nepp1d0 commited on
Commit
55f55a1
·
1 Parent(s): 9ee41ca

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - precision
8
+ - recall
9
+ model-index:
10
+ - name: prot_bert_classification_finetuned_no_finetune
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # prot_bert_classification_finetuned_no_finetune
18
+
19
+ This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6212
22
+ - Accuracy: 0.6473
23
+ - F1: 0.6623
24
+ - Precision: 0.6201
25
+ - Recall: 0.7107
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 1e-06
45
+ - train_batch_size: 1
46
+ - eval_batch_size: 1
47
+ - seed: 3
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 4
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 5
53
+ - num_epochs: 6
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 0.6494 | 1.0 | 3332 | 0.6479 | 0.6439 | 0.6679 | 0.6116 | 0.7357 |
61
+ | 0.5357 | 2.0 | 6664 | 0.6440 | 0.6148 | 0.6459 | 0.5845 | 0.7218 |
62
+ | 0.4661 | 3.0 | 9996 | 0.6265 | 0.6283 | 0.6414 | 0.6047 | 0.6829 |
63
+ | 0.506 | 4.0 | 13328 | 0.6192 | 0.6439 | 0.6567 | 0.6187 | 0.6996 |
64
+ | 0.4204 | 5.0 | 16660 | 0.6122 | 0.6567 | 0.6752 | 0.6259 | 0.7330 |
65
+ | 0.6071 | 6.0 | 19992 | 0.6212 | 0.6473 | 0.6623 | 0.6201 | 0.7107 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.18.0
71
+ - Pytorch 1.11.0+cu113
72
+ - Datasets 2.1.0
73
+ - Tokenizers 0.12.1