id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 59
127
|
---|---|---|
1323debf1f02-2
|
return embeddings
def _generate_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings using the Embaas API."""
payload = self._generate_payload(texts)
try:
return self._handle_request(payload)
except requests.exceptions.RequestException as e:
if e.response is None or not e.response.text:
raise ValueError(f"Error raised by embaas embeddings API: {e}")
parsed_response = e.response.json()
if "message" in parsed_response:
raise ValueError(
"Validation Error raised by embaas embeddings API:"
f"{parsed_response['message']}"
)
raise
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Get embeddings for a list of texts.
Args:
texts: The list of texts to get embeddings for.
Returns:
List of embeddings, one for each text.
"""
batches = [
texts[i : i + MAX_BATCH_SIZE] for i in range(0, len(texts), MAX_BATCH_SIZE)
]
embeddings = [self._generate_embeddings(batch) for batch in batches]
# flatten the list of lists into a single list
return [embedding for batch in embeddings for embedding in batch]
[docs] def embed_query(self, text: str) -> List[float]:
"""Get embeddings for a single text.
Args:
text: The text to get embeddings for.
Returns:
List of embeddings.
"""
return self.embed_documents([text])[0]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/embaas.html
|
1fff811542ca-0
|
Source code for langchain.embeddings.huggingface
"""Wrapper around HuggingFace embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
[docs]class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass when calling the `encode` method of the model."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface.html
|
1fff811542ca-1
|
"""Key word arguments to pass when calling the `encode` method of the model."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client.encode(texts, **self.encode_kwargs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.client.encode(text, **self.encode_kwargs)
return embedding.tolist()
[docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface.html
|
1fff811542ca-2
|
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python packages installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass to the model."""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to pass when calling the `encode` method of the model."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
except ImportError as e:
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
class Config:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface.html
|
1fff811542ca-3
|
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface.html
|
22afd4a09680-0
|
Source code for langchain.embeddings.elasticsearch
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional
from langchain.utils import get_from_env
if TYPE_CHECKING:
from elasticsearch import Elasticsearch
from elasticsearch.client import MlClient
from langchain.embeddings.base import Embeddings
[docs]class ElasticsearchEmbeddings(Embeddings):
"""
Wrapper around Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed
in an Elasticsearch cluster. It requires an Elasticsearch connection object
and the model_id of the model deployed in the cluster.
In Elasticsearch you need to have an embedding model loaded and deployed.
- https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html
- https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html
""" # noqa: E501
def __init__(
self,
client: MlClient,
model_id: str,
*,
input_field: str = "text_field",
):
"""
Initialize the ElasticsearchEmbeddings instance.
Args:
client (MlClient): An Elasticsearch ML client object.
model_id (str): The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str): The name of the key for the input text field in the
document. Defaults to 'text_field'.
"""
self.client = client
self.model_id = model_id
self.input_field = input_field
[docs] @classmethod
def from_credentials(
cls,
model_id: str,
*,
es_cloud_id: Optional[str] = None,
es_user: Optional[str] = None,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/elasticsearch.html
|
22afd4a09680-1
|
es_user: Optional[str] = None,
es_password: Optional[str] = None,
input_field: str = "text_field",
) -> ElasticsearchEmbeddings:
"""Instantiate embeddings from Elasticsearch credentials.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str): The name of the key for the input text field in the
document. Defaults to 'text_field'.
es_cloud_id: (str, optional): The Elasticsearch cloud ID to connect to.
es_user: (str, optional): Elasticsearch username.
es_password: (str, optional): Elasticsearch password.
Example:
.. code-block:: python
from langchain.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Credentials can be passed in two ways. Either set the env vars
# ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically
# pulled in, or pass them in directly as kwargs.
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
input_field=input_field,
# es_cloud_id="foo",
# es_user="bar",
# es_password="baz",
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
"""
try:
from elasticsearch import Elasticsearch
from elasticsearch.client import MlClient
except ImportError:
raise ImportError(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/elasticsearch.html
|
22afd4a09680-2
|
from elasticsearch.client import MlClient
except ImportError:
raise ImportError(
"elasticsearch package not found, please install with 'pip install "
"elasticsearch'"
)
es_cloud_id = es_cloud_id or get_from_env("es_cloud_id", "ES_CLOUD_ID")
es_user = es_user or get_from_env("es_user", "ES_USER")
es_password = es_password or get_from_env("es_password", "ES_PASSWORD")
# Connect to Elasticsearch
es_connection = Elasticsearch(
cloud_id=es_cloud_id, basic_auth=(es_user, es_password)
)
client = MlClient(es_connection)
return cls(client, model_id, input_field=input_field)
[docs] @classmethod
def from_es_connection(
cls,
model_id: str,
es_connection: Elasticsearch,
input_field: str = "text_field",
) -> ElasticsearchEmbeddings:
"""
Instantiate embeddings from an existing Elasticsearch connection.
This method provides a way to create an instance of the ElasticsearchEmbeddings
class using an existing Elasticsearch connection. The connection object is used
to create an MlClient, which is then used to initialize the
ElasticsearchEmbeddings instance.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch cluster.
es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch
connection object. input_field (str, optional): The name of the key for the
input text field in the document. Defaults to 'text_field'.
Returns:
ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class.
Example:
.. code-block:: python
from elasticsearch import Elasticsearch
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/elasticsearch.html
|
22afd4a09680-3
|
Example:
.. code-block:: python
from elasticsearch import Elasticsearch
from langchain.embeddings import ElasticsearchEmbeddings
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=["localhost:9200"], http_auth=("user", "password")
)
# Instantiate ElasticsearchEmbeddings using the existing connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
input_field=input_field,
)
documents = [
"This is an example document.",
"Another example document to generate embeddings for.",
]
embeddings_generator.embed_documents(documents)
"""
# Importing MlClient from elasticsearch.client within the method to
# avoid unnecessary import if the method is not used
from elasticsearch.client import MlClient
# Create an MlClient from the given Elasticsearch connection
client = MlClient(es_connection)
# Return a new instance of the ElasticsearchEmbeddings class with
# the MlClient, model_id, and input_field
return cls(client, model_id, input_field=input_field)
def _embedding_func(self, texts: List[str]) -> List[List[float]]:
"""
Generate embeddings for the given texts using the Elasticsearch model.
Args:
texts (List[str]): A list of text strings to generate embeddings for.
Returns:
List[List[float]]: A list of embeddings, one for each text in the input
list.
"""
response = self.client.infer_trained_model(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/elasticsearch.html
|
22afd4a09680-4
|
list.
"""
response = self.client.infer_trained_model(
model_id=self.model_id, docs=[{self.input_field: text} for text in texts]
)
embeddings = [doc["predicted_value"] for doc in response["inference_results"]]
return embeddings
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
Generate embeddings for a list of documents.
Args:
texts (List[str]): A list of document text strings to generate embeddings
for.
Returns:
List[List[float]]: A list of embeddings, one for each document in the input
list.
"""
return self._embedding_func(texts)
[docs] def embed_query(self, text: str) -> List[float]:
"""
Generate an embedding for a single query text.
Args:
text (str): The query text to generate an embedding for.
Returns:
List[float]: The embedding for the input query text.
"""
return self._embedding_func([text])[0]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/elasticsearch.html
|
1d62e06344ee-0
|
Source code for langchain.embeddings.huggingface_hub
"""Wrapper around HuggingFace Hub embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
[docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceHubEmbeddings
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any #: :meta private:
repo_id: str = DEFAULT_REPO_ID
"""Model name to use."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface_hub.html
|
1d62e06344ee-1
|
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.inference_api import InferenceApi
repo_id = values["repo_id"]
if not repo_id.startswith("sentence-transformers"):
raise ValueError(
"Currently only 'sentence-transformers' embedding models "
f"are supported. Got invalid 'repo_id' {repo_id}."
