|
--- |
|
base_model: |
|
- microsoft/codebert-base |
|
datasets: |
|
- devngho/the-stack-llm-annotations-v2 |
|
language: |
|
- code |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- f1 |
|
--- |
|
|
|
# devngho/code_edu_classifier-v3-microsoft_codebert-base |
|
|
|
이 모델은 [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)에 classifier를 추가한 모델입니다. [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier)의 코드 버전을 목표로, 코드의 교육성 점수를 평가합니다. |
|
학습에는 [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)에서 추출한 샘플을 [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)로 평가한 [devngho/the-stack-llm-annotations-v2](https://huggingface.co/datasets/devngho/the-stack-llm-annotations-v2) 데이터셋이 사용되었습니다. |
|
|
|
이 연구는 Google의 TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/)의 Cloud TPU 제공으로 수행되었습니다. ⚡ |
|
|
|
## 상세 |
|
|
|
- **제작:** devngho |
|
- **언어:** code |
|
- **라이선스:** mit |
|
- **기반 모델:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) |
|
|
|
## 학습 상세 |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 2048(512*4) |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 4h 41m |
|
- steps: 6080 |
|
|
|
## 학습 장비 |
|
|
|
TPU v4-8 |
|
|
|
## 성능 |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.80 0.06 0.10 72 |
|
1 0.62 0.40 0.48 835 |
|
2 0.61 0.62 0.61 2722 |
|
3 0.48 0.72 0.58 1891 |
|
4 0.62 0.02 0.05 623 |
|
5 0.00 0.00 0.00 1 |
|
|
|
accuracy 0.55 6144 |
|
macro avg 0.52 0.30 0.30 6144 |
|
weighted avg 0.58 0.55 0.52 6144 |
|
|
|
Confusion Matrix: |
|
[[ 4 36 30 2 0 0] |
|
[ 1 330 464 40 0 0] |
|
[ 0 157 1684 881 0 0] |
|
[ 0 5 516 1361 9 0] |
|
[ 0 0 71 537 15 0] |
|
[ 0 0 0 1 0 0]] |
|
``` |
|
|
|
3 이상과 미만으로 구분할 때 f1 score는 약 0.72입니다. |
|
|
|
# devngho/code_edu_classifier-v3-microsoft_codebert-base |
|
|
|
This model is [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) with classfier head. It is designed to evaluate the educational value of codes, similar to the [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier), but focused on code. The training data comes from [devngho/the-stack-llm-annotations-v2](https://huggingface.co/datasets/devngho/the-stack-llm-annotations-v2) dataset, contains samples extracted from [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup) and evaluated using [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct). |
|
|
|
This research was supported with Cloud TPUs from Google's TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/).⚡ |
|
|
|
- **Developed by:** devngho |
|
- **Language(s):** code |
|
- **License:** mit |
|
- **Base model:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) |
|
|
|
## Training detail |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 2048(512*4) |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 4h 41m |
|
- steps: 6080 |
|
|
|
## Training hardware |
|
|
|
TPU v4-8 |
|
|
|
## Performance |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.80 0.06 0.10 72 |
|
1 0.62 0.40 0.48 835 |
|
2 0.61 0.62 0.61 2722 |
|
3 0.48 0.72 0.58 1891 |
|
4 0.62 0.02 0.05 623 |
|
5 0.00 0.00 0.00 1 |
|
|
|
accuracy 0.55 6144 |
|
macro avg 0.52 0.30 0.30 6144 |
|
weighted avg 0.58 0.55 0.52 6144 |
|
|
|
Confusion Matrix: |
|
[[ 4 36 30 2 0 0] |
|
[ 1 330 464 40 0 0] |
|
[ 0 157 1684 881 0 0] |
|
[ 0 5 516 1361 9 0] |
|
[ 0 0 71 537 15 0] |
|
[ 0 0 0 1 0 0]] |
|
``` |
|
|
|
The F1 score is about 0.72 when separating above and below 3. |