Large_Action_Model / Large_Action_Model_Transformer.py
ankitkushwaha90's picture
Create Large_Action_Model_Transformer.py
6bfa0c9 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.utils.data import Dataset, DataLoader
import numpy as np
class PositionalEncoding(nn.Module):
"""
Positional Encoding for Transformer models
"""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Args:
x: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
x = x + self.pe[:x.size(0)]
return self.dropout(x)
class MultiHeadAttention(nn.Module):
"""
Multi-head attention mechanism
"""
def __init__(self, d_model, num_heads, dropout=0.1):
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.d_k])).to(device)
def forward(self, q, k, v, mask=None):
batch_size = q.size(0)
# Linear projections
q = self.w_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
k = self.w_k(k).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
v = self.w_v(v).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
# Scaled dot-product attention
attn = torch.matmul(q, k.transpose(-2, -1)) / self.scale
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e10)
attn = F.softmax(attn, dim=-1)
attn = self.dropout(attn)
output = torch.matmul(attn, v)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.w_o(output)
return output
class PositionwiseFeedforward(nn.Module):
"""
Position-wise feedforward network
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
class EncoderLayer(nn.Module):
"""
Single encoder layer
"""
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x, mask=None):
# Self attention
attn_output = self.self_attn(x, x, x, mask)
x = x + self.dropout1(attn_output)
x = self.norm1(x)
# Feedforward
ff_output = self.ffn(x)
x = x + self.dropout2(ff_output)
x = self.norm2(x)
return x
class DecoderLayer(nn.Module):
"""
Single decoder layer
"""
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
# Self attention
attn_output = self.self_attn(x, x, x, tgt_mask)
x = x + self.dropout1(attn_output)
x = self.norm1(x)
# Cross attention
attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
x = x + self.dropout2(attn_output)
x = self.norm2(x)
# Feedforward
ff_output = self.ffn(x)
x = x + self.dropout3(ff_output)
x = self.norm3(x)
return x
class Transformer(nn.Module):
"""
Complete Transformer model
"""
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8,
num_layers=6, d_ff=2048, dropout=0.1, max_len=5000):
super().__init__()
self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, dropout, max_len)
self.encoder_layers = nn.ModuleList([
EncoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.decoder_layers = nn.ModuleList([
DecoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.fc_out = nn.Linear(d_model, tgt_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src_embedded = self.dropout(self.pos_encoding(self.encoder_embedding(src)))
enc_output = src_embedded
for layer in self.encoder_layers:
enc_output = layer(enc_output, src_mask)
# Decoder
tgt_embedded = self.dropout(self.pos_encoding(self.decoder_embedding(tgt)))
dec_output = tgt_embedded
for layer in self.decoder_layers:
dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
output = self.fc_out(dec_output)
return output
class CodeDataset(Dataset):
"""
Dataset for code sequences
"""
def __init__(self, sequences, max_len):
self.sequences = sequences
self.max_len = max_len
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
seq = self.sequences[idx]
# Pad sequences to max_len
padded = np.zeros(self.max_len, dtype=np.int64)
length = min(len(seq), self.max_len)
padded[:length] = seq[:length]
return torch.tensor(padded, dtype=torch.long)
def create_masks(src, tgt, pad_idx):
"""
Create masks for source and target sequences
"""
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
tgt_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
seq_len = tgt.size(1)
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_len, seq_len), diagonal=1)).bool()
tgt_mask = tgt_mask & nopeak_mask.to(device)
return src_mask, tgt_mask
def train_model(model, dataloader, optimizer, criterion, epochs, pad_idx):
"""
Training loop for the transformer model
"""
model.train()
for epoch in range(epochs):
total_loss = 0
for src, tgt in dataloader:
src, tgt = src.to(device), tgt.to(device)
# Create masks
src_mask, tgt_mask = create_masks(src, tgt, pad_idx)
# Forward pass
optimizer.zero_grad()
output = model(src, tgt[:, :-1], src_mask, tgt_mask[:, :-1, :-1])
# Calculate loss
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
tgt = tgt[:, 1:].contiguous().view(-1)
loss = criterion(output, tgt)
# Backward pass
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Epoch: {epoch+1}, Loss: {total_loss / len(dataloader)}')
def generate_code(model, src, max_len, start_symbol, end_symbol, pad_idx):
"""
Generate code sequence using the trained model
"""
model.eval()
src = src.to(device)
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2).to(device)
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device)
for i in range(max_len-1):
tgt_mask = (torch.triu(torch.ones(1, ys.size(1), ys.size(1))) == 0).transpose(0, 1)
tgt_mask = tgt_mask.float().masked_fill(tgt_mask == 0, float('-inf')).masked_fill(tgt_mask == 1, float(0.0))
out = model.decode(ys, memory, src_mask, tgt_mask)
prob = model.fc_out(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.item()
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
if next_word == end_symbol:
break
return ys
# Configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Hyperparameters
VOCAB_SIZE = 10000 # Should be adjusted based on your actual vocabulary
D_MODEL = 512
NUM_HEADS = 8
NUM_LAYERS = 6
D_FF = 2048
DROPOUT = 0.1
BATCH_SIZE = 32
EPOCHS = 10
MAX_LEN = 100
LEARNING_RATE = 0.0001
PAD_IDX = 0 # Assuming 0 is the padding index
# Sample data - in practice you would load your code dataset here
# For demonstration, we'll create some dummy data
sample_data = [np.random.randint(1, VOCAB_SIZE, size=np.random.randint(10, MAX_LEN)) for _ in range(1000)]
dataset = CodeDataset(sample_data, MAX_LEN)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Initialize model
model = Transformer(
src_vocab_size=VOCAB_SIZE,
tgt_vocab_size=VOCAB_SIZE,
d_model=D_MODEL,
num_heads=NUM_HEADS,
num_layers=NUM_LAYERS,
d_ff=D_FF,
dropout=DROPOUT,
max_len=MAX_LEN
).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# Train the model
train_model(model, dataloader, optimizer, criterion, EPOCHS, PAD_IDX)
# Example of generating code
start_symbol = 1 # Assuming 1 is the start token
end_symbol = 2 # Assuming 2 is the end token
sample_input = torch.tensor([sample_data[0][:10]], dtype=torch.long) # First 10 tokens of first sample
generated_code = generate_code(model, sample_input, MAX_LEN, start_symbol, end_symbol, PAD_IDX)
print("Generated code sequence:", generated_code)