Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
Add new SentenceTransformer model
Browse files- README.md +35 -372
- model.safetensors +1 -1
README.md
CHANGED
@@ -12,8 +12,8 @@ tags:
|
|
12 |
- retrieval
|
13 |
- reranking
|
14 |
- generated_from_trainer
|
15 |
-
- dataset_size:
|
16 |
-
- loss:
|
17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
18 |
widget:
|
19 |
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
|
@@ -85,22 +85,22 @@ model-index:
|
|
85 |
type: train
|
86 |
metrics:
|
87 |
- type: cosine_accuracy@1
|
88 |
-
value: 0.
|
89 |
name: Cosine Accuracy@1
|
90 |
- type: cosine_precision@1
|
91 |
-
value: 0.
|
92 |
name: Cosine Precision@1
|
93 |
- type: cosine_recall@1
|
94 |
-
value: 0.
|
95 |
name: Cosine Recall@1
|
96 |
- type: cosine_ndcg@10
|
97 |
-
value: 0.
|
98 |
name: Cosine Ndcg@10
|
99 |
- type: cosine_mrr@1
|
100 |
-
value: 0.
|
101 |
name: Cosine Mrr@1
|
102 |
- type: cosine_map@100
|
103 |
-
value: 0.
|
104 |
name: Cosine Map@100
|
105 |
---
|
106 |
|
@@ -165,9 +165,9 @@ print(embeddings.shape)
|
|
165 |
# Get the similarity scores for the embeddings
|
166 |
similarities = model.similarity(embeddings, embeddings)
|
167 |
print(similarities)
|
168 |
-
# tensor([[
|
169 |
-
# [0.9922,
|
170 |
-
# [0.
|
171 |
```
|
172 |
|
173 |
<!--
|
@@ -205,12 +205,12 @@ You can finetune this model on your own dataset.
|
|
205 |
|
206 |
| Metric | Value |
|
207 |
|:-------------------|:-----------|
|
208 |
-
| cosine_accuracy@1 | 0.
|
209 |
-
| cosine_precision@1 | 0.
|
210 |
-
| cosine_recall@1 | 0.
|
211 |
-
| **cosine_ndcg@10** | **0.
|
212 |
-
| cosine_mrr@1 | 0.
|
213 |
-
| cosine_map@100 | 0.
|
214 |
|
215 |
<!--
|
216 |
## Bias, Risks and Limitations
|
@@ -244,12 +244,11 @@ You can finetune this model on your own dataset.
|
|
244 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
245 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
246 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
247 |
-
* Loss: [<code>
|
248 |
```json
|
249 |
{
|
250 |
"scale": 20.0,
|
251 |
-
"similarity_fct": "
|
252 |
-
"gather_across_devices": false
|
253 |
}
|
254 |
```
|
255 |
|
@@ -271,366 +270,19 @@ You can finetune this model on your own dataset.
|
|
271 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
272 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
273 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
274 |
-
* Loss: [<code>
|
275 |
```json
|
276 |
{
|
277 |
"scale": 20.0,
|
278 |
-
"similarity_fct": "
|
279 |
-
"gather_across_devices": false
|
280 |
}
|
281 |
```
|
282 |
|
283 |
-
### Training Hyperparameters
|
284 |
-
#### Non-Default Hyperparameters
|
285 |
-
|
286 |
-
- `eval_strategy`: steps
|
287 |
-
- `per_device_train_batch_size`: 256
|
288 |
-
- `per_device_eval_batch_size`: 256
|
289 |
-
- `learning_rate`: 0.0003
