id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
59
127
ef517a05d19f-0
Source code for langchain.tools.youtube.search """ Adapted from https://github.com/venuv/langchain_yt_tools CustomYTSearchTool searches YouTube videos related to a person and returns a specified number of video URLs. Input to this tool should be a comma separated list, - the first part contains a person name - and the second(optional) a number that is the maximum number of video results to return """ import json from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools import BaseTool [docs]class YouTubeSearchTool(BaseTool): name = "youtube_search" description = ( "search for youtube videos associated with a person. " "the input to this tool should be a comma separated list, " "the first part contains a person name and the second a " "number that is the maximum number of video results " "to return aka num_results. the second part is optional" ) def _search(self, person: str, num_results: int) -> str: from youtube_search import YoutubeSearch results = YoutubeSearch(person, num_results).to_json() data = json.loads(results) url_suffix_list = [video["url_suffix"] for video in data["videos"]] return str(url_suffix_list) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" values = query.split(",") person = values[0] if len(values) > 1: num_results = int(values[1]) else:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/youtube/search.html
ef517a05d19f-1
num_results = int(values[1]) else: num_results = 2 return self._search(person, num_results) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("YouTubeSearchTool does not yet support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/youtube/search.html
160c2293fad8-0
Source code for langchain.tools.openweathermap.tool """Tool for the OpenWeatherMap API.""" from typing import Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities import OpenWeatherMapAPIWrapper [docs]class OpenWeatherMapQueryRun(BaseTool): """Tool that adds the capability to query using the OpenWeatherMap API.""" api_wrapper: OpenWeatherMapAPIWrapper = Field( default_factory=OpenWeatherMapAPIWrapper ) name = "OpenWeatherMap" description = ( "A wrapper around OpenWeatherMap API. " "Useful for fetching current weather information for a specified location. " "Input should be a location string (e.g. London,GB)." ) def _run( self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the OpenWeatherMap tool.""" return self.api_wrapper.run(location) async def _arun( self, location: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the OpenWeatherMap tool asynchronously.""" raise NotImplementedError("OpenWeatherMapQueryRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openweathermap/tool.html
c4cf14d4b3b6-0
Source code for langchain.tools.zapier.tool """## Zapier Natural Language Actions API \ Full docs here: https://nla.zapier.com/api/v1/docs **Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions on Zapier's platform through a natural language API interface. NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps Zapier NLA handles ALL the underlying API auth and translation from natural language --> underlying API call --> return simplified output for LLMs The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API. NLA offers both API Key and OAuth for signing NLA API requests. 1. Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer's Zapier account (and will use the developer's connected accounts on Zapier.com) 2. User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user's exposed actions and connected accounts on Zapier.com This quick start will focus on the server-side use case for brevity. Review [full docs](https://nla.zapier.com/api/v1/docs) or reach out to [email protected] for user-facing oauth developer support. Typically, you'd use SequentialChain, here's a basic example: 1. Use NLA to find an email in Gmail 2. Use LLMChain to generate a draft reply to (1)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/zapier/tool.html
c4cf14d4b3b6-1
2. Use LLMChain to generate a draft reply to (1) 3. Use NLA to send the draft reply (2) to someone in Slack via direct message In code, below: ```python import os # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "") # get from https://nla.zapier.com/demo/provider/debug # (under User Information, after logging in): os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "") from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents.agent_toolkits import ZapierToolkit from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send channel message' actions # first go here, log in, expose (enable) the two actions: # https://nla.zapier.com/demo/start # -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') # which you route your users through first llm = OpenAI(temperature=0) zapier = ZapierNLAWrapper() ## To leverage a nla_oauth_access_token you may pass the value to the ZapierNLAWrapper ## If you do this there is no need to initialize the ZAPIER_NLA_API_KEY env variable # zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE") toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) agent = initialize_agent( toolkit.get_tools(),
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/zapier/tool.html
c4cf14d4b3b6-2
agent = initialize_agent( toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(("Summarize the last email I received regarding Silicon Valley Bank. " "Send the summary to the #test-zapier channel in slack.")) ``` """ from typing import Any, Dict, Optional from pydantic import Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierNLARunAction(BaseTool): """ Args: action_id: a specific action ID (from list actions) of the action to execute (the set api_key must be associated with the action owner) instructions: a natural language instruction string for using the action (eg. "get the latest email from Mike Knoop" for "Gmail: find email" action) params: a dict, optional. Any params provided will *override* AI guesses from `instructions` (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/docs) """ api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) action_id: str params: Optional[dict] = None base_prompt: str = BASE_ZAPIER_TOOL_PROMPT zapier_description: str params_schema: Dict[str, str] = Field(default_factory=dict) name = "" description = "" @root_validator
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/zapier/tool.html
c4cf14d4b3b6-3
name = "" description = "" @root_validator def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]: zapier_description = values["zapier_description"] params_schema = values["params_schema"] if "instructions" in params_schema: del params_schema["instructions"] # Ensure base prompt (if overrided) contains necessary input fields necessary_fields = {"{zapier_description}", "{params}"} if not all(field in values["base_prompt"] for field in necessary_fields): raise ValueError( "Your custom base Zapier prompt must contain input fields for " "{zapier_description} and {params}." ) values["name"] = zapier_description values["description"] = values["base_prompt"].format( zapier_description=zapier_description, params=str(list(params_schema.keys())), ) return values def _run( self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.run_as_str(self.action_id, instructions, self.params) async def _arun( self, _: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLARunAction.__doc__ = ( ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/zapier/tool.html
c4cf14d4b3b6-4
) # other useful actions [docs]class ZapierNLAListActions(BaseTool): """ Args: None """ name = "ZapierNLA_list_actions" description = BASE_ZAPIER_TOOL_PROMPT + ( "This tool returns a list of the user's exposed actions." ) api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) def _run( self, _: str = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.list_as_str() async def _arun( self, _: str = "", run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLAListActions.__doc__ = ( ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/zapier/tool.html
82ddacd1c630-0
Source code for langchain.tools.steamship_image_generation.tool """This tool allows agents to generate images using Steamship. Steamship offers access to different third party image generation APIs using a single API key. Today the following models are supported: - Dall-E - Stable Diffusion To use this tool, you must first set as environment variables: STEAMSHIP_API_KEY ``` """ from __future__ import annotations from enum import Enum from typing import TYPE_CHECKING, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools import BaseTool from langchain.tools.steamship_image_generation.utils import make_image_public from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: pass class ModelName(str, Enum): """Supported Image Models for generation.""" DALL_E = "dall-e" STABLE_DIFFUSION = "stable-diffusion" SUPPORTED_IMAGE_SIZES = { ModelName.DALL_E: ("256x256", "512x512", "1024x1024"), ModelName.STABLE_DIFFUSION: ("512x512", "768x768"), } [docs]class SteamshipImageGenerationTool(BaseTool): try: from steamship import Steamship except ImportError: pass """Tool used to generate images from a text-prompt.""" model_name: ModelName size: Optional[str] = "512x512" steamship: Steamship return_urls: Optional[bool] = False name = "GenerateImage" description = ( "Useful for when you need to generate an image."
