|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- openai/gpt-oss-120b |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b). |
|
|
|
Note: This model used quantized MXFP4 FFN. `pip install -U triton git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels` |
|
|
|
### Example usage: |
|
|
|
- vLLM |
|
|
|
```bash |
|
vllm serve tiny-random/gpt-oss-mxfp4 |
|
``` |
|
|
|
- Transformers |
|
|
|
```python |
|
import torch |
|
from transformers import pipeline |
|
|
|
model_id = "tiny-random/gpt-oss-mxfp4" |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model_id, |
|
torch_dtype='auto', |
|
device_map="cuda", |
|
) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, |
|
] |
|
|
|
outputs = pipe( |
|
messages, |
|
max_new_tokens=16, |
|
) |
|
print(outputs[0]["generated_text"][-1]) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
|
|
import safetensors |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
GptOssForCausalLM, |
|
pipeline, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "openai/gpt-oss-120b" |
|
save_folder = "/tmp/tiny-random/gpt-oss-mxfp4" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f: |
|
config_json = json.load(f) |
|
config_json.update({ |
|
"head_dim": 32, |
|
"hidden_size": 32, # required by Mxfp4GptOssExperts codes |
|
"intermediate_size": 64, |
|
"layer_types": ["sliding_attention", "full_attention"], |
|
"num_attention_heads": 2, |
|
"num_hidden_layers": 2, |
|
"num_key_value_heads": 1, |
|
"num_local_experts": 32, |
|
"tie_word_embeddings": True, |
|
}) |
|
quantization_config = config_json['quantization_config'] |
|
del config_json['quantization_config'] |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained(save_folder) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) |
|
torch.set_default_dtype(torch.float32) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.1) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
|
|
# mxfp4 |
|
state_dict = model.cpu().state_dict() |
|
del state_dict['lm_head.weight'] |
|
for i in range(len(model.model.layers)): |
|
del state_dict[f'model.layers.{i}.mlp.experts.down_proj'] |
|
del state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj'] |
|
state_dict[f'model.layers.{i}.mlp.experts.down_proj_blocks'] = torch.randint(0, 255, size=( |
|
config.num_local_experts, config.hidden_size, config.intermediate_size // 32, 16), dtype=torch.uint8 |
|
) |
|
state_dict[f'model.layers.{i}.mlp.experts.down_proj_scales'] = torch.randint(0, 4, size=( |
|
config.num_local_experts, config.hidden_size, config.intermediate_size // 32), dtype=torch.uint8 |
|
) |
|
state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_blocks'] = torch.randint(0, 255, size=( |
|
config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32, 16), dtype=torch.uint8 |
|
) |
|
state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_scales'] = torch.randint(0, 4, size=( |
|
config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32), dtype=torch.uint8 |
|
) |
|
safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors") |
|
|
|
# from unittest.mock import Mock |
|
# from transformers.quantizers.auto import AutoHfQuantizer |
|
# from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer |
|
# _get_device_capability = torch.cuda.get_device_capability |
|
# torch.cuda.get_device_capability = Mock(return_value=(9, 0)) |
|
# set_seed(42) |
|
# bf16_state_dict = model.cpu().state_dict() |
|
# model = AutoModelForCausalLM.from_pretrained(save_folder, torch_dtype=torch.bfloat16, quantization_config=quantization_config) |
|
# for i in range(len(model.model.layers)): |
|
# model.model.layers[i].mlp.experts.down_proj_bottom_pad = 0 |
|
# model.model.layers[i].mlp.experts.down_proj_right_pad = 0 |
|
# hf_quantizer: Mxfp4HfQuantizer = AutoHfQuantizer.from_config(quantization_config) |
|
# hf_quantizer.pre_quantized = False |
|
# ffn_keys = ['model.layers.0.mlp.experts.down_proj', 'model.layers.0.mlp.experts.gate_up_proj', |
|
# 'model.layers.1.mlp.experts.down_proj', 'model.layers.1.mlp.experts.gate_up_proj'] |
|
# for key in ffn_keys: |
|
# hf_quantizer.create_quantized_param(model, bf16_state_dict[key], key, "cuda", bf16_state_dict) |
|
# print('down_proj', model.model.layers[0].mlp.experts.down_proj) |
|
# print('down_proj_blocks', model.model.layers[0].mlp.experts.down_proj_blocks) |
|
# state_dict = model.state_dict() |
|
# del state_dict['lm_head.weight'] |
|
# for key in ffn_keys: |
|
# del state_dict[key] |
|
# for k, v in state_dict.items(): |
|
# if str(v.device) == 'meta': |
|
# print(k, v.device, v.shape) |
|
|
|
# safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors") |
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config = json.load(f) |
|
config['quantization_config'] = quantization_config |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config, f, indent=2) |
|
# torch.cuda.get_device_capability = _get_device_capability |
|
``` |