Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
Add new SentenceTransformer model
Browse files- README.md +122 -167
- config.json +1 -1
- model.safetensors +2 -2
- sentence_bert_config.json +1 -1
- tokenizer.json +1 -1
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -12,132 +12,96 @@ tags:
|
|
12 |
- retrieval
|
13 |
- reranking
|
14 |
- generated_from_trainer
|
15 |
-
- dataset_size:
|
16 |
-
- loss:
|
17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
18 |
widget:
|
19 |
-
- source_sentence:
|
20 |
-
|
21 |
sentences:
|
22 |
-
- In
|
23 |
-
|
24 |
-
- In
|
25 |
-
the
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
sentences:
|
31 |
-
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
sentences:
|
40 |
-
- The
|
41 |
-
|
42 |
-
-
|
43 |
-
|
44 |
-
|
45 |
-
-
|
46 |
-
,
|
|
|
|
|
47 |
sentences:
|
48 |
-
-
|
49 |
-
|
50 |
-
-
|
51 |
-
|
52 |
-
-
|
53 |
-
|
54 |
-
- source_sentence:
|
55 |
-
|
56 |
sentences:
|
57 |
-
-
|
58 |
-
|
59 |
-
-
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
datasets:
|
64 |
- redis/langcache-sentencepairs-v1
|
65 |
pipeline_tag: sentence-similarity
|
66 |
library_name: sentence-transformers
|
67 |
metrics:
|
68 |
-
- cosine_accuracy
|
69 |
-
-
|
70 |
-
-
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
74 |
-
- cosine_ap
|
75 |
-
- cosine_mcc
|
76 |
model-index:
|
77 |
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
|
78 |
results:
|
79 |
- task:
|
80 |
-
type:
|
81 |
-
name:
|
82 |
dataset:
|
83 |
-
name:
|
84 |
-
type:
|
85 |
metrics:
|
86 |
-
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
-
name: Cosine Accuracy
|
89 |
-
- type:
|
90 |
-
value: 0.
|
91 |
-
name: Cosine
|
92 |
-
- type:
|
93 |
-
value: 0.
|
94 |
-
name: Cosine
|
95 |
-
- type:
|
96 |
-
value: 0.
|
97 |
-
name: Cosine
|
98 |
-
- type:
|
99 |
-
value: 0.
|
100 |
-
name: Cosine
|
101 |
-
- type:
|
102 |
-
value: 0.
|
103 |
-
name: Cosine
|
104 |
-
- type: cosine_ap
|
105 |
-
value: 0.7350867007914639
|
106 |
-
name: Cosine Ap
|
107 |
-
- type: cosine_mcc
|
108 |
-
value: 0.47714361581572273
|
109 |
-
name: Cosine Mcc
|
110 |
-
- task:
|
111 |
-
type: binary-classification
|
112 |
-
name: Binary Classification
|
113 |
-
dataset:
|
114 |
-
name: test
|
115 |
-
type: test
|
116 |
-
metrics:
|
117 |
-
- type: cosine_accuracy
|
118 |
-
value: 0.7034875284177939
|
119 |
-
name: Cosine Accuracy
|
120 |
-
- type: cosine_accuracy_threshold
|
121 |
-
value: 0.8523406982421875
|
122 |
-
name: Cosine Accuracy Threshold
|
123 |
-
- type: cosine_f1
|
124 |
-
value: 0.7118695167174169
|
125 |
-
name: Cosine F1
|
126 |
-
- type: cosine_f1_threshold
|
127 |
-
value: 0.8109798431396484
|
128 |
-
name: Cosine F1 Threshold
|
129 |
-
- type: cosine_precision
|
130 |
-
value: 0.597953808752026
|
131 |
-
name: Cosine Precision
|
132 |
-
- type: cosine_recall
|
133 |
-
value: 0.8794040968342645
|
134 |
-
name: Cosine Recall
|
135 |
-
- type: cosine_ap
|
136 |
-
value: 0.6473629818920917
|
137 |
-
name: Cosine Ap
|
138 |
-
- type: cosine_mcc
|
139 |
-
value: 0.4409362621742405
|
140 |
-
