Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
metadata
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:483820
- loss:MultipleNegativesSymmetricRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: >-
See Precambrian time scale # Proposed Geologic timeline for another set of
periods 4600 -- 541 MYA .
sentences:
- >-
In 2014 election , Biju Janata Dal candidate Tathagat Satapathy
Bharatiya Janata party candidate Rudra Narayan Pany defeated with a
margin of 1.37,340 votes .
- >-
In Scotland , the Strathclyde Partnership for Transport , formerly known
as Strathclyde Passenger Transport Executive , comprises the former
Strathclyde region , which includes the urban area around Glasgow .
- >-
See Precambrian Time Scale # Proposed Geological Timeline for another
set of periods of 4600 -- 541 MYA .
- source_sentence: >-
It is also 5 kilometers northeast of Tamaqua , 27 miles south of Allentown
and 9 miles northwest of Hazleton .
sentences:
- In 1948 he moved to Massachusetts , and eventually settled in Vermont .
- >-
Suddenly I remembered that I was a New Zealander , I caught the first
plane home and came back .
- >-
It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown ,
and 9 miles northwest of Hazleton .
- source_sentence: >-
The party has a Member of Parliament , a member of the House of Lords ,
three members of the London Assembly and two Members of the European
Parliament .
sentences:
- >-
The party has one Member of Parliament , one member of the House of
Lords , three Members of the London Assembly and two Members of the
European Parliament .
- >-
Grapsid crabs dominate in Australia , Malaysia and Panama , while
gastropods Cerithidea scalariformis and Melampus coeffeus are important
seed predators in Florida mangroves .
- >-
Music Story is a music service website and international music data
provider that curates , aggregates and analyses metadata for digital
music services .
- source_sentence: >-
The play received two 1969 Tony Award nominations : Best Actress in a Play
( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .
sentences:
- >-
Ravishanker is a fellow of the International Statistical Institute and
an elected member of the American Statistical Association .
- >-
In 1969 , the play received two Tony - Award nominations : Best Actress
in a Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte
Rae ) .
- >-
AMD and Nvidia both have proprietary methods of scaling , CrossFireX for
AMD , and SLI for Nvidia .
- source_sentence: >-
He was a close friend of Ángel Cabrera and is a cousin of golfer Tony
Croatto .
sentences:
- >-
He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony
Croatto .
- >-
Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian
Roman Catholic priest , and Bishop of Šiauliai .
- >-
UWIRE also distributes its members content to professional media outlets
, including Yahoo , CNN and CBS News .
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: train
type: train
metrics:
- type: cosine_accuracy@1
value: 0.5978783286425633
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5978783286425633
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5765917883925028
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.7905393533594786
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5978783286425633
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7375956597574003
name: Cosine Map@100
Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the LangCache Sentence Pairs (all) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 100 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9922, 0.0547],
# [0.9922, 1.0000, 0.0449],
# [0.0547, 0.0449, 1.0000]], dtype=torch.bfloat16)
Evaluation
Metrics
Information Retrieval
- Dataset:
train
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5979 |
cosine_precision@1 | 0.5979 |
cosine_recall@1 | 0.5766 |
cosine_ndcg@10 | 0.7905 |
cosine_mrr@1 | 0.5979 |
cosine_map@100 | 0.7376 |
Training Details
Training Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 26,850 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 8 tokens
- mean: 27.35 tokens
- max: 53 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 52 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
1
After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .
Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .
1
The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .
The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 26,850 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 8 tokens
- mean: 27.35 tokens
- max: 53 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 52 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
1
After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .
Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .
1
The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .
The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 0.0003adam_beta2
: 0.98adam_epsilon
: 1e-06max_steps
: 200000warmup_steps
: 1000load_best_model_at_end
: Trueoptim
: adamw_torchddp_find_unused_parameters
: Falsepush_to_hub
: Truehub_model_id
: redis/langcache-embed-v3batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0003weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.98adam_epsilon
: 1e-06max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 200000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 1000log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Falseddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: redis/langcache-embed-v3hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | train_cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.7522 |
0.5291 | 1000 | 0.0231 | 0.1710 | 0.7518 |
1.0582 | 2000 | 0.0147 | 0.1552 | 0.7593 |
1.5873 | 3000 | 0.0126 | 0.1616 | 0.7603 |
2.1164 | 4000 | 0.0113 | 0.1301 | 0.7644 |
2.6455 | 5000 | 0.0119 | 0.1276 | 0.7659 |
3.1746 | 6000 | 0.0099 | 0.1270 | 0.7648 |
3.7037 | 7000 | 0.0101 | 0.1239 | 0.7676 |
4.2328 | 8000 | 0.0093 | 0.1267 | 0.7709 |
4.7619 | 9000 | 0.0092 | 0.1190 | 0.7711 |
5.2910 | 10000 | 0.0088 | 0.1145 | 0.7735 |
5.8201 | 11000 | 0.009 | 0.1172 | 0.7735 |
6.3492 | 12000 | 0.0083 | 0.1144 | 0.7749 |
6.8783 | 13000 | 0.0088 | 0.1140 | 0.7736 |
7.4074 | 14000 | 0.0083 | 0.1134 | 0.7751 |
7.9365 | 15000 | 0.0087 | 0.1108 | 0.7742 |
8.4656 | 16000 | 0.0084 | 0.1119 | 0.7759 |
8.9947 | 17000 | 0.0081 | 0.1125 | 0.7762 |
9.5238 | 18000 | 0.0081 | 0.1134 | 0.7768 |
10.0529 | 19000 | 0.008 | 0.1126 | 0.7766 |
10.5820 | 20000 | 0.0079 | 0.1119 | 0.7755 |
11.1111 | 21000 | 0.0078 | 0.1112 | 0.7781 |
11.6402 | 22000 | 0.008 | 0.1113 | 0.7778 |
12.1693 | 23000 | 0.0082 | 0.1066 | 0.7796 |
12.6984 | 24000 | 0.0078 | 0.1098 | 0.7775 |
13.2275 | 25000 | 0.0078 | 0.1089 | 0.7800 |
13.7566 | 26000 | 0.0074 | 0.1091 | 0.7779 |
14.2857 | 27000 | 0.0078 | 0.1061 | 0.7782 |
14.8148 | 28000 | 0.0074 | 0.1073 | 0.7769 |
15.3439 | 29000 | 0.0078 | 0.1022 | 0.7804 |
15.8730 | 30000 | 0.0078 | 0.1035 | 0.7799 |
16.4021 | 31000 | 0.0074 | 0.1046 | 0.7793 |
16.9312 | 32000 | 0.0074 | 0.1043 | 0.7817 |
17.4603 | 33000 | 0.0071 | 0.1056 | 0.7831 |
17.9894 | 34000 | 0.0074 | 0.1022 | 0.7820 |
18.5185 | 35000 | 0.0073 | 0.1035 | 0.7820 |
19.0476 | 36000 | 0.0074 | 0.1020 | 0.7836 |
19.5767 | 37000 | 0.0071 | 0.1036 | 0.7828 |
20.1058 | 38000 | 0.007 | 0.1029 | 0.7845 |