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/steamship_image_generation/tool.html
82ddacd1c630-1
description = ( "Useful for when you need to generate an image." "Input: A detailed text-2-image prompt describing an image" "Output: the UUID of a generated image" ) @root_validator(pre=True) def validate_size(cls, values: Dict) -> Dict: if "size" in values: size = values["size"] model_name = values["model_name"] if size not in SUPPORTED_IMAGE_SIZES[model_name]: raise RuntimeError(f"size {size} is not supported by {model_name}") return values @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" steamship_api_key = get_from_dict_or_env( values, "steamship_api_key", "STEAMSHIP_API_KEY" ) try: from steamship import Steamship except ImportError: raise ImportError( "steamship is not installed. " "Please install it with `pip install steamship`" ) steamship = Steamship( api_key=steamship_api_key, ) values["steamship"] = steamship if "steamship_api_key" in values: del values["steamship_api_key"] return values def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" image_generator = self.steamship.use_plugin( plugin_handle=self.model_name.value, config={"n": 1, "size": self.size} )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/steamship_image_generation/tool.html
82ddacd1c630-2
) task = image_generator.generate(text=query, append_output_to_file=True) task.wait() blocks = task.output.blocks if len(blocks) > 0: if self.return_urls: return make_image_public(self.steamship, blocks[0]) else: return blocks[0].id raise RuntimeError(f"[{self.name}] Tool unable to generate image!") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GenerateImageTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/steamship_image_generation/tool.html
4a32f9916450-0
Source code for langchain.tools.azure_cognitive_services.text2speech from __future__ import annotations import logging import tempfile from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsText2SpeechTool(BaseTool): """Tool that queries the Azure Cognitive Services Text2Speech API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech?pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name = "azure_cognitive_services_text2speech" description = ( "A wrapper around Azure Cognitive Services Text2Speech. " "Useful for when you need to convert text to speech. " ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_region = get_from_dict_or_env( values, "azure_cogs_region", "AZURE_COGS_REGION" ) try:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/text2speech.html
4a32f9916450-1
) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_cogs_key, region=azure_cogs_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _text2speech(self, text: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass self.speech_config.speech_synthesis_language = speech_language speech_synthesizer = speechsdk.SpeechSynthesizer( speech_config=self.speech_config, audio_config=None ) result = speech_synthesizer.speak_text(text) if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: stream = speechsdk.AudioDataStream(result) with tempfile.NamedTemporaryFile( mode="wb", suffix=".wav", delete=False ) as f: stream.save_to_wav_file(f.name) return f.name elif result.reason == speechsdk.ResultReason.Canceled: cancellation_details = result.cancellation_details logger.debug(f"Speech synthesis canceled: {cancellation_details.reason}") if cancellation_details.reason == speechsdk.CancellationReason.Error: raise RuntimeError( f"Speech synthesis error: {cancellation_details.error_details}" ) return "Speech synthesis canceled." else: return f"Speech synthesis failed: {result.reason}" def _run( self, query: str,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/text2speech.html
4a32f9916450-2
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: speech_file = self._text2speech(query, self.speech_language) return speech_file except Exception as e: raise RuntimeError(f"Error while running AzureCogsText2SpeechTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsText2SpeechTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/text2speech.html
8508b46e7a63-0
Source code for langchain.tools.azure_cognitive_services.image_analysis from __future__ import annotations import logging from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import detect_file_src_type from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsImageAnalysisTool(BaseTool): """Tool that queries the Azure Cognitive Services Image Analysis API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/quickstarts-sdk/image-analysis-client-library-40 """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: vision_service: Any #: :meta private: analysis_options: Any #: :meta private: name = "azure_cognitive_services_image_analysis" description = ( "A wrapper around Azure Cognitive Services Image Analysis. " "Useful for when you need to analyze images. " "Input should be a url to an image." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8508b46e7a63-1
) try: import azure.ai.vision as sdk values["vision_service"] = sdk.VisionServiceOptions( endpoint=azure_cogs_endpoint, key=azure_cogs_key ) values["analysis_options"] = sdk.ImageAnalysisOptions() values["analysis_options"].features = ( sdk.ImageAnalysisFeature.CAPTION | sdk.ImageAnalysisFeature.OBJECTS | sdk.ImageAnalysisFeature.TAGS | sdk.ImageAnalysisFeature.TEXT ) except ImportError: raise ImportError( "azure-ai-vision is not installed. " "Run `pip install azure-ai-vision` to install." ) return values def _image_analysis(self, image_path: str) -> Dict: try: import azure.ai.vision as sdk except ImportError: pass image_src_type = detect_file_src_type(image_path) if image_src_type == "local": vision_source = sdk.VisionSource(filename=image_path) elif image_src_type == "remote": vision_source = sdk.VisionSource(url=image_path) else: raise ValueError(f"Invalid image path: {image_path}") image_analyzer = sdk.ImageAnalyzer( self.vision_service, vision_source, self.analysis_options ) result = image_analyzer.analyze() res_dict = {} if result.reason == sdk.ImageAnalysisResultReason.ANALYZED: if result.caption is not None: res_dict["caption"] = result.caption.content if result.objects is not None: res_dict["objects"] = [obj.name for obj in result.objects] if result.tags is not None: res_dict["tags"] = [tag.name for tag in result.tags]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8508b46e7a63-2
res_dict["tags"] = [tag.name for tag in result.tags] if result.text is not None: res_dict["text"] = [line.content for line in result.text.lines] else: error_details = sdk.ImageAnalysisErrorDetails.from_result(result) raise RuntimeError( f"Image analysis failed.\n" f"Reason: {error_details.reason}\n" f"Details: {error_details.message}" ) return res_dict def _format_image_analysis_result(self, image_analysis_result: Dict) -> str: formatted_result = [] if "caption" in image_analysis_result: formatted_result.append("Caption: " + image_analysis_result["caption"]) if ( "objects" in image_analysis_result and len(image_analysis_result["objects"]) > 0 ): formatted_result.append( "Objects: " + ", ".join(image_analysis_result["objects"]) ) if "tags" in image_analysis_result and len(image_analysis_result["tags"]) > 0: formatted_result.append("Tags: " + ", ".join(image_analysis_result["tags"])) if "text" in image_analysis_result and len(image_analysis_result["text"]) > 0: formatted_result.append("Text: " + ", ".join(image_analysis_result["text"])) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: image_analysis_result = self._image_analysis(query) if not image_analysis_result: return "No good image analysis result was found"
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8508b46e7a63-3
if not image_analysis_result: return "No good image analysis result was found" return self._format_image_analysis_result(image_analysis_result) except Exception as e: raise RuntimeError(f"Error while running AzureCogsImageAnalysisTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsImageAnalysisTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
84f8c5a179f7-0
Source code for langchain.tools.azure_cognitive_services.speech2text from __future__ import annotations import logging import time from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import ( detect_file_src_type, download_audio_from_url, ) from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsSpeech2TextTool(BaseTool): """Tool that queries the Azure Cognitive Services Speech2Text API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text?pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name = "azure_cognitive_services_speech2text" description = ( "A wrapper around Azure Cognitive Services Speech2Text. " "Useful for when you need to transcribe audio to text. " "Input should be a url to an audio file." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/speech2text.html
84f8c5a179f7-1
) azure_cogs_region = get_from_dict_or_env( values, "azure_cogs_region", "AZURE_COGS_REGION" ) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_cogs_key, region=azure_cogs_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _continuous_recognize(self, speech_recognizer: Any) -> str: done = False text = "" def stop_cb(evt: Any) -> None: """callback that stop continuous recognition""" speech_recognizer.stop_continuous_recognition_async() nonlocal done done = True def retrieve_cb(evt: Any) -> None: """callback that retrieves the intermediate recognition results""" nonlocal text text += evt.result.text # retrieve text on recognized events speech_recognizer.recognized.connect(retrieve_cb) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition_async() while not done: time.sleep(0.5) return text def _speech2text(self, audio_path: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/speech2text.html
84f8c5a179f7-2
except ImportError: pass audio_src_type = detect_file_src_type(audio_path) if audio_src_type == "local": audio_config = speechsdk.AudioConfig(filename=audio_path) elif audio_src_type == "remote": tmp_audio_path = download_audio_from_url(audio_path) audio_config = speechsdk.AudioConfig(filename=tmp_audio_path) else: raise ValueError(f"Invalid audio path: {audio_path}") self.speech_config.speech_recognition_language = speech_language speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config) return self._continuous_recognize(speech_recognizer) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text = self._speech2text(query, self.speech_language) return text except Exception as e: raise RuntimeError(f"Error while running AzureCogsSpeech2TextTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsSpeech2TextTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/speech2text.html
e8362078bc22-0
Source code for langchain.tools.azure_cognitive_services.form_recognizer from __future__ import annotations import logging from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import detect_file_src_type from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsFormRecognizerTool(BaseTool): """Tool that queries the Azure Cognitive Services Form Recognizer API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/quickstarts/get-started-sdks-rest-api?view=form-recog-3.0.0&pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: doc_analysis_client: Any #: :meta private: name = "azure_cognitive_services_form_recognizer" description = ( "A wrapper around Azure Cognitive Services Form Recognizer. " "Useful for when you need to " "extract text, tables, and key-value pairs from documents. " "Input should be a url to a document." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
