devngho/code_edu_classifier-v3-microsoft_codebert-base
이 모델은 microsoft/codebert-base에 classifier를 추가한 모델입니다. HuggingFaceFW/fineweb-edu-classifier의 코드 버전을 목표로, 코드의 교육성 점수를 평가합니다. 학습에는 bigcode/the-stack-dedup에서 추출한 샘플을 Qwen/Qwen2.5-Coder-32B-Instruct로 평가한 devngho/the-stack-llm-annotations-v2 데이터셋이 사용되었습니다.
이 연구는 Google의 TPU Research Cloud (TRC)의 Cloud TPU 제공으로 수행되었습니다. ⚡
상세
- 제작: devngho
- 언어: code
- 라이선스: mit
- 기반 모델: microsoft/codebert-base
학습 상세
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 2048(512*4)
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 4h 41m
- steps: 6080
학습 장비
TPU v4-8
성능
Validation Report:
precision recall f1-score support
0 0.80 0.06 0.10 72
1 0.62 0.40 0.48 835
2 0.61 0.62 0.61 2722
3 0.48 0.72 0.58 1891
4 0.62 0.02 0.05 623
5 0.00 0.00 0.00 1
accuracy 0.55 6144
macro avg 0.52 0.30 0.30 6144
weighted avg 0.58 0.55 0.52 6144
Confusion Matrix:
[[ 4 36 30 2 0 0]
[ 1 330 464 40 0 0]
[ 0 157 1684 881 0 0]
[ 0 5 516 1361 9 0]
[ 0 0 71 537 15 0]
[ 0 0 0 1 0 0]]
3 이상과 미만으로 구분할 때 f1 score는 약 0.72입니다.
devngho/code_edu_classifier-v3-microsoft_codebert-base
This model is microsoft/codebert-base with classfier head. It is designed to evaluate the educational value of codes, similar to the HuggingFaceFW/fineweb-edu-classifier, but focused on code. The training data comes from devngho/the-stack-llm-annotations-v2 dataset, contains samples extracted from bigcode/the-stack-dedup and evaluated using Qwen/Qwen2.5-Coder-32B-Instruct.
This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC).⚡
- Developed by: devngho
- Language(s): code
- License: mit
- Base model: microsoft/codebert-base
Training detail
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 2048(512*4)
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 4h 41m
- steps: 6080
Training hardware
TPU v4-8
Performance
Validation Report:
precision recall f1-score support
0 0.80 0.06 0.10 72
1 0.62 0.40 0.48 835
2 0.61 0.62 0.61 2722
3 0.48 0.72 0.58 1891
4 0.62 0.02 0.05 623
5 0.00 0.00 0.00 1
accuracy 0.55 6144
macro avg 0.52 0.30 0.30 6144
weighted avg 0.58 0.55 0.52 6144
Confusion Matrix:
[[ 4 36 30 2 0 0]
[ 1 330 464 40 0 0]
[ 0 157 1684 881 0 0]
[ 0 5 516 1361 9 0]
[ 0 0 71 537 15 0]
[ 0 0 0 1 0 0]]
The F1 score is about 0.72 when separating above and below 3.
- Downloads last month
- -
Model tree for devngho/code_edu_classifier-v3-microsoft_codebert-base
Base model
microsoft/codebert-base