model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
gilangr2/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2573 - Accuracy: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.3032 | 0.5125 | | No log | 2.0 | 80 | 1.2982 | 0.4875 | | No log | 3.0 | 120 | 1.2802 | 0.55 | | No log | 4.0 | 160 | 1.2181 | 0.55 | | No log | 5.0 | 200 | 1.1645 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
lossless/autotrain-vertigo-actors-01-90060144093
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 90060144093 - CO2 Emissions (in grams): 0.7630 ## Validation Metrics - Loss: 0.105 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
[ "james-stewart", "kim-novak" ]
lossless/autotrain-vertigo-actors-02-90066144103
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 90066144103 - CO2 Emissions (in grams): 0.8491 ## Validation Metrics - Loss: 0.590 - Accuracy: 0.833 - Macro F1: 0.833 - Micro F1: 0.833 - Weighted F1: 0.833 - Macro Precision: 0.833 - Micro Precision: 0.833 - Weighted Precision: 0.833 - Macro Recall: 0.833 - Micro Recall: 0.833 - Weighted Recall: 0.833
[ "james-stewart", "kim-novak", "other" ]
touchtech/fashion-images-perspectives-vit-large-patch16-224-in21k-v4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fashion-images-perspectives-vit-large-patch16-224-in21k-v4 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the touchtech/fashion-images-perspectives dataset. It achieves the following results on the evaluation set: - Loss: 0.2203 - Accuracy: 0.9434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4275 | 1.0 | 3081 | 0.3064 | 0.9011 | | 0.3555 | 2.0 | 6162 | 0.3097 | 0.9103 | | 0.3069 | 3.0 | 9243 | 0.3036 | 0.9106 | | 0.2449 | 4.0 | 12324 | 0.2268 | 0.9377 | | 0.2339 | 5.0 | 15405 | 0.2203 | 0.9434 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "model-back-close", "model-back-full", "pack-detail", "pack-front", "pack-side", "pack-top", "model-detail", "model-front-close", "model-front-full", "model-side-close", "model-side-full", "pack-angled", "pack-back", "pack-bottom" ]
fsuarez/autotrain-logo-identifier-90194144191
# 📒 logo-identifier-model This model has been trained on a dataset called "LogoIdentifier" for multi-class classification of logos from 57 renowned brands and companies. These brands encompass a wide spectrum of industries and recognition, ranging from global giants like Coca-Cola, Coleman, Google, IBM, Nike, Pepsi, and many others. Each brand is thoughtfully organized into its designated subfolder, housing a comprehensive set of logo images for precise and accurate classification. Whether you're identifying iconic logos or exploring the branding diversity of these 57 famous names, this model is your go-to solution for logo recognition and classification. # 🧪 Dataset Content - The dataset includes logos from various brands and companies. - The dataset is organized into subfolders, each corresponding to a specific brand or company. - It contains a wide range of brand logos, including Acer, Acura, Adidas, Samsung, Lenovo, McDonald's, Java, and many more. - Each brand or company in the dataset is associated with a numerical value, likely representing the number of images available for that brand. The model has been trained to recognize and classify logos into their respective brand categories based on the images provided in the dataset. | Company | Quantity of images | | ----------------- | ------------------ | | Acer | 67 | | Acura | 74 | | Addidas | 90 | | Ades | 36 | | Adio | 63 | | Cadillac | 69 | | CalvinKlein | 65 | | Canon | 59 | | Cocacola | 40 | | CocaColaZero | 91 | | Coleman | 57 | | Converse | 60 | | CornFlakes | 62 | | DominossPizza | 99 | | Excel | 88 | | Gillette | 86 | | GMC | 75 | | Google | 93 | | HardRockCafe | 93 | | HBO | 103 | | Heineken | 84 | | HewlettPackard | 81 | | Hp | 87 | | Huawei | 84 | | Hyundai | 84 | | IBM | 84 | | Java | 62 | | KFC | 84 | | Kia | 76 | | Kingston | 79 | | Lenovo | 82 | | LG | 95 | | Lipton | 94 | | Mattel | 77 | | McDonalds | 98 | | MercedesBenz | 94 | | Motorola | 86 | | Nestle | 94 | | Nickelodeon | 74 | | Nike | 50 | | Pennzoil | 82 | | Pepsi | 93 | | Peugeot | 60 | | Porsche | 71 | | Samsung | 96 | | SchneiderElectric | 42 | | Shell | 58 | To use this model for brand logo identification, you can make use of the Hugging Face Transformers library and load the model using its model ID (90194144191). You can then input an image of a brand logo, and the model should be able to predict the brand it belongs to based on its training. # 🤗 Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 90194144191 - CO2 Emissions (in grams): 0.0608 ## 📐 Validation Metrics - Loss: 0.300 - Accuracy: 0.924 - Macro F1: 0.924 - Micro F1: 0.924 - Weighted F1: 0.922 - Macro Precision: 0.930 - Micro Precision: 0.924 - Weighted Precision: 0.928 - Macro Recall: 0.924 - Micro Recall: 0.924 - Weighted Recall: 0.924
[ "acer", "acura", "converse", "cornflakes", "dominospizza", "excel", "gmc", "gillette", "google", "hardrockcafe", "heineken", "hewlettpackard", "addidas", "hp", "huawei", "hyundai", "ibm", "java", "kfc", "kia", "kingston", "lg", "lenovo", "ades", "lipton", "mattel", "mcdonalds", "mercedesbenz", "motorola", "nestle", "nickelodeon", "nike", "pennzoil", "pepsi", "adio", "peugeot", "porsche", "samsung", "schneiderelectric", "shell", "cocacola", "cadillac", "calvinklein", "canon", "cocacolazero", "coleman" ]
xlagor/swin-tiny-patch4-window7-224-finetuned-fit
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-fit This model is a fine-tuned version of [xlagor/swin-tiny-patch4-window7-224-finetuned-fit](https://huggingface.co/xlagor/swin-tiny-patch4-window7-224-finetuned-fit) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0711 - Accuracy: 0.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 120 - eval_batch_size: 120 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 480 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3727 | 0.99 | 62 | 0.1103 | 0.9680 | | 0.3551 | 1.99 | 125 | 0.1018 | 0.9701 | | 0.3258 | 3.0 | 188 | 0.0995 | 0.9706 | | 0.3008 | 4.0 | 251 | 0.0939 | 0.9712 | | 0.2896 | 4.99 | 313 | 0.0872 | 0.9730 | | 0.2612 | 5.99 | 376 | 0.0829 | 0.9739 | | 0.2275 | 7.0 | 439 | 0.0815 | 0.9748 | | 0.2358 | 8.0 | 502 | 0.0839 | 0.9739 | | 0.2191 | 8.99 | 564 | 0.0778 | 0.9775 | | 0.2096 | 9.99 | 627 | 0.0759 | 0.9769 | | 0.2063 | 11.0 | 690 | 0.0749 | 0.9778 | | 0.1916 | 12.0 | 753 | 0.0735 | 0.9775 | | 0.2002 | 12.99 | 815 | 0.0732 | 0.9781 | | 0.1905 | 13.99 | 878 | 0.0713 | 0.9784 | | 0.1835 | 15.0 | 941 | 0.0707 | 0.9784 | | 0.1949 | 15.81 | 992 | 0.0711 | 0.9772 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "birds", "bottles", "breads", "butterflies", "cakes", "cats", "chickens", "cows", "dogs", "ducks", "elephants", "fishes", "handguns", "horses", "lions", "lipsticks", "seals", "snakes", "spiders", "vases" ]
Jayanth2002/dinov2-base-finetuned-SkinDisease
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dinov2-base-finetuned-SkinDisease This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the Custom dataset. It achieves the following results on the evaluation set: - Loss: 0.1321 - Accuracy: 0.9557 ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pre-trained on a large collection of images in a self-supervised fashion. Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## How to use ```python import torch from transformers import AutoModelForImageClassification, AutoImageProcessor repo_name = "Jayanth2002/dinov2-base-finetuned-SkinDisease" image_processor = AutoImageProcessor.from_pretrained(repo_name) model = AutoModelForImageClassification.from_pretrained(repo_name) # Load and preprocess the test image image_path = "/content/img_416.jpg" image = Image.open(image_path) encoding = image_processor(image.convert("RGB"), return_tensors="pt") # Make a prediction with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Get the class name class_names = ['Basal Cell Carcinoma', 'Darier_s Disease', 'Epidermolysis Bullosa Pruriginosa', 'Hailey-Hailey Disease', 'Herpes Simplex', 'Impetigo', 'Larva Migrans', 'Leprosy Borderline', 'Leprosy Lepromatous', 'Leprosy Tuberculoid', 'Lichen Planus', 'Lupus Erythematosus Chronicus Discoides', 'Melanoma', 'Molluscum Contagiosum', 'Mycosis Fungoides', 'Neurofibromatosis', 'Papilomatosis Confluentes And Reticulate', 'Pediculosis Capitis', 'Pityriasis Rosea', 'Porokeratosis Actinic', 'Psoriasis', 'Tinea Corporis', 'Tinea Nigra', 'Tungiasis', 'actinic keratosis', 'dermatofibroma', 'nevus', 'pigmented benign keratosis', 'seborrheic keratosis', 'squamous cell carcinoma', 'vascular lesion'] predicted_class_name = class_names[predicted_class_idx] print(predicted_class_name) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9599 | 1.0 | 282 | 0.6866 | 0.7811 | | 0.6176 | 2.0 | 565 | 0.4806 | 0.8399 | | 0.4614 | 3.0 | 847 | 0.3092 | 0.8934 | | 0.3976 | 4.0 | 1130 | 0.2620 | 0.9141 | | 0.3606 | 5.0 | 1412 | 0.2514 | 0.9208 | | 0.3075 | 6.0 | 1695 | 0.1968 | 0.9320 | | 0.2152 | 7.0 | 1977 | 0.2004 | 0.9377 | | 0.2194 | 8.0 | 2260 | 0.1627 | 0.9442 | | 0.1706 | 9.0 | 2542 | 0.1449 | 0.9500 | | 0.172 | 9.98 | 2820 | 0.1321 | 0.9557 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3 ## Kindly Cite Our Work ```bibtex @article{mohan2024enhancing, title={Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable ai}, author={Mohan, Jayanth and Sivasubramanian, Arrun and Sowmya, V and Vinayakumar, Ravi}, journal={arXiv preprint arXiv:2407.14757}, year={2024} } ```
[ "basal cell carcinoma", "darier_s disease", "epidermolysis bullosa pruriginosa", "hailey-hailey disease", "herpes simplex", "impetigo", "larva migrans", "leprosy borderline", "leprosy lepromatous", "leprosy tuberculoid", "lichen planus", "lupus erythematosus chronicus discoides", "melanoma", "molluscum contagiosum", "mycosis fungoides", "neurofibromatosis", "papilomatosis confluentes and reticulate", "pediculosis capitis", "pityriasis rosea", "porokeratosis actinic", "psoriasis", "tinea corporis", "tinea nigra", "tungiasis", "actinic keratosis", "dermatofibroma", "nevus", "pigmented benign keratosis", "seborrheic keratosis", "squamous cell carcinoma", "vascular lesion" ]
Augusto777/vit-base-patch16-224-MSC-dmae
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-MSC-dmae This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6300 - Accuracy: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.67 | 1 | 1.2258 | 0.5 | | No log | 2.0 | 3 | 1.0536 | 0.7 | | No log | 2.67 | 4 | 0.9143 | 0.75 | | No log | 4.0 | 6 | 0.6899 | 0.9 | | No log | 4.67 | 7 | 0.6300 | 0.95 | | No log | 6.0 | 9 | 0.5069 | 0.9 | | 0.8554 | 6.67 | 10 | 0.4671 | 0.9 | | 0.8554 | 8.0 | 12 | 0.4312 | 0.9 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "avanzada", "leve", "moderada", "no amd" ]
shadowlilac/aesthetic-shadow
# Aesthetic Shadow Aesthetic Shadow is a 1.1b parameters visual transformer designed to evaluate the quality of anime images. It accepts high-resolution 1024x1024 images as input and provides a prediction score that quantifies the aesthetic appeal of the artwork. Leveraging cutting-edge deep learning techniques, this model excels at discerning fine details, proportions, and overall visual coherence in anime illustrations. **If you do decide to use this model for public stuff, attribution would be appreciated :)** ## How to Use See Jupyter Notebook in files ## Disclosure This model does not intend to be offensive towards any artist and may not output an accurate label for an image. A potential use case would be low quality images filtering on image datasets.
[ "hq", "lq" ]
savioratharv/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1312 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9594 | 1.0 | 70 | 3.8779 | 0.6189 | | 3.0869 | 1.99 | 140 | 3.0415 | 0.8549 | | 2.471 | 2.99 | 210 | 2.4433 | 0.9270 | | 2.0406 | 4.0 | 281 | 2.0261 | 0.9501 | | 1.7238 | 5.0 | 351 | 1.7346 | 0.9581 | | 1.4513 | 5.99 | 421 | 1.4902 | 0.9671 | | 1.3131 | 6.99 | 491 | 1.3221 | 0.9786 | | 1.1752 | 8.0 | 562 | 1.2230 | 0.9768 | | 1.1007 | 9.0 | 632 | 1.1619 | 0.9795 | | 1.0682 | 9.96 | 700 | 1.1312 | 0.9795 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "alpinia galanga (rasna)", "amaranthus viridis (arive-dantu)", "big caltrops.zip", "black-honey shrub.zip", "brassica juncea (indian mustard)", "bristly wild grape.zip", "butterfly pea.zip", "cape gooseberry.zip", "carissa carandas (karanda)", "citrus limon (lemon)", "common wireweed.zip", "country mallow.zip", "artocarpus heterophyllus (jackfruit)", "crown flower.zip", "ficus auriculata (roxburgh fig)", "ficus religiosa (peepal tree)", "green chireta.zip", "hibiscus rosa-sinensis", "holy basil.zip", "indian copperleaf.zip", "indian jujube.zip", "indian sarsaparilla.zip", "indian stinging nettle.zip", "asthma plant.zip", "indian thornapple.zip", "indian wormwood.zip", "ivy gourd.zip", "jasminum (jasmine)", "kokilaksha.zip", "land caltrops (bindii).zip", "madagascar periwinkle.zip", "madras pea pumpkin.zip", "malabar catmint.zip", "mangifera indica (mango)", "avaram.zip", "mentha (mint)", "mexican mint.zip", "mexican prickly poppy.zip", "moringa oleifera (drumstick)", "mountain knotgrass.zip", "muntingia calabura (jamaica cherry-gasagase)", "murraya koenigii (curry)", "nalta jute.zip", "nerium oleander (oleander)", "night blooming cereus.zip", "azadirachta indica (neem)", "nyctanthes arbor-tristis (parijata)", "ocimum tenuiflorum (tulsi)", "panicled foldwing.zip", "piper betle (betel)", "plectranthus amboinicus (mexican mint)", "pongamia pinnata (indian beech)", "prickly chaff flower.zip", "psidium guajava (guava)", "punarnava.zip", "punica granatum (pomegranate)", "balloon vine.zip", "purple fruited pea eggplant.zip", "purple tephrosia.zip", "rosary pea.zip", "santalum album (sandalwood)", "shaggy button weed.zip", "small water clover.zip", "spiderwisp.zip", "square stalked vine.zip", "stinking passionflower.zip", "sweet basil.zip", "basella alba (basale)", "sweet flag.zip", "syzygium cumini (jamun)", "syzygium jambos (rose apple)", "tabernaemontana divaricata (crape jasmine)", "tinnevelly senna.zip", "trellis vine.zip", "trigonella foenum-graecum (fenugreek)", "velvet bean.zip", "coatbuttons.zip", "heart-leaved moonseed.zip", "bellyache bush (green).zip", "benghal dayflower.zip" ]
bgoldfe2/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.3674 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9983 | 1.0 | 17 | 0.8032 | 0.9323 | | 0.6984 | 2.0 | 34 | 0.5943 | 0.9549 | | 0.5056 | 3.0 | 51 | 0.4566 | 0.9624 | | 0.4601 | 4.0 | 68 | 0.3892 | 0.9624 | | 0.3883 | 5.0 | 85 | 0.3674 | 0.9699 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
dima806/flowers_16_types_image_detection
Returns flower type given an image with about 99.5% accuracy. See https://www.kaggle.com/code/dima806/flowers-16-types-image-detection-vit for more details. ``` Classification report: precision recall f1-score support calendula 0.9928 0.9786 0.9856 421 coreopsis 0.9882 0.9905 0.9893 421 rose 0.9976 0.9953 0.9964 422 black_eyed_susan 0.9976 0.9976 0.9976 422 water_lily 0.9953 1.0000 0.9976 421 california_poppy 0.9905 0.9929 0.9917 422 dandelion 1.0000 0.9976 0.9988 422 magnolia 0.9952 0.9858 0.9905 422 astilbe 0.9976 0.9976 0.9976 421 sunflower 0.9976 1.0000 0.9988 422 tulip 0.9976 1.0000 0.9988 422 bellflower 0.9952 0.9905 0.9929 422 iris 1.0000 1.0000 1.0000 421 common_daisy 0.9882 0.9952 0.9917 421 daffodil 0.9976 0.9976 0.9976 422 carnation 0.9859 0.9976 0.9918 422 accuracy 0.9948 6746 macro avg 0.9948 0.9948 0.9948 6746 weighted avg 0.9948 0.9948 0.9948 6746 ```
[ "calendula", "coreopsis", "rose", "black_eyed_susan", "water_lily", "california_poppy", "dandelion", "magnolia", "astilbe", "sunflower", "tulip", "bellflower", "iris", "common_daisy", "daffodil", "carnation" ]
DataBindu/swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes-merged
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes-merged This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8626 - Accuracy: 0.7269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8355 | 0.98 | 15 | 2.5831 | 0.3333 | | 1.9292 | 1.97 | 30 | 1.6850 | 0.5046 | | 1.4121 | 2.95 | 45 | 1.2324 | 0.5972 | | 1.0121 | 4.0 | 61 | 1.0345 | 0.6852 | | 0.854 | 4.98 | 76 | 0.9663 | 0.6806 | | 0.701 | 5.97 | 91 | 0.9587 | 0.6991 | | 0.5956 | 6.95 | 106 | 0.8626 | 0.7269 | | 0.5713 | 7.87 | 120 | 0.8645 | 0.7222 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3
[ "actinomycetes_mycolata", "anaerobic type b", "anaerobic suflur bacteria", "beggiatoa", "flexibacter", "fungi", "gao", "haliscomenobacter", "hyphomicrobium", "microscrilla", "microthrix", "nitrosomonas", "nostocoida limicola", "pao", "sphaerotilus-type 1701", "spirilla", "spirochaetes", "tetrads", "thiothrix", "type 0041_0675", "type 0092", "type 021n", "type 0411", "type 0581_chloroflexi", "type 0914_0803", "type 0961", "type 1863", "zoogloea", "bristleworm", "crustacean", "dead filament", "elevated polysaccharide", "ferric iron", "fibrous material", "filament impact on floc structure high", "filament impact on floc structure low", "filament impact on floc structure moderate", "flagellate", "floc open_diffuse", "floc strong", "floc weak", "free swimming ciliate", "gastrotrich", "grease", "inert", "iron sulfide", "irregular growth formations", "naked amoebae", "nematode", "normal polysaccharide", "oil", "rotifer", "stalked ciliate", "testate amoebae", "type 1851", "water bear", "yeast" ]
dima806/marvel_heroes_image_detection
Return Marvel hero based on image with about 88% accuracy. See https://www.kaggle.com/code/dima806/marvel-heroes-image-detection-vit for more details. ``` Classification report: precision recall f1-score support captain america 0.8519 0.8519 0.8519 162 black widow 0.8634 0.8528 0.8580 163 spider-man 0.9571 0.9630 0.9600 162 thanos 0.8917 0.8589 0.8750 163 ironman 0.8614 0.8827 0.8720 162 hulk 0.8889 0.8395 0.8635 162 loki 0.8957 0.8957 0.8957 163 doctor strange 0.8629 0.9264 0.8935 163 accuracy 0.8838 1300 macro avg 0.8841 0.8838 0.8837 1300 weighted avg 0.8841 0.8838 0.8837 1300 ```
[ "captain america", "black widow", "spider-man", "thanos", "ironman", "hulk", "loki", "doctor strange" ]
Audi24/fire_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Audi24/fire_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1936 - Validation Loss: 0.1743 - Train Accuracy: 0.9889 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0088 | 0.8898 | 0.8667 | 0 | | 0.7325 | 0.6165 | 0.9333 | 1 | | 0.4620 | 0.3794 | 0.9444 | 2 | | 0.3100 | 0.2546 | 0.9667 | 3 | | 0.1936 | 0.1743 | 0.9889 | 4 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "fire", "high", "low" ]
onceiapp/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0340 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1854 | 0.99 | 21 | 0.0688 | 0.9800 | | 0.0438 | 1.98 | 42 | 0.0410 | 0.9817 | | 0.0194 | 2.96 | 63 | 0.0340 | 0.9850 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "real", "spoof" ]
Jayanth2002/vit_base_patch16_224-finetuned-SkinDisease
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_base_patch16_224-finetuned-SkinDisease This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 - Accuracy: 0.9343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9099 | 1.0 | 282 | 0.8248 | 0.7647 | | 0.5848 | 2.0 | 565 | 0.4236 | 0.8748 | | 0.3952 | 3.0 | 847 | 0.3154 | 0.9021 | | 0.3957 | 4.0 | 1130 | 0.2695 | 0.9106 | | 0.3146 | 5.0 | 1412 | 0.2381 | 0.9198 | | 0.2883 | 6.0 | 1695 | 0.2407 | 0.9218 | | 0.2264 | 7.0 | 1977 | 0.2160 | 0.9278 | | 0.2339 | 8.0 | 2260 | 0.2121 | 0.9283 | | 0.1966 | 9.0 | 2542 | 0.2044 | 0.9303 | | 0.2366 | 9.98 | 2820 | 0.1992 | 0.9343 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
[ "basal cell carcinoma", "darier_s disease", "epidermolysis bullosa pruriginosa", "hailey-hailey disease", "herpes simplex", "impetigo", "larva migrans", "leprosy borderline", "leprosy lepromatous", "leprosy tuberculoid", "lichen planus", "lupus erythematosus chronicus discoides", "melanoma", "molluscum contagiosum", "mycosis fungoides", "neurofibromatosis", "papilomatosis confluentes and reticulate", "pediculosis capitis", "pityriasis rosea", "porokeratosis actinic", "psoriasis", "tinea corporis", "tinea nigra", "tungiasis", "actinic keratosis", "dermatofibroma", "nevus", "pigmented benign keratosis", "seborrheic keratosis", "squamous cell carcinoma", "vascular lesion" ]
MohanaPriyaa/image_classification
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MohanaPriyaa/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2925 - Validation Loss: 0.2284 - Train Accuracy: 0.909 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2925 | 0.2284 | 0.909 | 0 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "bleached_corals", "healthy_corals" ]
lossless/autotrain-vertigo-actors-03-90426144283
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 90426144283 - CO2 Emissions (in grams): 0.1230 ## Validation Metrics - Loss: 0.414 - Accuracy: 0.800 - Macro F1: 0.711 - Micro F1: 0.800 - Weighted F1: 0.773 - Macro Precision: 0.889 - Micro Precision: 0.800 - Weighted Precision: 0.867 - Macro Recall: 0.708 - Micro Recall: 0.800 - Weighted Recall: 0.800
[ "james-stewart", "kim-novak", "other" ]
lossless/autotrain-vertigo-actors-03-90426144282
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 90426144282 - CO2 Emissions (in grams): 0.0252 ## Validation Metrics - Loss: 0.550 - Accuracy: 0.850 - Macro F1: 0.798 - Micro F1: 0.850 - Weighted F1: 0.844 - Macro Precision: 0.815 - Micro Precision: 0.850 - Weighted Precision: 0.844 - Macro Recall: 0.792 - Micro Recall: 0.850 - Weighted Recall: 0.850
[ "james-stewart", "kim-novak", "other" ]
lossless/autotrain-vertigo-actors-03-90426144285
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 90426144285 - CO2 Emissions (in grams): 0.1327 ## Validation Metrics - Loss: 0.397 - Accuracy: 0.800 - Macro F1: 0.750 - Micro F1: 0.800 - Weighted F1: 0.800 - Macro Precision: 0.750 - Micro Precision: 0.800 - Weighted Precision: 0.800 - Macro Recall: 0.750 - Micro Recall: 0.800 - Weighted Recall: 0.800
[ "james-stewart", "kim-novak", "other" ]
MohanaPriyaa/Coral_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MohanaPriyaa/Coral_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3025 - Validation Loss: 0.2241 - Train Accuracy: 0.92 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3025 | 0.2241 | 0.92 | 0 | ### Framework versions - Transformers 4.33.2 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "bleached_corals", "healthy_corals" ]
Jayanth2002/swin-base-patch4-window7-224-rawdata-finetuned-SkinDisease
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-rawdata-finetuned-SkinDisease This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3867 - Accuracy: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7301 | 0.98 | 34 | 2.0665 | 0.3910 | | 1.3672 | 1.99 | 69 | 1.0139 | 0.6660 | | 0.7673 | 2.99 | 104 | 0.7393 | 0.7760 | | 0.605 | 4.0 | 139 | 0.6480 | 0.7841 | | 0.5142 | 4.98 | 173 | 0.5229 | 0.8248 | | 0.4081 | 5.99 | 208 | 0.4561 | 0.8615 | | 0.3966 | 6.99 | 243 | 0.4206 | 0.8656 | | 0.3247 | 8.0 | 278 | 0.4001 | 0.8717 | | 0.3235 | 8.98 | 312 | 0.3867 | 0.8819 | | 0.2788 | 9.78 | 340 | 0.3801 | 0.8737 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
[ "basal cell carcinoma", "darier_s disease", "epidermolysis bullosa pruriginosa", "hailey-hailey disease", "herpes simplex", "impetigo", "larva migrans", "leprosy borderline", "leprosy lepromatous", "leprosy tuberculoid", "lichen planus", "lupus erythematosus chronicus discoides", "melanoma", "molluscum contagiosum", "mycosis fungoides", "neurofibromatosis", "papilomatosis confluentes and reticulate", "pediculosis capitis", "pityriasis rosea", "porokeratosis actinic", "psoriasis", "tinea corporis", "tinea nigra", "tungiasis", "actinic keratosis", "dermatofibroma", "nevus", "pigmented benign keratosis", "seborrheic keratosis", "squamous cell carcinoma", "vascular lesion" ]
FelipeMedina16/vit-model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0297 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1385 | 3.85 | 500 | 0.0297 | 0.9925 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
awrysfab/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2383 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0769 | 1.0 | 10 | 2.0617 | 0.1812 | | 2.0383 | 2.0 | 20 | 2.0104 | 0.3 | | 1.9423 | 3.0 | 30 | 1.8932 | 0.425 | | 1.7923 | 4.0 | 40 | 1.7442 | 0.475 | | 1.6547 | 5.0 | 50 | 1.6047 | 0.4875 | | 1.5297 | 6.0 | 60 | 1.5184 | 0.5437 | | 1.4345 | 7.0 | 70 | 1.4392 | 0.5625 | | 1.337 | 8.0 | 80 | 1.3847 | 0.5875 | | 1.2722 | 9.0 | 90 | 1.3442 | 0.55 | | 1.217 | 10.0 | 100 | 1.3058 | 0.5625 | | 1.1497 | 11.0 | 110 | 1.2914 | 0.55 | | 1.0977 | 12.0 | 120 | 1.2377 | 0.6125 | | 1.0507 | 13.0 | 130 | 1.2253 | 0.5687 | | 1.0268 | 14.0 | 140 | 1.2269 | 0.5938 | | 0.967 | 15.0 | 150 | 1.2260 | 0.5938 | | 0.9269 | 16.0 | 160 | 1.2421 | 0.5687 | | 0.9102 | 17.0 | 170 | 1.2218 | 0.5687 | | 0.8883 | 18.0 | 180 | 1.2207 | 0.5687 | | 0.8633 | 19.0 | 190 | 1.1933 | 0.6062 | | 0.8557 | 20.0 | 200 | 1.1830 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
hyeongjin99/vit_base_aihub_model_py
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_base_aihub_model_py This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0228 - Accuracy: 0.9978 - Precision: 0.9981 - Recall: 0.9974 - F1: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1415 | 1.0 | 149 | 0.1286 | 0.9712 | 0.9788 | 0.9623 | 0.9700 | | 0.0671 | 2.0 | 299 | 0.0463 | 0.9948 | 0.9917 | 0.9946 | 0.9932 | | 0.0423 | 3.0 | 448 | 0.0356 | 0.9952 | 0.9970 | 0.9908 | 0.9939 | | 0.0383 | 4.0 | 598 | 0.0242 | 0.9976 | 0.9980 | 0.9972 | 0.9976 | | 0.033 | 4.98 | 745 | 0.0228 | 0.9978 | 0.9981 | 0.9974 | 0.9978 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
[ "cloudy", "normal", "rainy", "snowy" ]
dima806/horse_breeds_image_detection
Returns horse breed given an image with about 91% accuracy. See https://www.kaggle.com/code/dima806/horse-breed-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Friesian 0.8889 1.0000 0.9412 24 Arabian 0.8571 0.9600 0.9057 25 Percheron 1.0000 0.6400 0.7805 25 Orlov Trotter 0.7931 0.9200 0.8519 25 Akhal-Teke 1.0000 0.9200 0.9583 25 Vladimir Heavy Draft 0.9200 0.9583 0.9388 24 Appaloosa 1.0000 1.0000 1.0000 25 accuracy 0.9133 173 macro avg 0.9227 0.9140 0.9109 173 weighted avg 0.9229 0.9133 0.9106 173 ```
[ "friesian", "arabian", "percheron", "orlov trotter", "akhal-teke", "vladimir heavy draft", "appaloosa" ]
randomstate42/vit_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pikachu_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1405 - Accuracy: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9745 | 1.0 | 70 | 3.8989 | 0.5574 | | 3.0708 | 1.99 | 140 | 3.0319 | 0.8415 | | 2.4196 | 2.99 | 210 | 2.4623 | 0.9225 | | 1.9768 | 4.0 | 281 | 2.0344 | 0.9492 | | 1.6809 | 5.0 | 351 | 1.7300 | 0.9715 | | 1.4707 | 5.99 | 421 | 1.4962 | 0.9742 | | 1.2854 | 6.99 | 491 | 1.3465 | 0.9724 | | 1.1553 | 8.0 | 562 | 1.2592 | 0.9742 | | 1.0859 | 9.0 | 632 | 1.1849 | 0.9724 | | 1.0657 | 9.96 | 700 | 1.1405 | 0.9786 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "alpinia galanga (rasna)", "amaranthus viridis (arive-dantu)", "big caltrops.zip", "black-honey shrub.zip", "brassica juncea (indian mustard)", "bristly wild grape.zip", "butterfly pea.zip", "cape gooseberry.zip", "carissa carandas (karanda)", "citrus limon (lemon)", "common wireweed.zip", "country mallow.zip", "artocarpus heterophyllus (jackfruit)", "crown flower.zip", "ficus auriculata (roxburgh fig)", "ficus religiosa (peepal tree)", "green chireta.zip", "hibiscus rosa-sinensis", "holy basil.zip", "indian copperleaf.zip", "indian jujube.zip", "indian sarsaparilla.zip", "indian stinging nettle.zip", "asthma plant.zip", "indian thornapple.zip", "indian wormwood.zip", "ivy gourd.zip", "jasminum (jasmine)", "kokilaksha.zip", "land caltrops (bindii).zip", "madagascar periwinkle.zip", "madras pea pumpkin.zip", "malabar catmint.zip", "mangifera indica (mango)", "avaram.zip", "mentha (mint)", "mexican mint.zip", "mexican prickly poppy.zip", "moringa oleifera (drumstick)", "mountain knotgrass.zip", "muntingia calabura (jamaica cherry-gasagase)", "murraya koenigii (curry)", "nalta jute.zip", "nerium oleander (oleander)", "night blooming cereus.zip", "azadirachta indica (neem)", "nyctanthes arbor-tristis (parijata)", "ocimum tenuiflorum (tulsi)", "panicled foldwing.zip", "piper betle (betel)", "plectranthus amboinicus (mexican mint)", "pongamia pinnata (indian beech)", "prickly chaff flower.zip", "psidium guajava (guava)", "punarnava.zip", "punica granatum (pomegranate)", "balloon vine.zip", "purple fruited pea eggplant.zip", "purple tephrosia.zip", "rosary pea.zip", "santalum album (sandalwood)", "shaggy button weed.zip", "small water clover.zip", "spiderwisp.zip", "square stalked vine.zip", "stinking passionflower.zip", "sweet basil.zip", "basella alba (basale)", "sweet flag.zip", "syzygium cumini (jamun)", "syzygium jambos (rose apple)", "tabernaemontana divaricata (crape jasmine)", "tinnevelly senna.zip", "trellis vine.zip", "trigonella foenum-graecum (fenugreek)", "velvet bean.zip", "coatbuttons.zip", "heart-leaved moonseed.zip", "bellyache bush (green).zip", "benghal dayflower.zip" ]
yashika0998/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
grelade/mmx-feature-extraction
# ResNet ResNet model trained on imagenet-1k. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) and first released in [this repository](https://github.com/KaimingHe/deep-residual-networks). Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, ResNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18") >>> model = ResNetForImageClassification.from_pretrained("microsoft/resnet-18") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tiger cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/resnet).
