id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 59
127
|
---|---|---|
d1465df74ebb-2
|
spec = OpenAPISpec.from_url(ai_plugin.api.url)
# TODO: Merge optional Auth information with the `requests` argument
return cls.from_llm_and_spec(
llm=llm,
spec=spec,
requests=requests,
verbose=verbose,
**kwargs,
)
[docs] @classmethod
def from_llm_and_ai_plugin_url(
cls,
llm: BaseLanguageModel,
ai_plugin_url: str,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> NLAToolkit:
"""Instantiate the toolkit from an OpenAPI Spec URL"""
plugin = AIPlugin.from_url(ai_plugin_url)
return cls.from_llm_and_ai_plugin(
llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
|
16681484bc59-0
|
Source code for langchain.agents.agent_toolkits.file_management.toolkit
"""Toolkit for interacting with the local filesystem."""
from __future__ import annotations
from typing import List, Optional
from pydantic import root_validator
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.file_management.copy import CopyFileTool
from langchain.tools.file_management.delete import DeleteFileTool
from langchain.tools.file_management.file_search import FileSearchTool
from langchain.tools.file_management.list_dir import ListDirectoryTool
from langchain.tools.file_management.move import MoveFileTool
from langchain.tools.file_management.read import ReadFileTool
from langchain.tools.file_management.write import WriteFileTool
_FILE_TOOLS = {
tool_cls.__fields__["name"].default: tool_cls
for tool_cls in [
CopyFileTool,
DeleteFileTool,
FileSearchTool,
MoveFileTool,
ReadFileTool,
WriteFileTool,
ListDirectoryTool,
]
}
[docs]class FileManagementToolkit(BaseToolkit):
"""Toolkit for interacting with a Local Files."""
root_dir: Optional[str] = None
"""If specified, all file operations are made relative to root_dir."""
selected_tools: Optional[List[str]] = None
"""If provided, only provide the selected tools. Defaults to all."""
@root_validator
def validate_tools(cls, values: dict) -> dict:
selected_tools = values.get("selected_tools") or []
for tool_name in selected_tools:
if tool_name not in _FILE_TOOLS:
raise ValueError(
f"File Tool of name {tool_name} not supported."
f" Permitted tools: {list(_FILE_TOOLS)}"
)
return values
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
|
16681484bc59-1
|
)
return values
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
allowed_tools = self.selected_tools or _FILE_TOOLS.keys()
tools: List[BaseTool] = []
for tool in allowed_tools:
tool_cls = _FILE_TOOLS[tool]
tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore
return tools
__all__ = ["FileManagementToolkit"]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
|
dadeb0cfa25b-0
|
Source code for langchain.agents.agent_toolkits.vectorstore.base
"""VectorStore agent."""
from typing import Any, Dict, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX
from langchain.agents.agent_toolkits.vectorstore.toolkit import (
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_vectorstore_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a vectorstore agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
[docs]def create_vectorstore_router_agent(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
|
dadeb0cfa25b-1
|
)
[docs]def create_vectorstore_router_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreRouterToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = ROUTER_PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a vectorstore router agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
|
1fa354a244c4-0
|
Source code for langchain.agents.agent_toolkits.vectorstore.toolkit
"""Toolkit for interacting with a vector store."""
from typing import List
from pydantic import BaseModel, Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.llms.openai import OpenAI
from langchain.tools import BaseTool
from langchain.tools.vectorstore.tool import (
VectorStoreQATool,
VectorStoreQAWithSourcesTool,
)
from langchain.vectorstores.base import VectorStore
[docs]class VectorStoreInfo(BaseModel):
"""Information about a vectorstore."""
vectorstore: VectorStore = Field(exclude=True)
name: str
description: str
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs]class VectorStoreToolkit(BaseToolkit):
"""Toolkit for interacting with a vector store."""
vectorstore_info: VectorStoreInfo = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
description = VectorStoreQATool.get_description(
self.vectorstore_info.name, self.vectorstore_info.description
)
qa_tool = VectorStoreQATool(
name=self.vectorstore_info.name,
description=description,
vectorstore=self.vectorstore_info.vectorstore,
llm=self.llm,
)
description = VectorStoreQAWithSourcesTool.get_description(
self.vectorstore_info.name, self.vectorstore_info.description
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
|
1fa354a244c4-1
|
self.vectorstore_info.name, self.vectorstore_info.description
)
qa_with_sources_tool = VectorStoreQAWithSourcesTool(
name=f"{self.vectorstore_info.name}_with_sources",
description=description,
vectorstore=self.vectorstore_info.vectorstore,
llm=self.llm,
)
return [qa_tool, qa_with_sources_tool]
[docs]class VectorStoreRouterToolkit(BaseToolkit):
"""Toolkit for routing between vectorstores."""
vectorstores: List[VectorStoreInfo] = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools: List[BaseTool] = []
for vectorstore_info in self.vectorstores:
description = VectorStoreQATool.get_description(
vectorstore_info.name, vectorstore_info.description
)
qa_tool = VectorStoreQATool(
name=vectorstore_info.name,
description=description,
vectorstore=vectorstore_info.vectorstore,
llm=self.llm,
)
tools.append(qa_tool)
return tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
|
7caeb0a0ca5a-0
|
Source code for langchain.agents.agent_toolkits.jira.toolkit
"""Jira Toolkit."""
from typing import List
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.jira.tool import JiraAction
from langchain.utilities.jira import JiraAPIWrapper
[docs]class JiraToolkit(BaseToolkit):
"""Jira Toolkit."""
tools: List[BaseTool] = []
[docs] @classmethod
def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit":
actions = jira_api_wrapper.list()
tools = [
JiraAction(
name=action["name"],
description=action["description"],
mode=action["mode"],
api_wrapper=jira_api_wrapper,
)
for action in actions
]
return cls(tools=tools)
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return self.tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/jira/toolkit.html
|
6b6351e404ac-0
|
Source code for langchain.agents.agent_toolkits.powerbi.base
"""Power BI agent."""
from typing import Any, Dict, List, Optional
from langchain.agents import AgentExecutor
from langchain.agents.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.utilities.powerbi import PowerBIDataset
[docs]def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit],
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a pbi agent from an LLM and tools."""
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/base.html
|
6b6351e404ac-1
|
tools = toolkit.get_tools()
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k),
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
),
callback_manager=callback_manager, # type: ignore
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/base.html
|
2e342796f126-0
|
Source code for langchain.agents.agent_toolkits.powerbi.toolkit
"""Toolkit for interacting with a Power BI dataset."""
from typing import List, Optional
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.tools import BaseTool
from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY
from langchain.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain.utilities.powerbi import PowerBIDataset
[docs]class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with PowerBI dataset."""
powerbi: PowerBIDataset = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
if self.callback_manager:
chain = LLMChain(
llm=self.llm,
callback_manager=self.callback_manager,
prompt=PromptTemplate(
template=QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
else:
chain = LLMChain(
llm=self.llm,
prompt=PromptTemplate(
template=QUESTION_TO_QUERY,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
|
2e342796f126-1
|
prompt=PromptTemplate(
template=QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
return [
QueryPowerBITool(
llm_chain=chain,
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
|
3720ef0fa70b-0
|
Source code for langchain.agents.agent_toolkits.powerbi.chat_base
"""Power BI agent."""
from typing import Any, Dict, List, Optional
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.agents.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chat_models.base import BaseChatModel
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_memory import BaseChatMemory
from langchain.utilities.powerbi import PowerBIDataset
[docs]def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit],
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a pbi agent from an Chat LLM and tools.
If you supply only a toolkit and no powerbi dataset, the same LLM is used for both.
"""
if toolkit is None:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
|
3720ef0fa70b-1
|
"""
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
|
038d5e48e78b-0
|
Source code for langchain.agents.agent_toolkits.openapi.base
"""OpenAPI spec agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_openapi_agent(
llm: BaseLanguageModel,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/base.html
|
038d5e48e78b-1
|
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/base.html
|
38984c9a68ae-0
|
Source code for langchain.agents.agent_toolkits.openapi.toolkit
"""Requests toolkit."""
from __future__ import annotations
from typing import Any, List
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.agents.agent_toolkits.json.base import create_json_agent
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION
from langchain.agents.tools import Tool
from langchain.base_language import BaseLanguageModel
from langchain.requests import TextRequestsWrapper
from langchain.tools import BaseTool
from langchain.tools.json.tool import JsonSpec
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
class RequestsToolkit(BaseToolkit):
"""Toolkit for making requests."""
