You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

devngho/code_edu_classifier-v3-microsoft_codebert-base

이 모델은 microsoft/codebert-base에 classifier를 추가한 모델입니다. HuggingFaceFW/fineweb-edu-classifier의 코드 버전을 목표로, 코드의 교육성 점수를 평가합니다. 학습에는 bigcode/the-stack-dedup에서 추출한 샘플을 Qwen/Qwen2.5-Coder-32B-Instruct로 평가한 devngho/the-stack-llm-annotations-v2 데이터셋이 사용되었습니다.

이 연구는 Google의 TPU Research Cloud (TRC)의 Cloud TPU 제공으로 수행되었습니다. ⚡

상세

학습 상세

  • learning_rate: 3e-4 (cosine)
  • warmup_ratio: 0.1
  • batch_size: 2048(512*4)
  • optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
  • duration: 4h 41m
  • steps: 6080

학습 장비

TPU v4-8

성능

Validation Report:
              precision    recall  f1-score   support

           0       0.80      0.06      0.10        72
           1       0.62      0.40      0.48       835
           2       0.61      0.62      0.61      2722
           3       0.48      0.72      0.58      1891
           4       0.62      0.02      0.05       623
           5       0.00      0.00      0.00         1

    accuracy                           0.55      6144
   macro avg       0.52      0.30      0.30      6144
weighted avg       0.58      0.55      0.52      6144

Confusion Matrix:
[[   4   36   30    2    0    0]
 [   1  330  464   40    0    0]
 [   0  157 1684  881    0    0]
 [   0    5  516 1361    9    0]
 [   0    0   71  537   15    0]
 [   0    0    0    1    0    0]]

3 이상과 미만으로 구분할 때 f1 score는 약 0.72입니다.

devngho/code_edu_classifier-v3-microsoft_codebert-base

This model is microsoft/codebert-base with classfier head. It is designed to evaluate the educational value of codes, similar to the HuggingFaceFW/fineweb-edu-classifier, but focused on code. The training data comes from devngho/the-stack-llm-annotations-v2 dataset, contains samples extracted from bigcode/the-stack-dedup and evaluated using Qwen/Qwen2.5-Coder-32B-Instruct.

This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC).⚡

Training detail

  • learning_rate: 3e-4 (cosine)
  • warmup_ratio: 0.1
  • batch_size: 2048(512*4)
  • optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
  • duration: 4h 41m
  • steps: 6080

Training hardware

TPU v4-8

Performance

Validation Report:
              precision    recall  f1-score   support

           0       0.80      0.06      0.10        72
           1       0.62      0.40      0.48       835
           2       0.61      0.62      0.61      2722
           3       0.48      0.72      0.58      1891
           4       0.62      0.02      0.05       623
           5       0.00      0.00      0.00         1

    accuracy                           0.55      6144
   macro avg       0.52      0.30      0.30      6144
weighted avg       0.58      0.55      0.52      6144

Confusion Matrix:
[[   4   36   30    2    0    0]
 [   1  330  464   40    0    0]
 [   0  157 1684  881    0    0]
 [   0    5  516 1361    9    0]
 [   0    0   71  537   15    0]
 [   0    0    0    1    0    0]]

The F1 score is about 0.72 when separating above and below 3.

Downloads last month
-
Safetensors
Model size
125M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for devngho/code_edu_classifier-v3-microsoft_codebert-base

Finetuned
(100)
this model

Dataset used to train devngho/code_edu_classifier-v3-microsoft_codebert-base