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
mmunoz96/results
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
dima806/tesla_car_model_image_detection
Returns Tesla car model given an image with about 85% accuracy. See https://www.kaggle.com/code/dima806/tesla-car-model-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Model_Y 0.8679 0.8364 0.8519 55 Model_E 0.8462 0.8800 0.8627 100 Model_S 0.8293 0.8095 0.8193 42 Model_X 0.8519 0.8364 0.8440 55 accuracy 0.8492 252 macro avg 0.8488 0.8406 0.8445 252 weighted avg 0.8493 0.8492 0.8490 252 ```
[ "model_y", "model_e", "model_s", "model_x" ]
iasolutionss/model_beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - Accuracy: 0.9699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0693 | 3.85 | 500 | 0.1358 | 0.9699 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
Niraya666/swin-tiny-patch4-window7-224-finetuned-ADC-4cls-0922
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-ADC-4cls-0922 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8947 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.9655 | 0.6714 | | No log | 2.0 | 4 | 0.9654 | 0.6571 | | No log | 3.0 | 6 | 0.9651 | 0.6571 | | No log | 4.0 | 8 | 0.9647 | 0.6571 | | 1.0064 | 5.0 | 10 | 0.9641 | 0.6571 | | 1.0064 | 6.0 | 12 | 0.9635 | 0.6571 | | 1.0064 | 7.0 | 14 | 0.9629 | 0.6571 | | 1.0064 | 8.0 | 16 | 0.9623 | 0.6571 | | 1.0064 | 9.0 | 18 | 0.9617 | 0.6571 | | 0.9821 | 10.0 | 20 | 0.9611 | 0.6571 | | 0.9821 | 11.0 | 22 | 0.9607 | 0.6571 | | 0.9821 | 12.0 | 24 | 0.9604 | 0.6714 | | 0.9821 | 13.0 | 26 | 0.9601 | 0.6714 | | 0.9821 | 14.0 | 28 | 0.9597 | 0.6714 | | 1.0278 | 15.0 | 30 | 0.9592 | 0.6714 | | 1.0278 | 16.0 | 32 | 0.9581 | 0.6714 | | 1.0278 | 17.0 | 34 | 0.9567 | 0.6714 | | 1.0278 | 18.0 | 36 | 0.9551 | 0.6714 | | 1.0278 | 19.0 | 38 | 0.9534 | 0.6714 | | 0.9986 | 20.0 | 40 | 0.9514 | 0.6571 | | 0.9986 | 21.0 | 42 | 0.9493 | 0.6571 | | 0.9986 | 22.0 | 44 | 0.9472 | 0.6429 | | 0.9986 | 23.0 | 46 | 0.9452 | 0.6429 | | 0.9986 | 24.0 | 48 | 0.9434 | 0.6429 | | 0.9973 | 25.0 | 50 | 0.9420 | 0.6429 | | 0.9973 | 26.0 | 52 | 0.9405 | 0.6429 | | 0.9973 | 27.0 | 54 | 0.9387 | 0.6286 | | 0.9973 | 28.0 | 56 | 0.9376 | 0.6286 | | 0.9973 | 29.0 | 58 | 0.9368 | 0.6429 | | 0.9936 | 30.0 | 60 | 0.9362 | 0.6429 | | 0.9936 | 31.0 | 62 | 0.9361 | 0.6571 | | 0.9936 | 32.0 | 64 | 0.9364 | 0.6714 | | 0.9936 | 33.0 | 66 | 0.9371 | 0.6714 | | 0.9936 | 34.0 | 68 | 0.9380 | 0.6429 | | 0.9746 | 35.0 | 70 | 0.9380 | 0.6571 | | 0.9746 | 36.0 | 72 | 0.9375 | 0.6714 | | 0.9746 | 37.0 | 74 | 0.9380 | 0.6714 | | 0.9746 | 38.0 | 76 | 0.9375 | 0.6714 | | 0.9746 | 39.0 | 78 | 0.9370 | 0.6714 | | 1.0113 | 40.0 | 80 | 0.9362 | 0.6714 | | 1.0113 | 41.0 | 82 | 0.9341 | 0.6714 | | 1.0113 | 42.0 | 84 | 0.9301 | 0.6857 | | 1.0113 | 43.0 | 86 | 0.9260 | 0.6714 | | 1.0113 | 44.0 | 88 | 0.9224 | 0.6571 | | 0.9756 | 45.0 | 90 | 0.9190 | 0.6714 | | 0.9756 | 46.0 | 92 | 0.9154 | 0.6714 | | 0.9756 | 47.0 | 94 | 0.9123 | 0.6714 | | 0.9756 | 48.0 | 96 | 0.9091 | 0.6571 | | 0.9756 | 49.0 | 98 | 0.9071 | 0.6571 | | 0.9721 | 50.0 | 100 | 0.9056 | 0.6571 | | 0.9721 | 51.0 | 102 | 0.9047 | 0.6571 | | 0.9721 | 52.0 | 104 | 0.9039 | 0.6571 | | 0.9721 | 53.0 | 106 | 0.9031 | 0.6714 | | 0.9721 | 54.0 | 108 | 0.9025 | 0.6714 | | 0.9698 | 55.0 | 110 | 0.9023 | 0.6714 | | 0.9698 | 56.0 | 112 | 0.9012 | 0.6714 | | 0.9698 | 57.0 | 114 | 0.8997 | 0.6714 | | 0.9698 | 58.0 | 116 | 0.8982 | 0.6714 | | 0.9698 | 59.0 | 118 | 0.8970 | 0.6714 | | 0.9341 | 60.0 | 120 | 0.8957 | 0.6857 | | 0.9341 | 61.0 | 122 | 0.8947 | 0.7 | | 0.9341 | 62.0 | 124 | 0.8940 | 0.7 | | 0.9341 | 63.0 | 126 | 0.8941 | 0.6714 | | 0.9341 | 64.0 | 128 | 0.8934 | 0.6714 | | 0.9717 | 65.0 | 130 | 0.8917 | 0.6714 | | 0.9717 | 66.0 | 132 | 0.8898 | 0.6857 | | 0.9717 | 67.0 | 134 | 0.8884 | 0.6857 | | 0.9717 | 68.0 | 136 | 0.8870 | 0.6857 | | 0.9717 | 69.0 | 138 | 0.8854 | 0.6857 | | 0.9655 | 70.0 | 140 | 0.8840 | 0.6857 | | 0.9655 | 71.0 | 142 | 0.8827 | 0.6857 | | 0.9655 | 72.0 | 144 | 0.8814 | 0.6857 | | 0.9655 | 73.0 | 146 | 0.8805 | 0.6857 | | 0.9655 | 74.0 | 148 | 0.8803 | 0.6857 | | 0.9458 | 75.0 | 150 | 0.8802 | 0.6857 | | 0.9458 | 76.0 | 152 | 0.8797 | 0.6714 | | 0.9458 | 77.0 | 154 | 0.8794 | 0.6714 | | 0.9458 | 78.0 | 156 | 0.8796 | 0.6714 | | 0.9458 | 79.0 | 158 | 0.8808 | 0.6714 | | 0.9094 | 80.0 | 160 | 0.8817 | 0.6714 | | 0.9094 | 81.0 | 162 | 0.8828 | 0.6714 | | 0.9094 | 82.0 | 164 | 0.8836 | 0.6714 | | 0.9094 | 83.0 | 166 | 0.8830 | 0.6714 | | 0.9094 | 84.0 | 168 | 0.8821 | 0.6571 | | 0.8719 | 85.0 | 170 | 0.8813 | 0.6571 | | 0.8719 | 86.0 | 172 | 0.8804 | 0.6714 | | 0.8719 | 87.0 | 174 | 0.8798 | 0.6571 | | 0.8719 | 88.0 | 176 | 0.8787 | 0.6571 | | 0.8719 | 89.0 | 178 | 0.8770 | 0.6571 | | 0.9288 | 90.0 | 180 | 0.8752 | 0.6857 | | 0.9288 | 91.0 | 182 | 0.8722 | 0.6857 | | 0.9288 | 92.0 | 184 | 0.8694 | 0.6714 | | 0.9288 | 93.0 | 186 | 0.8670 | 0.6714 | | 0.9288 | 94.0 | 188 | 0.8645 | 0.6857 | | 0.9039 | 95.0 | 190 | 0.8624 | 0.6857 | | 0.9039 | 96.0 | 192 | 0.8603 | 0.6714 | | 0.9039 | 97.0 | 194 | 0.8584 | 0.6857 | | 0.9039 | 98.0 | 196 | 0.8566 | 0.6857 | | 0.9039 | 99.0 | 198 | 0.8553 | 0.6857 | | 0.9081 | 100.0 | 200 | 0.8550 | 0.6857 | | 0.9081 | 101.0 | 202 | 0.8551 | 0.6857 | | 0.9081 | 102.0 | 204 | 0.8556 | 0.6857 | | 0.9081 | 103.0 | 206 | 0.8558 | 0.6857 | | 0.9081 | 104.0 | 208 | 0.8554 | 0.6857 | | 0.9142 | 105.0 | 210 | 0.8551 | 0.6857 | | 0.9142 | 106.0 | 212 | 0.8553 | 0.6857 | | 0.9142 | 107.0 | 214 | 0.8551 | 0.6857 | | 0.9142 | 108.0 | 216 | 0.8549 | 0.6857 | | 0.9142 | 109.0 | 218 | 0.8549 | 0.6857 | | 0.9347 | 110.0 | 220 | 0.8551 | 0.6714 | | 0.9347 | 111.0 | 222 | 0.8554 | 0.6714 | | 0.9347 | 112.0 | 224 | 0.8548 | 0.6714 | | 0.9347 | 113.0 | 226 | 0.8538 | 0.6714 | | 0.9347 | 114.0 | 228 | 0.8525 | 0.6714 | | 0.8922 | 115.0 | 230 | 0.8512 | 0.6857 | | 0.8922 | 116.0 | 232 | 0.8505 | 0.6857 | | 0.8922 | 117.0 | 234 | 0.8495 | 0.6857 | | 0.8922 | 118.0 | 236 | 0.8484 | 0.6857 | | 0.8922 | 119.0 | 238 | 0.8472 | 0.6857 | | 0.8897 | 120.0 | 240 | 0.8456 | 0.6857 | | 0.8897 | 121.0 | 242 | 0.8440 | 0.6857 | | 0.8897 | 122.0 | 244 | 0.8426 | 0.6714 | | 0.8897 | 123.0 | 246 | 0.8412 | 0.6857 | | 0.8897 | 124.0 | 248 | 0.8396 | 0.6857 | | 0.8829 | 125.0 | 250 | 0.8384 | 0.6857 | | 0.8829 | 126.0 | 252 | 0.8373 | 0.6857 | | 0.8829 | 127.0 | 254 | 0.8365 | 0.6857 | | 0.8829 | 128.0 | 256 | 0.8360 | 0.6857 | | 0.8829 | 129.0 | 258 | 0.8353 | 0.6857 | | 0.8744 | 130.0 | 260 | 0.8344 | 0.6857 | | 0.8744 | 131.0 | 262 | 0.8337 | 0.6714 | | 0.8744 | 132.0 | 264 | 0.8329 | 0.6857 | | 0.8744 | 133.0 | 266 | 0.8325 | 0.6857 | | 0.8744 | 134.0 | 268 | 0.8318 | 0.6857 | | 0.8657 | 135.0 | 270 | 0.8312 | 0.6857 | | 0.8657 | 136.0 | 272 | 0.8306 | 0.6714 | | 0.8657 | 137.0 | 274 | 0.8300 | 0.6714 | | 0.8657 | 138.0 | 276 | 0.8296 | 0.6714 | | 0.8657 | 139.0 | 278 | 0.8294 | 0.6714 | | 0.9421 | 140.0 | 280 | 0.8292 | 0.6714 | | 0.9421 | 141.0 | 282 | 0.8291 | 0.6714 | | 0.9421 | 142.0 | 284 | 0.8290 | 0.6714 | | 0.9421 | 143.0 | 286 | 0.8290 | 0.6857 | | 0.9421 | 144.0 | 288 | 0.8289 | 0.6857 | | 0.9066 | 145.0 | 290 | 0.8287 | 0.6857 | | 0.9066 | 146.0 | 292 | 0.8290 | 0.6857 | | 0.9066 | 147.0 | 294 | 0.8293 | 0.6857 | | 0.9066 | 148.0 | 296 | 0.8294 | 0.6857 | | 0.9066 | 149.0 | 298 | 0.8295 | 0.6857 | | 0.9068 | 150.0 | 300 | 0.8295 | 0.6857 | | 0.9068 | 151.0 | 302 | 0.8294 | 0.6857 | | 0.9068 | 152.0 | 304 | 0.8293 | 0.6857 | | 0.9068 | 153.0 | 306 | 0.8293 | 0.6857 | | 0.9068 | 154.0 | 308 | 0.8290 | 0.6857 | | 0.8715 | 155.0 | 310 | 0.8287 | 0.6857 | | 0.8715 | 156.0 | 312 | 0.8283 | 0.6857 | | 0.8715 | 157.0 | 314 | 0.8277 | 0.6857 | | 0.8715 | 158.0 | 316 | 0.8274 | 0.6857 | | 0.8715 | 159.0 | 318 | 0.8269 | 0.6857 | | 0.8921 | 160.0 | 320 | 0.8266 | 0.6857 | | 0.8921 | 161.0 | 322 | 0.8264 | 0.6857 | | 0.8921 | 162.0 | 324 | 0.8261 | 0.6857 | | 0.8921 | 163.0 | 326 | 0.8260 | 0.6857 | | 0.8921 | 164.0 | 328 | 0.8258 | 0.6857 | | 0.8768 | 165.0 | 330 | 0.8252 | 0.6857 | | 0.8768 | 166.0 | 332 | 0.8248 | 0.6857 | | 0.8768 | 167.0 | 334 | 0.8243 | 0.6857 | | 0.8768 | 168.0 | 336 | 0.8237 | 0.6857 | | 0.8768 | 169.0 | 338 | 0.8231 | 0.6857 | | 0.8519 | 170.0 | 340 | 0.8227 | 0.6857 | | 0.8519 | 171.0 | 342 | 0.8223 | 0.6857 | | 0.8519 | 172.0 | 344 | 0.8221 | 0.6857 | | 0.8519 | 173.0 | 346 | 0.8220 | 0.6857 | | 0.8519 | 174.0 | 348 | 0.8218 | 0.6857 | | 0.92 | 175.0 | 350 | 0.8215 | 0.6857 | | 0.92 | 176.0 | 352 | 0.8211 | 0.7 | | 0.92 | 177.0 | 354 | 0.8207 | 0.7 | | 0.92 | 178.0 | 356 | 0.8204 | 0.7 | | 0.92 | 179.0 | 358 | 0.8200 | 0.7 | | 0.879 | 180.0 | 360 | 0.8197 | 0.7 | | 0.879 | 181.0 | 362 | 0.8194 | 0.7 | | 0.879 | 182.0 | 364 | 0.8191 | 0.6857 | | 0.879 | 183.0 | 366 | 0.8187 | 0.6857 | | 0.879 | 184.0 | 368 | 0.8185 | 0.7 | | 0.8893 | 185.0 | 370 | 0.8182 | 0.7 | | 0.8893 | 186.0 | 372 | 0.8180 | 0.7 | | 0.8893 | 187.0 | 374 | 0.8177 | 0.7 | | 0.8893 | 188.0 | 376 | 0.8176 | 0.7 | | 0.8893 | 189.0 | 378 | 0.8175 | 0.7 | | 0.8501 | 190.0 | 380 | 0.8173 | 0.7 | | 0.8501 | 191.0 | 382 | 0.8171 | 0.7 | | 0.8501 | 192.0 | 384 | 0.8170 | 0.7 | | 0.8501 | 193.0 | 386 | 0.8169 | 0.7 | | 0.8501 | 194.0 | 388 | 0.8169 | 0.7 | | 0.8611 | 195.0 | 390 | 0.8168 | 0.7 | | 0.8611 | 196.0 | 392 | 0.8168 | 0.7 | | 0.8611 | 197.0 | 394 | 0.8168 | 0.7 | | 0.8611 | 198.0 | 396 | 0.8168 | 0.7 | | 0.8611 | 199.0 | 398 | 0.8168 | 0.7 | | 0.8881 | 200.0 | 400 | 0.8168 | 0.7 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "color", "pattern_fail", "residue", "tiny" ]
Niraya666/swin-tiny-patch4-window7-224-finetuned-ADC-3cls-0922
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-ADC-3cls-0922 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6771 - Accuracy: 0.8286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.6875 | 0.8143 | | No log | 2.0 | 4 | 0.6874 | 0.8143 | | No log | 3.0 | 6 | 0.6873 | 0.8143 | | No log | 4.0 | 8 | 0.6871 | 0.8143 | | 0.7555 | 5.0 | 10 | 0.6869 | 0.8143 | | 0.7555 | 6.0 | 12 | 0.6866 | 0.8143 | | 0.7555 | 7.0 | 14 | 0.6862 | 0.8143 | | 0.7555 | 8.0 | 16 | 0.6858 | 0.8143 | | 0.7555 | 9.0 | 18 | 0.6853 | 0.8143 | | 0.7576 | 10.0 | 20 | 0.6848 | 0.8143 | | 0.7576 | 11.0 | 22 | 0.6842 | 0.8143 | | 0.7576 | 12.0 | 24 | 0.6836 | 0.8143 | | 0.7576 | 13.0 | 26 | 0.6830 | 0.8143 | | 0.7576 | 14.0 | 28 | 0.6823 | 0.8143 | | 0.769 | 15.0 | 30 | 0.6816 | 0.8 | | 0.769 | 16.0 | 32 | 0.6808 | 0.8 | | 0.769 | 17.0 | 34 | 0.6800 | 0.8143 | | 0.769 | 18.0 | 36 | 0.6791 | 0.8143 | | 0.769 | 19.0 | 38 | 0.6781 | 0.8143 | | 0.7564 | 20.0 | 40 | 0.6771 | 0.8286 | | 0.7564 | 21.0 | 42 | 0.6760 | 0.8143 | | 0.7564 | 22.0 | 44 | 0.6748 | 0.8143 | | 0.7564 | 23.0 | 46 | 0.6737 | 0.8 | | 0.7564 | 24.0 | 48 | 0.6725 | 0.8 | | 0.7508 | 25.0 | 50 | 0.6713 | 0.8143 | | 0.7508 | 26.0 | 52 | 0.6701 | 0.8143 | | 0.7508 | 27.0 | 54 | 0.6689 | 0.8143 | | 0.7508 | 28.0 | 56 | 0.6674 | 0.8143 | | 0.7508 | 29.0 | 58 | 0.6660 | 0.8143 | | 0.747 | 30.0 | 60 | 0.6646 | 0.8143 | | 0.747 | 31.0 | 62 | 0.6631 | 0.8143 | | 0.747 | 32.0 | 64 | 0.6616 | 0.8143 | | 0.747 | 33.0 | 66 | 0.6601 | 0.8143 | | 0.747 | 34.0 | 68 | 0.6586 | 0.8143 | | 0.7343 | 35.0 | 70 | 0.6570 | 0.8143 | | 0.7343 | 36.0 | 72 | 0.6553 | 0.8143 | | 0.7343 | 37.0 | 74 | 0.6536 | 0.8143 | | 0.7343 | 38.0 | 76 | 0.6517 | 0.8143 | | 0.7343 | 39.0 | 78 | 0.6499 | 0.8143 | | 0.7532 | 40.0 | 80 | 0.6480 | 0.8143 | | 0.7532 | 41.0 | 82 | 0.6461 | 0.8143 | | 0.7532 | 42.0 | 84 | 0.6442 | 0.8143 | | 0.7532 | 43.0 | 86 | 0.6423 | 0.8143 | | 0.7532 | 44.0 | 88 | 0.6405 | 0.8143 | | 0.7239 | 45.0 | 90 | 0.6387 | 0.8143 | | 0.7239 | 46.0 | 92 | 0.6368 | 0.8143 | | 0.7239 | 47.0 | 94 | 0.6352 | 0.8143 | | 0.7239 | 48.0 | 96 | 0.6337 | 0.8143 | | 0.7239 | 49.0 | 98 | 0.6321 | 0.8286 | | 0.7085 | 50.0 | 100 | 0.6307 | 0.8286 | | 0.7085 | 51.0 | 102 | 0.6294 | 0.8286 | | 0.7085 | 52.0 | 104 | 0.6278 | 0.8286 | | 0.7085 | 53.0 | 106 | 0.6263 | 0.8286 | | 0.7085 | 54.0 | 108 | 0.6248 | 0.8143 | | 0.7203 | 55.0 | 110 | 0.6233 | 0.8143 | | 0.7203 | 56.0 | 112 | 0.6219 | 0.8143 | | 0.7203 | 57.0 | 114 | 0.6205 | 0.8143 | | 0.7203 | 58.0 | 116 | 0.6191 | 0.8143 | | 0.7203 | 59.0 | 118 | 0.6179 | 0.8143 | | 0.7136 | 60.0 | 120 | 0.6167 | 0.8143 | | 0.7136 | 61.0 | 122 | 0.6157 | 0.8143 | | 0.7136 | 62.0 | 124 | 0.6148 | 0.8 | | 0.7136 | 63.0 | 126 | 0.6138 | 0.8 | | 0.7136 | 64.0 | 128 | 0.6125 | 0.8 | | 0.7123 | 65.0 | 130 | 0.6111 | 0.8 | | 0.7123 | 66.0 | 132 | 0.6096 | 0.8143 | | 0.7123 | 67.0 | 134 | 0.6083 | 0.8143 | | 0.7123 | 68.0 | 136 | 0.6070 | 0.8143 | | 0.7123 | 69.0 | 138 | 0.6057 | 0.8143 | | 0.7076 | 70.0 | 140 | 0.6046 | 0.8143 | | 0.7076 | 71.0 | 142 | 0.6035 | 0.8143 | | 0.7076 | 72.0 | 144 | 0.6023 | 0.8143 | | 0.7076 | 73.0 | 146 | 0.6011 | 0.8143 | | 0.7076 | 74.0 | 148 | 0.5999 | 0.8143 | | 0.6878 | 75.0 | 150 | 0.5988 | 0.8143 | | 0.6878 | 76.0 | 152 | 0.5975 | 0.8143 | | 0.6878 | 77.0 | 154 | 0.5964 | 0.8143 | | 0.6878 | 78.0 | 156 | 0.5953 | 0.8143 | | 0.6878 | 79.0 | 158 | 0.5942 | 0.8143 | | 0.6657 | 80.0 | 160 | 0.5932 | 0.8143 | | 0.6657 | 81.0 | 162 | 0.5923 | 0.8143 | | 0.6657 | 82.0 | 164 | 0.5914 | 0.8143 | | 0.6657 | 83.0 | 166 | 0.5906 | 0.8143 | | 0.6657 | 84.0 | 168 | 0.5897 | 0.8143 | | 0.6434 | 85.0 | 170 | 0.5888 | 0.8143 | | 0.6434 | 86.0 | 172 | 0.5878 | 0.8143 | | 0.6434 | 87.0 | 174 | 0.5868 | 0.8143 | | 0.6434 | 88.0 | 176 | 0.5859 | 0.8143 | | 0.6434 | 89.0 | 178 | 0.5851 | 0.8143 | | 0.6825 | 90.0 | 180 | 0.5843 | 0.8143 | | 0.6825 | 91.0 | 182 | 0.5836 | 0.8143 | | 0.6825 | 92.0 | 184 | 0.5828 | 0.8143 | | 0.6825 | 93.0 | 186 | 0.5823 | 0.8143 | | 0.6825 | 94.0 | 188 | 0.5817 | 0.8286 | | 0.6695 | 95.0 | 190 | 0.5809 | 0.8143 | | 0.6695 | 96.0 | 192 | 0.5801 | 0.8143 | | 0.6695 | 97.0 | 194 | 0.5793 | 0.8143 | | 0.6695 | 98.0 | 196 | 0.5787 | 0.8143 | | 0.6695 | 99.0 | 198 | 0.5780 | 0.8143 | | 0.6672 | 100.0 | 200 | 0.5772 | 0.8143 | | 0.6672 | 101.0 | 202 | 0.5762 | 0.8143 | | 0.6672 | 102.0 | 204 | 0.5754 | 0.8143 | | 0.6672 | 103.0 | 206 | 0.5746 | 0.8143 | | 0.6672 | 104.0 | 208 | 0.5738 | 0.8143 | | 0.6569 | 105.0 | 210 | 0.5731 | 0.8143 | | 0.6569 | 106.0 | 212 | 0.5724 | 0.8143 | | 0.6569 | 107.0 | 214 | 0.5716 | 0.8143 | | 0.6569 | 108.0 | 216 | 0.5708 | 0.8143 | | 0.6569 | 109.0 | 218 | 0.5701 | 0.8143 | | 0.6748 | 110.0 | 220 | 0.5694 | 0.8143 | | 0.6748 | 111.0 | 222 | 0.5687 | 0.8143 | | 0.6748 | 112.0 | 224 | 0.5680 | 0.8143 | | 0.6748 | 113.0 | 226 | 0.5674 | 0.8143 | | 0.6748 | 114.0 | 228 | 0.5668 | 0.8143 | | 0.6388 | 115.0 | 230 | 0.5662 | 0.8143 | | 0.6388 | 116.0 | 232 | 0.5657 | 0.8143 | | 0.6388 | 117.0 | 234 | 0.5652 | 0.8143 | | 0.6388 | 118.0 | 236 | 0.5648 | 0.8286 | | 0.6388 | 119.0 | 238 | 0.5645 | 0.8286 | | 0.6551 | 120.0 | 240 | 0.5641 | 0.8286 | | 0.6551 | 121.0 | 242 | 0.5636 | 0.8143 | | 0.6551 | 122.0 | 244 | 0.5631 | 0.8143 | | 0.6551 | 123.0 | 246 | 0.5627 | 0.8143 | | 0.6551 | 124.0 | 248 | 0.5624 | 0.8143 | | 0.6452 | 125.0 | 250 | 0.5622 | 0.8143 | | 0.6452 | 126.0 | 252 | 0.5620 | 0.8143 | | 0.6452 | 127.0 | 254 | 0.5618 | 0.8143 | | 0.6452 | 128.0 | 256 | 0.5615 | 0.8143 | | 0.6452 | 129.0 | 258 | 0.5613 | 0.8143 | | 0.645 | 130.0 | 260 | 0.5611 | 0.8143 | | 0.645 | 131.0 | 262 | 0.5608 | 0.8143 | | 0.645 | 132.0 | 264 | 0.5606 | 0.8143 | | 0.645 | 133.0 | 266 | 0.5602 | 0.8143 | | 0.645 | 134.0 | 268 | 0.5596 | 0.8143 | | 0.629 | 135.0 | 270 | 0.5590 | 0.8143 | | 0.629 | 136.0 | 272 | 0.5582 | 0.8143 | | 0.629 | 137.0 | 274 | 0.5576 | 0.8143 | | 0.629 | 138.0 | 276 | 0.5571 | 0.8143 | | 0.629 | 139.0 | 278 | 0.5568 | 0.8143 | | 0.7126 | 140.0 | 280 | 0.5565 | 0.8143 | | 0.7126 | 141.0 | 282 | 0.5563 | 0.8143 | | 0.7126 | 142.0 | 284 | 0.5561 | 0.8143 | | 0.7126 | 143.0 | 286 | 0.5559 | 0.8143 | | 0.7126 | 144.0 | 288 | 0.5555 | 0.8143 | | 0.669 | 145.0 | 290 | 0.5552 | 0.8143 | | 0.669 | 146.0 | 292 | 0.5547 | 0.8143 | | 0.669 | 147.0 | 294 | 0.5542 | 0.8143 | | 0.669 | 148.0 | 296 | 0.5538 | 0.8143 | | 0.669 | 149.0 | 298 | 0.5534 | 0.8143 | | 0.6481 | 150.0 | 300 | 0.5530 | 0.8143 | | 0.6481 | 151.0 | 302 | 0.5526 | 0.8143 | | 0.6481 | 152.0 | 304 | 0.5522 | 0.8143 | | 0.6481 | 153.0 | 306 | 0.5519 | 0.8143 | | 0.6481 | 154.0 | 308 | 0.5515 | 0.8143 | | 0.6211 | 155.0 | 310 | 0.5510 | 0.8143 | | 0.6211 | 156.0 | 312 | 0.5506 | 0.8143 | | 0.6211 | 157.0 | 314 | 0.5502 | 0.8143 | | 0.6211 | 158.0 | 316 | 0.5499 | 0.8143 | | 0.6211 | 159.0 | 318 | 0.5496 | 0.8143 | | 0.6458 | 160.0 | 320 | 0.5492 | 0.8286 | | 0.6458 | 161.0 | 322 | 0.5490 | 0.8143 | | 0.6458 | 162.0 | 324 | 0.5488 | 0.8143 | | 0.6458 | 163.0 | 326 | 0.5486 | 0.8143 | | 0.6458 | 164.0 | 328 | 0.5484 | 0.8143 | | 0.6317 | 165.0 | 330 | 0.5481 | 0.8143 | | 0.6317 | 166.0 | 332 | 0.5479 | 0.8286 | | 0.6317 | 167.0 | 334 | 0.5476 | 0.8286 | | 0.6317 | 168.0 | 336 | 0.5473 | 0.8286 | | 0.6317 | 169.0 | 338 | 0.5471 | 0.8286 | | 0.6154 | 170.0 | 340 | 0.5470 | 0.8286 | | 0.6154 | 171.0 | 342 | 0.5468 | 0.8286 | | 0.6154 | 172.0 | 344 | 0.5466 | 0.8286 | | 0.6154 | 173.0 | 346 | 0.5464 | 0.8286 | | 0.6154 | 174.0 | 348 | 0.5462 | 0.8286 | | 0.6323 | 175.0 | 350 | 0.5460 | 0.8286 | | 0.6323 | 176.0 | 352 | 0.5459 | 0.8286 | | 0.6323 | 177.0 | 354 | 0.5457 | 0.8286 | | 0.6323 | 178.0 | 356 | 0.5456 | 0.8286 | | 0.6323 | 179.0 | 358 | 0.5455 | 0.8286 | | 0.6331 | 180.0 | 360 | 0.5453 | 0.8286 | | 0.6331 | 181.0 | 362 | 0.5452 | 0.8286 | | 0.6331 | 182.0 | 364 | 0.5451 | 0.8286 | | 0.6331 | 183.0 | 366 | 0.5449 | 0.8286 | | 0.6331 | 184.0 | 368 | 0.5448 | 0.8286 | | 0.6333 | 185.0 | 370 | 0.5447 | 0.8286 | | 0.6333 | 186.0 | 372 | 0.5447 | 0.8286 | | 0.6333 | 187.0 | 374 | 0.5446 | 0.8286 | | 0.6333 | 188.0 | 376 | 0.5445 | 0.8286 | | 0.6333 | 189.0 | 378 | 0.5445 | 0.8286 | | 0.608 | 190.0 | 380 | 0.5444 | 0.8286 | | 0.608 | 191.0 | 382 | 0.5444 | 0.8286 | | 0.608 | 192.0 | 384 | 0.5443 | 0.8286 | | 0.608 | 193.0 | 386 | 0.5443 | 0.8286 | | 0.608 | 194.0 | 388 | 0.5442 | 0.8286 | | 0.6155 | 195.0 | 390 | 0.5442 | 0.8286 | | 0.6155 | 196.0 | 392 | 0.5442 | 0.8286 | | 0.6155 | 197.0 | 394 | 0.5442 | 0.8286 | | 0.6155 | 198.0 | 396 | 0.5441 | 0.8286 | | 0.6155 | 199.0 | 398 | 0.5441 | 0.8286 | | 0.6272 | 200.0 | 400 | 0.5441 | 0.8286 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "color", "pattern_fail", "residue" ]