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Return a list of tools."""
return [
RequestsGetTool(requests_wrapper=self.requests_wrapper),
RequestsPostTool(requests_wrapper=self.requests_wrapper),
RequestsPatchTool(requests_wrapper=self.requests_wrapper),
RequestsPutTool(requests_wrapper=self.requests_wrapper),
RequestsDeleteTool(requests_wrapper=self.requests_wrapper),
]
[docs]class OpenAPIToolkit(BaseToolkit):
"""Toolkit for interacting with a OpenAPI api."""
json_agent: AgentExecutor
requests_wrapper: TextRequestsWrapper
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
json_agent_tool = Tool(
name="json_explorer",
func=self.json_agent.run,
description=DESCRIPTION,
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
|
38984c9a68ae-1
|
func=self.json_agent.run,
description=DESCRIPTION,
)
request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper)
return [*request_toolkit.get_tools(), json_agent_tool]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
json_spec: JsonSpec,
requests_wrapper: TextRequestsWrapper,
**kwargs: Any,
) -> OpenAPIToolkit:
"""Create json agent from llm, then initialize."""
json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs)
return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
|
d2f35fc7c613-0
|
Source code for langchain.agents.agent_toolkits.sql.base
"""SQL agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent
from langchain.agents.agent_toolkits.sql.prompt import (
SQL_FUNCTIONS_SUFFIX,
SQL_PREFIX,
SQL_SUFFIX,
)
from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain.schema import AIMessage, SystemMessage
[docs]def create_sql_agent(
llm: BaseLanguageModel,
toolkit: SQLDatabaseToolkit,
agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: Optional[str] = None,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
|
d2f35fc7c613-1
|
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a sql agent from an LLM and tools."""
tools = toolkit.get_tools()
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
agent: BaseSingleActionAgent
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix or SQL_SUFFIX,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
elif agent_type == AgentType.OPENAI_FUNCTIONS:
messages = [
SystemMessage(content=prefix),
HumanMessagePromptTemplate.from_template("{input}"),
AIMessage(content=suffix or SQL_FUNCTIONS_SUFFIX),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
input_variables = ["input", "agent_scratchpad"]
_prompt = ChatPromptTemplate(input_variables=input_variables, messages=messages)
agent = OpenAIFunctionsAgent(
llm=llm,
prompt=_prompt,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
else:
raise ValueError(f"Agent type {agent_type} not supported at the moment.")
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
|
d2f35fc7c613-2
|
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/base.html
|
f478103f116c-0
|
Source code for langchain.agents.agent_toolkits.sql.toolkit
"""Toolkit for interacting with a SQL database."""
from typing import List
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.sql_database import SQLDatabase
from langchain.tools import BaseTool
from langchain.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QueryCheckerTool,
QuerySQLDataBaseTool,
)
[docs]class SQLDatabaseToolkit(BaseToolkit):
"""Toolkit for interacting with SQL databases."""
db: SQLDatabase = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
@property
def dialect(self) -> str:
"""Return string representation of dialect to use."""
return self.db.dialect
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
query_sql_database_tool_description = (
"Input to this tool is a detailed and correct SQL query, output is a "
"result from the database. If the query is not correct, an error message "
"will be returned. If an error is returned, rewrite the query, check the "
"query, and try again. If you encounter an issue with Unknown column "
"'xxxx' in 'field list', using schema_sql_db to query the correct table "
"fields."
)
info_sql_database_tool_description = (
"Input to this tool is a comma-separated list of tables, output is the "
"schema and sample rows for those tables. "
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
|
f478103f116c-1
|
"schema and sample rows for those tables. "
"Be sure that the tables actually exist by calling list_tables_sql_db "
"first! Example Input: 'table1, table2, table3'"
)
return [
QuerySQLDataBaseTool(
db=self.db, description=query_sql_database_tool_description
),
InfoSQLDatabaseTool(
db=self.db, description=info_sql_database_tool_description
),
ListSQLDatabaseTool(db=self.db),
QueryCheckerTool(db=self.db, llm=self.llm),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
|
4c8501407393-0
|
Source code for langchain.agents.agent_toolkits.spark.base
"""Agent for working with pandas objects."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.tools.python.tool import PythonAstREPLTool
def _validate_spark_df(df: Any) -> bool:
try:
from pyspark.sql import DataFrame as SparkLocalDataFrame
return isinstance(df, SparkLocalDataFrame)
except ImportError:
return False
def _validate_spark_connect_df(df: Any) -> bool:
try:
from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame
return isinstance(df, SparkConnectDataFrame)
except ImportError:
return False
[docs]def create_spark_dataframe_agent(
llm: BaseLLM,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a spark agent from an LLM and dataframe."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark/base.html
|
4c8501407393-1
|
) -> AgentExecutor:
"""Construct a spark agent from an LLM and dataframe."""
if not _validate_spark_df(df) and not _validate_spark_connect_df(df):
raise ValueError("Spark is not installed. run `pip install pyspark`.")
if input_variables is None:
input_variables = ["df", "input", "agent_scratchpad"]
tools = [PythonAstREPLTool(locals={"df": df})]
prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix, input_variables=input_variables
)
partial_prompt = prompt.partial(df=str(df.first()))
llm_chain = LLMChain(
llm=llm,
prompt=partial_prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(
llm_chain=llm_chain,
allowed_tools=tool_names,
callback_manager=callback_manager,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/agents/agent_toolkits/spark/base.html
|
43c5777a5f07-0
|
Source code for langchain.experimental.generative_agents.generative_agent
import re
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
from pydantic import BaseModel, Field
from langchain import LLMChain
from langchain.base_language import BaseLanguageModel
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
from langchain.prompts import PromptTemplate
[docs]class GenerativeAgent(BaseModel):
"""A character with memory and innate characteristics."""
name: str
"""The character's name."""
age: Optional[int] = None
"""The optional age of the character."""
traits: str = "N/A"
"""Permanent traits to ascribe to the character."""
status: str
"""The traits of the character you wish not to change."""
memory: GenerativeAgentMemory
"""The memory object that combines relevance, recency, and 'importance'."""
llm: BaseLanguageModel
"""The underlying language model."""
verbose: bool = False
summary: str = "" #: :meta private:
"""Stateful self-summary generated via reflection on the character's memory."""
summary_refresh_seconds: int = 3600 #: :meta private:
"""How frequently to re-generate the summary."""
last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private:
"""The last time the character's summary was regenerated."""
daily_summaries: List[str] = Field(default_factory=list) # : :meta private:
"""Summary of the events in the plan that the agent took."""
[docs] class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
# LLM-related methods
@staticmethod
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-1
|
arbitrary_types_allowed = True
# LLM-related methods
@staticmethod
def _parse_list(text: str) -> List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split(r"\n", text.strip())
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
def chain(self, prompt: PromptTemplate) -> LLMChain:
return LLMChain(
llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory
)
def _get_entity_from_observation(self, observation: str) -> str:
prompt = PromptTemplate.from_template(
"What is the observed entity in the following observation? {observation}"
+ "\nEntity="
)
return self.chain(prompt).run(observation=observation).strip()
def _get_entity_action(self, observation: str, entity_name: str) -> str:
prompt = PromptTemplate.from_template(
"What is the {entity} doing in the following observation? {observation}"
+ "\nThe {entity} is"
)
return (
self.chain(prompt).run(entity=entity_name, observation=observation).strip()
)
[docs] def summarize_related_memories(self, observation: str) -> str:
"""Summarize memories that are most relevant to an observation."""
prompt = PromptTemplate.from_template(
"""
{q1}?
Context from memory:
{relevant_memories}
Relevant context:
"""
)
entity_name = self._get_entity_from_observation(observation)
entity_action = self._get_entity_action(observation, entity_name)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-2
|
entity_action = self._get_entity_action(observation, entity_name)
q1 = f"What is the relationship between {self.name} and {entity_name}"
q2 = f"{entity_name} is {entity_action}"
return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip()
def _generate_reaction(
self, observation: str, suffix: str, now: Optional[datetime] = None
) -> str:
"""React to a given observation or dialogue act."""
prompt = PromptTemplate.from_template(
"{agent_summary_description}"
+ "\nIt is {current_time}."
+ "\n{agent_name}'s status: {agent_status}"
+ "\nSummary of relevant context from {agent_name}'s memory:"
+ "\n{relevant_memories}"
+ "\nMost recent observations: {most_recent_memories}"
+ "\nObservation: {observation}"
+ "\n\n"
+ suffix
)
agent_summary_description = self.get_summary(now=now)
relevant_memories_str = self.summarize_related_memories(observation)
current_time_str = (
datetime.now().strftime("%B %d, %Y, %I:%M %p")
if now is None
else now.strftime("%B %d, %Y, %I:%M %p")
)
kwargs: Dict[str, Any] = dict(
agent_summary_description=agent_summary_description,
current_time=current_time_str,
relevant_memories=relevant_memories_str,
agent_name=self.name,
observation=observation,
agent_status=self.status,
)
consumed_tokens = self.llm.get_num_tokens(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-3
|
)
consumed_tokens = self.llm.get_num_tokens(
prompt.format(most_recent_memories="", **kwargs)
)
kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
return self.chain(prompt=prompt).run(**kwargs).strip()
def _clean_response(self, text: str) -> str:
return re.sub(f"^{self.name} ", "", text.strip()).strip()
[docs] def generate_reaction(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"Should {agent_name} react to the observation, and if so,"
+ " what would be an appropriate reaction? Respond in one line."
+ ' If the action is to engage in dialogue, write:\nSAY: "what to say"'
+ "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)."