)
client = InferenceApi(
repo_id=repo_id,
token=huggingfacehub_api_token,
task=values.get("task"),
)
if client.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {client.task}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface_hub.html
|
1d62e06344ee-2
|
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = self.client(inputs=texts, params=_model_kwargs)
return responses
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/huggingface_hub.html
|
c42c6d64d304-0
|
Source code for langchain.embeddings.openai
"""Wrapper around OpenAI embedding models."""
from __future__ import annotations
import logging
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import numpy as np
from pydantic import BaseModel, Extra, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-1
|
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
return embeddings.client.create(**kwargs)
return _embed_with_retry(**kwargs)
[docs]class OpenAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-2
|
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_base: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_type: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-3
|
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2022-12-01"
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-4
|
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"engine": self.deployment,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
if self.openai_proxy:
import openai
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
encoding = tiktoken.model.encoding_for_model(self.model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-5
|
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens += [token[j : j + self.embedding_ctx_length]]
indices += [i]
batched_embeddings = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings += [r["embedding"] for r in response["data"]]
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)[
"data"
][0]["embedding"]
else:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-6
|
)[
"data"
][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint."""
# handle large input text
if len(text) > self.embedding_ctx_length:
return self._get_len_safe_embeddings([text], engine=engine)[0]
else:
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return embed_with_retry(
self,
input=[text],
**self._invocation_params,
)[
"data"
][0]["embedding"]
[docs] def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return self._get_len_safe_embeddings(texts, engine=self.deployment)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
c42c6d64d304-7
|
return self._get_len_safe_embeddings(texts, engine=self.deployment)
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = self._embedding_func(text, engine=self.deployment)
return embedding
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/openai.html
|
56a492739365-0
|
Source code for langchain.embeddings.cohere
"""Wrapper around Cohere embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class CohereEmbeddings(BaseModel, Embeddings):
"""Wrapper around Cohere embedding models.
To use, you should have the ``cohere`` python package installed, and the
environment variable ``COHERE_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import CohereEmbeddings
cohere = CohereEmbeddings(
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
)
"""
client: Any #: :meta private:
model: str = "embed-english-v2.0"
"""Model name to use."""
truncate: Optional[str] = None
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
cohere_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cohere_api_key = get_from_dict_or_env(
values, "cohere_api_key", "COHERE_API_KEY"
)
try:
import cohere
values["client"] = cohere.Client(cohere_api_key)
except ImportError:
raise ValueError(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/cohere.html
|
56a492739365-1
|
except ImportError:
raise ValueError(
"Could not import cohere python package. "
"Please install it with `pip install cohere`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Cohere's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = self.client.embed(
model=self.model, texts=texts, truncate=self.truncate
).embeddings
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Cohere's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(
model=self.model, texts=[text], truncate=self.truncate
).embeddings[0]
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/cohere.html
|
66b5c35a9500-0
|
Source code for langchain.embeddings.bedrock
import json
import os
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
[docs]class BedrockEmbeddings(BaseModel, Embeddings):
"""Embeddings provider to invoke Bedrock embedding models.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Bedrock service.
"""
"""
Example:
.. code-block:: python
from langchain.bedrock_embeddings import BedrockEmbeddings
region_name ="us-east-1"
credentials_profile_name = "default"
model_id = "amazon.titan-e1t-medium"
be = BedrockEmbeddings(
credentials_profile_name=credentials_profile_name,
region_name=region_name,
model_id=model_id
)
"""
client: Any #: :meta private:
region_name: Optional[str] = None
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here.
"""
credentials_profile_name: Optional[str] = None
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/bedrock.html
|
66b5c35a9500-1
|
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
"""
model_id: str = "amazon.titan-e1t-medium"
"""Id of the model to call, e.g., amazon.titan-e1t-medium, this is
equivalent to the modelId property in the list-foundation-models api"""
model_kwargs: Optional[Dict] = None
"""Key word arguments to pass to the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
if values["client"] is not None:
return values
try:
import boto3
if values["credentials_profile_name"] is not None:
session = boto3.Session(profile_name=values["credentials_profile_name"])
else:
# use default credentials
session = boto3.Session()
client_params = {}
if values["region_name"]:
client_params["region_name"] = values["region_name"]
values["client"] = session.client("bedrock", **client_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
return values
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/bedrock.html
|
66b5c35a9500-2
|
"profile name are valid."
) from e
return values
def _embedding_func(self, text: str) -> List[float]:
"""Call out to Bedrock embedding endpoint."""
# replace newlines, which can negatively affect performance.
text = text.replace(os.linesep, " ")
_model_kwargs = self.model_kwargs or {}
input_body = {**_model_kwargs}
input_body["inputText"] = text
body = json.dumps(input_body)
content_type = "application/json"
accepts = "application/json"
embeddings = []
try:
response = self.client.invoke_model(
body=body,
modelId=self.model_id,
accept=accepts,
contentType=content_type,
)
response_body = json.loads(response.get("body").read())
embeddings = response_body.get("embedding")
except Exception as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
return embeddings
[docs] def embed_documents(
self, texts: List[str], chunk_size: int = 1
) -> List[List[float]]:
"""Compute doc embeddings using a Bedrock model.
Args:
texts: The list of texts to embed.
chunk_size: Bedrock currently only allows single string
inputs, so chunk size is always 1. This input is here
only for compatibility with the embeddings interface.
Returns:
List of embeddings, one for each text.
"""
results = []
for text in texts:
response = self._embedding_func(text)
results.append(response)
return results
[docs] def embed_query(self, text: str) -> List[float]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/bedrock.html
|
66b5c35a9500-3
|
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a Bedrock model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embedding_func(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/bedrock.html
|
4d74740bd703-0
|
Source code for langchain.embeddings.fake
from typing import List
import numpy as np
from pydantic import BaseModel
from langchain.embeddings.base import Embeddings
[docs]class FakeEmbeddings(Embeddings, BaseModel):
size: int
def _get_embedding(self) -> List[float]:
return list(np.random.normal(size=self.size))
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding() for _ in texts]
[docs] def embed_query(self, text: str) -> List[float]:
return self._get_embedding()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/fake.html
|
aaf41fb41b63-0
|
Source code for langchain.embeddings.llamacpp
"""Wrapper around llama.cpp embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.embeddings.base import Embeddings
[docs]class LlamaCppEmbeddings(BaseModel, Embeddings):
"""Wrapper around llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
"""
client: Any #: :meta private:
model_path: str
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/llamacpp.html
|
aaf41fb41b63-1
|
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use. If None, the number
of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers")
"""Number of layers to be loaded into gpu memory. Default None."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model_path = values["model_path"]
model_param_names = [
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
from llama_cpp import Llama
values["client"] = Llama(model_path, embedding=True, **model_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/llamacpp.html
|
aaf41fb41b63-2
|
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using the Llama model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/llamacpp.html
|
b61282c78106-0
|
Source code for langchain.embeddings.modelscope_hub
"""Wrapper around ModelScopeHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
[docs]class ModelScopeEmbeddings(BaseModel, Embeddings):
"""Wrapper around modelscope_hub embedding models.
To use, you should have the ``modelscope`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import ModelScopeEmbeddings
model_id = "damo/nlp_corom_sentence-embedding_english-base"
embed = ModelScopeEmbeddings(model_id=model_id)
"""
embed: Any
model_id: str = "damo/nlp_corom_sentence-embedding_english-base"
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the modelscope"""
super().__init__(**kwargs)
try:
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id)
except ImportError as e:
raise ImportError(
"Could not import some python packages."
"Please install it with `pip install modelscope`."
) from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a modelscope embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/modelscope_hub.html
|
b61282c78106-1
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
inputs = {"source_sentence": texts}
embeddings = self.embed(input=inputs)["text_embedding"]
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a modelscope embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
inputs = {"source_sentence": [text]}
embedding = self.embed(input=inputs)["text_embedding"][0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/modelscope_hub.html
|
47053ab09af7-0
|
Source code for langchain.embeddings.minimax
"""Wrapper around MiniMax APIs."""
