File size: 5,726 Bytes
27b6ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- openai/gpt-oss-120b
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b).
Note: This model used quantized MXFP4 FFN. `pip install -U triton git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels`
### Example usage:
- vLLM
```bash
vllm serve tiny-random/gpt-oss-mxfp4
```
- Transformers
```python
import torch
from transformers import pipeline
model_id = "tiny-random/gpt-oss-mxfp4"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype='auto',
device_map="cuda",
)
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = pipe(
messages,
max_new_tokens=16,
)
print(outputs[0]["generated_text"][-1])
```
### Codes to create this repo:
```python
import json
import safetensors
import torch
from huggingface_hub import hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
GptOssForCausalLM,
pipeline,
set_seed,
)
source_model_id = "openai/gpt-oss-120b"
save_folder = "/tmp/tiny-random/gpt-oss-mxfp4"
processor = AutoProcessor.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f:
config_json = json.load(f)
config_json.update({
"head_dim": 32,
"hidden_size": 32, # required by Mxfp4GptOssExperts codes
"intermediate_size": 64,
"layer_types": ["sliding_attention", "full_attention"],
"num_attention_heads": 2,
"num_hidden_layers": 2,
"num_key_value_heads": 1,
"num_local_experts": 32,
"tie_word_embeddings": True,
})
quantization_config = config_json['quantization_config']
del config_json['quantization_config']
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(save_folder)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
# mxfp4
state_dict = model.cpu().state_dict()
del state_dict['lm_head.weight']
for i in range(len(model.model.layers)):
del state_dict[f'model.layers.{i}.mlp.experts.down_proj']
del state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj']
state_dict[f'model.layers.{i}.mlp.experts.down_proj_blocks'] = torch.randint(0, 255, size=(
config.num_local_experts, config.hidden_size, config.intermediate_size // 32, 16), dtype=torch.uint8
)
state_dict[f'model.layers.{i}.mlp.experts.down_proj_scales'] = torch.randint(0, 4, size=(
config.num_local_experts, config.hidden_size, config.intermediate_size // 32), dtype=torch.uint8
)
state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_blocks'] = torch.randint(0, 255, size=(
config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32, 16), dtype=torch.uint8
)
state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_scales'] = torch.randint(0, 4, size=(
config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32), dtype=torch.uint8
)
safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors")
# from unittest.mock import Mock
# from transformers.quantizers.auto import AutoHfQuantizer
# from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer
# _get_device_capability = torch.cuda.get_device_capability
# torch.cuda.get_device_capability = Mock(return_value=(9, 0))
# set_seed(42)
# bf16_state_dict = model.cpu().state_dict()
# model = AutoModelForCausalLM.from_pretrained(save_folder, torch_dtype=torch.bfloat16, quantization_config=quantization_config)
# for i in range(len(model.model.layers)):
# model.model.layers[i].mlp.experts.down_proj_bottom_pad = 0
# model.model.layers[i].mlp.experts.down_proj_right_pad = 0
# hf_quantizer: Mxfp4HfQuantizer = AutoHfQuantizer.from_config(quantization_config)
# hf_quantizer.pre_quantized = False
# ffn_keys = ['model.layers.0.mlp.experts.down_proj', 'model.layers.0.mlp.experts.gate_up_proj',
# 'model.layers.1.mlp.experts.down_proj', 'model.layers.1.mlp.experts.gate_up_proj']
# for key in ffn_keys:
# hf_quantizer.create_quantized_param(model, bf16_state_dict[key], key, "cuda", bf16_state_dict)
# print('down_proj', model.model.layers[0].mlp.experts.down_proj)
# print('down_proj_blocks', model.model.layers[0].mlp.experts.down_proj_blocks)
# state_dict = model.state_dict()
# del state_dict['lm_head.weight']
# for key in ffn_keys:
# del state_dict[key]
# for k, v in state_dict.items():
# if str(v.device) == 'meta':
# print(k, v.device, v.shape)
# safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors")
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
config = json.load(f)
config['quantization_config'] = quantization_config
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config, f, indent=2)
# torch.cuda.get_device_capability = _get_device_capability
``` |