e8362078bc22-1
) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" ) try: from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential values["doc_analysis_client"] = DocumentAnalysisClient( endpoint=azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key), ) except ImportError: raise ImportError( "azure-ai-formrecognizer is not installed. " "Run `pip install azure-ai-formrecognizer` to install." ) return values def _parse_tables(self, tables: List[Any]) -> List[Any]: result = [] for table in tables: rc, cc = table.row_count, table.column_count _table = [["" for _ in range(cc)] for _ in range(rc)] for cell in table.cells: _table[cell.row_index][cell.column_index] = cell.content result.append(_table) return result def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]: result = [] for kv_pair in kv_pairs: key = kv_pair.key.content if kv_pair.key else "" value = kv_pair.value.content if kv_pair.value else "" result.append((key, value)) return result def _document_analysis(self, document_path: str) -> Dict: document_src_type = detect_file_src_type(document_path) if document_src_type == "local": with open(document_path, "rb") as document: poller = self.doc_analysis_client.begin_analyze_document( "prebuilt-document", document )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
e8362078bc22-2
"prebuilt-document", document ) elif document_src_type == "remote": poller = self.doc_analysis_client.begin_analyze_document_from_url( "prebuilt-document", document_path ) else: raise ValueError(f"Invalid document path: {document_path}") result = poller.result() res_dict = {} if result.content is not None: res_dict["content"] = result.content if result.tables is not None: res_dict["tables"] = self._parse_tables(result.tables) if result.key_value_pairs is not None: res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs) return res_dict def _format_document_analysis_result(self, document_analysis_result: Dict) -> str: formatted_result = [] if "content" in document_analysis_result: formatted_result.append( f"Content: {document_analysis_result['content']}".replace("\n", " ") ) if "tables" in document_analysis_result: for i, table in enumerate(document_analysis_result["tables"]): formatted_result.append(f"Table {i}: {table}".replace("\n", " ")) if "key_value_pairs" in document_analysis_result: for kv_pair in document_analysis_result["key_value_pairs"]: formatted_result.append( f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
e8362078bc22-3
) -> str: """Use the tool.""" try: document_analysis_result = self._document_analysis(query) if not document_analysis_result: return "No good document analysis result was found" return self._format_document_analysis_result(document_analysis_result) except Exception as e: raise RuntimeError(f"Error while running AzureCogsFormRecognizerTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsFormRecognizerTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
a78f210a83b4-0
Source code for langchain.tools.file_management.move import shutil from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileMoveInput(BaseModel): """Input for MoveFileTool.""" source_path: str = Field(..., description="Path of the file to move") destination_path: str = Field(..., description="New path for the moved file") [docs]class MoveFileTool(BaseFileToolMixin, BaseTool): name: str = "move_file" args_schema: Type[BaseModel] = FileMoveInput description: str = "Move or rename a file from one location to another" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path_", value=destination_path_ ) if not source_path_.exists(): return f"Error: no such file or directory {source_path}" try: # shutil.move expects str args in 3.8 shutil.move(str(source_path_), destination_path_)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/move.html
a78f210a83b4-1
shutil.move(str(source_path_), destination_path_) return f"File moved successfully from {source_path} to {destination_path}." except Exception as e: return "Error: " + str(e) async def _arun( self, source_path: str, destination_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/move.html
04822f3b9741-0
Source code for langchain.tools.file_management.read from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class ReadFileInput(BaseModel): """Input for ReadFileTool.""" file_path: str = Field(..., description="name of file") [docs]class ReadFileTool(BaseFileToolMixin, BaseTool): name: str = "read_file" args_schema: Type[BaseModel] = ReadFileInput description: str = "Read file from disk" def _run( self, file_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: read_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) if not read_path.exists(): return f"Error: no such file or directory: {file_path}" try: with read_path.open("r", encoding="utf-8") as f: content = f.read() return content except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/read.html
04822f3b9741-1
# TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/read.html
b008b381d486-0
Source code for langchain.tools.file_management.file_search import fnmatch import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileSearchInput(BaseModel): """Input for FileSearchTool.""" dir_path: str = Field( default=".", description="Subdirectory to search in.", ) pattern: str = Field( ..., description="Unix shell regex, where * matches everything.", ) [docs]class FileSearchTool(BaseFileToolMixin, BaseTool): name: str = "file_search" args_schema: Type[BaseModel] = FileSearchInput description: str = ( "Recursively search for files in a subdirectory that match the regex pattern" ) def _run( self, pattern: str, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) matches = [] try: for root, _, filenames in os.walk(dir_path_): for filename in fnmatch.filter(filenames, pattern): absolute_path = os.path.join(root, filename) relative_path = os.path.relpath(absolute_path, dir_path_) matches.append(relative_path) if matches:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/file_search.html
b008b381d486-1
matches.append(relative_path) if matches: return "\n".join(matches) else: return f"No files found for pattern {pattern} in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, pattern: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/file_search.html
fc4c248b393a-0
Source code for langchain.tools.file_management.write from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class WriteFileInput(BaseModel): """Input for WriteFileTool.""" file_path: str = Field(..., description="name of file") text: str = Field(..., description="text to write to file") append: bool = Field( default=False, description="Whether to append to an existing file." ) [docs]class WriteFileTool(BaseFileToolMixin, BaseTool): name: str = "write_file" args_schema: Type[BaseModel] = WriteFileInput description: str = "Write file to disk" def _run( self, file_path: str, text: str, append: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: write_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) try: write_path.parent.mkdir(exist_ok=True, parents=False) mode = "a" if append else "w" with write_path.open(mode, encoding="utf-8") as f: f.write(text) return f"File written successfully to {file_path}." except Exception as e: return "Error: " + str(e)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/write.html
fc4c248b393a-1
except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, text: str, append: bool = False, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/write.html
378e4ca07e2a-0
Source code for langchain.tools.file_management.copy import shutil from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileCopyInput(BaseModel): """Input for CopyFileTool.""" source_path: str = Field(..., description="Path of the file to copy") destination_path: str = Field(..., description="Path to save the copied file") [docs]class CopyFileTool(BaseFileToolMixin, BaseTool): name: str = "copy_file" args_schema: Type[BaseModel] = FileCopyInput description: str = "Create a copy of a file in a specified location" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path", value=destination_path ) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return f"File copied successfully from {source_path} to {destination_path}." except Exception as e:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/copy.html
378e4ca07e2a-1
except Exception as e: return "Error: " + str(e) async def _arun( self, source_path: str, destination_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/copy.html
9422e148225c-0
Source code for langchain.tools.file_management.delete import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileDeleteInput(BaseModel): """Input for DeleteFileTool.""" file_path: str = Field(..., description="Path of the file to delete") [docs]class DeleteFileTool(BaseFileToolMixin, BaseTool): name: str = "file_delete" args_schema: Type[BaseModel] = FileDeleteInput description: str = "Delete a file" def _run( self, file_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: file_path_ = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) if not file_path_.exists(): return f"Error: no such file or directory: {file_path}" try: os.remove(file_path_) return f"File deleted successfully: {file_path}." except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/delete.html
9422e148225c-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/delete.html
83f93b478853-0
Source code for langchain.tools.file_management.list_dir import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class DirectoryListingInput(BaseModel): """Input for ListDirectoryTool.""" dir_path: str = Field(default=".", description="Subdirectory to list.") [docs]class ListDirectoryTool(BaseFileToolMixin, BaseTool): name: str = "list_directory" args_schema: Type[BaseModel] = DirectoryListingInput description: str = "List files and directories in a specified folder" def _run( self, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) try: entries = os.listdir(dir_path_) if entries: return "\n".join(entries) else: return f"No files found in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/list_dir.html
83f93b478853-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/file_management/list_dir.html
ee89fb03f74c-0
Source code for langchain.tools.metaphor_search.tool """Tool for the Metaphor search API.""" from typing import Dict, List, Optional, Union from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper [docs]class MetaphorSearchResults(BaseTool): """Tool that has capability to query the Metaphor Search API and get back json.""" name = "metaphor_search_results_json" description = ( "A wrapper around Metaphor Search. " "Input should be a Metaphor-optimized query. " "Output is a JSON array of the query results" ) api_wrapper: MetaphorSearchAPIWrapper def _run( self, query: str, num_results: int, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool.""" try: return self.api_wrapper.results(query, num_results) except Exception as e: return repr(e) async def _arun( self, query: str, num_results: int, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool asynchronously.""" try: return await self.api_wrapper.results_async(query, num_results) except Exception as e: return repr(e) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/metaphor_search/tool.html
ba5e8a60d287-0
