rate=0.001, mesh=self.mesh) global_batch_size = 64 model.compile( loss="CategoricalCrossentropy", optimizer=optimizer, metrics="acc" ) train_ds, eval_ds = integration_test_utils.get_mnist_datasets( integration_test_utils.NUM_CLASS, global_batch_size ) def distribute_ds(dataset): dataset = dataset.unbatch() def _create_batch_layout(tensor_spec): rank = len(tensor_spec.shape) + 1 return dtensor.Layout.batch_sharded( self.mesh, batch_dim="batch", rank=rank ) layouts = tf.nest.map_structure( _create_batch_layout, dataset.element_spec ) return dtensor.DTensorDataset( dataset=dataset, mesh=self.mesh, layouts=layouts, global_batch_size=global_batch_size, dataset_already_batched=False, batch_dim="batch", prefetch=None, tf_data_service_config=None, ) train_ds = distribute_ds(train_ds) eval_ds = distribute_ds(eval_ds) model.fit(train_ds, steps_per_epoch=10) model.evaluate(eval_ds, steps=10) if __name__ == "__main__": tf.test.main()
keras-team/tf-keras
tf_keras/dtensor/mnist_model_test.py
mnist_model_test.py
py
3,216
python
en
code
28
github-code
50
38383059729
import tensorflow as tf import tensorflow_hub as hub model_url = "https://tfhub.dev/tensorflow/efficientnet/lite0/feature-vector/2" IMAGE_SHAPE = (224, 224) layer = hub.KerasLayer(model_url, input_shape=IMAGE_SHAPE+(3,)) model = tf.keras.Sequential([layer]) import numpy as np from tensorflow.keras.preprocessing import image from scipy.spatial import distance class Flt(float): def __str__(self): return '{:.2}'.format(self) def vectorize(filename): img1 = image.load_img(filename) file = img1.convert('L').resize(IMAGE_SHAPE) file = np.stack((file,)*3, axis=-1) file = np.array(file)/255.0 embedding = changemodel.predict(file[np.newaxis, ...]) embedding_np = np.array(embedding) change1 = embedding_np.flatten() return change1 def change(oldv,newv,threshold): metric = 'cosine' cosineDistance = distance.cdist([oldv], [newv], metric)[0] cosd = str(Flt(cosineDistance)) outputstring = "From the Change Module\n" if (cosineDistance>threshold): outputstring += "Change Module detect big change in the variance of " + cosd+".\n" else: outputstring += "Change Module detect small change in the variance of " + cosd+".\n" return outputstring oldv = vectorize("input/0.jpg") newv = vectorize("input/2.jpg") str0 = change(oldv,newv,0.1) print(str0)
RunhaiLin/jik
change.py
change.py
py
1,394
python
en
code
0
github-code
50
36114219663
import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C import mindspore.common.dtype as mstype import mindspore.dataset as ds def create_dataset(data_path, batch_size=32): """ 数据处理 Args: dataset_path (str): 数据路径 batch_size (int): 批量大小 repeat_num (int): 数据重复次数 Returns: Dataset对象 """ # 载入数据集 data = ds.ImageFolderDataset(data_path) # 打乱数据集 data = data.shuffle(buffer_size=1000) # 定义算子 trans = [ CV.Decode(), CV.Resize(256), CV.CenterCrop(224), # 使用训练backbone网络时用的mean和std CV.Normalize(mean=(100.03388269705046, 94.57511259248079, 72.14921665851293), std=(23.35913427414271, 20.336537235643164, 21.376613547858327)), CV.HWC2CHW() ] type_cast_op = C.TypeCast(mstype.int32) # 算子运算 data = data.map(operations=trans, input_columns="image") data = data.map(operations=type_cast_op, input_columns="label") # 批处理 data = data.batch(batch_size, drop_remainder=True) # 重复 data = data.repeat(1) return data
littlemou/MindSpore_graduate_pratice
Test5/preprocess.py
preprocess.py
py
1,248
python
en
code
1
github-code
50
20538425560
import logging import _lcms2 import numpy as np from typing import Union, Any, Tuple from . import util_lcms # ------------------------ # setup logger # ------------------------ log = logging.getLogger(__name__) def useDebugMode(): """ sets logging level and creates a stream handler to show full debugging information """ log.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(name)s - %(levelname)s - %(message)s") ch.setFormatter(formatter) log.addHandler(ch) def get_color_space_number(fmt: Union[str, int]) -> int: """ Get color space number by name. If the number is already given, simply pass it on :param fmt: name of the colorspace in lcms2 specific format as string, or the corresponding number :return: the number for that color space """ if isinstance(fmt, str): try: colorspace_number = getattr(_lcms2, fmt) except AttributeError: raise ValueError( "color space format '{}' not found!\n".format(fmt) + "If it is defined in lcms2.h it should be added to 'PyInit__lcms2' in '_lcms2.c" ) else: colorspace_number = fmt return colorspace_number def get_color_space_specs(cs_number: int) -> Tuple[int, int, int]: """ Infer binary layout of the colorspace number 'cs_number' (see lcms2.h). Use 'get_color_space_number' to get the number from the string name of the color space. The numbers are also defined as members starting with 'TYPE_'. That includes * the total number of channels (channels + extra channels) * bytes per channel (where 0 means 8 as used for doubles) * floating point or integer :param cs_number: the color space number cs_number :return: tuple (total number of channels, bytes per channel, is floating point) """ B = util_lcms.T_BYTES(cs_number) C = util_lcms.T_CHANNELS(cs_number) E = util_lcms.T_EXTRA(cs_number) A = util_lcms.T_FLOAT(cs_number) if B == 0: B = 8 log.debug( "colorspace fmt '{}', channels={}, bytes={}, isFloat={}".format( cs_number, C + E, B, bool(A) ) ) return C + E, B, bool(A) def convert( in_prof: str, in_Py_buffer: Any, # anything that supports the buffer interface in_fmt: Union[str, int], out_prof: str, out_fmt: Union[str, int], intent: int, dw_flags: int, ): """ convert between color spaces This variant is closest to the underlying 'cmsDoTransform' function in the sense that the inpout data 'in_Py_buffer' is provided by a generic python buffer (raw binary data) while its format is given separately by 'in_fmt'. The result is returned as python buffer as well with a binary format according to 'out_fmt'. The possible formats corresponds to the predefined values from lcms2.h. Their numeric value encodes the properties how to read the binary data. As example - TYPE_RGB_8: 3 channels R,G,B with 8 bit (one byte) per channel - TYPE_CMYK_DBL: 4 channels C,M,Y,K of doubles (8 byte) per channel Together with the input profile 'in_prof', output profile 'out_prof', the rendering intent 'intent' and further flags 'dw_flags' the color transformation is fully specified. The profiles need to be given as string, either meaning a filename or referring to the predefined profiles: - PROFILE_SRGB = '*sRGB' - PROFILE_Lab_D50 = '*Lab_D50' The possible intent value are encoded in - INTENT_PERCEPTUAL = _lcms2.INTENT_PERCEPTUAL - INTENT_RELATIVE_COLORIMETRIC = _lcms2.INTENT_RELATIVE_COLORIMETRIC - INTENT_SATURATION = _lcms2.INTENT_SATURATION - INTENT_ABSOLUTE_COLORIMETRIC = _lcms2.INTENT_ABSOLUTE_COLORIMETRIC