deb101 commited on
Commit
948e8d7
·
verified ·
1 Parent(s): fe1ea1f

Model save

Browse files
README.md CHANGED
@@ -16,35 +16,35 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - F1 Micro: 0.0
20
- - F1 Macro: 0.0
21
- - Precision At 5: 0.2279
22
- - Recall At 5: 0.0949
23
- - Precision At 8: 0.1664
24
- - Recall At 8: 0.1038
25
- - Precision At 15: 0.1137
26
- - Recall At 15: 0.1285
27
- - Rare F1 Micro: 0.0
28
- - Rare F1 Macro: 0.0
29
- - Rare Precision: 0.0
30
- - Rare Recall: 0.0
31
- - Rare Precision At 5: 0.15
32
- - Rare Recall At 5: 0.0645
33
- - Rare Precision At 8: 0.1204
34
- - Rare Recall At 8: 0.0788
35
- - Rare Precision At 15: 0.0873
36
- - Rare Recall At 15: 0.0997
37
- - Not Rare F1 Micro: 0.5956
38
- - Not Rare F1 Macro: 0.3733
39
- - Not Rare Precision: 0.5956
40
- - Not Rare Recall: 0.5956
41
  - Not Rare Precision At 5: 0.0809
42
  - Not Rare Recall At 5: 0.4044
43
  - Not Rare Precision At 8: 0.0506
44
  - Not Rare Recall At 8: 0.4044
45
  - Not Rare Precision At 15: 0.0270
46
  - Not Rare Recall At 15: 0.4044
47
- - Loss: 0.1048
48
 
49
  ## Model description
50
 
@@ -71,18 +71,21 @@ The following hyperparameters were used during training:
71
  - total_train_batch_size: 32
72
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
73
  - lr_scheduler_type: linear
74
- - lr_scheduler_warmup_steps: 500
75
- - num_epochs: 4
76
  - mixed_precision_training: Native AMP
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
81
  |:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
82
- | 0.6384 | 1.0 | 18 | 0.0 | 0.0 | 0.0368 | 0.0087 | 0.0377 | 0.0174 | 0.0377 | 0.0324 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0294 | 0.0081 | 0.0267 | 0.0107 | 0.0275 | 0.0211 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.2291 |
83
- | 0.1265 | 2.0 | 36 | 0.0 | 0.0 | 0.0412 | 0.0096 | 0.0395 | 0.0166 | 0.0373 | 0.0303 | 0.0 | 0.0 | 0.0 | 0.0 | 0.025 | 0.0048 | 0.0276 | 0.0109 | 0.0284 | 0.0244 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1216 |
84
- | 0.1092 | 3.0 | 54 | 0.0 | 0.0 | 0.1162 | 0.0391 | 0.1002 | 0.0595 | 0.0814 | 0.0890 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0603 | 0.0208 | 0.0579 | 0.0332 | 0.0564 | 0.0595 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1069 |
85
- | 0.1033 | 3.7887 | 68 | 0.0 | 0.0 | 0.2279 | 0.0949 | 0.1664 | 0.1038 | 0.1137 | 0.1285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.15 | 0.0645 | 0.1204 | 0.0788 | 0.0873 | 0.0997 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1048 |
 
 
 