|
290 |
-
- `adam_beta2`: 0.98
|
291 |
-
- `adam_epsilon`: 1e-06
|
292 |
-
- `max_steps`: 200000
|
293 |
-
- `warmup_steps`: 1000
|
294 |
-
- `load_best_model_at_end`: True
|
295 |
-
- `optim`: adamw_torch
|
296 |
-
- `ddp_find_unused_parameters`: False
|
297 |
-
- `push_to_hub`: True
|
298 |
-
- `hub_model_id`: redis/langcache-embed-v3
|
299 |
-
- `batch_sampler`: no_duplicates
|
300 |
-
|
301 |
-
#### All Hyperparameters
|
302 |
-
<details><summary>Click to expand</summary>
|
303 |
-
|
304 |
-
- `overwrite_output_dir`: False
|
305 |
-
- `do_predict`: False
|
306 |
-
- `eval_strategy`: steps
|
307 |
-
- `prediction_loss_only`: True
|
308 |
-
- `per_device_train_batch_size`: 256
|
309 |
-
- `per_device_eval_batch_size`: 256
|
310 |
-
- `per_gpu_train_batch_size`: None
|
311 |
-
- `per_gpu_eval_batch_size`: None
|
312 |
-
- `gradient_accumulation_steps`: 1
|
313 |
-
- `eval_accumulation_steps`: None
|
314 |
-
- `torch_empty_cache_steps`: None
|
315 |
-
- `learning_rate`: 0.0003
|
316 |
-
- `weight_decay`: 0.0
|
317 |
-
- `adam_beta1`: 0.9
|
318 |
-
- `adam_beta2`: 0.98
|
319 |
-
- `adam_epsilon`: 1e-06
|
320 |
-
- `max_grad_norm`: 1.0
|
321 |
-
- `num_train_epochs`: 3.0
|
322 |
-
- `max_steps`: 200000
|
323 |
-
- `lr_scheduler_type`: linear
|
324 |
-
- `lr_scheduler_kwargs`: {}
|
325 |
-
- `warmup_ratio`: 0.0
|
326 |
-
- `warmup_steps`: 1000
|
327 |
-
- `log_level`: passive
|
328 |
-
- `log_level_replica`: warning
|
329 |
-
- `log_on_each_node`: True
|
330 |
-
- `logging_nan_inf_filter`: True
|
331 |
-
- `save_safetensors`: True
|
332 |
-
- `save_on_each_node`: False
|
333 |
-
- `save_only_model`: False
|
334 |
-
- `restore_callback_states_from_checkpoint`: False
|
335 |
-
- `no_cuda`: False
|
336 |
-
- `use_cpu`: False
|
337 |
-
- `use_mps_device`: False
|
338 |
-
- `seed`: 42
|
339 |
-
- `data_seed`: None
|
340 |
-
- `jit_mode_eval`: False
|
341 |
-
- `use_ipex`: False
|
342 |
-
- `bf16`: False
|
343 |
-
- `fp16`: False
|
344 |
-
- `fp16_opt_level`: O1
|
345 |
-
- `half_precision_backend`: auto
|
346 |
-
- `bf16_full_eval`: False
|
347 |
-
- `fp16_full_eval`: False
|
348 |
-
- `tf32`: None
|
349 |
-
- `local_rank`: 0
|
350 |
-
- `ddp_backend`: None
|
351 |
-
- `tpu_num_cores`: None
|
352 |
-
- `tpu_metrics_debug`: False
|
353 |
-
- `debug`: []
|
354 |
-
- `dataloader_drop_last`: False
|
355 |
-
- `dataloader_num_workers`: 0
|
356 |
-
- `dataloader_prefetch_factor`: None
|
357 |
-
- `past_index`: -1
|
358 |
-
- `disable_tqdm`: False
|
359 |
-
- `remove_unused_columns`: True
|
360 |
-
- `label_names`: None
|
361 |
-
- `load_best_model_at_end`: True
|
362 |
-
- `ignore_data_skip`: False
|
363 |
-
- `fsdp`: []
|
364 |
-
- `fsdp_min_num_params`: 0
|
365 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
366 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
