Create Large_Action_Model_Transformer.py
Browse files
Large_Action_Model_Transformer.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class PositionalEncoding(nn.Module):
|
9 |
+
"""
|
10 |
+
Positional Encoding for Transformer models
|
11 |
+
"""
|
12 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
13 |
+
super(PositionalEncoding, self).__init__()
|
14 |
+
self.dropout = nn.Dropout(p=dropout)
|
15 |
+
|
16 |
+
position = torch.arange(max_len).unsqueeze(1)
|
17 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
18 |
+
pe = torch.zeros(max_len, 1, d_model)
|
19 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
20 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
21 |
+
self.register_buffer('pe', pe)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
"""
|
25 |
+
Args:
|
26 |
+
x: Tensor, shape [seq_len, batch_size, embedding_dim]
|
27 |
+
"""
|
28 |
+
x = x + self.pe[:x.size(0)]
|
29 |
+
return self.dropout(x)
|
30 |
+
|
31 |
+
class MultiHeadAttention(nn.Module):
|
32 |
+
"""
|
33 |
+
Multi-head attention mechanism
|
34 |
+
"""
|
35 |
+
def __init__(self, d_model, num_heads, dropout=0.1):
|
36 |
+
super().__init__()
|
37 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
38 |
+
|
39 |
+
self.d_model = d_model
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.d_k = d_model // num_heads
|
42 |
+
|
43 |
+
self.w_q = nn.Linear(d_model, d_model)
|
44 |
+
self.w_k = nn.Linear(d_model, d_model)
|
45 |
+
self.w_v = nn.Linear(d_model, d_model)
|
46 |
+
self.w_o = nn.Linear(d_model, d_model)
|
47 |
+
|
48 |
+
self.dropout = nn.Dropout(dropout)
|
49 |
+
self.scale = torch.sqrt(torch.FloatTensor([self.d_k])).to(device)
|
50 |
+
|
51 |
+
def forward(self, q, k, v, mask=None):
|
52 |
+
batch_size = q.size(0)
|
53 |
+
|
54 |
+
# Linear projections
|
55 |
+
q = self.w_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
56 |
+
k = self.w_k(k).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
57 |
+
v = self.w_v(v).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
58 |
+
|
59 |
+
# Scaled dot-product attention
|
60 |
+
attn = torch.matmul(q, k.transpose(-2, -1)) / self.scale
|
61 |
+
|
62 |
+
if mask is not None:
|
63 |
+
attn = attn.masked_fill(mask == 0, -1e10)
|
64 |
+
|
65 |
+
attn = F.softmax(attn, dim=-1)
|
66 |
+
attn = self.dropout(attn)
|
67 |
+
|
68 |
+
output = torch.matmul(attn, v)
|
69 |
+
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
|
70 |
+
output = self.w_o(output)
|
71 |
+
|
72 |
+
return output
|
73 |
+
|
74 |
+
class PositionwiseFeedforward(nn.Module):
|
75 |
+
"""
|
76 |
+
Position-wise feedforward network
|
77 |
+
"""
|
78 |
+
def __init__(self, d_model, d_ff, dropout=0.1):
|
79 |
+
super().__init__()
|
80 |
+
self.fc1 = nn.Linear(d_model, d_ff)
|
81 |
+
self.fc2 = nn.Linear(d_ff, d_model)
|
82 |
+
self.dropout = nn.Dropout(dropout)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
x = F.relu(self.fc1(x))
|
86 |
+
x = self.dropout(x)
|
87 |
+
x = self.fc2(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
class EncoderLayer(nn.Module):
|
91 |
+
"""
|
92 |
+
Single encoder layer
|
93 |
+
"""
|
94 |
+
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
|
95 |
+
super().__init__()
|
96 |
+
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
97 |
+
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
|
98 |
+
self.norm1 = nn.LayerNorm(d_model)
|
99 |
+
self.norm2 = nn.LayerNorm(d_model)
|
100 |
+
self.dropout1 = nn.Dropout(dropout)
|
101 |
+
self.dropout2 = nn.Dropout(dropout)
|
102 |
+
|
103 |
+
def forward(self, x, mask=None):
|
104 |
+
# Self attention
|
105 |
+
attn_output = self.self_attn(x, x, x, mask)
|
106 |
+
x = x + self.dropout1(attn_output)
|
107 |
+
x = self.norm1(x)
|
108 |
+
|
109 |
+
# Feedforward
|
110 |
+
ff_output = self.ffn(x)
|
111 |
+
x = x + self.dropout2(ff_output)
|
112 |
+
x = self.norm2(x)
|
113 |
+
|
114 |
+
return x
|
115 |
+
|
116 |
+
class DecoderLayer(nn.Module):
|
117 |
+
"""
|
118 |
+
Single decoder layer
|
119 |
+
"""