ziauldin/swin-tiny-patch4-window7-224-finetuned-vit
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-vit This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5516 - Crack: {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32} - Environment - ground: {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35} - Environment - other: {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27} - Environment - sky: {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} - Environment - vegetation: {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48} - Joint defect: {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31} - Loss of section: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} - Spalling: {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48} - Vegetation: {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66} - Wall - grafitti: {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22} - Wall - normal: {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41} - Wall - other: {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68} - Wall - stain: {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57} - Accuracy: 0.8061 - Macro avg: {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521} - Weighted avg: {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Crack | Environment - ground | Environment - other | Environment - sky | Environment - vegetation | Joint defect | Loss of section | Spalling | Vegetation | Wall - grafitti | Wall - normal | Wall - other | Wall - stain | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:| | 0.9193 | 1.0 | 146 | 0.7596 | {'precision': 0.5681818181818182, 'recall': 0.78125, 'f1-score': 0.6578947368421052, 'support': 32} | {'precision': 0.9444444444444444, 'recall': 0.9714285714285714, 'f1-score': 0.9577464788732395, 'support': 35} | {'precision': 0.8846153846153846, 'recall': 0.8518518518518519, 'f1-score': 0.8679245283018868, 'support': 27} | {'precision': 0.9736842105263158, 'recall': 0.8409090909090909, 'f1-score': 0.9024390243902439, 'support': 44} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 48} | {'precision': 0.7419354838709677, 'recall': 0.7419354838709677, 'f1-score': 0.7419354838709677, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.5769230769230769, 'recall': 0.3125, 'f1-score': 0.4054054054054054, 'support': 48} | {'precision': 0.75, 'recall': 0.9090909090909091, 'f1-score': 0.821917808219178, 'support': 66} | {'precision': 0.5142857142857142, 'recall': 0.8181818181818182, 'f1-score': 0.6315789473684209, 'support': 22} | {'precision': 0.7692307692307693, 'recall': 0.4878048780487805, 'f1-score': 0.5970149253731344, 'support': 41} | {'precision': 0.7540983606557377, 'recall': 0.6764705882352942, 'f1-score': 0.7131782945736433, 'support': 68} | {'precision': 0.6428571428571429, 'recall': 0.7894736842105263, 'f1-score': 0.7086614173228346, 'support': 57} | 0.7562 | {'precision': 0.7015581850454902, 'recall': 0.7062228366021391, 'f1-score': 0.692745926964697, 'support': 521} | {'precision': 0.7618631381912654, 'recall': 0.7562380038387716, 'f1-score': 0.7479524876767193, 'support': 521} | | 0.7347 | 2.0 | 293 | 0.6495 | {'precision': 0.5526315789473685, 'recall': 0.65625, 'f1-score': 0.6, 'support': 32} | {'precision': 1.0, 'recall': 0.9714285714285714, 'f1-score': 0.9855072463768115, 'support': 35} | {'precision': 0.8461538461538461, 'recall': 0.8148148148148148, 'f1-score': 0.830188679245283, 'support': 27} | {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} | {'precision': 0.9591836734693877, 'recall': 0.9791666666666666, 'f1-score': 0.9690721649484536, 'support': 48} | {'precision': 0.9130434782608695, 'recall': 0.6774193548387096, 'f1-score': 0.7777777777777777, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.5306122448979592, 'recall': 0.5416666666666666, 'f1-score': 0.5360824742268041, 'support': 48} | {'precision': 0.7058823529411765, 'recall': 0.9090909090909091, 'f1-score': 0.794701986754967, 'support': 66} | {'precision': 0.6333333333333333, 'recall': 0.8636363636363636, 'f1-score': 0.7307692307692307, 'support': 22} | {'precision': 0.5510204081632653, 'recall': 0.6585365853658537, 'f1-score': 0.6, 'support': 41} | {'precision': 0.8095238095238095, 'recall': 0.75, 'f1-score': 0.7786259541984734, 'support': 68} | {'precision': 0.9393939393939394, 'recall': 0.543859649122807, 'f1-score': 0.688888888888889, 'support': 57} | 0.7678 | {'precision': 0.7243822416365717, 'recall': 0.7152067510345803, 'f1-score': 0.7111617519445933, 'support': 521} | {'precision': 0.7869554245446998, 'recall': 0.7677543186180422, 'f1-score': 0.7672943491004631, 'support': 521} | | 0.7515 | 2.99 | 438 | 0.5516 | {'precision': 0.575, 'recall': 0.71875, 'f1-score': 0.6388888888888888, 'support': 32} | {'precision': 0.9714285714285714, 'recall': 0.9714285714285714, 'f1-score': 0.9714285714285714, 'support': 35} | {'precision': 0.8571428571428571, 'recall': 0.8888888888888888, 'f1-score': 0.8727272727272727, 'support': 27} | {'precision': 0.9761904761904762, 'recall': 0.9318181818181818, 'f1-score': 0.9534883720930233, 'support': 44} | {'precision': 0.9791666666666666, 'recall': 0.9791666666666666, 'f1-score': 0.9791666666666666, 'support': 48} | {'precision': 0.9166666666666666, 'recall': 0.7096774193548387, 'f1-score': 0.7999999999999999, 'support': 31} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2} | {'precision': 0.6041666666666666, 'recall': 0.6041666666666666, 'f1-score': 0.6041666666666666, 'support': 48} | {'precision': 0.8309859154929577, 'recall': 0.8939393939393939, 'f1-score': 0.8613138686131386, 'support': 66} | {'precision': 0.7, 'recall': 0.9545454545454546, 'f1-score': 0.8076923076923077, 'support': 22} | {'precision': 0.6976744186046512, 'recall': 0.7317073170731707, 'f1-score': 0.7142857142857143, 'support': 41} | {'precision': 0.7910447761194029, 'recall': 0.7794117647058824, 'f1-score': 0.7851851851851852, 'support': 68} | {'precision': 0.8222222222222222, 'recall': 0.6491228070175439, 'f1-score': 0.7254901960784313, 'support': 57} | 0.8061 | {'precision': 0.7478222490154723, 'recall': 0.754817164008097, 'f1-score': 0.7472179777173742, 'support': 521} | {'precision': 0.8107856771401473, 'recall': 0.8061420345489443, 'f1-score': 0.8050072232872345, 'support': 521} | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "crack", "environment - ground", "environment - other", "environment - sky", "environment - vegetation", "joint defect", "loss of section", "spalling", "vegetation", "wall - grafitti", "wall - normal", "wall - other", "wall - stain" ]
HorcruxNo13/pvt-tiny-224
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pvt-tiny-224 This model is a fine-tuned version of [Zetatech/pvt-tiny-224](https://huggingface.co/Zetatech/pvt-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4869 - Accuracy: 0.7833 - Precision: 0.7681 - Recall: 0.7833 - F1 Score: 0.7632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.5984 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 2.0 | 8 | 0.6103 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 3.0 | 12 | 0.5861 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 4.0 | 16 | 0.5478 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 5.0 | 20 | 0.5961 | 0.725 | 0.7119 | 0.725 | 0.7171 | | No log | 6.0 | 24 | 0.5317 | 0.7542 | 0.7261 | 0.7542 | 0.7159 | | No log | 7.0 | 28 | 0.5620 | 0.7458 | 0.7289 | 0.7458 | 0.7342 | | 0.5878 | 8.0 | 32 | 0.5281 | 0.7542 | 0.7316 | 0.7542 | 0.6973 | | 0.5878 | 9.0 | 36 | 0.5434 | 0.7625 | 0.7395 | 0.7625 | 0.7368 | | 0.5878 | 10.0 | 40 | 0.5236 | 0.775 | 0.7658 | 0.775 | 0.7321 | | 0.5878 | 11.0 | 44 | 0.5411 | 0.7542 | 0.7382 | 0.7542 | 0.7429 | | 0.5878 | 12.0 | 48 | 0.5186 | 0.7708 | 0.7507 | 0.7708 | 0.7460 | | 0.5878 | 13.0 | 52 | 0.5194 | 0.7667 | 0.7500 | 0.7667 | 0.7533 | | 0.5878 | 14.0 | 56 | 0.5049 | 0.7875 | 0.7739 | 0.7875 | 0.7621 | | 0.4973 | 15.0 | 60 | 0.5125 | 0.7833 | 0.7691 | 0.7833 | 0.7709 | | 0.4973 | 16.0 | 64 | 0.5000 | 0.7917 | 0.7804 | 0.7917 | 0.7656 | | 0.4973 | 17.0 | 68 | 0.5137 | 0.7583 | 0.7560 | 0.7583 | 0.7571 | | 0.4973 | 18.0 | 72 | 0.4833 | 0.8 | 0.788 | 0.8 | 0.7833 | | 0.4973 | 19.0 | 76 | 0.4929 | 0.7917 | 0.7816 | 0.7917 | 0.7843 | | 0.4973 | 20.0 | 80 | 0.4858 | 0.8042 | 0.7930 | 0.8042 | 0.7887 | | 0.4973 | 21.0 | 84 | 0.4900 | 0.7917 | 0.7777 | 0.7917 | 0.7743 | | 0.4973 | 22.0 | 88 | 0.4886 | 0.7958 | 0.7829 | 0.7958 | 0.7815 | | 0.439 | 23.0 | 92 | 0.4841 | 0.7917 | 0.7778 | 0.7917 | 0.7723 | | 0.439 | 24.0 | 96 | 0.4855 | 0.8 | 0.7883 | 0.8 | 0.7885 | | 0.439 | 25.0 | 100 | 0.4856 | 0.8 | 0.7879 | 0.8 | 0.7869 | | 0.439 | 26.0 | 104 | 0.4839 | 0.8 | 0.7879 | 0.8 | 0.7869 | | 0.439 | 27.0 | 108 | 0.4811 | 0.8 | 0.7879 | 0.8 | 0.7869 | | 0.439 | 28.0 | 112 | 0.4834 | 0.8 | 0.7889 | 0.8 | 0.7901 | | 0.439 | 29.0 | 116 | 0.4839 | 0.8 | 0.7889 | 0.8 | 0.7901 | | 0.4092 | 30.0 | 120 | 0.4838 | 0.8 | 0.7889 | 0.8 | 0.7901 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "normal", "abnormal" ]
HorcruxNo13/swiftformer-xs
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swiftformer-xs This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6833 - Accuracy: 0.57 - Precision: 0.5995 - Recall: 0.57 - F1 Score: 0.5828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6713 | 0.6292 | 0.6454 | 0.6292 | 0.6365 | | No log | 2.0 | 8 | 0.7142 | 0.475 | 0.6155 | 0.475 | 0.5020 | | No log | 3.0 | 12 | 0.7298 | 0.425 | 0.6026 | 0.425 | 0.4435 | | No log | 4.0 | 16 | 0.7389 | 0.4792 | 0.6408 | 0.4792 | 0.5023 | | No log | 5.0 | 20 | 0.7427 | 0.4792 | 0.6408 | 0.4792 | 0.5023 | | No log | 6.0 | 24 | 0.7235 | 0.5083 | 0.6424 | 0.5083 | 0.5348 | | No log | 7.0 | 28 | 0.6893 | 0.5875 | 0.6687 | 0.5875 | 0.6107 | | 0.6981 | 8.0 | 32 | 0.6816 | 0.6042 | 0.6847 | 0.6042 | 0.6264 | | 0.6981 | 9.0 | 36 | 0.6866 | 0.6042 | 0.6888 | 0.6042 | 0.6266 | | 0.6981 | 10.0 | 40 | 0.7005 | 0.575 | 0.6751 | 0.575 | 0.5996 | | 0.6981 | 11.0 | 44 | 0.7127 | 0.525 | 0.6554 | 0.525 | 0.5510 | | 0.6981 | 12.0 | 48 | 0.7098 | 0.5333 | 0.6595 | 0.5333 | 0.5593 | | 0.6981 | 13.0 | 52 | 0.7126 | 0.5208 | 0.6579 | 0.5208 | 0.5463 | | 0.6981 | 14.0 | 56 | 0.7114 | 0.5292 | 0.6575 | 0.5292 | 0.5551 | | 0.6656 | 15.0 | 60 | 0.6908 | 0.5667 | 0.6712 | 0.5667 | 0.5917 | | 0.6656 | 16.0 | 64 | 0.6804 | 0.5833 | 0.6749 | 0.5833 | 0.6073 | | 0.6656 | 17.0 | 68 | 0.6806 | 0.5958 | 0.6808 | 0.5958 | 0.6188 | | 0.6656 | 18.0 | 72 | 0.6884 | 0.5583 | 0.6629 | 0.5583 | 0.5838 | | 0.6656 | 19.0 | 76 | 0.6821 | 0.5708 | 0.6647 | 0.5708 | 0.5955 | | 0.6656 | 20.0 | 80 | 0.6663 | 0.6042 | 0.6806 | 0.6042 | 0.6261 | | 0.6656 | 21.0 | 84 | 0.6717 | 0.6 | 0.6787 | 0.6 | 0.6223 | | 0.6656 | 22.0 | 88 | 0.6682 | 0.6083 | 0.6826 | 0.6083 | 0.6299 | | 0.6443 | 23.0 | 92 | 0.6683 | 0.6167 | 0.6946 | 0.6167 | 0.6381 | | 0.6443 | 24.0 | 96 | 0.6733 | 0.6 | 0.6911 | 0.6 | 0.6230 | | 0.6443 | 25.0 | 100 | 0.6647 | 0.6083 | 0.6866 | 0.6083 | 0.6302 | | 0.6443 | 26.0 | 104 | 0.6729 | 0.6083 | 0.6907 | 0.6083 | 0.6305 | | 0.6443 | 27.0 | 108 | 0.6740 | 0.6042 | 0.6930 | 0.6042 | 0.6268 | | 0.6443 | 28.0 | 112 | 0.6809 | 0.5917 | 0.6916 | 0.5917 | 0.6153 | | 0.6443 | 29.0 | 116 | 0.6778 | 0.6042 | 0.7017 | 0.6042 | 0.6270 | | 0.6313 | 30.0 | 120 | 0.6794 | 0.5958 | 0.6935 | 0.5958 | 0.6192 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "normal", "abnormal" ]
nagyrobert97/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0977 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5012 | 1.0 | 351 | 0.1447 | 0.9502 | | 0.3732 | 2.0 | 703 | 0.1068 | 0.9626 | | 0.3398 | 2.99 | 1053 | 0.0977 | 0.9644 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Tokenizers 0.14.0
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
hilmansw/resnet18-catdog-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model description This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on an [custom](https://www.kaggle.com/datasets/samuelcortinhas/cats-and-dogs-image-classification) dataset. This model was built using the "Cats & Dogs Classification" dataset obtained from Kaggle. During the model building process, this was done using the Pytorch framework with pre-trained Resnet-18. The method used during the process of building this classification model is fine-tuning with the dataset. ## Training results | Epoch | Accuracy | |:-----:|:--------:| | 1.0 | 0.9357 | | 2.0 | 0.9786 | | 3.0 | 0.9000 | | 4.0 | 0.9214 | | 5.0 | 0.9143 | | 6.0 | 0.9429 | | 7.0 | 0.9714 | | 8.0 | 0.9929 | | 9.0 | 0.9714 | | 10.0 | 0.9714 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - loss_function = CrossEntropyLoss - optimizer = AdamW - learning_rate: 0.0001 - batch_size: 16 - num_epochs: 10 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "cats", "dogs" ]
jennyc/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 2.9786 - Accuracy: 0.828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9923 | 0.99 | 62 | 2.9786 | 0.828 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