367 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
368 |
-
- `parallelism_config`: None
|
369 |
-
- `deepspeed`: None
|
370 |
-
- `label_smoothing_factor`: 0.0
|
371 |
-
- `optim`: adamw_torch
|
372 |
-
- `optim_args`: None
|
373 |
-
- `adafactor`: False
|
374 |
-
- `group_by_length`: False
|
375 |
-
- `length_column_name`: length
|
376 |
-
- `ddp_find_unused_parameters`: False
|
377 |
-
- `ddp_bucket_cap_mb`: None
|
378 |
-
- `ddp_broadcast_buffers`: False
|
379 |
-
- `dataloader_pin_memory`: True
|
380 |
-
- `dataloader_persistent_workers`: False
|
381 |
-
- `skip_memory_metrics`: True
|
382 |
-
- `use_legacy_prediction_loop`: False
|
383 |
-
- `push_to_hub`: True
|
384 |
-
- `resume_from_checkpoint`: None
|
385 |
-
- `hub_model_id`: redis/langcache-embed-v3
|
386 |
-
- `hub_strategy`: every_save
|
387 |
-
- `hub_private_repo`: None
|
388 |
-
- `hub_always_push`: False
|
389 |
-
- `hub_revision`: None
|
390 |
-
- `gradient_checkpointing`: False
|
391 |
-
- `gradient_checkpointing_kwargs`: None
|
392 |
-
- `include_inputs_for_metrics`: False
|
393 |
-
- `include_for_metrics`: []
|
394 |
-
- `eval_do_concat_batches`: True
|
395 |
-
- `fp16_backend`: auto
|
396 |
-
- `push_to_hub_model_id`: None
|
397 |
-
- `push_to_hub_organization`: None
|
398 |
-
- `mp_parameters`:
|
399 |
-
- `auto_find_batch_size`: False
|
400 |
-
- `full_determinism`: False
|
401 |
-
- `torchdynamo`: None
|
402 |
-
- `ray_scope`: last
|
403 |
-
- `ddp_timeout`: 1800
|
404 |
-
- `torch_compile`: False
|
405 |
-
- `torch_compile_backend`: None
|
406 |
-
- `torch_compile_mode`: None
|
407 |
-
- `include_tokens_per_second`: False
|
408 |
-
- `include_num_input_tokens_seen`: False
|
409 |
-
- `neftune_noise_alpha`: None
|
410 |
-
- `optim_target_modules`: None
|
411 |
-
- `batch_eval_metrics`: False
|
412 |
-
- `eval_on_start`: False
|
413 |
-
- `use_liger_kernel`: False
|
414 |
-
- `liger_kernel_config`: None
|
415 |
-
- `eval_use_gather_object`: False
|
416 |
-
- `average_tokens_across_devices`: False
|
417 |
-
- `prompts`: None
|
418 |
-
- `batch_sampler`: no_duplicates
|
419 |
-
- `multi_dataset_batch_sampler`: proportional
|
420 |
-
- `router_mapping`: {}
|
421 |
-
- `learning_rate_mapping`: {}
|
422 |
-
|
423 |
-
</details>
|
424 |
-
|
425 |
### Training Logs
|
426 |
-
|
|
|
|
|
427 |
|
428 |
-
| Epoch | Step | Training Loss | Validation Loss | train_cosine_ndcg@10 |
|
429 |
-
|:-----------:|:---------:|:-------------:|:---------------:|:--------------------:|
|
430 |
-
| -1 | -1 | - | - | 0.7522 |
|
431 |
-
| 0.5291 | 1000 | 0.0231 | 0.1710 | 0.7518 |
|
432 |
-
| 1.0582 | 2000 | 0.0147 | 0.1552 | 0.7593 |
|
433 |
-
| 1.5873 | 3000 | 0.0126 | 0.1616 | 0.7603 |
|
434 |
-
| 2.1164 | 4000 | 0.0113 | 0.1301 | 0.7644 |
|
435 |
-
| 2.6455 | 5000 | 0.0119 | 0.1276 | 0.7659 |
|
436 |
-