20.6349 | 39000 | 0.0071 | 0.1019 | 0.7835 |
21.1640 | 40000 | 0.007 | 0.0991 | 0.7849 |
21.6931 | 41000 | 0.0071 | 0.1013 | 0.7828 |
22.2222 | 42000 | 0.0073 | 0.1033 | 0.7833 |
22.7513 | 43000 | 0.0068 | 0.0996 | 0.7835 |
23.2804 | 44000 | 0.007 | 0.0976 | 0.7850 |
23.8095 | 45000 | 0.0069 | 0.0986 | 0.7840 |
24.3386 | 46000 | 0.0068 | 0.0992 | 0.7856 |
24.8677 | 47000 | 0.0068 | 0.0988 | 0.7838 |
25.3968 | 48000 | 0.0068 | 0.0980 | 0.7857 |
25.9259 | 49000 | 0.007 | 0.0976 | 0.7860 |
26.4550 | 50000 | 0.0071 | 0.0994 | 0.7850 |
26.9841 | 51000 | 0.0067 | 0.0984 | 0.7862 |
27.5132 | 52000 | 0.0064 | 0.0992 | 0.7845 |
28.0423 | 53000 | 0.0068 | 0.1021 | 0.7840 |
28.5714 | 54000 | 0.0066 | 0.0974 | 0.7863 |
29.1005 | 55000 | 0.0066 | 0.1001 | 0.7848 |
29.6296 | 56000 | 0.0067 | 0.0997 | 0.7848 |
30.1587 | 57000 | 0.0067 | 0.0965 | 0.7868 |
30.6878 | 58000 | 0.0067 | 0.0968 | 0.7858 |
31.2169 | 59000 | 0.0066 | 0.0973 | 0.7861 |
31.7460 | 60000 | 0.0067 | 0.0972 | 0.7865 |
32.2751 | 61000 | 0.0065 | 0.0991 | 0.7855 |
32.8042 | 62000 | 0.0062 | 0.0960 | 0.7871 |
33.3333 | 63000 | 0.0068 | 0.1006 | 0.7863 |
33.8624 | 64000 | 0.0063 | 0.0980 | 0.7872 |
34.3915 | 65000 | 0.0066 | 0.0957 | 0.7871 |
34.9206 | 66000 | 0.0066 | 0.0971 | 0.7870 |
35.4497 | 67000 | 0.0063 | 0.0982 | 0.7857 |
35.9788 | 68000 | 0.0067 | 0.0944 | 0.7871 |
36.5079 | 69000 | 0.0062 | 0.0961 | 0.7870 |
37.0370 | 70000 | 0.0061 | 0.0924 | 0.7880 |
37.5661 | 71000 | 0.0064 | 0.0928 | 0.7878 |
38.0952 | 72000 | 0.0065 | 0.0934 | 0.7888 |
38.6243 | 73000 | 0.0069 | 0.0948 | 0.7873 |
39.1534 | 74000 | 0.0064 | 0.0922 | 0.7885 |
39.6825 | 75000 | 0.0064 | 0.0937 | 0.7888 |
40.2116 | 76000 | 0.0059 | 0.0941 | 0.7882 |
40.7407 | 77000 | 0.0067 | 0.0934 | 0.7900 |
41.2698 | 78000 | 0.0064 | 0.0926 | 0.7888 |
41.7989 | 79000 | 0.006 | 0.0948 | 0.7880 |
42.3280 | 80000 | 0.006 | 0.0953 | 0.7876 |
42.8571 | 81000 | 0.0058 | 0.0955 | 0.7887 |
43.3862 | 82000 | 0.0065 | 0.0945 | 0.7875 |
43.9153 | 83000 | 0.0063 | 0.0928 | 0.7888 |
44.4444 | 84000 | 0.0065 | 0.0959 | 0.7883 |
44.9735 | 85000 | 0.0063 | 0.0956 | 0.7876 |
45.5026 | 86000 | 0.006 | 0.0946 | 0.7893 |
46.0317 | 87000 | 0.0062 | 0.0954 | 0.7908 |
46.5608 | 88000 | 0.0061 | 0.0960 | 0.7896 |
47.0899 | 89000 | 0.006 | 0.0953 | 0.7893 |
47.6190 | 90000 | 0.0058 | 0.0941 | 0.7899 |
48.1481 | 91000 | 0.0059 | 0.0950 | 0.7892 |
48.6772 | 92000 | 0.0066 | 0.0948 | 0.7890 |
49.2063 | 93000 | 0.0058 | 0.0947 | 0.7886 |