name: Cosine Mcc
|
141 |
---
|
142 |
|
143 |
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
|
@@ -149,7 +113,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
|
|
149 |
### Model Description
|
150 |
- **Model Type:** Sentence Transformer
|
151 |
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
|
152 |
-
- **Maximum Sequence Length:**
|
153 |
- **Output Dimensionality:** 768 dimensions
|
154 |
- **Similarity Function:** Cosine Similarity
|
155 |
- **Training Dataset:**
|
@@ -167,7 +131,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
|
|
167 |
|
168 |
```
|
169 |
SentenceTransformer(
|
170 |
-
(0): Transformer({'max_seq_length':
|
171 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
172 |
)
|
173 |
```
|
@@ -190,9 +154,9 @@ from sentence_transformers import SentenceTransformer
|
|
190 |
model = SentenceTransformer("redis/langcache-embed-v3")
|
191 |
# Run inference
|
192 |
sentences = [
|
193 |
-
'
|
194 |
-
'
|
195 |
-
'
|
196 |
]
|
197 |
embeddings = model.encode(sentences)
|
198 |
print(embeddings.shape)
|
@@ -201,9 +165,9 @@ print(embeddings.shape)
|
|
201 |
# Get the similarity scores for the embeddings
|
202 |
similarities = model.similarity(embeddings, embeddings)
|
203 |
print(similarities)
|
204 |
-
# tensor([[0.
|
205 |
-
# [0.
|
206 |
-
# [0.
|
207 |
```
|
208 |
|
209 |
<!--
|
@@ -234,21 +198,19 @@ You can finetune this model on your own dataset.
|
|
234 |
|
235 |
### Metrics
|
236 |
|
237 |
-
####
|
238 |
|
239 |
-
*
|
240 |
-
* Evaluated with [<code>
|
241 |
|
242 |
-
| Metric
|
243 |
-
|
244 |
-
| cosine_accuracy
|
245 |
-
|
|
246 |
-
|
|
247 |
-
|
|
248 |
-
|
|
249 |
-
|
|
250 |
-
| **cosine_ap** | **0.7351** | **0.6474** |
|
251 |
-
| cosine_mcc | 0.4771 | 0.4409 |
|
252 |
|
253 |
<!--
|
254 |
## Bias, Risks and Limitations
|
@@ -269,24 +231,26 @@ You can finetune this model on your own dataset.
|
|
269 |
#### LangCache Sentence Pairs (all)
|
270 |
|
271 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
272 |
-
* Size:
|
273 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
274 |
* Approximate statistics based on the first 1000 samples:
|
275 |
-
| | sentence1 | sentence2 | label
|
276 |
-
|
277 |
-
| type | string | string | int
|
278 |
-
| details | <ul><li>min: 8 tokens</li><li>mean: 27.
|
279 |
* Samples:
|
280 |
-
| sentence1
|
281 |
-
|
282 |
-
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>
|
283 |
-
| <code>
|
284 |
-
| <code>
|
285 |
-
* Loss: [<code>
|
286 |
```json
|
287 |
{
|
288 |
"scale": 20.0,
|
289 |
-
"similarity_fct": "
|
|
|
|
|
290 |
}
|
291 |
```
|
292 |
|
@@ -295,31 +259,33 @@ You can finetune this model on your own dataset.
|
|
295 |
#### LangCache Sentence Pairs (all)
|
296 |
|
297 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
298 |
-
* Size:
|
299 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
300 |
* Approximate statistics based on the first 1000 samples:
|
301 |
-
| | sentence1 | sentence2 | label
|
302 |
-
|
303 |
-
| type | string | string | int
|
304 |
-
| details | <ul><li>min: 8 tokens</li><li>mean: 27.