and match the values of the lcms2 implementation. The same holds for the dw_flags (see little cms docs). As an example we name - cmsFLAGS_BLACKPOINTCOMPENSATION which enables blackpoint compensation. :param in_prof : the input profile as string (filename of predefined values starting with *) :param in_Py_buffer: the input data as raw binary buffer :param in_fmt : the format of the input data (see pyColConv members starting with TYPE_) :param out_prof : the output profile as string (filename of predefined values starting with *) :param out_fmt : the format of the output data (see pyColConv members starting with TYPE_) :param intent : the rendering intent (INTENT_PERCEPTUAL, INTENT_RELATIVE_COLORIMETRIC, INTENT_SATURATION, INTENT_ABSOLUTE_COLORIMETRIC) :param dw_flags : additional flags for the conversion, like cmsFLAGS_BLACKPOINTCOMPENSATION :return : bytearray (Py_buffer) containing raw binary data of the output colors """ in_C, in_B, in_F = get_color_space_specs(in_fmt) out_C, out_B, out_F = get_color_space_specs(out_fmt) num_pixels = len(in_Py_buffer) // in_C log.debug( "{} pixels determined from input buffer on length {}".format( num_pixels, len(in_Py_buffer) ) ) out_Py_buffer = bytearray(num_pixels * out_C * out_B) log.debug("create output buffer with {} bytes".format(len(out_Py_buffer))) ret_code, error_msg = _lcms2.do_transform( in_prof, out_prof, in_Py_buffer, in_fmt, out_Py_buffer, out_fmt, intent, dw_flags, num_pixels, ) log.debug("calling 'do_transform' from lcms2 returned '{}'".format(ret_code)) if ret_code != 0: raise RuntimeError( "calling 'do_transform' from lcms2 failed with error '{}'".format(error_msg) ) return out_Py_buffer def convert_nparray( in_prof: str, in_array: np.ndarray, in_pixel_type: int, out_prof: str, out_fmt: Union[str, int], intent: int, dw_flags: int, ): """ convert between color spaces This variant does the same job as 'convert' with the difference that it expects the input data and returns the output data as numpy array. For the input data the pixel type need to be specified (see lcms2.h). They as provided as module members starting with PT_. The number representation is deduced from the type of the input array. The format of the output is set by 'out_fmt'. The possible formats corresponds to the predefined values from lcms2.h. Their numeric value encodes the properties how to read the binary data. As example - TYPE_RGB_8: 3 channels R,G,B with 8 bit (one byte) per channel - TYPE_CMYK_DBL: 4 channels C,M,Y,K of doubles (8 byte) per channel Together with the input profile 'in_prof', output profile 'out_prof', the rendering intent 'intent' and further flags 'dw_flags' the color transformation is fully specified. The profiles need to be given as string, either meaning a filename or referring to the predefined profiles: - PROFILE_SRGB = '*sRGB' - PROFILE_Lab_D50 = '*Lab_D50' The possible intent value are encoded in - INTENT_PERCEPTUAL = _lcms2.INTENT_PERCEPTUAL - INTENT_RELATIVE_COLORIMETRIC = _lcms2.INTENT_RELATIVE_COLORIMETRIC - INTENT_SATURATION = _lcms2.INTENT_SATURATION - INTENT_ABSOLUTE_COLORIMETRIC = _lcms2.INTENT_ABSOLUTE_COLORIMETRIC and match the values of the lcms2 implementation. The same holds for the dw_flags (see little cms docs). As an example we name - cmsFLAGS_BLACKPOINTCOMPENSATION which enables blackpoint compensation. :param in_prof : the input profile as string (filename of predefined values starting with *) :param in_array : the input data as numpy array. :param in_pixel_type : the pixel type (see pyColConv members starting with PT_) :param out_prof : the output profile as string (filename of predefined values starting with *) :param out_fmt : the format of the output data (see pyColConv members starting with TYPE_) :param intent : the rendering intent (INTENT_PERCEPTUAL, INTENT_RELATIVE_COLORIMETRIC, INTENT_SATURATION, INTENT_ABSOLUTE_COLORIMETRIC) :param dw_flags : additional flags for the conversion, like cmsFLAGS_BLACKPOINTCOMPENSATION :return : numpy array with output colors """ in_C = util_lcms.number_of_channels(in_pixel_type) log.debug("'in_pixel_type' has {} channels".format(in_C)) dt = in_array.dtype #if (dt.byteorder != '='): # raise ValueError("Numpy array has has invalid type! "+ # "Byteorder is '{}'. Byteorder must be native.".format(dt.byteorder)) if dt.kind == 'u': # unsigned int in_F = 0 in_B = dt.alignment if (in_B != 1) and (in_B != 2): raise ValueError("Numpy array has has invalid type! "+ "dtype.alignment yields {} byte(s). Only uint8 and uint16 are supported.".format(in_B)) elif dt.kind == 'f': # floating point in_F = 1 in_B = dt.alignment if (in_B != 4) and (in_B != 8): raise ValueError("Numpy array has has invalid type! "+ "Only float (32 bit) and double (64 bit) are supported.") if in_B == 8: in_B = 0 # due to overflow in 3-bit representation use 0 else: raise ValueError("numpy data type '{}' is not supported".format(dt)) log.debug("'in_array' has dtype {} which maps to num_bytes:{} and is_float:{}".format(dt, in_B, in_F)) in_fmt = ( util_lcms.FLOAT_SH(in_F) | util_lcms.COLORSPACE_SH(in_pixel_type) | util_lcms.CHANNELS_SH(in_C) | util_lcms.BYTES_SH(in_B) ) log.debug("the corresponding 'in_fmt' is {}".format(in_fmt)) out_data = convert( in_prof = in_prof, in_Py_buffer=in_array.data, in_fmt=in_fmt, out_prof=out_prof, out_fmt=out_fmt, intent=intent, dw_flags=dw_flags ) log.debug("convert successful!") out_C, out_B, out_F = get_color_space_specs(out_fmt) if out_F: out_dt = 'f' # float else: out_dt = 'u' # uint out_dt += str(out_B) log.debug("numpy dtype for output from 'out_fmt' is {}".format(out_dt)) out_array = np.frombuffer(out_data, dtype=out_dt) return out_array
cimatosa/pyColConv
pyColConv/pyColConv.py
pyColConv.py
py
10,541
python
en
code
0
github-code
50
875036738
import collections class ReorganizeString: """ Given a string S, check if the letters can be rearranged so that two characters that are adjacent to each other are not the same. If possible, output any possible result. If not possible, return the empty string. Example 1: Input: S = "aab" Output: "aba" Example 2: Input: S = "aaab" Output: "" Note: S will consist of lowercase letters and have length in range [1, 500]. """ def reorganizeString(self, S: str) -> str: sortedcommons = [] lens = len(S) for c, cnt in collections.Counter(S).most_common()[::-1]: if cnt > (lens + 1) // 2: return "" sortedcommons.extend([c] * cnt) out = [None] * lens out[::2] = sortedcommons[lens // 2:] out[1::2] = sortedcommons[:lens // 2] return "".join(out)
DmitryPukhov/pyquiz
pyquiz/leetcode/ReorganizeString.py
ReorganizeString.py
py
899
python
en
code
0
github-code
50
9633133356