49.7354 | 94000 | 0.006 | 0.0952 | 0.7891 |
50.2646 | 95000 | 0.0058 | 0.0948 | 0.7885 |
50.7937 | 96000 | 0.0058 | 0.0945 | 0.7894 |
51.3228 | 97000 | 0.0059 | 0.0936 | 0.7901 |
51.8519 | 98000 | 0.0059 | 0.0950 | 0.7900 |
52.3810 | 99000 | 0.0058 | 0.0954 | 0.7893 |
52.9101 | 100000 | 0.0058 | 0.0946 | 0.7900 |
53.4392 | 101000 | 0.0056 | 0.0943 | 0.7900 |
53.9683 | 102000 | 0.006 | 0.0950 | 0.7895 |
54.4974 | 103000 | 0.0059 | 0.0937 | 0.7899 |
55.0265 | 104000 | 0.0061 | 0.0941 | 0.7897 |
55.5556 | 105000 | 0.0059 | 0.0941 | 0.7903 |
56.0847 | 106000 | 0.0057 | 0.0924 | 0.7904 |
56.6138 | 107000 | 0.006 | 0.0933 | 0.7901 |
57.1429 | 108000 | 0.0059 | 0.0948 | 0.7888 |
57.6720 | 109000 | 0.0061 | 0.0938 | 0.7899 |
58.2011 | 110000 | 0.0058 | 0.0942 | 0.7904 |
58.7302 | 111000 | 0.0056 | 0.0943 | 0.7913 |
59.2593 | 112000 | 0.0056 | 0.0949 | 0.7915 |
59.7884 | 113000 | 0.0058 | 0.0947 | 0.7907 |
60.3175 | 114000 | 0.0058 | 0.0939 | 0.7910 |
60.8466 | 115000 | 0.0058 | 0.0942 | 0.7906 |
61.3757 | 116000 | 0.0055 | 0.0933 | 0.7910 |
61.9048 | 117000 | 0.0055 | 0.0936 | 0.7913 |
62.4339 | 118000 | 0.0059 | 0.0937 | 0.7904 |
62.9630 | 119000 | 0.0057 | 0.0943 | 0.7908 |
63.4921 | 120000 | 0.0056 | 0.0934 | 0.7912 |
64.0212 | 121000 | 0.0058 | 0.0936 | 0.7909 |
64.5503 | 122000 | 0.0055 | 0.0942 | 0.7896 |
65.0794 | 123000 | 0.0058 | 0.0939 | 0.7901 |
65.6085 | 124000 | 0.0057 | 0.0936 | 0.7907 |
66.1376 | 125000 | 0.0054 | 0.0951 | 0.7901 |
66.6667 | 126000 | 0.0055 | 0.0942 | 0.7912 |
67.1958 | 127000 | 0.0057 | 0.0943 | 0.7914 |
67.7249 | 128000 | 0.0057 | 0.0937 | 0.7910 |
68.2540 | 129000 | 0.0057 | 0.0933 | 0.7918 |
68.7831 | 130000 | 0.0055 | 0.0935 | 0.7913 |
69.3122 | 131000 | 0.0053 | 0.0935 | 0.7908 |
69.8413 | 132000 | 0.0057 | 0.0937 | 0.7905 |
70.3704 | 133000 | 0.0055 | 0.0940 | 0.7912 |
70.8995 | 134000 | 0.0052 | 0.0937 | 0.7913 |
71.4286 | 135000 | 0.005 | 0.0940 | 0.7917 |
71.9577 | 136000 | 0.0053 | 0.0933 | 0.7914 |
72.4868 | 137000 | 0.0056 | 0.0940 | 0.7915 |
73.0159 | 138000 | 0.0054 | 0.0937 | 0.7909 |
73.5450 | 139000 | 0.0051 | 0.0940 | 0.7909 |
74.0741 | 140000 | 0.0058 | 0.0938 | 0.7911 |
74.6032 | 141000 | 0.0056 | 0.0938 | 0.7912 |
75.1323 | 142000 | 0.0052 | 0.0931 | 0.7908 |
75.6614 | 143000 | 0.0052 | 0.0937 | 0.7905 |
76.1905 | 144000 | 0.0054 | 0.0940 | 0.7905 |
76.7196 | 145000 | 0.0055 | 0.0940 | 0.7907 |
77.2487 | 146000 | 0.0053 | 0.0941 | 0.7909 |
77.7778 | 147000 | 0.0057 | 0.0944 | 0.7907 |