+ "\nEither do nothing, react, or say something but not both.\n\n"
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
# AAA
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and reacted by {result}",
self.memory.now_key: now,
},
)
if "REACT:" in result:
reaction = self._clean_response(result.split("REACT:")[-1])
return False, f"{self.name} {reaction}"
if "SAY:" in result:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-4
|
if "SAY:" in result:
said_value = self._clean_response(result.split("SAY:")[-1])
return True, f"{self.name} said {said_value}"
else:
return False, result
[docs] def generate_dialogue_response(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"What would {agent_name} say? To end the conversation, write:"
' GOODBYE: "what to say". Otherwise to continue the conversation,'
' write: SAY: "what to say next"\n\n'
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
if "GOODBYE:" in result:
farewell = self._clean_response(result.split("GOODBYE:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {farewell}",
self.memory.now_key: now,
},
)
return False, f"{self.name} said {farewell}"
if "SAY:" in result:
response_text = self._clean_response(result.split("SAY:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {response_text}",
self.memory.now_key: now,
},
)
return True, f"{self.name} said {response_text}"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-5
|
)
return True, f"{self.name} said {response_text}"
else:
return False, result
######################################################
# Agent stateful' summary methods. #
# Each dialog or response prompt includes a header #
# summarizing the agent's self-description. This is #
# updated periodically through probing its memories #
######################################################
def _compute_agent_summary(self) -> str:
""""""
prompt = PromptTemplate.from_template(
"How would you summarize {name}'s core characteristics given the"
+ " following statements:\n"
+ "{relevant_memories}"
+ "Do not embellish."
+ "\n\nSummary: "
)
# The agent seeks to think about their core characteristics.
return (
self.chain(prompt)
.run(name=self.name, queries=[f"{self.name}'s core characteristics"])
.strip()
)
[docs] def get_summary(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a descriptive summary of the agent."""
current_time = datetime.now() if now is None else now
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
age = self.age if self.age is not None else "N/A"
return (
f"Name: {self.name} (age: {age})"
+ f"\nInnate traits: {self.traits}"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
43c5777a5f07-6
|
+ f"\nInnate traits: {self.traits}"
+ f"\n{self.summary}"
)
[docs] def get_full_header(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a full header of the agent's status, summary, and current time."""
now = datetime.now() if now is None else now
summary = self.get_summary(force_refresh=force_refresh, now=now)
current_time_str = now.strftime("%B %d, %Y, %I:%M %p")
return (
f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}"
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/generative_agent.html
|
3aeb4e560610-0
|
Source code for langchain.experimental.generative_agents.memory
import logging
import re
from datetime import datetime
from typing import Any, Dict, List, Optional
from langchain import LLMChain
from langchain.base_language import BaseLanguageModel
from langchain.prompts import PromptTemplate
from langchain.retrievers import TimeWeightedVectorStoreRetriever
from langchain.schema import BaseMemory, Document
from langchain.utils import mock_now
logger = logging.getLogger(__name__)
[docs]class GenerativeAgentMemory(BaseMemory):
llm: BaseLanguageModel
"""The core language model."""
memory_retriever: TimeWeightedVectorStoreRetriever
"""The retriever to fetch related memories."""
verbose: bool = False
reflection_threshold: Optional[float] = None
"""When aggregate_importance exceeds reflection_threshold, stop to reflect."""
current_plan: List[str] = []
"""The current plan of the agent."""
# A weight of 0.15 makes this less important than it
# would be otherwise, relative to salience and time
importance_weight: float = 0.15
"""How much weight to assign the memory importance."""
aggregate_importance: float = 0.0 # : :meta private:
"""Track the sum of the 'importance' of recent memories.
Triggers reflection when it reaches reflection_threshold."""
max_tokens_limit: int = 1200 # : :meta private:
# input keys
queries_key: str = "queries"
most_recent_memories_token_key: str = "recent_memories_token"
add_memory_key: str = "add_memory"
# output keys
relevant_memories_key: str = "relevant_memories"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-1
|
# output keys
relevant_memories_key: str = "relevant_memories"
relevant_memories_simple_key: str = "relevant_memories_simple"
most_recent_memories_key: str = "most_recent_memories"
now_key: str = "now"
reflecting: bool = False
def chain(self, prompt: PromptTemplate) -> LLMChain:
return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose)
@staticmethod
def _parse_list(text: str) -> List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split(r"\n", text.strip())
lines = [line for line in lines if line.strip()] # remove empty lines
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]:
"""Return the 3 most salient high-level questions about recent observations."""
prompt = PromptTemplate.from_template(
"{observations}\n\n"
"Given only the information above, what are the 3 most salient "
"high-level questions we can answer about the subjects in the statements?\n"
"Provide each question on a new line."
)
observations = self.memory_retriever.memory_stream[-last_k:]
observation_str = "\n".join(
[self._format_memory_detail(o) for o in observations]
)
result = self.chain(prompt).run(observations=observation_str)
return self._parse_list(result)
def _get_insights_on_topic(
self, topic: str, now: Optional[datetime] = None
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-2
|
self, topic: str, now: Optional[datetime] = None
) -> List[str]:
"""Generate 'insights' on a topic of reflection, based on pertinent memories."""
prompt = PromptTemplate.from_template(
"Statements relevant to: '{topic}'\n"
"---\n"
"{related_statements}\n"
"---\n"
"What 5 high-level novel insights can you infer from the above statements "
"that are relevant for answering the following question?\n"
"Do not include any insights that are not relevant to the question.\n"
"Do not repeat any insights that have already been made.\n\n"
"Question: {topic}\n\n"
"(example format: insight (because of 1, 5, 3))\n"
)
related_memories = self.fetch_memories(topic, now=now)
related_statements = "\n".join(
[
self._format_memory_detail(memory, prefix=f"{i+1}. ")
for i, memory in enumerate(related_memories)
]
)
result = self.chain(prompt).run(
topic=topic, related_statements=related_statements
)
# TODO: Parse the connections between memories and insights
return self._parse_list(result)
[docs] def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]:
"""Reflect on recent observations and generate 'insights'."""
if self.verbose:
logger.info("Character is reflecting")
new_insights = []
topics = self._get_topics_of_reflection()
for topic in topics:
insights = self._get_insights_on_topic(topic, now=now)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-3
|
insights = self._get_insights_on_topic(topic, now=now)
for insight in insights:
self.add_memory(insight, now=now)
new_insights.extend(insights)
return new_insights
def _score_memory_importance(self, memory_content: str) -> float:
"""Score the absolute importance of the given memory."""
prompt = PromptTemplate.from_template(
"On the scale of 1 to 10, where 1 is purely mundane"
+ " (e.g., brushing teeth, making bed) and 10 is"
+ " extremely poignant (e.g., a break up, college"
+ " acceptance), rate the likely poignancy of the"
+ " following piece of memory. Respond with a single integer."
+ "\nMemory: {memory_content}"
+ "\nRating: "
)
score = self.chain(prompt).run(memory_content=memory_content).strip()
if self.verbose:
logger.info(f"Importance score: {score}")
match = re.search(r"^\D*(\d+)", score)
if match:
return (float(match.group(1)) / 10) * self.importance_weight
else:
return 0.0
def _score_memories_importance(self, memory_content: str) -> List[float]:
"""Score the absolute importance of the given memory."""
prompt = PromptTemplate.from_template(
"On the scale of 1 to 10, where 1 is purely mundane"
+ " (e.g., brushing teeth, making bed) and 10 is"
+ " extremely poignant (e.g., a break up, college"
+ " acceptance), rate the likely poignancy of the"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-4
|
+ " acceptance), rate the likely poignancy of the"
+ " following piece of memory. Always answer with only a list of numbers."
+ " If just given one memory still respond in a list."
+ " Memories are separated by semi colans (;)"
+ "\Memories: {memory_content}"
+ "\nRating: "
)
scores = self.chain(prompt).run(memory_content=memory_content).strip()
if self.verbose:
logger.info(f"Importance scores: {scores}")
# Split into list of strings and convert to floats
scores_list = [float(x) for x in scores.split(";")]
return scores_list
[docs] def add_memories(
self, memory_content: str, now: Optional[datetime] = None
) -> List[str]:
"""Add an observations or memories to the agent's memory."""
importance_scores = self._score_memories_importance(memory_content)
self.aggregate_importance += max(importance_scores)
memory_list = memory_content.split(";")
documents = []
for i in range(len(memory_list)):
documents.append(
Document(
page_content=memory_list[i],
metadata={"importance": importance_scores[i]},
)
)
result = self.memory_retriever.add_documents(documents, current_time=now)
# After an agent has processed a certain amount of memories (as measured by
# aggregate importance), it is time to reflect on recent events to add
# more synthesized memories to the agent's memory stream.
if (
self.reflection_threshold is not None
and self.aggregate_importance > self.reflection_threshold
and not self.reflecting
):
self.reflecting = True
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-5
|
and not self.reflecting
):
self.reflecting = True
self.pause_to_reflect(now=now)
# Hack to clear the importance from reflection
self.aggregate_importance = 0.0
self.reflecting = False
return result
[docs] def add_memory(
self, memory_content: str, now: Optional[datetime] = None
) -> List[str]:
"""Add an observation or memory to the agent's memory."""
importance_score = self._score_memory_importance(memory_content)
self.aggregate_importance += importance_score
document = Document(
page_content=memory_content, metadata={"importance": importance_score}
)
result = self.memory_retriever.add_documents([document], current_time=now)
# After an agent has processed a certain amount of memories (as measured by
# aggregate importance), it is time to reflect on recent events to add
# more synthesized memories to the agent's memory stream.
if (
self.reflection_threshold is not None
and self.aggregate_importance > self.reflection_threshold
and not self.reflecting
):
self.reflecting = True
self.pause_to_reflect(now=now)
# Hack to clear the importance from reflection
self.aggregate_importance = 0.0
self.reflecting = False
return result
[docs] def fetch_memories(
self, observation: str, now: Optional[datetime] = None
) -> List[Document]:
"""Fetch related memories."""
