langcache-embed-v3 / README.md
radoslavralev's picture
Add new SentenceTransformer model
8cd0c70 verified
|
raw
history blame
36.6 kB
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:483820
- loss:MultipleNegativesSymmetricRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
set of periods 4600 -- 541 MYA .'
sentences:
- In 2014 election , Biju Janata Dal candidate Tathagat Satapathy Bharatiya Janata
party candidate Rudra Narayan Pany defeated with a margin of 1.37,340 votes .
- In Scotland , the Strathclyde Partnership for Transport , formerly known as Strathclyde
Passenger Transport Executive , comprises the former Strathclyde region , which
includes the urban area around Glasgow .
- 'See Precambrian Time Scale # Proposed Geological Timeline for another set of
periods of 4600 -- 541 MYA .'
- source_sentence: It is also 5 kilometers northeast of Tamaqua , 27 miles south of
Allentown and 9 miles northwest of Hazleton .
sentences:
- In 1948 he moved to Massachusetts , and eventually settled in Vermont .
- Suddenly I remembered that I was a New Zealander , I caught the first plane home
and came back .
- It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown , and 9
miles northwest of Hazleton .
- source_sentence: The party has a Member of Parliament , a member of the House of
Lords , three members of the London Assembly and two Members of the European Parliament
.
sentences:
- The party has one Member of Parliament , one member of the House of Lords , three
Members of the London Assembly and two Members of the European Parliament .
- Grapsid crabs dominate in Australia , Malaysia and Panama , while gastropods Cerithidea
scalariformis and Melampus coeffeus are important seed predators in Florida mangroves
.
- Music Story is a music service website and international music data provider that
curates , aggregates and analyses metadata for digital music services .
- source_sentence: 'The play received two 1969 Tony Award nominations : Best Actress
in a Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
sentences:
- Ravishanker is a fellow of the International Statistical Institute and an elected
member of the American Statistical Association .
- 'In 1969 , the play received two Tony - Award nominations : Best Actress in a
Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
- AMD and Nvidia both have proprietary methods of scaling , CrossFireX for AMD ,
and SLI for Nvidia .
- source_sentence: He was a close friend of Ángel Cabrera and is a cousin of golfer
Tony Croatto .
sentences:
- He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto
.
- Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian Roman
Catholic priest , and Bishop of Šiauliai .
- UWIRE also distributes its members content to professional media outlets , including
