devngho's picture
Update README.md
0fb43d8 verified
---
base_model:
- microsoft/codebert-base
datasets:
- devngho/the-stack-llm-annotations-v2
language:
- code
library_name: transformers
license: mit
metrics:
- f1
---
# devngho/code_edu_classifier-v3-microsoft_codebert-base
이 모델은 [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)에 classifier를 추가한 모델입니다. [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier)의 코드 버전을 목표로, 코드의 교육성 점수를 평가합니다.
학습에는 [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)에서 추출한 샘플을 [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)로 평가한 [devngho/the-stack-llm-annotations-v2](https://huggingface.co/datasets/devngho/the-stack-llm-annotations-v2) 데이터셋이 사용되었습니다.
이 연구는 Google의 TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/)의 Cloud TPU 제공으로 수행되었습니다. ⚡
## 상세
- **제작:** devngho
- **언어:** code
- **라이선스:** mit
- **기반 모델:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)
## 학습 상세
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 2048(512*4)
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 4h 41m
- steps: 6080
## 학습 장비
TPU v4-8
## 성능
```
Validation Report:
precision recall f1-score support
0 0.80 0.06 0.10 72
1 0.62 0.40 0.48 835
2 0.61 0.62 0.61 2722
3 0.48 0.72 0.58 1891
4 0.62 0.02 0.05 623
5 0.00 0.00 0.00 1
accuracy 0.55 6144
macro avg 0.52 0.30 0.30 6144
weighted avg 0.58 0.55 0.52 6144
Confusion Matrix:
[[ 4 36 30 2 0 0]
[ 1 330 464 40 0 0]
[ 0 157 1684 881 0 0]
[ 0 5 516 1361 9 0]
[ 0 0 71 537 15 0]
[ 0 0 0 1 0 0]]
```
3 이상과 미만으로 구분할 때 f1 score는 약 0.72입니다.
# devngho/code_edu_classifier-v3-microsoft_codebert-base
This model is [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) with classfier head. It is designed to evaluate the educational value of codes, similar to the [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier), but focused on code. The training data comes from [devngho/the-stack-llm-annotations-v2](https://huggingface.co/datasets/devngho/the-stack-llm-annotations-v2) dataset, contains samples extracted from [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup) and evaluated using [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct).
This research was supported with Cloud TPUs from Google's TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/).⚡
- **Developed by:** devngho
- **Language(s):** code
- **License:** mit
- **Base model:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)
## Training detail
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 2048(512*4)
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 4h 41m
- steps: 6080
## Training hardware
TPU v4-8
## Performance
```
Validation Report:
precision recall f1-score support
0 0.80 0.06 0.10 72
1 0.62 0.40 0.48 835
2 0.61 0.62 0.61 2722
3 0.48 0.72 0.58 1891
4 0.62 0.02 0.05 623
5 0.00 0.00 0.00 1
accuracy 0.55 6144
macro avg 0.52 0.30 0.30 6144
weighted avg 0.58 0.55 0.52 6144
Confusion Matrix:
[[ 4 36 30 2 0 0]
[ 1 330 464 40 0 0]
[ 0 157 1684 881 0 0]
[ 0 5 516 1361 9 0]
[ 0 0 71 537 15 0]
[ 0 0 0 1 0 0]]
```
The F1 score is about 0.72 when separating above and below 3.