File size: 20,773 Bytes
c5ed3e5
 
b854422
c5ed3e5
 
 
8ae5e2a
c5ed3e5
 
 
28cde4f
c5ed3e5
 
 
 
dd98876
c5ed3e5
 
af68b3f
dd98876
 
c5ed3e5
 
 
 
 
c5eeb92
c5ed3e5
 
b854422
c5ed3e5
 
 
4fabc7b
b854422
 
c5ed3e5
b854422
3b7145b
d28fbdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ed3e5
8393a5a
 
c5ed3e5
 
 
 
d2140e7
c5ed3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5eeb92
8393a5a
 
c5ed3e5
 
8393a5a
c5ed3e5
 
 
 
 
 
 
 
 
 
 
 
6e8076a
c5ed3e5
 
6e8076a
c5ed3e5
 
7be50f4
c5ed3e5
6e8076a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ed3e5
 
 
 
 
 
 
 
 
 
 
 
2746bba
 
 
3a9c6c9
c5ed3e5
 
 
 
 
 
 
 
 
2746bba
 
 
 
3a9c6c9
c5ed3e5
 
 
 
 
 
28cde4f
c5ed3e5
 
8393a5a
c5ed3e5
 
 
 
 
e8e0758
c5ed3e5
 
 
 
 
e8e0758
c5ed3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7145b
c5ed3e5
d2140e7
 
3b7145b
 
 
c5ed3e5
 
 
 
 
3b7145b
 
c5ed3e5
5c4da85
c5ed3e5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/wideresnet50/web-assets/model_demo.png)

# WideResNet50: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


WideResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of WideResNet50 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).


This repository provides scripts to run WideResNet50 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/wideresnet50).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 68.9M
  - Model size (float): 263 MB
  - Model size (w8a8): 66.6 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| WideResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 23.999 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 24.375 ms | 1 - 41 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.824 ms | 0 - 175 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 9.193 ms | 0 - 38 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.86 ms | 0 - 850 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.756 ms | 3 - 14 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 4.781 ms | 0 - 167 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.onnx.zip) |
| WideResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 7.318 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 7.156 ms | 1 - 42 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 23.999 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 24.375 ms | 1 - 41 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.845 ms | 0 - 860 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.787 ms | 1 - 12 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.921 ms | 0 - 85 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.886 ms | 1 - 33 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.851 ms | 0 - 868 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.785 ms | 1 - 12 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 7.318 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 7.156 ms | 1 - 42 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.577 ms | 0 - 186 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.59 ms | 1 - 48 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.576 ms | 0 - 49 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.onnx.zip) |
| WideResNet50 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 3.027 ms | 0 - 97 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.94 ms | 1 - 49 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 3.03 ms | 0 - 43 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.onnx.zip) |
| WideResNet50 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 2.782 ms | 0 - 96 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) |
| WideResNet50 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.498 ms | 1 - 43 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 2.817 ms | 1 - 50 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.onnx.zip) |
| WideResNet50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.653 ms | 451 - 451 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) |
| WideResNet50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.473 ms | 133 - 133 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.onnx.zip) |
| WideResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.762 ms | 0 - 42 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.03 ms | 0 - 45 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.076 ms | 0 - 108 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.501 ms | 0 - 108 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.742 ms | 0 - 401 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.873 ms | 0 - 365 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.143 ms | 0 - 228 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.88 ms | 0 - 42 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.012 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 7.377 ms | 0 - 97 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 9.977 ms | 0 - 97 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 79.946 ms | 13 - 29 MB | CPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 24.212 ms | 0 - 3 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 62.122 ms | 7 - 86 MB | CPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.762 ms | 0 - 42 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.03 ms | 0 - 45 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.746 ms | 0 - 370 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.885 ms | 0 - 367 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.625 ms | 0 - 48 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.767 ms | 0 - 48 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.739 ms | 0 - 392 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.873 ms | 0 - 372 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.88 ms | 0 - 42 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.012 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.314 ms | 0 - 106 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.437 ms | 0 - 108 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.577 ms | 0 - 114 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.158 ms | 0 - 48 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.167 ms | 0 - 51 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.378 ms | 0 - 52 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.083 ms | 0 - 44 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) |
| WideResNet50 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.089 ms | 0 - 51 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.365 ms | 0 - 52 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |
| WideResNet50 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.809 ms | 392 - 392 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) |
| WideResNet50 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.848 ms | 68 - 68 MB | NPU | [WideResNet50.onnx.zip](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.wideresnet50.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.wideresnet50.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.wideresnet50.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/wideresnet50/qai_hub_models/models/WideResNet50/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.wideresnet50 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.wideresnet50.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.wideresnet50.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on WideResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/wideresnet50).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of WideResNet50 can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Wide Residual Networks](https://arxiv.org/abs/1605.07146)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).