|
120 |
+
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
|
121 |
+
super().__init__()
|
122 |
+
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
123 |
+
self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
|
124 |
+
self.ffn = PositionwiseFeedforward(d_model, d_ff, dropout)
|
125 |
+
self.norm1 = nn.LayerNorm(d_model)
|
126 |
+
self.norm2 = nn.LayerNorm(d_model)
|
127 |
+
self.norm3 = nn.LayerNorm(d_model)
|
128 |
+
self.dropout1 = nn.Dropout(dropout)
|
129 |
+
self.dropout2 = nn.Dropout(dropout)
|
130 |
+
self.dropout3 = nn.Dropout(dropout)
|
131 |
+
|
132 |
+
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
|
133 |
+
# Self attention
|
134 |
+
attn_output = self.self_attn(x, x, x, tgt_mask)
|
135 |
+
x = x + self.dropout1(attn_output)
|
136 |
+
x = self.norm1(x)
|
137 |
+
|
138 |
+
# Cross attention
|
139 |
+
attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
|
140 |
+
x = x + self.dropout2(attn_output)
|
141 |
+
x = self.norm2(x)
|
142 |
+
|
143 |
+
# Feedforward
|
144 |
+
ff_output = self.ffn(x)
|
145 |
+
x = x + self.dropout3(ff_output)
|
146 |
+
x = self.norm3(x)
|
147 |
+
|
148 |
+
return x
|
149 |
+
|
150 |
+
class Transformer(nn.Module):
|
151 |
+
"""
|
152 |
+
Complete Transformer model
|
153 |
+
"""
|
154 |
+
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8,
|
155 |
+
num_layers=6, d_ff=2048, dropout=0.1, max_len=5000):
|
156 |
+
super().__init__()
|
157 |
+
self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
|
158 |
+
self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
|
159 |
+
self.pos_encoding = PositionalEncoding(d_model, dropout, max_len)
|
160 |
+
|
161 |
+
self.encoder_layers = nn.ModuleList([
|
162 |
+
EncoderLayer(d_model, num_heads, d_ff, dropout)
|
163 |
+
for _ in range(num_layers)
|
164 |
+
])
|
165 |
+
|
166 |
+
self.decoder_layers = nn.ModuleList([
|
167 |
+
DecoderLayer(d_model, num_heads, d_ff, dropout)
|
168 |
+
for _ in range(num_layers)
|
169 |
+
])
|
170 |
+
|
171 |
+
self.fc_out = nn.Linear(d_model, tgt_vocab_size)
|
172 |
+
self.dropout = nn.Dropout(dropout)
|
173 |
+
|
174 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
|
175 |
+
# Encoder
|
176 |
+
src_embedded = self.dropout(self.pos_encoding(self.encoder_embedding(src)))
|
177 |
+
enc_output = src_embedded
|
178 |
+
for layer in self.encoder_layers:
|
179 |
+
enc_output = layer(enc_output, src_mask)
|
180 |
+
|
181 |
+
# Decoder
|
182 |
+
tgt_embedded = self.dropout(self.pos_encoding(self.decoder_embedding(tgt)))
|
183 |
+
dec_output = tgt_embedded
|
184 |
+
for layer in self.decoder_layers:
|
185 |
+
dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
|
186 |
+
|
187 |
+
output = self.fc_out(dec_output)
|
188 |
+
return output
|
189 |
+
|
190 |
+
class CodeDataset(Dataset):
|
191 |
+
"""
|
192 |
+
Dataset for code sequences
|
193 |
+
"""
|
194 |
+
def __init__(self, sequences, max_len):
|
195 |
+
self.sequences = sequences
|
196 |
+
self.max_len = max_len
|
197 |
+
|
198 |
+
def __len__(self):
|
199 |
+
return len(self.sequences)
|
200 |
+
|
201 |
+
def __getitem__(self, idx):
|
202 |
+
seq = self.sequences[idx]
|
203 |
+
# Pad sequences to max_len
|
204 |
+
padded = np.zeros(self.max_len, dtype=np.int64)
|
205 |
+
length = min(len(seq), self.max_len)
|
206 |
+
padded[:length] = seq[:length]
|
207 |
+
return torch.tensor(padded, dtype=torch.long)
|
208 |
+
|
209 |
+
def create_masks(src, tgt, pad_idx):
|
210 |
+
"""
|
211 |
+
Create masks for source and target sequences
|
212 |
+
"""
|
213 |
+
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
|
214 |
+
|
215 |
+
tgt_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
|
216 |
+
seq_len = tgt.size(1)
|
217 |
+
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_len, seq_len), diagonal=1)).bool()
|
218 |
+
tgt_mask = tgt_mask & nopeak_mask.to(device)
|
219 |
+
|
220 |
+
return src_mask, tgt_mask
|
221 |
+
|
222 |
+
def train_model(model, dataloader, optimizer, criterion, epochs, pad_idx):
|
223 |
+
"""
|
224 |