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
import requests
from pydantic import BaseModel, Extra, root_validator
from tenacity import (
before_sleep_log,
retry,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator."""
multiplier = 1
min_seconds = 1
max_seconds = 4
max_retries = 6
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
return embeddings.embed(*args, **kwargs)
return _embed_with_retry(*args, **kwargs)
[docs]class MiniMaxEmbeddings(BaseModel, Embeddings):
"""Wrapper around MiniMax's embedding inference service.
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and
``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to
the constructor.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/minimax.html
|
47053ab09af7-1
|
the constructor.
Example:
.. code-block:: python
from langchain.embeddings import MiniMaxEmbeddings
embeddings = MiniMaxEmbeddings()
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])
"""
endpoint_url: str = "https://api.minimax.chat/v1/embeddings"
"""Endpoint URL to use."""
model: str = "embo-01"
"""Embeddings model name to use."""
embed_type_db: str = "db"
"""For embed_documents"""
embed_type_query: str = "query"
"""For embed_query"""
minimax_group_id: Optional[str] = None
"""Group ID for MiniMax API."""
minimax_api_key: Optional[str] = None
"""API Key for MiniMax API."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that group id and api key exists in environment."""
minimax_group_id = get_from_dict_or_env(
values, "minimax_group_id", "MINIMAX_GROUP_ID"
)
minimax_api_key = get_from_dict_or_env(
values, "minimax_api_key", "MINIMAX_API_KEY"
)
values["minimax_group_id"] = minimax_group_id
values["minimax_api_key"] = minimax_api_key
return values
def embed(
self,
texts: List[str],
embed_type: str,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/minimax.html
|
47053ab09af7-2
|
self,
texts: List[str],
embed_type: str,
) -> List[List[float]]:
payload = {
"model": self.model,
"type": embed_type,
"texts": texts,
}
# HTTP headers for authorization
headers = {
"Authorization": f"Bearer {self.minimax_api_key}",
"Content-Type": "application/json",
}
params = {
"GroupId": self.minimax_group_id,
}
# send request
response = requests.post(
self.endpoint_url, params=params, headers=headers, json=payload
)
parsed_response = response.json()
# check for errors
if parsed_response["base_resp"]["status_code"] != 0:
raise ValueError(
f"MiniMax API returned an error: {parsed_response['base_resp']}"
)
embeddings = parsed_response["vectors"]
return embeddings
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using a MiniMax embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db)
return embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using a MiniMax embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embeddings = embed_with_retry(
self, texts=[text], embed_type=self.embed_type_query
)
return embeddings[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/minimax.html
|
47053ab09af7-3
|
)
return embeddings[0]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/minimax.html
|
8b4bdebcb88d-0
|
Source code for langchain.embeddings.self_hosted
"""Running custom embedding models on self-hosted remote hardware."""
from typing import Any, Callable, List
from pydantic import Extra
from langchain.embeddings.base import Embeddings
from langchain.llms import SelfHostedPipeline
def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return pipeline(*args, **kwargs)
[docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
"""Runs custom embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example using a model load function:
.. code-block:: python
from langchain.embeddings import SelfHostedEmbeddings
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
def get_pipeline():
model_id = "facebook/bart-large"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
embeddings = SelfHostedEmbeddings(
model_load_fn=get_pipeline,
hardware=gpu
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted.html
|
8b4bdebcb88d-1
|
model_load_fn=get_pipeline,
hardware=gpu
model_reqs=["./", "torch", "transformers"],
)
Example passing in a pipeline path:
.. code-block:: python
from langchain.embeddings import SelfHostedHFEmbeddings
import runhouse as rh
from transformers import pipeline
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
rh.blob(pickle.dumps(pipeline),
path="models/pipeline.pkl").save().to(gpu, path="models")
embeddings = SelfHostedHFEmbeddings.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
"""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings on the remote hardware."""
inference_kwargs: Any = None
"""Any kwargs to pass to the model's inference function."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.s
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client(self.pipeline_ref, texts)
if not isinstance(embeddings, list):
return embeddings.tolist()
return embeddings
[docs] def embed_query(self, text: str) -> List[float]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted.html
|
8b4bdebcb88d-2
|
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embeddings = self.client(self.pipeline_ref, text)
if not isinstance(embeddings, list):
return embeddings.tolist()
return embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted.html
|
13be03d534cc-0
|
Source code for langchain.embeddings.aleph_alpha
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
"""
Wrapper for Aleph Alpha's Asymmetric Embeddings
AA provides you with an endpoint to embed a document and a query.
The models were optimized to make the embeddings of documents and
the query for a document as similar as possible.
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
embeddings = AlephAlphaSymmetricSemanticEmbedding()
document = "This is a content of the document"
query = "What is the content of the document?"
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
"""
client: Any #: :meta private:
model: Optional[str] = "luminous-base"
"""Model name to use."""
hosting: Optional[str] = "https://api.aleph-alpha.com"
"""Optional parameter that specifies which datacenters may process the request."""
normalize: Optional[bool] = True
"""Should returned embeddings be normalized"""
compress_to_size: Optional[int] = 128
"""Should the returned embeddings come back as an original 5120-dim vector,
or should it be compressed to 128-dim."""
contextual_control_threshold: Optional[int] = None
"""Attention control parameters only apply to those tokens that have
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/aleph_alpha.html
|
13be03d534cc-1
|
"""Attention control parameters only apply to those tokens that have
explicitly been set in the request."""
control_log_additive: Optional[bool] = True
"""Apply controls on prompt items by adding the log(control_factor)
to attention scores."""
aleph_alpha_api_key: Optional[str] = None
"""API key for Aleph Alpha API."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
aleph_alpha_api_key = get_from_dict_or_env(
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
from aleph_alpha_client import Client
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
values["client"] = Client(token=aleph_alpha_api_key)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's asymmetric Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
document_embeddings = []
for text in texts:
document_params = {
"prompt": Prompt.from_text(text),
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/aleph_alpha.html
|
13be03d534cc-2
|
document_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Document,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
document_request = SemanticEmbeddingRequest(**document_params)
document_response = self.client.semantic_embed(
request=document_request, model=self.model
)
document_embeddings.append(document_response.embedding)
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
symmetric_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Query,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
symmetric_response = self.client.semantic_embed(
request=symmetric_request, model=self.model
)
return symmetric_response.embedding
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/aleph_alpha.html
|
13be03d534cc-3
|
request=symmetric_request, model=self.model
)
return symmetric_response.embedding
[docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
"""The symmetric version of the Aleph Alpha's semantic embeddings.
The main difference is that here, both the documents and
queries are embedded with a SemanticRepresentation.Symmetric
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
text = "This is a test text"
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)
"""
def _embed(self, text: str) -> List[float]:
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
query_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Symmetric,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
query_request = SemanticEmbeddingRequest(**query_params)
query_response = self.client.semantic_embed(
request=query_request, model=self.model
)
return query_response.embedding
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's Document endpoint.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/aleph_alpha.html
|
13be03d534cc-4
|
"""Call out to Aleph Alpha's Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
document_embeddings = []
for text in texts:
document_embeddings.append(self._embed(text))
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/aleph_alpha.html
|
9f2ad041044a-0
|
Source code for langchain.embeddings.tensorflow_hub
"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
[docs]class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models.
To use, you should have the ``tensorflow_text`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import TensorflowHubEmbeddings
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
tf = TensorflowHubEmbeddings(model_url=url)
"""
embed: Any #: :meta private:
model_url: str = DEFAULT_MODEL_URL
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the tensorflow_hub and tensorflow_text."""
super().__init__(**kwargs)
try:
import tensorflow_hub
except ImportError:
raise ImportError(
"Could not import tensorflow-hub python package. "
"Please install it with `pip install tensorflow-hub``."