| 3.1746 | 6000 | 0.0099 | 0.1270 | 0.7648 |
|
437 |
-
| 3.7037 | 7000 | 0.0101 | 0.1239 | 0.7676 |
|
438 |
-
| 4.2328 | 8000 | 0.0093 | 0.1267 | 0.7709 |
|
439 |
-
| 4.7619 | 9000 | 0.0092 | 0.1190 | 0.7711 |
|
440 |
-
| 5.2910 | 10000 | 0.0088 | 0.1145 | 0.7735 |
|
441 |
-
| 5.8201 | 11000 | 0.009 | 0.1172 | 0.7735 |
|
442 |
-
| 6.3492 | 12000 | 0.0083 | 0.1144 | 0.7749 |
|
443 |
-
| 6.8783 | 13000 | 0.0088 | 0.1140 | 0.7736 |
|
444 |
-
| 7.4074 | 14000 | 0.0083 | 0.1134 | 0.7751 |
|
445 |
-
| 7.9365 | 15000 | 0.0087 | 0.1108 | 0.7742 |
|
446 |
-
| 8.4656 | 16000 | 0.0084 | 0.1119 | 0.7759 |
|
447 |
-
| 8.9947 | 17000 | 0.0081 | 0.1125 | 0.7762 |
|
448 |
-
| 9.5238 | 18000 | 0.0081 | 0.1134 | 0.7768 |
|
449 |
-
| 10.0529 | 19000 | 0.008 | 0.1126 | 0.7766 |
|
450 |
-
| 10.5820 | 20000 | 0.0079 | 0.1119 | 0.7755 |
|
451 |
-
| 11.1111 | 21000 | 0.0078 | 0.1112 | 0.7781 |
|
452 |
-
| 11.6402 | 22000 | 0.008 | 0.1113 | 0.7778 |
|
453 |
-
| 12.1693 | 23000 | 0.0082 | 0.1066 | 0.7796 |
|
454 |
-
| 12.6984 | 24000 | 0.0078 | 0.1098 | 0.7775 |
|
455 |
-
| 13.2275 | 25000 | 0.0078 | 0.1089 | 0.7800 |
|
456 |
-
| 13.7566 | 26000 | 0.0074 | 0.1091 | 0.7779 |
|
457 |
-
| 14.2857 | 27000 | 0.0078 | 0.1061 | 0.7782 |
|
458 |
-
| 14.8148 | 28000 | 0.0074 | 0.1073 | 0.7769 |
|
459 |
-
| 15.3439 | 29000 | 0.0078 | 0.1022 | 0.7804 |
|
460 |
-
| 15.8730 | 30000 | 0.0078 | 0.1035 | 0.7799 |
|
461 |
-
| 16.4021 | 31000 | 0.0074 | 0.1046 | 0.7793 |
|
462 |
-
| 16.9312 | 32000 | 0.0074 | 0.1043 | 0.7817 |
|
463 |
-
| 17.4603 | 33000 | 0.0071 | 0.1056 | 0.7831 |
|
464 |
-
| 17.9894 | 34000 | 0.0074 | 0.1022 | 0.7820 |
|
465 |
-
| 18.5185 | 35000 | 0.0073 | 0.1035 | 0.7820 |
|
466 |
-
| 19.0476 | 36000 | 0.0074 | 0.1020 | 0.7836 |
|
467 |
-
| 19.5767 | 37000 | 0.0071 | 0.1036 | 0.7828 |
|
468 |
-
| 20.1058 | 38000 | 0.007 | 0.1029 | 0.7845 |
|
469 |
-
| 20.6349 | 39000 | 0.0071 | 0.1019 | 0.7835 |
|
470 |
-
| 21.1640 | 40000 | 0.007 | 0.0991 | 0.7849 |
|
471 |
-
| 21.6931 | 41000 | 0.0071 | 0.1013 | 0.7828 |
|
472 |
-
| 22.2222 | 42000 | 0.0073 | 0.1033 | 0.7833 |
|
473 |
-
| 22.7513 | 43000 | 0.0068 | 0.0996 | 0.7835 |
|
474 |
-
| 23.2804 | 44000 | 0.007 | 0.0976 | 0.7850 |
|
475 |
-
| 23.8095 | 45000 | 0.0069 | 0.0986 | 0.7840 |
|
476 |
-
| 24.3386 | 46000 | 0.0068 | 0.0992 | 0.7856 |
|
477 |
-
| 24.8677 | 47000 | 0.0068 | 0.0988 | 0.7838 |
|
478 |
-
| 25.3968 | 48000 | 0.0068 | 0.0980 | 0.7857 |
|
479 |
-
| 25.9259 | 49000 | 0.007 | 0.0976 | 0.7860 |
|
480 |
-
| 26.4550 | 50000 | 0.0071 | 0.0994 | 0.7850 |
|
481 |
-
| 26.9841 | 51000 | 0.0067 | 0.0984 | 0.7862 |
|
482 |
-
| 27.5132 | 52000 | 0.0064 | 0.0992 | 0.7845 |
|
483 |
-
| 28.0423 | 53000 | 0.0068 | 0.1021 | 0.7840 |
|
484 |
-
| 28.5714 | 54000 | 0.0066 | 0.0974 | 0.7863 |
|
485 |
-
| 29.1005 | 55000 | 0.0066 | 0.1001 | 0.7848 |
|
486 |