# -*- coding: utf-8 -*- """ Created on Thu May 24 10:28:51 2018 @author: Administrator 将SVG接线图加入通讯中断的状态 """ import xml.dom.minidom doc = xml.dom.minidom.parse('D:/35kV主接线图.svg') def setNewNode(newNode): for nc in newNode.childNodes: if nc.nodeType == nc.ELEMENT_NODE: if nc.nodeName == 'g': setNewNode(nc) else: if nc.hasAttribute('fill') and nc.getAttribute('fill') != 'none': nc.setAttribute('fill', 'grey') if nc.hasAttribute('stroke'): nc.setAttribute('stroke', 'grey') def removeAttributeFromG(node): for nc in node.childNodes: if nc.nodeType == nc.ELEMENT_NODE: if nc.nodeName == 'g': if nc.hasAttribute('irealstate'): nc.removeAttribute('irealstate') if nc.hasAttribute('style'): nc.removeAttribute('style') removeAttributeFromG(nc) def parser(node): node.setAttribute('irealstate', '-1') newNode = None for apc in node.childNodes: if apc.nodeType == apc.ELEMENT_NODE and apc.getAttribute('irealstate') == '0': newNode = apc.cloneNode(True) apc.setAttribute('style', 'display:none;') node.appendChild(newNode) newNode.setAttribute('irealstate', '-1') newNode.setAttribute('style', 'display:block;') setNewNode(newNode) for nc in node.childNodes: removeAttributeFromG(nc); for g in doc.childNodes: for ap in g.childNodes: for ap in ap.childNodes: if ap.nodeType == ap.ELEMENT_NODE and ap.getAttribute('itemplatetype') == 'status': if ap.getAttribute('igraphtype') in ('circuitbreaker', 'handcart', 'groundedswitch'): parser(ap) else: print(ap.getAttribute('id')) doc.writexml(open('D:/manage/config/target/graphics/test.svg', 'w', encoding='utf-8'))
w8s8y8/pytools
status.py
status.py
py
2,079
python
en
code
0
github-code
50
22502408130
import geopandas as gpd import matplotlib.pyplot as plt from shapely.geometry import MultiPolygon, Point, Polygon import datetime import pandas as pd import random NON_WILDFIRE_POINTS_TO_ADD = 3000 def clean_data(gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: # Remove any incomplete rows df = gdf.dropna() # Keep only relevant columns df = df[['AreaHa', 'StartDate', 'EndDate', 'Label', 'FireName', 'geometry']] # Consider only wildfires df = df[df['Label'].str.contains('Wildfire')] filter_list = df['StartDate'].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%d").year > 2009 if x is not None else False) # Only use data after 2010 df = df[filter_list] # Convert releant columns into integers df['AreaHa'] = df['AreaHa'].apply(lambda x: int(x) * 1e4) # Area in square metres df.reset_index(drop=True, inplace=True) return df def get_nsw_outline_gdf(filename='DataCleaning/StateBoundary/SED_2022_AUST_GDA94.shp'): state_boundaries = gpd.read_file(filename) nsw = state_boundaries[state_boundaries['STE_NAME21'] =='New South Wales'] nsw_outline = nsw.unary_union geometry = gpd.GeoSeries([nsw_outline]) nsw_gdf = gpd.GeoDataFrame(geometry, columns=['geometry']) # Set CRS if nsw_gdf.crs is None: nsw_gdf = nsw_gdf.set_crs('EPSG:4283') # Reduce the island off the coast of the mainland multi_polygon = nsw_gdf['geometry'][0] # Initialize variables to keep track of the largest area and geometry largest_area = 0 largest_body = None # Iterate through the individual geometries in the MultiPolygon for body in multi_polygon.geoms: if body.area > largest_area: largest_area = body.area largest_body = body # Create a new MultiPolygon containing only the largest body new_multi_polygon = MultiPolygon([largest_body]) nsw_gdf['geometry'] = [new_multi_polygon] return nsw_gdf def get_and_clean_gdf(filename='BushfireDataCleaned/BushfireDataCleaned.shp') -> gpd.GeoDataFrame: gdf = gpd.read_file(filename) # Convert Date into Datetime gdf['StartDate'] = gdf['StartDate'].apply(lambda x: datetime.datetime.strptime(x[:10], "%Y-%m-%d").date()) gdf['EndDate'] = gdf['EndDate'].apply(lambda x: datetime.datetime.strptime(x[:10], "%Y-%m-%d").date()) gdf['Centroid'] = gpd.GeoDataFrame(geometry=gdf.centroid) return gdf def add_in_random_points(filename='BushfireDataCleaned\BushfireDataCleaned.shp'): '''Function adds in points to a dataframe where there hasn't been a fire''' nsw_outline = get_nsw_outline_gdf() minlat = -37 * 2 maxlat = -28 * 2 minlon = 141 * 2 maxlon = 153 * 2 min_time = datetime.date(2010, 1, 1) max_time = datetime.date(2023, 10, 24) time_difference = (max_time - min_time).days random_gdf_dict = [] geometry_list = [] for i in range(NON_WILDFIRE_POINTS_TO_ADD): startdate = min_time + datetime.timedelta(random.randint(0, time_difference)) # Ensure that the point is located within the NSW Boundary while True: point = Point(random.randint(minlon, maxlon)/2, random.randint(minlat, maxlat)/2) if point.within(nsw_outline).bool(): break else: print(i, point) geometry_list.append(point) random_gdf_dict.append( { 'AreaHa': 'None', 'StartDate': datetime.datetime.strftime(startdate, "%Y-%m-%d"), 'EndDate': 'None', 'Label': 'No Event', 'FireName': 'None', 'geometry': Polygon([(point.x, point.y), (point.x, point.y), (point.x, point.y), (point.x, point.y)]) } ) bushfires_gdf_uncleaned = gpd.read_file(filename) random_gdf = gpd.GeoDataFrame(random_gdf_dict, crs='EPSG:4283', geometry='geometry') lst = [bushfires_gdf_uncleaned, random_gdf] combined = pd.concat(lst) # schema = { # 'geometry': combined.geom_type.map(lambda geom_type: geom_type.capitalize()).tolist(), # 'properties': {'Name': 'str'}, # } bushfire_data_cleaned = combined.to_file('BushfireDataWithRandomPoints.shp', driver="ESRI Shapefile") return bushfire_data_cleaned def main(): # bushfires_gdf_uncleaned = gpd.read_file('DataCleaning/NPWSFireHistory.shp') # bushfires_gdf = clean_data(bushfires_gdf_uncleaned) # bushfire_data_cleaned = bushfires_gdf.to_file('BushfireDataCleaned.shp', driver="ESRI Shapefile") # bushfire_data_cleaned with_random_points = add_in_random_points() if __name__ == '__main__': main()
danielmtro/ThesisBackup
DataCleaning/datacleaning.py
datacleaning.py
py
4,826
python
en
code
0
github-code
50
41296300253
import sys from os.path import abspath, dirname import numpy as np import open3d as o3d parent_dir = dirname(dirname(dirname(abspath(__file__)))) # type: ignore if parent_dir not in sys.path: # type: ignore sys.path.append(parent_dir) print(parent_dir) from pcd_algorithm.utils.merge import merge def visualize_cluster(cluster_list: list[list[float]], num_of_cluster: int): """ クラスタリング結果を表示する. Args: cluster_list (list[list[float]]): 入力点群 num_of_cluster (int): クラスタ数 """ cluster_pcd = o3d.geometry.PointCloud() for i in range(num_of_cluster): cluster = o3d.geometry.PointCloud() cluster.points = o3d.utility.Vector3dVector(cluster_list[i]) cluster.paint_uniform_color(np.random.rand(3)) cluster_pcd = merge(cluster_pcd, cluster) o3d.visualization.draw_geometries([cluster_pcd]) def k_means(points: np.ndarray, num_of_cluster: int): """ 受け取った点の集合をk-means法でクラスタリングする. Args: points (np.ndarray): 入力点群 num_of_cluster (int): クラスタ数 """ assert len(points) >= num_of_cluster, "points is less than number of clusters." seed_points = np.random.rand(num_of_cluster, 3) # ランダムに点選択するよう変更 seed_dist = np.array([10e7, 10e7, 10e7]) while np.max(seed_dist) > 0.005: cluster_list: list[list[float]] = [[]] * num_of_cluster # 各点をクラスタに分ける for point in points: distance = [] for seed_point in seed_points: distance = np.append(distance, np.linalg.norm(point - seed_point)) nearest_index = np.argmin(distance) if len(cluster_list[nearest_index]) > 0: cluster_list[nearest_index] = np.vstack( [cluster_list[nearest_index], point] ) else: cluster_list[nearest_index] = point # seed点の更新 cluster_heart_point = [[0, 0, 0]] * num_of_cluster for i in range(num_of_cluster): sum_points = np.sum(cluster_list[i], axis=0) cluster_heart_point[i] = [ point / len(cluster_list[i]) for point in sum_points ] seed_dist = np.linalg.norm(cluster_heart_point[i] - seed_points[i]) seed_points = np.array(cluster_heart_point) visualize_cluster(cluster_list, num_of_cluster) if __name__ == "__main__": points = np.random.rand(100, 3) k_means(points, 4)