if now is not None:
with mock_now(now):
return self.memory_retriever.get_relevant_documents(observation)
else:
return self.memory_retriever.get_relevant_documents(observation)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-6
|
else:
return self.memory_retriever.get_relevant_documents(observation)
def format_memories_detail(self, relevant_memories: List[Document]) -> str:
content = []
for mem in relevant_memories:
content.append(self._format_memory_detail(mem, prefix="- "))
return "\n".join([f"{mem}" for mem in content])
def _format_memory_detail(self, memory: Document, prefix: str = "") -> str:
created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p")
return f"{prefix}[{created_time}] {memory.page_content.strip()}"
def format_memories_simple(self, relevant_memories: List[Document]) -> str:
return "; ".join([f"{mem.page_content}" for mem in relevant_memories])
def _get_memories_until_limit(self, consumed_tokens: int) -> str:
"""Reduce the number of tokens in the documents."""
result = []
for doc in self.memory_retriever.memory_stream[::-1]:
if consumed_tokens >= self.max_tokens_limit:
break
consumed_tokens += self.llm.get_num_tokens(doc.page_content)
if consumed_tokens < self.max_tokens_limit:
result.append(doc)
return self.format_memories_simple(result)
@property
def memory_variables(self) -> List[str]:
"""Input keys this memory class will load dynamically."""
return []
[docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Return key-value pairs given the text input to the chain."""
queries = inputs.get(self.queries_key)
now = inputs.get(self.now_key)
if queries is not None:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
3aeb4e560610-7
|
now = inputs.get(self.now_key)
if queries is not None:
relevant_memories = [
mem for query in queries for mem in self.fetch_memories(query, now=now)
]
return {
self.relevant_memories_key: self.format_memories_detail(
relevant_memories
),
self.relevant_memories_simple_key: self.format_memories_simple(
relevant_memories
),
}
most_recent_memories_token = inputs.get(self.most_recent_memories_token_key)
if most_recent_memories_token is not None:
return {
self.most_recent_memories_key: self._get_memories_until_limit(
most_recent_memories_token
)
}
return {}
[docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
"""Save the context of this model run to memory."""
# TODO: fix the save memory key
mem = outputs.get(self.add_memory_key)
now = outputs.get(self.now_key)
if mem:
self.add_memory(mem, now=now)
[docs] def clear(self) -> None:
"""Clear memory contents."""
# TODO
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/generative_agents/memory.html
|
ea0ac6f5fb34-0
|
Source code for langchain.experimental.autonomous_agents.autogpt.agent
from __future__ import annotations
from typing import List, Optional
from pydantic import ValidationError
from langchain.chains.llm import LLMChain
from langchain.chat_models.base import BaseChatModel
from langchain.experimental.autonomous_agents.autogpt.output_parser import (
AutoGPTOutputParser,
BaseAutoGPTOutputParser,
)
from langchain.experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt
from langchain.experimental.autonomous_agents.autogpt.prompt_generator import (
FINISH_NAME,
)
from langchain.memory import ChatMessageHistory
from langchain.schema import (
AIMessage,
BaseChatMessageHistory,
Document,
HumanMessage,
SystemMessage,
)
from langchain.tools.base import BaseTool
from langchain.tools.human.tool import HumanInputRun
from langchain.vectorstores.base import VectorStoreRetriever
[docs]class AutoGPT:
"""Agent class for interacting with Auto-GPT."""
def __init__(
self,
ai_name: str,
memory: VectorStoreRetriever,
chain: LLMChain,
output_parser: BaseAutoGPTOutputParser,
tools: List[BaseTool],
feedback_tool: Optional[HumanInputRun] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
):
self.ai_name = ai_name
self.memory = memory
self.next_action_count = 0
self.chain = chain
self.output_parser = output_parser
self.tools = tools
self.feedback_tool = feedback_tool
self.chat_history_memory = chat_history_memory or ChatMessageHistory()
@classmethod
def from_llm_and_tools(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
|
ea0ac6f5fb34-1
|
@classmethod
def from_llm_and_tools(
cls,
ai_name: str,
ai_role: str,
memory: VectorStoreRetriever,
tools: List[BaseTool],
llm: BaseChatModel,
human_in_the_loop: bool = False,
output_parser: Optional[BaseAutoGPTOutputParser] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
) -> AutoGPT:
prompt = AutoGPTPrompt(
ai_name=ai_name,
ai_role=ai_role,
tools=tools,
input_variables=["memory", "messages", "goals", "user_input"],
token_counter=llm.get_num_tokens,
)
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
chain = LLMChain(llm=llm, prompt=prompt)
return cls(
ai_name,
memory,
chain,
output_parser or AutoGPTOutputParser(),
tools,
feedback_tool=human_feedback_tool,
chat_history_memory=chat_history_memory,
)
def run(self, goals: List[str]) -> str:
user_input = (
"Determine which next command to use, "
"and respond using the format specified above:"
)
# Interaction Loop
loop_count = 0
while True:
# Discontinue if continuous limit is reached
loop_count += 1
# Send message to AI, get response
assistant_reply = self.chain.run(
goals=goals,
messages=self.chat_history_memory.messages,
memory=self.memory,
user_input=user_input,
)
# Print Assistant thoughts
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
|
ea0ac6f5fb34-2
|
user_input=user_input,
)
# Print Assistant thoughts
print(assistant_reply)
self.chat_history_memory.add_message(HumanMessage(content=user_input))
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
# Get command name and arguments
action = self.output_parser.parse(assistant_reply)
tools = {t.name: t for t in self.tools}
if action.name == FINISH_NAME:
return action.args["response"]
if action.name in tools:
tool = tools[action.name]
try:
observation = tool.run(action.args)
except ValidationError as e:
observation = (
f"Validation Error in args: {str(e)}, args: {action.args}"
)
except Exception as e:
observation = (
f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
)
result = f"Command {tool.name} returned: {observation}"
elif action.name == "ERROR":
result = f"Error: {action.args}. "
else:
result = (
f"Unknown command '{action.name}'. "
f"Please refer to the 'COMMANDS' list for available "
f"commands and only respond in the specified JSON format."
)
memory_to_add = (
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
)
if self.feedback_tool is not None:
feedback = f"\n{self.feedback_tool.run('Input: ')}"
if feedback in {"q", "stop"}:
print("EXITING")
return "EXITING"
memory_to_add += feedback
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
|
ea0ac6f5fb34-3
|
return "EXITING"
memory_to_add += feedback
self.memory.add_documents([Document(page_content=memory_to_add)])
self.chat_history_memory.add_message(SystemMessage(content=result))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
|
1a5086a44589-0
|
Source code for langchain.experimental.autonomous_agents.baby_agi.baby_agi
"""BabyAGI agent."""
from collections import deque
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.experimental.autonomous_agents.baby_agi.task_creation import (
TaskCreationChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_execution import (
TaskExecutionChain,
)
from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import (
TaskPrioritizationChain,
)
from langchain.vectorstores.base import VectorStore
[docs]class BabyAGI(Chain, BaseModel):
"""Controller model for the BabyAGI agent."""
task_list: deque = Field(default_factory=deque)
task_creation_chain: Chain = Field(...)
task_prioritization_chain: Chain = Field(...)
execution_chain: Chain = Field(...)
task_id_counter: int = Field(1)
vectorstore: VectorStore = Field(init=False)
max_iterations: Optional[int] = None
[docs] class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def add_task(self, task: Dict) -> None:
self.task_list.append(task)
def print_task_list(self) -> None:
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in self.task_list:
print(str(t["task_id"]) + ": " + t["task_name"])
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
|
1a5086a44589-1
|
print(str(t["task_id"]) + ": " + t["task_name"])
def print_next_task(self, task: Dict) -> None:
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_id"]) + ": " + task["task_name"])
def print_task_result(self, result: str) -> None:
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
@property
def input_keys(self) -> List[str]:
return ["objective"]
@property
def output_keys(self) -> List[str]:
return []
[docs] def get_next_task(
self, result: str, task_description: str, objective: str
) -> List[Dict]:
"""Get the next task."""
task_names = [t["task_name"] for t in self.task_list]
incomplete_tasks = ", ".join(task_names)
response = self.task_creation_chain.run(
result=result,
task_description=task_description,
incomplete_tasks=incomplete_tasks,
objective=objective,
)
new_tasks = response.split("\n")
return [
{"task_name": task_name} for task_name in new_tasks if task_name.strip()
]
[docs] def prioritize_tasks(self, this_task_id: int, objective: str) -> List[Dict]:
"""Prioritize tasks."""