-
| 29.6296 | 56000 | 0.0067 | 0.0997 | 0.7848 |
|
487 |
-
| 30.1587 | 57000 | 0.0067 | 0.0965 | 0.7868 |
|
488 |
-
| 30.6878 | 58000 | 0.0067 | 0.0968 | 0.7858 |
|
489 |
-
| 31.2169 | 59000 | 0.0066 | 0.0973 | 0.7861 |
|
490 |
-
| 31.7460 | 60000 | 0.0067 | 0.0972 | 0.7865 |
|
491 |
-
| 32.2751 | 61000 | 0.0065 | 0.0991 | 0.7855 |
|
492 |
-
| 32.8042 | 62000 | 0.0062 | 0.0960 | 0.7871 |
|
493 |
-
| 33.3333 | 63000 | 0.0068 | 0.1006 | 0.7863 |
|
494 |
-
| 33.8624 | 64000 | 0.0063 | 0.0980 | 0.7872 |
|
495 |
-
| 34.3915 | 65000 | 0.0066 | 0.0957 | 0.7871 |
|
496 |
-
| 34.9206 | 66000 | 0.0066 | 0.0971 | 0.7870 |
|
497 |
-
| 35.4497 | 67000 | 0.0063 | 0.0982 | 0.7857 |
|
498 |
-
| 35.9788 | 68000 | 0.0067 | 0.0944 | 0.7871 |
|
499 |
-
| 36.5079 | 69000 | 0.0062 | 0.0961 | 0.7870 |
|
500 |
-
| 37.0370 | 70000 | 0.0061 | 0.0924 | 0.7880 |
|
501 |
-
| 37.5661 | 71000 | 0.0064 | 0.0928 | 0.7878 |
|
502 |
-
| 38.0952 | 72000 | 0.0065 | 0.0934 | 0.7888 |
|
503 |
-
| 38.6243 | 73000 | 0.0069 | 0.0948 | 0.7873 |
|
504 |
-
| **39.1534** | **74000** | **0.0064** | **0.0922** | **0.7885** |
|
505 |
-
| 39.6825 | 75000 | 0.0064 | 0.0937 | 0.7888 |
|
506 |
-
| 40.2116 | 76000 | 0.0059 | 0.0941 | 0.7882 |
|
507 |
-
| 40.7407 | 77000 | 0.0067 | 0.0934 | 0.7900 |
|
508 |
-
| 41.2698 | 78000 | 0.0064 | 0.0926 | 0.7888 |
|
509 |
-
| 41.7989 | 79000 | 0.006 | 0.0948 | 0.7880 |
|
510 |
-
| 42.3280 | 80000 | 0.006 | 0.0953 | 0.7876 |
|
511 |
-
| 42.8571 | 81000 | 0.0058 | 0.0955 | 0.7887 |
|
512 |
-
| 43.3862 | 82000 | 0.0065 | 0.0945 | 0.7875 |
|
513 |
-
| 43.9153 | 83000 | 0.0063 | 0.0928 | 0.7888 |
|
514 |
-
| 44.4444 | 84000 | 0.0065 | 0.0959 | 0.7883 |
|
515 |
-
| 44.9735 | 85000 | 0.0063 | 0.0956 | 0.7876 |
|
516 |
-
| 45.5026 | 86000 | 0.006 | 0.0946 | 0.7893 |
|
517 |
-
| 46.0317 | 87000 | 0.0062 | 0.0954 | 0.7908 |
|
518 |
-
| 46.5608 | 88000 | 0.0061 | 0.0960 | 0.7896 |
|
519 |
-
| 47.0899 | 89000 | 0.006 | 0.0953 | 0.7893 |
|
520 |
-
| 47.6190 | 90000 | 0.0058 | 0.0941 | 0.7899 |
|
521 |
-
| 48.1481 | 91000 | 0.0059 | 0.0950 | 0.7892 |
|
522 |
-
| 48.6772 | 92000 | 0.0066 | 0.0948 | 0.7890 |
|
523 |
-
| 49.2063 | 93000 | 0.0058 | 0.0947 | 0.7886 |
|
524 |
-
| 49.7354 | 94000 | 0.006 | 0.0952 | 0.7891 |
|
525 |
-
| 50.2646 | 95000 | 0.0058 | 0.0948 | 0.7885 |
|
526 |
-
| 50.7937 | 96000 | 0.0058 | 0.0945 | 0.7894 |
|
527 |
-
| 51.3228 | 97000 | 0.0059 | 0.0936 | 0.7901 |
|
528 |
-
| 51.8519 | 98000 | 0.0059 | 0.0950 | 0.7900 |
|
529 |
-
| 52.3810 | 99000 | 0.0058 | 0.0954 | 0.7893 |
|
530 |
-
| 52.9101 | 100000 | 0.0058 | 0.0946 | 0.7900 |
|
531 |
-
| 53.4392 | 101000 | 0.0056 | 0.0943 | 0.7900 |
|
532 |
-
| 53.9683 | 102000 | 0.006 | 0.0950 | 0.7895 |
|
533 |
-
| 54.4974 | 103000 | 0.0059 | 0.0937 | 0.7899 |
|
534 |
-
| 55.0265 | 104000 | 0.0061 | 0.0941 | 0.7897 |
|
535 |
-