wuru330/378A1_results_384_4cate_1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 378A1_results_384_4cate_1 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4707 - Accuracy: 0.8997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8756 | 1.0 | 37 | 0.5714 | 0.7908 | | 0.4508 | 2.0 | 74 | 0.3688 | 0.8418 | | 0.2344 | 3.0 | 111 | 0.3064 | 0.8741 | | 0.1445 | 4.0 | 148 | 0.2948 | 0.8946 | | 0.0774 | 5.0 | 185 | 0.3461 | 0.8793 | | 0.0393 | 6.0 | 222 | 0.3229 | 0.8997 | | 0.0164 | 7.0 | 259 | 0.3441 | 0.9048 | | 0.0222 | 8.0 | 296 | 0.4192 | 0.9099 | | 0.0125 | 9.0 | 333 | 0.4443 | 0.8810 | | 0.0029 | 10.0 | 370 | 0.4007 | 0.9116 | | 0.0014 | 11.0 | 407 | 0.4277 | 0.9150 | | 0.0003 | 12.0 | 444 | 0.4445 | 0.9014 | | 0.0002 | 13.0 | 481 | 0.4437 | 0.9031 | | 0.0002 | 14.0 | 518 | 0.4481 | 0.9048 | | 0.0002 | 15.0 | 555 | 0.4512 | 0.9031 | | 0.0002 | 16.0 | 592 | 0.4537 | 0.9014 | | 0.0002 | 17.0 | 629 | 0.4562 | 0.9014 | | 0.0002 | 18.0 | 666 | 0.4583 | 0.9014 | | 0.0001 | 19.0 | 703 | 0.4594 | 0.9014 | | 0.0001 | 20.0 | 740 | 0.4615 | 0.9031 | | 0.0001 | 21.0 | 777 | 0.4635 | 0.9031 | | 0.0001 | 22.0 | 814 | 0.4652 | 0.9031 | | 0.0001 | 23.0 | 851 | 0.4659 | 0.9031 | | 0.0001 | 24.0 | 888 | 0.4679 | 0.8997 | | 0.0001 | 25.0 | 925 | 0.4681 | 0.9014 | | 0.0001 | 26.0 | 962 | 0.4688 | 0.8997 | | 0.0001 | 27.0 | 999 | 0.4695 | 0.8997 | | 0.0001 | 28.0 | 1036 | 0.4701 | 0.8997 | | 0.0001 | 29.0 | 1073 | 0.4706 | 0.8997 | | 0.0001 | 30.0 | 1110 | 0.4707 | 0.8997 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
[ "label_0", "label_1", "label_2", "label_3" ]
890mari/practica2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # practica2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0348 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1299 | 3.85 | 500 | 0.0348 | 0.9850 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
alantaquito6/PRACTICAVIT
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PRACTICAVIT This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.129 | 3.85 | 500 | 0.0177 | 0.9925 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
purabp1249/swin-tiny-patch4-window7-224-finetuned-herbify
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-herbify This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0378 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 1.8723 | 0.2787 | | No log | 1.88 | 8 | 1.5899 | 0.6885 | | 1.8465 | 2.82 | 12 | 1.1661 | 0.8197 | | 1.8465 | 4.0 | 17 | 0.5156 | 0.9508 | | 0.9675 | 4.94 | 21 | 0.2177 | 0.9836 | | 0.9675 | 5.88 | 25 | 0.0929 | 0.9836 | | 0.9675 | 6.82 | 29 | 0.0378 | 1.0 | | 0.2342 | 8.0 | 34 | 0.0128 | 1.0 | | 0.2342 | 8.94 | 38 | 0.0075 | 1.0 | | 0.1022 | 9.88 | 42 | 0.0053 | 1.0 | | 0.1022 | 10.82 | 46 | 0.0049 | 1.0 | | 0.0553 | 12.0 | 51 | 0.0032 | 1.0 | | 0.0553 | 12.94 | 55 | 0.0022 | 1.0 | | 0.0553 | 13.88 | 59 | 0.0017 | 1.0 | | 0.0278 | 14.82 | 63 | 0.0018 | 1.0 | | 0.0278 | 16.0 | 68 | 0.0012 | 1.0 | | 0.0266 | 16.94 | 72 | 0.0011 | 1.0 | | 0.0266 | 17.88 | 76 | 0.0006 | 1.0 | | 0.046 | 18.82 | 80 | 0.0007 | 1.0 | | 0.046 | 20.0 | 85 | 0.0007 | 1.0 | | 0.046 | 20.94 | 89 | 0.0012 | 1.0 | | 0.0245 | 21.88 | 93 | 0.0015 | 1.0 | | 0.0245 | 22.82 | 97 | 0.0011 | 1.0 | | 0.0249 | 24.0 | 102 | 0.0007 | 1.0 | | 0.0249 | 24.94 | 106 | 0.0006 | 1.0 | | 0.0201 | 25.88 | 110 | 0.0005 | 1.0 | | 0.0201 | 26.82 | 114 | 0.0005 | 1.0 | | 0.0201 | 28.0 | 119 | 0.0004 | 1.0 | | 0.0208 | 28.94 | 123 | 0.0004 | 1.0 | | 0.0208 | 29.88 | 127 | 0.0004 | 1.0 | | 0.0122 | 30.82 | 131 | 0.0004 | 1.0 | | 0.0122 | 32.0 | 136 | 0.0004 | 1.0 | | 0.0222 | 32.94 | 140 | 0.0004 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3
[ "aloevera", "amla", "amruthaballi", "arali", "astma_weed", "badipala", "ashoka" ]
Niraya666/swin-large-patch4-window12-384-in22k-finetuned-ADC-4cls-0923
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-large-patch4-window12-384-in22k-finetuned-ADC-4cls-0923 This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5621 - eval_accuracy: 0.8571 - eval_runtime: 6.0148 - eval_samples_per_second: 11.638 - eval_steps_per_second: 0.499 - epoch: 26.4 - step: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 200 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "color", "pattern_fail", "residue", "tiny" ]
zitrone44/vit-base-tm
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-tm This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4170 - eval_accuracy: 0.9062 - eval_runtime: 207.7695 - eval_samples_per_second: 152.78 - eval_steps_per_second: 19.098 - epoch: 6.79 - step: 12447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "up", "up-left", "up-right" ]
dima806/mushrooms_image_detection
Returns mushroom type given an image. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/_tfRCaKBzs3rx82PT2xX2.png) See https://www.kaggle.com/code/dima806/mushrooms-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Urnula craterium 0.9804 0.9863 0.9833 2335 Leccinum albostipitatum 0.7755 0.9054 0.8354 2335 Lactarius deliciosus 0.9284 0.8163 0.8687 2335 Clitocybe nebularis 0.9409 0.9550 0.9479 2335 Hypholoma fasciculare 0.8962 0.8176 0.8551 2335 Lactarius torminosus 0.8862 0.9306 0.9078 2334 Lycoperdon perlatum 0.9459 0.9653 0.9555 2335 Verpa bohemica 0.9927 0.9957 0.9942 2335 Schizophyllum commune 0.9346 0.9666 0.9503 2335 Leccinum aurantiacum 0.7167 0.4887 0.5811 2335 Phellinus igniarius 0.8414 0.8338 0.8376 2335 Suillus luteus 0.7222 0.3362 0.4588 2335 Coltricia perennis 0.9756 0.9422 0.9586 2335 Cetraria islandica 0.9851 0.9910 0.9880 2335 Amanita muscaria 0.9956 0.9764 0.9859 2335 Pholiota aurivella 0.9295 0.9486 0.9389 2334 Trichaptum biforme 0.8943 0.8587 0.8761 2335 Artomyces pyxidatus 0.9987 0.9936 0.9961 2335 Calocera viscosa 1.0000 0.9983 0.9991 2335 Sarcosoma globosum 0.9713 0.9700 0.9706 2335 Evernia prunastri 0.8245 0.8934 0.8576 2335 Laetiporus sulphureus 0.9613 0.9782 0.9696 2335 Lobaria pulmonaria 0.9720 0.9820 0.9770 2335 Bjerkandera adusta 0.8449 0.8073 0.8257 2335 Vulpicida pinastri 0.9771 0.9880 0.9825 2335 Imleria badia 0.7537 0.8099 0.7808 2335 Evernia mesomorpha 0.9160 0.9015 0.9087 2335 Physcia adscendens 0.8479 0.8043 0.8255 2335 Coprinellus micaceus 0.9189 0.8985 0.9086 2334 Armillaria borealis 0.9301 0.6444 0.7613 2334 Trametes ochracea 0.7924 0.6737 0.7282 2335 Cantharellus cibarius 0.9110 0.9773 0.9430 2335 Pseudevernia furfuracea 0.8943 0.8373 0.8649 2335 Tremella mesenterica 0.9966 0.9927 0.9946 2335 Gyromitra infula 0.9682 0.9516 0.9598 2335 Leccinum versipelle 0.7239 0.7850 0.7532 2335 Mutinus ravenelii 0.9974 1.0000 0.9987 2335 Pholiota squarrosa 0.8284 0.9285 0.8756 2335 Amanita rubescens 0.8616 0.9062 0.8833 2335 Amanita pantherina 0.9391 0.8723 0.9045 2334 Sarcoscypha austriaca 0.9936 0.9914 0.9925 2334 Boletus edulis 0.5996 0.9336 0.7302 2334 Coprinus comatus 0.9641 0.9897 0.9768 2335 Merulius tremellosus 0.8698 0.9272 0.8976 2335 Stropharia aeruginosa 0.9871 0.9842 0.9856 2335 Cladonia fimbriata 0.9746 0.9854 0.9800 2334 Suillus grevillei 0.8932 0.4981 0.6395 2335 Apioperdon pyriforme 0.9200 0.9499 0.9347 2335 Cerioporus squamosus 0.9427 0.9657 0.9541 2335 Leccinum scabrum 0.7482 0.9152 0.8233 2335 Rhytisma acerinum 1.0000 0.9949 0.9974 2335 Hypholoma lateritium 0.8445 0.9092 0.8756 2335 Flammulina velutipes 0.8947 0.9028 0.8987 2335 Tricholomopsis rutilans 0.9374 0.8587 0.8963 2335 Coprinopsis atramentaria 0.9285 0.9345 0.9315 2335 Trametes versicolor 0.8279 0.8946 0.8600 2334 Graphis scripta 0.9783 0.9871 0.9827 2334 Ganoderma applanatum 0.9162 0.9550 0.9352 2335 Phellinus tremulae 0.9149 0.8514 0.8820 2335 Peltigera aphthosa 0.9888 0.9863 0.9876 2335 Parmelia sulcata 0.8994 0.9229 0.9110 2335 Fomitopsis betulina 0.8678 0.9675 0.9149 2335 Pleurotus pulmonarius 0.8910 0.9139 0.9023 2335 Fomitopsis pinicola 0.9453 0.9615 0.9533 2335 Daedaleopsis confragosa 0.7665 0.8518 0.8069 2335 Hericium coralloides 0.9906 0.9897 0.9901 2334 Trametes hirsuta 0.8239 0.8518 0.8376 2334 Coprinellus disseminatus 0.9406 0.9490 0.9448 2335 Kuehneromyces mutabilis 0.7731 0.9208 0.8405 2335 Pleurotus ostreatus 0.7244 0.8994 0.8024 2335 Phlebia radiata 0.9601 0.9589 0.9595 2335 Boletus reticulatus 0.9405 0.2775 0.4286 2335 Phallus impudicus 0.9956 0.9649 0.9800 2335 Macrolepiota procera 0.9818 0.9923 0.9870 2334 Fomes fomentarius 0.9058 0.9267 0.9161 2334 Suillus granulatus 0.4872 0.9276 0.6388 2335 Gyromitra esculenta 0.9380 0.9465 0.9422 2335 Xanthoria parietina 0.9657 0.9645 0.9651 2335 Nectria cinnabarina 0.9882 0.9704 0.9793 2335 Sarcomyxa serotina 0.9546 0.4411 0.6034 2335 Inonotus obliquus 0.9568 0.9970 0.9765 2334 Panellus stipticus 0.8756 0.8385 0.8566 2334 Hypogymnia physodes 0.8739 0.9327 0.9024 2334 Hygrophoropsis aurantiaca 0.9132 0.9195 0.9163 2334 Cladonia rangiferina 0.9404 0.9195 0.9298 2335 Platismatia glauca 0.9523 0.9567 0.9545 2335 Calycina citrina 0.9822 0.9949 0.9885 2335 Cladonia stellaris 0.9377 0.9610 0.9492 2334 Amanita citrina 0.9392 0.9799 0.9591 2334 Lepista nuda 0.9778 0.9820 0.9799 2335 Gyromitra gigas 0.9701 0.9576 0.9638 2335 Crucibulum laeve 0.9226 0.9602 0.9410 2335 Daedaleopsis tricolor 0.8988 0.8176 0.8562 2335 Stereum hirsutum 0.9009 0.8604 0.8802 2335 Paxillus involutus 0.7496 0.9075 0.8210 2335 Lactarius turpis 0.9355 0.8942 0.9144 2335 Chlorociboria aeruginascens 1.0000 0.9949 0.9974 2335 Chondrostereum purpureum 0.9353 0.8976 0.9161 2335 Phaeophyscia orbicularis 0.8864 0.8424 0.8639 2335 Peltigera praetextata 0.9847 0.9679 0.9762 2335 accuracy 0.8990 233480 macro avg 0.9057 0.8990 0.8960 233480 weighted avg 0.9057 0.8990 0.8960 233480 ```
[ "urnula craterium", "leccinum albostipitatum", "lactarius deliciosus", "clitocybe nebularis", "hypholoma fasciculare", "lactarius torminosus", "lycoperdon perlatum", "verpa bohemica", "schizophyllum commune", "leccinum aurantiacum", "phellinus igniarius", "suillus luteus", "coltricia perennis", "cetraria islandica", "amanita muscaria", "pholiota aurivella", "trichaptum biforme", "artomyces pyxidatus", "calocera viscosa", "sarcosoma globosum", "evernia prunastri", "laetiporus sulphureus", "lobaria pulmonaria", "bjerkandera adusta", "vulpicida pinastri", "imleria badia", "evernia mesomorpha", "physcia adscendens", "coprinellus micaceus", "armillaria borealis", "trametes ochracea", "cantharellus cibarius", "pseudevernia furfuracea", "tremella mesenterica", "gyromitra infula", "leccinum versipelle", "mutinus ravenelii", "pholiota squarrosa", "amanita rubescens", "amanita pantherina", "sarcoscypha austriaca", "boletus edulis", "coprinus comatus", "merulius tremellosus", "stropharia aeruginosa", "cladonia fimbriata", "suillus grevillei", "apioperdon pyriforme", "cerioporus squamosus", "leccinum scabrum", "rhytisma acerinum", "hypholoma lateritium", "flammulina velutipes", "tricholomopsis rutilans", "coprinopsis atramentaria", "trametes versicolor", "graphis scripta", "ganoderma applanatum", "phellinus tremulae", "peltigera aphthosa", "parmelia sulcata", "fomitopsis betulina", "pleurotus pulmonarius", "fomitopsis pinicola", "daedaleopsis confragosa", "hericium coralloides", "trametes hirsuta", "coprinellus disseminatus", "kuehneromyces mutabilis", "pleurotus ostreatus", "phlebia radiata", "boletus reticulatus", "phallus impudicus", "macrolepiota procera", "fomes fomentarius", "suillus granulatus", "gyromitra esculenta", "xanthoria parietina", "nectria cinnabarina", "sarcomyxa serotina", "inonotus obliquus", "panellus stipticus", "hypogymnia physodes", "hygrophoropsis aurantiaca", "cladonia rangiferina", "platismatia glauca", "calycina citrina", "cladonia stellaris", "amanita citrina", "lepista nuda", "gyromitra gigas", "crucibulum laeve", "daedaleopsis tricolor", "stereum hirsutum", "paxillus involutus", "lactarius turpis", "chlorociboria aeruginascens", "chondrostereum purpureum", "phaeophyscia orbicularis", "peltigera praetextata" ]
dyaminda/pneumonia-classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pneumonia-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0288 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1574 | 0.99 | 52 | 0.0976 | 0.9726 | | 0.0643 | 2.0 | 105 | 0.0535 | 0.9845 | | 0.0189 | 2.99 | 157 | 0.0490 | 0.9821 | | 0.0208 | 4.0 | 210 | 0.0484 | 0.9881 | | 0.0096 | 4.95 | 260 | 0.0463 | 0.9881 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
[ "normal", "pneumonia" ]
HorcruxNo13/swin-tiny-patch4-window7-224
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5534 - Accuracy: 0.7433 - Precision: 0.7306 - Recall: 0.7433 - F1 Score: 0.7344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.7306 | 0.4 | 0.6521 | 0.4 | 0.3821 | | No log | 2.0 | 8 | 0.5815 | 0.7333 | 0.8050 | 0.7333 | 0.6286 | | No log | 3.0 | 12 | 0.5700 | 0.725 | 0.5256 | 0.725 | 0.6094 | | No log | 4.0 | 16 | 0.5635 | 0.725 | 0.5256 | 0.725 | 0.6094 | | No log | 5.0 | 20 | 0.5509 | 0.7292 | 0.8028 | 0.7292 | 0.6191 | | No log | 6.0 | 24 | 0.5356 | 0.7417 | 0.7438 | 0.7417 | 0.6589 | | No log | 7.0 | 28 | 0.5353 | 0.75 | 0.7360 | 0.75 | 0.6895 | | No log | 8.0 | 32 | 0.5299 | 0.7375 | 0.7090 | 0.7375 | 0.6668 | | No log | 9.0 | 36 | 0.5335 | 0.7667 | 0.7509 | 0.7667 | 0.7310 | | No log | 10.0 | 40 | 0.5344 | 0.7417 | 0.7315 | 0.7417 | 0.6644 | | No log | 11.0 | 44 | 0.5297 | 0.7458 | 0.7279 | 0.7458 | 0.6821 | | No log | 12.0 | 48 | 0.5202 | 0.75 | 0.7360 | 0.75 | 0.6895 | | 0.5942 | 13.0 | 52 | 0.5325 | 0.7542 | 0.7411 | 0.7542 | 0.7452 | | 0.5942 | 14.0 | 56 | 0.5139 | 0.7583 | 0.7505 | 0.7583 | 0.7039 | | 0.5942 | 15.0 | 60 | 0.5528 | 0.7417 | 0.7347 | 0.7417 | 0.7377 | | 0.5942 | 16.0 | 64 | 0.5070 | 0.7625 | 0.7437 | 0.7625 | 0.7277 | | 0.5942 | 17.0 | 68 | 0.5193 | 0.775 | 0.7594 | 0.775 | 0.7592 | | 0.5942 | 18.0 | 72 | 0.5090 | 0.7583 | 0.7448 | 0.7583 | 0.7487 | | 0.5942 | 19.0 | 76 | 0.5189 | 0.7792 | 0.7847 | 0.7792 | 0.7816 | | 0.5942 | 20.0 | 80 | 0.5214 | 0.775 | 0.7795 | 0.775 | 0.7770 | | 0.5942 | 21.0 | 84 | 0.5188 | 0.775 | 0.7710 | 0.775 | 0.7728 | | 0.5942 | 22.0 | 88 | 0.5029 | 0.7667 | 0.7526 | 0.7667 | 0.7557 | | 0.5942 | 23.0 | 92 | 0.5061 | 0.7833 | 0.7734 | 0.7833 | 0.7761 | | 0.5942 | 24.0 | 96 | 0.5350 | 0.7667 | 0.7713 | 0.7667 | 0.7687 | | 0.4829 | 25.0 | 100 | 0.5149 | 0.7542 | 0.7330 | 0.7542 | 0.7337 | | 0.4829 | 26.0 | 104 | 0.5283 | 0.7583 | 0.7737 | 0.7583 | 0.7641 | | 0.4829 | 27.0 | 108 | 0.5109 | 0.7792 | 0.7647 | 0.7792 | 0.7646 | | 0.4829 | 28.0 | 112 | 0.5258 | 0.775 | 0.7729 | 0.775 | 0.7739 | | 0.4829 | 29.0 | 116 | 0.5207 | 0.7625 | 0.745 | 0.7625 | 0.7468 | | 0.4829 | 30.0 | 120 | 0.5306 | 0.75 | 0.7357 | 0.75 | 0.7400 | | 0.4829 | 31.0 | 124 | 0.5455 | 0.75 | 0.7375 | 0.75 | 0.7417 | | 0.4829 | 32.0 | 128 | 0.5653 | 0.7458 | 0.7380 | 0.7458 | 0.7412 | | 0.4829 | 33.0 | 132 | 0.5565 | 0.7417 | 0.7212 | 0.7417 | 0.7256 | | 0.4829 | 34.0 | 136 | 0.5468 | 0.7708 | 0.7658 | 0.7708 | 0.7679 | | 0.4829 | 35.0 | 140 | 0.5268 | 0.7833 | 0.7723 | 0.7833 | 0.7747 | | 0.4829 | 36.0 | 144 | 0.5260 | 0.775 | 0.7710 | 0.775 | 0.7728 | | 0.4829 | 37.0 | 148 | 0.5281 | 0.775 | 0.7659 | 0.775 | 0.7689 | | 0.3846 | 38.0 | 152 | 0.5385 | 0.7708 | 0.7742 | 0.7708 | 0.7724 | | 0.3846 | 39.0 | 156 | 0.5253 | 0.7708 | 0.7623 | 0.7708 | 0.7653 | | 0.3846 | 40.0 | 160 | 0.5319 | 0.7708 | 0.7719 | 0.7708 | 0.7714 | | 0.3846 | 41.0 | 164 | 0.5311 | 0.775 | 0.7631 | 0.775 | 0.7660 | | 0.3846 | 42.0 | 168 | 0.5325 | 0.7792 | 0.7683 | 0.7792 | 0.7711 | | 0.3846 | 43.0 | 172 | 0.5254 | 0.7667 | 0.7606 | 0.7667 | 0.7631 | | 0.3846 | 44.0 | 176 | 0.5232 | 0.7708 | 0.7623 | 0.7708 | 0.7653 | | 0.3846 | 45.0 | 180 | 0.5291 | 0.7708 | 0.7640 | 0.7708 | 0.7667 | | 0.3846 | 46.0 | 184 | 0.5356 | 0.7708 | 0.7607 | 0.7708 | 0.7639 | | 0.3846 | 47.0 | 188 | 0.5400 | 0.7708 | 0.7607 | 0.7708 | 0.7639 | | 0.3846 | 48.0 | 192 | 0.5409 | 0.7667 | 0.7540 | 0.7667 | 0.7573 | | 0.3846 | 49.0 | 196 | 0.5403 | 0.7667 | 0.7540 | 0.7667 | 0.7573 | | 0.3353 | 50.0 | 200 | 0.5397 | 0.7708 | 0.7592 | 0.7708 | 0.7624 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "normal", "abnormal" ]
grelade/mmx-resnet-18
# ResNet ResNet model trained on imagenet-1k. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) and first released in [this repository](https://github.com/KaimingHe/deep-residual-networks). Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, ResNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18") >>> model = ResNetForImageClassification.from_pretrained("microsoft/resnet-18") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tiger cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/resnet).