sakamo1112/pcd_algorithm
pcd_algorithm/clustering/k_means.py
k_means.py
py
2,600
python
en
code
0
github-code
50
37770993352
import requests import json apiKey = '37134fea34fc11b5bdc5e82ad894109b3d141674' url = 'https://api.github.com/repos/datarepresentationstudent/aPrivateOne' filename = 'repo_out.json' file = open("pmg_test.txt", 'r') #json.dump(repoJSON, file, indent=4) response = requests.put(url, file, auth=('token',apiKey)) #response = requests.put(url, auth=('token',apiKey)) #repoJSON = response.json() #print(response.json()) #print(response.status_code)
Pmcg1/dataRepresentation
week06/lab06.02_challenge02.py
lab06.02_challenge02.py
py
450
python
en
code
0
github-code
50
70732891675
import os from os import makedirs from os.path import isdir, join, exists import fcntl from time import sleep, strftime import sys import datetime VERBOSE = False DEBUG_MODE = False ROOT_DIR = '/home/gb/logger/bdata' if DEBUG_MODE: ROOT_DIR = '.' class SoundLogger: def __init__(self, dev_card = 1, sampling_rate = 44100, duration = 60, verbose=VERBOSE): # setting self.dev_card = dev_card self.sampling_rate = sampling_rate self.duration = duration self.__VERBOSE = verbose ## file name #self.__OUTPUT_PATH = ROOT_DIR + '/sound/%Y/%m/%d' #self.__FNAME_FORMAT = '_%Y-%m%d-%H%M%S+0000.wav' #self.__FNAME_FORMAT = '_%Y-%m%d-%H%M%S%z.wav' utcnow = datetime.datetime.now(tz=datetime.timezone.utc) #p = f'{utcnow.year:04}-{utcnow.month:02}{utcnow.day:02}-{utcnow.hour:02}{utcnow.minute:02}{utcnow.second:02}.wav' self.__OUTPUT_PATH = ROOT_DIR + '/sound/{:04d}/{:02d}/{:02d}'.format(utcnow.year, utcnow.month, utcnow.day) p = '{:04d}-{:02d}{:02d}-{:02d}{:02d}{:02d}.wav'.format(utcnow.year, utcnow.month, utcnow.day, utcnow.hour,utcnow.minute, utcnow.second) self.lockpath = '/home/gb/.gb_lock/'+'sound.lock' if self.__VERBOSE: print('lock file:' + self.lockpath) #self.__FILE_PATH = self.__OUTPUT_PATH + '/' + self.__FNAME_FORMAT self.__FILE_PATH = self.__OUTPUT_PATH + '/' + p if self.__VERBOSE: print('sounf file:' + self.__FILE_PATH) def write_to_wav(self): ## file making dname = strftime(self.__OUTPUT_PATH) if not isdir(dname): makedirs(dname) self.fname = strftime(self.__FILE_PATH) if self.__VERBOSE: print(self.fname) cmd = 'arecord --device plughw:' + str(self.dev_card) + ' -r ' + str(self.sampling_rate) + ' -d ' + str(self.duration) + ' -f S16_LE ' + self.fname print(cmd) os.system(cmd) pass def log_main(self): # check lock file try: print(self.lockpath) lockf = open(self.lockpath, 'w') print(lockf) fcntl.lockf(lockf.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) except: print('Locked.') exit(1) # save start self.write_to_wav() # wait for save sleep(self.duration + int(10)) sys.exit("save duration is finished") def main(): from argparse import ArgumentParser dev_card = 1 sampling_rate = 44100 #duration = 60 duration = 15 parser = ArgumentParser() parser.add_argument('-dcard', '--dev_card', type=int, help='device card', default=dev_card) parser.add_argument('-sr', '--sampling_rate', type=int, help='sampling rate [Hz]', default=sampling_rate) parser.add_argument('-dr', '--duration', type=int, help='log duration [seconds]', default=duration) parser.add_argument('-v', '--verbose', action='store_true', help='verbose option') args = parser.parse_args() logger = SoundLogger(dev_card = args.dev_card, sampling_rate = args.sampling_rate, duration = args.duration, verbose=args.verbose) logger.log_main() if __name__ == '__main__': main()
groundbird/sound_logger
sound_logger.py
sound_logger.py
py
3,242
python
en
code
0
github-code
50
6528910941
from userpreferences.models import UserPreference from .models import Income, IncomeStream import datetime def get_user_currency_symbol(request_user): # get user currency try: user_preferences_object = UserPreference.objects.get(user=request_user) except UserPreference.DoesNotExist: user_preferences_object = UserPreference.objects.create(user=request_user) finally: user_currency_symbol = user_preferences_object.get_user_preference() return user_currency_symbol # returns dictionary with valid fields and error messages def server_validation(amount=None, date=None, income_stream=None, description=None): error_messages = [] valid_fields = {} # no error checking for description valid_fields['description'] = description try: # round to 2dp amount = float(amount) amount = round(amount, 2) if amount < 0: error_messages.append(f"please enter a positive amount.") valid_fields['amount'] = None else: valid_fields['amount'] = amount except ValueError: error_messages.append(f"please enter a valid amount.") valid_fields['amount'] = None try: date_string = str(date) date_format = '%Y-%m-%d' date_object = datetime.datetime.strptime(date_string, date_format) valid_fields['date'] = date_string except ValueError: error_messages.append('please enter a valid date.') valid_fields['date'] = None try: IncomeStream.objects.get(income_stream=income_stream) valid_fields['income_stream'] = income_stream except: error_messages.append('please select an income stream.') valid_fields['income_stream'] = None valid_fields['error_messages'] = error_messages return valid_fields
melvinloh/expenses_project
expenses_project/income/utils.py
utils.py
py
1,849
python
en
code
0
github-code
50
37737354939