78.3069 | 148000 | 0.0054 | 0.0947 | 0.7909 |
78.8360 | 149000 | 0.0054 | 0.0949 | 0.7907 |
79.3651 | 150000 | 0.0055 | 0.0948 | 0.7907 |
79.8942 | 151000 | 0.0058 | 0.0950 | 0.7907 |
80.4233 | 152000 | 0.0054 | 0.0946 | 0.7907 |
80.9524 | 153000 | 0.0053 | 0.0949 | 0.7909 |
81.4815 | 154000 | 0.0055 | 0.0947 | 0.7908 |
82.0106 | 155000 | 0.0053 | 0.0946 | 0.7906 |
82.5397 | 156000 | 0.0053 | 0.0949 | 0.7906 |
83.0688 | 157000 | 0.0051 | 0.0948 | 0.7912 |
83.5979 | 158000 | 0.0052 | 0.0954 | 0.7906 |
84.1270 | 159000 | 0.0054 | 0.0953 | 0.7908 |
84.6561 | 160000 | 0.005 | 0.0951 | 0.7911 |
85.1852 | 161000 | 0.0054 | 0.0953 | 0.7910 |
85.7143 | 162000 | 0.0056 | 0.0957 | 0.7907 |
86.2434 | 163000 | 0.0054 | 0.0953 | 0.7909 |
86.7725 | 164000 | 0.0051 | 0.0955 | 0.7912 |
87.3016 | 165000 | 0.0055 | 0.0956 | 0.7911 |
87.8307 | 166000 | 0.0056 | 0.0954 | 0.7909 |
88.3598 | 167000 | 0.0052 | 0.0955 | 0.7911 |
88.8889 | 168000 | 0.0052 | 0.0953 | 0.7910 |
89.4180 | 169000 | 0.0052 | 0.0952 | 0.7906 |
89.9471 | 170000 | 0.0053 | 0.0952 | 0.7908 |
90.4762 | 171000 | 0.0052 | 0.0954 | 0.7908 |
91.0053 | 172000 | 0.0054 | 0.0954 | 0.7907 |
91.5344 | 173000 | 0.0052 | 0.0951 | 0.7909 |
92.0635 | 174000 | 0.0053 | 0.0951 | 0.7907 |
92.5926 | 175000 | 0.0051 | 0.0950 | 0.7906 |
93.1217 | 176000 | 0.0054 | 0.0953 | 0.7907 |
93.6508 | 177000 | 0.0052 | 0.0953 | 0.7907 |
94.1799 | 178000 | 0.0051 | 0.0951 | 0.7908 |
94.7090 | 179000 | 0.0052 | 0.0952 | 0.7906 |
95.2381 | 180000 | 0.0053 | 0.0953 | 0.7909 |
95.7672 | 181000 | 0.0052 | 0.0953 | 0.7908 |
96.2963 | 182000 | 0.0051 | 0.0952 | 0.7906 |
96.8254 | 183000 | 0.0053 | 0.0953 | 0.7907 |
97.3545 | 184000 | 0.0051 | 0.0953 | 0.7907 |
97.8836 | 185000 | 0.0049 | 0.0953 | 0.7906 |
98.4127 | 186000 | 0.0051 | 0.0953 | 0.7907 |
98.9418 | 187000 | 0.0051 | 0.0954 | 0.7906 |
99.4709 | 188000 | 0.0053 | 0.0954 | 0.7906 |
100.0 | 189000 | 0.0051 | 0.0954 | 0.7904 |
100.5291 | 190000 | 0.0054 | 0.0953 | 0.7907 |
101.0582 | 191000 | 0.0052 | 0.0954 | 0.7905 |
101.5873 | 192000 | 0.0051 | 0.0954 | 0.7907 |
102.1164 | 193000 | 0.0052 | 0.0953 | 0.7907 |
102.6455 | 194000 | 0.0051 | 0.0955 | 0.7908 |
103.1746 | 195000 | 0.0054 | 0.0954 | 0.7906 |
103.7037 | 196000 | 0.0052 | 0.0954 | 0.7905 |
104.2328 | 197000 | 0.0053 | 0.0954 | 0.7906 |
104.7619 | 198000 | 0.0052 | 0.0954 | 0.7907 |
105.2910 | 199000 | 0.0055 | 0.0954 | 0.7904 |
105.8201 | 200000 | 0.0054 | 0.0955 | 0.7905 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}