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
dennisjooo/Birds-Classifier-EfficientNetB2
# Bird Classifier EfficientNet-B2 ## Model Description Have you look at a bird and said "Boahh if only I know what bird that is". Unless you're an avid bird spotter (or just love birds in general), it's hard to differentiate some species of birds. Well you're in luck, turns out you can use a image classifier to identify bird species! This model is a fine-tuned version of [google/efficientnet-b2](https://huggingface.co/google/efficientnet-b2) on the [gpiosenka/100-bird-species](https://www.kaggle.com/datasets/gpiosenka/100-bird-species) dataset available on Kaggle. The dataset used to train the model was taken on September 24th, 2023. The original model itself was trained on ImageNet-1K, thus it might still have some useful features for identifying creatures like birds. In theory, the accuracy for a random guess on this dataset is 0.0019047619 (essentially 1/525). The model performed significantly well on all three sets with result being: - **Training**: 0.999480 - **Validation**: 0.985904 - **Test**: 0.991238 ## Intended Uses You can use the raw model for image classification. Here is an example of the model in action using a picture of a bird ```python # Importing the libraries needed import torch import urllib.request from PIL import Image from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification # Determining the file URL url = 'some url' # Opening the image using PIL img = Image.open(urllib.request.urlretrieve(url)[0]) # Loading the model and preprocessor from HuggingFace preprocessor = EfficientNetImageProcessor.from_pretrained("dennisjooo/Birds-Classifier-EfficientNetB2") model = EfficientNetForImageClassification.from_pretrained("dennisjooo/Birds-Classifier-EfficientNetB2") # Preprocessing the input inputs = preprocessor(img, return_tensors="pt") # Running the inference with torch.no_grad(): logits = model(**inputs).logits # Getting the predicted label predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]) ``` Or alternatively you can streamline it using Huggingface's Pipeline ```python # Importing the libraries needed import torch import urllib.request from PIL import Image from transformers import pipeline # Determining the file URL url = 'some url' # Opening the image using PIL img = Image.open(urllib.request.urlretrieve(url)[0]) # Loading the model and preprocessor using Pipeline pipe = pipeline("image-classification", model="dennisjooo/Birds-Classifier-EfficientNetB2") # Running the inference result = pipe(img)[0] # Printing the result label print(result['label']) ``` ## Training and Evaluation ### Data The dataset was taken from [gpiosenka/100-bird-species](https://www.kaggle.com/datasets/gpiosenka/100-bird-species) on Kaggle. It contains a set of 525 bird species, with 84,635 training images, 2,625 each for validation and test images. Every image in the dataset is a 224 by 224 RGB image. The training process used the same split provided by the author. For more details, please refer to the [author's Kaggle page](https://www.kaggle.com/datasets/gpiosenka/100-bird-species). ### Training Procedure The training was done using PyTorch on Kaggle's free P100 GPU. The process also includes the usage of Lightning and Torchmetrics libraries. ### Preprocessing Each image is preprocessed according to the the orginal author's [config](https://huggingface.co/google/efficientnet-b2/blob/main/preprocessor_config.json). The training set was also augmented using: - Random rotation of 10 degrees with probability of 50% - Random horizontal flipping with probability of 50% ### Training Hyperparameters The following are the hyperparameters used for training: - **Training regime:** fp32 - **Loss:** Cross entropy - **Optimizer**: Adam with default betas (0.99, 0.999) - **Learning rate**: 1e-3 - **Learning rate scheduler**: Reduce on plateau which monitors validation loss with patience of 2 and decay rate of 0.1 - **Batch size**: 64 - **Early stopping**: Monitors validation accuracy with patience of 10 ### Results The image below is the result of the training process both on the training and validation set: ![Training results](https://github.com/dennisjooo/Birds-Classifier-EfficientNetB2/raw/main/logs/metrics.png)
[ "abbotts babbler", "abbotts booby", "abyssinian ground hornbill", "african crowned crane", "african emerald cuckoo", "african firefinch", "african oyster catcher", "african pied hornbill", "african pygmy goose", "albatross", "alberts towhee", "alexandrine parakeet", "alpine chough", "altamira yellowthroat", "american avocet", "american bittern", "american coot", "american dipper", "american flamingo", "american goldfinch", "american kestrel", "american pipit", "american redstart", "american robin", "american wigeon", "amethyst woodstar", "andean goose", "andean lapwing", "andean siskin", "anhinga", "anianiau", "annas hummingbird", "antbird", "antillean euphonia", "apapane", "apostlebird", "araripe manakin", "ashy storm petrel", "ashy thrushbird", "asian crested ibis", "asian dollard bird", "asian green bee eater", "asian openbill stork", "auckland shaq", "austral canastero", "australasian figbird", "avadavat", "azaras spinetail", "azure breasted pitta", "azure jay", "azure tanager", "azure tit", "baikal teal", "bald eagle", "bald ibis", "bali starling", "baltimore oriole", "bananaquit", "band tailed guan", "banded broadbill", "banded pita", "banded stilt", "bar-tailed godwit", "barn owl", "barn swallow", "barred puffbird", "barrows goldeneye", "bay-breasted warbler", "bearded barbet", "bearded bellbird", "bearded reedling", "belted kingfisher", "bird of paradise", "black and yellow broadbill", "black baza", "black breasted puffbird", "black cockato", "black faced spoonbill", "black francolin", "black headed caique", "black necked stilt", "black skimmer", "black swan", "black tail crake", "black throated bushtit", "black throated huet", "black throated warbler", "black vented shearwater", "black vulture", "black-capped chickadee", "black-necked grebe", "black-throated sparrow", "blackburniam warbler", "blonde crested woodpecker", "blood pheasant", "blue coau", "blue dacnis", "blue gray gnatcatcher", "blue grosbeak", "blue grouse", "blue heron", "blue malkoha", "blue throated piping guan", "blue throated toucanet", "bobolink", "bornean bristlehead", "bornean leafbird", "bornean pheasant", "brandt cormarant", "brewers blackbird", "brown crepper", "brown headed cowbird", "brown noody", "brown thrasher", "bufflehead", "bulwers pheasant", "burchells courser", "bush turkey", "caatinga cacholote", "cabots tragopan", "cactus wren", "california condor", "california gull", "california quail", "campo flicker", "canary", "canvasback", "cape glossy starling", "cape longclaw", "cape may warbler", "cape rock thrush", "capped heron", "capuchinbird", "carmine bee-eater", "caspian tern", "cassowary", "cedar waxwing", "cerulean warbler", "chara de collar", "chattering lory", "chestnet bellied euphonia", "chestnut winged cuckoo", "chinese bamboo partridge", "chinese pond heron", "chipping sparrow", "chucao tapaculo", "chukar partridge", "cinnamon attila", "cinnamon flycatcher", "cinnamon teal", "clarks grebe", "clarks nutcracker", "cock of the rock", "cockatoo", "collared aracari", "collared crescentchest", "common firecrest", "common grackle", "common house martin", "common iora", "common loon", "common poorwill", "common starling", "coppersmith barbet", "coppery tailed coucal", "crab plover", "crane hawk", "cream colored woodpecker", "crested auklet", "crested caracara", "crested coua", "crested fireback", "crested kingfisher", "crested nuthatch", "crested oropendola", "crested serpent eagle", "crested shriketit", "crested wood partridge", "crimson chat", "crimson sunbird", "crow", "cuban tody", "cuban trogon", "curl crested aracuri", "d-arnauds barbet", "dalmatian pelican", "darjeeling woodpecker", "dark eyed junco", "daurian redstart", "demoiselle crane", "double barred finch", "double brested cormarant", "double eyed fig parrot", "downy woodpecker", "dunlin", "dusky lory", "dusky robin", "eared pita", "eastern bluebird", "eastern bluebonnet", "eastern golden weaver", "eastern meadowlark", "eastern rosella", "eastern towee", "eastern wip poor will", "eastern yellow robin", "ecuadorian hillstar", "egyptian goose", "elegant trogon", "elliots pheasant", "emerald tanager", "emperor penguin", "emu", "enggano myna", "eurasian bullfinch", "eurasian golden oriole", "eurasian magpie", "european goldfinch", "european turtle dove", "evening grosbeak", "fairy bluebird", "fairy penguin", "fairy tern", "fan tailed widow", "fasciated wren", "fiery minivet", "fiordland penguin", "fire tailled myzornis", "flame bowerbird", "flame tanager", "forest wagtail", "frigate", "frill back pigeon", "gambels quail", "gang gang cockatoo", "gila woodpecker", "gilded flicker", "glossy ibis", "go away bird", "gold wing warbler", "golden bower bird", "golden cheeked warbler", "golden chlorophonia", "golden eagle", "golden parakeet", "golden pheasant", "golden pipit", "gouldian finch", "grandala", "gray catbird", "gray kingbird", "gray partridge", "great argus", "great gray owl", "great jacamar", "great kiskadee", "great potoo", "great tinamou", "great xenops", "greater pewee", "greater prairie chicken", "greator sage grouse", "green broadbill", "green jay", "green magpie", "green winged dove", "grey cuckooshrike", "grey headed chachalaca", "grey headed fish eagle", "grey plover", "groved billed ani", "guinea turaco", "guineafowl", "gurneys pitta", "gyrfalcon", "hamerkop", "harlequin duck", "harlequin quail", "harpy eagle", "hawaiian goose", "hawfinch", "helmet vanga", "hepatic tanager", "himalayan bluetail", "himalayan monal", "hoatzin", "hooded merganser", "hoopoes", "horned guan", "horned lark", "horned sungem", "house finch", "house sparrow", "hyacinth macaw", "iberian magpie", "ibisbill", "imperial shaq", "inca tern", "indian bustard", "indian pitta", "indian roller", "indian vulture", "indigo bunting", "indigo flycatcher", "inland dotterel", "ivory billed aracari", "ivory gull", "iwi", "jabiru", "jack snipe", "jacobin pigeon", "jandaya parakeet", "japanese robin", "java sparrow", "jocotoco antpitta", "kagu", "kakapo", "killdear", "king eider", "king vulture", "kiwi", "knob billed duck", "kookaburra", "lark bunting", "laughing gull", "lazuli bunting", "lesser adjutant", "lilac roller", "limpkin", "little auk", "loggerhead shrike", "long-eared owl", "looney birds", "lucifer hummingbird", "magpie goose", "malabar hornbill", "malachite kingfisher", "malagasy white eye", "maleo", "mallard duck", "mandrin duck", "mangrove cuckoo", "marabou stork", "masked bobwhite", "masked booby", "masked lapwing", "mckays bunting", "merlin", "mikado pheasant", "military macaw", "mourning dove", "myna", "nicobar pigeon", "noisy friarbird", "northern beardless tyrannulet", "northern cardinal", "northern flicker", "northern fulmar", "northern gannet", "northern goshawk", "northern jacana", "northern mockingbird", "northern parula", "northern red bishop", "northern shoveler", "ocellated turkey", "oilbird", "okinawa rail", "orange breasted trogon", "orange brested bunting", "oriental bay owl", "ornate hawk eagle", "osprey", "ostrich", "ovenbird", "oyster catcher", "painted bunting", "palila", "palm nut vulture", "paradise tanager", "parakett auklet", "parus major", "patagonian sierra finch", "peacock", "peregrine falcon", "phainopepla", "philippine eagle", "pink robin", "plush crested jay", "pomarine jaeger", "puffin", "puna teal", "purple finch", "purple gallinule", "purple martin", "purple swamphen", "pygmy kingfisher", "pyrrhuloxia", "quetzal", "rainbow lorikeet", "razorbill", "red bearded bee eater", "red bellied pitta", "red billed tropicbird", "red browed finch", "red crossbill", "red faced cormorant", "red faced warbler", "red fody", "red headed duck", "red headed woodpecker", "red knot", "red legged honeycreeper", "red naped trogon", "red shouldered hawk", "red tailed hawk", "red tailed thrush", "red winged blackbird", "red wiskered bulbul", "regent bowerbird", "ring-necked pheasant", "roadrunner", "rock dove", "rose breasted cockatoo", "rose breasted grosbeak", "roseate spoonbill", "rosy faced lovebird", "rough leg buzzard", "royal flycatcher", "ruby crowned kinglet", "ruby throated hummingbird", "ruddy shelduck", "rudy kingfisher", "rufous kingfisher", "rufous trepe", "rufuos motmot", "samatran thrush", "sand martin", "sandhill crane", "satyr tragopan", "says phoebe", "scarlet crowned fruit dove", "scarlet faced liocichla", "scarlet ibis", "scarlet macaw", "scarlet tanager", "shoebill", "short billed dowitcher", "smiths longspur", "snow goose", "snow partridge", "snowy egret", "snowy owl", "snowy plover", "snowy sheathbill", "sora", "spangled cotinga", "splendid wren", "spoon biled sandpiper", "spotted catbird", "spotted whistling duck", "squacco heron", "sri lanka blue magpie", "steamer duck", "stork billed kingfisher", "striated caracara", "striped owl", "stripped manakin", "stripped swallow", "sunbittern", "superb starling", "surf scoter", "swinhoes pheasant", "tailorbird", "taiwan magpie", "takahe", "tasmanian hen", "tawny frogmouth", "teal duck", "tit mouse", "touchan", "townsends warbler", "tree swallow", "tricolored blackbird", "tropical kingbird", "trumpter swan", "turkey vulture", "turquoise motmot", "umbrella bird", "varied thrush", "veery", "venezuelian troupial", "verdin", "vermilion flycather", "victoria crowned pigeon", "violet backed starling", "violet cuckoo", "violet green swallow", "violet turaco", "visayan hornbill", "vulturine guineafowl", "wall creaper", "wattled curassow", "wattled lapwing", "whimbrel", "white breasted waterhen", "white browed crake", "white cheeked turaco", "white crested hornbill", "white eared hummingbird", "white necked raven", "white tailed tropic", "white throated bee eater", "wild turkey", "willow ptarmigan", "wilsons bird of paradise", "wood duck", "wood thrush", "woodland kingfisher", "wrentit", "yellow bellied flowerpecker", "yellow breasted chat", "yellow cacique", "yellow headed blackbird", "zebra dove" ]
platzi/platzi-vit-model-eloi-campeny
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-eloi-campeny This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0479 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.2
[ "angular_leaf_spot", "bean_rust", "healthy" ]
ferno22/vit-beans-finetuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-finetuned-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1157 - Accuracy: 0.9712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.193 | 1.0 | 117 | 0.1099 | 0.9808 | | 0.0462 | 2.0 | 234 | 0.0857 | 0.9808 | | 0.0171 | 3.0 | 351 | 0.1237 | 0.9712 | | 0.0123 | 4.0 | 468 | 0.1088 | 0.9712 | | 0.0095 | 5.0 | 585 | 0.1135 | 0.9712 | | 0.0081 | 6.0 | 702 | 0.1162 | 0.9712 | | 0.0073 | 7.0 | 819 | 0.1158 | 0.9712 | | 0.0066 | 8.0 | 936 | 0.1152 | 0.9712 | | 0.0061 | 9.0 | 1053 | 0.1160 | 0.9712 | | 0.0061 | 10.0 | 1170 | 0.1157 | 0.9712 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
mbehbooei/vit-base-patch16-224-in21k-finetuned-smoking
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 - Accuracy: 0.95 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6723 | 0.94 | 12 | 0.5164 | 0.93 | | 0.5034 | 1.96 | 25 | 0.3136 | 0.95 | | 0.3964 | 2.82 | 36 | 0.2732 | 0.95 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "notsmoking", "smoking" ]
Arya-Bastani23/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4211 - Accuracy: 0.7944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8112 | 0.94 | 12 | 0.6080 | 0.75 | | 0.6849 | 1.96 | 25 | 0.5325 | 0.7889 | | 0.6835 | 2.98 | 38 | 0.5046 | 0.7778 | | 0.6253 | 4.0 | 51 | 0.4427 | 0.8056 | | 0.6203 | 4.94 | 63 | 0.4305 | 0.8222 | | 0.559 | 5.96 | 76 | 0.4347 | 0.7833 | | 0.5664 | 6.59 | 84 | 0.4211 | 0.7944 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "class_0", "class_1", "class_2", "class_3", "class_4" ]
mbehbooei/vit-base-patch16-224-in21k-finetuned-middle
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-middle This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6069 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.6585 | 0.6667 | | No log | 2.0 | 4 | 0.6069 | 0.75 | | No log | 3.0 | 6 | 0.5801 | 0.75 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "middle finger", "safe" ]
fmagot01/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1329 | 1.54 | 100 | 0.0408 | 0.9925 | | 0.0169 | 3.08 | 200 | 0.0622 | 0.9850 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
aviandito/vit-dunham-carbonate-classifier
# vit-dunham-carbonate-classifier ## Model description This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [Lokier & Al Junaibi (2016)](https://onlinelibrary.wiley.com/doi/10.1111/sed.12293) data S1. The model captures the expertise of 177 volunteers from 33 countries with 3,270 years of academic & industry experience in classifying 14 carbonate thin section samples by using the classical [Dunham (1962)](https://en.wikipedia.org/wiki/Dunham_classification) carbonate classification. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64ff0bce56243ce8cb6df456/IXs0cK2sflvbCg5EJAiMo.png) ([Source](https://commons.wikimedia.org/wiki/File:Dunham_classification_EN.svg)) In the original paper, the authors intended to objectively analyze whether these volunteers have the same standards in applying Dunham classification. ## Intended uses & limitations - Input: Carbonate thin section image, can be either parallel-polarized (PPL) or cross-polarized (XPL) - Output: Dunham classification (Mudstone/Wackestone/Packstone/Grainstone/Boundstone/Crystalline) and the probability value - Limitation: The original dataset is missing Boundstone sample, hence it cannot classify a Boundstone. Sample image source: [Grainstone - Wikipedia](https://en.wikipedia.org/wiki/Grainstone) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64ff0bce56243ce8cb6df456/r4aBwewYuL-WLfTdqqFL-.png) ## Training and evaluation data Source: [Lokier & Al Junaibi (2016), Data S1](https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fsed.12293&file=sed12293-sup-0001-SupInfo.zip) The data consists of 14 samples. Each samples has 3 magnifications (x2, x4, and x10) and taken in PPL and XPL. Hence, there are 14 samples * 3 magnifications * 2 polarizations = 84 images in the training dataset. Classification for each sample is taken from the most popular respondent's response in Table 7. - Sample 1: Packstone - Sample 2: Grainstone - Sample 3: Wackestone - Sample 4: Packstone - Sample 5: Wackestone - Sample 6: Packstone - Sample 7: Packstone - Sample 8: Mudstone - Sample 9: Crystalline - Sample 10: Grainstone - Sample 11: Wackestone - Sample 12: Grainstone - Sample 13: Grainstone - Sample 14: Mudstone ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5764 | 1.0 | 5 | 1.5329 | 0.4444 | | 1.3991 | 2.0 | 10 | 1.4253 | 0.5556 | | 1.2792 | 3.0 | 15 | 1.2851 | 0.7778 | | 1.0119 | 4.0 | 20 | 1.1625 | 0.8889 | | 0.9916 | 5.0 | 25 | 1.0471 | 0.8889 | | 0.9202 | 6.0 | 30 | 0.9836 | 0.7778 | | 0.6994 | 7.0 | 35 | 0.8649 | 0.8889 | | 0.526 | 8.0 | 40 | 0.7110 | 1.0 | | 0.5383 | 9.0 | 45 | 0.6127 | 1.0 | | 0.5128 | 10.0 | 50 | 0.5337 | 1.0 | | 0.4312 | 11.0 | 55 | 0.4887 | 1.0 | | 0.3827 | 12.0 | 60 | 0.4365 | 1.0 | | 0.3452 | 13.0 | 65 | 0.3891 | 1.0 | | 0.3164 | 14.0 | 70 | 0.3677 | 1.0 | | 0.2899 | 15.0 | 75 | 0.3555 | 1.0 | | 0.2878 | 16.0 | 80 | 0.3197 | 1.0 | | 0.2884 | 17.0 | 85 | 0.3056 | 1.0 | | 0.2633 | 18.0 | 90 | 0.3107 | 1.0 | | 0.2669 | 19.0 | 95 | 0.3164 | 1.0 | | 0.2465 | 20.0 | 100 | 0.2949 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "crystalline", "grainstone", "mudstone", "packstone", "wackestone" ]
lincyaw/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5173 - Accuracy: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 224 - eval_batch_size: 224 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 896 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0945 | 1.0 | 10 | 1.3185 | 0.5569 | | 1.1055 | 2.0 | 20 | 0.6962 | 0.8379 | | 0.6974 | 3.0 | 30 | 0.5173 | 0.8822 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "battery", "biological", "brown-glass", "cardboard", "clothes", "green-glass", "metal", "paper", "plastic", "shoes", "trash", "white-glass" ]