)
try:
import tensorflow_text # noqa
except ImportError:
raise ImportError(
"Could not import tensorflow_text python package. "
"Please install it with `pip install tensorflow_text``."
)
self.embed = tensorflow_hub.load(self.model_url)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/tensorflow_hub.html
|
9f2ad041044a-1
|
"""Compute doc embeddings using a TensorflowHub embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.embed(texts).numpy()
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a TensorflowHub embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.embed([text]).numpy()[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/tensorflow_hub.html
|
2571249fc599-0
|
Source code for langchain.embeddings.dashscope
"""Wrapper around DashScope embedding models."""
from __future__ import annotations
import logging
from typing import (
Any,
Callable,
Dict,
List,
Optional,
)
from pydantic import BaseModel, Extra, root_validator
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]:
multiplier = 1
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 1 seconds, then up to 4 seconds, then 4 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
resp = embeddings.client.call(**kwargs)
if resp.status_code == 200:
return resp.output["embeddings"]
elif resp.status_code in [400, 401]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/dashscope.html
|
2571249fc599-1
|
elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
return _embed_with_retry(**kwargs)
[docs]class DashScopeEmbeddings(BaseModel, Embeddings):
"""Wrapper around DashScope embedding models.
To use, you should have the ``dashscope`` python package installed, and the
environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key")
Example:
.. code-block:: python
import os
os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY"
from langchain.embeddings.dashscope import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(
model="text-embedding-v1",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any #: :meta private:
model: str = "text-embedding-v1"
dashscope_api_key: Optional[str] = None
"""Maximum number of retries to make when generating."""
max_retries: int = 5
class Config:
"""Configuration for this pydantic object."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/dashscope.html
|
2571249fc599-2
|
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
import dashscope
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = get_from_dict_or_env(
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
)
dashscope.api_key = values["dashscope_api_key"]
try:
import dashscope
values["client"] = dashscope.TextEmbedding
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to DashScope's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
embeddings = embed_with_retry(
self, input=texts, text_type="document", model=self.model
)
embedding_list = [item["embedding"] for item in embeddings]
return embedding_list
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to DashScope's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = embed_with_retry(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/dashscope.html
|
2571249fc599-3
|
Embedding for the text.
"""
embedding = embed_with_retry(
self, input=text, text_type="query", model=self.model
)[0]["embedding"]
return embedding
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/dashscope.html
|
9d94d312d47a-0
|
Source code for langchain.vectorstores.azuresearch
"""Wrapper around Azure Cognitive Search."""
from __future__ import annotations
import base64
import json
import logging
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
)
import numpy as np
from pydantic import BaseModel, root_validator
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.schema import BaseRetriever
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger()
if TYPE_CHECKING:
from azure.search.documents import SearchClient
# Allow overriding field names for Azure Search
FIELDS_ID = get_from_env(
key="AZURESEARCH_FIELDS_ID", env_key="AZURESEARCH_FIELDS_ID", default="id"
)
FIELDS_CONTENT = get_from_env(
key="AZURESEARCH_FIELDS_CONTENT",
env_key="AZURESEARCH_FIELDS_CONTENT",
default="content",
)
FIELDS_CONTENT_VECTOR = get_from_env(
key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
env_key="AZURESEARCH_FIELDS_CONTENT_VECTOR",
default="content_vector",
)
FIELDS_METADATA = get_from_env(
key="AZURESEARCH_FIELDS_TAG", env_key="AZURESEARCH_FIELDS_TAG", default="metadata"
)
MAX_UPLOAD_BATCH_SIZE = 1000
def _get_search_client(
endpoint: str,
key: str,
index_name: str,
embedding_function: Callable,
semantic_configuration_name: Optional[str] = None,
) -> SearchClient:
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import ResourceNotFoundError
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-1
|
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import ResourceNotFoundError
from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
PrioritizedFields,
SearchableField,
SearchField,
SearchFieldDataType,
SearchIndex,
SemanticConfiguration,
SemanticField,
SemanticSettings,
SimpleField,
VectorSearch,
VectorSearchAlgorithmConfiguration,
)
if key is None:
credential = DefaultAzureCredential()
else:
credential = AzureKeyCredential(key)
index_client: SearchIndexClient = SearchIndexClient(
endpoint=endpoint, credential=credential
)
try:
index_client.get_index(name=index_name)
except ResourceNotFoundError:
# Fields configuration
fields = [
SimpleField(
name=FIELDS_ID,
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SearchableField(
name=FIELDS_CONTENT,
type=SearchFieldDataType.String,
searchable=True,
retrievable=True,
),
SearchField(
name=FIELDS_CONTENT_VECTOR,
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
dimensions=len(embedding_function("Text")),
vector_search_configuration="default",
),
SearchableField(
name=FIELDS_METADATA,
type=SearchFieldDataType.String,
searchable=True,
retrievable=True,
),
]
# Vector search configuration
vector_search = VectorSearch(
algorithm_configurations=[
VectorSearchAlgorithmConfiguration(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-2
|
algorithm_configurations=[
VectorSearchAlgorithmConfiguration(
name="default",
kind="hnsw",
hnsw_parameters={
"m": 4,
"efConstruction": 400,
"efSearch": 500,
"metric": "cosine",
},
)
]
)
# Create the semantic settings with the configuration
semantic_settings = (
None
if semantic_configuration_name is None
else SemanticSettings(
configurations=[
SemanticConfiguration(
name=semantic_configuration_name,
prioritized_fields=PrioritizedFields(
prioritized_content_fields=[
SemanticField(field_name=FIELDS_CONTENT)
],
),
)
]
)
)
# Create the search index with the semantic settings and vector search
index = SearchIndex(
name=index_name,
fields=fields,
vector_search=vector_search,
semantic_settings=semantic_settings,
)
index_client.create_index(index)
# Create the search client
return SearchClient(endpoint=endpoint, index_name=index_name, credential=credential)
[docs]class AzureSearch(VectorStore):
def __init__(
self,
azure_search_endpoint: str,
azure_search_key: str,
index_name: str,
embedding_function: Callable,
search_type: str = "hybrid",
semantic_configuration_name: Optional[str] = None,
semantic_query_language: str = "en-us",
**kwargs: Any,
):
"""Initialize with necessary components."""
# Initialize base class
self.embedding_function = embedding_function
self.client = _get_search_client(
azure_search_endpoint,
azure_search_key,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-3
|
azure_search_endpoint,
azure_search_key,
index_name,
embedding_function,
semantic_configuration_name,
)
self.search_type = search_type
self.semantic_configuration_name = semantic_configuration_name
self.semantic_query_language = semantic_query_language
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add texts data to an existing index."""
keys = kwargs.get("keys")
ids = []
# Write data to index
data = []
for i, text in enumerate(texts):
# Use provided key otherwise use default key
key = keys[i] if keys else str(uuid.uuid4())
# Encoding key for Azure Search valid characters
key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii")
metadata = metadatas[i] if metadatas else {}
# Add data to index
data.append(
{
"@search.action": "upload",
FIELDS_ID: key,
FIELDS_CONTENT: text,
FIELDS_CONTENT_VECTOR: np.array(
self.embedding_function(text), dtype=np.float32
).tolist(),
FIELDS_METADATA: json.dumps(metadata),
}
)
ids.append(key)
# Upload data in batches
if len(data) == MAX_UPLOAD_BATCH_SIZE:
response = self.client.upload_documents(documents=data)
# Check if all documents were successfully uploaded
if not all([r.succeeded for r in response]):
raise Exception(response)
# Reset data
data = []
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-4
|
raise Exception(response)
# Reset data
data = []
# Considering case where data is an exact multiple of batch-size entries
if len(data) == 0:
return ids
# Upload data to index
response = self.client.upload_documents(documents=data)
# Check if all documents were successfully uploaded
if all([r.succeeded for r in response]):
return ids
else:
raise Exception(response)
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
search_type = kwargs.get("search_type", self.search_type)
if search_type == "similarity":
docs = self.vector_search(query, k=k)
elif search_type == "hybrid":
docs = self.hybrid_search(query, k=k)
elif search_type == "semantic_hybrid":
docs = self.semantic_hybrid_search(query, k=k)
else:
raise ValueError(f"search_type of {search_type} not allowed.")