task_names = [t["task_name"] for t in list(self.task_list)]
next_task_id = int(this_task_id) + 1
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
|
1a5086a44589-2
|
next_task_id = int(this_task_id) + 1
response = self.task_prioritization_chain.run(
task_names=", ".join(task_names),
next_task_id=str(next_task_id),
objective=objective,
)
new_tasks = response.split("\n")
prioritized_task_list = []
for task_string in new_tasks:
if not task_string.strip():
continue
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
prioritized_task_list.append(
{"task_id": task_id, "task_name": task_name}
)
return prioritized_task_list
def _get_top_tasks(self, query: str, k: int) -> List[str]:
"""Get the top k tasks based on the query."""
results = self.vectorstore.similarity_search(query, k=k)
if not results:
return []
return [str(item.metadata["task"]) for item in results]
[docs] def execute_task(self, objective: str, task: str, k: int = 5) -> str:
"""Execute a task."""
context = self._get_top_tasks(query=objective, k=k)
return self.execution_chain.run(
objective=objective, context="\n".join(context), task=task
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run the agent."""
objective = inputs["objective"]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
|
1a5086a44589-3
|
"""Run the agent."""
objective = inputs["objective"]
first_task = inputs.get("first_task", "Make a todo list")
self.add_task({"task_id": 1, "task_name": first_task})
num_iters = 0
while True:
if self.task_list:
self.print_task_list()
# Step 1: Pull the first task
task = self.task_list.popleft()
self.print_next_task(task)
# Step 2: Execute the task
result = self.execute_task(objective, task["task_name"])
this_task_id = int(task["task_id"])
self.print_task_result(result)
# Step 3: Store the result in Pinecone
result_id = f"result_{task['task_id']}"
self.vectorstore.add_texts(
texts=[result],
metadatas=[{"task": task["task_name"]}],
ids=[result_id],
)
# Step 4: Create new tasks and reprioritize task list
new_tasks = self.get_next_task(result, task["task_name"], objective)
for new_task in new_tasks:
self.task_id_counter += 1
new_task.update({"task_id": self.task_id_counter})
self.add_task(new_task)
self.task_list = deque(self.prioritize_tasks(this_task_id, objective))
num_iters += 1
if self.max_iterations is not None and num_iters == self.max_iterations:
print(
"\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
)
break
return {}
[docs] @classmethod
def from_llm(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
|
1a5086a44589-4
|
return {}
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
verbose: bool = False,
task_execution_chain: Optional[Chain] = None,
**kwargs: Dict[str, Any],
) -> "BabyAGI":
"""Initialize the BabyAGI Controller."""
task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
task_prioritization_chain = TaskPrioritizationChain.from_llm(
llm, verbose=verbose
)
if task_execution_chain is None:
execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose)
else:
execution_chain = task_execution_chain
return cls(
task_creation_chain=task_creation_chain,
task_prioritization_chain=task_prioritization_chain,
execution_chain=execution_chain,
vectorstore=vectorstore,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
|
07f828686f35-0
|
Source code for langchain.tools.base
"""Base implementation for tools or skills."""
from __future__ import annotations
import warnings
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union
from pydantic import (
BaseModel,
Extra,
Field,
create_model,
root_validator,
validate_arguments,
)
from pydantic.main import ModelMetaclass
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForToolRun,
CallbackManager,
CallbackManagerForToolRun,
Callbacks,
)
class SchemaAnnotationError(TypeError):
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
class ToolMetaclass(ModelMetaclass):
"""Metaclass for BaseTool to ensure the provided args_schema
doesn't silently ignored."""
def __new__(
cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict
) -> ToolMetaclass:
"""Create the definition of the new tool class."""
schema_type: Optional[Type[BaseModel]] = dct.get("args_schema")
if schema_type is not None:
schema_annotations = dct.get("__annotations__", {})
args_schema_type = schema_annotations.get("args_schema", None)
if args_schema_type is None or args_schema_type == BaseModel:
# Throw errors for common mis-annotations.
# TODO: Use get_args / get_origin and fully
# specify valid annotations.
typehint_mandate = """
class ChildTool(BaseTool):
...
args_schema: Type[BaseModel] = SchemaClass
..."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-1
|
...
args_schema: Type[BaseModel] = SchemaClass
..."""
raise SchemaAnnotationError(
f"Tool definition for {name} must include valid type annotations"
f" for argument 'args_schema' to behave as expected.\n"
f"Expected annotation of 'Type[BaseModel]'"
f" but got '{args_schema_type}'.\n"
f"Expected class looks like:\n"
f"{typehint_mandate}"
)
# Pass through to Pydantic's metaclass
return super().__new__(cls, name, bases, dct)
def _create_subset_model(
name: str, model: BaseModel, field_names: list
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
fields = {}
for field_name in field_names:
field = model.__fields__[field_name]
fields[field_name] = (field.type_, field.field_info)
return create_model(name, **fields) # type: ignore
def _get_filtered_args(
inferred_model: Type[BaseModel],
func: Callable,
) -> dict:
"""Get the arguments from a function's signature."""
schema = inferred_model.schema()["properties"]
valid_keys = signature(func).parameters
return {k: schema[k] for k in valid_keys if k != "run_manager"}
class _SchemaConfig:
"""Configuration for the pydantic model."""
extra = Extra.forbid
arbitrary_types_allowed = True
def create_schema_from_function(
model_name: str,
func: Callable,
) -> Type[BaseModel]:
"""Create a pydantic schema from a function's signature.
Args:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-2
|
"""Create a pydantic schema from a function's signature.
Args:
model_name: Name to assign to the generated pydandic schema
func: Function to generate the schema from
Returns:
A pydantic model with the same arguments as the function
"""
# https://docs.pydantic.dev/latest/usage/validation_decorator/
validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
inferred_model = validated.model # type: ignore
if "run_manager" in inferred_model.__fields__:
del inferred_model.__fields__["run_manager"]
# Pydantic adds placeholder virtual fields we need to strip
valid_properties = _get_filtered_args(inferred_model, func)
return _create_subset_model(
f"{model_name}Schema", inferred_model, list(valid_properties)
)
class ToolException(Exception):
"""An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
"""
pass
[docs]class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass):
"""Interface LangChain tools must implement."""
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
"""
args_schema: Optional[Type[BaseModel]] = None
"""Pydantic model class to validate and parse the tool's input arguments."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-3
|
"""Pydantic model class to validate and parse the tool's input arguments."""
return_direct: bool = False
"""Whether to return the tool's output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
"""
verbose: bool = False
"""Whether to log the tool's progress."""
callbacks: Callbacks = Field(default=None, exclude=True)
"""Callbacks to be called during tool execution."""
callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
"""Deprecated. Please use callbacks instead."""
handle_tool_error: Optional[
Union[bool, str, Callable[[ToolException], str]]
] = False
"""Handle the content of the ToolException thrown."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def is_single_input(self) -> bool:
"""Whether the tool only accepts a single input."""
keys = {k for k in self.args if k != "kwargs"}
return len(keys) == 1
@property
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
schema = create_schema_from_function(self.name, self._run)
return schema.schema()["properties"]
def _parse_input(
self,
tool_input: Union[str, Dict],
) -> Union[str, Dict[str, Any]]:
"""Convert tool input to pydantic model."""
input_args = self.args_schema
if isinstance(tool_input, str):
if input_args is not None:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-4
|
if isinstance(tool_input, str):
if input_args is not None:
key_ = next(iter(input_args.__fields__.keys()))
input_args.validate({key_: tool_input})
return tool_input
else:
if input_args is not None:
result = input_args.parse_obj(tool_input)
return {k: v for k, v in result.dict().items() if k in tool_input}
return tool_input
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get("callback_manager") is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
values["callbacks"] = values.pop("callback_manager", None)
return values
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
@abstractmethod
async def _arun(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously.
Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
# For backwards compatibility, if run_input is a string,
# pass as a positional argument.
if isinstance(tool_input, str):
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-5
|
# pass as a positional argument.
if isinstance(tool_input, str):
return (tool_input,), {}
else:
return (), tool_input
[docs] def run(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
**kwargs: Any,
) -> Any:
"""Run the tool."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, verbose=verbose_
)
# TODO: maybe also pass through run_manager is _run supports kwargs
new_arg_supported = signature(self._run).parameters.get("run_manager")
run_manager = callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
self._run(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else self._run(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-6
|
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
run_manager.on_tool_error(e)
raise e
else:
run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
[docs] async def arun(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
**kwargs: Any,
) -> Any:
"""Run the tool asynchronously."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, verbose=verbose_
)
new_arg_supported = signature(self._arun).parameters.get("run_manager")
run_manager = await callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-7
|
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
# We then call the tool on the tool input to get an observation
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else await self._arun(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
await run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
await run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
await run_manager.on_tool_error(e)
raise e
else:
await run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-8
|
"""Make tool callable."""
return self.run(tool_input, callbacks=callbacks)
[docs]class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[..., str]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
"""The tool's input arguments."""
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
# For backwards compatibility, if the function signature is ambiguous,
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
# For backwards compatibility. The tool must be run with a single input
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ValueError(
f"Too many arguments to single-input tool {self.name}."
f" Args: {all_args}"
)
return tuple(all_args), {}
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-9
|
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable, description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
[docs] @classmethod
def from_function(
cls,
func: Callable,
name: str, # We keep these required to support backwards compatibility
description: str,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function."""
return cls(
name=name,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-10
|
"""Initialize tool from a function."""
return cls(
name=name,
func=func,
description=description,
return_direct=return_direct,
args_schema=args_schema,
**kwargs,
)
[docs]class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
"""The input arguments' schema."""
func: Callable[..., Any]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
"""The tool's input arguments."""
return self.args_schema.schema()["properties"]
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-11
|
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
raise NotImplementedError("Tool does not support async")
[docs] @classmethod
def from_function(
cls,
func: Callable,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
**kwargs: Any,
) -> StructuredTool:
"""Create tool from a given function.
