File size: 1,234 Bytes
1cc199e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfb24f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
tags:
- LoRA
- 4-bit
- BF16
- FlashAttn2
- Pokémon
- EMA
- fast-training
- text-generation
- chat
- transformers
language: en
datasets:
- ogmatrixllm/pokemon-lore-instructions
finetuned_from: Qwen/Qwen2.5-7B-Instruct
tasks:
- text-generation
    ---

    # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration

    This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.

    ## Model Description

    - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration  
    - **Language**: en  
    - **License**: apache-2.0  
    - **Dataset**: ogmatrixllm/pokemon-lore-instructions  
    - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers

    ## Usage

    ```python
    from transformers import AutoTokenizer, AutoModelForCausalLM

    tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
    model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")

    prompt = "Hello, world!"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))