license: apache-2.0 tags:
LoRA
4-bit
BF16
FlashAttn2
Pokémon
EMA
fast-training
text-generation
chat
transformers language: en datasets:
ogmatrixllm/pokemon-lore-instructions finetuned_from: Qwen/Qwen2.5-7B-Instruct tasks:
text-generation
Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
This is a LoRA-fused model based on Qwen/Qwen2.5-7B-Instruct.
Model Description
- Model Name: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
- Language: en
- License: apache-2.0
- Dataset: ogmatrixllm/pokemon-lore-instructions
- Tags: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm") model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm") prompt = "Hello, world!" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))