| 55.5556 | 105000 | 0.0059 | 0.0941 | 0.7903 |
|
536 |
-
| 56.0847 | 106000 | 0.0057 | 0.0924 | 0.7904 |
|
537 |
-
| 56.6138 | 107000 | 0.006 | 0.0933 | 0.7901 |
|
538 |
-
| 57.1429 | 108000 | 0.0059 | 0.0948 | 0.7888 |
|
539 |
-
| 57.6720 | 109000 | 0.0061 | 0.0938 | 0.7899 |
|
540 |
-
| 58.2011 | 110000 | 0.0058 | 0.0942 | 0.7904 |
|
541 |
-
| 58.7302 | 111000 | 0.0056 | 0.0943 | 0.7913 |
|
542 |
-
| 59.2593 | 112000 | 0.0056 | 0.0949 | 0.7915 |
|
543 |
-
| 59.7884 | 113000 | 0.0058 | 0.0947 | 0.7907 |
|
544 |
-
| 60.3175 | 114000 | 0.0058 | 0.0939 | 0.7910 |
|
545 |
-
| 60.8466 | 115000 | 0.0058 | 0.0942 | 0.7906 |
|
546 |
-
| 61.3757 | 116000 | 0.0055 | 0.0933 | 0.7910 |
|
547 |
-
| 61.9048 | 117000 | 0.0055 | 0.0936 | 0.7913 |
|
548 |
-
| 62.4339 | 118000 | 0.0059 | 0.0937 | 0.7904 |
|
549 |
-
| 62.9630 | 119000 | 0.0057 | 0.0943 | 0.7908 |
|
550 |
-
| 63.4921 | 120000 | 0.0056 | 0.0934 | 0.7912 |
|
551 |
-
| 64.0212 | 121000 | 0.0058 | 0.0936 | 0.7909 |
|
552 |
-
| 64.5503 | 122000 | 0.0055 | 0.0942 | 0.7896 |
|
553 |
-
| 65.0794 | 123000 | 0.0058 | 0.0939 | 0.7901 |
|
554 |
-
| 65.6085 | 124000 | 0.0057 | 0.0936 | 0.7907 |
|
555 |
-
| 66.1376 | 125000 | 0.0054 | 0.0951 | 0.7901 |
|
556 |
-
| 66.6667 | 126000 | 0.0055 | 0.0942 | 0.7912 |
|
557 |
-
| 67.1958 | 127000 | 0.0057 | 0.0943 | 0.7914 |
|
558 |
-
| 67.7249 | 128000 | 0.0057 | 0.0937 | 0.7910 |
|
559 |
-
| 68.2540 | 129000 | 0.0057 | 0.0933 | 0.7918 |
|
560 |
-
| 68.7831 | 130000 | 0.0055 | 0.0935 | 0.7913 |
|
561 |
-
| 69.3122 | 131000 | 0.0053 | 0.0935 | 0.7908 |
|
562 |
-
| 69.8413 | 132000 | 0.0057 | 0.0937 | 0.7905 |
|
563 |
-
| 70.3704 | 133000 | 0.0055 | 0.0940 | 0.7912 |
|
564 |
-
| 70.8995 | 134000 | 0.0052 | 0.0937 | 0.7913 |
|
565 |
-
| 71.4286 | 135000 | 0.005 | 0.0940 | 0.7917 |
|
566 |
-
| 71.9577 | 136000 | 0.0053 | 0.0933 | 0.7914 |
|
567 |
-
| 72.4868 | 137000 | 0.0056 | 0.0940 | 0.7915 |
|
568 |
-
| 73.0159 | 138000 | 0.0054 | 0.0937 | 0.7909 |
|
569 |
-
| 73.5450 | 139000 | 0.0051 | 0.0940 | 0.7909 |
|
570 |
-
| 74.0741 | 140000 | 0.0058 | 0.0938 | 0.7911 |
|
571 |
-
| 74.6032 | 141000 | 0.0056 | 0.0938 | 0.7912 |
|
572 |
-
| 75.1323 | 142000 | 0.0052 | 0.0931 | 0.7908 |
|
573 |
-
| 75.6614 | 143000 | 0.0052 | 0.0937 | 0.7905 |
|
574 |
-
| 76.1905 | 144000 | 0.0054 | 0.0940 | 0.7905 |
|
575 |
-
| 76.7196 | 145000 | 0.0055 | 0.0940 | 0.7907 |
|
576 |
-
| 77.2487 | 146000 | 0.0053 | 0.0941 | 0.7909 |
|
577 |
-
| 77.7778 | 147000 | 0.0057 | 0.0944 | 0.7907 |
|
578 |
-
| 78.3069 | 148000 | 0.0054 | 0.0947 | 0.7909 |
|
579 |
-
| 78.8360 | 149000 | 0.0054 | 0.0949 | 0.7907 |
|
580 |
-
| 79.3651 | 150000 | 0.0055 | 0.0948 | 0.7907 |
|
581 |
-
| 79.8942 | 151000 | 0.0058 | 0.0950 | 0.7907 |
|
582 |
-
| 80.4233 | 152000 | 0.0054 | 0.0946 | 0.7907 |
|
583 |
-
| 80.9524 | 153000 | 0.0053 | 0.0949 | 0.7909 |