Yahoo , CNN and CBS News .
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: train
type: train
metrics:
- type: cosine_accuracy@1
value: 0.5978783286425633
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5978783286425633
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5765917883925028
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.7905393533594786
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5978783286425633
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7375956597574003
name: Cosine Map@100
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9922, 0.0547],
# [0.9922, 1.0000, 0.0449],
# [0.0547, 0.0449, 1.0000]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `train`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy@1 | 0.5979 |
| cosine_precision@1 | 0.5979 |
| cosine_recall@1 | 0.5766 |
| **cosine_ndcg@10** | **0.7905** |
| cosine_mrr@1 | 0.5979 |
| cosine_map@100 | 0.7376 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 0.0003
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_steps`: 200000
- `warmup_steps`: 1000
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/langcache-embed-v3
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0003
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 200000
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 1000
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/langcache-embed-v3
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | train_cosine_ndcg@10 |
|:-----------:|:---------:|:-------------:|:---------------:|:--------------------:|
| -1 | -1 | - | - | 0.7522 |
| 0.5291 | 1000 | 0.0231 | 0.1710 | 0.7518 |
| 1.0582 | 2000 | 0.0147 | 0.1552 | 0.7593 |
| 1.5873 | 3000 | 0.0126 | 0.1616 | 0.7603 |
| 2.1164 | 4000 | 0.0113 | 0.1301 | 0.7644 |
| 2.6455 | 5000 | 0.0119 | 0.1276 | 0.7659 |
| 3.1746 | 6000 | 0.0099 | 0.1270 | 0.7648 |
| 3.7037 | 7000 | 0.0101 | 0.1239 | 0.7676 |
| 4.2328 | 8000 | 0.0093 | 0.1267 | 0.7709 |
| 4.7619 | 9000 | 0.0092 | 0.1190 | 0.7711 |
| 5.2910 | 10000 | 0.0088 | 0.1145 | 0.7735 |
| 5.8201 | 11000 | 0.009 | 0.1172 | 0.7735 |
| 6.3492 | 12000 | 0.0083 | 0.1144 | 0.7749 |
| 6.8783 | 13000 | 0.0088 | 0.1140 | 0.7736 |
| 7.4074 | 14000 | 0.0083 | 0.1134 | 0.7751 |
| 7.9365 | 15000 | 0.0087 | 0.1108 | 0.7742 |
| 8.4656 | 16000 | 0.0084 | 0.1119 | 0.7759 |
| 8.9947 | 17000 | 0.0081 | 0.1125 | 0.7762 |
| 9.5238 | 18000 | 0.0081 | 0.1134 | 0.7768 |
| 10.0529 | 19000 | 0.008 | 0.1126 | 0.7766 |
| 10.5820 | 20000 | 0.0079 | 0.1119 | 0.7755 |
| 11.1111 | 21000 | 0.0078 | 0.1112 | 0.7781 |
| 11.6402 | 22000 | 0.008 | 0.1113 | 0.7778 |
| 12.1693 | 23000 | 0.0082 | 0.1066 | 0.7796 |
| 12.6984 | 24000 | 0.0078 | 0.1098 | 0.7775 |
| 13.2275 | 25000 | 0.0078 | 0.1089 | 0.7800 |
| 13.7566 | 26000 | 0.0074 | 0.1091 | 0.7779 |