|
305 |
* Samples:
|
306 |
-
| sentence1
|
307 |
-
|
308 |
-
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>
|
309 |
-
| <code>
|
310 |
-
| <code>
|
311 |
-
* Loss: [<code>
|
312 |
```json
|
313 |
{
|
314 |
"scale": 20.0,
|
315 |
-
"similarity_fct": "
|
|
|
|
|
316 |
}
|
317 |
```
|
318 |
|
319 |
### Training Logs
|
320 |
-
| Epoch | Step |
|
321 |
-
|
322 |
-
| -1 | -1 | 0.
|
323 |
|
324 |
|
325 |
### Framework Versions
|
@@ -348,17 +314,6 @@ You can finetune this model on your own dataset.
|
|
348 |
}
|
349 |
```
|
350 |
|
351 |
-
#### CoSENTLoss
|
352 |
-
```bibtex
|
353 |
-
@online{kexuefm-8847,
|
354 |
-
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
355 |
-
author={Su Jianlin},
|
356 |
-
year={2022},
|
357 |
-
month={Jan},
|
358 |
-
url={https://kexue.fm/archives/8847},
|
359 |
-
}
|
360 |
-
```
|
361 |
-
|
362 |
<!--
|
363 |
## Glossary
|
364 |
|
|
|
12 |
- retrieval
|
13 |
- reranking
|
14 |
- generated_from_trainer
|
15 |
+
- dataset_size:483820
|
16 |
+
- loss:CachedMultipleNegativesSymmetricRankingLoss
|
17 |
base_model: Alibaba-NLP/gte-modernbert-base
|
18 |
widget:
|
19 |
+
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
|
20 |
+
set of periods 4600 -- 541 MYA .'
|
21 |
sentences:
|
22 |
+
- In 2014 election , Biju Janata Dal candidate Tathagat Satapathy Bharatiya Janata
|
23 |
+
party candidate Rudra Narayan Pany defeated with a margin of 1.37,340 votes .
|
24 |
+
- In Scotland , the Strathclyde Partnership for Transport , formerly known as Strathclyde
|
25 |
+
Passenger Transport Executive , comprises the former Strathclyde region , which
|
26 |
+
includes the urban area around Glasgow .
|
27 |
+
- 'See Precambrian Time Scale # Proposed Geological Timeline for another set of
|
28 |
+
periods of 4600 -- 541 MYA .'
|
29 |
+
- source_sentence: It is also 5 kilometers northeast of Tamaqua , 27 miles south of
|
30 |
+
Allentown and 9 miles northwest of Hazleton .
|
31 |
sentences:
|
32 |
+
- In 1948 he moved to Massachusetts , and eventually settled in Vermont .
|
33 |
+
- Suddenly I remembered that I was a New Zealander , I caught the first plane home
|
34 |
+
and came back .
|
35 |
+
- It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown , and 9
|
36 |
+
miles northwest of Hazleton .
|
37 |
+
- source_sentence: The party has a Member of Parliament , a member of the House of
|
38 |
+
Lords , three members of the London Assembly and two Members of the European Parliament
|
39 |
+
.
|
40 |
sentences:
|
41 |
+
- The party has one Member of Parliament , one member of the House of Lords , three
|
42 |
+
Members of the London Assembly and two Members of the European Parliament .
|
43 |
+
- Grapsid crabs dominate in Australia , Malaysia and Panama , while gastropods Cerithidea
|
44 |
+
scalariformis and Melampus coeffeus are important seed predators in Florida mangroves
|
45 |
+
.
|
46 |
+
- Music Story is a music service website and international music data provider that
|
47 |
+
curates , aggregates and analyses metadata for digital music services .
|
48 |
+
- source_sentence: 'The play received two 1969 Tony Award nominations : Best Actress
|
49 |
+
in a Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
|
50 |
sentences:
|
51 |
+
- Ravishanker is a fellow of the International Statistical Institute and an elected
|
52 |
+
member of the American Statistical Association .
|
53 |
+
- 'In 1969 , the play received two Tony - Award nominations : Best Actress in a
|
54 |
+
Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
|
55 |
+
- AMD and Nvidia both have proprietary methods of scaling , CrossFireX for AMD ,
|
56 |
+
and SLI for Nvidia .
|
57 |
+
- source_sentence: He was a close friend of Ángel Cabrera and is a cousin of golfer
|
58 |
+
Tony Croatto .