A classmethod that helps to create a tool from a function.
Args:
func: The function from which to create a tool
name: The name of the tool. Defaults to the function name
description: The description of the tool. Defaults to the function docstring
return_direct: Whether to return the result directly or as a callback
args_schema: The schema of the tool's input arguments
infer_schema: Whether to infer the schema from the function's signature
**kwargs: Additional arguments to pass to the tool
Returns:
The tool
Examples:
... code-block:: python
def add(a: int, b: int) -> int:
\"\"\"Add two numbers\"\"\"
return a + b
tool = StructuredTool.from_function(add)
tool.run(1, 2) # 3
"""
name = name or func.__name__
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-12
|
"""
name = name or func.__name__
description = description or func.__doc__
assert (
description is not None
), "Function must have a docstring if description not provided."
# Description example:
# search_api(query: str) - Searches the API for the query.
description = f"{name}{signature(func)} - {description.strip()}"
_args_schema = args_schema
if _args_schema is None and infer_schema:
_args_schema = create_schema_from_function(f"{name}Schema", func)
return cls(
name=name,
func=func,
args_schema=_args_schema,
description=description,
return_direct=return_direct,
**kwargs,
)
[docs]def tool(
*args: Union[str, Callable],
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop.
args_schema: optional argument schema for user to specify
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-13
|
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable) -> BaseTool:
if infer_schema or args_schema is not None:
return StructuredTool.from_function(
func,
name=tool_name,
return_direct=return_direct,
args_schema=args_schema,
infer_schema=infer_schema,
)
# If someone doesn't want a schema applied, we must treat it as
# a simple string->string function
assert func.__doc__ is not None, "Function must have a docstring"
return Tool(
name=tool_name,
func=func,
description=f"{tool_name} tool",
return_direct=return_direct,
)
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
07f828686f35-14
|
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/base.html
|
85bc7760a83a-0
|
Source code for langchain.tools.plugin
from __future__ import annotations
import json
from typing import Optional, Type
import requests
import yaml
from pydantic import BaseModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
class ApiConfig(BaseModel):
type: str
url: str
has_user_authentication: Optional[bool] = False
class AIPlugin(BaseModel):
"""AI Plugin Definition."""
schema_version: str
name_for_model: str
name_for_human: str
description_for_model: str
description_for_human: str
auth: Optional[dict] = None
api: ApiConfig
logo_url: Optional[str]
contact_email: Optional[str]
legal_info_url: Optional[str]
@classmethod
def from_url(cls, url: str) -> AIPlugin:
"""Instantiate AIPlugin from a URL."""
response = requests.get(url).json()
return cls(**response)
def marshal_spec(txt: str) -> dict:
"""Convert the yaml or json serialized spec to a dict."""
try:
return json.loads(txt)
except json.JSONDecodeError:
return yaml.safe_load(txt)
class AIPluginToolSchema(BaseModel):
"""AIPLuginToolSchema."""
tool_input: Optional[str] = ""
[docs]class AIPluginTool(BaseTool):
plugin: AIPlugin
api_spec: str
args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema
[docs] @classmethod
def from_plugin_url(cls, url: str) -> AIPluginTool:
plugin = AIPlugin.from_url(url)
description = (
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/plugin.html
|
85bc7760a83a-1
|
plugin = AIPlugin.from_url(url)
description = (
f"Call this tool to get the OpenAPI spec (and usage guide) "
f"for interacting with the {plugin.name_for_human} API. "
f"You should only call this ONCE! What is the "
f"{plugin.name_for_human} API useful for? "
) + plugin.description_for_human
open_api_spec_str = requests.get(plugin.api.url).text
open_api_spec = marshal_spec(open_api_spec_str)
api_spec = (
f"Usage Guide: {plugin.description_for_model}\n\n"
f"OpenAPI Spec: {open_api_spec}"
)
return cls(
name=plugin.name_for_model,
description=description,
plugin=plugin,
api_spec=api_spec,
)
def _run(
self,
tool_input: Optional[str] = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_spec
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return self.api_spec
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/plugin.html
|
a6573cdc7c2a-0
|
Source code for langchain.tools.ifttt
"""From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services.
# Creating a webhook
- Go to https://ifttt.com/create
# Configuring the "If This"
- Click on the "If This" button in the IFTTT interface.
- Search for "Webhooks" in the search bar.
- Choose the first option for "Receive a web request with a JSON payload."
- Choose an Event Name that is specific to the service you plan to connect to.
This will make it easier for you to manage the webhook URL.
For example, if you're connecting to Spotify, you could use "Spotify" as your
Event Name.
- Click the "Create Trigger" button to save your settings and create your webhook.
# Configuring the "Then That"
- Tap on the "Then That" button in the IFTTT interface.
- Search for the service you want to connect, such as Spotify.
- Choose an action from the service, such as "Add track to a playlist".
- Configure the action by specifying the necessary details, such as the playlist name,
e.g., "Songs from AI".
- Reference the JSON Payload received by the Webhook in your action. For the Spotify
scenario, choose "{{JsonPayload}}" as your search query.
- Tap the "Create Action" button to save your action settings.
- Once you have finished configuring your action, click the "Finish" button to
complete the setup.
- Congratulations! You have successfully connected the Webhook to the desired
service, and you're ready to start receiving data and triggering actions 🎉
# Finishing up
- To get your webhook URL go to https://ifttt.com/maker_webhooks/settings
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/ifttt.html
|
a6573cdc7c2a-1
|
- To get your webhook URL go to https://ifttt.com/maker_webhooks/settings
- Copy the IFTTT key value from there. The URL is of the form
https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value.
"""
from typing import Optional
import requests
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
[docs]class IFTTTWebhook(BaseTool):
"""IFTTT Webhook.
Args:
name: name of the tool
description: description of the tool
url: url to hit with the json event.
"""
url: str
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
body = {"this": tool_input}
response = requests.post(self.url, data=body)
return response.text
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("Not implemented.")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/ifttt.html
|
b3c788a46096-0
|
Source code for langchain.tools.convert_to_openai
from typing import TypedDict
from langchain.tools import BaseTool, StructuredTool
class FunctionDescription(TypedDict):
"""Representation of a callable function to the OpenAI API."""
name: str
"""The name of the function."""
description: str
"""A description of the function."""
parameters: dict
"""The parameters of the function."""
[docs]def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the open AI function API."""
if isinstance(tool, StructuredTool):
schema_ = tool.args_schema.schema()
# Bug with required missing for structured tools.
required = sorted(schema_["properties"]) # BUG WORKAROUND
return {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": schema_["properties"],
"required": required,
},
}
else:
if tool.args_schema:
parameters = tool.args_schema.schema()
else:
parameters = {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
}
return {
"name": tool.name,
"description": tool.description,
"parameters": parameters,
}
By Harrison Chase
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/convert_to_openai.html
|
b3c788a46096-1
|
"parameters": parameters,
}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/convert_to_openai.html
|
ebe2de81fad0-0
|
Source code for langchain.tools.scenexplain.tool
"""Tool for the SceneXplain API."""
from typing import Optional
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.scenexplain import SceneXplainAPIWrapper
class SceneXplainInput(BaseModel):
"""Input for SceneXplain."""
query: str = Field(..., description="The link to the image to explain")
[docs]class SceneXplainTool(BaseTool):
"""Tool that adds the capability to explain images."""
name = "image_explainer"
description = (
"An Image Captioning Tool: Use this tool to generate a detailed caption "
"for an image. The input can be an image file of any format, and "
"the output will be a text description that covers every detail of the image."
)
api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper)
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("SceneXplainTool does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/scenexplain/tool.html
|
7d4159f7709a-0
|
Source code for langchain.tools.gmail.get_message
import base64
import email
from typing import Dict, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
from langchain.tools.gmail.utils import clean_email_body
class SearchArgsSchema(BaseModel):
message_id: str = Field(
...,
description="The unique ID of the email message, retrieved from a search.",
)
[docs]class GmailGetMessage(GmailBaseTool):
name: str = "get_gmail_message"
description: str = (
"Use this tool to fetch an email by message ID."
" Returns the thread ID, snipet, body, subject, and sender."