| 14.2857 | 27000 | 0.0078 | 0.1061 | 0.7782 |
| 14.8148 | 28000 | 0.0074 | 0.1073 | 0.7769 |
| 15.3439 | 29000 | 0.0078 | 0.1022 | 0.7804 |
| 15.8730 | 30000 | 0.0078 | 0.1035 | 0.7799 |
| 16.4021 | 31000 | 0.0074 | 0.1046 | 0.7793 |
| 16.9312 | 32000 | 0.0074 | 0.1043 | 0.7817 |
| 17.4603 | 33000 | 0.0071 | 0.1056 | 0.7831 |
| 17.9894 | 34000 | 0.0074 | 0.1022 | 0.7820 |
| 18.5185 | 35000 | 0.0073 | 0.1035 | 0.7820 |
| 19.0476 | 36000 | 0.0074 | 0.1020 | 0.7836 |
| 19.5767 | 37000 | 0.0071 | 0.1036 | 0.7828 |
| 20.1058 | 38000 | 0.007 | 0.1029 | 0.7845 |
| 20.6349 | 39000 | 0.0071 | 0.1019 | 0.7835 |
| 21.1640 | 40000 | 0.007 | 0.0991 | 0.7849 |
| 21.6931 | 41000 | 0.0071 | 0.1013 | 0.7828 |
| 22.2222 | 42000 | 0.0073 | 0.1033 | 0.7833 |
| 22.7513 | 43000 | 0.0068 | 0.0996 | 0.7835 |
| 23.2804 | 44000 | 0.007 | 0.0976 | 0.7850 |
| 23.8095 | 45000 | 0.0069 | 0.0986 | 0.7840 |
| 24.3386 | 46000 | 0.0068 | 0.0992 | 0.7856 |
| 24.8677 | 47000 | 0.0068 | 0.0988 | 0.7838 |
| 25.3968 | 48000 | 0.0068 | 0.0980 | 0.7857 |
| 25.9259 | 49000 | 0.007 | 0.0976 | 0.7860 |
| 26.4550 | 50000 | 0.0071 | 0.0994 | 0.7850 |
| 26.9841 | 51000 | 0.0067 | 0.0984 | 0.7862 |
| 27.5132 | 52000 | 0.0064 | 0.0992 | 0.7845 |
| 28.0423 | 53000 | 0.0068 | 0.1021 | 0.7840 |
| 28.5714 | 54000 | 0.0066 | 0.0974 | 0.7863 |
| 29.1005 | 55000 | 0.0066 | 0.1001 | 0.7848 |
| 29.6296 | 56000 | 0.0067 | 0.0997 | 0.7848 |
| 30.1587 | 57000 | 0.0067 | 0.0965 | 0.7868 |
| 30.6878 | 58000 | 0.0067 | 0.0968 | 0.7858 |
| 31.2169 | 59000 | 0.0066 | 0.0973 | 0.7861 |
| 31.7460 | 60000 | 0.0067 | 0.0972 | 0.7865 |
| 32.2751 | 61000 | 0.0065 | 0.0991 | 0.7855 |
| 32.8042 | 62000 | 0.0062 | 0.0960 | 0.7871 |
| 33.3333 | 63000 | 0.0068 | 0.1006 | 0.7863 |
| 33.8624 | 64000 | 0.0063 | 0.0980 | 0.7872 |
| 34.3915 | 65000 | 0.0066 | 0.0957 | 0.7871 |
| 34.9206 | 66000 | 0.0066 | 0.0971 | 0.7870 |
| 35.4497 | 67000 | 0.0063 | 0.0982 | 0.7857 |
| 35.9788 | 68000 | 0.0067 | 0.0944 | 0.7871 |
| 36.5079 | 69000 | 0.0062 | 0.0961 | 0.7870 |
| 37.0370 | 70000 | 0.0061 | 0.0924 | 0.7880 |
| 37.5661 | 71000 | 0.0064 | 0.0928 | 0.7878 |
| 38.0952 | 72000 | 0.0065 | 0.0934 | 0.7888 |
| 38.6243 | 73000 | 0.0069 | 0.0948 | 0.7873 |
| **39.1534** | **74000** | **0.0064** | **0.0922** | **0.7885** |
| 39.6825 | 75000 | 0.0064 | 0.0937 | 0.7888 |
| 40.2116 | 76000 | 0.0059 | 0.0941 | 0.7882 |
| 40.7407 | 77000 | 0.0067 | 0.0934 | 0.7900 |
| 41.2698 | 78000 | 0.0064 | 0.0926 | 0.7888 |
| 41.7989 | 79000 | 0.006 | 0.0948 | 0.7880 |
| 42.3280 | 80000 | 0.006 | 0.0953 | 0.7876 |
| 42.8571 | 81000 | 0.0058 | 0.0955 | 0.7887 |
| 43.3862 | 82000 | 0.0065 | 0.0945 | 0.7875 |
| 43.9153 | 83000 | 0.0063 | 0.0928 | 0.7888 |
| 44.4444 | 84000 | 0.0065 | 0.0959 | 0.7883 |
| 44.9735 | 85000 | 0.0063 | 0.0956 | 0.7876 |