|
584 |
-
| 81.4815 | 154000 | 0.0055 | 0.0947 | 0.7908 |
|
585 |
-
| 82.0106 | 155000 | 0.0053 | 0.0946 | 0.7906 |
|
586 |
-
| 82.5397 | 156000 | 0.0053 | 0.0949 | 0.7906 |
|
587 |
-
| 83.0688 | 157000 | 0.0051 | 0.0948 | 0.7912 |
|
588 |
-
| 83.5979 | 158000 | 0.0052 | 0.0954 | 0.7906 |
|
589 |
-
| 84.1270 | 159000 | 0.0054 | 0.0953 | 0.7908 |
|
590 |
-
| 84.6561 | 160000 | 0.005 | 0.0951 | 0.7911 |
|
591 |
-
| 85.1852 | 161000 | 0.0054 | 0.0953 | 0.7910 |
|
592 |
-
| 85.7143 | 162000 | 0.0056 | 0.0957 | 0.7907 |
|
593 |
-
| 86.2434 | 163000 | 0.0054 | 0.0953 | 0.7909 |
|
594 |
-
| 86.7725 | 164000 | 0.0051 | 0.0955 | 0.7912 |
|
595 |
-
| 87.3016 | 165000 | 0.0055 | 0.0956 | 0.7911 |
|
596 |
-
| 87.8307 | 166000 | 0.0056 | 0.0954 | 0.7909 |
|
597 |
-
| 88.3598 | 167000 | 0.0052 | 0.0955 | 0.7911 |
|
598 |
-
| 88.8889 | 168000 | 0.0052 | 0.0953 | 0.7910 |
|
599 |
-
| 89.4180 | 169000 | 0.0052 | 0.0952 | 0.7906 |
|
600 |
-
| 89.9471 | 170000 | 0.0053 | 0.0952 | 0.7908 |
|
601 |
-
| 90.4762 | 171000 | 0.0052 | 0.0954 | 0.7908 |
|
602 |
-
| 91.0053 | 172000 | 0.0054 | 0.0954 | 0.7907 |
|
603 |
-
| 91.5344 | 173000 | 0.0052 | 0.0951 | 0.7909 |
|
604 |
-
| 92.0635 | 174000 | 0.0053 | 0.0951 | 0.7907 |
|
605 |
-
| 92.5926 | 175000 | 0.0051 | 0.0950 | 0.7906 |
|
606 |
-
| 93.1217 | 176000 | 0.0054 | 0.0953 | 0.7907 |
|
607 |
-
| 93.6508 | 177000 | 0.0052 | 0.0953 | 0.7907 |
|
608 |
-
| 94.1799 | 178000 | 0.0051 | 0.0951 | 0.7908 |
|
609 |
-
| 94.7090 | 179000 | 0.0052 | 0.0952 | 0.7906 |
|
610 |
-
| 95.2381 | 180000 | 0.0053 | 0.0953 | 0.7909 |
|
611 |
-
| 95.7672 | 181000 | 0.0052 | 0.0953 | 0.7908 |
|
612 |
-
| 96.2963 | 182000 | 0.0051 | 0.0952 | 0.7906 |
|
613 |
-
| 96.8254 | 183000 | 0.0053 | 0.0953 | 0.7907 |
|
614 |
-
| 97.3545 | 184000 | 0.0051 | 0.0953 | 0.7907 |
|
615 |
-
| 97.8836 | 185000 | 0.0049 | 0.0953 | 0.7906 |
|
616 |
-
| 98.4127 | 186000 | 0.0051 | 0.0953 | 0.7907 |
|
617 |
-
| 98.9418 | 187000 | 0.0051 | 0.0954 | 0.7906 |
|
618 |
-
| 99.4709 | 188000 | 0.0053 | 0.0954 | 0.7906 |
|
619 |
-
| 100.0 | 189000 | 0.0051 | 0.0954 | 0.7904 |
|
620 |
-
| 100.5291 | 190000 | 0.0054 | 0.0953 | 0.7907 |
|
621 |
-
| 101.0582 | 191000 | 0.0052 | 0.0954 | 0.7905 |
|
622 |
-
| 101.5873 | 192000 | 0.0051 | 0.0954 | 0.7907 |
|
623 |
-
| 102.1164 | 193000 | 0.0052 | 0.0953 | 0.7907 |
|
624 |
-
| 102.6455 | 194000 | 0.0051 | 0.0955 | 0.7908 |
|
625 |
-
| 103.1746 | 195000 | 0.0054 | 0.0954 | 0.7906 |
|
626 |
-
| 103.7037 | 196000 | 0.0052 | 0.0954 | 0.7905 |
|
627 |
-
| 104.2328 | 197000 | 0.0053 | 0.0954 | 0.7906 |
|
628 |
-
| 104.7619 | 198000 | 0.0052 | 0.0954 | 0.7907 |
|
629 |
-
| 105.2910 | 199000 | 0.0055 | 0.0954 | 0.7904 |
|
630 |
-
| 105.8201 | 200000 | 0.0054 | 0.0955 | 0.7905 |
|
631 |
-
|
632 |
-
* The bold row denotes the saved checkpoint.