)
args_schema: Type[SearchArgsSchema] = SearchArgsSchema
def _run(
self,
message_id: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
query = (
self.api_resource.users()
.messages()
.get(userId="me", format="raw", id=message_id)
)
message_data = query.execute()
raw_message = base64.urlsafe_b64decode(message_data["raw"])
email_msg = email.message_from_bytes(raw_message)
subject = email_msg["Subject"]
sender = email_msg["From"]
message_body = email_msg.get_payload()
body = clean_email_body(message_body)
return {
"id": message_id,
"threadId": message_data["threadId"],
"snippet": message_data["snippet"],
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/get_message.html
|
7d4159f7709a-1
|
"snippet": message_data["snippet"],
"body": body,
"subject": subject,
"sender": sender,
}
async def _arun(
self,
message_id: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/get_message.html
|
3303a0e92cd1-0
|
Source code for langchain.tools.gmail.send_message
"""Send Gmail messages."""
import base64
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class SendMessageSchema(BaseModel):
message: str = Field(
...,
description="The message to send.",
)
to: List[str] = Field(
...,
description="The list of recipients.",
)
subject: str = Field(
...,
description="The subject of the message.",
)
cc: Optional[List[str]] = Field(
None,
description="The list of CC recipients.",
)
bcc: Optional[List[str]] = Field(
None,
description="The list of BCC recipients.",
)
[docs]class GmailSendMessage(GmailBaseTool):
name: str = "send_gmail_message"
description: str = (
"Use this tool to send email messages." " The input is the message, recipents"
)
def _prepare_message(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""Create a message for an email."""
mime_message = MIMEMultipart()
mime_message.attach(MIMEText(message, "html"))
mime_message["To"] = ", ".join(to)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/send_message.html
|
3303a0e92cd1-1
|
mime_message["To"] = ", ".join(to)
mime_message["Subject"] = subject
if cc is not None:
mime_message["Cc"] = ", ".join(cc)
if bcc is not None:
mime_message["Bcc"] = ", ".join(bcc)
encoded_message = base64.urlsafe_b64encode(mime_message.as_bytes()).decode()
return {"raw": encoded_message}
def _run(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Run the tool."""
try:
create_message = self._prepare_message(message, to, subject, cc=cc, bcc=bcc)
send_message = (
self.api_resource.users()
.messages()
.send(userId="me", body=create_message)
)
sent_message = send_message.execute()
return f'Message sent. Message Id: {sent_message["id"]}'
except Exception as error:
raise Exception(f"An error occurred: {error}")
async def _arun(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Run the tool asynchronously."""
raise NotImplementedError(f"The tool {self.name} does not support async yet.")
By Harrison Chase
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/send_message.html
|
3303a0e92cd1-2
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/send_message.html
|
8db032df4989-0
|
Source code for langchain.tools.gmail.get_thread
from typing import Dict, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class GetThreadSchema(BaseModel):
# From https://support.google.com/mail/answer/7190?hl=en
thread_id: str = Field(
...,
description="The thread ID.",
)
[docs]class GmailGetThread(GmailBaseTool):
name: str = "get_gmail_thread"
description: str = (
"Use this tool to search for email messages."
" The input must be a valid Gmail query."
" The output is a JSON list of messages."
)
args_schema: Type[GetThreadSchema] = GetThreadSchema
def _run(
self,
thread_id: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
query = self.api_resource.users().threads().get(userId="me", id=thread_id)
thread_data = query.execute()
if not isinstance(thread_data, dict):
raise ValueError("The output of the query must be a list.")
messages = thread_data["messages"]
thread_data["messages"] = []
keys_to_keep = ["id", "snippet", "snippet"]
# TODO: Parse body.
for message in messages:
thread_data["messages"].append(
{k: message[k] for k in keys_to_keep if k in message}
)
return thread_data
async def _arun(
self,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/get_thread.html
|
8db032df4989-1
|
)
return thread_data
async def _arun(
self,
thread_id: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Dict:
"""Run the tool."""
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/get_thread.html
|
cf418e1b93d3-0
|
Source code for langchain.tools.gmail.search
import base64
import email
from enum import Enum
from typing import Any, Dict, List, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
from langchain.tools.gmail.utils import clean_email_body
class Resource(str, Enum):
THREADS = "threads"
MESSAGES = "messages"
class SearchArgsSchema(BaseModel):
# From https://support.google.com/mail/answer/7190?hl=en
query: str = Field(
...,
description="The Gmail query. Example filters include from:sender,"
" to:recipient, subject:subject, -filtered_term,"
" in:folder, is:important|read|starred, after:year/mo/date, "
"before:year/mo/date, label:label_name"
' "exact phrase".'
" Search newer/older than using d (day), m (month), and y (year): "
"newer_than:2d, older_than:1y."
" Attachments with extension example: filename:pdf. Multiple term"
" matching example: from:amy OR from:david.",
)
resource: Resource = Field(
default=Resource.MESSAGES,
description="Whether to search for threads or messages.",
)
max_results: int = Field(
default=10,
description="The maximum number of results to return.",
)
[docs]class GmailSearch(GmailBaseTool):
name: str = "search_gmail"
description: str = (
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/search.html
|
cf418e1b93d3-1
|
name: str = "search_gmail"
description: str = (
"Use this tool to search for email messages or threads."
" The input must be a valid Gmail query."
" The output is a JSON list of the requested resource."
)
args_schema: Type[SearchArgsSchema] = SearchArgsSchema
def _parse_threads(self, threads: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
# Add the thread message snippets to the thread results
results = []
for thread in threads:
thread_id = thread["id"]
thread_data = (
self.api_resource.users()
.threads()
.get(userId="me", id=thread_id)
.execute()
)
messages = thread_data["messages"]
thread["messages"] = []
for message in messages:
snippet = message["snippet"]
thread["messages"].append({"snippet": snippet, "id": message["id"]})
results.append(thread)
return results
def _parse_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
results = []
for message in messages:
message_id = message["id"]
message_data = (
self.api_resource.users()
.messages()
.get(userId="me", format="raw", id=message_id)
.execute()
)
raw_message = base64.urlsafe_b64decode(message_data["raw"])
email_msg = email.message_from_bytes(raw_message)
subject = email_msg["Subject"]
sender = email_msg["From"]
message_body = email_msg.get_payload()
body = clean_email_body(message_body)
results.append(
{
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/search.html
|
cf418e1b93d3-2
|
body = clean_email_body(message_body)
results.append(
{
"id": message["id"],
"threadId": message_data["threadId"],
"snippet": message_data["snippet"],
"body": body,
"subject": subject,
"sender": sender,
}
)
return results
def _run(
self,
query: str,
resource: Resource = Resource.MESSAGES,
max_results: int = 10,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> List[Dict[str, Any]]:
"""Run the tool."""
results = (
self.api_resource.users()
.messages()
.list(userId="me", q=query, maxResults=max_results)
.execute()
.get(resource.value, [])
)
if resource == Resource.THREADS:
return self._parse_threads(results)
elif resource == Resource.MESSAGES:
return self._parse_messages(results)
else:
raise NotImplementedError(f"Resource of type {resource} not implemented.")
async def _arun(
self,
query: str,
resource: Resource = Resource.MESSAGES,
max_results: int = 10,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> List[Dict[str, Any]]:
"""Run the tool."""
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/search.html
|
e069f4b620d7-0
|
Source code for langchain.tools.gmail.create_draft
import base64
from email.message import EmailMessage
from typing import List, Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.gmail.base import GmailBaseTool
class CreateDraftSchema(BaseModel):
message: str = Field(
...,
description="The message to include in the draft.",
)
to: List[str] = Field(
...,
description="The list of recipients.",
)
subject: str = Field(
...,
description="The subject of the message.",
)
cc: Optional[List[str]] = Field(
None,
description="The list of CC recipients.",
)
bcc: Optional[List[str]] = Field(
None,
description="The list of BCC recipients.",
)
[docs]class GmailCreateDraft(GmailBaseTool):
name: str = "create_gmail_draft"
description: str = (
"Use this tool to create a draft email with the provided message fields."
)
args_schema: Type[CreateDraftSchema] = CreateDraftSchema
def _prepare_draft_message(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
) -> dict:
draft_message = EmailMessage()
draft_message.set_content(message)
draft_message["To"] = ", ".join(to)
draft_message["Subject"] = subject
if cc is not None:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/create_draft.html
|
e069f4b620d7-1
|
draft_message["Subject"] = subject
if cc is not None:
draft_message["Cc"] = ", ".join(cc)
if bcc is not None:
draft_message["Bcc"] = ", ".join(bcc)
encoded_message = base64.urlsafe_b64encode(draft_message.as_bytes()).decode()
return {"message": {"raw": encoded_message}}
def _run(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
try:
create_message = self._prepare_draft_message(message, to, subject, cc, bcc)
draft = (
self.api_resource.users()
.drafts()
.create(userId="me", body=create_message)
.execute()
)
output = f'Draft created. Draft Id: {draft["id"]}'
return output
except Exception as e:
raise Exception(f"An error occurred: {e}")
async def _arun(
self,
message: str,
to: List[str],
subject: str,
cc: Optional[List[str]] = None,
bcc: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError(f"The tool {self.name} does not support async yet.")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/gmail/create_draft.html
|
1ba5028ac2d2-0
|
Source code for langchain.tools.playwright.click
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
class ClickToolInput(BaseModel):
"""Input for ClickTool."""
selector: str = Field(..., description="CSS selector for the element to click")
[docs]class ClickTool(BaseBrowserTool):
name: str = "click_element"
description: str = "Click on an element with the given CSS selector"
args_schema: Type[BaseModel] = ClickToolInput
visible_only: bool = True
"""Whether to consider only visible elements."""
playwright_strict: bool = False
"""Whether to employ Playwright's strict mode when clicking on elements."""
playwright_timeout: float = 1_000
"""Timeout (in ms) for Playwright to wait for element to be ready."""
