model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
JOSEDURANisc/vit-model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0223 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1408 | 3.85 | 500 | 0.0223 | 0.9925 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
ihsansatriawan/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2908 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.2380 | 0.5062 | | No log | 2.0 | 40 | 1.1930 | 0.6 | | No log | 3.0 | 60 | 1.2037 | 0.5687 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
platzi/platzi-vit_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit_model This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0528 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1375 | 3.85 | 500 | 0.0528 | 0.9850 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
Kukuru0917/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2745 - Accuracy: 0.6375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.7629 | 0.4375 | | No log | 2.0 | 40 | 1.5012 | 0.5 | | No log | 3.0 | 60 | 1.3757 | 0.5 | | No log | 4.0 | 80 | 1.2452 | 0.5625 | | No log | 5.0 | 100 | 1.2394 | 0.5625 | | No log | 6.0 | 120 | 1.2083 | 0.6125 | | No log | 7.0 | 140 | 1.2209 | 0.575 | | No log | 8.0 | 160 | 1.2755 | 0.5875 | | No log | 9.0 | 180 | 1.2794 | 0.5687 | | No log | 10.0 | 200 | 1.2639 | 0.6125 | | No log | 11.0 | 220 | 1.3129 | 0.6125 | | No log | 12.0 | 240 | 1.2277 | 0.6312 | | No log | 13.0 | 260 | 1.3620 | 0.5938 | | No log | 14.0 | 280 | 1.3023 | 0.6062 | | No log | 15.0 | 300 | 1.3334 | 0.6 | | No log | 16.0 | 320 | 1.4142 | 0.5813 | | No log | 17.0 | 340 | 1.2863 | 0.6125 | | No log | 18.0 | 360 | 1.4084 | 0.5875 | | No log | 19.0 | 380 | 1.4195 | 0.575 | | No log | 20.0 | 400 | 1.4164 | 0.5938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
reallygoodtechdeals/autotrain-lane-center3-89488143942
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 89488143942 - CO2 Emissions (in grams): 0.5738 ## Validation Metrics - Loss: 1.067 - Accuracy: 0.457 - Macro F1: 0.348 - Micro F1: 0.457 - Weighted F1: 0.388 - Macro Precision: 0.303 - Micro Precision: 0.457 - Weighted Precision: 0.337 - Macro Recall: 0.410 - Micro Recall: 0.457 - Weighted Recall: 0.457
[ "slight_left", "slight_right", "straight" ]
ammardaffa/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3273 - Accuracy: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.7704 | 0.3625 | | No log | 2.0 | 80 | 1.4682 | 0.4938 | | No log | 3.0 | 120 | 1.3937 | 0.4625 | | No log | 4.0 | 160 | 1.3677 | 0.5125 | | No log | 5.0 | 200 | 1.3114 | 0.525 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
WillyArdiyanto/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4866 - Accuracy: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.5045 | 0.4875 | | No log | 2.0 | 80 | 1.3562 | 0.5312 | | No log | 3.0 | 120 | 1.5354 | 0.4562 | | No log | 4.0 | 160 | 1.5095 | 0.5062 | | No log | 5.0 | 200 | 1.5644 | 0.475 | | No log | 6.0 | 240 | 1.4651 | 0.5563 | | No log | 7.0 | 280 | 1.4516 | 0.5375 | | No log | 8.0 | 320 | 1.5859 | 0.5188 | | No log | 9.0 | 360 | 1.5498 | 0.5437 | | No log | 10.0 | 400 | 1.5040 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Josevega69/jose69
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jose69 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0328 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1307 | 3.85 | 500 | 0.0328 | 0.9850 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
flatmoon102/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4303 - Accuracy: 0.4562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4403 | 0.45 | | No log | 2.0 | 80 | 1.4300 | 0.4313 | | No log | 3.0 | 120 | 1.3902 | 0.5 | | No log | 4.0 | 160 | 1.3475 | 0.4688 | | No log | 5.0 | 200 | 1.3698 | 0.4938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
kittendev/visual_emotional_analysis
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # visual_emotional_analysis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2815 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.8308 | 0.375 | | No log | 2.0 | 40 | 1.5510 | 0.4875 | | No log | 3.0 | 60 | 1.4138 | 0.5062 | | No log | 4.0 | 80 | 1.3845 | 0.4875 | | No log | 5.0 | 100 | 1.3245 | 0.525 | | No log | 6.0 | 120 | 1.2645 | 0.6 | | No log | 7.0 | 140 | 1.2887 | 0.5188 | | No log | 8.0 | 160 | 1.2395 | 0.5875 | | No log | 9.0 | 180 | 1.2267 | 0.55 | | No log | 10.0 | 200 | 1.1883 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
zeenfts/output_dir