tvganesh/identify_stroke
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # identify_stroke This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1127 - Accuracy: 1.0 ## Model description Model identifies cricket shot - front drive, hook shot or sweep shot ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.4345 | 1.0 | | No log | 2.0 | 8 | 0.3883 | 1.0 | | 0.3612 | 3.0 | 12 | 0.4099 | 0.8889 | | 0.3612 | 4.0 | 16 | 0.2452 | 1.0 | | 0.2934 | 5.0 | 20 | 0.1969 | 1.0 | | 0.2934 | 6.0 | 24 | 0.1679 | 1.0 | | 0.2934 | 7.0 | 28 | 0.1403 | 1.0 | | 0.203 | 8.0 | 32 | 0.1530 | 1.0 | | 0.203 | 9.0 | 36 | 0.1161 | 1.0 | | 0.1505 | 10.0 | 40 | 0.1292 | 1.0 | | 0.1505 | 11.0 | 44 | 0.1031 | 1.0 | | 0.1505 | 12.0 | 48 | 0.1084 | 1.0 | | 0.1388 | 13.0 | 52 | 0.1078 | 1.0 | | 0.1388 | 14.0 | 56 | 0.0937 | 1.0 | | 0.1076 | 15.0 | 60 | 0.1008 | 1.0 | | 0.1076 | 16.0 | 64 | 0.1131 | 1.0 | | 0.1076 | 17.0 | 68 | 0.1007 | 1.0 | | 0.1047 | 18.0 | 72 | 0.1775 | 0.8889 | | 0.1047 | 19.0 | 76 | 0.0844 | 1.0 | | 0.0902 | 20.0 | 80 | 0.1127 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "front drive", "hook shot", "sweep shot" ]
gcperk20/swin-tiny-patch4-window7-224-finetuned-piid
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-piid This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5715 - Accuracy: 0.7854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2088 | 0.98 | 20 | 1.1661 | 0.4521 | | 0.7545 | 2.0 | 41 | 0.8866 | 0.6073 | | 0.6281 | 2.98 | 61 | 0.7788 | 0.6849 | | 0.5939 | 4.0 | 82 | 0.6443 | 0.7397 | | 0.5254 | 4.98 | 102 | 0.5097 | 0.7808 | | 0.5583 | 6.0 | 123 | 0.5715 | 0.7854 | | 0.3463 | 6.98 | 143 | 0.6163 | 0.7352 | | 0.3878 | 8.0 | 164 | 0.5671 | 0.7671 | | 0.3653 | 8.98 | 184 | 0.5690 | 0.7580 | | 0.3529 | 10.0 | 205 | 0.5940 | 0.7580 | | 0.301 | 10.98 | 225 | 0.6303 | 0.7626 | | 0.2639 | 12.0 | 246 | 0.5725 | 0.7763 | | 0.2847 | 12.98 | 266 | 0.6280 | 0.7717 | | 0.25 | 14.0 | 287 | 0.5975 | 0.7717 | | 0.2472 | 14.98 | 307 | 0.5821 | 0.7671 | | 0.1676 | 16.0 | 328 | 0.6456 | 0.7626 | | 0.1327 | 16.98 | 348 | 0.6117 | 0.7671 | | 0.1977 | 18.0 | 369 | 0.6988 | 0.7489 | | 0.1602 | 18.98 | 389 | 0.6448 | 0.7671 | | 0.1785 | 19.51 | 400 | 0.6333 | 0.7717 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
[ "1", "2", "3", "4" ]
LucyintheSky/pose-estimation-crop-uncrop
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Crop vs Full Body ## Model description This model predicts whether the person in the image is **cropped** or **full body**. It is trained on [Lucy in the Sky](https://www.lucyinthesky.com/shop) images. This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). ## Training and evaluation data It achieves the following results on the evaluation set: - Loss: 0.1513 - Accuracy: 0.9649 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "crop", "uncrop" ]
erikD12/ErikDL
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ErikDL This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0467 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1333 | 3.85 | 500 | 0.0467 | 0.9925 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
100rab25/swin-tiny-patch4-window7-224-spa_saloon_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-spa_saloon_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.337 | 1.0 | 205 | 0.2108 | 0.9175 | | 0.196 | 2.0 | 411 | 0.1137 | 0.9620 | | 0.1502 | 3.0 | 616 | 0.1030 | 0.9668 | | 0.1476 | 4.0 | 822 | 0.0815 | 0.9736 | | 0.1532 | 5.0 | 1027 | 0.0815 | 0.9760 | | 0.1311 | 6.0 | 1233 | 0.0667 | 0.9805 | | 0.1212 | 7.0 | 1438 | 0.0675 | 0.9805 | | 0.1637 | 8.0 | 1644 | 0.0697 | 0.9798 | | 0.116 | 9.0 | 1849 | 0.0638 | 0.9812 | | 0.085 | 9.98 | 2050 | 0.0639 | 0.9798 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
[ "ambience", "hair_style", "manicure", "massage_room", "others", "pedicure" ]
TirathP/fine-tuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the custom-huggingface dataset. It achieves the following results on the evaluation set: - Loss: 7.3529 - Accuracy: 0.0596 - F1: 0.0075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3773 | 2.54 | 1000 | 7.3529 | 0.0596 | 0.0075 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "calling", "clapping", "running", "sitting", "sleeping", "texting", "using_laptop", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music" ]
yhyan/resnet-50-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.5331 - Accuracy: 0.852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6163 | 1.0 | 351 | 1.3104 | 0.665 | | 1.0927 | 2.0 | 703 | 0.6382 | 0.8286 | | 1.0099 | 2.99 | 1053 | 0.5331 | 0.852 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
yaojiapeng/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0861 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3095 | 1.0 | 130 | 0.2102 | 0.9774 | | 0.2114 | 2.0 | 260 | 0.1360 | 0.9624 | | 0.1861 | 3.0 | 390 | 0.1154 | 0.9699 | | 0.0827 | 4.0 | 520 | 0.1022 | 0.9774 | | 0.1281 | 5.0 | 650 | 0.0861 | 0.9850 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
Abhiram4/vit-base-patch16-224-abhi1-finetuned
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-abhi1-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 4.1858 - Accuracy: 0.1663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.9292 | 0.99 | 17 | 4.6892 | 0.0380 | | 4.5033 | 1.97 | 34 | 4.3391 | 0.1191 | | 4.1992 | 2.96 | 51 | 4.1858 | 0.1663 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
[ "abigail_williams_(fate)", "aegis_(persona)", "aisaka_taiga", "albedo", "anastasia_(idolmaster)", "aqua_(konosuba)", "arcueid_brunestud", "asia_argento", "astolfo_(fate)", "asuna_(sao)", "atago_(azur_lane)", "ayanami_rei", "belfast_(azur_lane)", "bremerton_(azur_lane)", "c.c", "chitanda_eru", "chloe_von_einzbern", "cleveland_(azur_lane)", "d.va_(overwatch)", "dido_(azur_lane)", "emilia_rezero", "enterprise_(azur_lane)", "formidable_(azur_lane)", "fubuki_(one-punch_man)", "fujibayashi_kyou", "fujiwara_chika", "furukawa_nagisa", "gawr_gura", "gilgamesh", "giorno_giovanna", "hanekawa_tsubasa", "hatsune_miku", "hayasaka_ai", "hirasawa_yui", "hyuuga_hinata", "ichigo_(darling_in_the_franxx)", "illyasviel_von_einzbern", "irisviel_von_einzbern", "ishtar_(fate_grand_order)", "isshiki_iroha", "jonathan_joestar", "kamado_nezuko", "kaname_madoka", "kanbaru_suruga", "karin_(blue_archive)", "karna_(fate)", "katsuragi_misato", "keqing_(genshin_impact)", "kirito", "kiryu_coco", "kizuna_ai", "kochou_shinobu", "komi_shouko", "laffey_(azur_lane)", "lancer", "makise_kurisu", "mash_kyrielight", "matou_sakura", "megumin", "mei_(pokemon)", "meltlilith", "minato_aqua", "misaka_mikoto", "miyazono_kawori", "mori_calliope", "nagato_yuki", "nakano_azusa", "nakano_itsuki", "nakano_miku", "nakano_nino", "nakano_yotsuba", "nami_(one_piece)", "nekomata_okayu", "nico_robin", "ninomae_ina'nis", "nishikino_maki", "okita_souji_(fate)", "ookami_mio", "oshino_ougi", "oshino_shinobu", "ouro_kronii", "paimon_(genshin_impact)", "platelet_(hataraku_saibou)", "ram_rezero", "raphtalia", "rem_rezero", "rias_gremory", "rider", "ryougi_shiki", "sakura_futaba", "sakurajima_mai", "sakurauchi_riko", "satonaka_chie", "semiramis_(fate)", "sengoku_nadeko", "senjougahara_hitagi", "shidare_hotaru", "shinomiya_kaguya", "shirakami_fubuki", "shirogane_naoto", "shirogane_noel", "shishiro_botan", "shuten_douji_(fate)", "sinon", "souryuu_asuka_langley", "st_ar-15_(girls_frontline)", "super_sonico", "suzuhara_lulu", "suzumiya_haruhi", "taihou_(azur_lane)", "takagi-san", "takamaki_anne", "takanashi_rikka", "takao_(azur_lane)", "takarada_rikka", "takimoto_hifumi", "tokoyami_towa", "toosaka_rin", "toujou_nozomi", "tsushima_yoshiko", "unicorn_(azur_lane)", "usada_pekora", "utsumi_erise", "watson_amelia", "waver_velvet", "xenovia_(high_school_dxd)", "yui_(angel_beats!)", "yuigahama_yui", "yukinoshita_yukino", "zero_two_(darling_in_the_franxx)" ]
sdgroeve/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0702 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2433 | 1.0 | 190 | 0.1255 | 0.9585 | | 0.1721 | 2.0 | 380 | 0.0852 | 0.9704 | | 0.1388 | 3.0 | 570 | 0.0702 | 0.9770 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
platzi/platzi-vit-model-Carlos-Moreno
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-Carlos-Moreno This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0368 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.144 | 3.85 | 500 | 0.0368 | 0.9850 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
gchabcou/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.8834 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6073 | 0.99 | 62 | 3.3725 | 0.818 | | 2.2956 | 2.0 | 125 | 2.1579 | 0.854 | | 1.7042 | 2.99 | 187 | 1.6201 | 0.887 | | 1.3278 | 4.0 | 250 | 1.3513 | 0.89 | | 1.1314 | 4.99 | 312 | 1.1549 | 0.908 | | 1.007 | 6.0 | 375 | 1.0737 | 0.889 | | 0.905 | 6.99 | 437 | 0.9600 | 0.906 | | 0.8227 | 8.0 | 500 | 0.9113 | 0.912 | | 0.7948 | 8.99 | 562 | 0.8908 | 0.909 | | 0.7598 | 9.92 | 620 | 0.8834 | 0.9 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
TirathP/cifar10-lt
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cifar10-lt This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the cifar10-lt dataset. It achieves the following results on the evaluation set: - Loss: 0.1132 - Accuracy: 0.9659 - F1: 0.9660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
DamarJati/plastic-recycling-codes
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-5 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 1.847501 | 0.260870 | | 1.9354 | 2.0 | 10 | 1.729485 | 0.333333 | | 1.9354 | 3.0 | 15 | 1.681863 | 0.391304 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "1_polyethylene_pet", "2_high_density_polyethylene_pe-hd", "3_polyvinylchloride_pvc", "4_low_density_polyethylene_pe-ld", "5_polypropylene_pp", "6_polystyrene_ps", "7_other_resins", "8_no_plastic" ]
tejp/finetuned-cifar10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the finetuned-cifar10-lt dataset. It achieves the following results on the evaluation set: - Loss: 0.0976 - Accuracy: 0.971 - F1: 0.9711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
tejp/human-actions
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # human-actions This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the Human_Action_Recognition dataset. It achieves the following results on the evaluation set: - Loss: 7.1747 - Accuracy: 0.0676 - F1: 0.0084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3842 | 2.54 | 1000 | 7.1747 | 0.0676 | 0.0084 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "calling", "clapping", "running", "sitting", "sleeping", "texting", "using_laptop", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music" ]
navradio/swin-tiny-patch4-window7-224-finetuned-200k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-200k This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4347 - Accuracy: 0.7961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.634 | 0.99 | 36 | 0.6243 | 0.6262 | | 0.5551 | 1.99 | 72 | 0.5186 | 0.7250 | | 0.5183 | 2.98 | 108 | 0.4826 | 0.7673 | | 0.4854 | 4.0 | 145 | 0.5640 | 0.7261 | | 0.4645 | 4.99 | 181 | 0.4598 | 0.7817 | | 0.4655 | 5.99 | 217 | 0.4787 | 0.7786 | | 0.4582 | 6.98 | 253 | 0.4483 | 0.7899 | | 0.4415 | 8.0 | 290 | 0.4709 | 0.7765 | | 0.4546 | 8.99 | 326 | 0.4717 | 0.7817 | | 0.4566 | 9.99 | 362 | 0.4538 | 0.7951 | | 0.4675 | 10.98 | 398 | 0.4491 | 0.7817 | | 0.4449 | 12.0 | 435 | 0.4992 | 0.7652 | | 0.4349 | 12.99 | 471 | 0.4627 | 0.7817 | | 0.4253 | 13.99 | 507 | 0.4492 | 0.7858 | | 0.4278 | 14.98 | 543 | 0.4442 | 0.7951 | | 0.4567 | 16.0 | 580 | 0.4362 | 0.7899 | | 0.4205 | 16.99 | 616 | 0.4550 | 0.7889 | | 0.4233 | 17.99 | 652 | 0.4336 | 0.7909 | | 0.4014 | 18.98 | 688 | 0.4565 | 0.7889 | | 0.4176 | 20.0 | 725 | 0.4323 | 0.7940 | | 0.411 | 20.99 | 761 | 0.4348 | 0.7951 | | 0.4128 | 21.99 | 797 | 0.4378 | 0.7971 | | 0.4045 | 22.98 | 833 | 0.4317 | 0.7951 | | 0.4001 | 24.0 | 870 | 0.4452 | 0.7868 | | 0.4061 | 24.99 | 906 | 0.4286 | 0.7920 | | 0.4033 | 25.99 | 942 | 0.4306 | 0.7951 | | 0.3953 | 26.98 | 978 | 0.4320 | 0.7920 | | 0.3924 | 28.0 | 1015 | 0.4338 | 0.7940 | | 0.4056 | 28.99 | 1051 | 0.4329 | 0.7930 | | 0.4032 | 29.79 | 1080 | 0.4347 | 0.7961 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "abnormal", "normal" ]
twm213/food_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # twm213/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3748 - Validation Loss: 0.3432 - Train Accuracy: 0.914 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.7859 | 1.6483 | 0.799 | 0 | | 1.2220 | 0.9133 | 0.842 | 1 | | 0.7054 | 0.5449 | 0.898 | 2 | | 0.4945 | 0.4446 | 0.892 | 3 | | 0.3748 | 0.3432 | 0.914 | 4 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.9.1 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
mbehbooei/vit-base-patch16-224-in21k-finetuned-moderation
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-moderation This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2400 - Accuracy: 0.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1295 | 1.0 | 2863 | 0.3140 | 0.8736 | | 0.1181 | 2.0 | 5726 | 0.2400 | 0.9043 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "nude", "safe", "sexy" ]
DamarJati/GreenLabel-Waste-Types
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0150 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5566 | 0.98 | 11 | 0.1846 | 0.975 | | 0.1031 | 1.96 | 22 | 0.0150 | 1.0 | | 0.0345 | 2.93 | 33 | 0.0031 | 1.0 | | 0.0117 | 4.0 | 45 | 0.0008 | 1.0 | | 0.0256 | 4.98 | 56 | 0.0008 | 1.0 | | 0.0136 | 5.87 | 66 | 0.0007 | 1.0 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "o", "r" ]
dima806/pokemon_types_image_detection
Returns pokemon type given an image. See https://www.kaggle.com/code/dima806/pokemon-common-types-image-detection-vit for more details. ``` Accuracy: 0.9588 F1 Score: 0.9459 Classification report: precision recall f1-score support Wartortle 0.9615 0.9615 0.9615 26 Arcanine 1.0000 1.0000 1.0000 27 Staryu 1.0000 1.0000 1.0000 27 Arbok 1.0000 1.0000 1.0000 26 Butterfree 0.0000 0.0000 0.0000 26 Geodude 1.0000 1.0000 1.0000 27 Seaking 1.0000 1.0000 1.0000 26 Diglett 1.0000 1.0000 1.0000 27 Jynx 1.0000 1.0000 1.0000 26 Sandslash 0.9286 1.0000 0.9630 26 Magneton 1.0000 1.0000 1.0000 27 Scyther 1.0000 1.0000 1.0000 27 Kabuto 1.0000 1.0000 1.0000 26 Cubone 0.8276 0.9231 0.8727 26 Golem 1.0000 1.0000 1.0000 26 Dewgong 0.9630 1.0000 0.9811 26 Pidgey 1.0000 0.9259 0.9615 27 Kadabra 0.5200 1.0000 0.6842 26 Ditto 1.0000 1.0000 1.0000 26 Venomoth 0.5400 1.0000 0.7013 27 Rattata 1.0000 1.0000 1.0000 27 Alakazam 0.0000 0.0000 0.0000 26 Machoke 1.0000 0.9615 0.9804 26 Farfetchd 1.0000 1.0000 1.0000 27 Omastar 1.0000 0.9615 0.9804 26 Machamp 0.9630 1.0000 0.9811 26 Jigglypuff 1.0000 1.0000 1.0000 27 Dragonite 1.0000 1.0000 1.0000 26 Weepinbell 1.0000 1.0000 1.0000 26 Sandshrew 1.0000 1.0000 1.0000 26 Dugtrio 1.0000 1.0000 1.0000 27 Mankey 0.8276 0.8889 0.8571 27 Hitmonchan 0.8667 1.0000 0.9286 26 Spearow 1.0000 1.0000 1.0000 26 Caterpie 1.0000 1.0000 1.0000 27 Dratini 0.0000 0.0000 0.0000 26 Bulbasaur 1.0000 1.0000 1.0000 26 Tentacool 1.0000 1.0000 1.0000 26 Gengar 1.0000 1.0000 1.0000 26 Machop 0.9643 1.0000 0.9818 27 Raichu 1.0000 1.0000 1.0000 26 Alolan Sandslash 0.0000 0.0000 0.0000 26 Eevee 1.0000 1.0000 1.0000 27 Abra 1.0000 1.0000 1.0000 27 Haunter 1.0000 1.0000 1.0000 27 Metapod 1.0000 1.0000 1.0000 27 Fearow 0.9630 1.0000 0.9811 26 Nidorina 0.8966 1.0000 0.9455 26 Zapdos 1.0000 1.0000 1.0000 27 Ninetales 1.0000 0.9630 0.9811 27 Chansey 1.0000 1.0000 1.0000 27 Kangaskhan 0.9630 1.0000 0.9811 26 Poliwrath 1.0000 0.9630 0.9811 27 Gyarados 1.0000 1.0000 1.0000 27 Charmeleon 1.0000 1.0000 1.0000 26 Vulpix 1.0000 1.0000 1.0000 26 Pidgeot 1.0000 0.8846 0.9388 26 Blastoise 0.9630 1.0000 0.9811 26 Porygon 1.0000 1.0000 1.0000 26 Psyduck 0.9643 1.0000 0.9818 27 Dragonair 0.5400 1.0000 0.7013 27 Raticate 0.9630 1.0000 0.9811 26 Squirtle 1.0000 0.9615 0.9804 26 Charizard 1.0000 1.0000 1.0000 26 Electrode 1.0000 0.9615 0.9804 26 Flareon 1.0000 1.0000 1.0000 26 Exeggutor 0.9643 1.0000 0.9818 27 Pikachu 1.0000 1.0000 1.0000 26 Wigglytuff 1.0000 1.0000 1.0000 26 Venusaur 1.0000 0.9615 0.9804 26 Mewtwo 1.0000 1.0000 1.0000 26 Clefable 1.0000 1.0000 1.0000 27 Oddish 1.0000 1.0000 1.0000 26 Ekans 1.0000 1.0000 1.0000 26 Shellder 1.0000 1.0000 1.0000 26 Marowak 0.9130 0.8077 0.8571 26 Kakuna 1.0000 1.0000 1.0000 27 Rapidash 1.0000 0.9615 0.9804 26 Rhydon 1.0000 0.9630 0.9811 27 Ivysaur 1.0000 1.0000 1.0000 26 Slowpoke 1.0000 1.0000 1.0000 26 Lapras 1.0000 1.0000 1.0000 27 Clefairy 1.0000 1.0000 1.0000 26 Hitmonlee 1.0000 1.0000 1.0000 26 Jolteon 1.0000 1.0000 1.0000 26 Growlithe 1.0000 1.0000 1.0000 27 Gastly 1.0000 1.0000 1.0000 27 Aerodactyl 1.0000 1.0000 1.0000 27 Weedle 1.0000 1.0000 1.0000 26 Tauros 1.0000 1.0000 1.0000 27 Seel 0.8929 0.9615 0.9259 26 Zubat 1.0000 1.0000 1.0000 26 Meowth 0.0000 0.0000 0.0000 26 Persian 0.6341 1.0000 0.7761 26 Articuno 0.9310 1.0000 0.9643 27 Weezing 0.9643 1.0000 0.9818 27 Magnemite 1.0000 1.0000 1.0000 27 Omanyte 0.9630 1.0000 0.9811 26 Mew 1.0000 1.0000 1.0000 26 Vileplume 1.0000 1.0000 1.0000 27 Nidoqueen 0.9615 0.9259 0.9434 27 Vaporeon 0.9000 1.0000 0.9474 27 Ponyta 0.9630 1.0000 0.9811 26 Moltres 1.0000 1.0000 1.0000 27 Voltorb 0.9630 1.0000 0.9811 26 Magikarp 1.0000 1.0000 1.0000 27 Beedrill 1.0000 1.0000 1.0000 26 Nidoking 1.0000 1.0000 1.0000 27 Paras 1.0000 1.0000 1.0000 26 Grimer 1.0000 0.9615 0.9804 26 Dodrio 1.0000 1.0000 1.0000 26 Charmander 1.0000 1.0000 1.0000 26 Muk 1.0000 0.9615 0.9804 26 Primeape 0.8966 0.9630 0.9286 27 Victreebel 1.0000 1.0000 1.0000 26 Golbat 1.0000 1.0000 1.0000 26 Horsea 1.0000 1.0000 1.0000 27 Goldeen 1.0000 1.0000 1.0000 27 Pidgeotto 0.8966 1.0000 0.9455 26 Koffing 0.9630 1.0000 0.9811 26 Seadra 0.5870 1.0000 0.7397 27 Tentacruel 1.0000 1.0000 1.0000 26 Pinsir 1.0000 1.0000 1.0000 26 Cloyster 1.0000 1.0000 1.0000 26 Gloom 1.0000 1.0000 1.0000 26 Graveler 1.0000 1.0000 1.0000 26 Magmar 1.0000 1.0000 1.0000 27 Krabby 0.9286 1.0000 0.9630 26 Electabuzz 1.0000 1.0000 1.0000 27 Poliwhirl 0.9643 1.0000 0.9818 27 Golduck 0.9310 1.0000 0.9643 27 Onix 1.0000 1.0000 1.0000 27 Nidorino 1.0000 1.0000 1.0000 27 Snorlax 0.9630 1.0000 0.9811 26 Starmie 1.0000 1.0000 1.0000 27 Slowbro 1.0000 1.0000 1.0000 26 MrMime 1.0000 1.0000 1.0000 26 Venonat 1.0000 1.0000 1.0000 27 Kabutops 1.0000 1.0000 1.0000 26 Drowzee 1.0000 1.0000 1.0000 26 Rhyhorn 1.0000 1.0000 1.0000 26 Tangela 1.0000 1.0000 1.0000 27 Doduo 1.0000 1.0000 1.0000 27 Exeggcute 1.0000 1.0000 1.0000 26 Poliwag 1.0000 1.0000 1.0000 27 Lickitung 1.0000 1.0000 1.0000 26 Hypno 0.9286 1.0000 0.9630 26 Bellsprout 1.0000 1.0000 1.0000 27 Parasect 1.0000 1.0000 1.0000 26 Kingler 1.0000 0.9231 0.9600 26 accuracy 0.9588 3960 macro avg 0.9382 0.9583 0.9459 3960 weighted avg 0.9386 0.9588 0.9463 3960 ```
