File size: 13,092 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
6e71c42
 
b18f4c8
1433a8a
 
 
 
 
c29f390
 
 
 
 
 
1433a8a
 
 
 
c29f390
 
1433a8a
c29f390
 
1433a8a
c29f390
cf689fc
c29f390
 
cf689fc
c29f390
 
cf689fc
c29f390
 
cf689fc
c29f390
 
cf689fc
c29f390
 
cf689fc
c29f390
1433a8a
 
 
 
b18f4c8
1433a8a
 
 
 
 
b18f4c8
c29f390
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e71c42
 
 
1433a8a
 
 
 
 
 
 
 
6e71c42
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
1433a8a
c29f390
 
1433a8a
c29f390
 
cf689fc
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e71c42
 
1433a8a
6e71c42
 
 
 
1433a8a
6e71c42
 
 
 
 
 
b18f4c8
 
 
6e71c42
 
b18f4c8
 
1433a8a
 
 
 
 
 
6e71c42
 
1433a8a
6e71c42
 
 
 
1433a8a
6e71c42
 
 
 
 
 
b18f4c8
 
 
6e71c42
 
b18f4c8
 
1433a8a
 
cf689fc
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e71c42
cf689fc
6e71c42
 
 
 
 
 
 
cf689fc
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1451941
- loss:MultipleNegativesRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: train
      type: train
    metrics:
    - type: cosine_accuracy@1
      value: 0.5579129681749296
      name: Cosine Accuracy@1
    - type: cosine_precision@1
      value: 0.5579129681749296
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.5359784831006956
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.7522148521266401
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.5579129681749296
      name: Cosine Mrr@1
    - type: cosine_map@100
      value: 0.6974638651409195
      name: Cosine Map@100
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9922, 0.7891, 0.4629],
#         [0.7891, 1.0000, 0.5117],
#         [0.4629, 0.5117, 1.0000]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `train`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy@1  | 0.5579     |
| cosine_precision@1 | 0.5579     |
| cosine_recall@1    | 0.536      |
| **cosine_ndcg@10** | **0.7522** |
| cosine_mrr@1       | 0.5579     |
| cosine_map@100     | 0.6975     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 109,885 training samples
* Columns: <code>texts</code>
* Approximate statistics based on the first 1000 samples:
  |         | texts                                                                                 |
  |:--------|:--------------------------------------------------------------------------------------|
  | type    | list                                                                                  |
  | details | <ul><li>min: 3 elements</li><li>mean: 3.50 elements</li><li>max: 4 elements</li></ul> |
* Samples:
  | texts                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'how can I get financial freedom as soon as possible?']</code>                                                                                                                              |
  | <code>['The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The older Punts are still very much in existence today and race in the same fleets as the newer boats .']</code>                                                                           |
  | <code>['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .']</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 109,885 evaluation samples
* Columns: <code>texts</code>
* Approximate statistics based on the first 1000 samples:
  |         | texts                                                                                 |
  |:--------|:--------------------------------------------------------------------------------------|
  | type    | list                                                                                  |
  | details | <ul><li>min: 3 elements</li><li>mean: 3.50 elements</li><li>max: 4 elements</li></ul> |
* Samples:
  | texts                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>['The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'how can I get financial freedom as soon as possible?']</code>                                                                                                                              |
  | <code>['The newer punts are still very much in existence today and run in the same fleets as the older boats .', 'The newer Punts are still very much in existence today and race in the same fleets as the older boats .', 'The older Punts are still very much in existence today and race in the same fleets as the newer boats .']</code>                                                                           |
  | <code>['Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .', 'Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .']</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Logs
| Epoch | Step | train_cosine_ndcg@10 |
|:-----:|:----:|:--------------------:|
| -1    | -1   | 0.7522               |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->