|
59 |
sentences:
|
60 |
+
- He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto
|
61 |
+
.
|
62 |
+
- Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian Roman
|
63 |
+
Catholic priest , and Bishop of Šiauliai .
|
64 |
+
- UWIRE also distributes its members content to professional media outlets , including
|
65 |
+
Yahoo , CNN and CBS News .
|
66 |
datasets:
|
67 |
- redis/langcache-sentencepairs-v1
|
68 |
pipeline_tag: sentence-similarity
|
69 |
library_name: sentence-transformers
|
70 |
metrics:
|
71 |
+
- cosine_accuracy@1
|
72 |
+
- cosine_precision@1
|
73 |
+
- cosine_recall@1
|
74 |
+
- cosine_ndcg@10
|
75 |
+
- cosine_mrr@1
|
76 |
+
- cosine_map@100
|
|
|
|
|
77 |
model-index:
|
78 |
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
|
79 |
results:
|
80 |
- task:
|
81 |
+
type: information-retrieval
|
82 |
+
name: Information Retrieval
|
83 |
dataset:
|
84 |
+
name: train
|
85 |
+
type: train
|
86 |
metrics:
|
87 |
+
- type: cosine_accuracy@1
|
88 |
+
value: 0.5579129681749296
|
89 |
+
name: Cosine Accuracy@1
|
90 |
+
- type: cosine_precision@1
|
91 |
+
value: 0.5579129681749296
|
92 |
+
name: Cosine Precision@1
|
93 |
+
- type: cosine_recall@1
|
94 |
+
value: 0.5359784831006956
|
95 |
+
name: Cosine Recall@1
|
96 |
+
- type: cosine_ndcg@10
|
97 |
+
value: 0.7522148521266401
|
98 |
+
name: Cosine Ndcg@10
|
99 |
+
- type: cosine_mrr@1
|
100 |
+
value: 0.5579129681749296
|
101 |
+
name: Cosine Mrr@1
|
102 |
+
- type: cosine_map@100
|
103 |
+
value: 0.6974638651409195
|
104 |
+
name: Cosine Map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
---
|
106 |
|
107 |
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
|
|
|
113 |
### Model Description
|
114 |
- **Model Type:** Sentence Transformer
|
115 |
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
|
116 |
+
- **Maximum Sequence Length:** 100 tokens
|
117 |
- **Output Dimensionality:** 768 dimensions
|
118 |
- **Similarity Function:** Cosine Similarity
|
119 |
- **Training Dataset:**
|
|
|
131 |
|
132 |
```
|
133 |
SentenceTransformer(
|
134 |
+
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
|
135 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
136 |
)
|
137 |
```
|
|
|
154 |
model = SentenceTransformer("redis/langcache-embed-v3")
|
155 |
# Run inference
|
156 |
sentences = [
|
157 |
+
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
|
158 |
+
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
|
159 |
+
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
|
160 |
]
|
161 |
embeddings = model.encode(sentences)
|
162 |
print(embeddings.shape)
|
|
|
165 |
# Get the similarity scores for the embeddings
|
166 |
similarities = model.similarity(embeddings, embeddings)
|
167 |
print(similarities)
|
168 |
+
# tensor([[0.9922, 0.9922, 0.5352],
|
169 |
+
# [0.9922, 0.9961, 0.5391],
|
170 |
+
# [0.5352, 0.5391, 1.0000]], dtype=torch.bfloat16)
|
171 |
```
|
172 |
|
173 |
<!--
|
|
|
198 |
|
199 |
### Metrics
|
200 |
|
201 |
+
#### Information Retrieval
|
202 |
|
203 |
+
* Dataset: `train`
|
204 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
205 |
|
206 |
+
| Metric | Value |
|
207 |
+
|:-------------------|:-----------|
|
208 |
+
| cosine_accuracy@1 | 0.5579 |
|
209 |
+
| cosine_precision@1 | 0.5579 |
|
210 |
+
| cosine_recall@1 | 0.536 |
|
211 |
+
| **cosine_ndcg@10** | **0.7522** |
|
212 |
+
| cosine_mrr@1 | 0.5579 |
|
213 |
+
| cosine_map@100 | 0.6975 |
|
|
|
|
|
214 |
|
215 |
<!--
|
216 |
## Bias, Risks and Limitations
|
|
|
231 |
#### LangCache Sentence Pairs (all)
|
232 |
|
233 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
234 |
+