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: Olivier Noguès import logging from ares.Lib.connectors.files import AresFile class FilePdf(AresFile.AresFile): """ :category: Ares File :rubric: PY :type: class :label: Connector to read a bespoke PDF file. :dsc: Connector to read a bespoke PDF file. From this connector there is also some features in order to ask the framework to "digest" the files in order to enrich the search engine with metadata. At this stage we are more working on the collection of metadata but the search engine will then leverage on all these information This module to work need a Python package called PyMuPDF. To install it you can run the command pip install PyMuPDF. Once this available to your Python environment this connector will work fine. If you want to check the connector please click [here](/api?module=connector&alias=PDF) :link PyMuPDF Documentation: https://pymupdf.readthedocs.io/en/latest/tutorial/ """ __fileExt = ['.pdf'] label = "Interface to deal with PDF files" _extPackages = [("fitz", 'PyMuPDF')] def _read(self, toPandas=False, **kwargs): doc = self.pkgs["fitz"].open(self.filePath) if kwargs['pageNumber'] >= doc.pageCount: logging.debug("Page number %s does not exist, max value %s in file %s" % (kwargs['pageNumber'], doc.pageCount - 1, self.filePath)) return '' return doc[kwargs['pageNumber']].getText() if __name__ == '__main__': pdfObj = FilePdf(filePath=r'C:\Users\HOME\Downloads\easyBus769586.pdf') print( pdfObj.read(pageNumber=0) )
jeamick/ares-visual
Lib/connectors/files/AresFilePdf.py
AresFilePdf.py
py
1,645
python
en
code
0
github-code
50
39921209805
#!C:\Python32\python.exe __author__ = 'jonathan' import cgi from dbsql import * import json print("Content-Type: application/json\n") form = cgi.FieldStorage() if "id" in form and len(form["id"].value) == 32 and not form["id"].value.count(' '): q = "SELECT json FROM stored_matches_json WHERE hashed=%(hash)s" vals = {'hash':form["id"].value} if "user" in form and len(form["user"].value) < 20 and not form["user"].value.count(' '): q += " AND user=%(user)s" vals["user"] = form["user"].value results = SQLQuery().q(q, vals) if results and len(results): jresults = json.loads(results[0][0]) jresults["permalink_id"] = form["id"].value print(json.dumps(jresults)) else: print(json.dumps({'status':'error'})) else: print(json.dumps({'status':'error', 'error':'invalid_permalink'}))
sbilstein/twitterjelly
cgi-bin/GetStoredResult.py
GetStoredResult.py
py
862
python
en
code
2
github-code
50
21644429821
# %%-- To do: """ The sets I have done: set 11 both n and p. set 10 both n and p. set 01 both n and p. set 00 both n (with k) and p. """ # %%- # %%-- Imports import pandas as pd import numpy as np import seaborn as sn from sklearn.model_selection import train_test_split, GridSearchCV import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier from sklearn.metrics import r2_score, mean_absolute_error, confusion_matrix, f1_score, accuracy_score from sklearn.linear_model import LinearRegression, Ridge import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.neural_network import MLPRegressor, MLPClassifier from sklearn.svm import SVR, SVC import sys from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB # uncomment the below line for dell laptop only from playsound import playsound from sklearn.model_selection import cross_val_score, RepeatedKFold from sklearn.multioutput import RegressorChain from semiconductor.recombination import SRH import scipy.constants as sc from datetime import datetime import smtplib from email.message import EmailMessage import os import sys # import the function file from another folder: # use this line if on hp laptop: # sys.path.append(r'C:\Users\budac\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2') # use this line if on dell laptop sys.path.append(r'C:\Users\sijin wang\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2') # use this line if on workstation sys.path.append(r'C:\Users\z5183876\OneDrive - UNSW\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2') sys.path.append(r'C:\Users\z5183876\OneDrive - UNSW\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2\DPML') sys.path.append(r'C:\Users\z5183876\OneDrive - UNSW\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2\Savedir_example') from MLobject_tlevel import * # from dynamic_generation_regression import * df1 = MyMLdata_2level(r"C:\Users\sijin wang\Desktop\research\thesiswork\ML_results\simulation_data\Etnonordered\p\set11\set11_8k.csv", 'bandgap1',1) df1.data.head() # %%- # %%-- different data engineering before training ML model. # multiplying lifetime by (dn+p0+n0) df1.pre_processor_dividX() # %%- # %%-- Single tasks. # ['Et_eV_2', 'logSn_2', 'logSp_2', 'Et_eV_1', 'logSn_1', 'logSp_1'] for task in ['logk_1', 'logk_2']: print(task) # refresh the dataset # df1 = MyMLdata_2level(r"G:\study\thesis_data_storage\unordered\set11\p\set11_p_800k.csv", 'bandgap1',5) df1.singletask = task r2_frame, y_prediction_frame, y_test_frame, best_model, scaler_return = df1.regression_repeat(output_y_pred=True) # reshape the test and prediction frame back to 2D: y_test_frame = pd.DataFrame(y_test_frame) y_prediction_frame = pd.DataFrame(y_prediction_frame) exportdata = pd.concat([y_test_frame, y_prediction_frame], axis=1) # export the validation data: name composed of: the singletask + the filename of the dataset. # df1.path filename = str(df1.singletask) + str(df1.path).split('\\')[-1] exportdata.to_csv(str(filename)) # %%- # %%-- Compare with Yan method using object. # load the BO example. BO_data = pd.read_csv(r'G:\study\thesis_data_storage\unordered\BO_validation.csv') BO_lifetime = BO_data.iloc[:,17:-2] # take hte log 10 of lifetime. BO_lifetime_log = np.log10(np.array(BO_lifetime)) sys.stdout = open(r"Bo_validation.txt", "w") for task in ['Et_eV_1', 'Et_eV_2']: # define the ML task. df1.singletask = task # traing the model. r2_frame, y_prediction_frame, y_test_frame, best_model, scaler_return = df1.regression_repeat(output_y_pred=True) # goes through the scaler. X = scaler_return.transform(BO_lifetime_log) # ask model to predict. y = best_model.predict(X) print('Predicted ' + task + ' is: ') print(y) sys.stdout.close() # %%- # %%-- colour coding: for column in ['logSn_2', 'logSp_2', 'Et_eV_2', 'logSn_1', 'logSp_1']: df1.colour_column = column df1.singletask = 'Et_eV_1' df1.colour_code_training() # %%- # %%-- Data leakage. df1.singletask = 'Et_eV_2_known_Et_eV_2_plus' r2scores = df1.regression_repeat() # this makes the results better but has data leakage, R2 got about 0.999. df1.singletask = 'Et_eV_2_known_param1' r2scores = df1.regression_repeat() df1.email_reminder() # %%- # %%-- Perform chain regression for energy levels. # %%-- Just the chain. df1.regression_matrix = 'Mean Absolute Error' df1.regression_matrix = 'R2' chain_scores = df1.repeat_chain_regressor(repeat_num=2, regression_order=None, chain_name = 'Et1->Et2') chain_scores = df1.repeat_chain_regressor(repeat_num=2, regression_order=None, chain_name = 'Et1->Et1+Et2->Et2') chain_scores = df1.repeat_chain_regressor(repeat_num=1, regression_order=None, plotall=True, chain_name = 'Et1->Sp1->Sn1->Sp2->Sn2->Et2') # pd.DataFrame(np.array(chain_scores).reshape(35, 2)).to_csv(path_or_buf = r'C:\Users\sijin wang\Documents\GitHub\SRH_sklearn_playwithdata\2_levels_problem\mode2\Et_regression\set11\chainscore_two_steps.csv') # %%- # %%-- Chain