nepp1d0's picture
update model card README.md
55f55a1
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: prot_bert_classification_finetuned_no_finetune
    results: []

prot_bert_classification_finetuned_no_finetune

This model is a fine-tuned version of Rostlab/prot_bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6212
  • Accuracy: 0.6473
  • F1: 0.6623
  • Precision: 0.6201
  • Recall: 0.7107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6494 1.0 3332 0.6479 0.6439 0.6679 0.6116 0.7357
0.5357 2.0 6664 0.6440 0.6148 0.6459 0.5845 0.7218
0.4661 3.0 9996 0.6265 0.6283 0.6414 0.6047 0.6829
0.506 4.0 13328 0.6192 0.6439 0.6567 0.6187 0.6996
0.4204 5.0 16660 0.6122 0.6567 0.6752 0.6259 0.7330
0.6071 6.0 19992 0.6212 0.6473 0.6623 0.6201 0.7107

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1