def _selector_effective(self, selector: str) -> str:
if not self.visible_only:
return selector
return f"{selector} >> visible=1"
def _run(
self,
selector: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
# Navigate to the desired webpage before using this tool
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/click.html
|
1ba5028ac2d2-1
|
# Navigate to the desired webpage before using this tool
selector_effective = self._selector_effective(selector=selector)
from playwright.sync_api import TimeoutError as PlaywrightTimeoutError
try:
page.click(
selector_effective,
strict=self.playwright_strict,
timeout=self.playwright_timeout,
)
except PlaywrightTimeoutError:
return f"Unable to click on element '{selector}'"
return f"Clicked element '{selector}'"
async def _arun(
self,
selector: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
# Navigate to the desired webpage before using this tool
selector_effective = self._selector_effective(selector=selector)
from playwright.async_api import TimeoutError as PlaywrightTimeoutError
try:
await page.click(
selector_effective,
strict=self.playwright_strict,
timeout=self.playwright_timeout,
)
except PlaywrightTimeoutError:
return f"Unable to click on element '{selector}'"
return f"Clicked element '{selector}'"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/click.html
|
3e5c63896784-0
|
Source code for langchain.tools.playwright.navigate_back
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
[docs]class NavigateBackTool(BaseBrowserTool):
"""Navigate back to the previous page in the browser history."""
name: str = "previous_webpage"
description: str = "Navigate back to the previous page in the browser history"
args_schema: Type[BaseModel] = BaseModel
def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
response = page.go_back()
if response:
return (
f"Navigated back to the previous page with URL '{response.url}'."
f" Status code {response.status}"
)
else:
return "Unable to navigate back; no previous page in the history"
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
response = await page.go_back()
if response:
return (
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/navigate_back.html
|
3e5c63896784-1
|
response = await page.go_back()
if response:
return (
f"Navigated back to the previous page with URL '{response.url}'."
f" Status code {response.status}"
)
else:
return "Unable to navigate back; no previous page in the history"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/navigate_back.html
|
f9381b8f134e-0
|
Source code for langchain.tools.playwright.get_elements
from __future__ import annotations
import json
from typing import TYPE_CHECKING, List, Optional, Sequence, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
if TYPE_CHECKING:
from playwright.async_api import Page as AsyncPage
from playwright.sync_api import Page as SyncPage
class GetElementsToolInput(BaseModel):
"""Input for GetElementsTool."""
selector: str = Field(
...,
description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname",
)
attributes: List[str] = Field(
default_factory=lambda: ["innerText"],
description="Set of attributes to retrieve for each element",
)
async def _aget_elements(
page: AsyncPage, selector: str, attributes: Sequence[str]
) -> List[dict]:
"""Get elements matching the given CSS selector."""
elements = await page.query_selector_all(selector)
results = []
for element in elements:
result = {}
for attribute in attributes:
if attribute == "innerText":
val: Optional[str] = await element.inner_text()
else:
val = await element.get_attribute(attribute)
if val is not None and val.strip() != "":
result[attribute] = val
if result:
results.append(result)
return results
def _get_elements(
page: SyncPage, selector: str, attributes: Sequence[str]
) -> List[dict]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/get_elements.html
|
f9381b8f134e-1
|
) -> List[dict]:
"""Get elements matching the given CSS selector."""
elements = page.query_selector_all(selector)
results = []
for element in elements:
result = {}
for attribute in attributes:
if attribute == "innerText":
val: Optional[str] = element.inner_text()
else:
val = element.get_attribute(attribute)
if val is not None and val.strip() != "":
result[attribute] = val
if result:
results.append(result)
return results
[docs]class GetElementsTool(BaseBrowserTool):
name: str = "get_elements"
description: str = (
"Retrieve elements in the current web page matching the given CSS selector"
)
args_schema: Type[BaseModel] = GetElementsToolInput
def _run(
self,
selector: str,
attributes: Sequence[str] = ["innerText"],
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
# Navigate to the desired webpage before using this tool
results = _get_elements(page, selector, attributes)
return json.dumps(results, ensure_ascii=False)
async def _arun(
self,
selector: str,
attributes: Sequence[str] = ["innerText"],
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/get_elements.html
|
f9381b8f134e-2
|
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
# Navigate to the desired webpage before using this tool
results = await _aget_elements(page, selector, attributes)
return json.dumps(results, ensure_ascii=False)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/get_elements.html
|
353e9877096b-0
|
Source code for langchain.tools.playwright.current_page
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
[docs]class CurrentWebPageTool(BaseBrowserTool):
name: str = "current_webpage"
description: str = "Returns the URL of the current page"
args_schema: Type[BaseModel] = BaseModel
def _run(
self,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
return str(page.url)
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
return str(page.url)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/current_page.html
|
63e9f8824711-0
|
Source code for langchain.tools.playwright.navigate
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import (
aget_current_page,
get_current_page,
)
class NavigateToolInput(BaseModel):
"""Input for NavigateToolInput."""
url: str = Field(..., description="url to navigate to")
[docs]class NavigateTool(BaseBrowserTool):
name: str = "navigate_browser"
description: str = "Navigate a browser to the specified URL"
args_schema: Type[BaseModel] = NavigateToolInput
def _run(
self,
url: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
response = page.goto(url)
status = response.status if response else "unknown"
return f"Navigating to {url} returned status code {status}"
async def _arun(
self,
url: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
response = await page.goto(url)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/navigate.html
|
63e9f8824711-1
|
response = await page.goto(url)
status = response.status if response else "unknown"
return f"Navigating to {url} returned status code {status}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/navigate.html
|
622ad6cf94ac-0
|
Source code for langchain.tools.playwright.extract_hyperlinks
from __future__ import annotations
import json
from typing import TYPE_CHECKING, Any, Optional, Type
from pydantic import BaseModel, Field, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
if TYPE_CHECKING:
pass
class ExtractHyperlinksToolInput(BaseModel):
"""Input for ExtractHyperlinksTool."""
absolute_urls: bool = Field(
default=False,
description="Return absolute URLs instead of relative URLs",
)
[docs]class ExtractHyperlinksTool(BaseBrowserTool):
"""Extract all hyperlinks on the page."""
name: str = "extract_hyperlinks"
description: str = "Extract all hyperlinks on the current webpage"
args_schema: Type[BaseModel] = ExtractHyperlinksToolInput
@root_validator
def check_bs_import(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
[docs] @staticmethod
def scrape_page(page: Any, html_content: str, absolute_urls: bool) -> str:
from urllib.parse import urljoin
from bs4 import BeautifulSoup
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
# Find all the anchor elements and extract their href attributes
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/extract_hyperlinks.html
|
622ad6cf94ac-1
|
# Find all the anchor elements and extract their href attributes
anchors = soup.find_all("a")
if absolute_urls:
base_url = page.url
links = [urljoin(base_url, anchor.get("href", "")) for anchor in anchors]
else:
links = [anchor.get("href", "") for anchor in anchors]
# Return the list of links as a JSON string
return json.dumps(links)
def _run(
self,
absolute_urls: bool = False,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
return self.scrape_page(page, html_content, absolute_urls)
async def _arun(
self,
absolute_urls: bool = False,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
html_content = await page.content()
return self.scrape_page(page, html_content, absolute_urls)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/extract_hyperlinks.html
|
737e97d5ccda-0
|
Source code for langchain.tools.playwright.extract_text
from __future__ import annotations
from typing import Optional, Type
from pydantic import BaseModel, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.playwright.base import BaseBrowserTool
from langchain.tools.playwright.utils import aget_current_page, get_current_page
[docs]class ExtractTextTool(BaseBrowserTool):
name: str = "extract_text"
description: str = "Extract all the text on the current webpage"
args_schema: Type[BaseModel] = BaseModel
@root_validator
def check_acheck_bs_importrgs(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
async def _arun(
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/extract_text.html
|
737e97d5ccda-1
|
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
page = await aget_current_page(self.async_browser)
html_content = await page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/playwright/extract_text.html
|
8e386b9b80fc-0
|
Source code for langchain.tools.wolfram_alpha.tool
"""Tool for the Wolfram Alpha API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
[docs]class WolframAlphaQueryRun(BaseTool):
"""Tool that adds the capability to query using the Wolfram Alpha SDK."""
name = "wolfram_alpha"
description = (
"A wrapper around Wolfram Alpha. "
"Useful for when you need to answer questions about Math, "
"Science, Technology, Culture, Society and Everyday Life. "
"Input should be a search query."
)
api_wrapper: WolframAlphaAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the WolframAlpha tool asynchronously."""
raise NotImplementedError("WolframAlphaQueryRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/wolfram_alpha/tool.html
|
c816c78470fd-0
|
Source code for langchain.tools.google_search.tool
"""Tool for the Google search API."""
from typing import Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.tools.base import BaseTool
from langchain.utilities.google_search import GoogleSearchAPIWrapper
[docs]class GoogleSearchRun(BaseTool):
"""Tool that adds the capability to query the Google search API."""
name = "google_search"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
[docs]class GoogleSearchResults(BaseTool):
"""Tool that has capability to query the Google Search API and get back json."""
name = "Google Search Results JSON"
description = (
"A wrapper around Google Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/google_search/tool.html
|
c816c78470fd-1
|
api_wrapper: GoogleSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("GoogleSearchRun does not support async")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/google_search/tool.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.