[ "wartortle", "arcanine", "staryu", "arbok", "butterfree", "geodude", "seaking", "diglett", "jynx", "sandslash", "magneton", "scyther", "kabuto", "cubone", "golem", "dewgong", "pidgey", "kadabra", "ditto", "venomoth", "rattata", "alakazam", "machoke", "farfetchd", "omastar", "machamp", "jigglypuff", "dragonite", "weepinbell", "sandshrew", "dugtrio", "mankey", "hitmonchan", "spearow", "caterpie", "dratini", "bulbasaur", "tentacool", "gengar", "machop", "raichu", "alolan sandslash", "eevee", "abra", "haunter", "metapod", "fearow", "nidorina", "zapdos", "ninetales", "chansey", "kangaskhan", "poliwrath", "gyarados", "charmeleon", "vulpix", "pidgeot", "blastoise", "porygon", "psyduck", "dragonair", "raticate", "squirtle", "charizard", "electrode", "flareon", "exeggutor", "pikachu", "wigglytuff", "venusaur", "mewtwo", "clefable", "oddish", "ekans", "shellder", "marowak", "kakuna", "rapidash", "rhydon", "ivysaur", "slowpoke", "lapras", "clefairy", "hitmonlee", "jolteon", "growlithe", "gastly", "aerodactyl", "weedle", "tauros", "seel", "zubat", "meowth", "persian", "articuno", "weezing", "magnemite", "omanyte", "mew", "vileplume", "nidoqueen", "vaporeon", "ponyta", "moltres", "voltorb", "magikarp", "beedrill", "nidoking", "paras", "grimer", "dodrio", "charmander", "muk", "primeape", "victreebel", "golbat", "horsea", "goldeen", "pidgeotto", "koffing", "seadra", "tentacruel", "pinsir", "cloyster", "gloom", "graveler", "magmar", "krabby", "electabuzz", "poliwhirl", "golduck", "onix", "nidorino", "snorlax", "starmie", "slowbro", "mrmime", "venonat", "kabutops", "drowzee", "rhyhorn", "tangela", "doduo", "exeggcute", "poliwag", "lickitung", "hypno", "bellsprout", "parasect", "kingler" ]
navradio/swinv2-tiny-patch4-window8-256-finetuned-PE
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-finetuned-PE This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3083 - Accuracy: 0.8720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.92 | 9 | 0.6391 | 0.6690 | | 0.6873 | 1.95 | 19 | 0.5293 | 0.7376 | | 0.6233 | 2.97 | 29 | 0.6385 | 0.6853 | | 0.5976 | 4.0 | 39 | 0.4447 | 0.7970 | | 0.5552 | 4.92 | 48 | 0.4029 | 0.8266 | | 0.552 | 5.95 | 58 | 0.3675 | 0.8429 | | 0.5055 | 6.97 | 68 | 0.3409 | 0.8581 | | 0.4816 | 8.0 | 78 | 0.3322 | 0.8615 | | 0.455 | 8.92 | 87 | 0.3166 | 0.8639 | | 0.4428 | 9.95 | 97 | 0.3100 | 0.8662 | | 0.4398 | 10.97 | 107 | 0.3713 | 0.8365 | | 0.4318 | 12.0 | 117 | 0.4019 | 0.8284 | | 0.4431 | 12.92 | 126 | 0.3074 | 0.8714 | | 0.4437 | 13.95 | 136 | 0.3156 | 0.8656 | | 0.4482 | 14.97 | 146 | 0.3516 | 0.8476 | | 0.4353 | 16.0 | 156 | 0.3162 | 0.8598 | | 0.4218 | 16.92 | 165 | 0.3018 | 0.8685 | | 0.4111 | 17.95 | 175 | 0.3143 | 0.8650 | | 0.4224 | 18.97 | 185 | 0.3146 | 0.8592 | | 0.4114 | 20.0 | 195 | 0.3097 | 0.8691 | | 0.4103 | 20.92 | 204 | 0.3038 | 0.8703 | | 0.3989 | 21.95 | 214 | 0.2893 | 0.8796 | | 0.3908 | 22.97 | 224 | 0.2956 | 0.8755 | | 0.3923 | 24.0 | 234 | 0.3041 | 0.8685 | | 0.3842 | 24.92 | 243 | 0.2876 | 0.8749 | | 0.3808 | 25.95 | 253 | 0.2907 | 0.8767 | | 0.382 | 26.97 | 263 | 0.3018 | 0.8738 | | 0.3816 | 28.0 | 273 | 0.2812 | 0.8825 | | 0.379 | 28.92 | 282 | 0.2960 | 0.8633 | | 0.3858 | 29.95 | 292 | 0.2960 | 0.8743 | | 0.3546 | 30.97 | 302 | 0.2850 | 0.8807 | | 0.3656 | 32.0 | 312 | 0.2905 | 0.8784 | | 0.3707 | 32.92 | 321 | 0.2926 | 0.8743 | | 0.3651 | 33.95 | 331 | 0.2941 | 0.8796 | | 0.3584 | 34.97 | 341 | 0.3133 | 0.8615 | | 0.36 | 36.0 | 351 | 0.3181 | 0.8679 | | 0.3496 | 36.92 | 360 | 0.3036 | 0.8685 | | 0.3458 | 37.95 | 370 | 0.2939 | 0.8732 | | 0.3431 | 38.97 | 380 | 0.3062 | 0.8703 | | 0.3512 | 40.0 | 390 | 0.2914 | 0.8755 | | 0.3512 | 40.92 | 399 | 0.3164 | 0.8674 | | 0.3403 | 41.95 | 409 | 0.3063 | 0.8679 | | 0.3423 | 42.97 | 419 | 0.3018 | 0.8720 | | 0.3312 | 44.0 | 429 | 0.3094 | 0.8697 | | 0.3365 | 44.92 | 438 | 0.3062 | 0.8755 | | 0.3319 | 45.95 | 448 | 0.3081 | 0.8720 | | 0.3409 | 46.15 | 450 | 0.3083 | 0.8720 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "non_pe", "pe" ]
gcperk20/deit-small-patch16-224-finetuned-piid
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-small-patch16-224-finetuned-piid This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5615 - Accuracy: 0.7945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1803 | 0.98 | 20 | 1.0233 | 0.5753 | | 0.706 | 2.0 | 41 | 0.7299 | 0.7078 | | 0.6016 | 2.98 | 61 | 0.6877 | 0.7123 | | 0.4903 | 4.0 | 82 | 0.6139 | 0.7671 | | 0.4692 | 4.98 | 102 | 0.5667 | 0.7626 | | 0.374 | 6.0 | 123 | 0.5146 | 0.8037 | | 0.2995 | 6.98 | 143 | 0.5596 | 0.7534 | | 0.2905 | 8.0 | 164 | 0.5313 | 0.7534 | | 0.2612 | 8.98 | 184 | 0.5328 | 0.7900 | | 0.2499 | 10.0 | 205 | 0.5369 | 0.7991 | | 0.185 | 10.98 | 225 | 0.5754 | 0.7808 | | 0.1927 | 12.0 | 246 | 0.5886 | 0.7717 | | 0.1446 | 12.98 | 266 | 0.5160 | 0.7991 | | 0.155 | 14.0 | 287 | 0.5353 | 0.8082 | | 0.1577 | 14.98 | 307 | 0.5848 | 0.7808 | | 0.1243 | 16.0 | 328 | 0.5572 | 0.7991 | | 0.1038 | 16.98 | 348 | 0.5859 | 0.7763 | | 0.1305 | 18.0 | 369 | 0.5752 | 0.7900 | | 0.0868 | 18.98 | 389 | 0.5616 | 0.8037 | | 0.1364 | 19.51 | 400 | 0.5615 | 0.7945 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
[ "1", "2", "3", "4" ]
gcperk20/deit-tiny-patch16-224-finetuned-piid
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-tiny-patch16-224-finetuned-piid This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5426 - Accuracy: 0.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2274 | 0.98 | 20 | 1.1185 | 0.4658 | | 0.8485 | 2.0 | 41 | 0.8690 | 0.6119 | | 0.6793 | 2.98 | 61 | 0.8749 | 0.6073 | | 0.6028 | 4.0 | 82 | 0.6864 | 0.6804 | | 0.5693 | 4.98 | 102 | 0.5618 | 0.7717 | | 0.5092 | 6.0 | 123 | 0.5958 | 0.7260 | | 0.3788 | 6.98 | 143 | 0.6444 | 0.7352 | | 0.4106 | 8.0 | 164 | 0.5277 | 0.7443 | | 0.3716 | 8.98 | 184 | 0.6081 | 0.7352 | | 0.3466 | 10.0 | 205 | 0.4976 | 0.7580 | | 0.3587 | 10.98 | 225 | 0.5429 | 0.7443 | | 0.2661 | 12.0 | 246 | 0.4933 | 0.7763 | | 0.2628 | 12.98 | 266 | 0.5078 | 0.7671 | | 0.2473 | 14.0 | 287 | 0.5264 | 0.7945 | | 0.2633 | 14.98 | 307 | 0.5262 | 0.7671 | | 0.2017 | 16.0 | 328 | 0.5509 | 0.7763 | | 0.1861 | 16.98 | 348 | 0.5513 | 0.7443 | | 0.2031 | 18.0 | 369 | 0.5516 | 0.7580 | | 0.1604 | 18.98 | 389 | 0.5430 | 0.7671 | | 0.2346 | 19.51 | 400 | 0.5426 | 0.7626 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
[ "1", "2", "3", "4" ]
gcperk20/convnext-small-224-finetuned-piid
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-small-224-finetuned-piid This model is a fine-tuned version of [facebook/convnext-small-224](https://huggingface.co/facebook/convnext-small-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5651 - Accuracy: 0.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3405 | 0.98 | 20 | 1.3201 | 0.4155 | | 1.1715 | 2.0 | 41 | 1.1362 | 0.5708 | | 0.9231 | 2.98 | 61 | 0.9255 | 0.6438 | | 0.7128 | 4.0 | 82 | 0.7558 | 0.6986 | | 0.6204 | 4.98 | 102 | 0.7056 | 0.7534 | | 0.5322 | 6.0 | 123 | 0.6610 | 0.7397 | | 0.4403 | 6.98 | 143 | 0.6639 | 0.7443 | | 0.4388 | 8.0 | 164 | 0.6472 | 0.7306 | | 0.3901 | 8.98 | 184 | 0.6684 | 0.7352 | | 0.4202 | 10.0 | 205 | 0.5934 | 0.7397 | | 0.3784 | 10.98 | 225 | 0.5651 | 0.7626 | | 0.2973 | 12.0 | 246 | 0.6439 | 0.7580 | | 0.3614 | 12.98 | 266 | 0.5844 | 0.7534 | | 0.2795 | 14.0 | 287 | 0.6015 | 0.7306 | | 0.2825 | 14.98 | 307 | 0.6031 | 0.7626 | | 0.2364 | 16.0 | 328 | 0.6249 | 0.7534 | | 0.2162 | 16.98 | 348 | 0.6248 | 0.7626 | | 0.2455 | 18.0 | 369 | 0.6153 | 0.7489 | | 0.2314 | 18.98 | 389 | 0.6113 | 0.7580 | | 0.248 | 19.51 | 400 | 0.6131 | 0.7580 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "1", "2", "3", "4" ]
juniorjukeko/swin-tiny-patch4-window7-224_ft_mango_leaf_disease
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224_ft_mango_leaf_disease This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0089 - Accuracy: 0.9986 ## Model description Multiclass image classification model based on [swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) and fine-tuned with Mango🥭 Leaf🍃🍂 Disease Dataset. Model was trained on 8 classes based on mango leaves health : Anthracnose, Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, Powdery Mildew, Sooty Mould, Healthy ## Intended uses & limitations More information needed ## Training and evaluation data Traning and evaluation data are from this Kaggle dataset [Mango🥭 Leaf🍃🍂 Disease Dataset](https://www.kaggle.com/datasets/aryashah2k/mango-leaf-disease-dataset). Amount of images used was 90% of total images (3600 of 4000, 450 images from each class). ## Training procedure Dataset split : 75% train set, 20% validation set, 5% test set. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 143 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.93 | 10 | 0.1208 | 0.9931 | | 0.1082 | 1.95 | 21 | 0.0551 | 0.9958 | | 0.1082 | 2.98 | 32 | 0.0297 | 0.9958 | | 0.0342 | 4.0 | 43 | 0.0189 | 0.9986 | | 0.0342 | 4.93 | 53 | 0.0156 | 0.9972 | | 0.0164 | 5.95 | 64 | 0.0122 | 0.9972 | | 0.0164 | 6.98 | 75 | 0.0100 | 0.9986 | | 0.0099 | 8.0 | 86 | 0.0096 | 0.9986 | | 0.0099 | 8.93 | 96 | 0.0090 | 0.9986 | | 0.0085 | 9.3 | 100 | 0.0089 | 0.9986 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anthracnose", "bacterial canker", "cutting weevil", "die back", "gall midge", "healthy", "powdery mildew", "sooty mould" ]
gcperk20/convnextv2-tiny-22k-224-finetuned-piid
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnextv2-tiny-22k-224-finetuned-piid This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-224](https://huggingface.co/facebook/convnextv2-tiny-22k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6118 - Accuracy: 0.7854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2083 | 0.98 | 20 | 1.0137 | 0.6027 | | 0.6826 | 2.0 | 41 | 0.6901 | 0.6895 | | 0.5161 | 2.98 | 61 | 0.6377 | 0.7078 | | 0.4475 | 4.0 | 82 | 0.5423 | 0.7215 | | 0.4325 | 4.98 | 102 | 0.5165 | 0.7671 | | 0.3433 | 6.0 | 123 | 0.5916 | 0.7763 | | 0.2677 | 6.98 | 143 | 0.5866 | 0.7534 | | 0.2498 | 8.0 | 164 | 0.5146 | 0.7900 | | 0.2387 | 8.98 | 184 | 0.5631 | 0.7580 | | 0.2132 | 10.0 | 205 | 0.5320 | 0.7991 | | 0.2178 | 10.98 | 225 | 0.5833 | 0.7854 | | 0.1474 | 12.0 | 246 | 0.5902 | 0.7900 | | 0.1627 | 12.98 | 266 | 0.6142 | 0.7808 | | 0.1651 | 14.0 | 287 | 0.6063 | 0.7808 | | 0.158 | 14.98 | 307 | 0.6130 | 0.7808 | | 0.126 | 16.0 | 328 | 0.6647 | 0.7671 | | 0.0821 | 16.98 | 348 | 0.5972 | 0.7808 | | 0.1062 | 18.0 | 369 | 0.5975 | 0.7945 | | 0.1031 | 18.98 | 389 | 0.6129 | 0.7808 | | 0.1268 | 19.51 | 400 | 0.6118 | 0.7854 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "1", "2", "3", "4" ]
dima806/flower_groups_image_detection
Returns flower group given an image. See https://www.kaggle.com/code/dima806/flower-groups-image-detection-vit for more details. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/q9f9m7kk2UJZkQhN7RKV6.png) ``` Classification report: precision recall f1-score support tarragon 0.0000 0.0000 0.0000 247 blanketflowers 0.9868 0.9109 0.9474 247 coralbells 0.8791 0.9717 0.9231 247 tulips 0.9741 0.9150 0.9436 247 daffodils 0.8719 0.9919 0.9280 247 peas 0.8972 0.9190 0.9080 247 garlic 0.0000 0.0000 0.0000 247 sunroots 1.0000 0.0486 0.0927 247 milkweed 0.8509 0.9474 0.8966 247 celery 0.0000 0.0000 0.0000 247 dill 0.4819 0.9717 0.6443 247 phlox 0.9137 0.9433 0.9283 247 peonies 0.5545 0.9879 0.7103 247 coneflowers 0.9679 0.9757 0.9718 247 beets 0.7526 0.8745 0.8090 247 beans 0.8824 0.9756 0.9266 246 onions 0.3012 0.9231 0.4542 247 bellflowers 0.9865 0.8907 0.9362 247 delphiniums 0.9955 0.8866 0.9379 247 oleanders 0.9875 0.9595 0.9733 247 roseofsharon 0.9727 0.4350 0.6011 246 cantaloupes 0.9329 0.6194 0.7445 247 deadnettles 0.9534 0.9109 0.9317 247 viburnums 0.5501 0.8664 0.6730 247 dianthus 0.8298 0.9512 0.8864 246 peaches 0.8902 0.5911 0.7105 247 aloes 0.7724 0.9757 0.8623 247 parsley 0.3561 0.9717 0.5212 247 penstemon 0.9782 0.9106 0.9432 246 thyme 0.6685 0.9879 0.7974 247 citrus 0.8479 0.9028 0.8745 247 bleeding-hearts 0.9679 0.9757 0.9718 247 dogwoods 0.5442 0.9231 0.6847 247 black-eyed-susans 0.5501 0.9555 0.6982 247 petunias 0.9790 0.9472 0.9628 246 jujubes 0.0000 0.0000 0.0000 247 arborvitaes 0.8880 0.8664 0.8770 247 lilies 0.9783 0.9109 0.9434 247 crinums 0.7704 0.8421 0.8046 247 catmints 0.6334 0.8745 0.7347 247 astilbe 0.9597 0.9636 0.9616 247 beautyberries 0.7500 0.8988 0.8177 247 beebalms 0.8484 0.9514 0.8969 247 foxgloves 0.9713 0.9595 0.9654 247 gladiolus 0.9048 0.9231 0.9138 247 plums 0.8571 0.4615 0.6000 247 vitis 1.0000 0.5466 0.7068 247 ninebarks 1.0000 0.0445 0.0853 247 lettuces 0.7921 0.8947 0.8403 247 poppies 0.9679 0.9757 0.9718 247 smoketrees 0.9202 0.8866 0.9031 247 irises 1.0000 0.9960 0.9980 247 cilantro 0.9600 0.0972 0.1765 247 artichokes 1.0000 0.7895 0.8824 247 lambsears 0.6519 0.7764 0.7087 246 butterworts 0.9286 0.2105 0.3432 247 babysbreath 1.0000 0.1700 0.2907 247 cucurbits 0.5658 0.9959 0.7216 246 plumerias 0.8051 0.8902 0.8456 246 liatris 0.9720 0.8455 0.9043 246 carrots 0.6364 0.5407 0.5846 246 crepe-myrtles 0.9710 0.9474 0.9590 247 oregano 0.6372 0.2927 0.4011 246 ilex 0.5610 0.9676 0.7103 247 butterflybushes 0.9726 0.8623 0.9142 247 sage 0.4910 0.4413 0.4648 247 baptisia 0.9744 0.7692 0.8597 247 sempervivum 0.9910 0.8943 0.9402 246 asparagus 0.9610 0.3008 0.4582 246 radishes 0.5153 0.7490 0.6106 247 parsnips 1.0000 0.1174 0.2101 247 hibiscus 0.4605 0.9715 0.6248 246 rhododendrons 0.8918 0.9676 0.9282 247 potatoes 1.0000 0.4130 0.5845 247 hydrangeas 0.9504 0.9350 0.9426 246 swisschard 0.8154 0.9878 0.8934 246 cannas 0.9360 0.9474 0.9416 247 brassicas 0.6437 0.8740 0.7414 246 rubus 0.8631 0.8421 0.8525 247 columbines 0.9717 0.9717 0.9717 247 echeverias 0.6384 0.9150 0.7521 247 okra 0.9901 0.8138 0.8933 247 aeoniums 0.5124 0.9190 0.6580 247 yarrows 0.7126 0.9636 0.8193 247 roses 0.9880 0.9960 0.9919 247 basil 0.6419 0.9433 0.7639 247 spiraeas 0.5897 0.9717 0.7339 247 caladiums 0.7804 0.9352 0.8508 247 spinach 0.8947 0.2753 0.4211 247 wisterias 0.9609 0.8947 0.9266 247 cherries 1.0000 0.1862 0.3140 247 marjoram 1.0000 0.3927 0.5640 247 hyacinths 0.9711 0.9514 0.9611 247 rhubarbs 0.9651 0.8947 0.9286 247 tickseeds 0.8588 0.8866 0.8725 247 perovskia 0.7869 0.5830 0.6698 247 crocus 0.9789 0.9431 0.9607 246 mints 0.6088 0.9514 0.7425 247 heavenly-bamboos 0.9493 0.8340 0.8879 247 agaves 0.9025 0.8623 0.8820 247 pears 0.3087 0.4575 0.3687 247 dudleyas 0.8291 0.5304 0.6469 247 pachypodiums 0.8820 0.6356 0.7388 247 mockoranges 0.9958 0.9676 0.9815 247 asters 0.9957 0.9512 0.9730 246 geraniums 0.9750 0.9474 0.9610 247 mammillarias 0.9447 0.9715 0.9579 246 cucumbers 1.0000 0.6235 0.7681 247 veronicas 0.9368 0.9595 0.9480 247 turnips 0.0000 0.0000 0.0000 247 peppers 0.8053 0.9919 0.8889 246 hardyhibiscuses 1.0000 0.4593 0.6295 246 morning-glories 0.8316 0.9595 0.8910 247 gardenias 0.9954 0.8785 0.9333 247 ribes 0.9837 0.7358 0.8419 246 loniceras 0.9540 0.9231 0.9383 247 eggplants 0.9837 0.9798 0.9817 247 hostas 0.8167 0.9919 0.8958 247 chlorophytums 0.9709 0.6761 0.7971 247 chives 0.7029 0.9676 0.8143 247 tomatoes 0.6619 0.9352 0.7752 247 lilacs 1.0000 0.9595 0.9793 247 leeks 0.0000 0.0000 0.0000 246 shastadaisies 0.9592 0.9514 0.9553 247 apricots 1.0000 0.5830 0.7366 247 apples 0.4027 0.9636 0.5680 247 strawberries 0.8897 0.9798 0.9326 247 salvias 0.4479 0.9393 0.6065 247 sedums 0.7639 0.9472 0.8457 246 corn 0.9129 0.8907 0.9016 247 daylilies 1.0000 0.9960 0.9980 247 figs 0.9711 0.9553 0.9631 246 dahlias 0.9757 0.9757 0.9757 247 sweetpotatoes 0.7183 0.9393 0.8140 247 accuracy 0.7785 33072 macro avg 0.8044 0.7785 0.7529 33072 weighted avg 0.8044 0.7785 0.7528 33072 ```
[ "tarragon", "blanketflowers", "coralbells", "tulips", "daffodils", "peas", "garlic", "sunroots", "milkweed", "celery", "dill", "phlox", "peonies", "coneflowers", "beets", "beans", "onions", "bellflowers", "delphiniums", "oleanders", "roseofsharon", "cantaloupes", "deadnettles", "viburnums", "dianthus", "peaches", "aloes", "parsley", "penstemon", "thyme", "citrus", "bleeding-hearts", "dogwoods", "black-eyed-susans", "petunias", "jujubes", "arborvitaes", "lilies", "crinums", "catmints", "astilbe", "beautyberries", "beebalms", "foxgloves", "gladiolus", "plums", "vitis", "ninebarks", "lettuces", "poppies", "smoketrees", "irises", "cilantro", "artichokes", "lambsears", "butterworts", "babysbreath", "cucurbits", "plumerias", "liatris", "carrots", "crepe-myrtles", "oregano", "ilex", "butterflybushes", "sage", "baptisia", "sempervivum", "asparagus", "radishes", "parsnips", "hibiscus", "rhododendrons", "potatoes", "hydrangeas", "swisschard", "cannas", "brassicas", "rubus", "columbines", "echeverias", "okra", "aeoniums", "yarrows", "roses", "basil", "spiraeas", "caladiums", "spinach", "wisterias", "cherries", "marjoram", "hyacinths", "rhubarbs", "tickseeds", "perovskia", "crocus", "mints", "heavenly-bamboos", "agaves", "pears", "dudleyas", "pachypodiums", "mockoranges", "asters", "geraniums", "mammillarias", "cucumbers", "veronicas", "turnips", "peppers", "hardyhibiscuses", "morning-glories", "gardenias", "ribes", "loniceras", "eggplants", "hostas", "chlorophytums", "chives", "tomatoes", "lilacs", "leeks", "shastadaisies", "apricots", "apples", "strawberries", "salvias", "sedums", "corn", "daylilies", "figs", "dahlias", "sweetpotatoes" ]
dima806/lemon_quality_image_detection
Returns lemon quality given an image. See https://www.kaggle.com/code/dima806/lemon-quality-image-detection-vit for more details. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/o2ADVcNtFbTjQB2FUbdmv.png) ``` Classification report: precision recall f1-score support good_quality 1.0000 1.0000 1.0000 450 empty_background 1.0000 1.0000 1.0000 450 bad_quality 1.0000 1.0000 1.0000 450 accuracy 1.0000 1350 macro avg 1.0000 1.0000 1.0000 1350 weighted avg 1.0000 1.0000 1.0000 1350 ```
[ "good_quality", "empty_background", "bad_quality" ]
amrul-hzz/watermark_detector
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # watermark_detector This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - Accuracy: 0.6574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6492 | 1.0 | 1139 | 0.6375 | 0.6262 | | 0.6172 | 2.0 | 2278 | 0.6253 | 0.6438 | | 0.578 | 3.0 | 3417 | 0.6110 | 0.6508 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "no_watermark", "watermark" ]
purabp1249/swin-tiny-patch4-window7-224-finetuned-herbify2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-herbify2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0655 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6649 | 0.97 | 18 | 0.5193 | 0.9242 | | 0.4002 | 2.0 | 37 | 0.0655 | 1.0 | | 0.1095 | 2.97 | 55 | 0.0249 | 1.0 | | 0.0486 | 3.89 | 72 | 0.0154 | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3
[ "aloevera", "amruthaballi", "badipala", "bamboo", "beans", "ashoka" ]
bdpc/vit-base_rvl_tobacco-tiny_tobacco3482_hint_b0.0_dit-tiny_test
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_rvl_tobacco-tiny_tobacco3482_hint_b0.0_dit-tiny_test This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 200 | 64.8970 | 0.17 | 0.8761 | 7.1182 | 0.17 | 0.0466 | 0.2430 | 0.7785 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231002 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "adve", "email", "form", "letter", "memo", "news", "note", "report", "resume", "scientific" ]
canadianjosieharrison/swinv2-large-patch4-window12-192-22k-finetuned-ethzurich
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-large-patch4-window12-192-22k-finetuned-ethzurich This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12-192-22k](https://huggingface.co/microsoft/swinv2-large-patch4-window12-192-22k) on the Urban Resource Cadastre dataset created by Deepika Raghu, Martin Juan José Bucher, and Catherine De Wolf (https://github.com/raghudeepika/urban-resource-cadastre-repository). It achieves the following results on the evaluation set: - Loss: 0.6083 - Accuracy: 0.8295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 1.2578 | 0.6364 | | 1.6142 | 1.92 | 12 | 0.7696 | 0.75 | | 1.6142 | 2.88 | 18 | 0.6083 | 0.8295 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "brick", "metal", "null", "other", "rustication", "siding", "stucco", "wood" ]