return docs
[docs] def vector_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.vector_search_with_score(
query, k=k, filters=kwargs.get("filters", None)
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-5
|
query, k=k, filters=kwargs.get("filters", None)
)
return [doc for doc, _ in docs_and_scores]
[docs] def vector_search_with_score(
self, query: str, k: int = 4, filters: Optional[str] = None
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
from azure.search.documents.models import Vector
results = self.client.search(
search_text="",
vector=Vector(
value=np.array(
self.embedding_function(query), dtype=np.float32
).tolist(),
k=k,
fields=FIELDS_CONTENT_VECTOR,
),
select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"],
filter=filters,
)
# Convert results to Document objects
docs = [
(
Document(
page_content=result[FIELDS_CONTENT],
metadata=json.loads(result[FIELDS_METADATA]),
),
float(result["@search.score"]),
)
for result in results
]
return docs
[docs] def hybrid_search(self, query: str, k: int = 4, **kwargs: Any) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-6
|
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.hybrid_search_with_score(
query, k=k, filters=kwargs.get("filters", None)
)
return [doc for doc, _ in docs_and_scores]
[docs] def hybrid_search_with_score(
self, query: str, k: int = 4, filters: Optional[str] = None
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query with an hybrid query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
from azure.search.documents.models import Vector
results = self.client.search(
search_text=query,
vector=Vector(
value=np.array(
self.embedding_function(query), dtype=np.float32
).tolist(),
k=k,
fields=FIELDS_CONTENT_VECTOR,
),
select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"],
filter=filters,
top=k,
)
# Convert results to Document objects
docs = [
(
Document(
page_content=result[FIELDS_CONTENT],
metadata=json.loads(result[FIELDS_METADATA]),
),
float(result["@search.score"]),
)
for result in results
]
return docs
[docs] def semantic_hybrid_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-7
|
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
docs_and_scores = self.semantic_hybrid_search_with_score(
query, k=k, filters=kwargs.get("filters", None)
)
return [doc for doc, _ in docs_and_scores]
[docs] def semantic_hybrid_search_with_score(
self, query: str, k: int = 4, filters: Optional[str] = None
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query with an hybrid query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
from azure.search.documents.models import Vector
results = self.client.search(
search_text=query,
vector=Vector(
value=np.array(
self.embedding_function(query), dtype=np.float32
).tolist(),
k=50, # Hardcoded value to maximize L2 retrieval
fields=FIELDS_CONTENT_VECTOR,
),
select=[f"{FIELDS_ID},{FIELDS_CONTENT},{FIELDS_METADATA}"],
filter=filters,
query_type="semantic",
query_language=self.semantic_query_language,
semantic_configuration_name=self.semantic_configuration_name,
query_caption="extractive",
query_answer="extractive",
top=k,
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-8
|
query_answer="extractive",
top=k,
)
# Get Semantic Answers
semantic_answers = results.get_answers()
semantic_answers_dict = {}
for semantic_answer in semantic_answers:
semantic_answers_dict[semantic_answer.key] = {
"text": semantic_answer.text,
"highlights": semantic_answer.highlights,
}
# Convert results to Document objects
docs = [
(
Document(
page_content=result["content"],
metadata={
**json.loads(result["metadata"]),
**{
"captions": {
"text": result.get("@search.captions", [{}])[0].text,
"highlights": result.get("@search.captions", [{}])[
0
].highlights,
}
if result.get("@search.captions")
else {},
"answers": semantic_answers_dict.get(
json.loads(result["metadata"]).get("key"), ""
),
},
},
),
float(result["@search.score"]),
)
for result in results
]
return docs
[docs] @classmethod
def from_texts(
cls: Type[AzureSearch],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
azure_search_endpoint: str = "",
azure_search_key: str = "",
index_name: str = "langchain-index",
**kwargs: Any,
) -> AzureSearch:
# Creating a new Azure Search instance
azure_search = cls(
azure_search_endpoint,
azure_search_key,
index_name,
embedding.embed_query,
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
9d94d312d47a-9
|
azure_search_key,
index_name,
embedding.embed_query,
)
azure_search.add_texts(texts, metadatas, **kwargs)
return azure_search
class AzureSearchVectorStoreRetriever(BaseRetriever, BaseModel):
vectorstore: AzureSearch
search_type: str = "hybrid"
k: int = 4
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "hybrid", "semantic_hybrid"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def get_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.vector_search(query, k=self.k)
elif self.search_type == "hybrid":
docs = self.vectorstore.hybrid_search(query, k=self.k)
elif self.search_type == "semantic_hybrid":
docs = self.vectorstore.semantic_hybrid_search(query, k=self.k)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def aget_relevant_documents(self, query: str) -> List[Document]:
raise NotImplementedError(
"AzureSearchVectorStoreRetriever does not support async"
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/azuresearch.html
|
34c8fa439699-0
|
Source code for langchain.vectorstores.analyticdb
"""VectorStore wrapper around a Postgres/PGVector database."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple
import sqlalchemy
from sqlalchemy import REAL, Index
from sqlalchemy.dialects.postgresql import ARRAY, JSON, UUID
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, relationship
from sqlalchemy.sql.expression import func
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
Base = declarative_base() # type: Any
ADA_TOKEN_COUNT = 1536
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
class BaseModel(Base):
__abstract__ = True
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
class CollectionStore(BaseModel):
__tablename__ = "langchain_pg_collection"
name = sqlalchemy.Column(sqlalchemy.String)
cmetadata = sqlalchemy.Column(JSON)
embeddings = relationship(
"EmbeddingStore",
back_populates="collection",
passive_deletes=True,
)
@classmethod
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
return session.query(cls).filter(cls.name == name).first() # type: ignore
@classmethod
def get_or_create(
cls,
session: Session,
name: str,
cmetadata: Optional[dict] = None,
) -> Tuple["CollectionStore", bool]:
"""
Get or create a collection.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-1
|
"""
Get or create a collection.
Returns [Collection, bool] where the bool is True if the collection was created.
"""
created = False
collection = cls.get_by_name(session, name)
if collection:
return collection, created
collection = cls(name=name, cmetadata=cmetadata)
session.add(collection)
session.commit()
created = True
return collection, created
class EmbeddingStore(BaseModel):
__tablename__ = "langchain_pg_embedding"
collection_id = sqlalchemy.Column(
UUID(as_uuid=True),
sqlalchemy.ForeignKey(
f"{CollectionStore.__tablename__}.uuid",
ondelete="CASCADE",
),
)
collection = relationship(CollectionStore, back_populates="embeddings")
embedding: sqlalchemy.Column = sqlalchemy.Column(ARRAY(REAL))
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
cmetadata = sqlalchemy.Column(JSON, nullable=True)
# custom_id : any user defined id
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
# The following line creates an index named 'langchain_pg_embedding_vector_idx'
langchain_pg_embedding_vector_idx = Index(
"langchain_pg_embedding_vector_idx",
embedding,
postgresql_using="ann",
postgresql_with={
"distancemeasure": "L2",
"dim": 1536,
"pq_segments": 64,
"hnsw_m": 100,
"pq_centers": 2048,
},
)
class QueryResult:
EmbeddingStore: EmbeddingStore
distance: float
[docs]class AnalyticDB(VectorStore):
"""
VectorStore implementation using AnalyticDB.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-2
|
"""
VectorStore implementation using AnalyticDB.
AnalyticDB is a distributed full PostgresSQL syntax cloud-native database.
- `connection_string` is a postgres connection string.