|
633 |
-
</details>
|
634 |
|
635 |
### Framework Versions
|
636 |
- Python: 3.12.3
|
@@ -658,6 +310,17 @@ You can finetune this model on your own dataset.
|
|
658 |
}
|
659 |
```
|
660 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
661 |
<!--
|
662 |
## Glossary
|
663 |
|
|
|
12 |
- retrieval
|
13 |
- reranking
|
14 |
- generated_from_trainer
|
15 |
+
- dataset_size:1056095
|
16 |
+
- loss:CoSENTLoss
|
17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
18 |
widget:
|
19 |
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
|
|
|
85 |
type: train
|
86 |
metrics:
|
87 |
- type: cosine_accuracy@1
|
88 |
+
value: 0.5579129681749296
|
89 |
name: Cosine Accuracy@1
|
90 |
- type: cosine_precision@1
|
91 |
+
value: 0.5579129681749296
|
92 |
name: Cosine Precision@1
|
93 |
- type: cosine_recall@1
|
94 |
+
value: 0.5359784831006956
|
95 |
name: Cosine Recall@1
|
96 |
- type: cosine_ndcg@10
|
97 |
+
value: 0.7522148521266401
|
98 |
name: Cosine Ndcg@10
|
99 |
- type: cosine_mrr@1
|
100 |
+
value: 0.5579129681749296
|
101 |
name: Cosine Mrr@1
|
102 |
- type: cosine_map@100
|
103 |
+
value: 0.6974638651409195
|
104 |
name: Cosine Map@100
|
105 |
---
|
106 |
|
|
|
165 |
# Get the similarity scores for the embeddings
|
166 |
similarities = model.similarity(embeddings, embeddings)
|
167 |
print(similarities)
|
168 |
+
# tensor([[0.9922, 0.9922, 0.5352],
|
169 |
+
# [0.9922, 0.9961, 0.5391],
|
170 |
+
# [0.5352, 0.5391, 1.0000]], dtype=torch.bfloat16)
|
171 |
```
|
172 |
|
173 |
<!--
|
|
|
205 |
|
206 |
| Metric | Value |
|
207 |
|:-------------------|:-----------|
|
208 |
+
| cosine_accuracy@1 | 0.5579 |
|
209 |
+
| cosine_precision@1 | 0.5579 |
|
210 |
+
| cosine_recall@1 | 0.536 |
|
211 |
+
| **cosine_ndcg@10** | **0.7522** |
|
212 |
+
| cosine_mrr@1 | 0.5579 |
|
213 |
+
| cosine_map@100 | 0.6975 |
|
214 |
|
215 |
<!--
|
216 |
## Bias, Risks and Limitations
|
|
|
244 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
245 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
246 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
247 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
248 |
```json
|
249 |
{
|
250 |
"scale": 20.0,
|
251 |
+
"similarity_fct": "pairwise_cos_sim"
|
|
|
252 |
}
|
253 |
```
|
254 |
|
|
|
270 |
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
271 |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
272 |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
273 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
274 |
```json
|
275 |
{
|
276 |
"scale": 20.0,
|
277 |
+
"similarity_fct": "pairwise_cos_sim"
|
|
|
278 |
}
|
279 |
```
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
### Training Logs
|
282 |
+
| Epoch | Step | train_cosine_ndcg@10 |
|
283 |
+
|:-----:|:----:|:--------------------:|
|
284 |
+
| -1 | -1 | 0.7522 |
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
### Framework Versions
|
288 |
- Python: 3.12.3
|
|
|
310 |
}
|
311 |
```
|
312 |
|
313 |
+
#### CoSENTLoss
|
314 |
+
```bibtex
|
315 |
+
@online{kexuefm-8847,
|
316 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
317 |
+
author={Su Jianlin},
|
318 |
+
year={2022},
|
319 |
+
month={Jan},
|
320 |
+
url={https://kexue.fm/archives/8847},
|
321 |
+
}
|
322 |
+
```
|
323 |
+
|
324 |
<!--
|
325 |
## Glossary
|
326 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 298041696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
|
3 |
size 298041696
|