File size: 5,726 Bytes
27b6ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- openai/gpt-oss-120b
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b).

Note: This model used quantized MXFP4 FFN. `pip install -U triton git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels`

### Example usage:

- vLLM

```bash
vllm serve tiny-random/gpt-oss-mxfp4
```

- Transformers

```python
import torch
from transformers import pipeline

model_id = "tiny-random/gpt-oss-mxfp4"

pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype='auto',
    device_map="cuda",
)

messages = [
    {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]

outputs = pipe(
    messages,
    max_new_tokens=16,
)
print(outputs[0]["generated_text"][-1])
```

### Codes to create this repo:

```python
import json

import safetensors
import torch
from huggingface_hub import hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
    GenerationConfig,
    GptOssForCausalLM,
    pipeline,
    set_seed,
)

source_model_id = "openai/gpt-oss-120b"
save_folder = "/tmp/tiny-random/gpt-oss-mxfp4"

processor = AutoProcessor.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f:
    config_json = json.load(f)
config_json.update({
    "head_dim": 32,
    "hidden_size": 32,  # required by Mxfp4GptOssExperts codes
    "intermediate_size": 64,
    "layer_types": ["sliding_attention", "full_attention"],
    "num_attention_heads": 2,
    "num_hidden_layers": 2,
    "num_key_value_heads": 1,
    "num_local_experts": 32,
    "tie_word_embeddings": True,
})
quantization_config = config_json['quantization_config']
del config_json['quantization_config']
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(save_folder)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)

# mxfp4
state_dict = model.cpu().state_dict()
del state_dict['lm_head.weight']
for i in range(len(model.model.layers)):
    del state_dict[f'model.layers.{i}.mlp.experts.down_proj']
    del state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj']
    state_dict[f'model.layers.{i}.mlp.experts.down_proj_blocks'] = torch.randint(0, 255, size=(
        config.num_local_experts, config.hidden_size, config.intermediate_size // 32, 16), dtype=torch.uint8
    )
    state_dict[f'model.layers.{i}.mlp.experts.down_proj_scales'] = torch.randint(0, 4, size=(
        config.num_local_experts, config.hidden_size, config.intermediate_size // 32), dtype=torch.uint8
    )
    state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_blocks'] = torch.randint(0, 255, size=(
        config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32, 16), dtype=torch.uint8
    )
    state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_scales'] = torch.randint(0, 4, size=(
        config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32), dtype=torch.uint8
    )
safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors")

# from unittest.mock import Mock
# from transformers.quantizers.auto import AutoHfQuantizer
# from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer
# _get_device_capability = torch.cuda.get_device_capability
# torch.cuda.get_device_capability = Mock(return_value=(9, 0))
# set_seed(42)
# bf16_state_dict = model.cpu().state_dict()
# model = AutoModelForCausalLM.from_pretrained(save_folder, torch_dtype=torch.bfloat16, quantization_config=quantization_config)
# for i in range(len(model.model.layers)):
#     model.model.layers[i].mlp.experts.down_proj_bottom_pad = 0
#     model.model.layers[i].mlp.experts.down_proj_right_pad = 0
# hf_quantizer: Mxfp4HfQuantizer = AutoHfQuantizer.from_config(quantization_config)
# hf_quantizer.pre_quantized = False
# ffn_keys = ['model.layers.0.mlp.experts.down_proj', 'model.layers.0.mlp.experts.gate_up_proj',
#             'model.layers.1.mlp.experts.down_proj', 'model.layers.1.mlp.experts.gate_up_proj']
# for key in ffn_keys:
#     hf_quantizer.create_quantized_param(model, bf16_state_dict[key], key, "cuda", bf16_state_dict)
# print('down_proj', model.model.layers[0].mlp.experts.down_proj)
# print('down_proj_blocks', model.model.layers[0].mlp.experts.down_proj_blocks)
# state_dict = model.state_dict()
# del state_dict['lm_head.weight']
# for key in ffn_keys:
#     del state_dict[key]
# for k, v in state_dict.items():
#     if str(v.device) == 'meta':
#         print(k, v.device, v.shape)

# safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors")
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
    config = json.load(f)
config['quantization_config'] = quantization_config
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config, f, indent=2)
# torch.cuda.get_device_capability = _get_device_capability
```