- `embedding_function` any embedding function implementing
`langchain.embeddings.base.Embeddings` interface.
- `collection_name` is the name of the collection to use. (default: langchain)
- NOTE: This is not the name of the table, but the name of the collection.
The tables will be created when initializing the store (if not exists)
So, make sure the user has the right permissions to create tables.
- `pre_delete_collection` if True, will delete the collection if it exists.
(default: False)
- Useful for testing.
"""
def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
collection_metadata: Optional[dict] = None,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
) -> None:
self.connection_string = connection_string
self.embedding_function = embedding_function
self.collection_name = collection_name
self.collection_metadata = collection_metadata
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.__post_init__()
def __post_init__(
self,
) -> None:
"""
Initialize the store.
"""
self._conn = self.connect()
self.create_tables_if_not_exists()
self.create_collection()
[docs] def connect(self) -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(self.connection_string)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-3
|
engine = sqlalchemy.create_engine(self.connection_string)
conn = engine.connect()
return conn
[docs] def create_tables_if_not_exists(self) -> None:
Base.metadata.create_all(self._conn)
[docs] def drop_tables(self) -> None:
Base.metadata.drop_all(self._conn)
[docs] def create_collection(self) -> None:
if self.pre_delete_collection:
self.delete_collection()
with Session(self._conn) as session:
CollectionStore.get_or_create(
session, self.collection_name, cmetadata=self.collection_metadata
)
[docs] def delete_collection(self) -> None:
self.logger.debug("Trying to delete collection")
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
self.logger.error("Collection not found")
return
session.delete(collection)
session.commit()
[docs] def get_collection(self, session: Session) -> Optional["CollectionStore"]:
return CollectionStore.get_by_name(session, self.collection_name)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
if ids is None:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-4
|
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
embeddings = self.embedding_function.embed_documents(list(texts))
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
return ids
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with AnalyticDB with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
filter=filter,
)
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-5
|
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return docs
[docs] def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
filter_by = EmbeddingStore.collection_id == collection.uuid
if filter is not None:
filter_clauses = []
for key, value in filter.items():
filter_by_metadata = EmbeddingStore.cmetadata[key].astext == str(value)
filter_clauses.append(filter_by_metadata)
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
results: List[QueryResult] = (
session.query(
EmbeddingStore,
func.l2_distance(EmbeddingStore.embedding, embedding).label("distance"),
)
.filter(filter_by)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-6
|
)
.filter(filter_by)
.order_by(EmbeddingStore.embedding.op("<->")(embedding))
.join(
CollectionStore,
EmbeddingStore.collection_id == CollectionStore.uuid,
)
.limit(k)
.all()
)
docs = [
(
Document(
page_content=result.EmbeddingStore.document,
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else None,
)
for result in results
]
return docs
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-7
|
pre_delete_collection: bool = False,
**kwargs: Any,
) -> AnalyticDB:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
pre_delete_collection=pre_delete_collection,
)
store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs)
return store
[docs] @classmethod
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
connection_string: str = get_from_dict_or_env(
data=kwargs,
key="connection_string",
env_key="PGVECTOR_CONNECTION_STRING",
)
if not connection_string:
raise ValueError(
"Postgres connection string is required"
"Either pass it as a parameter"
"or set the PGVECTOR_CONNECTION_STRING environment variable."
)
return connection_string
[docs] @classmethod
def from_documents(
cls,
documents: List[Document],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> AnalyticDB:
"""
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
34c8fa439699-8
|
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
connection_string = cls.get_connection_string(kwargs)
kwargs["connection_string"] = connection_string
return cls.from_texts(
texts=texts,
pre_delete_collection=pre_delete_collection,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
**kwargs,
)
[docs] @classmethod
def connection_string_from_db_params(
cls,
driver: str,
host: str,
port: int,
database: str,
user: str,
password: str,
) -> str:
"""Return connection string from database parameters."""
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/analyticdb.html
|
2b11536e38cf-0
|
Source code for langchain.vectorstores.base
"""Interface for vector stores."""
from __future__ import annotations
import asyncio
import warnings
from abc import ABC, abstractmethod
from functools import partial
from typing import (
Any,
ClassVar,
Collection,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
TypeVar,
)
from pydantic import BaseModel, Field, root_validator
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.schema import BaseRetriever
VST = TypeVar("VST", bound="VectorStore")
[docs]class VectorStore(ABC):
"""Interface for vector stores."""
[docs] @abstractmethod
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
[docs] async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore."""
raise NotImplementedError
[docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-1
|
"""Run more documents through the embeddings and add to the vectorstore.
Args:
documents (List[Document]: Documents to add to the vectorstore.
Returns:
List[str]: List of IDs of the added texts.
"""
# TODO: Handle the case where the user doesn't provide ids on the Collection
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return self.add_texts(texts, metadatas, **kwargs)
[docs] async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Run more documents through the embeddings and add to the vectorstore.
Args:
documents (List[Document]: Documents to add to the vectorstore.
Returns:
List[str]: List of IDs of the added texts.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return await self.aadd_texts(texts, metadatas, **kwargs)
[docs] def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]:
"""Return docs most similar to query using specified search type."""
if search_type == "similarity":
return self.similarity_search(query, **kwargs)
elif search_type == "mmr":
return self.max_marginal_relevance_search(query, **kwargs)
else:
raise ValueError(
f"search_type of {search_type} not allowed. Expected "
"search_type to be 'similarity' or 'mmr'."
)
[docs] async def asearch(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-2
|
)
[docs] async def asearch(
self, query: str, search_type: str, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query using specified search type."""
if search_type == "similarity":
return await self.asimilarity_search(query, **kwargs)
elif search_type == "mmr":
return await self.amax_marginal_relevance_search(query, **kwargs)
else:
raise ValueError(
f"search_type of {search_type} not allowed. Expected "
"search_type to be 'similarity' or 'mmr'."
)
[docs] @abstractmethod
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
[docs] def similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Args:
query: input text
k: Number of Documents to return. Defaults to 4.
**kwargs: kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns:
List of Tuples of (doc, similarity_score)
"""
docs_and_similarities = self._similarity_search_with_relevance_scores(
query, k=k, **kwargs
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-3
|
query, k=k, **kwargs
)
if any(
similarity < 0.0 or similarity > 1.0
for _, similarity in docs_and_similarities
):
warnings.warn(
"Relevance scores must be between"
f" 0 and 1, got {docs_and_similarities}"
)
score_threshold = kwargs.get("score_threshold")
if score_threshold is not None:
docs_and_similarities = [
(doc, similarity)
for doc, similarity in docs_and_similarities
if similarity >= score_threshold
]
if len(docs_and_similarities) == 0:
warnings.warn(
f"No relevant docs were retrieved using the relevance score\
threshold {score_threshold}"
)
return docs_and_similarities
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
raise NotImplementedError
[docs] async def asimilarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search_with_relevance_scores, query, k, **kwargs)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-4
|
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search, query, k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
raise NotImplementedError
[docs] async def asimilarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search_by_vector, embedding, k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-5
|
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
[docs] async def amax_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(
self.max_marginal_relevance_search, query, k, fetch_k, lambda_mult, **kwargs
)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def max_marginal_relevance_search_by_vector(
self,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-6
|
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
[docs] async def amax_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
raise NotImplementedError
[docs] @classmethod
def from_documents(
cls: Type[VST],
documents: List[Document],
embedding: Embeddings,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from documents and embeddings."""
texts = [d.page_content for d in documents]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-7
|
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
[docs] @classmethod
async def afrom_documents(
cls: Type[VST],
documents: List[Document],
embedding: Embeddings,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from documents and embeddings."""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs)
[docs] @classmethod
@abstractmethod
def from_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from texts and embeddings."""