Source code for langchain.tools.shell.tool import asyncio import platform import warnings from typing import List, Optional, Type, Union from pydantic import BaseModel, Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.bash import BashProcess class ShellInput(BaseModel): """Commands for the Bash Shell tool.""" commands: Union[str, List[str]] = Field( ..., description="List of shell commands to run. Deserialized using json.loads", ) """List of shell commands to run.""" @root_validator def _validate_commands(cls, values: dict) -> dict: """Validate commands.""" # TODO: Add real validators commands = values.get("commands") if not isinstance(commands, list): values["commands"] = [commands] # Warn that the bash tool is not safe warnings.warn( "The shell tool has no safeguards by default. Use at your own risk." ) return values def _get_default_bash_processs() -> BashProcess: """Get file path from string.""" return BashProcess(return_err_output=True) def _get_platform() -> str: """Get platform.""" system = platform.system() if system == "Darwin": return "MacOS" return system [docs]class ShellTool(BaseTool): """Tool to run shell commands.""" process: BashProcess = Field(default_factory=_get_default_bash_processs) """Bash process to run commands.""" name: str = "terminal" """Name of tool."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/shell/tool.html
ba5e8a60d287-1
name: str = "terminal" """Name of tool.""" description: str = f"Run shell commands on this {_get_platform()} machine." """Description of tool.""" args_schema: Type[BaseModel] = ShellInput """Schema for input arguments.""" def _run( self, commands: Union[str, List[str]], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run commands and return final output.""" return self.process.run(commands) async def _arun( self, commands: Union[str, List[str]], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Run commands asynchronously and return final output.""" return await asyncio.get_event_loop().run_in_executor( None, self.process.run, commands ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/shell/tool.html
5e5988edabf3-0
Source code for langchain.tools.wikipedia.tool """Tool for the Wikipedia API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.wikipedia import WikipediaAPIWrapper [docs]class WikipediaQueryRun(BaseTool): """Tool that adds the capability to search using the Wikipedia API.""" name = "Wikipedia" description = ( "A wrapper around Wikipedia. " "Useful for when you need to answer general questions about " "people, places, companies, facts, historical events, or other subjects. " "Input should be a search query." ) api_wrapper: WikipediaAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Wikipedia tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Wikipedia tool asynchronously.""" raise NotImplementedError("WikipediaQueryRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/wikipedia/tool.html
b15b0a46e40d-0
Source code for langchain.tools.vectorstore.tool """Tools for interacting with vectorstores.""" import json from typing import Any, Dict, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.chains import RetrievalQA, RetrievalQAWithSourcesChain from langchain.llms.openai import OpenAI from langchain.tools.base import BaseTool from langchain.vectorstores.base import VectorStore class BaseVectorStoreTool(BaseModel): """Base class for tools that use a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config(BaseTool.Config): """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: values["description"] = values["template"].format(name=values["name"]) return values [docs]class VectorStoreQATool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQA chain. To be initialized with name and chain.""" [docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name}. " "Whenever you need information about {description} " "you should ALWAYS use this. " "Input should be a fully formed question." ) return template.format(name=name, description=description) def _run( self, query: str,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/vectorstore/tool.html
b15b0a46e40d-1
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return chain.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("VectorStoreQATool does not support async") [docs]class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQAWithSources chain.""" [docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name} and the sources " "used to construct the answer. " "Whenever you need information about {description} " "you should ALWAYS use this. " " Input should be a fully formed question. " "Output is a json serialized dictionary with keys `answer` and `sources`. " "Only use this tool if the user explicitly asks for sources." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/vectorstore/tool.html
b15b0a46e40d-2
self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps(chain({chain.question_key: query}, return_only_outputs=True)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("VectorStoreQAWithSourcesTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/vectorstore/tool.html
20cab57c9231-0
Source code for langchain.tools.powerbi.tool """Tools for interacting with a Power BI dataset.""" import logging from typing import Any, Dict, Optional, Tuple from pydantic import Field, validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.chains.llm import LLMChain from langchain.tools.base import BaseTool from langchain.tools.powerbi.prompt import ( BAD_REQUEST_RESPONSE, DEFAULT_FEWSHOT_EXAMPLES, QUESTION_TO_QUERY, RETRY_RESPONSE, ) from langchain.utilities.powerbi import PowerBIDataset, json_to_md logger = logging.getLogger(__name__) [docs]class QueryPowerBITool(BaseTool): """Tool for querying a Power BI Dataset.""" name = "query_powerbi" description = """ Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification. Example Input: "How many rows are in table1?" """ # noqa: E501 llm_chain: LLMChain powerbi: PowerBIDataset = Field(exclude=True) template: Optional[str] = QUESTION_TO_QUERY examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True) max_iterations: int = 5 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @validator("llm_chain") def validate_llm_chain_input_variables( # pylint: disable=E0213 cls, llm_chain: LLMChain
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
20cab57c9231-1
cls, llm_chain: LLMChain ) -> LLMChain: """Make sure the LLM chain has the correct input variables.""" if llm_chain.prompt.input_variables != [ "tool_input", "tables", "schemas", "examples", ]: raise ValueError( "LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301 llm_chain.prompt.input_variables, ) return llm_chain def _check_cache(self, tool_input: str) -> Optional[str]: """Check if the input is present in the cache. If the value is a bad request, overwrite with the escalated version, if not present return None.""" if tool_input not in self.session_cache: return None return self.session_cache[tool_input] def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Execute the query, return the results or an error message.""" if cache := self._check_cache(tool_input): logger.debug("Found cached result for %s: %s", tool_input, cache) return cache try: logger.info("Running PBI Query Tool with input: %s", tool_input) query = self.llm_chain.predict( tool_input=tool_input, tables=self.powerbi.get_table_names(), schemas=self.powerbi.get_schemas(), examples=self.examples, )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
20cab57c9231-2
schemas=self.powerbi.get_schemas(), examples=self.examples, ) except Exception as exc: # pylint: disable=broad-except self.session_cache[tool_input] = f"Error on call to LLM: {exc}" return self.session_cache[tool_input] if query == "I cannot answer this": self.session_cache[tool_input] = query return self.session_cache[tool_input] logger.info("Query: %s", query) pbi_result = self.powerbi.run(command=query) result, error = self._parse_output(pbi_result) iterations = kwargs.get("iterations", 0) if error and iterations < self.max_iterations: return self._run( tool_input=RETRY_RESPONSE.format( tool_input=tool_input, query=query, error=error ), run_manager=run_manager, iterations=iterations + 1, ) self.session_cache[tool_input] = ( result if result else BAD_REQUEST_RESPONSE.format(error=error) ) return self.session_cache[tool_input] async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Execute the query, return the results or an error message.""" if cache := self._check_cache(tool_input): logger.debug("Found cached result for %s: %s", tool_input, cache) return cache try: logger.info("Running PBI Query Tool with input: %s", tool_input) query = await self.llm_chain.apredict( tool_input=tool_input,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
20cab57c9231-3
query = await self.llm_chain.apredict( tool_input=tool_input, tables=self.powerbi.get_table_names(), schemas=self.powerbi.get_schemas(), examples=self.examples, ) except Exception as exc: # pylint: disable=broad-except self.session_cache[tool_input] = f"Error on call to LLM: {exc}" return self.session_cache[tool_input] if query == "I cannot answer this": self.session_cache[tool_input] = query return self.session_cache[tool_input] logger.info("Query: %s", query) pbi_result = await self.powerbi.arun(command=query) result, error = self._parse_output(pbi_result) iterations = kwargs.get("iterations", 0) if error and iterations < self.max_iterations: return await self._arun( tool_input=RETRY_RESPONSE.format( tool_input=tool_input, query=query, error=error ), run_manager=run_manager, iterations=iterations + 1, ) self.session_cache[tool_input] = ( result if result else BAD_REQUEST_RESPONSE.format(error=error) ) return self.session_cache[tool_input] def _parse_output( self, pbi_result: Dict[str, Any] ) -> Tuple[Optional[str], Optional[str]]: """Parse the output of the query to a markdown table.""" if "results" in pbi_result: return json_to_md(pbi_result["results"][0]["tables"][0]["rows"]), None if "error" in pbi_result: if ( "pbi.error" in pbi_result["error"]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
20cab57c9231-4
if ( "pbi.error" in pbi_result["error"] and "details" in pbi_result["error"]["pbi.error"] ): return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"] return None, pbi_result["error"] return None, "Unknown error" [docs]class InfoPowerBITool(BaseTool): """Tool for getting metadata about a PowerBI Dataset.""" name = "schema_powerbi" description = """ Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling list_tables_powerbi first! Example Input: "table1, table2, table3" """ # noqa: E501 powerbi: PowerBIDataset = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Get the schema for tables in a comma-separated list.""" return self.powerbi.get_table_info(tool_input.split(", ")) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return await self.powerbi.aget_table_info(tool_input.split(", ")) [docs]class ListPowerBITool(BaseTool): """Tool for getting tables names.""" name = "list_tables_powerbi"
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
20cab57c9231-5
"""Tool for getting tables names.""" name = "list_tables_powerbi" description = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301 powerbi: PowerBIDataset = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _run( self, tool_input: Optional[str] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Get the names of the tables.""" return ", ".join(self.powerbi.get_table_names()) async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Get the names of the tables.""" return ", ".join(self.powerbi.get_table_names()) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/powerbi/tool.html
645502f2aeee-0