and subtraction. # the plan is to first predict Et1, then predict Et1+Et2, then predict Et2 by subtracting the prediction of sum by Et1 prediction. # r2 = df1.sum_minus_Et1_chain(regression_order=None, plotall=True) model_names, y_pred_matrix, y_test, r2list = df1.repeat_subtraction_method(repeat_num=1, regression_order=None, plotall=False, return_pred=True) # %%- # %%- # %%-- Perform chain regression for k chain_scores = df1.repeat_chain_regressor(repeat_num=5, regression_order=None, chain_name = 'logk1+logk2->logk1->logk2') # %%- # %%-- insert all known information as columns (failed) df1.pre_processor_insert_all_known() # %%- # %%-- calculate C1 C2 C3 C4 as known for each defect. # This equation only calcualte C while ignoring excess carrier concentration, and only works for one doping and one temperature. # df1.C1_C2_C3_C4_calculator() # this eqution works for lifetime data that vary both T and doping. C2n_list, C2d_list, C1n_list, C1d_list = df1.C1n_C2n_C1d_C2d_calculator(return_C=True, export=False, sanity_check=False, playmusic=False) # %%--this session will plot the histogram of Cn. C1n_array = np.array(C1n_list)[4:, :] C2n_array = np.array(C2n_list)[4:, :] # flattern hte array. C1n_array = np.reshape(C1n_array, (-1, )) print(np.mean(C1n_array)) print(np.max(C1n_array)) C2n_array = np.reshape(C2n_array, (-1, )) print(np.mean(C2n_array)) print(np.max(C2n_array)) # remove the outliers # C1n_array = C1n_array[abs(C1n_array - np.mean(C1n_array)) < 1 * np.std(C1n_array)] # C2n_array = C2n_array[abs(C2n_array - np.mean(C2n_array)) < 1 * np.std(C2n_array)] # take the log. C1n_array.astype(float) # plot the histogram bins = 100 plt.figure(facecolor='white') # plot hte log. plt.hist(np.log10(C1n_array.astype('float')) , bins=bins, label=r'$C_{\rm 1n}$', alpha=0.75, density=True) plt.hist(np.log10(C2n_array.astype('float')) , bins=bins, label=r'$C_{\rm 2n}$', alpha=0.75, density=True) # plot hte origin. # plt.hist(C1n_array.astype('float'), bins=bins, label='$C_{1n}$') # plt.hist(C2n_array.astype('float'), bins=bins, label='$C_{2n}$') plt.legend(fontsize=15) # plt.title('Histogram of $C_d$') plt.xlabel(r'log$_{\rm 10}$ of $C_{\rm n}$', fontsize=22) plt.ylabel('Probability density', fontsize=22) plt.xticks(fontsize=22) plt.yticks([0, 0.05, 0.1, 0.15, 0.2], fontsize=22) plt.savefig('Cn_compare.png', bbox_inches='tight') plt.show() # plot the boxplot. # plt.figure() # # plot hte log. # plt.boxplot([np.log10(C1n_array.astype('float')),np.log10(C2n_array.astype('float'))]) # # plot hte origin. # # plt.hist(C1n_array.astype('float'), bins=bins, label='$C_{1n}$') # # plt.hist(C2n_array.astype('float'), bins=bins, label='$C_{2n}$') # # plt.legend(['$C_{1n}$', '$C_{2n}$']) # plt.title('Distribution of Cn') # plt.ylabel('log10 of Cn') # # plt.ylim([-1, 1]) # plt.show() # plt.figure() # plt.bar(['$C_{1n}$', '$C_{2n}$'],height=[np.log10(np.mean(C1n_array)), np.log10(np.mean(C2n_array))]) # plt.show() # %%- # %%--this session will plot the histogram of Cd. C1d_array = np.array(C1n_list)[4:, :] C2d_array = np.array(C2n_list)[4:, :] # C1d_array = np.array(C1d_list)[4:, :] # C2d_array = np.array(C2d_list)[4:, :] # flattern hte array. C1d_array = np.reshape(C1d_array, (-1, )) print(np.mean(C1d_array)) print(np.max(C1d_array)) C2d_array = np.reshape(C2d_array, (-1, )) print(np.mean(C2d_array)) print(np.max(C2d_array)) # remove the outliers # C1d_array = C1d_array[abs(C1d_array - np.mean(C1d_array)) < 1 * np.std(C1d_array)] # C2d_array = C2d_array[abs(C2d_array - np.mean(C2d_array)) < 1 * np.std(C2d_array)] # take the log. C1d_array.astype(float) # plot the histogram bins = 100 plt.figure(facecolor='white') # plot hte log. plt.hist(np.log10(C1d_array.astype('float')) , bins=bins, label=r'$C_{\rm 1d}$', alpha=0.75, density=True) plt.hist(np.log10(C2d_array.astype('float')) , bins=bins, label=r'$C_{\rm 2d}$', alpha=0.75, density=True) # plot hte origin. # plt.hist(C1d_array.astype('float'), bins=bins, label='$C_{1d}$') # plt.hist(C2d_array.astype('float'), bins=bins, label='$C_{2d}$') plt.legend(fontsize=15) # plt.title('Histogram of $C_d$') plt.xlabel(r'log$_{\rm 10}$ of $C_{\rm d}$', fontsize=22) plt.ylabel('Probability density', fontsize=22) plt.xticks(fontsize=22) plt.yticks([0, 0.05, 0.1, 0.15, 0.2], fontsize=22) plt.savefig('Cd_compare.png', bbox_inches='tight') plt.show() # plot the boxplot. # plt.figure() # # plot hte log. # plt.boxplot([np.log10(C1n_array.astype('float')),np.log10(C2n_array.astype('float'))]) # # plot hte origin. # # plt.hist(C1n_array.astype('float'), bins=bins, label='$C_{1n}$') # # plt.hist(C2n_array.astype('float'), bins=bins, label='$C_{2n}$') # # plt.legend(['$C_{1n}$', '$C_{2n}$']) # plt.title('Distribution of Cn') # plt.ylabel('log10 of Cn') # # plt.ylim([-1, 1]) # plt.show() # plt.figure() # plt.bar(['$C_{1n}$', '$C_{2n}$'],height=[np.log10(np.mean(C1n_array)), np.log10(np.mean(C2n_array))]) # plt.show() # %%- # %%- # %%-- Data visualization # %%-- General historam: # histogram for C: df1.C_visiaulization(variable='C1n/C2n') df1.C_visiaulization() # %%- # %%-- Histogram for different T. # plot for one temperauree: # df1.C_visiaulization(task_name='histogram at T', T=150) # plot for demoninator term. for T in range(150, 401, 50): df1.C_visiaulization(task_name='histogram at T', T=T) # plot for numeator term: for T in range(150, 401, 50): df1.C_visiaulization(task_name='histogram at T', variable='C1n/C2n', T=T) # why it seems like T does not change anything? # %%- # %%-- Histogram for different doping. df1.C_visiaulization(task_name='histogram at doping', doping=1e14) # # plot for demoninator term. # for doping in [3e14, 7e14, 1e15, 3e15, 7e15, 1e16]: # df1.C_visiaulization(task_name='histogram at doping', doping=doping) # # plot for numeator term: # for doping in [3e14, 7e14, 1e15, 3e15, 7e15, 1e16]: # df1.C_visiaulization(task_name='histogram at doping', doping=doping, variable='C1n/C2n') # # why it seems like doping does not change anything either. # %%- # %%-- Visialize individual parameters. df1.C_visiaulization(variable='C1n') df1.C_visiaulization(variable='C2n') df1.C_visiaulization(variable='C1d') df1.C_visiaulization(variable='C2d') df1.C_visiaulization(task_name='C histogram compare') # %%- # %%-- T vs C: df1.C_visiaulization(variable='C1n/C2n', task_name='plot with T') df1.C_visiaulization(variable='C1d/C2d', task_name='plot with T') # %%- # %%-- Doping vs C: df1.C_visiaulization(variable='C1d/C2d', task_name='plot with doping') df1.C_visiaulization(variable='C1n/C2n', task_name='plot with doping') # %%- # %%-- dn vs C: df1.C_visiaulization(variable='C1d/C2d', task_name='plot with dn') df1.C_visiaulization(variable='C1n/C2n', task_name='plot with dn') # %%- # %%-- E_diff