[docs] @classmethod
async def afrom_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from texts and embeddings."""
raise NotImplementedError
[docs] def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:
return VectorStoreRetriever(vectorstore=self, **kwargs)
class VectorStoreRetriever(BaseRetriever, BaseModel):
vectorstore: VectorStore
search_type: str = "similarity"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-8
|
vectorstore: VectorStore
search_type: str = "similarity"
search_kwargs: dict = Field(default_factory=dict)
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarity_score_threshold",
"mmr",
)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
search_type = values["search_type"]
if search_type not in cls.allowed_search_types:
raise ValueError(
f"search_type of {search_type} not allowed. Valid values are: "
f"{cls.allowed_search_types}"
)
if search_type == "similarity_score_threshold":
score_threshold = values["search_kwargs"].get("score_threshold")
if (score_threshold is None) or (not isinstance(score_threshold, float)):
raise ValueError(
"`score_threshold` is not specified with a float value(0~1) "
"in `search_kwargs`."
)
return values
def get_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
docs = [doc for doc, _ in docs_and_similarities]
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
2b11536e38cf-9
|
docs = self.vectorstore.max_marginal_relevance_search(
query, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def aget_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = await self.vectorstore.asimilarity_search(
query, **self.search_kwargs
)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
await self.vectorstore.asimilarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
docs = [doc for doc, _ in docs_and_similarities]
elif self.search_type == "mmr":
docs = await self.vectorstore.amax_marginal_relevance_search(
query, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
return self.vectorstore.add_documents(documents, **kwargs)
async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Add documents to vectorstore."""
return await self.vectorstore.aadd_documents(documents, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/base.html
|
27adabc26c75-0
|
Source code for langchain.vectorstores.faiss
"""Wrapper around FAISS vector database."""
from __future__ import annotations
import math
import os
import pickle
import uuid
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.base import AddableMixin, Docstore
from langchain.docstore.document import Document
from langchain.docstore.in_memory import InMemoryDocstore
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
def dependable_faiss_import(no_avx2: Optional[bool] = None) -> Any:
"""
Import faiss if available, otherwise raise error.
If FAISS_NO_AVX2 environment variable is set, it will be considered
to load FAISS with no AVX2 optimization.
Args:
no_avx2: Load FAISS strictly with no AVX2 optimization
so that the vectorstore is portable and compatible with other devices.
"""
if no_avx2 is None and "FAISS_NO_AVX2" in os.environ:
no_avx2 = bool(os.getenv("FAISS_NO_AVX2"))
try:
if no_avx2:
from faiss import swigfaiss as faiss
else:
import faiss
except ImportError:
raise ValueError(
"Could not import faiss python package. "
"Please install it with `pip install faiss` "
"or `pip install faiss-cpu` (depending on Python version)."
)
return faiss
def _default_relevance_score_fn(score: float) -> float:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-1
|
return faiss
def _default_relevance_score_fn(score: float) -> float:
"""Return a similarity score on a scale [0, 1]."""
# The 'correct' relevance function
# may differ depending on a few things, including:
# - the distance / similarity metric used by the VectorStore
# - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
# - embedding dimensionality
# - etc.
# This function converts the euclidean norm of normalized embeddings
# (0 is most similar, sqrt(2) most dissimilar)
# to a similarity function (0 to 1)
return 1.0 - score / math.sqrt(2)
[docs]class FAISS(VectorStore):
"""Wrapper around FAISS vector database.
To use, you should have the ``faiss`` python package installed.
Example:
.. code-block:: python
from langchain import FAISS
faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id)
"""
def __init__(
self,
embedding_function: Callable,
index: Any,
docstore: Docstore,
index_to_docstore_id: Dict[int, str],
relevance_score_fn: Optional[
Callable[[float], float]
] = _default_relevance_score_fn,
normalize_L2: bool = False,
):
"""Initialize with necessary components."""
self.embedding_function = embedding_function
self.index = index
self.docstore = docstore
self.index_to_docstore_id = index_to_docstore_id
self.relevance_score_fn = relevance_score_fn
self._normalize_L2 = normalize_L2
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-2
|
self._normalize_L2 = normalize_L2
def __add(
self,
texts: Iterable[str],
embeddings: Iterable[List[float]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
# Add to the index, the index_to_id mapping, and the docstore.
starting_len = len(self.index_to_docstore_id)
faiss = dependable_faiss_import()
vector = np.array(embeddings, dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
self.index.add(vector)
# Get list of index, id, and docs.
full_info = [(starting_len + i, ids[i], doc) for i, doc in enumerate(documents)]
# Add information to docstore and index.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
return [_id for _, _id, _ in full_info]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-3
|
return [_id for _, _id, _ in full_info]
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
embeddings = [self.embedding_function(text) for text in texts]
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
[docs] def add_embeddings(
self,
text_embeddings: Iterable[Tuple[str, List[float]]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
text_embeddings: Iterable pairs of string and embedding to
add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-4
|
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
texts, embeddings = zip(*text_embeddings)
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
[docs] def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
fetch_k: int = 20,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
embedding: Embedding vector to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
Defaults to 20.
Returns:
List of documents most similar to the query text and L2 distance
in float for each. Lower score represents more similarity.
"""
faiss = dependable_faiss_import()
vector = np.array([embedding], dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
scores, indices = self.index.search(vector, k if filter is None else fetch_k)
docs = []
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-5
|
docs = []
for j, i in enumerate(indices[0]):
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
if filter is not None:
if all(doc.metadata.get(key) == value for key, value in filter.items()):
docs.append((doc, scores[0][j]))
else:
docs.append((doc, scores[0][j]))
return docs[:k]
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
fetch_k: int = 20,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
Defaults to 20.
Returns:
List of documents most similar to the query text with
L2 distance in float. Lower score represents more similarity.
"""
embedding = self.embedding_function(query)
docs = self.similarity_search_with_score_by_vector(
embedding,
k,
filter=filter,
fetch_k=fetch_k,
**kwargs,
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-6
|
fetch_k=fetch_k,
**kwargs,
)
return docs
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
fetch_k: int = 20,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
Defaults to 20.
Returns:
List of Documents most similar to the embedding.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding,
k,
filter=filter,
fetch_k=fetch_k,
**kwargs,
)
return [doc for doc, _ in docs_and_scores]
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
fetch_k: int = 20,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-7
|
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
Defaults to 20.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(
query, k, filter=filter, fetch_k=fetch_k, **kwargs
)
return [doc for doc, _ in docs_and_scores]
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch before filtering to
pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
_, indices = self.index.search(
np.array([embedding], dtype=np.float32),
fetch_k if filter is None else fetch_k * 2,
)
if filter is not None:
filtered_indices = []
for i in indices[0]:
if i == -1:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-8
|
for i in indices[0]:
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
if all(doc.metadata.get(key) == value for key, value in filter.items()):
filtered_indices.append(i)
indices = np.array([filtered_indices])
# -1 happens when not enough docs are returned.
embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
embeddings,
k=k,
lambda_mult=lambda_mult,
)
selected_indices = [indices[0][i] for i in mmr_selected]
docs = []
for i in selected_indices:
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
docs.append(doc)
return docs
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, Any]] = None,
**kwargs: Any,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-9
|
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch before filtering (if needed) to
pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
docs = self.max_marginal_relevance_search_by_vector(
embedding,
k,
fetch_k,
lambda_mult=lambda_mult,
filter=filter,
**kwargs,
)
return docs
[docs] def merge_from(self, target: FAISS) -> None:
"""Merge another FAISS object with the current one.
Add the target FAISS to the current one.