Source code for langchain.tools.openapi.utils.api_models """Pydantic models for parsing an OpenAPI spec.""" import logging from enum import Enum from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union from openapi_schema_pydantic import MediaType, Parameter, Reference, RequestBody, Schema from pydantic import BaseModel, Field from langchain.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec logger = logging.getLogger(__name__) PRIMITIVE_TYPES = { "integer": int, "number": float, "string": str, "boolean": bool, "array": List, "object": Dict, "null": None, } # See https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#parameterIn # for more info. class APIPropertyLocation(Enum): """The location of the property.""" QUERY = "query" PATH = "path" HEADER = "header" COOKIE = "cookie" # Not yet supported @classmethod def from_str(cls, location: str) -> "APIPropertyLocation": """Parse an APIPropertyLocation.""" try: return cls(location) except ValueError: raise ValueError( f"Invalid APIPropertyLocation. Valid values are {cls.__members__}" ) _SUPPORTED_MEDIA_TYPES = ("application/json",) SUPPORTED_LOCATIONS = { APIPropertyLocation.QUERY, APIPropertyLocation.PATH, } INVALID_LOCATION_TEMPL = ( 'Unsupported APIPropertyLocation "{location}"' " for parameter {name}. " + f"Valid values are {[loc.value for loc in SUPPORTED_LOCATIONS]}" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-1
) SCHEMA_TYPE = Union[str, Type, tuple, None, Enum] class APIPropertyBase(BaseModel): """Base model for an API property.""" # The name of the parameter is required and is case sensitive. # If "in" is "path", the "name" field must correspond to a template expression # within the path field in the Paths Object. # If "in" is "header" and the "name" field is "Accept", "Content-Type", # or "Authorization", the parameter definition is ignored. # For all other cases, the "name" corresponds to the parameter # name used by the "in" property. name: str = Field(alias="name") """The name of the property.""" required: bool = Field(alias="required") """Whether the property is required.""" type: SCHEMA_TYPE = Field(alias="type") """The type of the property. Either a primitive type, a component/parameter type, or an array or 'object' (dict) of the above.""" default: Optional[Any] = Field(alias="default", default=None) """The default value of the property.""" description: Optional[str] = Field(alias="description", default=None) """The description of the property.""" class APIProperty(APIPropertyBase): """A model for a property in the query, path, header, or cookie params.""" location: APIPropertyLocation = Field(alias="location") """The path/how it's being passed to the endpoint.""" @staticmethod def _cast_schema_list_type(schema: Schema) -> Optional[Union[str, Tuple[str, ...]]]: type_ = schema.type if not isinstance(type_, list): return type_
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-2
if not isinstance(type_, list): return type_ else: return tuple(type_) @staticmethod def _get_schema_type_for_enum(parameter: Parameter, schema: Schema) -> Enum: """Get the schema type when the parameter is an enum.""" param_name = f"{parameter.name}Enum" return Enum(param_name, {str(v): v for v in schema.enum}) @staticmethod def _get_schema_type_for_array( schema: Schema, ) -> Optional[Union[str, Tuple[str, ...]]]: items = schema.items if isinstance(items, Schema): schema_type = APIProperty._cast_schema_list_type(items) elif isinstance(items, Reference): ref_name = items.ref.split("/")[-1] schema_type = ref_name # TODO: Add ref definitions to make his valid else: raise ValueError(f"Unsupported array items: {items}") if isinstance(schema_type, str): # TODO: recurse schema_type = (schema_type,) return schema_type @staticmethod def _get_schema_type(parameter: Parameter, schema: Optional[Schema]) -> SCHEMA_TYPE: if schema is None: return None schema_type: SCHEMA_TYPE = APIProperty._cast_schema_list_type(schema) if schema_type == "array": schema_type = APIProperty._get_schema_type_for_array(schema) elif schema_type == "object": # TODO: Resolve array and object types to components. raise NotImplementedError("Objects not yet supported") elif schema_type in PRIMITIVE_TYPES: if schema.enum: schema_type = APIProperty._get_schema_type_for_enum(parameter, schema) else: # Directly use the primitive type pass
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-3
else: # Directly use the primitive type pass else: raise NotImplementedError(f"Unsupported type: {schema_type}") return schema_type @staticmethod def _validate_location(location: APIPropertyLocation, name: str) -> None: if location not in SUPPORTED_LOCATIONS: raise NotImplementedError( INVALID_LOCATION_TEMPL.format(location=location, name=name) ) @staticmethod def _validate_content(content: Optional[Dict[str, MediaType]]) -> None: if content: raise ValueError( "API Properties with media content not supported. " "Media content only supported within APIRequestBodyProperty's" ) @staticmethod def _get_schema(parameter: Parameter, spec: OpenAPISpec) -> Optional[Schema]: schema = parameter.param_schema if isinstance(schema, Reference): schema = spec.get_referenced_schema(schema) elif schema is None: return None elif not isinstance(schema, Schema): raise ValueError(f"Error dereferencing schema: {schema}") return schema @staticmethod def is_supported_location(location: str) -> bool: """Return whether the provided location is supported.""" try: return APIPropertyLocation.from_str(location) in SUPPORTED_LOCATIONS except ValueError: return False @classmethod def from_parameter(cls, parameter: Parameter, spec: OpenAPISpec) -> "APIProperty": """Instantiate from an OpenAPI Parameter.""" location = APIPropertyLocation.from_str(parameter.param_in) cls._validate_location( location, parameter.name, ) cls._validate_content(parameter.content) schema = cls._get_schema(parameter, spec)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-4
schema = cls._get_schema(parameter, spec) schema_type = cls._get_schema_type(parameter, schema) default_val = schema.default if schema is not None else None return cls( name=parameter.name, location=location, default=default_val, description=parameter.description, required=parameter.required, type=schema_type, ) class APIRequestBodyProperty(APIPropertyBase): """A model for a request body property.""" properties: List["APIRequestBodyProperty"] = Field(alias="properties") """The sub-properties of the property.""" # This is useful for handling nested property cycles. # We can define separate types in that case. references_used: List[str] = Field(alias="references_used") """The references used by the property.""" @classmethod def _process_object_schema( cls, schema: Schema, spec: OpenAPISpec, references_used: List[str] ) -> Tuple[Union[str, List[str], None], List["APIRequestBodyProperty"]]: properties = [] required_props = schema.required or [] if schema.properties is None: raise ValueError( f"No properties found when processing object schema: {schema}" ) for prop_name, prop_schema in schema.properties.items(): if isinstance(prop_schema, Reference): ref_name = prop_schema.ref.split("/")[-1] if ref_name not in references_used: references_used.append(ref_name) prop_schema = spec.get_referenced_schema(prop_schema) else: continue properties.append( cls.from_schema( schema=prop_schema, name=prop_name, required=prop_name in required_props, spec=spec,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-5
required=prop_name in required_props, spec=spec, references_used=references_used, ) ) return schema.type, properties @classmethod def _process_array_schema( cls, schema: Schema, name: str, spec: OpenAPISpec, references_used: List[str] ) -> str: items = schema.items if items is not None: if isinstance(items, Reference): ref_name = items.ref.split("/")[-1] if ref_name not in references_used: references_used.append(ref_name) items = spec.get_referenced_schema(items) else: pass return f"Array<{ref_name}>" else: pass if isinstance(items, Schema): array_type = cls.from_schema( schema=items, name=f"{name}Item", required=True, # TODO: Add required spec=spec, references_used=references_used, ) return f"Array<{array_type.type}>" return "array" @classmethod def from_schema( cls, schema: Schema, name: str, required: bool, spec: OpenAPISpec, references_used: Optional[List[str]] = None, ) -> "APIRequestBodyProperty": """Recursively populate from an OpenAPI Schema.""" if references_used is None: references_used = [] schema_type = schema.type properties: List[APIRequestBodyProperty] = [] if schema_type == "object" and schema.properties: schema_type, properties = cls._process_object_schema( schema, spec, references_used ) elif schema_type == "array":
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-6
schema, spec, references_used ) elif schema_type == "array": schema_type = cls._process_array_schema(schema, name, spec, references_used) elif schema_type in PRIMITIVE_TYPES: # Use the primitive type directly pass elif schema_type is None: # No typing specified/parsed. WIll map to 'any' pass else: raise ValueError(f"Unsupported type: {schema_type}") return cls( name=name, required=required, type=schema_type, default=schema.default, description=schema.description, properties=properties, references_used=references_used, ) class APIRequestBody(BaseModel): """A model for a request body.""" description: Optional[str] = Field(alias="description") """The description of the request body.""" properties: List[APIRequestBodyProperty] = Field(alias="properties") # E.g., application/json - we only support JSON at the moment. media_type: str = Field(alias="media_type") """The media type of the request body.""" @classmethod def _process_supported_media_type( cls, media_type_obj: MediaType, spec: OpenAPISpec, ) -> List[APIRequestBodyProperty]: """Process the media type of the request body.""" references_used = [] schema = media_type_obj.media_type_schema if isinstance(schema, Reference): references_used.append(schema.ref.split("/")[-1]) schema = spec.get_referenced_schema(schema) if schema is None: raise ValueError( f"Could not resolve schema for media type: {media_type_obj}" ) api_request_body_properties = []
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-7
) api_request_body_properties = [] required_properties = schema.required or [] if schema.type == "object" and schema.properties: for prop_name, prop_schema in schema.properties.items(): if isinstance(prop_schema, Reference): prop_schema = spec.get_referenced_schema(prop_schema) api_request_body_properties.append( APIRequestBodyProperty.from_schema( schema=prop_schema, name=prop_name, required=prop_name in required_properties, spec=spec, ) ) else: api_request_body_properties.append( APIRequestBodyProperty( name="body", required=True, type=schema.type, default=schema.default, description=schema.description, properties=[], references_used=references_used, ) ) return api_request_body_properties @classmethod def from_request_body( cls, request_body: RequestBody, spec: OpenAPISpec ) -> "APIRequestBody": """Instantiate from an OpenAPI RequestBody.""" properties = [] for media_type, media_type_obj in request_body.content.items(): if media_type not in _SUPPORTED_MEDIA_TYPES: continue api_request_body_properties = cls._process_supported_media_type( media_type_obj, spec, ) properties.extend(api_request_body_properties) return cls( description=request_body.description, properties=properties, media_type=media_type, ) [docs]class APIOperation(BaseModel): """A model for a single API operation.""" operation_id: str = Field(alias="operation_id") """The unique identifier of the operation.""" description: Optional[str] = Field(alias="description")
