File size: 11,120 Bytes
6bfa0c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.utils.data import Dataset, DataLoader
import numpy as np
class PositionalEncoding(nn.Module):
"""
Positional Encoding for Transformer models
"""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Args:
x: Tensor, shape [seq_len, batch_size, embedding_dim]
"""
x = x + self.pe[:x.size(0)]
return self.dropout(x)
class MultiHeadAttention(nn.Module):
"""
Multi-head attention mechanism
"""
def __init__(self, d_model, num_heads, dropout=0.1):
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.d_k])).to(device)
def forward(self, q, k, v, mask=None):
batch_size = q.size(0)
# Linear projections
q = self.w_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
k = self.w_k(k).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
v = self.w_v(v).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
# Scaled dot-product attention
attn = torch.matmul(q, k.transpose(-2, -1)) / self.scale
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e10)
attn = F.softmax(attn, dim=-1)
attn = self.dropout(attn)
output = torch.matmul(attn, v)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.w_o(output)
return output
class PositionwiseFeedforward(nn.Module):
"""
Position-wise feedforward network
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
class EncoderLayer(nn.Module):
"""
Single encoder layer
"""
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x, mask=None):
# Self attention
attn_output = self.self_attn(x, x, x, mask)
x = x + self.dropout1(attn_output)
x = self.norm1(x)
# Feedforward
ff_output = self.ffn(x)
x = x + self.dropout2(ff_output)
x = self.norm2(x)
return x
class DecoderLayer(nn.Module):
"""
Single decoder layer
"""
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
# Self attention
attn_output = self.self_attn(x, x, x, tgt_mask)
x = x + self.dropout1(attn_output)
x = self.norm1(x)
# Cross attention
attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
x = x + self.dropout2(attn_output)
x = self.norm2(x)
# Feedforward
ff_output = self.ffn(x)
x = x + self.dropout3(ff_output)
x = self.norm3(x)
return x
class Transformer(nn.Module):
"""
Complete Transformer model
"""
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8,
num_layers=6, d_ff=2048, dropout=0.1, max_len=5000):
super().__init__()
self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, dropout, max_len)
self.encoder_layers = nn.ModuleList([
EncoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.decoder_layers = nn.ModuleList([
DecoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.fc_out = nn.Linear(d_model, tgt_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src_embedded = self.dropout(self.pos_encoding(self.encoder_embedding(src)))
enc_output = src_embedded
for layer in self.encoder_layers:
enc_output = layer(enc_output, src_mask)
# Decoder
tgt_embedded = self.dropout(self.pos_encoding(self.decoder_embedding(tgt)))
dec_output = tgt_embedded
for layer in self.decoder_layers:
dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
output = self.fc_out(dec_output)
return output
class CodeDataset(Dataset):
"""
Dataset for code sequences
"""
def __init__(self, sequences, max_len):
self.sequences = sequences
self.max_len = max_len
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
seq = self.sequences[idx]
# Pad sequences to max_len
padded = np.zeros(self.max_len, dtype=np.int64)
length = min(len(seq), self.max_len)
padded[:length] = seq[:length]
return torch.tensor(padded, dtype=torch.long)
def create_masks(src, tgt, pad_idx):
"""
Create masks for source and target sequences
"""
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
tgt_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
seq_len = tgt.size(1)
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_len, seq_len), diagonal=1)).bool()
tgt_mask = tgt_mask & nopeak_mask.to(device)
return src_mask, tgt_mask
def train_model(model, dataloader, optimizer, criterion, epochs, pad_idx):
"""
Training loop for the transformer model
"""
model.train()
for epoch in range(epochs):
total_loss = 0
for src, tgt in dataloader:
src, tgt = src.to(device), tgt.to(device)
# Create masks
src_mask, tgt_mask = create_masks(src, tgt, pad_idx)
# Forward pass
optimizer.zero_grad()
output = model(src, tgt[:, :-1], src_mask, tgt_mask[:, :-1, :-1])
# Calculate loss
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
tgt = tgt[:, 1:].contiguous().view(-1)
loss = criterion(output, tgt)
# Backward pass
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Epoch: {epoch+1}, Loss: {total_loss / len(dataloader)}')
def generate_code(model, src, max_len, start_symbol, end_symbol, pad_idx):
"""
Generate code sequence using the trained model
"""
model.eval()
src = src.to(device)
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2).to(device)
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device)
for i in range(max_len-1):
tgt_mask = (torch.triu(torch.ones(1, ys.size(1), ys.size(1))) == 0).transpose(0, 1)
tgt_mask = tgt_mask.float().masked_fill(tgt_mask == 0, float('-inf')).masked_fill(tgt_mask == 1, float(0.0))
out = model.decode(ys, memory, src_mask, tgt_mask)
prob = model.fc_out(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.item()
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
if next_word == end_symbol:
break
return ys
# Configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Hyperparameters
VOCAB_SIZE = 10000 # Should be adjusted based on your actual vocabulary
D_MODEL = 512
NUM_HEADS = 8
NUM_LAYERS = 6
D_FF = 2048
DROPOUT = 0.1
BATCH_SIZE = 32
EPOCHS = 10
MAX_LEN = 100
LEARNING_RATE = 0.0001
PAD_IDX = 0 # Assuming 0 is the padding index
# Sample data - in practice you would load your code dataset here
# For demonstration, we'll create some dummy data
sample_data = [np.random.randint(1, VOCAB_SIZE, size=np.random.randint(10, MAX_LEN)) for _ in range(1000)]
dataset = CodeDataset(sample_data, MAX_LEN)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Initialize model
model = Transformer(
src_vocab_size=VOCAB_SIZE,
tgt_vocab_size=VOCAB_SIZE,
d_model=D_MODEL,
num_heads=NUM_HEADS,
num_layers=NUM_LAYERS,
d_ff=D_FF,
dropout=DROPOUT,
max_len=MAX_LEN
).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# Train the model
train_model(model, dataloader, optimizer, criterion, EPOCHS, PAD_IDX)
# Example of generating code
start_symbol = 1 # Assuming 1 is the start token
end_symbol = 2 # Assuming 2 is the end token
sample_input = torch.tensor([sample_data[0][:10]], dtype=torch.long) # First 10 tokens of first sample
generated_code = generate_code(model, sample_input, MAX_LEN, start_symbol, end_symbol, PAD_IDX)
print("Generated code sequence:", generated_code) |