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_dir This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2976 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: reduce_lr_on_plateau - num_epochs: 77 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 2.0706 | 0.15 | | No log | 2.0 | 5 | 2.0309 | 0.2313 | | No log | 2.8 | 7 | 1.9846 | 0.2562 | | 1.9868 | 4.0 | 10 | 1.8915 | 0.4062 | | 1.9868 | 4.8 | 12 | 1.8529 | 0.3125 | | 1.9868 | 6.0 | 15 | 1.7422 | 0.4125 | | 1.9868 | 6.8 | 17 | 1.6761 | 0.4313 | | 1.6815 | 8.0 | 20 | 1.6310 | 0.4562 | | 1.6815 | 8.8 | 22 | 1.5900 | 0.45 | | 1.6815 | 10.0 | 25 | 1.5402 | 0.4313 | | 1.6815 | 10.8 | 27 | 1.5018 | 0.5 | | 1.4233 | 12.0 | 30 | 1.4620 | 0.4875 | | 1.4233 | 12.8 | 32 | 1.4286 | 0.5062 | | 1.4233 | 14.0 | 35 | 1.4045 | 0.5125 | | 1.4233 | 14.8 | 37 | 1.3860 | 0.5312 | | 1.2127 | 16.0 | 40 | 1.3571 | 0.5 | | 1.2127 | 16.8 | 42 | 1.3293 | 0.5375 | | 1.2127 | 18.0 | 45 | 1.3742 | 0.4813 | | 1.2127 | 18.8 | 47 | 1.3151 | 0.5437 | | 1.0075 | 20.0 | 50 | 1.3053 | 0.5312 | | 1.0075 | 20.8 | 52 | 1.3266 | 0.5375 | | 1.0075 | 22.0 | 55 | 1.2964 | 0.5312 | | 1.0075 | 22.8 | 57 | 1.2278 | 0.5875 | | 0.8232 | 24.0 | 60 | 1.2501 | 0.5563 | | 0.8232 | 24.8 | 62 | 1.2330 | 0.575 | | 0.8232 | 26.0 | 65 | 1.2198 | 0.5625 | | 0.8232 | 26.8 | 67 | 1.2071 | 0.5875 | | 0.6738 | 28.0 | 70 | 1.2643 | 0.5875 | | 0.6738 | 28.8 | 72 | 1.2594 | 0.5563 | | 0.6738 | 30.0 | 75 | 1.2263 | 0.5312 | | 0.6738 | 30.8 | 77 | 1.3218 | 0.5188 | | 0.5715 | 32.0 | 80 | 1.2593 | 0.5312 | | 0.5715 | 32.8 | 82 | 1.2214 | 0.5625 | | 0.5715 | 34.0 | 85 | 1.3060 | 0.55 | | 0.5715 | 34.8 | 87 | 1.2727 | 0.5563 | | 0.4523 | 36.0 | 90 | 1.2749 | 0.5375 | | 0.4523 | 36.8 | 92 | 1.3570 | 0.5437 | | 0.4523 | 38.0 | 95 | 1.2815 | 0.5687 | | 0.4523 | 38.8 | 97 | 1.2233 | 0.6062 | | 0.3971 | 40.0 | 100 | 1.2097 | 0.6 | | 0.3971 | 40.8 | 102 | 1.2881 | 0.5813 | | 0.3971 | 42.0 | 105 | 1.2400 | 0.575 | | 0.3971 | 42.8 | 107 | 1.3140 | 0.5375 | | 0.3616 | 44.0 | 110 | 1.1525 | 0.6125 | | 0.3616 | 44.8 | 112 | 1.2725 | 0.5938 | | 0.3616 | 46.0 | 115 | 1.2634 | 0.5813 | | 0.3616 | 46.8 | 117 | 1.2299 | 0.6 | | 0.338 | 48.0 | 120 | 1.3408 | 0.5375 | | 0.338 | 48.8 | 122 | 1.1931 | 0.5938 | | 0.338 | 50.0 | 125 | 1.2806 | 0.5938 | | 0.338 | 50.8 | 127 | 1.2410 | 0.575 | | 0.3445 | 52.0 | 130 | 1.2901 | 0.5813 | | 0.3445 | 52.8 | 132 | 1.2504 | 0.6062 | | 0.3445 | 54.0 | 135 | 1.1614 | 0.5875 | | 0.3445 | 54.8 | 137 | 1.2247 | 0.6062 | | 0.3299 | 56.0 | 140 | 1.2591 | 0.5625 | | 0.3299 | 56.8 | 142 | 1.2629 | 0.5687 | | 0.3299 | 58.0 | 145 | 1.2369 | 0.5938 | | 0.3299 | 58.8 | 147 | 1.2771 | 0.575 | | 0.3292 | 60.0 | 150 | 1.3284 | 0.5875 | | 0.3292 | 60.8 | 152 | 1.2550 | 0.5625 | | 0.3292 | 61.6 | 154 | 1.3047 | 0.55 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
mhasnanr/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2966 - Accuracy: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4307 | 0.475 | | No log | 2.0 | 80 | 1.3231 | 0.5125 | | No log | 3.0 | 120 | 1.3044 | 0.5437 | | No log | 4.0 | 160 | 1.3204 | 0.525 | | No log | 5.0 | 200 | 1.2457 | 0.5875 | | No log | 6.0 | 240 | 1.3604 | 0.5125 | | No log | 7.0 | 280 | 1.2296 | 0.5813 | | No log | 8.0 | 320 | 1.3598 | 0.525 | | No log | 9.0 | 360 | 1.3343 | 0.5188 | | No log | 10.0 | 400 | 1.4003 | 0.5625 | | No log | 11.0 | 440 | 1.3580 | 0.5563 | | No log | 12.0 | 480 | 1.3214 | 0.5687 | | 0.4908 | 13.0 | 520 | 1.3713 | 0.5312 | | 0.4908 | 14.0 | 560 | 1.3820 | 0.55 | | 0.4908 | 15.0 | 600 | 1.3384 | 0.5813 | | 0.4908 | 16.0 | 640 | 1.4905 | 0.5375 | | 0.4908 | 17.0 | 680 | 1.3985 | 0.5687 | | 0.4908 | 18.0 | 720 | 1.4733 | 0.5312 | | 0.4908 | 19.0 | 760 | 1.3403 | 0.5813 | | 0.4908 | 20.0 | 800 | 1.3991 | 0.5563 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
ZiaPratama/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3659 - Accuracy: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 32 | 1.9290 | 0.3063 | | No log | 2.0 | 64 | 1.6622 | 0.3563 | | No log | 3.0 | 96 | 1.5753 | 0.3937 | | No log | 4.0 | 128 | 1.5099 | 0.475 | | No log | 5.0 | 160 | 1.4614 | 0.4313 | | No log | 6.0 | 192 | 1.4104 | 0.5 | | No log | 7.0 | 224 | 1.3962 | 0.4562 | | No log | 8.0 | 256 | 1.3535 | 0.5437 | | No log | 9.0 | 288 | 1.3483 | 0.5062 | | No log | 10.0 | 320 | 1.3994 | 0.45 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
elenaThevalley/resnet-50-finetuned-32bs-0.01lr
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-32bs-0.01lr This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1702 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 26 | 0.2610 | 0.9157 | | No log | 1.97 | 53 | 0.1749 | 0.9419 | | No log | 2.9 | 78 | 0.1702 | 0.9477 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "drink", "food", "inside", "menu", "outside" ]
aprlkhrnss/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2368 - Accuracy: 0.5312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 1.2726 | 0.575 | | No log | 2.0 | 10 | 1.3480 | 0.5062 | | No log | 3.0 | 15 | 1.2696 | 0.5375 | | No log | 4.0 | 20 | 1.2715 | 0.5312 | | No log | 5.0 | 25 | 1.2360 | 0.5687 | | No log | 6.0 | 30 | 1.2728 | 0.5125 | | No log | 7.0 | 35 | 1.2374 | 0.525 | | No log | 8.0 | 40 | 1.2484 | 0.5437 | | No log | 9.0 | 45 | 1.2336 | 0.5563 | | No log | 10.0 | 50 | 1.2128 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
dima806/food_type_image_detection_new
See https://www.kaggle.com/code/dima806/food-type-detection-vit for more details.