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-8
description: Optional[str] = Field(alias="description") """The description of the operation.""" base_url: str = Field(alias="base_url") """The base URL of the operation.""" path: str = Field(alias="path") """The path of the operation.""" method: HTTPVerb = Field(alias="method") """The HTTP method of the operation.""" properties: Sequence[APIProperty] = Field(alias="properties") # TODO: Add parse in used components to be able to specify what type of # referenced object it is. # """The properties of the operation.""" # components: Dict[str, BaseModel] = Field(alias="components") request_body: Optional[APIRequestBody] = Field(alias="request_body") """The request body of the operation.""" @staticmethod def _get_properties_from_parameters( parameters: List[Parameter], spec: OpenAPISpec ) -> List[APIProperty]: """Get the properties of the operation.""" properties = [] for param in parameters: if APIProperty.is_supported_location(param.param_in): properties.append(APIProperty.from_parameter(param, spec)) elif param.required: raise ValueError( INVALID_LOCATION_TEMPL.format( location=param.param_in, name=param.name ) ) else: logger.warning( INVALID_LOCATION_TEMPL.format( location=param.param_in, name=param.name ) + " Ignoring optional parameter" ) pass return properties [docs] @classmethod def from_openapi_url( cls, spec_url: str, path: str, method: str, ) -> "APIOperation":
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-9
path: str, method: str, ) -> "APIOperation": """Create an APIOperation from an OpenAPI URL.""" spec = OpenAPISpec.from_url(spec_url) return cls.from_openapi_spec(spec, path, method) [docs] @classmethod def from_openapi_spec( cls, spec: OpenAPISpec, path: str, method: str, ) -> "APIOperation": """Create an APIOperation from an OpenAPI spec.""" operation = spec.get_operation(path, method) parameters = spec.get_parameters_for_operation(operation) properties = cls._get_properties_from_parameters(parameters, spec) operation_id = OpenAPISpec.get_cleaned_operation_id(operation, path, method) request_body = spec.get_request_body_for_operation(operation) api_request_body = ( APIRequestBody.from_request_body(request_body, spec) if request_body is not None else None ) description = operation.description or operation.summary if not description and spec.paths is not None: description = spec.paths[path].description or spec.paths[path].summary return cls( operation_id=operation_id, description=description, base_url=spec.base_url, path=path, method=method, properties=properties, request_body=api_request_body, ) [docs] @staticmethod def ts_type_from_python(type_: SCHEMA_TYPE) -> str: if type_ is None: # TODO: Handle Nones better. These often result when # parsing specs that are < v3 return "any" elif isinstance(type_, str): return { "str": "string",
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-10
elif isinstance(type_, str): return { "str": "string", "integer": "number", "float": "number", "date-time": "string", }.get(type_, type_) elif isinstance(type_, tuple): return f"Array<{APIOperation.ts_type_from_python(type_[0])}>" elif isinstance(type_, type) and issubclass(type_, Enum): return " | ".join([f"'{e.value}'" for e in type_]) else: return str(type_) def _format_nested_properties( self, properties: List[APIRequestBodyProperty], indent: int = 2 ) -> str: """Format nested properties.""" formatted_props = [] for prop in properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = "" if prop.required else "?" prop_desc = f"/* {prop.description} */" if prop.description else "" if prop.properties: nested_props = self._format_nested_properties( prop.properties, indent + 2 ) prop_type = f"{{\n{nested_props}\n{' ' * indent}}}" formatted_props.append( f"{prop_desc}\n{' ' * indent}{prop_name}{prop_required}: {prop_type}," ) return "\n".join(formatted_props) [docs] def to_typescript(self) -> str: """Get typescript string representation of the operation.""" operation_name = self.operation_id params = [] if self.request_body: formatted_request_body_props = self._format_nested_properties( self.request_body.properties ) params.append(formatted_request_body_props)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
645502f2aeee-11
self.request_body.properties ) params.append(formatted_request_body_props) for prop in self.properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = "" if prop.required else "?" prop_desc = f"/* {prop.description} */" if prop.description else "" params.append(f"{prop_desc}\n\t\t{prop_name}{prop_required}: {prop_type},") formatted_params = "\n".join(params).strip() description_str = f"/* {self.description} */" if self.description else "" typescript_definition = f""" {description_str} type {operation_name} = (_: {{ {formatted_params} }}) => any; """ return typescript_definition.strip() @property def query_params(self) -> List[str]: return [ property.name for property in self.properties if property.location == APIPropertyLocation.QUERY ] @property def path_params(self) -> List[str]: return [ property.name for property in self.properties if property.location == APIPropertyLocation.PATH ] @property def body_params(self) -> List[str]: if self.request_body is None: return [] return [prop.name for prop in self.request_body.properties] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/api_models.html
c28e50cb75a6-0
Source code for langchain.tools.openapi.utils.openapi_utils """Utility functions for parsing an OpenAPI spec.""" import copy import json import logging import re from enum import Enum from pathlib import Path from typing import Dict, List, Optional, Union import requests import yaml from openapi_schema_pydantic import ( Components, OpenAPI, Operation, Parameter, PathItem, Paths, Reference, RequestBody, Schema, ) from pydantic import ValidationError logger = logging.getLogger(__name__) class HTTPVerb(str, Enum): """HTTP verbs.""" GET = "get" PUT = "put" POST = "post" DELETE = "delete" OPTIONS = "options" HEAD = "head" PATCH = "patch" TRACE = "trace" @classmethod def from_str(cls, verb: str) -> "HTTPVerb": """Parse an HTTP verb.""" try: return cls(verb) except ValueError: raise ValueError(f"Invalid HTTP verb. Valid values are {cls.__members__}") [docs]class OpenAPISpec(OpenAPI): """OpenAPI Model that removes misformatted parts of the spec.""" @property def _paths_strict(self) -> Paths: if not self.paths: raise ValueError("No paths found in spec") return self.paths def _get_path_strict(self, path: str) -> PathItem: path_item = self._paths_strict.get(path) if not path_item: raise ValueError(f"No path found for {path}") return path_item @property def _components_strict(self) -> Components:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-1
@property def _components_strict(self) -> Components: """Get components or err.""" if self.components is None: raise ValueError("No components found in spec. ") return self.components @property def _parameters_strict(self) -> Dict[str, Union[Parameter, Reference]]: """Get parameters or err.""" parameters = self._components_strict.parameters if parameters is None: raise ValueError("No parameters found in spec. ") return parameters @property def _schemas_strict(self) -> Dict[str, Schema]: """Get the dictionary of schemas or err.""" schemas = self._components_strict.schemas if schemas is None: raise ValueError("No schemas found in spec. ") return schemas @property def _request_bodies_strict(self) -> Dict[str, Union[RequestBody, Reference]]: """Get the request body or err.""" request_bodies = self._components_strict.requestBodies if request_bodies is None: raise ValueError("No request body found in spec. ") return request_bodies def _get_referenced_parameter(self, ref: Reference) -> Union[Parameter, Reference]: """Get a parameter (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] parameters = self._parameters_strict if ref_name not in parameters: raise ValueError(f"No parameter found for {ref_name}") return parameters[ref_name] def _get_root_referenced_parameter(self, ref: Reference) -> Parameter: """Get the root reference or err.""" parameter = self._get_referenced_parameter(ref) while isinstance(parameter, Reference):
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-2
parameter = self._get_referenced_parameter(ref) while isinstance(parameter, Reference): parameter = self._get_referenced_parameter(parameter) return parameter [docs] def get_referenced_schema(self, ref: Reference) -> Schema: """Get a schema (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] schemas = self._schemas_strict if ref_name not in schemas: raise ValueError(f"No schema found for {ref_name}") return schemas[ref_name] def _get_root_referenced_schema(self, ref: Reference) -> Schema: """Get the root reference or err.""" schema = self.get_referenced_schema(ref) while isinstance(schema, Reference): schema = self.get_referenced_schema(schema) return schema def _get_referenced_request_body( self, ref: Reference ) -> Optional[Union[Reference, RequestBody]]: """Get a request body (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] request_bodies = self._request_bodies_strict if ref_name not in request_bodies: raise ValueError(f"No request body found for {ref_name}") return request_bodies[ref_name] def _get_root_referenced_request_body( self, ref: Reference ) -> Optional[RequestBody]: """Get the root request Body or err.""" request_body = self._get_referenced_request_body(ref) while isinstance(request_body, Reference): request_body = self._get_referenced_request_body(request_body) return request_body @staticmethod def _alert_unsupported_spec(obj: dict) -> None: """Alert if the spec is not supported."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-3
"""Alert if the spec is not supported.""" warning_message = ( " This may result in degraded performance." + " Convert your OpenAPI spec to 3.1.* spec" + " for better support." ) swagger_version = obj.get("swagger") openapi_version = obj.get("openapi") if isinstance(openapi_version, str): if openapi_version != "3.1.0": logger.warning( f"Attempting to load an OpenAPI {openapi_version}" f" spec. {warning_message}" ) else: pass elif isinstance(swagger_version, str): logger.warning( f"Attempting to load a Swagger {swagger_version}" f" spec. {warning_message}" ) else: raise ValueError( "Attempting to load an unsupported spec:" f"\n\n{obj}\n{warning_message}" ) [docs] @classmethod def parse_obj(cls, obj: dict) -> "OpenAPISpec": try: cls._alert_unsupported_spec(obj) return super().parse_obj(obj) except ValidationError as e: # We are handling possibly misconfigured specs and want to do a best-effort # job to get a reasonable interface out of it. new_obj = copy.deepcopy(obj) for error in e.errors(): keys = error["loc"] item = new_obj for key in keys[:-1]: item = item[key] item.pop(keys[-1], None) return cls.parse_obj(new_obj) [docs] @classmethod def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec":
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-4