| 45.5026 | 86000 | 0.006 | 0.0946 | 0.7893 |
| 46.0317 | 87000 | 0.0062 | 0.0954 | 0.7908 |
| 46.5608 | 88000 | 0.0061 | 0.0960 | 0.7896 |
| 47.0899 | 89000 | 0.006 | 0.0953 | 0.7893 |
| 47.6190 | 90000 | 0.0058 | 0.0941 | 0.7899 |
| 48.1481 | 91000 | 0.0059 | 0.0950 | 0.7892 |
| 48.6772 | 92000 | 0.0066 | 0.0948 | 0.7890 |
| 49.2063 | 93000 | 0.0058 | 0.0947 | 0.7886 |
| 49.7354 | 94000 | 0.006 | 0.0952 | 0.7891 |
| 50.2646 | 95000 | 0.0058 | 0.0948 | 0.7885 |
| 50.7937 | 96000 | 0.0058 | 0.0945 | 0.7894 |
| 51.3228 | 97000 | 0.0059 | 0.0936 | 0.7901 |
| 51.8519 | 98000 | 0.0059 | 0.0950 | 0.7900 |
| 52.3810 | 99000 | 0.0058 | 0.0954 | 0.7893 |
| 52.9101 | 100000 | 0.0058 | 0.0946 | 0.7900 |
| 53.4392 | 101000 | 0.0056 | 0.0943 | 0.7900 |
| 53.9683 | 102000 | 0.006 | 0.0950 | 0.7895 |
| 54.4974 | 103000 | 0.0059 | 0.0937 | 0.7899 |
| 55.0265 | 104000 | 0.0061 | 0.0941 | 0.7897 |
| 55.5556 | 105000 | 0.0059 | 0.0941 | 0.7903 |
| 56.0847 | 106000 | 0.0057 | 0.0924 | 0.7904 |
| 56.6138 | 107000 | 0.006 | 0.0933 | 0.7901 |
| 57.1429 | 108000 | 0.0059 | 0.0948 | 0.7888 |
| 57.6720 | 109000 | 0.0061 | 0.0938 | 0.7899 |
| 58.2011 | 110000 | 0.0058 | 0.0942 | 0.7904 |
| 58.7302 | 111000 | 0.0056 | 0.0943 | 0.7913 |
| 59.2593 | 112000 | 0.0056 | 0.0949 | 0.7915 |
| 59.7884 | 113000 | 0.0058 | 0.0947 | 0.7907 |
| 60.3175 | 114000 | 0.0058 | 0.0939 | 0.7910 |
| 60.8466 | 115000 | 0.0058 | 0.0942 | 0.7906 |
| 61.3757 | 116000 | 0.0055 | 0.0933 | 0.7910 |
| 61.9048 | 117000 | 0.0055 | 0.0936 | 0.7913 |
| 62.4339 | 118000 | 0.0059 | 0.0937 | 0.7904 |
| 62.9630 | 119000 | 0.0057 | 0.0943 | 0.7908 |
| 63.4921 | 120000 | 0.0056 | 0.0934 | 0.7912 |
| 64.0212 | 121000 | 0.0058 | 0.0936 | 0.7909 |
| 64.5503 | 122000 | 0.0055 | 0.0942 | 0.7896 |
| 65.0794 | 123000 | 0.0058 | 0.0939 | 0.7901 |
| 65.6085 | 124000 | 0.0057 | 0.0936 | 0.7907 |
| 66.1376 | 125000 | 0.0054 | 0.0951 | 0.7901 |
| 66.6667 | 126000 | 0.0055 | 0.0942 | 0.7912 |
| 67.1958 | 127000 | 0.0057 | 0.0943 | 0.7914 |
| 67.7249 | 128000 | 0.0057 | 0.0937 | 0.7910 |
| 68.2540 | 129000 | 0.0057 | 0.0933 | 0.7918 |
| 68.7831 | 130000 | 0.0055 | 0.0935 | 0.7913 |
| 69.3122 | 131000 | 0.0053 | 0.0935 | 0.7908 |
| 69.8413 | 132000 | 0.0057 | 0.0937 | 0.7905 |
| 70.3704 | 133000 | 0.0055 | 0.0940 | 0.7912 |
| 70.8995 | 134000 | 0.0052 | 0.0937 | 0.7913 |
| 71.4286 | 135000 | 0.005 | 0.0940 | 0.7917 |
| 71.9577 | 136000 | 0.0053 | 0.0933 | 0.7914 |
| 72.4868 | 137000 | 0.0056 | 0.0940 | 0.7915 |
| 73.0159 | 138000 | 0.0054 | 0.0937 | 0.7909 |
| 73.5450 | 139000 | 0.0051 | 0.0940 | 0.7909 |
| 74.0741 | 140000 | 0.0058 | 0.0938 | 0.7911 |
| 74.6032 | 141000 | 0.0056 | 0.0938 | 0.7912 |
| 75.1323 | 142000 | 0.0052 | 0.0931 | 0.7908 |
| 75.6614 | 143000 | 0.0052 | 0.0937 | 0.7905 |