[ "omelette", "apple_pie", "sandwich", "kulfi", "chicken_curry", "fries", "jalebi", "taquito", "crispy chicken", "baked potato", "kaathi_rolls", "masala_dosa", "paani_puri", "fried_rice", "chole_bhature", "chai", "taco", "samosa", "dhokla", "chapati", "sushi", "pakode", "butter_naan", "momos", "idli", "pav_bhaji", "cheesecake", "donut", "burger", "pizza", "dal_makhani", "hot dog", "ice_cream", "kadai_paneer" ]
raffel-22/emotion_classification_2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification_2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3274 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9337 | 0.3563 | | No log | 2.0 | 40 | 1.7116 | 0.3375 | | No log | 3.0 | 60 | 1.5755 | 0.4562 | | No log | 4.0 | 80 | 1.4939 | 0.45 | | No log | 5.0 | 100 | 1.4377 | 0.5062 | | No log | 6.0 | 120 | 1.4363 | 0.4562 | | No log | 7.0 | 140 | 1.3615 | 0.5125 | | No log | 8.0 | 160 | 1.3021 | 0.5375 | | No log | 9.0 | 180 | 1.3307 | 0.525 | | No log | 10.0 | 200 | 1.3085 | 0.4938 | | No log | 11.0 | 220 | 1.2798 | 0.5813 | | No log | 12.0 | 240 | 1.2707 | 0.525 | | No log | 13.0 | 260 | 1.2339 | 0.55 | | No log | 14.0 | 280 | 1.3053 | 0.5437 | | No log | 15.0 | 300 | 1.3038 | 0.4938 | | No log | 16.0 | 320 | 1.3088 | 0.5375 | | No log | 17.0 | 340 | 1.3336 | 0.5312 | | No log | 18.0 | 360 | 1.3053 | 0.5 | | No log | 19.0 | 380 | 1.2206 | 0.5687 | | No log | 20.0 | 400 | 1.2598 | 0.5312 | | No log | 21.0 | 420 | 1.3332 | 0.5125 | | No log | 22.0 | 440 | 1.3388 | 0.5312 | | No log | 23.0 | 460 | 1.3129 | 0.5563 | | No log | 24.0 | 480 | 1.3632 | 0.5062 | | 0.9153 | 25.0 | 500 | 1.4166 | 0.4688 | | 0.9153 | 26.0 | 520 | 1.4094 | 0.5 | | 0.9153 | 27.0 | 540 | 1.4294 | 0.475 | | 0.9153 | 28.0 | 560 | 1.4937 | 0.475 | | 0.9153 | 29.0 | 580 | 1.3897 | 0.4938 | | 0.9153 | 30.0 | 600 | 1.4565 | 0.475 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
jeffsabarman/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1918 - Accuracy: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.6651 | 0.3187 | | No log | 2.0 | 40 | 1.3900 | 0.475 | | No log | 3.0 | 60 | 1.2950 | 0.4875 | | No log | 4.0 | 80 | 1.2170 | 0.5813 | | No log | 5.0 | 100 | 1.1709 | 0.5687 | | No log | 6.0 | 120 | 1.2711 | 0.525 | | No log | 7.0 | 140 | 1.1324 | 0.575 | | No log | 8.0 | 160 | 1.2349 | 0.5437 | | No log | 9.0 | 180 | 1.3844 | 0.5312 | | No log | 10.0 | 200 | 1.2460 | 0.55 | | No log | 11.0 | 220 | 1.2182 | 0.6125 | | No log | 12.0 | 240 | 1.3365 | 0.5563 | | No log | 13.0 | 260 | 1.2137 | 0.6125 | | No log | 14.0 | 280 | 1.3335 | 0.575 | | No log | 15.0 | 300 | 1.1078 | 0.625 | | No log | 16.0 | 320 | 1.2962 | 0.6 | | No log | 17.0 | 340 | 1.2558 | 0.6125 | | No log | 18.0 | 360 | 1.3949 | 0.55 | | No log | 19.0 | 380 | 1.3807 | 0.5687 | | No log | 20.0 | 400 | 1.2734 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
ridwansukri/emotion_classification_v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification_v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1905 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0278 | 0.2437 | | No log | 2.0 | 20 | 1.8875 | 0.3875 | | No log | 3.0 | 30 | 1.6890 | 0.4313 | | No log | 4.0 | 40 | 1.5484 | 0.5 | | No log | 5.0 | 50 | 1.4799 | 0.5125 | | No log | 6.0 | 60 | 1.4148 | 0.5375 | | No log | 7.0 | 70 | 1.3529 | 0.5375 | | No log | 8.0 | 80 | 1.3120 | 0.5312 | | No log | 9.0 | 90 | 1.2790 | 0.5813 | | No log | 10.0 | 100 | 1.2498 | 0.575 | | No log | 11.0 | 110 | 1.2610 | 0.525 | | No log | 12.0 | 120 | 1.1896 | 0.5938 | | No log | 13.0 | 130 | 1.2251 | 0.5312 | | No log | 14.0 | 140 | 1.2019 | 0.575 | | No log | 15.0 | 150 | 1.1797 | 0.5563 | | No log | 16.0 | 160 | 1.2484 | 0.5437 | | No log | 17.0 | 170 | 1.1766 | 0.5875 | | No log | 18.0 | 180 | 1.2401 | 0.4938 | | No log | 19.0 | 190 | 1.1977 | 0.5312 | | No log | 20.0 | 200 | 1.1839 | 0.5875 | | No log | 21.0 | 210 | 1.2028 | 0.5687 | | No log | 22.0 | 220 | 1.2048 | 0.5625 | | No log | 23.0 | 230 | 1.2637 | 0.5375 | | No log | 24.0 | 240 | 1.2371 | 0.5375 | | No log | 25.0 | 250 | 1.2777 | 0.5687 | | No log | 26.0 | 260 | 1.2544 | 0.525 | | No log | 27.0 | 270 | 1.2104 | 0.5625 | | No log | 28.0 | 280 | 1.1372 | 0.5938 | | No log | 29.0 | 290 | 1.2405 | 0.575 | | No log | 30.0 | 300 | 1.1624 | 0.6062 | | No log | 31.0 | 310 | 1.2376 | 0.5875 | | No log | 32.0 | 320 | 1.1794 | 0.5875 | | No log | 33.0 | 330 | 1.2156 | 0.5563 | | No log | 34.0 | 340 | 1.1725 | 0.55 | | No log | 35.0 | 350 | 1.2394 | 0.55 | | No log | 36.0 | 360 | 1.1886 | 0.5938 | | No log | 37.0 | 370 | 1.1760 | 0.6188 | | No log | 38.0 | 380 | 1.2757 | 0.525 | | No log | 39.0 | 390 | 1.1703 | 0.6062 | | No log | 40.0 | 400 | 1.2734 | 0.575 | | No log | 41.0 | 410 | 1.2265 | 0.5563 | | No log | 42.0 | 420 | 1.2651 | 0.5687 | | No log | 43.0 | 430 | 1.2419 | 0.5813 | | No log | 44.0 | 440 | 1.1871 | 0.6 | | No log | 45.0 | 450 | 1.2542 | 0.575 | | No log | 46.0 | 460 | 1.1910 | 0.5813 | | No log | 47.0 | 470 | 1.1990 | 0.6 | | No log | 48.0 | 480 | 1.2097 | 0.5813 | | No log | 49.0 | 490 | 1.2226 | 0.5875 | | 0.699 | 50.0 | 500 | 1.2793 | 0.5375 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Kx15/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5662 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.4518 | 0.5687 | | No log | 2.0 | 40 | 1.5669 | 0.5437 | | No log | 3.0 | 60 | 1.6466 | 0.5125 | | No log | 4.0 | 80 | 1.6751 | 0.5125 | | No log | 5.0 | 100 | 1.6191 | 0.55 | | No log | 6.0 | 120 | 1.6814 | 0.5437 | | No log | 7.0 | 140 | 1.7283 | 0.5687 | | No log | 8.0 | 160 | 1.5768 | 0.575 | | No log | 9.0 | 180 | 1.7247 | 0.525 | | No log | 10.0 | 200 | 1.6371 | 0.5563 | | No log | 11.0 | 220 | 1.7257 | 0.5312 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Atar01/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0934 - Accuracy: 0.1375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 2.0989 | 0.1 | | No log | 2.0 | 80 | 2.0933 | 0.1375 | | No log | 3.0 | 120 | 2.0951 | 0.0938 | | No log | 4.0 | 160 | 2.0851 | 0.0938 | | No log | 5.0 | 200 | 2.0861 | 0.0938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
juniorjukeko/emotion-classificationV3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion-classificationV3 This model is a fine-tuned version of [/content/model/emotion-classificationV3/checkpoint-60](https://huggingface.co//content/model/emotion-classificationV3/checkpoint-60) on FastJobs/Visual_Emotional_Analysis Dataset. It achieves the following results on the evaluation set: - Loss: 0.5765 - Accuracy: 0.8438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data FastJobs/Visual_Emotional_Analysis ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 143 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 0.6923 | 0.7937 | | 0.5541 | 2.0 | 10 | 0.7871 | 0.8063 | | 0.5541 | 3.0 | 15 | 0.7193 | 0.8313 | | 0.5168 | 4.0 | 20 | 0.6446 | 0.825 | | 0.5168 | 5.0 | 25 | 0.5653 | 0.8438 | | 0.4627 | 6.0 | 30 | 0.7244 | 0.8063 | | 0.4627 | 7.0 | 35 | 0.7213 | 0.7937 | | 0.4516 | 8.0 | 40 | 0.6082 | 0.8313 | | 0.4516 | 9.0 | 45 | 0.7545 | 0.8063 | | 0.4339 | 10.0 | 50 | 0.5320 | 0.8562 | | 0.4339 | 11.0 | 55 | 0.6222 | 0.8187 | | 0.4233 | 12.0 | 60 | 0.6104 | 0.8438 | | 0.4233 | 13.0 | 65 | 0.5913 | 0.825 | | 0.3976 | 14.0 | 70 | 0.6852 | 0.8125 | | 0.3976 | 15.0 | 75 | 0.6227 | 0.8125 | | 0.3933 | 16.0 | 80 | 0.5550 | 0.825 | | 0.3933 | 17.0 | 85 | 0.5438 | 0.8438 | | 0.4359 | 18.0 | 90 | 0.5916 | 0.825 | | 0.4359 | 19.0 | 95 | 0.6037 | 0.8063 | | 0.3589 | 20.0 | 100 | 0.7102 | 0.8125 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
rafelsiregar/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3341 - Accuracy: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 1.3975 | 0.4062 | | No log | 2.0 | 160 | 1.3917 | 0.4875 | | No log | 3.0 | 240 | 1.2964 | 0.5 | | No log | 4.0 | 320 | 1.2587 | 0.5312 | | No log | 5.0 | 400 | 1.2705 | 0.5125 | | No log | 6.0 | 480 | 1.2557 | 0.55 | | 0.7469 | 7.0 | 560 | 1.3400 | 0.525 | | 0.7469 | 8.0 | 640 | 1.3586 | 0.5687 | | 0.7469 | 9.0 | 720 | 1.3317 | 0.5563 | | 0.7469 | 10.0 | 800 | 1.2965 | 0.5687 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
jolieee/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2805 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.7942 | 0.4062 | | No log | 2.0 | 80 | 1.5663 | 0.3563 | | No log | 3.0 | 120 | 1.4601 | 0.4813 | | No log | 4.0 | 160 | 1.3494 | 0.4813 | | No log | 5.0 | 200 | 1.3107 | 0.5062 | | No log | 6.0 | 240 | 1.3054 | 0.475 | | No log | 7.0 | 280 | 1.2423 | 0.575 | | No log | 8.0 | 320 | 1.3189 | 0.5188 | | No log | 9.0 | 360 | 1.2515 | 0.5062 | | No log | 10.0 | 400 | 1.2279 | 0.5437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
platzi/platzi-vit-model-aaron-jimenez
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-aaron-jimenez This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0288 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1328 | 3.85 | 500 | 0.0288 | 0.9925 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