bryandts/image_classification_food_indian
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_food_indian This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 333 | 0.4028 | 0.8969 | | 0.6617 | 2.0 | 666 | 0.3750 | 0.9044 | | 0.6617 | 3.0 | 999 | 0.3231 | 0.9224 | | 0.1215 | 4.0 | 1332 | 0.3105 | 0.9277 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
hansin91/scene_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scene_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indoor-scene-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.6106 - Accuracy: 0.8492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.3172 | 1.0 | 341 | 2.8572 | 0.5109 | | 2.2254 | 2.0 | 682 | 2.1453 | 0.6329 | | 1.6202 | 3.0 | 1023 | 1.6283 | 0.7336 | | 1.2313 | 4.0 | 1364 | 1.3402 | 0.7599 | | 0.9576 | 5.0 | 1705 | 1.1237 | 0.8010 | | 0.7654 | 6.0 | 2046 | 1.0270 | 0.8023 | | 0.6416 | 7.0 | 2387 | 0.8848 | 0.8171 | | 0.5353 | 8.0 | 2728 | 0.8381 | 0.8087 | | 0.4516 | 9.0 | 3069 | 0.7570 | 0.8254 | | 0.3925 | 10.0 | 3410 | 0.6667 | 0.8524 | | 0.3453 | 11.0 | 3751 | 0.7583 | 0.8164 | | 0.2944 | 12.0 | 4092 | 0.6783 | 0.8350 | | 0.294 | 13.0 | 4433 | 0.7128 | 0.8312 | | 0.2507 | 14.0 | 4774 | 0.6632 | 0.8331 | | 0.2355 | 15.0 | 5115 | 0.6730 | 0.8421 | | 0.2267 | 16.0 | 5456 | 0.6572 | 0.8357 | | 0.2032 | 17.0 | 5797 | 0.7058 | 0.8280 | | 0.1908 | 18.0 | 6138 | 0.6374 | 0.8485 | | 0.1857 | 19.0 | 6479 | 0.6831 | 0.8312 | | 0.1727 | 20.0 | 6820 | 0.6961 | 0.8254 | | 0.1692 | 21.0 | 7161 | 0.6306 | 0.8402 | | 0.1642 | 22.0 | 7502 | 0.6291 | 0.8485 | | 0.1618 | 23.0 | 7843 | 0.6058 | 0.8582 | | 0.1593 | 24.0 | 8184 | 0.6780 | 0.8389 | | 0.1399 | 25.0 | 8525 | 0.6330 | 0.8485 | | 0.1373 | 26.0 | 8866 | 0.6550 | 0.8408 | | 0.1334 | 27.0 | 9207 | 0.6857 | 0.8421 | | 0.1388 | 28.0 | 9548 | 0.6338 | 0.8415 | | 0.1423 | 29.0 | 9889 | 0.6272 | 0.8517 | | 0.1288 | 30.0 | 10230 | 0.6409 | 0.8556 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "meeting_room", "cloister", "computerroom", "grocerystore", "hospitalroom", "buffet", "office", "warehouse", "garage", "bookstore", "florist", "locker_room", "stairscase", "inside_bus", "subway", "fastfood_restaurant", "auditorium", "studiomusic", "airport_inside", "pantry", "restaurant_kitchen", "casino", "movietheater", "restaurant", "kitchen", "waitingroom", "artstudio", "toystore", "kindergarden", "trainstation", "bedroom", "mall", "corridor", "bar", "hairsalon", "classroom", "shoeshop", "dentaloffice", "videostore", "laboratorywet", "tv_studio", "church_inside", "operating_room", "jewelleryshop", "bathroom", "children_room", "clothingstore", "closet", "winecellar", "livingroom", "nursery", "gameroom", "inside_subway", "deli", "bakery", "library", "dining_room", "prisoncell", "gym", "concert_hall", "greenhouse", "elevator", "poolinside", "bowling", "lobby", "museum", "laundromat" ]
bdpc/resnet101-base_tobacco
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet101-base_tobacco This model is a fine-tuned version of [microsoft/resnet-101](https://huggingface.co/microsoft/resnet-101) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6332 - Accuracy: 0.435 - Brier Loss: 0.6886 - Nll: 4.4967 - F1 Micro: 0.435 - F1 Macro: 0.2876 - Ece: 0.2482 - Aurc: 0.3432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 13 | 2.3065 | 0.06 | 0.9008 | 7.5257 | 0.06 | 0.0563 | 0.1444 | 0.9505 | | No log | 2.0 | 26 | 2.3098 | 0.075 | 0.9014 | 8.6176 | 0.075 | 0.0468 | 0.1535 | 0.9485 | | No log | 3.0 | 39 | 2.3082 | 0.09 | 0.9011 | 7.8490 | 0.09 | 0.0647 | 0.1662 | 0.9336 | | No log | 4.0 | 52 | 2.3056 | 0.12 | 0.9006 | 7.6932 | 0.12 | 0.0809 | 0.1814 | 0.8887 | | No log | 5.0 | 65 | 2.3004 | 0.125 | 0.8995 | 7.1356 | 0.125 | 0.0750 | 0.1841 | 0.8198 | | No log | 6.0 | 78 | 2.2921 | 0.155 | 0.8979 | 5.9637 | 0.155 | 0.0706 | 0.2036 | 0.7930 | | No log | 7.0 | 91 | 2.2917 | 0.165 | 0.8978 | 5.7926 | 0.165 | 0.0785 | 0.2139 | 0.8056 | | No log | 8.0 | 104 | 2.2842 | 0.185 | 0.8963 | 4.7947 | 0.185 | 0.0595 | 0.2244 | 0.8344 | | No log | 9.0 | 117 | 2.2742 | 0.215 | 0.8942 | 4.4573 | 0.2150 | 0.0830 | 0.2424 | 0.7961 | | No log | 10.0 | 130 | 2.2638 | 0.2 | 0.8921 | 4.8564 | 0.2000 | 0.0554 | 0.2376 | 0.7663 | | No log | 11.0 | 143 | 2.2530 | 0.215 | 0.8898 | 5.0772 | 0.2150 | 0.0740 | 0.2467 | 0.7908 | | No log | 12.0 | 156 | 2.2479 | 0.19 | 0.8888 | 5.3276 | 0.19 | 0.0421 | 0.2220 | 0.7856 | | No log | 13.0 | 169 | 2.2406 | 0.18 | 0.8873 | 5.2973 | 0.18 | 0.0308 | 0.2248 | 0.8007 | | No log | 14.0 | 182 | 2.2202 | 0.285 | 0.8826 | 5.4657 | 0.285 | 0.1167 | 0.2855 | 0.6743 | | No log | 15.0 | 195 | 2.2085 | 0.29 | 0.8801 | 5.7797 | 0.29 | 0.1154 | 0.2909 | 0.6660 | | No log | 16.0 | 208 | 2.1850 | 0.305 | 0.8742 | 5.7600 | 0.305 | 0.1194 | 0.3063 | 0.4897 | | No log | 17.0 | 221 | 2.2017 | 0.18 | 0.8789 | 5.7405 | 0.18 | 0.0306 | 0.2309 | 0.7654 | | No log | 18.0 | 234 | 2.1998 | 0.18 | 0.8784 | 5.8985 | 0.18 | 0.0305 | 0.2377 | 0.7525 | | No log | 19.0 | 247 | 2.1429 | 0.285 | 0.8640 | 5.9614 | 0.285 | 0.1117 | 0.2970 | 0.5007 | | No log | 20.0 | 260 | 2.1240 | 0.315 | 0.8587 | 5.9916 | 0.315 | 0.1232 | 0.3057 | 0.4288 | | No log | 21.0 | 273 | 2.0986 | 0.305 | 0.8513 | 5.9764 | 0.305 | 0.1166 | 0.3001 | 0.4526 | | No log | 22.0 | 286 | 2.0909 | 0.315 | 0.8494 | 5.9914 | 0.315 | 0.1234 | 0.3062 | 0.4385 | | No log | 23.0 | 299 | 2.0451 | 0.295 | 0.8313 | 6.1078 | 0.295 | 0.1115 | 0.2901 | 0.4619 | | No log | 24.0 | 312 | 2.0662 | 0.3 | 0.8413 | 6.1029 | 0.3 | 0.1168 | 0.3014 | 0.4544 | | No log | 25.0 | 325 | 2.0235 | 0.3 | 0.8238 | 6.1798 | 0.3 | 0.1156 | 0.2885 | 0.4553 | | No log | 26.0 | 338 | 2.0669 | 0.305 | 0.8439 | 6.2056 | 0.305 | 0.1207 | 0.3046 | 0.4579 | | No log | 27.0 | 351 | 2.0223 | 0.315 | 0.8256 | 6.1083 | 0.315 | 0.1232 | 0.2860 | 0.4308 | | No log | 28.0 | 364 | 2.1075 | 0.185 | 0.8574 | 6.0867 | 0.185 | 0.0370 | 0.2317 | 0.7416 | | No log | 29.0 | 377 | 1.9127 | 0.295 | 0.7709 | 6.1567 | 0.295 | 0.1155 | 0.2464 | 0.4630 | | No log | 30.0 | 390 | 1.9407 | 0.315 | 0.7889 | 6.1398 | 0.315 | 0.1283 | 0.2696 | 0.4244 | | No log | 31.0 | 403 | 1.9099 | 0.305 | 0.7737 | 6.1311 | 0.305 | 0.1216 | 0.2626 | 0.4441 | | No log | 32.0 | 416 | 1.9071 | 0.31 | 0.7731 | 6.1004 | 0.31 | 0.1237 | 0.2803 | 0.4387 | | No log | 33.0 | 429 | 1.9097 | 0.31 | 0.7774 | 6.1658 | 0.31 | 0.1212 | 0.2701 | 0.4328 | | No log | 34.0 | 442 | 1.9008 | 0.3 | 0.7724 | 6.2049 | 0.3 | 0.1180 | 0.2415 | 0.4452 | | No log | 35.0 | 455 | 2.0340 | 0.275 | 0.8382 | 5.8659 | 0.275 | 0.1095 | 0.2873 | 0.6352 | | No log | 36.0 | 468 | 1.9324 | 0.315 | 0.7937 | 6.0328 | 0.315 | 0.1248 | 0.2865 | 0.4177 | | No log | 37.0 | 481 | 2.0698 | 0.18 | 0.8483 | 6.1172 | 0.18 | 0.0306 | 0.2448 | 0.7024 | | No log | 38.0 | 494 | 1.8436 | 0.3 | 0.7492 | 6.1508 | 0.3 | 0.1192 | 0.2461 | 0.4406 | | 2.0752 | 39.0 | 507 | 1.8504 | 0.31 | 0.7556 | 6.0528 | 0.31 | 0.1222 | 0.2696 | 0.4355 | | 2.0752 | 40.0 | 520 | 1.8523 | 0.315 | 0.7582 | 6.0492 | 0.315 | 0.1245 | 0.2522 | 0.4341 | | 2.0752 | 41.0 | 533 | 1.8858 | 0.305 | 0.7785 | 6.1136 | 0.305 | 0.1244 | 0.2756 | 0.4559 | | 2.0752 | 42.0 | 546 | 1.8466 | 0.305 | 0.7594 | 5.9124 | 0.305 | 0.1205 | 0.2739 | 0.4469 | | 2.0752 | 43.0 | 559 | 1.9921 | 0.195 | 0.8300 | 5.6106 | 0.195 | 0.0490 | 0.2368 | 0.7141 | | 2.0752 | 44.0 | 572 | 1.8133 | 0.31 | 0.7447 | 5.6505 | 0.31 | 0.1242 | 0.2708 | 0.4189 | | 2.0752 | 45.0 | 585 | 1.8022 | 0.32 | 0.7397 | 5.6263 | 0.32 | 0.1324 | 0.2557 | 0.4213 | | 2.0752 | 46.0 | 598 | 1.8361 | 0.32 | 0.7599 | 5.6068 | 0.32 | 0.1281 | 0.2719 | 0.4239 | | 2.0752 | 47.0 | 611 | 1.7972 | 0.32 | 0.7376 | 5.8954 | 0.32 | 0.1306 | 0.2418 | 0.4311 | | 2.0752 | 48.0 | 624 | 1.7850 | 0.325 | 0.7357 | 5.8208 | 0.325 | 0.1397 | 0.2528 | 0.3984 | | 2.0752 | 49.0 | 637 | 1.7808 | 0.315 | 0.7332 | 5.5883 | 0.315 | 0.1325 | 0.2551 | 0.4255 | | 2.0752 | 50.0 | 650 | 1.7838 | 0.31 | 0.7338 | 5.6850 | 0.31 | 0.1314 | 0.2530 | 0.4247 | | 2.0752 | 51.0 | 663 | 1.7767 | 0.305 | 0.7316 | 5.4974 | 0.305 | 0.1241 | 0.2515 | 0.4253 | | 2.0752 | 52.0 | 676 | 1.7607 | 0.32 | 0.7263 | 5.3077 | 0.32 | 0.1321 | 0.2458 | 0.4148 | | 2.0752 | 53.0 | 689 | 1.7486 | 0.32 | 0.7224 | 5.1734 | 0.32 | 0.1355 | 0.2510 | 0.4190 | | 2.0752 | 54.0 | 702 | 1.7693 | 0.33 | 0.7323 | 5.1578 | 0.33 | 0.1446 | 0.2638 | 0.3970 | | 2.0752 | 55.0 | 715 | 1.7476 | 0.325 | 0.7235 | 5.1481 | 0.325 | 0.1602 | 0.2285 | 0.4140 | | 2.0752 | 56.0 | 728 | 1.7384 | 0.31 | 0.7189 | 5.3248 | 0.31 | 0.1507 | 0.2295 | 0.4202 | | 2.0752 | 57.0 | 741 | 1.7454 | 0.32 | 0.7228 | 5.2669 | 0.32 | 0.1575 | 0.2602 | 0.4218 | | 2.0752 | 58.0 | 754 | 1.8063 | 0.33 | 0.7551 | 5.0652 | 0.33 | 0.1574 | 0.2835 | 0.4092 | | 2.0752 | 59.0 | 767 | 1.7466 | 0.34 | 0.7237 | 4.9430 | 0.34 | 0.1783 | 0.2729 | 0.4124 | | 2.0752 | 60.0 | 780 | 1.7240 | 0.345 | 0.7166 | 5.0165 | 0.345 | 0.1776 | 0.2397 | 0.4118 | | 2.0752 | 61.0 | 793 | 1.7105 | 0.325 | 0.7126 | 5.0261 | 0.325 | 0.1647 | 0.2564 | 0.4149 | | 2.0752 | 62.0 | 806 | 1.7078 | 0.345 | 0.7157 | 5.0160 | 0.345 | 0.1797 | 0.2612 | 0.4013 | | 2.0752 | 63.0 | 819 | 1.7982 | 0.305 | 0.7575 | 4.9876 | 0.305 | 0.1614 | 0.2733 | 0.4650 | | 2.0752 | 64.0 | 832 | 1.8072 | 0.33 | 0.7635 | 5.0080 | 0.33 | 0.1954 | 0.2928 | 0.4487 | | 2.0752 | 65.0 | 845 | 1.7201 | 0.35 | 0.7180 | 4.8708 | 0.35 | 0.2071 | 0.2445 | 0.4114 | | 2.0752 | 66.0 | 858 | 1.7131 | 0.335 | 0.7167 | 4.9248 | 0.335 | 0.1936 | 0.2531 | 0.4223 | | 2.0752 | 67.0 | 871 | 1.7071 | 0.345 | 0.7138 | 4.8657 | 0.345 | 0.1948 | 0.2664 | 0.4128 | | 2.0752 | 68.0 | 884 | 1.7022 | 0.36 | 0.7128 | 4.7996 | 0.36 | 0.2147 | 0.2443 | 0.4023 | | 2.0752 | 69.0 | 897 | 1.6859 | 0.37 | 0.7055 | 4.7318 | 0.37 | 0.2296 | 0.2577 | 0.3909 | | 2.0752 | 70.0 | 910 | 1.6860 | 0.37 | 0.7038 | 4.8293 | 0.37 | 0.2314 | 0.2594 | 0.3894 | | 2.0752 | 71.0 | 923 | 1.6823 | 0.36 | 0.7038 | 4.7070 | 0.36 | 0.2170 | 0.2485 | 0.3934 | | 2.0752 | 72.0 | 936 | 1.7656 | 0.335 | 0.7457 | 4.8009 | 0.335 | 0.2035 | 0.2760 | 0.4503 | | 2.0752 | 73.0 | 949 | 1.8235 | 0.32 | 0.7754 | 4.7280 | 0.32 | 0.2028 | 0.2752 | 0.5244 | | 2.0752 | 74.0 | 962 | 1.6878 | 0.37 | 0.7073 | 4.7660 | 0.37 | 0.2290 | 0.2455 | 0.3996 | | 2.0752 | 75.0 | 975 | 1.6717 | 0.365 | 0.7003 | 4.7709 | 0.3650 | 0.2209 | 0.2404 | 0.3906 | | 2.0752 | 76.0 | 988 | 1.6610 | 0.365 | 0.6972 | 4.6921 | 0.3650 | 0.2223 | 0.2640 | 0.3910 | | 1.6288 | 77.0 | 1001 | 1.6740 | 0.4 | 0.7016 | 4.6791 | 0.4000 | 0.2519 | 0.2794 | 0.3693 | | 1.6288 | 78.0 | 1014 | 1.6792 | 0.385 | 0.7048 | 4.7411 | 0.3850 | 0.2434 | 0.2594 | 0.3913 | | 1.6288 | 79.0 | 1027 | 1.6752 | 0.395 | 0.7030 | 4.5595 | 0.395 | 0.2608 | 0.2906 | 0.3887 | | 1.6288 | 80.0 | 1040 | 1.6554 | 0.395 | 0.6951 | 4.5213 | 0.395 | 0.2653 | 0.2696 | 0.3821 | | 1.6288 | 81.0 | 1053 | 1.6688 | 0.385 | 0.7013 | 4.5993 | 0.3850 | 0.2441 | 0.2614 | 0.3886 | | 1.6288 | 82.0 | 1066 | 1.6892 | 0.35 | 0.7121 | 4.6296 | 0.35 | 0.2187 | 0.2701 | 0.4067 | | 1.6288 | 83.0 | 1079 | 1.6691 | 0.4 | 0.7031 | 4.5448 | 0.4000 | 0.2570 | 0.2845 | 0.3756 | | 1.6288 | 84.0 | 1092 | 1.6544 | 0.39 | 0.6946 | 4.6295 | 0.39 | 0.2357 | 0.2522 | 0.3806 | | 1.6288 | 85.0 | 1105 | 1.6592 | 0.395 | 0.6983 | 4.4632 | 0.395 | 0.2515 | 0.2793 | 0.3815 | | 1.6288 | 86.0 | 1118 | 1.6526 | 0.4 | 0.6945 | 4.5685 | 0.4000 | 0.2579 | 0.2527 | 0.3781 | | 1.6288 | 87.0 | 1131 | 1.6558 | 0.4 | 0.6968 | 4.5767 | 0.4000 | 0.2623 | 0.2435 | 0.3804 | | 1.6288 | 88.0 | 1144 | 1.6507 | 0.395 | 0.6961 | 4.5355 | 0.395 | 0.2390 | 0.2554 | 0.3710 | | 1.6288 | 89.0 | 1157 | 1.6462 | 0.4 | 0.6941 | 4.5278 | 0.4000 | 0.2525 | 0.2406 | 0.3704 | | 1.6288 | 90.0 | 1170 | 1.6490 | 0.39 | 0.6954 | 4.5513 | 0.39 | 0.2430 | 0.2497 | 0.3700 | | 1.6288 | 91.0 | 1183 | 1.6568 | 0.405 | 0.6980 | 4.5792 | 0.405 | 0.2545 | 0.2584 | 0.3675 | | 1.6288 | 92.0 | 1196 | 1.6421 | 0.41 | 0.6909 | 4.5731 | 0.41 | 0.2666 | 0.2527 | 0.3609 | | 1.6288 | 93.0 | 1209 | 1.6489 | 0.405 | 0.6952 | 4.3408 | 0.405 | 0.2695 | 0.2738 | 0.3716 | | 1.6288 | 94.0 | 1222 | 1.6440 | 0.41 | 0.6933 | 4.3845 | 0.41 | 0.2713 | 0.2629 | 0.3619 | | 1.6288 | 95.0 | 1235 | 1.6411 | 0.435 | 0.6919 | 4.4244 | 0.435 | 0.2878 | 0.2634 | 0.3516 | | 1.6288 | 96.0 | 1248 | 1.6391 | 0.41 | 0.6918 | 4.4251 | 0.41 | 0.2628 | 0.2655 | 0.3743 | | 1.6288 | 97.0 | 1261 | 1.6341 | 0.42 | 0.6893 | 4.4415 | 0.4200 | 0.2761 | 0.2549 | 0.3598 | | 1.6288 | 98.0 | 1274 | 1.6476 | 0.415 | 0.6952 | 4.5149 | 0.415 | 0.2778 | 0.2385 | 0.3639 | | 1.6288 | 99.0 | 1287 | 1.6463 | 0.42 | 0.6939 | 4.5027 | 0.4200 | 0.2792 | 0.2806 | 0.3593 | | 1.6288 | 100.0 | 1300 | 1.6332 | 0.435 | 0.6886 | 4.4967 | 0.435 | 0.2876 | 0.2482 | 0.3432 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231002 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "adve", "email", "form", "letter", "memo", "news", "note", "report", "resume", "scientific" ]
bdpc/resnet101_rvl-cdip
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet101_rvl-cdip This model is a fine-tuned version of [microsoft/resnet-101](https://huggingface.co/microsoft/resnet-101) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6158 - Accuracy: 0.8210 - Brier Loss: 0.2556 - Nll: 1.7696 - F1 Micro: 0.8210 - F1 Macro: 0.8209 - Ece: 0.0176 - Aurc: 0.0418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | 1.3521 | 1.0 | 5000 | 1.2626 | 0.6133 | 0.5108 | 2.7262 | 0.6133 | 0.6042 | 0.0455 | 0.1644 | | 0.942 | 2.0 | 10000 | 0.9005 | 0.7318 | 0.3723 | 2.2139 | 0.7318 | 0.7293 | 0.0174 | 0.0862 | | 0.7983 | 3.0 | 15000 | 0.7691 | 0.7723 | 0.3198 | 2.0444 | 0.7723 | 0.7714 | 0.0139 | 0.0641 | | 0.7167 | 4.0 | 20000 | 0.7048 | 0.7924 | 0.2931 | 1.9414 | 0.7924 | 0.7931 | 0.0135 | 0.0541 | | 0.6656 | 5.0 | 25000 | 0.6658 | 0.8052 | 0.2770 | 1.8581 | 0.8052 | 0.8056 | 0.0108 | 0.0486 | | 0.6252 | 6.0 | 30000 | 0.6415 | 0.8117 | 0.2670 | 1.8157 | 0.8117 | 0.8112 | 0.0128 | 0.0455 | | 0.6038 | 7.0 | 35000 | 0.6269 | 0.8176 | 0.2607 | 1.7833 | 0.8176 | 0.8180 | 0.0144 | 0.0432 | | 0.5784 | 8.0 | 40000 | 0.6217 | 0.8195 | 0.2583 | 1.7723 | 0.8195 | 0.8195 | 0.0151 | 0.0425 | | 0.5583 | 9.0 | 45000 | 0.6150 | 0.8214 | 0.2553 | 1.7719 | 0.8214 | 0.8214 | 0.0164 | 0.0415 | | 0.5519 | 10.0 | 50000 | 0.6158 | 0.8210 | 0.2556 | 1.7696 | 0.8210 | 0.8209 | 0.0176 | 0.0418 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231002 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "letter", "form", "email", "handwritten", "advertisement", "scientific_report", "scientific_publication", "specification", "file_folder", "news_article", "budget", "invoice", "presentation", "questionnaire", "resume", "memo" ]
frncscp/dinotron
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Dinotron This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0265 - Accuracy: 0.9932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.1146 | 0.9638 | | 0.3773 | 2.0 | 14 | 0.0336 | 0.9932 | | 0.0541 | 3.0 | 21 | 0.0402 | 0.9887 | | 0.0541 | 4.0 | 28 | 0.0463 | 0.9887 | | 0.0476 | 5.0 | 35 | 0.0594 | 0.9819 | | 0.1408 | 6.0 | 42 | 0.1296 | 0.9570 | | 0.1408 | 7.0 | 49 | 0.0872 | 0.9729 | | 0.0898 | 8.0 | 56 | 0.2245 | 0.9344 | | 0.216 | 9.0 | 63 | 0.1444 | 0.9570 | | 0.076 | 10.0 | 70 | 0.0316 | 0.9887 | | 0.076 | 11.0 | 77 | 0.0411 | 0.9864 | | 0.0369 | 12.0 | 84 | 0.0275 | 0.9887 | | 0.0505 | 13.0 | 91 | 0.1610 | 0.9638 | | 0.0505 | 14.0 | 98 | 0.0513 | 0.9910 | | 0.0274 | 15.0 | 105 | 0.2366 | 0.9615 | | 0.0735 | 16.0 | 112 | 0.0738 | 0.9796 | | 0.0735 | 17.0 | 119 | 0.0529 | 0.9819 | | 0.0334 | 18.0 | 126 | 0.1024 | 0.9661 | | 0.0347 | 19.0 | 133 | 0.0919 | 0.9819 | | 0.0206 | 20.0 | 140 | 0.0851 | 0.9864 | | 0.0206 | 21.0 | 147 | 0.1004 | 0.9796 | | 0.0516 | 22.0 | 154 | 0.1706 | 0.9638 | | 0.0418 | 23.0 | 161 | 0.0505 | 0.9910 | | 0.0418 | 24.0 | 168 | 0.0939 | 0.9774 | | 0.0173 | 25.0 | 175 | 0.0553 | 0.9842 | | 0.0239 | 26.0 | 182 | 0.1255 | 0.9796 | | 0.0239 | 27.0 | 189 | 0.2256 | 0.9661 | | 0.0286 | 28.0 | 196 | 0.0943 | 0.9751 | | 0.0502 | 29.0 | 203 | 0.0937 | 0.9751 | | 0.0102 | 30.0 | 210 | 0.0910 | 0.9842 | | 0.0102 | 31.0 | 217 | 0.0336 | 0.9887 | | 0.0182 | 32.0 | 224 | 0.0870 | 0.9796 | | 0.0126 | 33.0 | 231 | 0.0565 | 0.9842 | | 0.0126 | 34.0 | 238 | 0.0541 | 0.9842 | | 0.0157 | 35.0 | 245 | 0.0591 | 0.9932 | | 0.0059 | 36.0 | 252 | 0.0985 | 0.9819 | | 0.0059 | 37.0 | 259 | 0.0813 | 0.9819 | | 0.0092 | 38.0 | 266 | 0.0239 | 0.9955 | | 0.0225 | 39.0 | 273 | 0.0982 | 0.9706 | | 0.0105 | 40.0 | 280 | 0.0113 | 0.9955 | | 0.0105 | 41.0 | 287 | 0.0127 | 0.9977 | | 0.007 | 42.0 | 294 | 0.0760 | 0.9887 | | 0.0032 | 43.0 | 301 | 0.0196 | 0.9932 | | 0.0032 | 44.0 | 308 | 0.0171 | 0.9932 | | 0.0206 | 45.0 | 315 | 0.0501 | 0.9910 | | 0.0001 | 46.0 | 322 | 0.0925 | 0.9842 | | 0.0001 | 47.0 | 329 | 0.0318 | 0.9910 | | 0.0017 | 48.0 | 336 | 0.0612 | 0.9864 | | 0.0023 | 49.0 | 343 | 0.0685 | 0.9864 | | 0.0013 | 50.0 | 350 | 0.0265 | 0.9932 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "patacon-false", "patacon-true" ]
agustin228/pokemon_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pokemon_classification This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pokemon-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.7861 - Accuracy: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 240 | 2.0497 | 0.7542 | | No log | 2.0 | 480 | 0.9561 | 0.8760 | | 2.3345 | 3.0 | 720 | 0.7754 | 0.8917 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
[ "golbat", "machoke", "raichu", "dragonite", "fearow", "slowpoke", "weezing", "beedrill", "weedle", "cloyster", "vaporeon", "gyarados", "golduck", "zapdos", "machamp", "hitmonlee", "primeape", "cubone", "sandslash", "scyther", "haunter", "metapod", "tentacruel", "aerodactyl", "raticate", "kabutops", "ninetales", "zubat", "rhydon", "mew", "pinsir", "ditto", "victreebel", "omanyte", "horsea", "magnemite", "pikachu", "blastoise", "venomoth", "charizard", "seadra", "muk", "spearow", "bulbasaur", "bellsprout", "electrode", "ivysaur", "gloom", "poliwhirl", "flareon", "seaking", "hypno", "wartortle", "mankey", "tentacool", "exeggcute", "meowth", "growlithe", "tangela", "drowzee", "rapidash", "venonat", "omastar", "pidgeot", "nidorino", "porygon", "lickitung", "rattata", "machop", "charmeleon", "slowbro", "parasect", "eevee", "diglett", "starmie", "staryu", "psyduck", "dragonair", "magikarp", "vileplume", "marowak", "pidgeotto", "shellder", "mewtwo", "lapras", "farfetchd", "kingler", "seel", "kakuna", "doduo", "electabuzz", "charmander", "rhyhorn", "tauros", "dugtrio", "kabuto", "poliwrath", "gengar", "exeggutor", "dewgong", "jigglypuff", "geodude", "kadabra", "nidorina", "sandshrew", "grimer", "persian", "mrmime", "pidgey", "koffing", "ekans", "alolan sandslash", "venusaur", "snorlax", "paras", "jynx", "chansey", "weepinbell", "hitmonchan", "gastly", "kangaskhan", "oddish", "wigglytuff", "graveler", "arcanine", "clefairy", "articuno", "poliwag", "golem", "abra", "squirtle", "voltorb", "ponyta", "moltres", "nidoqueen", "magmar", "onix", "vulpix", "butterfree", "dodrio", "krabby", "arbok", "clefable", "goldeen", "magneton", "dratini", "caterpie", "jolteon", "nidoking", "alakazam" ]
stevanojs/my_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_classification This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3033 - Accuracy: 0.7277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.7973 | 1.0 | 175 | 4.2373 | 0.1537 | | 3.3114 | 2.0 | 350 | 2.8087 | 0.4224 | | 1.68 | 3.0 | 525 | 1.9823 | 0.5983 | | 0.7776 | 4.0 | 700 | 1.6113 | 0.6648 | | 0.3974 | 5.0 | 875 | 1.4166 | 0.6962 | | 0.1666 | 6.0 | 1050 | 1.3312 | 0.7119 | | 0.0657 | 7.0 | 1225 | 1.3033 | 0.7277 | | 0.0315 | 8.0 | 1400 | 1.3021 | 0.7191 | | 0.0187 | 9.0 | 1575 | 1.2946 | 0.7198 | | 0.0146 | 10.0 | 1750 | 1.3018 | 0.7191 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]