| 76.1905 | 144000 | 0.0054 | 0.0940 | 0.7905 |
| 76.7196 | 145000 | 0.0055 | 0.0940 | 0.7907 |
| 77.2487 | 146000 | 0.0053 | 0.0941 | 0.7909 |
| 77.7778 | 147000 | 0.0057 | 0.0944 | 0.7907 |
| 78.3069 | 148000 | 0.0054 | 0.0947 | 0.7909 |
| 78.8360 | 149000 | 0.0054 | 0.0949 | 0.7907 |
| 79.3651 | 150000 | 0.0055 | 0.0948 | 0.7907 |
| 79.8942 | 151000 | 0.0058 | 0.0950 | 0.7907 |
| 80.4233 | 152000 | 0.0054 | 0.0946 | 0.7907 |
| 80.9524 | 153000 | 0.0053 | 0.0949 | 0.7909 |
| 81.4815 | 154000 | 0.0055 | 0.0947 | 0.7908 |
| 82.0106 | 155000 | 0.0053 | 0.0946 | 0.7906 |
| 82.5397 | 156000 | 0.0053 | 0.0949 | 0.7906 |
| 83.0688 | 157000 | 0.0051 | 0.0948 | 0.7912 |
| 83.5979 | 158000 | 0.0052 | 0.0954 | 0.7906 |
| 84.1270 | 159000 | 0.0054 | 0.0953 | 0.7908 |
| 84.6561 | 160000 | 0.005 | 0.0951 | 0.7911 |
| 85.1852 | 161000 | 0.0054 | 0.0953 | 0.7910 |
| 85.7143 | 162000 | 0.0056 | 0.0957 | 0.7907 |
| 86.2434 | 163000 | 0.0054 | 0.0953 | 0.7909 |
| 86.7725 | 164000 | 0.0051 | 0.0955 | 0.7912 |
| 87.3016 | 165000 | 0.0055 | 0.0956 | 0.7911 |
| 87.8307 | 166000 | 0.0056 | 0.0954 | 0.7909 |
| 88.3598 | 167000 | 0.0052 | 0.0955 | 0.7911 |
| 88.8889 | 168000 | 0.0052 | 0.0953 | 0.7910 |
| 89.4180 | 169000 | 0.0052 | 0.0952 | 0.7906 |
| 89.9471 | 170000 | 0.0053 | 0.0952 | 0.7908 |
| 90.4762 | 171000 | 0.0052 | 0.0954 | 0.7908 |
| 91.0053 | 172000 | 0.0054 | 0.0954 | 0.7907 |
| 91.5344 | 173000 | 0.0052 | 0.0951 | 0.7909 |
| 92.0635 | 174000 | 0.0053 | 0.0951 | 0.7907 |
| 92.5926 | 175000 | 0.0051 | 0.0950 | 0.7906 |
| 93.1217 | 176000 | 0.0054 | 0.0953 | 0.7907 |
| 93.6508 | 177000 | 0.0052 | 0.0953 | 0.7907 |
| 94.1799 | 178000 | 0.0051 | 0.0951 | 0.7908 |
| 94.7090 | 179000 | 0.0052 | 0.0952 | 0.7906 |
| 95.2381 | 180000 | 0.0053 | 0.0953 | 0.7909 |
| 95.7672 | 181000 | 0.0052 | 0.0953 | 0.7908 |
| 96.2963 | 182000 | 0.0051 | 0.0952 | 0.7906 |
| 96.8254 | 183000 | 0.0053 | 0.0953 | 0.7907 |
| 97.3545 | 184000 | 0.0051 | 0.0953 | 0.7907 |
| 97.8836 | 185000 | 0.0049 | 0.0953 | 0.7906 |
| 98.4127 | 186000 | 0.0051 | 0.0953 | 0.7907 |
| 98.9418 | 187000 | 0.0051 | 0.0954 | 0.7906 |
| 99.4709 | 188000 | 0.0053 | 0.0954 | 0.7906 |
| 100.0 | 189000 | 0.0051 | 0.0954 | 0.7904 |
| 100.5291 | 190000 | 0.0054 | 0.0953 | 0.7907 |
| 101.0582 | 191000 | 0.0052 | 0.0954 | 0.7905 |
| 101.5873 | 192000 | 0.0051 | 0.0954 | 0.7907 |
| 102.1164 | 193000 | 0.0052 | 0.0953 | 0.7907 |
| 102.6455 | 194000 | 0.0051 | 0.0955 | 0.7908 |
| 103.1746 | 195000 | 0.0054 | 0.0954 | 0.7906 |
| 103.7037 | 196000 | 0.0052 | 0.0954 | 0.7905 |
| 104.2328 | 197000 | 0.0053 | 0.0954 | 0.7906 |
| 104.7619 | 198000 | 0.0052 | 0.0954 | 0.7907 |
| 105.2910 | 199000 | 0.0055 | 0.0954 | 0.7904 |
| 105.8201 | 200000 | 0.0054 | 0.0955 | 0.7905 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->