def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec": """Get an OpenAPI spec from a dict.""" return cls.parse_obj(spec_dict) [docs] @classmethod def from_text(cls, text: str) -> "OpenAPISpec": """Get an OpenAPI spec from a text.""" try: spec_dict = json.loads(text) except json.JSONDecodeError: spec_dict = yaml.safe_load(text) return cls.from_spec_dict(spec_dict) [docs] @classmethod def from_file(cls, path: Union[str, Path]) -> "OpenAPISpec": """Get an OpenAPI spec from a file path.""" path_ = path if isinstance(path, Path) else Path(path) if not path_.exists(): raise FileNotFoundError(f"{path} does not exist") with path_.open("r") as f: return cls.from_text(f.read()) [docs] @classmethod def from_url(cls, url: str) -> "OpenAPISpec": """Get an OpenAPI spec from a URL.""" response = requests.get(url) return cls.from_text(response.text) @property def base_url(self) -> str: """Get the base url.""" return self.servers[0].url [docs] def get_methods_for_path(self, path: str) -> List[str]: """Return a list of valid methods for the specified path.""" path_item = self._get_path_strict(path) results = [] for method in HTTPVerb: operation = getattr(path_item, method.value, None) if isinstance(operation, Operation): results.append(method.value) return results
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-5
if isinstance(operation, Operation): results.append(method.value) return results [docs] def get_operation(self, path: str, method: str) -> Operation: """Get the operation object for a given path and HTTP method.""" path_item = self._get_path_strict(path) operation_obj = getattr(path_item, method, None) if not isinstance(operation_obj, Operation): raise ValueError(f"No {method} method found for {path}") return operation_obj [docs] def get_parameters_for_operation(self, operation: Operation) -> List[Parameter]: """Get the components for a given operation.""" parameters = [] if operation.parameters: for parameter in operation.parameters: if isinstance(parameter, Reference): parameter = self._get_root_referenced_parameter(parameter) parameters.append(parameter) return parameters [docs] def get_request_body_for_operation( self, operation: Operation ) -> Optional[RequestBody]: """Get the request body for a given operation.""" request_body = operation.requestBody if isinstance(request_body, Reference): request_body = self._get_root_referenced_request_body(request_body) return request_body [docs] @staticmethod def get_cleaned_operation_id(operation: Operation, path: str, method: str) -> str: """Get a cleaned operation id from an operation id.""" operation_id = operation.operationId if operation_id is None: # Replace all punctuation of any kind with underscore path = re.sub(r"[^a-zA-Z0-9]", "_", path.lstrip("/")) operation_id = f"{path}_{method}" return operation_id.replace("-", "_").replace(".", "_").replace("/", "_") By Harrison Chase
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
c28e50cb75a6-6
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/openapi/utils/openapi_utils.html
1aa44c74cb68-0
Source code for langchain.tools.pubmed.tool """Tool for the Pubmed API.""" from typing import Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.pupmed import PubMedAPIWrapper [docs]class PubmedQueryRun(BaseTool): """Tool that adds the capability to search using the PubMed API.""" name = "PubMed" description = ( "A wrapper around PubMed.org " "Useful for when you need to answer questions about Physics, Mathematics, " "Computer Science, Quantitative Biology, Quantitative Finance, Statistics, " "Electrical Engineering, and Economics " "from scientific articles on PubMed.org. " "Input should be a search query." ) api_wrapper: PubMedAPIWrapper = Field(default_factory=PubMedAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Arxiv tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the PubMed tool asynchronously.""" raise NotImplementedError("PubMedAPIWrapper does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/pubmed/tool.html
f521d5a72594-0
Source code for langchain.tools.brave_search.tool from __future__ import annotations from typing import Any, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.brave_search import BraveSearchWrapper [docs]class BraveSearch(BaseTool): name = "brave_search" description = ( "a search engine. " "useful for when you need to answer questions about current events." " input should be a search query." ) search_wrapper: BraveSearchWrapper [docs] @classmethod def from_api_key( cls, api_key: str, search_kwargs: Optional[dict] = None, **kwargs: Any ) -> BraveSearch: wrapper = BraveSearchWrapper(api_key=api_key, search_kwargs=search_kwargs or {}) return cls(search_wrapper=wrapper, **kwargs) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.search_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BraveSearch does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/brave_search/tool.html
80ce32ad739f-0
Source code for langchain.tools.google_serper.tool """Tool for the Serper.dev Google Search API.""" from typing import Optional from pydantic.fields import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_serper import GoogleSerperAPIWrapper [docs]class GoogleSerperRun(BaseTool): """Tool that adds the capability to query the Serper.dev Google search API.""" name = "google_serper" description = ( "A low-cost Google Search API." "Useful for when you need to answer questions about current events." "Input should be a search query." ) api_wrapper: GoogleSerperAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.run(query)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return (await self.api_wrapper.arun(query)).__str__() [docs]class GoogleSerperResults(BaseTool): """Tool that has capability to query the Serper.dev Google Search API and get back json.""" name = "Google Serrper Results JSON" description = ( "A low-cost Google Search API." "Useful for when you need to answer questions about current events." "Input should be a search query. Output is a JSON object of the query results" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/google_serper/tool.html
80ce32ad739f-1
) api_wrapper: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return (await self.api_wrapper.aresults(query)).__str__() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/google_serper/tool.html
c047eddad7db-0
Source code for langchain.tools.human.tool """Tool for asking human input.""" from typing import Callable, Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool def _print_func(text: str) -> None: print("\n") print(text) [docs]class HumanInputRun(BaseTool): """Tool that adds the capability to ask user for input.""" name = "human" description = ( "You can ask a human for guidance when you think you " "got stuck or you are not sure what to do next. " "The input should be a question for the human." ) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func) input_func: Callable = Field(default_factory=lambda: input) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Human input tool.""" self.prompt_func(query) return self.input_func() async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Human tool asynchronously.""" raise NotImplementedError("Human tool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/human/tool.html
bd9c284cf6d6-0
Source code for langchain.tools.ddg_search.tool """Tool for the DuckDuckGo search API.""" import warnings from typing import Any, Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper [docs]class DuckDuckGoSearchRun(BaseTool): """Tool that adds the capability to query the DuckDuckGo search API.""" name = "duckduckgo_search" description = ( "A wrapper around DuckDuckGo Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: DuckDuckGoSearchAPIWrapper = Field( default_factory=DuckDuckGoSearchAPIWrapper ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("DuckDuckGoSearch does not support async") [docs]class DuckDuckGoSearchResults(BaseTool): """Tool that queries the Duck Duck Go Search API and get back json.""" name = "DuckDuckGo Results JSON" description = ( "A wrapper around Duck Duck Go Search. "
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/ddg_search/tool.html
bd9c284cf6d6-1
description = ( "A wrapper around Duck Duck Go Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: DuckDuckGoSearchAPIWrapper = Field( default_factory=DuckDuckGoSearchAPIWrapper ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("DuckDuckGoSearchResults does not support async") def DuckDuckGoSearchTool(*args: Any, **kwargs: Any) -> DuckDuckGoSearchRun: warnings.warn( "DuckDuckGoSearchTool will be deprecated in the future. " "Please use DuckDuckGoSearchRun instead.", DeprecationWarning, ) return DuckDuckGoSearchRun(*args, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/ddg_search/tool.html
77e07fc881c1-0
Source code for langchain.tools.bing_search.tool """Tool for the Bing search API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.bing_search import BingSearchAPIWrapper [docs]class BingSearchRun(BaseTool): """Tool that adds the capability to query the Bing search API.""" name = "bing_search" description = ( "A wrapper around Bing Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: BingSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BingSearchRun does not support async") [docs]class BingSearchResults(BaseTool): """Tool that has capability to query the Bing Search API and get back json.""" name = "Bing Search Results JSON" description = ( "A wrapper around Bing Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: BingSearchAPIWrapper def _run( self,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/bing_search/tool.html
77e07fc881c1-1
api_wrapper: BingSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BingSearchResults does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/bing_search/tool.html
a841d48ef9ec-0
Source code for langchain.tools.google_places.tool """Tool for the Google search API.""" from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_places_api import GooglePlacesAPIWrapper class GooglePlacesSchema(BaseModel): query: str = Field(..., description="Query for google maps") [docs]class GooglePlacesTool(BaseTool): """Tool that adds the capability to query the Google places API.""" name = "google_places" description = ( "A wrapper around Google Places. " "Useful for when you need to validate or " "discover addressed from ambiguous text. " "Input should be a search query." ) api_wrapper: GooglePlacesAPIWrapper = Field(default_factory=GooglePlacesAPIWrapper) args_schema: Type[BaseModel] = GooglePlacesSchema def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GooglePlacesRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/tools/google_places/tool.html
710b3df751b9-0
Source code for langchain.embeddings.deepinfra from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" [docs]class DeepInfraEmbeddings(BaseModel, Embeddings): """Wrapper around Deep Infra's embedding inference service. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example: .. code-block:: python from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) """ model_id: str = DEFAULT_MODEL_ID """Embeddings model to use.""" normalize: bool = False """whether to normalize the computed embeddings""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" model_kwargs: Optional[dict] = None
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/deepinfra.html
710b3df751b9-1
model_kwargs: Optional[dict] = None """Other model keyword args""" deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"model_id": self.model_id} def _embed(self, input: List[str]) -> List[List[float]]: _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } # send request try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() embeddings = t["embeddings"]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/deepinfra.html
710b3df751b9-2
try: t = res.json() embeddings = t["embeddings"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Deep Infra deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.query_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a Deep Infra deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/deepinfra.html
