metadata
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
results: []
mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the None dataset. It achieves the following results on the evaluation set:
- F1 Micro: 0.0374
- F1 Macro: 0.0013
- Precision At 5: 0.2765
- Recall At 5: 0.1166
- Precision At 8: 0.2353
- Recall At 8: 0.1441
- Precision At 15: 0.1534
- Recall At 15: 0.1748
- Rare F1 Micro: 0.0115
- Rare F1 Macro: 0.0007
- Rare Precision: 0.3415
- Rare Recall: 0.0059
- Rare Precision At 5: 0.2324
- Rare Recall At 5: 0.0985
- Rare Precision At 8: 0.2004
- Rare Recall At 8: 0.1223
- Rare Precision At 15: 0.1265
- Rare Recall At 15: 0.1500
- Not Rare F1 Micro: 0.5
- Not Rare F1 Macro: 0.5
- Not Rare Precision: 0.5
- Not Rare Recall: 0.5
- Not Rare Precision At 5: 0.0809
- Not Rare Recall At 5: 0.4044
- Not Rare Precision At 8: 0.0506
- Not Rare Recall At 8: 0.4044
- Not Rare Precision At 15: 0.0270
- Not Rare Recall At 15: 0.4044
- Loss: 0.1015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0989 | 1.0 | 18 | 0.0 | 0.0 | 0.2721 | 0.1084 | 0.1958 | 0.1246 | 0.1270 | 0.1470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2088 | 0.0885 | 0.1507 | 0.1015 | 0.0985 | 0.1201 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1039 |
0.1013 | 2.0 | 36 | 0.0 | 0.0 | 0.2706 | 0.1117 | 0.2307 | 0.1530 | 0.1485 | 0.1725 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.0919 | 0.1912 | 0.1342 | 0.1270 | 0.1506 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1054 |
0.1012 | 3.0 | 54 | 0.0 | 0.0 | 0.2765 | 0.1116 | 0.2371 | 0.1512 | 0.1480 | 0.1715 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2471 | 0.1051 | 0.1930 | 0.1354 | 0.125 | 0.1493 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1033 |
0.1003 | 4.0 | 72 | 0.0 | 0.0 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1495 | 0.1722 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2456 | 0.1075 | 0.1939 | 0.1366 | 0.125 | 0.1491 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1017 |
0.0872 | 5.0 | 90 | 0.0238 | 0.0010 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0033 | 0.0005 | 0.4 | 0.0017 | 0.2456 | 0.1075 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.4995 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1042 |
0.0891 | 6.0 | 108 | 0.0417 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0131 | 0.0006 | 0.3077 | 0.0067 | 0.2368 | 0.1012 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.5060 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1016 |
0.0844 | 6.6197 | 119 | 0.0374 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0115 | 0.0007 | 0.3415 | 0.0059 | 0.2324 | 0.0985 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1015 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1