Args:
target: FAISS object you wish to merge into the current one
Returns:
None.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError("Cannot merge with this type of docstore")
# Numerical index for target docs are incremental on existing ones
starting_len = len(self.index_to_docstore_id)
# Merge two IndexFlatL2
self.index.merge_from(target.index)
# Get id and docs from target FAISS object
full_info = []
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-10
|
# Get id and docs from target FAISS object
full_info = []
for i, target_id in target.index_to_docstore_id.items():
doc = target.docstore.search(target_id)
if not isinstance(doc, Document):
raise ValueError("Document should be returned")
full_info.append((starting_len + i, target_id, doc))
# Add information to docstore and index_to_docstore_id.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
normalize_L2: bool = False,
**kwargs: Any,
) -> FAISS:
faiss = dependable_faiss_import()
index = faiss.IndexFlatL2(len(embeddings[0]))
vector = np.array(embeddings, dtype=np.float32)
if normalize_L2:
faiss.normalize_L2(vector)
index.add(vector)
documents = []
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
index_to_id = dict(enumerate(ids))
docstore = InMemoryDocstore(dict(zip(index_to_id.values(), documents)))
return cls(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-11
|
return cls(
embedding.embed_query,
index,
docstore,
index_to_id,
normalize_L2=normalize_L2,
**kwargs,
)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
faiss = FAISS.from_texts(texts, embeddings)
"""
embeddings = embedding.embed_documents(texts)
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
**kwargs,
)
[docs] @classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-12
|
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
**kwargs,
)
[docs] def save_local(self, folder_path: str, index_name: str = "index") -> None:
"""Save FAISS index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to.
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
path.mkdir(exist_ok=True, parents=True)
# save index separately since it is not picklable
faiss = dependable_faiss_import()
faiss.write_index(
self.index, str(path / "{index_name}.faiss".format(index_name=index_name))
)
# save docstore and index_to_docstore_id
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-13
|
)
# save docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
pickle.dump((self.docstore, self.index_to_docstore_id), f)
[docs] @classmethod
def load_local(
cls, folder_path: str, embeddings: Embeddings, index_name: str = "index"
) -> FAISS:
"""Load FAISS index, docstore, and index_to_docstore_id from disk.
Args:
folder_path: folder path to load index, docstore,
and index_to_docstore_id from.
embeddings: Embeddings to use when generating queries
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
# load index separately since it is not picklable
faiss = dependable_faiss_import()
index = faiss.read_index(
str(path / "{index_name}.faiss".format(index_name=index_name))
)
# load docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f:
docstore, index_to_docstore_id = pickle.load(f)
return cls(embeddings.embed_query, index, docstore, index_to_docstore_id)
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, Any]] = None,
fetch_k: int = 20,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
27adabc26c75-14
|
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and their similarity scores on a scale from 0 to 1."""
if self.relevance_score_fn is None:
raise ValueError(
"normalize_score_fn must be provided to"
" FAISS constructor to normalize scores"
)
docs_and_scores = self.similarity_search_with_score(
query,
k=k,
filter=filter,
fetch_k=fetch_k,
**kwargs,
)
return [(doc, self.relevance_score_fn(score)) for doc, score in docs_and_scores]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/faiss.html
|
d0972190eae7-0
|
Source code for langchain.vectorstores.typesense
"""Wrapper around Typesense vector search"""
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from typesense.client import Client
from typesense.collection import Collection
[docs]class Typesense(VectorStore):
"""Wrapper around Typesense vector search.
To use, you should have the ``typesense`` python package installed.
Example:
.. code-block:: python
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
import typesense
node = {
"host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net
"port": "8108", # For Typesense Cloud use 443
"protocol": "http" # For Typesense Cloud use https
}
typesense_client = typesense.Client(
{
"nodes": [node],
"api_key": "<API_KEY>",
"connection_timeout_seconds": 2
}
)
typesense_collection_name = "langchain-memory"
embedding = OpenAIEmbeddings()
vectorstore = Typesense(
typesense_client,
typesense_collection_name,
embedding.embed_query,
"text",
)
"""
def __init__(
self,
typesense_client: Client,
embedding: Embeddings,
*,
typesense_collection_name: Optional[str] = None,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/typesense.html
|
d0972190eae7-1
|
*,
typesense_collection_name: Optional[str] = None,
text_key: str = "text",
):
"""Initialize with Typesense client."""
try:
from typesense import Client
except ImportError:
raise ValueError(
"Could not import typesense python package. "
"Please install it with `pip install typesense`."
)
if not isinstance(typesense_client, Client):
raise ValueError(
f"typesense_client should be an instance of typesense.Client, "
f"got {type(typesense_client)}"
)
self._typesense_client = typesense_client
self._embedding = embedding
self._typesense_collection_name = (
typesense_collection_name or f"langchain-{str(uuid.uuid4())}"
)
self._text_key = text_key
@property
def _collection(self) -> Collection:
return self._typesense_client.collections[self._typesense_collection_name]
def _prep_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]],
ids: Optional[List[str]],
) -> List[dict]:
"""Embed and create the documents"""
_ids = ids or (str(uuid.uuid4()) for _ in texts)
_metadatas: Iterable[dict] = metadatas or ({} for _ in texts)
embedded_texts = self._embedding.embed_documents(list(texts))
return [
{"id": _id, "vec": vec, f"{self._text_key}": text, "metadata": metadata}
for _id, vec, text, metadata in zip(_ids, embedded_texts, texts, _metadatas)
]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/typesense.html
|
d0972190eae7-2
|
]
def _create_collection(self, num_dim: int) -> None:
fields = [
{"name": "vec", "type": "float[]", "num_dim": num_dim},
{"name": f"{self._text_key}", "type": "string"},
{"name": ".*", "type": "auto"},
]
self._typesense_client.collections.create(
{"name": self._typesense_collection_name, "fields": fields}
)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
from typesense.exceptions import ObjectNotFound
docs = self._prep_texts(texts, metadatas, ids)
try:
self._collection.documents.import_(docs, {"action": "upsert"})
except ObjectNotFound:
# Create the collection if it doesn't already exist
self._create_collection(len(docs[0]["vec"]))
self._collection.documents.import_(docs, {"action": "upsert"})
return [doc["id"] for doc in docs]
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/typesense.html
|
d0972190eae7-3
|
self,
query: str,
k: int = 4,
filter: Optional[str] = "",
) -> List[Tuple[Document, float]]:
"""Return typesense documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: typesense filter_by expression to filter documents on
Returns:
List of Documents most similar to the query and score for each
"""
embedded_query = [str(x) for x in self._embedding.embed_query(query)]
query_obj = {
"q": "*",
"vector_query": f'vec:([{",".join(embedded_query)}], k:{k})',
"filter_by": filter,
"collection": self._typesense_collection_name,
}
docs = []
response = self._typesense_client.multi_search.perform(
{"searches": [query_obj]}, {}
)
for hit in response["results"][0]["hits"]:
document = hit["document"]
metadata = document["metadata"]
text = document[self._text_key]
score = hit["vector_distance"]
docs.append((Document(page_content=text, metadata=metadata), score))
return docs
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[str] = "",
**kwargs: Any,
) -> List[Document]:
"""Return typesense documents most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/typesense.html
|
d0972190eae7-4
|
k: Number of Documents to return. Defaults to 4.
filter: typesense filter_by expression to filter documents on
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_score = self.similarity_search_with_score(query, k=k, filter=filter)
return [doc for doc, _ in docs_and_score]
[docs] @classmethod
def from_client_params(
cls,
embedding: Embeddings,
*,
host: str = "localhost",
port: Union[str, int] = "8108",
protocol: str = "http",
typesense_api_key: Optional[str] = None,
connection_timeout_seconds: int = 2,
**kwargs: Any,
) -> Typesense:
"""Initialize Typesense directly from client parameters.
Example:
.. code-block:: python
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
# Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY".
vectorstore = Typesense(
OpenAIEmbeddings(),
host="localhost",
port="8108",
protocol="http",
typesense_collection_name="langchain-memory",
)
"""
try:
from typesense import Client
except ImportError:
raise ValueError(
"Could not import typesense python package. "
"Please install it with `pip install typesense`."
)
node = {
"host": host,
"port": str(port),
"protocol": protocol,
}
typesense_api_key = typesense_api_key or get_from_env(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/vectorstores/typesense.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.