dec942a12f89-0
Source code for langchain.embeddings.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.llms.sagemaker_endpoint import ContentHandlerBase class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]]): """Content handler for LLM class.""" [docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain.embeddings import SagemakerEndpointEmbeddings endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpointEmbeddings( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/sagemaker_endpoint.html
dec942a12f89-1
credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: EmbeddingsContentHandler """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompts: List[str], model_kwargs: Dict) -> bytes: input_str = json.dumps({prompts: prompts, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"] """ # noqa: E501 model_kwargs: Optional[Dict] = None
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/sagemaker_endpoint.html
dec942a12f89-2
""" # noqa: E501 model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) return values def _embedding_func(self, texts: List[str]) -> List[List[float]]: """Call out to SageMaker Inference embedding endpoint.""" # replace newlines, which can negatively affect performance.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/sagemaker_endpoint.html
dec942a12f89-3
# replace newlines, which can negatively affect performance. texts = list(map(lambda x: x.replace("\n", " "), texts)) _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(texts, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return self.content_handler.transform_output(response["Body"]) [docs] def embed_documents( self, texts: List[str], chunk_size: int = 64 ) -> List[List[float]]: """Compute doc embeddings using a SageMaker Inference Endpoint. Args: texts: The list of texts to embed. chunk_size: The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ results = [] _chunk_size = len(texts) if chunk_size > len(texts) else chunk_size for i in range(0, len(texts), _chunk_size): response = self._embedding_func(texts[i : i + _chunk_size]) results.extend(response) return results [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a SageMaker inference endpoint.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/sagemaker_endpoint.html
dec942a12f89-4
"""Compute query embeddings using a SageMaker inference endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func([text])[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/sagemaker_endpoint.html
42c9539dca1e-0
Source code for langchain.embeddings.mosaicml """Wrapper around MosaicML APIs.""" from typing import Any, Dict, List, Mapping, Optional, Tuple import requests from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): """Wrapper around MosaicML's embedding inference service. To use, you should have the environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import MosaicMLInstructorEmbeddings endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict" ) mosaic_llm = MosaicMLInstructorEmbeddings( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) """ endpoint_url: str = ( "https://models.hosted-on.mosaicml.hosting/instructor-xl/v1/predict" ) """Endpoint URL to use.""" embed_instruction: str = "Represent the document for retrieval: " """Instruction used to embed documents.""" query_instruction: str = ( "Represent the question for retrieving supporting documents: " ) """Instruction used to embed the query.""" retry_sleep: float = 1.0 """How long to try sleeping for if a rate limit is encountered""" mosaicml_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/mosaicml.html
42c9539dca1e-1
"""Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" mosaicml_api_token = get_from_dict_or_env( values, "mosaicml_api_token", "MOSAICML_API_TOKEN" ) values["mosaicml_api_token"] = mosaicml_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"endpoint_url": self.endpoint_url} def _embed( self, input: List[Tuple[str, str]], is_retry: bool = False ) -> List[List[float]]: payload = {"input_strings": input} # HTTP headers for authorization headers = { "Authorization": f"{self.mosaicml_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post(self.endpoint_url, headers=headers, json=payload) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") try: parsed_response = response.json() if "error" in parsed_response: # if we get rate limited, try sleeping for 1 second if ( not is_retry and "rate limit exceeded" in parsed_response["error"].lower() ): import time time.sleep(self.retry_sleep) return self._embed(input, is_retry=True) raise ValueError( f"Error raised by inference API: {parsed_response['error']}" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/mosaicml.html
42c9539dca1e-2
f"Error raised by inference API: {parsed_response['error']}" ) # The inference API has changed a couple of times, so we add some handling # to be robust to multiple response formats. if isinstance(parsed_response, dict): if "data" in parsed_response: output_item = parsed_response["data"] elif "output" in parsed_response: output_item = parsed_response["output"] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) if isinstance(output_item, list) and isinstance(output_item[0], list): embeddings = output_item else: embeddings = [output_item] elif isinstance(parsed_response, list): first_item = parsed_response[0] if isinstance(first_item, list): embeddings = parsed_response elif isinstance(first_item, dict): if "output" in first_item: embeddings = [item["output"] for item in parsed_response] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) else: raise ValueError(f"Unexpected response format: {parsed_response}") else: raise ValueError(f"Unexpected response type: {parsed_response}") except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {response.text}" ) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a MosaicML deployed instructor embedding model. Args: texts: The list of texts to embed. Returns:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/mosaicml.html
42c9539dca1e-3
Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [(self.embed_instruction, text) for text in texts] embeddings = self._embed(instruction_pairs) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a MosaicML deployed instructor embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = (self.query_instruction, text) embedding = self._embed([instruction_pair])[0] return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/mosaicml.html
8ea8f222abb5-0
Source code for langchain.embeddings.self_hosted_hugging_face """Wrapper around HuggingFace embedding models for self-hosted remote hardware.""" import importlib import logging from typing import Any, Callable, List, Optional from langchain.embeddings.self_hosted import SelfHostedEmbeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) logger = logging.getLogger(__name__) def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return client.encode(*args, **kwargs) def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any: """Load the embedding model.""" if not instruct: import sentence_transformers client = sentence_transformers.SentenceTransformer(model_id) else: from InstructorEmbedding import INSTRUCTOR client = INSTRUCTOR(model_id) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted_hugging_face.html
8ea8f222abb5-1
if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) client = client.to(device) return client [docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): """Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) """ client: Any #: :meta private: model_id: str = DEFAULT_MODEL_NAME """Model name to use.""" model_reqs: List[str] = ["./", "sentence_transformers", "torch"] """Requirements to install on hardware to inference the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable = load_embedding_model
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted_hugging_face.html
8ea8f222abb5-2
model_load_fn: Callable = load_embedding_model """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Key word arguments to pass to the model load function.""" inference_fn: Callable = _embed_documents """Inference function to extract the embeddings.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): """Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) """
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted_hugging_face.html
8ea8f222abb5-3
model_name=model_name, hardware=gpu) """ model_id: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"] """Requirements to install on hardware to inference the model.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get( "model_id", DEFAULT_INSTRUCT_MODEL ) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted_hugging_face.html
8ea8f222abb5-4
Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client(self.pipeline_ref, [instruction_pair])[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/self_hosted_hugging_face.html
1323debf1f02-0
Source code for langchain.embeddings.embaas """Wrapper around embaas embeddings API.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import BaseModel, Extra, root_validator from typing_extensions import NotRequired, TypedDict from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env # Currently supported maximum batch size for embedding requests MAX_BATCH_SIZE = 256 EMBAAS_API_URL = "https://api.embaas.io/v1/embeddings/" class EmbaasEmbeddingsPayload(TypedDict): """Payload for the embaas embeddings API.""" model: str texts: List[str] instruction: NotRequired[str] [docs]class EmbaasEmbeddings(BaseModel, Embeddings): """Wrapper around embaas's embedding service. To use, you should have the environment variable ``EMBAAS_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python # Initialise with default model and instruction from langchain.embeddings import EmbaasEmbeddings emb = EmbaasEmbeddings() # Initialise with custom model and instruction from langchain.embeddings import EmbaasEmbeddings emb_model = "instructor-large" emb_inst = "Represent the Wikipedia document for retrieval" emb = EmbaasEmbeddings( model=emb_model, instruction=emb_inst ) """ model: str = "e5-large-v2" """The model used for embeddings.""" instruction: Optional[str] = None """Instruction used for domain-specific embeddings.""" api_url: str = EMBAAS_API_URL
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/embaas.html
1323debf1f02-1
api_url: str = EMBAAS_API_URL """The URL for the embaas embeddings API.""" embaas_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" embaas_api_key = get_from_dict_or_env( values, "embaas_api_key", "EMBAAS_API_KEY" ) values["embaas_api_key"] = embaas_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying params.""" return {"model": self.model, "instruction": self.instruction} def _generate_payload(self, texts: List[str]) -> EmbaasEmbeddingsPayload: """Generates payload for the API request.""" payload = EmbaasEmbeddingsPayload(texts=texts, model=self.model) if self.instruction: payload["instruction"] = self.instruction return payload def _handle_request(self, payload: EmbaasEmbeddingsPayload) -> List[List[float]]: """Sends a request to the Embaas API and handles the response.""" headers = { "Authorization": f"Bearer {self.embaas_api_key}", "Content-Type": "application/json", } response = requests.post(self.api_url, headers=headers, json=payload) response.raise_for_status() parsed_response = response.json() embeddings = [item["embedding"] for item in parsed_response["data"]] return embeddings
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/embeddings/embaas.html