File size: 5,734 Bytes
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617091c
 
 
 
 
 
 
 
844befc
 
 
 
617091c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f479e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844befc
617091c
64f479e
 
 
 
 
 
617091c
 
 
 
64f479e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- F1 Micro: 0.0005
- F1 Macro: 0.0000
- Precision At 5: 0.2847
- Recall At 5: 0.0664
- Precision At 8: 0.2542
- Recall At 8: 0.0910
- Precision At 15: 0.1926
- Recall At 15: 0.1252
- Rare F1 Micro: 0.0
- Rare F1 Macro: 0.0
- Rare Precision: 0.0
- Rare Recall: 0.0
- Rare Precision At 5: 0.0263
- Rare Recall At 5: 0.0069
- Rare Precision At 8: 0.0267
- Rare Recall At 8: 0.0118
- Rare Precision At 15: 0.0257
- Rare Recall At 15: 0.0219
- Not Rare F1 Micro: 0.0015
- Not Rare F1 Macro: 0.0003
- Not Rare Precision: 0.2576
- Not Rare Recall: 0.0007
- Not Rare Precision At 5: 0.2847
- Not Rare Recall At 5: 0.1756
- Not Rare Precision At 8: 0.2542
- Not Rare Recall At 8: 0.2401
- Not Rare Precision At 15: 0.1926
- Not Rare Recall At 15: 0.3324
- Loss: 0.0170

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | F1 Micro | F1 Macro | Precision At 5 | Recall At 5 | Precision At 8 | Recall At 8 | Precision At 15 | Recall At 15 | Rare F1 Micro | Rare F1 Macro | Rare Precision | Rare Recall | Rare Precision At 5 | Rare Recall At 5 | Rare Precision At 8 | Rare Recall At 8 | Rare Precision At 15 | Rare Recall At 15 | Not Rare F1 Micro | Not Rare F1 Macro | Not Rare Precision | Not Rare Recall | Not Rare Precision At 5 | Not Rare Recall At 5 | Not Rare Precision At 8 | Not Rare Recall At 8 | Not Rare Precision At 15 | Not Rare Recall At 15 | Validation Loss |
|:-------------:|:------:|:----:|:--------:|:--------:|:--------------:|:-----------:|:--------------:|:-----------:|:---------------:|:------------:|:-------------:|:-------------:|:--------------:|:-----------:|:-------------------:|:----------------:|:-------------------:|:----------------:|:--------------------:|:-----------------:|:-----------------:|:-----------------:|:------------------:|:---------------:|:-----------------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------:|:---------------:|
| 0.0229        | 0.9981 | 262  | 0.0      | 0.0      | 0.2769         | 0.0644      | 0.2472         | 0.0880      | 0.1883          | 0.1226       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0078              | 0.0025           | 0.0075              | 0.0040           | 0.0070               | 0.0065            | 0.0               | 0.0               | 0.0                | 0.0             | 0.2771                  | 0.1707               | 0.2473                  | 0.2341               | 0.1888                   | 0.3243                | 0.0209          |
| 0.0181        | 1.9981 | 524  | 0.0      | 0.0      | 0.2775         | 0.0651      | 0.2542         | 0.0910      | 0.1934          | 0.1270       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0295              | 0.0091           | 0.0251              | 0.0128           | 0.0230               | 0.0214            | 0.0               | 0.0               | 0.0                | 0.0             | 0.2774                  | 0.1715               | 0.2542                  | 0.2401               | 0.1933                   | 0.3366                | 0.0170          |
| 0.0176        | 2.9981 | 786  | 0.0005   | 0.0000   | 0.2844         | 0.0665      | 0.2542         | 0.0910      | 0.1908          | 0.1227       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0282              | 0.0084           | 0.0246              | 0.0118           | 0.0273               | 0.0233            | 0.0013            | 0.0003            | 0.2830             | 0.0007          | 0.2844                  | 0.1755               | 0.2542                  | 0.2401               | 0.1908                   | 0.3230                | 0.0170          |
| 0.0167        | 3.9981 | 1048 | 0.0005   | 0.0000   | 0.2847         | 0.0664      | 0.2542         | 0.0910      | 0.1926          | 0.1252       | 0.0           | 0.0           | 0.0            | 0.0         | 0.0263              | 0.0069           | 0.0267              | 0.0118           | 0.0257               | 0.0219            | 0.0015            | 0.0003            | 0.2576             | 0.0007          | 0.2847                  | 0.1756               | 0.2542                  | 0.2401               | 0.1926                   | 0.3324                | 0.0170          |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1