platzi/platzi-vit-model-sergio-vega
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-sergio-vega This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0121 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1367 | 3.85 | 500 | 0.0121 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
DifeiT/my_awesome_image_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_image_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4729 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.3138 | 0.5 | | No log | 2.0 | 2 | 1.4139 | 0.0 | | No log | 3.0 | 3 | 1.4729 | 0.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 1.13.1+cpu - Datasets 2.14.5 - Tokenizers 0.13.3
[ "1", "2", "cat", "dog" ]
platzi/model-Beans-alejandro-arroyo
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-Beans-alejandro-arroyo This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0078 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.148 | 3.85 | 500 | 0.0078 | 0.9925 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
DifeiT/rsna_intracranial_hemorrhage_detection
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rsna_intracranial_hemorrhage_detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4344 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6034 | 1.0 | 132 | 0.5659 | 0.8315 | | 0.4903 | 2.0 | 265 | 0.4868 | 0.8472 | | 0.5305 | 3.0 | 397 | 0.4742 | 0.8538 | | 0.5424 | 4.0 | 530 | 0.4650 | 0.8552 | | 0.4289 | 5.0 | 662 | 0.4508 | 0.8552 | | 0.4275 | 6.0 | 795 | 0.4394 | 0.8590 | | 0.4075 | 7.0 | 927 | 0.4767 | 0.8434 | | 0.3649 | 8.0 | 1060 | 0.4462 | 0.8595 | | 0.3934 | 9.0 | 1192 | 0.4323 | 0.8605 | | 0.3436 | 9.96 | 1320 | 0.4344 | 0.8586 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "any", "epidural", "intraparenchymal", "intraventricular", "subarachnoid", "subdural" ]
hrtnisri2016/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5771 - Accuracy: 0.4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9643 | 0.3438 | | No log | 2.0 | 40 | 1.7819 | 0.4125 | | No log | 3.0 | 60 | 1.6521 | 0.4562 | | No log | 4.0 | 80 | 1.6034 | 0.4938 | | No log | 5.0 | 100 | 1.5769 | 0.5062 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Alex14005/model-Dementia-classification-Alejandro-Arroyo
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-Dementia-classification-Alejandro-Arroyo This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the RiniPL/Dementia_Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "mild_demented", "moderate_demented", "non_demented", "very_mild_demented" ]
fikribasa/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9812 - Accuracy: 0.2875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0664 | 1.0 | 10 | 2.0297 | 0.2875 | | 1.9971 | 2.0 | 20 | 1.9725 | 0.35 | | 1.9375 | 3.0 | 30 | 1.9551 | 0.3 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
DifeiT/rsna-intracranial-hemorrhage-detection
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rsna-intracranial-hemorrhage-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2164 - Accuracy: 0.6152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.5655 | 1.0 | 238 | 1.5235 | 0.4039 | | 1.3848 | 2.0 | 477 | 1.3622 | 0.4692 | | 1.2812 | 3.0 | 716 | 1.2811 | 0.5150 | | 1.2039 | 4.0 | 955 | 1.1795 | 0.5556 | | 1.1641 | 5.0 | 1193 | 1.1627 | 0.5534 | | 1.1961 | 6.0 | 1432 | 1.1393 | 0.5705 | | 1.1382 | 7.0 | 1671 | 1.0921 | 0.5804 | | 0.9653 | 8.0 | 1910 | 1.0790 | 0.5876 | | 0.9346 | 9.0 | 2148 | 1.0727 | 0.5931 | | 0.9083 | 10.0 | 2387 | 1.0605 | 0.5994 | | 0.8936 | 11.0 | 2626 | 1.0147 | 0.6146 | | 0.8504 | 12.0 | 2865 | 1.0849 | 0.5818 | | 0.8544 | 13.0 | 3103 | 1.0349 | 0.6052 | | 0.7884 | 14.0 | 3342 | 1.0435 | 0.6074 | | 0.7974 | 15.0 | 3581 | 1.0082 | 0.6127 | | 0.7921 | 16.0 | 3820 | 1.0438 | 0.6017 | | 0.709 | 17.0 | 4058 | 1.0484 | 0.6094 | | 0.6646 | 18.0 | 4297 | 1.0554 | 0.6221 | | 0.6832 | 19.0 | 4536 | 1.0455 | 0.6124 | | 0.7076 | 20.0 | 4775 | 1.0905 | 0.6 | | 0.7442 | 21.0 | 5013 | 1.1094 | 0.6008 | | 0.6332 | 22.0 | 5252 | 1.0777 | 0.6063 | | 0.6417 | 23.0 | 5491 | 1.0765 | 0.6141 | | 0.6267 | 24.0 | 5730 | 1.1057 | 0.6091 | | 0.6082 | 25.0 | 5968 | 1.0962 | 0.6171 | | 0.6191 | 26.0 | 6207 | 1.1178 | 0.6039 | | 0.5654 | 27.0 | 6446 | 1.1386 | 0.5948 | | 0.5776 | 28.0 | 6685 | 1.1121 | 0.6105 | | 0.5531 | 29.0 | 6923 | 1.1497 | 0.6030 | | 0.6275 | 30.0 | 7162 | 1.1796 | 0.6028 | | 0.5373 | 31.0 | 7401 | 1.1306 | 0.6132 | | 0.4775 | 32.0 | 7640 | 1.1523 | 0.6058 | | 0.5469 | 33.0 | 7878 | 1.1634 | 0.6127 | | 0.4934 | 34.0 | 8117 | 1.1853 | 0.616 | | 0.5233 | 35.0 | 8356 | 1.2018 | 0.6055 | | 0.4896 | 36.0 | 8595 | 1.1585 | 0.6108 | | 0.5122 | 37.0 | 8833 | 1.1874 | 0.6146 | | 0.4726 | 38.0 | 9072 | 1.1608 | 0.6193 | | 0.4372 | 39.0 | 9311 | 1.2403 | 0.6132 | | 0.498 | 40.0 | 9550 | 1.1752 | 0.6201 | | 0.4813 | 41.0 | 9788 | 1.2005 | 0.6166 | | 0.4762 | 42.0 | 10027 | 1.2285 | 0.6022 | | 0.4852 | 43.0 | 10266 | 1.2192 | 0.6119 | | 0.4332 | 44.0 | 10505 | 1.2391 | 0.6218 | | 0.3998 | 45.0 | 10743 | 1.1779 | 0.6196 | | 0.4467 | 46.0 | 10982 | 1.2048 | 0.6284 | | 0.4332 | 47.0 | 11221 | 1.2302 | 0.6188 | | 0.4529 | 48.0 | 11460 | 1.2220 | 0.6188 | | 0.4281 | 49.0 | 11698 | 1.2013 | 0.624 | | 0.4199 | 49.84 | 11900 | 1.2164 | 0.6152 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "epidural", "intraparenchymal", "intraventricular", "normal", "subarachnoid", "subdural" ]
ahyar002/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.2653 - Accuracy: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.2598 | 0.9565 | | No log | 2.0 | 104 | 0.1608 | 0.9517 | | No log | 3.0 | 156 | 0.1650 | 0.9565 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
nailashfrni/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1728 - Accuracy: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 52 | 0.2885 | 0.9179 | | No log | 2.0 | 104 | 0.1829 | 0.9469 | | No log | 3.0 | 156 | 0.1789 | 0.9565 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
nailashfrni/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4178 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.3316 | 0.4562 | | No log | 2.0 | 80 | 1.3601 | 0.5 | | No log | 3.0 | 120 | 1.2794 | 0.5563 | | No log | 4.0 | 160 | 1.3851 | 0.5 | | No log | 5.0 | 200 | 1.4786 | 0.4625 | | No log | 6.0 | 240 | 1.4805 | 0.4875 | | No log | 7.0 | 280 | 1.4581 | 0.4813 | | No log | 8.0 | 320 | 1.4258 | 0.525 | | No log | 9.0 | 360 | 1.5452 | 0.5 | | No log | 10.0 | 400 | 1.3624 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
faldeus0092/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.7736 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6551 | 0.99 | 62 | 2.5197 | 0.838 | | 1.8088 | 2.0 | 125 | 1.7662 | 0.893 | | 1.5857 | 2.98 | 186 | 1.6207 | 0.885 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
yahyapp/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5080 - Accuracy: 0.45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.5040 | 0.4313 | | No log | 2.0 | 40 | 1.4292 | 0.475 | | No log | 3.0 | 60 | 1.4068 | 0.4562 | | No log | 4.0 | 80 | 1.3400 | 0.4688 | | No log | 5.0 | 100 | 1.4205 | 0.4375 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
fullstuck/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5284 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4223 | 0.525 | | No log | 2.0 | 80 | 1.5923 | 0.4938 | | No log | 3.0 | 120 | 1.4860 | 0.5563 | | No log | 4.0 | 160 | 1.4983 | 0.5625 | | No log | 5.0 | 200 | 1.5151 | 0.5938 | | No log | 6.0 | 240 | 1.6818 | 0.5062 | | No log | 7.0 | 280 | 1.6757 | 0.5125 | | No log | 8.0 | 320 | 1.4647 | 0.5875 | | No log | 9.0 | 360 | 1.4922 | 0.5875 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
sparasdya/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1552 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.6906 | 0.3375 | | No log | 2.0 | 80 | 1.4310 | 0.4062 | | No log | 3.0 | 120 | 1.3517 | 0.4875 | | No log | 4.0 | 160 | 1.2080 | 0.5437 | | No log | 5.0 | 200 | 1.1920 | 0.5437 | | No log | 6.0 | 240 | 1.1123 | 0.575 | | No log | 7.0 | 280 | 1.1533 | 0.575 | | No log | 8.0 | 320 | 1.0971 | 0.5813 | | No log | 9.0 | 360 | 1.1635 | 0.5687 | | No log | 10.0 | 400 | 1.1344 | 0.5875 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
B0yc4kra/emotion_finetuned_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_finetuned_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3507 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.6393 | 0.4875 | | No log | 2.0 | 40 | 1.5461 | 0.4875 | | No log | 3.0 | 60 | 1.4809 | 0.4938 | | No log | 4.0 | 80 | 1.4289 | 0.4813 | | No log | 5.0 | 100 | 1.3878 | 0.4875 | | No log | 6.0 | 120 | 1.3792 | 0.4813 | | No log | 7.0 | 140 | 1.3507 | 0.5 | | No log | 8.0 | 160 | 1.3376 | 0.4938 | | No log | 9.0 | 180 | 1.3379 | 0.4875 | | No log | 10.0 | 200 | 1.3305 | 0.5 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
probeadd/rea_transfer_learning_project
