WideResNet50 / README.md
qaihm-bot's picture
v0.37.0
5582986 verified
metadata
library_name: pytorch
license: other
tags:
  - backbone
  - android
pipeline_tag: image-classification

WideResNet50: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

WideResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of WideResNet50 found here.

This repository provides scripts to run WideResNet50 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 68.9M
    • Model size (float): 263 MB
    • Model size (w8a8): 66.6 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
WideResNet50 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 24.024 ms 0 - 91 MB NPU WideResNet50.tflite
WideResNet50 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 24.108 ms 1 - 40 MB NPU WideResNet50.dlc
WideResNet50 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 6.831 ms 0 - 171 MB NPU WideResNet50.tflite
WideResNet50 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 10.374 ms 0 - 38 MB NPU WideResNet50.dlc
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 4.852 ms 0 - 875 MB NPU WideResNet50.tflite
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.795 ms 1 - 11 MB NPU WideResNet50.dlc
WideResNet50 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 4.851 ms 0 - 171 MB NPU WideResNet50.onnx.zip
WideResNet50 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.269 ms 0 - 92 MB NPU WideResNet50.tflite
WideResNet50 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 7.146 ms 1 - 42 MB NPU WideResNet50.dlc
WideResNet50 float SA7255P ADP Qualcomm® SA7255P TFLITE 24.024 ms 0 - 91 MB NPU WideResNet50.tflite
WideResNet50 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 24.108 ms 1 - 40 MB NPU WideResNet50.dlc
WideResNet50 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 4.845 ms 0 - 870 MB NPU WideResNet50.tflite
WideResNet50 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.826 ms 1 - 16 MB NPU WideResNet50.dlc
WideResNet50 float SA8295P ADP Qualcomm® SA8295P TFLITE 7.912 ms 0 - 87 MB NPU WideResNet50.tflite
WideResNet50 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 7.775 ms 1 - 32 MB NPU WideResNet50.dlc
WideResNet50 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 4.85 ms 0 - 867 MB NPU WideResNet50.tflite
WideResNet50 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.795 ms 1 - 12 MB NPU WideResNet50.dlc
WideResNet50 float SA8775P ADP Qualcomm® SA8775P TFLITE 7.269 ms 0 - 92 MB NPU WideResNet50.tflite
WideResNet50 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 7.146 ms 1 - 42 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 4.851 ms 0 - 858 MB NPU WideResNet50.tflite
WideResNet50 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 4.8 ms 1 - 16 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 4.815 ms 0 - 169 MB NPU WideResNet50.onnx.zip
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 3.553 ms 0 - 188 MB NPU WideResNet50.tflite
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.602 ms 1 - 51 MB NPU WideResNet50.dlc
WideResNet50 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 3.663 ms 0 - 46 MB NPU WideResNet50.onnx.zip
WideResNet50 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 3.367 ms 0 - 96 MB NPU WideResNet50.tflite
WideResNet50 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 3.221 ms 0 - 43 MB NPU WideResNet50.dlc
WideResNet50 float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.396 ms 0 - 39 MB NPU WideResNet50.onnx.zip
WideResNet50 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.672 ms 449 - 449 MB NPU WideResNet50.dlc
WideResNet50 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.407 ms 133 - 133 MB NPU WideResNet50.onnx.zip
WideResNet50 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.726 ms 0 - 43 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 4.041 ms 0 - 44 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.126 ms 0 - 108 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.516 ms 0 - 109 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.779 ms 0 - 391 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.858 ms 5 - 360 MB NPU WideResNet50.dlc
WideResNet50 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.909 ms 0 - 43 MB NPU WideResNet50.tflite
WideResNet50 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.004 ms 0 - 44 MB NPU WideResNet50.dlc
WideResNet50 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 7.229 ms 0 - 96 MB NPU WideResNet50.tflite
WideResNet50 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 10.036 ms 0 - 97 MB NPU WideResNet50.dlc
WideResNet50 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 24.466 ms 0 - 2 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 3.726 ms 0 - 43 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 4.041 ms 0 - 44 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.775 ms 0 - 379 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.894 ms 0 - 369 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.603 ms 0 - 47 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.75 ms 0 - 50 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.782 ms 0 - 383 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.873 ms 0 - 358 MB NPU WideResNet50.dlc
WideResNet50 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.909 ms 0 - 43 MB NPU WideResNet50.tflite
WideResNet50 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.004 ms 0 - 44 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 1.78 ms 0 - 386 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 1.884 ms 0 - 340 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.374 ms 0 - 108 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.436 ms 0 - 106 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.213 ms 0 - 51 MB NPU WideResNet50.tflite
WideResNet50 w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 1.234 ms 0 - 51 MB NPU WideResNet50.dlc
WideResNet50 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.808 ms 394 - 394 MB NPU WideResNet50.dlc

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.wideresnet50.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.wideresnet50.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.wideresnet50.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.wideresnet50 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.wideresnet50.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.wideresnet50.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on WideResNet50's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of WideResNet50 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community