+
Training loop for the transformer model
|
225 |
+
"""
|
226 |
+
model.train()
|
227 |
+
|
228 |
+
for epoch in range(epochs):
|
229 |
+
total_loss = 0
|
230 |
+
for src, tgt in dataloader:
|
231 |
+
src, tgt = src.to(device), tgt.to(device)
|
232 |
+
|
233 |
+
# Create masks
|
234 |
+
src_mask, tgt_mask = create_masks(src, tgt, pad_idx)
|
235 |
+
|
236 |
+
# Forward pass
|
237 |
+
optimizer.zero_grad()
|
238 |
+
output = model(src, tgt[:, :-1], src_mask, tgt_mask[:, :-1, :-1])
|
239 |
+
|
240 |
+
# Calculate loss
|
241 |
+
output_dim = output.shape[-1]
|
242 |
+
output = output.contiguous().view(-1, output_dim)
|
243 |
+
tgt = tgt[:, 1:].contiguous().view(-1)
|
244 |
+
|
245 |
+
loss = criterion(output, tgt)
|
246 |
+
|
247 |
+
# Backward pass
|
248 |
+
loss.backward()
|
249 |
+
optimizer.step()
|
250 |
+
|
251 |
+
total_loss += loss.item()
|
252 |
+
|
253 |
+
print(f'Epoch: {epoch+1}, Loss: {total_loss / len(dataloader)}')
|
254 |
+
|
255 |
+
def generate_code(model, src, max_len, start_symbol, end_symbol, pad_idx):
|
256 |
+
"""
|
257 |
+
Generate code sequence using the trained model
|
258 |
+
"""
|
259 |
+
model.eval()
|
260 |
+
src = src.to(device)
|
261 |
+
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2).to(device)
|
262 |
+
|
263 |
+
memory = model.encode(src, src_mask)
|
264 |
+
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device)
|
265 |
+
|
266 |
+
for i in range(max_len-1):
|
267 |
+
tgt_mask = (torch.triu(torch.ones(1, ys.size(1), ys.size(1))) == 0).transpose(0, 1)
|
268 |
+
tgt_mask = tgt_mask.float().masked_fill(tgt_mask == 0, float('-inf')).masked_fill(tgt_mask == 1, float(0.0))
|
269 |
+
|
270 |
+
out = model.decode(ys, memory, src_mask, tgt_mask)
|
271 |
+
prob = model.fc_out(out[:, -1])
|
272 |
+
_, next_word = torch.max(prob, dim=1)
|
273 |
+
next_word = next_word.item()
|
274 |
+
|
275 |
+
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
|
276 |
+
|
277 |
+
if next_word == end_symbol:
|
278 |
+
break
|
279 |
+
|
280 |
+
return ys
|
281 |
+
|
282 |
+
# Configuration
|
283 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
284 |
+
print(f"Using device: {device}")
|
285 |
+
|
286 |
+
# Hyperparameters
|
287 |
+
VOCAB_SIZE = 10000 # Should be adjusted based on your actual vocabulary
|
288 |
+
D_MODEL = 512
|
289 |
+
NUM_HEADS = 8
|
290 |
+
NUM_LAYERS = 6
|
291 |
+
D_FF = 2048
|
292 |
+
DROPOUT = 0.1
|
293 |
+
BATCH_SIZE = 32
|
294 |
+
EPOCHS = 10
|
295 |
+
MAX_LEN = 100
|
296 |
+
LEARNING_RATE = 0.0001
|
297 |
+
PAD_IDX = 0 # Assuming 0 is the padding index
|
298 |
+
|
299 |
+
# Sample data - in practice you would load your code dataset here
|
300 |
+
# For demonstration, we'll create some dummy data
|
301 |
+
sample_data = [np.random.randint(1, VOCAB_SIZE, size=np.random.randint(10, MAX_LEN)) for _ in range(1000)]
|
302 |
+
dataset = CodeDataset(sample_data, MAX_LEN)
|
303 |
+
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
304 |
+
|
305 |
+
# Initialize model
|
306 |
+
model = Transformer(
|
307 |
+
src_vocab_size=VOCAB_SIZE,
|
308 |
+
tgt_vocab_size=VOCAB_SIZE,
|
309 |
+
d_model=D_MODEL,
|
310 |
+
num_heads=NUM_HEADS,
|
311 |
+
num_layers=NUM_LAYERS,
|
312 |
+
d_ff=D_FF,
|
313 |
+
dropout=DROPOUT,
|
314 |
+
max_len=MAX_LEN
|
315 |
+
).to(device)
|
316 |
+
|
317 |
+
# Loss and optimizer
|
318 |
+
criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
|
319 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
320 |
+
|
321 |
+
# Train the model
|
322 |
+
train_model(model, dataloader, optimizer, criterion, EPOCHS, PAD_IDX)
|
323 |
+
|
324 |
+
# Example of generating code
|
325 |
+
start_symbol = 1 # Assuming 1 is the start token
|
326 |
+
end_symbol = 2 # Assuming 2 is the end token
|
327 |
+
sample_input = torch.tensor([sample_data[0][:10]], dtype=torch.long) # First 10 tokens of first sample
|
328 |
+
generated_code = generate_code(model, sample_input, MAX_LEN, start_symbol, end_symbol, PAD_IDX)
|
329 |
+
print("Generated code sequence:", generated_code)
|