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rea_transfer_learning_project This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6430 - Accuracy: 0.375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8914 | 0.325 | | No log | 2.0 | 80 | 1.7089 | 0.375 | | No log | 3.0 | 120 | 1.6569 | 0.3937 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
stevanojs/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4477 - Accuracy: 0.5062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.9208 | 0.2687 | | No log | 2.0 | 80 | 1.6469 | 0.3688 | | 1.7432 | 3.0 | 120 | 1.5591 | 0.45 | | 1.7432 | 4.0 | 160 | 1.4880 | 0.4313 | | 0.9778 | 5.0 | 200 | 1.4477 | 0.5062 | | 0.9778 | 6.0 | 240 | 1.4999 | 0.45 | | 0.9778 | 7.0 | 280 | 1.4733 | 0.475 | | 0.442 | 8.0 | 320 | 1.4793 | 0.4625 | | 0.442 | 9.0 | 360 | 1.5115 | 0.4625 | | 0.2429 | 10.0 | 400 | 1.5220 | 0.4625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
ahyar002/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2445 - Accuracy: 0.5312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.9385 | 0.325 | | No log | 2.0 | 20 | 1.7153 | 0.4188 | | No log | 3.0 | 30 | 1.5905 | 0.3937 | | No log | 4.0 | 40 | 1.4706 | 0.4625 | | No log | 5.0 | 50 | 1.4078 | 0.5062 | | No log | 6.0 | 60 | 1.3739 | 0.4813 | | No log | 7.0 | 70 | 1.3108 | 0.5125 | | No log | 8.0 | 80 | 1.2874 | 0.5312 | | No log | 9.0 | 90 | 1.2810 | 0.5312 | | No log | 10.0 | 100 | 1.2754 | 0.5437 | | No log | 11.0 | 110 | 1.2380 | 0.5563 | | No log | 12.0 | 120 | 1.1721 | 0.6125 | | No log | 13.0 | 130 | 1.2242 | 0.5875 | | No log | 14.0 | 140 | 1.2530 | 0.525 | | No log | 15.0 | 150 | 1.2610 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "calling", "clapping", "running", "sitting", "sleeping", "texting", "using_laptop", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music" ]
amtsal/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3283 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4437 | 0.4813 | | No log | 2.0 | 80 | 1.3919 | 0.4813 | | No log | 3.0 | 120 | 1.3595 | 0.5125 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
rayhanozzy/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3383 - Accuracy: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 1.6519 | 0.3312 | | No log | 2.0 | 160 | 1.4509 | 0.4125 | | No log | 3.0 | 240 | 1.3641 | 0.5062 | | No log | 4.0 | 320 | 1.2676 | 0.5875 | | No log | 5.0 | 400 | 1.2718 | 0.5188 | | No log | 6.0 | 480 | 1.2250 | 0.5125 | | 1.2828 | 7.0 | 560 | 1.1933 | 0.55 | | 1.2828 | 8.0 | 640 | 1.1538 | 0.575 | | 1.2828 | 9.0 | 720 | 1.2479 | 0.55 | | 1.2828 | 10.0 | 800 | 1.2487 | 0.575 | | 1.2828 | 11.0 | 880 | 1.2418 | 0.5938 | | 1.2828 | 12.0 | 960 | 1.1514 | 0.6062 | | 0.5147 | 13.0 | 1040 | 1.2563 | 0.5563 | | 0.5147 | 14.0 | 1120 | 1.2933 | 0.5813 | | 0.5147 | 15.0 | 1200 | 1.2857 | 0.5813 | | 0.5147 | 16.0 | 1280 | 1.3044 | 0.575 | | 0.5147 | 17.0 | 1360 | 1.4134 | 0.5687 | | 0.5147 | 18.0 | 1440 | 1.3277 | 0.5875 | | 0.2675 | 19.0 | 1520 | 1.2963 | 0.575 | | 0.2675 | 20.0 | 1600 | 1.2049 | 0.6125 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
faldeus0092/project_4_transfer_learning
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # project_4_transfer_learning This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1429 - Accuracy: 0.6438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.0754 | 1.0 | 10 | 0.125 | 2.0725 | | 2.0459 | 2.0 | 20 | 0.2625 | 2.0286 | | 1.968 | 3.0 | 30 | 0.3 | 1.9506 | | 1.8311 | 4.0 | 40 | 0.4188 | 1.8060 | | 1.6911 | 5.0 | 50 | 0.4313 | 1.6814 | | 1.5677 | 6.0 | 60 | 0.4313 | 1.5851 | | 1.4801 | 7.0 | 70 | 0.4813 | 1.5169 | | 1.4033 | 8.0 | 80 | 0.4813 | 1.4614 | | 1.3435 | 9.0 | 90 | 0.475 | 1.4358 | | 1.3054 | 10.0 | 100 | 0.525 | 1.4292 | | 1.2532 | 11.0 | 110 | 0.5188 | 1.3942 | | 1.2178 | 12.0 | 120 | 0.5312 | 1.3684 | | 1.1857 | 13.0 | 130 | 0.5062 | 1.3599 | | 1.1558 | 14.0 | 140 | 0.5312 | 1.2992 | | 1.1118 | 15.0 | 150 | 0.5375 | 1.3217 | | 1.0967 | 16.0 | 160 | 0.525 | 1.3177 | | 1.0671 | 17.0 | 170 | 0.5312 | 1.3420 | | 1.0635 | 18.0 | 180 | 0.5062 | 1.3319 | | 1.044 | 19.0 | 190 | 0.5813 | 1.2977 | | 1.037 | 20.0 | 200 | 0.5125 | 1.3127 | | 1.0743 | 21.0 | 210 | 1.2062 | 0.6062 | | 1.0454 | 22.0 | 220 | 1.1564 | 0.65 | | 1.0457 | 23.0 | 230 | 1.1484 | 0.6312 | | 1.0246 | 24.0 | 240 | 1.1470 | 0.6312 | | 0.9859 | 25.0 | 250 | 1.1200 | 0.6438 | | 0.9885 | 26.0 | 260 | 1.1331 | 0.6375 | | 0.9823 | 27.0 | 270 | 1.1069 | 0.6562 | | 0.9412 | 28.0 | 280 | 1.1163 | 0.6375 | | 0.9172 | 29.0 | 290 | 1.1192 | 0.6375 | | 0.9334 | 30.0 | 300 | 1.1573 