import torch import torch.nn as nn import torch.nn.functional as F import math from torch.utils.data import Dataset, DataLoader import numpy as np class PositionalEncoding(nn.Module): """ Positional Encoding for Transformer models """ def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ x = x + self.pe[:x.size(0)] return self.dropout(x) class MultiHeadAttention(nn.Module): """ Multi-head attention mechanism """ def __init__(self, d_model, num_heads, dropout=0.1): super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.d_k = d_model // num_heads self.w_q = nn.Linear(d_model, d_model) self.w_k = nn.Linear(d_model, d_model) self.w_v = nn.Linear(d_model, d_model) self.w_o = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.d_k])).to(device) def forward(self, q, k, v, mask=None): batch_size = q.size(0) # Linear projections q = self.w_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) k = self.w_k(k).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) v = self.w_v(v).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) # Scaled dot-product attention attn = torch.matmul(q, k.transpose(-2, -1)) / self.scale if mask is not None: attn = attn.masked_fill(mask == 0, -1e10) attn = F.softmax(attn, dim=-1) attn = self.dropout(attn) output = torch.matmul(attn, v) output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) output = self.w_o(output) return output class PositionwiseFeedforward(nn.Module): """ Position-wise feedforward network """ def __init__(self, d_model, d_ff, dropout=0.1): super().__init__() self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x class EncoderLayer(nn.Module): """ Single encoder layer """ def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super().__init__() self.self_attn = MultiHeadAttention(d_model, num_heads, dropout) self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) def forward(self, x, mask=None): # Self attention attn_output = self.self_attn(x, x, x, mask) x = x + self.dropout1(attn_output) x = self.norm1(x) # Feedforward ff_output = self.ffn(x) x = x + self.dropout2(ff_output) x = self.norm2(x) return x class DecoderLayer(nn.Module): """ Single decoder layer """ def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super().__init__() self.self_attn = MultiHeadAttention(d_model, num_heads, dropout) self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout) self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) def forward(self, x, enc_output, src_mask=None, tgt_mask=None): # Self attention attn_output = self.self_attn(x, x, x, tgt_mask) x = x + self.dropout1(attn_output) x = self.norm1(x) # Cross attention attn_output = self.cross_attn(x, enc_output, enc_output, src_mask) x = x + self.dropout2(attn_output) x = self.norm2(x) # Feedforward ff_output = self.ffn(x) x = x + self.dropout3(ff_output) x = self.norm3(x) return x class Transformer(nn.Module): """ Complete Transformer model """ def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8, num_layers=6, d_ff=2048, dropout=0.1, max_len=5000): super().__init__() self.encoder_embedding = nn.Embedding(src_vocab_size, d_model) self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model) self.pos_encoding = PositionalEncoding(d_model, dropout, max_len) self.encoder_layers = nn.ModuleList([ EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers) ]) self.decoder_layers = nn.ModuleList([ DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers) ]) self.fc_out = nn.Linear(d_model, tgt_vocab_size) self.dropout = nn.Dropout(dropout) def forward(self, src, tgt, src_mask=None, tgt_mask=None): # Encoder src_embedded = self.dropout(self.pos_encoding(self.encoder_embedding(src))) enc_output = src_embedded for layer in self.encoder_layers: enc_output = layer(enc_output, src_mask) # Decoder tgt_embedded = self.dropout(self.pos_encoding(self.decoder_embedding(tgt))) dec_output = tgt_embedded for layer in self.decoder_layers: dec_output = layer(dec_output, enc_output, src_mask, tgt_mask) output = self.fc_out(dec_output) return output class CodeDataset(Dataset): """ Dataset for code sequences """ def __init__(self, sequences, max_len): self.sequences = sequences self.max_len = max_len def __len__(self): return len(self.sequences) def __getitem__(self, idx): seq = self.sequences[idx] # Pad sequences to max_len padded = np.zeros(self.max_len, dtype=np.int64) length = min(len(seq), self.max_len) padded[:length] = seq[:length] return torch.tensor(padded, dtype=torch.long) def create_masks(src, tgt, pad_idx): """ Create masks for source and target sequences """ src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2) tgt_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2) seq_len = tgt.size(1) nopeak_mask = (1 - torch.triu(torch.ones(1, seq_len, seq_len), diagonal=1)).bool() tgt_mask = tgt_mask & nopeak_mask.to(device) return src_mask, tgt_mask def train_model(model, dataloader, optimizer, criterion, epochs, pad_idx): """ Training loop for the transformer model """ model.train() for epoch in range(epochs): total_loss = 0 for src, tgt in dataloader: src, tgt = src.to(device), tgt.to(device) # Create masks src_mask, tgt_mask = create_masks(src, tgt, pad_idx) # Forward pass optimizer.zero_grad() output = model(src, tgt[:, :-1], src_mask, tgt_mask[:, :-1, :-1]) # Calculate loss output_dim = output.shape[-1] output = output.contiguous().view(-1, output_dim) tgt = tgt[:, 1:].contiguous().view(-1) loss = criterion(output, tgt) # Backward pass loss.backward() optimizer.step() total_loss += loss.item() print(f'Epoch: {epoch+1}, Loss: {total_loss / len(dataloader)}') def generate_code(model, src, max_len, start_symbol, end_symbol, pad_idx): """ Generate code sequence using the trained model """ model.eval() src = src.to(device) src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2).to(device) memory = model.encode(src, src_mask) ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device) for i in range(max_len-1): tgt_mask = (torch.triu(torch.ones(1, ys.size(1), ys.size(1))) == 0).transpose(0, 1) tgt_mask = tgt_mask.float().masked_fill(tgt_mask == 0, float('-inf')).masked_fill(tgt_mask == 1, float(0.0)) out = model.decode(ys, memory, src_mask, tgt_mask) prob = model.fc_out(out[:, -1]) _, next_word = torch.max(prob, dim=1) next_word = next_word.item() ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1) if next_word == end_symbol: break return ys # Configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") # Hyperparameters VOCAB_SIZE = 10000 # Should be adjusted based on your actual vocabulary D_MODEL = 512 NUM_HEADS = 8 NUM_LAYERS = 6 D_FF = 2048 DROPOUT = 0.1 BATCH_SIZE = 32 EPOCHS = 10 MAX_LEN = 100 LEARNING_RATE = 0.0001 PAD_IDX = 0 # Assuming 0 is the padding index # Sample data - in practice you would load your code dataset here # For demonstration, we'll create some dummy data sample_data = [np.random.randint(1, VOCAB_SIZE, size=np.random.randint(10, MAX_LEN)) for _ in range(1000)] dataset = CodeDataset(sample_data, MAX_LEN) dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) # Initialize model model = Transformer( src_vocab_size=VOCAB_SIZE, tgt_vocab_size=VOCAB_SIZE, d_model=D_MODEL, num_heads=NUM_HEADS, num_layers=NUM_LAYERS, d_ff=D_FF, dropout=DROPOUT, max_len=MAX_LEN ).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX) optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # Train the model train_model(model, dataloader, optimizer, criterion, EPOCHS, PAD_IDX) # Example of generating code start_symbol = 1 # Assuming 1 is the start token end_symbol = 2 # Assuming 2 is the end token sample_input = torch.tensor([sample_data[0][:10]], dtype=torch.long) # First 10 tokens of first sample generated_code = generate_code(model, sample_input, MAX_LEN, start_symbol, end_symbol, PAD_IDX) print("Generated code sequence:", generated_code)