86
 
87
 
88
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - F1 Micro: 0.0374
20
+ - F1 Macro: 0.0013
21
+ - Precision At 5: 0.2765
22
+ - Recall At 5: 0.1166
23
+ - Precision At 8: 0.2353
24
+ - Recall At 8: 0.1441
25
+ - Precision At 15: 0.1534
26
+ - Recall At 15: 0.1748
27
+ - Rare F1 Micro: 0.0115
28
+ - Rare F1 Macro: 0.0007
29
+ - Rare Precision: 0.3415
30
+ - Rare Recall: 0.0059
31
+ - Rare Precision At 5: 0.2324
32
+ - Rare Recall At 5: 0.0985
33
+ - Rare Precision At 8: 0.2004
34
+ - Rare Recall At 8: 0.1223
35
+ - Rare Precision At 15: 0.1265
36
+ - Rare Recall At 15: 0.1500
37
+ - Not Rare F1 Micro: 0.5
38
+ - Not Rare F1 Macro: 0.5
39
+ - Not Rare Precision: 0.5
40
+ - Not Rare Recall: 0.5
41
  - Not Rare Precision At 5: 0.0809
42
  - Not Rare Recall At 5: 0.4044
43
  - Not Rare Precision At 8: 0.0506
44
  - Not Rare Recall At 8: 0.4044
45
  - Not Rare Precision At 15: 0.0270
46
  - Not Rare Recall At 15: 0.4044
47
+ - Loss: 0.1015
48
 
49
  ## Model description
50
 
 
71
  - total_train_batch_size: 32
72
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
73
  - lr_scheduler_type: linear
74
+ - lr_scheduler_warmup_steps: 50
75
+ - num_epochs: 7
76
  - mixed_precision_training: Native AMP
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
81
  |:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
82
+ | 0.0989 | 1.0 | 18 | 0.0 | 0.0 | 0.2721 | 0.1084 | 0.1958 | 0.1246 | 0.1270 | 0.1470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2088 | 0.0885 | 0.1507 | 0.1015 | 0.0985 | 0.1201 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1039 |
83
+ | 0.1013 | 2.0 | 36 | 0.0 | 0.0 | 0.2706 | 0.1117 | 0.2307 | 0.1530 | 0.1485 | 0.1725 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2279 | 0.0919 | 0.1912 | 0.1342 | 0.1270 | 0.1506 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1054 |
84
+ | 0.1012 | 3.0 | 54 | 0.0 | 0.0 | 0.2765 | 0.1116 | 0.2371 | 0.1512 | 0.1480 | 0.1715 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2471 | 0.1051 | 0.1930 | 0.1354 | 0.125 | 0.1493 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1033 |
85
+ | 0.1003 | 4.0 | 72 | 0.0 | 0.0 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1495 | 0.1722 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2456 | 0.1075 | 0.1939 | 0.1366 | 0.125 | 0.1491 | 0.5956 | 0.3733 | 0.5956 | 0.5956 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1017 |
86
+ | 0.0872 | 5.0 | 90 | 0.0238 | 0.0010 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0033 | 0.0005 | 0.4 | 0.0017 | 0.2456 | 0.1075 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.4995 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1042 |
87
+ | 0.0891 | 6.0 | 108 | 0.0417 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0131 | 0.0006 | 0.3077 | 0.0067 | 0.2368 | 0.1012 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5074 | 0.5060 | 0.5074 | 0.5074 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1016 |
88
+ | 0.0844 | 6.6197 | 119 | 0.0374 | 0.0013 | 0.2765 | 0.1166 | 0.2353 | 0.1441 | 0.1534 | 0.1748 | 0.0115 | 0.0007 | 0.3415 | 0.0059 | 0.2324 | 0.0985 | 0.2004 | 0.1223 | 0.1265 | 0.1500 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0809 | 0.4044 | 0.0506 | 0.4044 | 0.0270 | 0.4044 | 0.1015 |
89
 
90
 
91
  ### Framework versions
eval_loss_plot.png CHANGED
eval_precision_at_15_plot.png CHANGED
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:db7eacc60a6dd0a0262abac061bf39e73ac38ad1be6f8932b97d9eae9afd010f
3
  size 4475046623
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80e9a1be816fc17f7e39f7860a590d224f9b92383c0e7e451cbbad0710ac6d6b
3
  size 4475046623
train_loss_plot.png CHANGED
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eaf7616c17f954b75d442bc20e92cac70f690ba01bc437ab67b0bf4fbac6f6fc
3
  size 5496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf48cc1852558bb553881924e6a3097c41896b995050f5a4cf1cf2a9bd2206cf
3
  size 5496