vs C: df1.C_visiaulization(variable='C1n/C2n', task_name='plot with Et1-Et2') df1.C_visiaulization(variable='C1d/C2d', task_name='plot with Et1-Et2') # %%- # %%-- data importance visualization df1.feature_importance_visualisation('Et_eV_2') # %%- # %%-- histogram for defect charge state population: C2n_frame, C2d_frame, C1n_frame, C1d_frame = df1.C1n_C2n_C1d_C2d_calculator(return_C=True, export=False, sanity_check=False, playmusic=False) # now we want to compare the results for C1n and C2n: C1n_framedata = C1n_frame.iloc[3:, :] C1n_av = np.mean(np.array(C1n_framedata), axis=1).reshape(np.shape(C1n_av)[0], 1).astype(float) C1n_avlog = np.log10(np.array(C1n_av)) # extract teh C2n as well. C2n_framedata = C2n_frame.iloc[3:, :] # C2n_framedata C2n_av = np.mean(np.array(C2n_framedata), axis=1).reshape(np.shape(C1n_av)[0], 1).astype(float) C2n_avlog = np.log10(np.array(C2n_av)) C1n_av2 = np.mean(C1n_av) C2n_av2 = np.mean(C2n_av) print(C1n_av2/C2n_av2) # %%-- # plot the histogram comparison: labels=['most positively charge / middle charge', 'most negatively charge / middle charge'] plt.figure() plt.boxplot(np.concatenate([C1n_avlog, C2n_avlog], axis=1), vert=False, labels=labels, showfliers=True) # plt.title('Mean absolute error scores for ' + str(self.singletask)) plt.xlabel('log10 of the value') plt.show() # %%- # %%- # %%- # %%-- test the first of dynamic generation method: use ML object. df1 = MyMLdata_2level(r"G:\study\thesis_data_storage\set11\set11_80000.csv", 'bandgap1',1) # predict Et1: df1.singletask='logSn_1' r2_frame, y_prediction_frame, y_test_frame, best_model, scaler_return = df1.regression_repeat(output_y_pred=True) # now we have new lifetiem data from another file: load the lifetime data: validationdata = pd.read_csv(r"C:\Users\z5183876\OneDrive - UNSW\Documents\GitHub\SRH_sklearn_playwithdata\lifetimedata\point3\set11_50_1.csv") # validationdata = pd.read_csv(r"C:\Users\sijin wang\Desktop\Thesis\thesiswork\simulation_data\set11\set11_1.csv") # extract the lifetime data: select_X_list = [] validationsetX = validationdata for string in validationdata.columns.tolist(): if string[0].isdigit(): # take the log of the data. select_X_list.append(string) # extract the lifetime data. validationsetX = validationdata[select_X_list] # print(validationsetX) # take the log: validationsetX = np.log10(validationsetX) # print(validationsetX) # go through the scaler. validationsetX = scaler_return.transform(validationsetX) # print(validationsetX) # Model to predict: y_pred = best_model.predict(validationsetX) print(y_pred) df1.email_reminder() # %%- # %%-- test the second of dynamic generation method: use ML object. # assume at this step the data generation for second step is done: df1 = MyMLdata_2level(r"G:\study\thesis_data_storage\set11\ddgm\point1\dataset2_withAuger.csv", 'bandgap1',1) df1.singletask = 'logSp_2' # try to do without pre processor or manually. r2_frame, y_prediction_frame, y_test_frame, best_model, scaler_return = df1.regression_repeat(output_y_pred=True) # now we have new lifetiem data from another file: load the lifetime data: validationdata = pd.read_csv(r"G:\study\thesis_data_storage\set11\ddgm\point1\set11_50_1.csv") # validationdata = pd.read_csv(r"C:\Users\sijin wang\Desktop\Thesis\thesiswork\simulation_data\set11\set11_1.csv") # extract the lifetime data: select_X_list = [] validationsetX = validationdata for string in validationdata.columns.tolist(): if string[0].isdigit(): # take the log of the data. select_X_list.append(string) # extract the lifetime data. validationsetX = validationdata[select_X_list] print(validationsetX) # print(validationsetX) # take the log: validationsetX = np.log10(validationsetX) print(validationsetX) # print(validationsetX) # go through the scaler. validationsetX = scaler_return.transform(validationsetX) print(validationsetX) # print(validationsetX) # Model to predict: y_pred = best_model.predict(validationsetX) print(y_pred) # %%- # %%-- test the idea of dynamic genration method: from scrach, no scaler nor log10. # assume at this step the data generation for second step is done: load the data: trainingset = pd.read_csv(r"G:\study\thesis_data_storage\set11\ddgm\point1\dataset2_withAuger.csv") # extract the lifeitme training data. select_X_list = [] for string in trainingset.columns.tolist(): if string[0].isdigit(): # take the log of the data. select_X_list.append(string) trainingX = trainingset[select_X_list] # define the ML model. model = RandomForestRegressor(n_estimators=150) # extract the target value: y = trainingset['logSp_2'] # traing the model. model.fit(trainingX, y) # now we have new lifetiem data from another file: load the lifetime data: validationdata = pd.read_csv(r"G:\study\thesis_data_storage\set11\ddgm\point1\set11_50_1.csv") # extract the lifetime data. validationsetX = validationdata[select_X_list] # Model to predict: y_pred = model.predict(validationsetX) print(y_pred) # %%- # %%-- test the idea of dynamic genration method: from scrach, but with log10 and scalers. (using predicted Et1, Sn1, Sp1) # assume at this step the data generation for second step is done: load the data: trainingset = pd.read_csv(r"G:\study\thesis_data_storage\set11\ddgm\point1\dataset2_withAuger.csv") # extract the lifeitme training data. select_X_list = [] for string in trainingset.columns.tolist(): if string[0].isdigit(): # take the log of the data. select_X_list.append(string) trainingX = trainingset[select_X_list] # take log10 of the data. trainingX = np.log10(trainingX) # apply a scaler on the data. scaler = MinMaxScaler() scaler.fit_transform(trainingX) # define the ML model. model = RandomForestRegressor(n_estimators=150) # extract the target value: y = trainingset['logSp_2'] # traing the model. model.fit(trainingX, y) # now we have new lifetiem data from another file: load the lifetime data: validationdata = pd.read_csv(r"G:\study\thesis_data_storage\set11\ddgm\point1\set11_50_1.csv") # extract the lifetime data. validationsetX = validationdata[select_X_list] # take the log for validation data. validationsetX = np.log10(validationsetX) # go through the scaler. validtionsetX = scaler.transform(validationsetX) # Model to predict: y_pred = model.predict(validationsetX) print(y_pred) # %%- # %%-- test the dynamic regression object. # training_path = r"G:\study\thesis_data_storage\set11\set11_80000.csv" # validation_path = r"G:\study\thesis_data_storage\set11\set11_50.csv" validation_path = r"C:\Users\sijin wang\Desktop\Thesis\thesiswork\simulation_data\set11\set11_1.csv" training_path = r"C:\Users\sijin wang\Desktop\Thesis\thesiswork\simulation_data\set11\set11_80000.csv" dy = Dynamic_regression(training_path=training_path, validation_path = validation_path, noise_factor=0, simulate_size=8000, n_repeat=1) dy.t_step_train_predict() # export