* Size: 26,850 training samples
|
235 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
236 |
* Approximate statistics based on the first 1000 samples:
|
237 |
+
| | sentence1 | sentence2 | label |
|
238 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
|
239 |
+
| type | string | string | int |
|
240 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
241 |
* Samples:
|
242 |
+
| sentence1 | sentence2 | label |
|
243 |
+
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
244 |
+
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
245 |
+
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
246 |
+
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
247 |
+
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
|
248 |
```json
|
249 |
{
|
250 |
"scale": 20.0,
|
251 |
+
"similarity_fct": "cos_sim",
|
252 |
+
"mini_batch_size": 128,
|
253 |
+
"gather_across_devices": false
|
254 |
}
|
255 |
```
|
256 |
|
|
|
259 |
#### LangCache Sentence Pairs (all)
|
260 |
|
261 |
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
|
262 |
+
* Size: 26,850 evaluation samples
|
263 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
264 |
* Approximate statistics based on the first 1000 samples:
|
265 |
+
| | sentence1 | sentence2 | label |
|
266 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
|
267 |
+
| type | string | string | int |
|
268 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
|
269 |
* Samples:
|
270 |
+
| sentence1 | sentence2 | label |
|
271 |
+
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
272 |
+
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
|
273 |
+
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
|
274 |
+
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
|
275 |
+
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
|
276 |
```json
|
277 |
{
|
278 |
"scale": 20.0,
|
279 |
+
"similarity_fct": "cos_sim",
|
280 |
+
"mini_batch_size": 128,
|
281 |
+
"gather_across_devices": false
|
282 |
}
|
283 |
```
|
284 |
|
285 |
### Training Logs
|
286 |
+
| Epoch | Step | train_cosine_ndcg@10 |
|
287 |
+
|:-----:|:----:|:--------------------:|
|
288 |
+
| -1 | -1 | 0.7522 |
|
289 |
|
290 |
|
291 |
### Framework Versions
|
|
|
314 |
}
|
315 |
```
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
<!--
|
318 |
## Glossary
|
319 |
|
config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"cls_token_id": 50281,
|
13 |
"decoder_bias": true,
|
14 |
"deterministic_flash_attn": false,
|
15 |
-
"dtype": "
|
16 |
"embedding_dropout": 0.0,
|
17 |
"eos_token_id": 50282,
|
18 |
"global_attn_every_n_layers": 3,
|
|
|
12 |
"cls_token_id": 50281,
|
13 |
"decoder_bias": true,
|
14 |
"deterministic_flash_attn": false,
|
15 |
+
"dtype": "bfloat16",
|
16 |
"embedding_dropout": 0.0,
|
17 |
"eos_token_id": 50282,
|
18 |
"global_attn_every_n_layers": 3,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d02211c4cca89113f9f3e93ed91f5176bf50170faa2cb835f7bfea15bb9dd2
|
3 |
+
size 298041696
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 100,
|
3 |
"do_lower_case": false
|
4 |
}
|
tokenizer.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 100,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
tokenizer_config.json
CHANGED
@@ -933,6 +933,7 @@
|
|
933 |
"cls_token": "[CLS]",
|
934 |
"extra_special_tokens": {},
|
935 |
"mask_token": "[MASK]",
|
|
|
936 |
"model_input_names": [
|
937 |
"input_ids",
|
938 |
"attention_mask"
|
|
|
933 |
"cls_token": "[CLS]",
|
934 |
"extra_special_tokens": {},
|
935 |
"mask_token": "[MASK]",
|
936 |
+
"max_length": 100,
|
937 |
"model_input_names": [
|
938 |
"input_ids",
|
939 |
"attention_mask"
|