the data # pd.DataFrame(dy.y_predictions_1).to_csv(r'C:\Users\sijin wang\Desktop\Thesis\thesiswork\code_running_results\dynamic_generation]\x.csv') # pd.DataFrame(dy.y_predictions_2).to_csv(r'C:\Users\sijin wang\Desktop\Thesis\thesiswork\code_running_results\dynamic_generation]\y.csv') # dy.email_reminder() # we have a problme here, why the real value is about 0.33 but the first prediction is about 0.30 twice # figure out why the first prediction is always 0.3 instead of 0.33eV # figure out why the prediction for Et1 is always smaller than the real value, check the scalor. # the scalor seems to be fine, maybe because of the particular validation we are having tend to be predicted smaller # lets check it with larger validation set (100), if we still have Et1 prediction less than Et2, then we must have a systematic error. # seems we do have a systematic error: # 1. just focus on the first step. # 2. check the scalour. # first step works! # lets try to do validation. # check is there anything wrong with the second step? maybe because it does not have any column name for second step training? # %%- df1.email_reminder()
sijinwnag/SRH_sklearn_playwithdata
2_levels_problem/mode2/Et_regression/set11/set11.py
set11.py
py
20,159
python
en
code
0
github-code
50
5880174517
def chars_to_bools(chars): # assert all([c == "0" or c == "1" for c in chars]) return [c == "1" for c in chars] + [False] * (6 - len(chars)) def bools_to_chars(bools): return ["1" if b else "0" for b in bools] def draw_outline(term, start_coords, end_coords, title=None, color=None): if color == None: color = term.green_on_black print( term.move_xy(start_coords[0], start_coords[1]) + color("┌" + "─" * (end_coords[0] - start_coords[0] - 1) + "┐") ) for y in range(start_coords[1] + 1, end_coords[1]): print(term.move_xy(start_coords[0], y) + color("│")) print(term.move_xy(end_coords[0], y) + color("│")) print( term.move_xy(start_coords[0], end_coords[1]) + color("└" + "─" * (end_coords[0] - start_coords[0] - 1) + "┘") ) if title is not None: assert len(title) <= end_coords[0] - start_coords[0] - 1 print(term.move_xy(start_coords[0] + 1, start_coords[1]) + color(title)) def outline_editor(term, editor, title, color=None): draw_outline( term, ( editor.origin[0] - 1, editor.origin[1] - 1, ), ( editor.origin[0] + editor.size[0], editor.origin[1] + editor.size[1], ), title=title, color=color, ) class NanoEditor: def __init__(self, term, origin, size, contents=None): self.term = term self.origin = origin self.size = size self.cursor = [0, 0] self.is_focused = True self.highlighted_lines = [] if contents is None: self.contents = [[] for _ in range(self.size[1])] else: self.contents = contents self.legal_chars = ( [chr(d) for d in range(ord("0"), ord("9") + 1)] + [chr(c) for c in range(ord("A"), ord("Z") + 1)] + list(" |=!@#$%^&*().") ) def edit_callback(self): """Meant to be overwritten""" pass def draw(self): if len(self.contents) < self.size[1]: contents = self.contents + [[]] * (self.size[1] - len(self.contents)) elif len(self.contents) > self.size[1]: contents = self.contents[: self.size[1]] else: contents = self.contents for y, line in enumerate(contents): line = "".join(line) line_color = ( self.term.white_on_black if (y not in self.highlighted_lines) else self.term.black_on_red ) cursor_color = ( # self.term.black_on_green if (y not in self.highlighted_lines) else self.term.black_on_white self.term.black_on_green ) if self.cursor[1] == y and self.is_focused: assert self.cursor[0] <= len(line) assert self.cursor[0] <= self.size[0] - 1 colored_line = line_color(line[: self.cursor[0]]) if len(line) == self.cursor[0]: # cursor is hanging out after the line colored_line += cursor_color(" ") # One extra char for cursor colored_line += line_color(" " * (self.size[0] - len(line) - 1)) elif len(line) == self.cursor[0] + 1: # cursor is on last char of line colored_line += cursor_color(line[self.cursor[0]]) colored_line += line_color(" " * (self.size[0] - len(line))) else: colored_line += cursor_color(line[self.cursor[0]]) colored_line += line_color(line[self.cursor[0] + 1 :]) colored_line += line_color(" " * (self.size[0] - len(line))) else: colored_line = line_color(line) colored_line += line_color(" " * (self.size[0] - len(line))) print(self.term.move_xy(self.origin[0], self.origin[1] + y) + colored_line) def keypress(self, inp): if inp.code == self.term.KEY_LEFT: if 0 < self.cursor[0]: self.cursor[0] -= 1 elif inp.code == self.term.KEY_RIGHT: if self.cursor[0] < self.size[0] - 1 and self.cursor[0] < len( self.contents[self.cursor[1]] ): self.cursor[0] += 1 elif inp.code == self.term.KEY_HOME: self.cursor[0] = 0 elif inp.code == self.term.KEY_END: self.cursor[0] = len(self.contents[self.cursor[1]]) elif inp.code == self.term.KEY_UP: if 0 < self.cursor[1]: self.cursor[1] -= 1 self.cursor[0] = min(self.cursor[0], len(self.contents[self.cursor[1]])) elif inp.code == self.term.KEY_DOWN: if self.cursor[1] < self.size[1] - 1: self.cursor[1] += 1 self.cursor[0] = min(self.cursor[0], len(self.contents[self.cursor[1]])) elif inp.code == self.term.KEY_BACKSPACE: if 0 == self.cursor[0]: if 0 < self.cursor[1] and self.contents[self.cursor[1] - 1] == []: del self.contents[self.cursor[1] - 1] self.contents.append([]) self.cursor[1] -= 1 else: del self.contents[self.cursor[1]][self.cursor[0] - 1] self.cursor[0] -= 1 elif inp.code == self.term.KEY_DELETE: if self.cursor[0] < len(self.contents[self.cursor[1]]): del self.contents[self.cursor[1]][self.cursor[0]] elif inp.code == self.term.KEY_ENTER: if self.contents[-1] == [] and self.cursor[1] < self.size[1] - 1: self.contents.pop() self.contents.insert(self.cursor[1] + 1, []) self.cursor[0] = 0 self.cursor[1] += 1 elif inp.upper() in self.legal_chars: if len(self.contents[self.cursor[1]]) < self.size[0]: self.contents[self.cursor[1]].insert(self.cursor[0], inp.upper()) else: self.contents[self.cursor[1]][self.cursor[0]] = inp.upper() if self.cursor[0] < self.size[0] - 1: self.cursor[0] += 1 self.edit_callback() self.draw()
aselker/ld48_computer_1
nano_editor.py
nano_editor.py
py
6,311
python
en
code
5
github-code
50
34567644548
__author__ = 'Administrator' # coding: utf-8 import adbtools import os import datetime import time def command(): with open('E:/1/monkey.txt') as file: data = file.readlines() str = ''.join(data) file.close() print(str) os.popen(str) def write_result(): format_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S") path = 'e:/1/' filename = 'monkey_run.txt' end_name = format_time + filename os.rename(path + filename, path + end_name) print (end_name) if __name__ == '__main__': device = adbtools.AdbTools('c248f4b7') command() write_result()
luoxin0420/study
monkey.py
monkey.py
py
624
python
en
code
0
github-code
50