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Alimuddin/amazon_fish_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [facebook/convnext-large-224-22k-1k](https://huggingface.co/facebook/convnext-large-224-22k-1k) on the amazonian_fish_classifier_data dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Accuracy: 0.9332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 17 - eval_batch_size: 17 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 145 | 0.6864 | 0.8420 | | No log | 2.0 | 290 | 0.5780 | 0.8306 | | No log | 3.0 | 435 | 0.4466 | 0.8860 | | 0.7812 | 4.0 | 580 | 0.3810 | 0.8958 | | 0.7812 | 5.0 | 725 | 0.4124 | 0.8860 | | 0.7812 | 6.0 | 870 | 0.3617 | 0.9007 | | 0.3315 | 7.0 | 1015 | 0.3397 | 0.8990 | | 0.3315 | 8.0 | 1160 | 0.3746 | 0.9055 | | 0.3315 | 9.0 | 1305 | 0.3379 | 0.9023 | | 0.3315 | 10.0 | 1450 | 0.3825 | 0.8958 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "ancistrus", "apistogramma", "corydoras", "creagrutus", "curimata", "doras", "erythrinus", "gasteropelecus", "gymnotus", "hemigrammus", "hyphessobrycon", "knodus", "astyanax", "moenkhausia", "otocinclus", "oxyropsis", "phenacogaster", "pimelodella", "prochilodus", "pygocentrus", "pyrrhulina", "rineloricaria", "sorubim", "bario", "tatia", "tetragonopterus", "tyttocharax", "bryconops", "bujurquina", "bunocephalus", "characidium", "charax", "copella" ]
RickyIG/emotion_face_image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_face_image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2110 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0717 | 1.0 | 10 | 2.0593 | 0.2062 | | 2.005 | 2.0 | 20 | 1.9999 | 0.2625 | | 1.9169 | 3.0 | 30 | 1.8931 | 0.35 | | 1.7635 | 4.0 | 40 | 1.7616 | 0.4062 | | 1.6614 | 5.0 | 50 | 1.6452 | 0.4562 | | 1.6182 | 6.0 | 60 | 1.5661 | 0.4125 | | 1.5434 | 7.0 | 70 | 1.5183 | 0.4125 | | 1.46 | 8.0 | 80 | 1.4781 | 0.4875 | | 1.4564 | 9.0 | 90 | 1.3939 | 0.5125 | | 1.2966 | 10.0 | 100 | 1.3800 | 0.4562 | | 1.3732 | 11.0 | 110 | 1.3557 | 0.475 | | 1.2907 | 12.0 | 120 | 1.3473 | 0.5 | | 1.2875 | 13.0 | 130 | 1.3416 | 0.5312 | | 1.2743 | 14.0 | 140 | 1.2964 | 0.4875 | | 1.1249 | 15.0 | 150 | 1.2385 | 0.525 | | 1.0963 | 16.0 | 160 | 1.2775 | 0.5062 | | 1.0261 | 17.0 | 170 | 1.2751 | 0.5125 | | 0.9298 | 18.0 | 180 | 1.2318 | 0.525 | | 1.0668 | 19.0 | 190 | 1.2520 | 0.5437 | | 0.9933 | 20.0 | 200 | 1.2512 | 0.525 | | 1.1069 | 21.0 | 210 | 1.3016 | 0.5 | | 1.0279 | 22.0 | 220 | 1.3279 | 0.475 | | 0.967 | 23.0 | 230 | 1.2481 | 0.5 | | 0.8115 | 24.0 | 240 | 1.1791 | 0.5563 | | 0.7912 | 25.0 | 250 | 1.2336 | 0.55 | | 0.9294 | 26.0 | 260 | 1.1759 | 0.5813 | | 0.8936 | 27.0 | 270 | 1.1685 | 0.6 | | 0.7706 | 28.0 | 280 | 1.2403 | 0.5312 | | 0.7694 | 29.0 | 290 | 1.2479 | 0.5687 | | 0.7265 | 30.0 | 300 | 1.2000 | 0.5625 | | 0.6781 | 31.0 | 310 | 1.1856 | 0.55 | | 0.6676 | 32.0 | 320 | 1.2661 | 0.5437 | | 0.7254 | 33.0 | 330 | 1.1986 | 0.5437 | | 0.7396 | 34.0 | 340 | 1.1497 | 0.575 | | 0.5532 | 35.0 | 350 | 1.2796 | 0.5062 | | 0.622 | 36.0 | 360 | 1.2749 | 0.5125 | | 0.6958 | 37.0 | 370 | 1.2034 | 0.5687 | | 0.6102 | 38.0 | 380 | 1.2576 | 0.5188 | | 0.6161 | 39.0 | 390 | 1.2635 | 0.5062 | | 0.6927 | 40.0 | 400 | 1.1535 | 0.5437 | | 0.549 | 41.0 | 410 | 1.1405 | 0.6 | | 0.6668 | 42.0 | 420 | 1.2683 | 0.5312 | | 0.5144 | 43.0 | 430 | 1.2249 | 0.6 | | 0.6703 | 44.0 | 440 | 1.2297 | 0.5687 | | 0.6383 | 45.0 | 450 | 1.1507 | 0.6062 | | 0.5211 | 46.0 | 460 | 1.2914 | 0.4813 | | 0.4743 | 47.0 | 470 | 1.2782 | 0.5125 | | 0.553 | 48.0 | 480 | 1.2256 | 0.5375 | | 0.6407 | 49.0 | 490 | 1.2149 | 0.5687 | | 0.4195 | 50.0 | 500 | 1.2024 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
abelkrw/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1554 - Accuracy: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2477 | 1.0 | 10 | 1.3618 | 0.5625 | | 1.2002 | 2.0 | 20 | 1.3367 | 0.5625 | | 1.111 | 3.0 | 30 | 1.3178 | 0.5312 | | 1.0286 | 4.0 | 40 | 1.2215 | 0.5625 | | 0.9376 | 5.0 | 50 | 1.2117 | 0.5437 | | 0.8948 | 6.0 | 60 | 1.2304 | 0.5625 | | 0.8234 | 7.0 | 70 | 1.1634 | 0.5563 | | 0.8069 | 8.0 | 80 | 1.2422 | 0.5563 | | 0.7146 | 9.0 | 90 | 1.2053 | 0.5563 | | 0.709 | 10.0 | 100 | 1.1887 | 0.575 | | 0.6404 | 11.0 | 110 | 1.2208 | 0.5563 | | 0.6301 | 12.0 | 120 | 1.2319 | 0.5687 | | 0.6107 | 13.0 | 130 | 1.1684 | 0.6 | | 0.5825 | 14.0 | 140 | 1.1837 | 0.5813 | | 0.5454 | 15.0 | 150 | 1.1818 | 0.5687 | | 0.5517 | 16.0 | 160 | 1.1974 | 0.55 | | 0.4989 | 17.0 | 170 | 1.1304 | 0.6 | | 0.4875 | 18.0 | 180 | 1.2277 | 0.5375 | | 0.4881 | 19.0 | 190 | 1.1363 | 0.5875 | | 0.4951 | 20.0 | 200 | 1.1540 | 0.6062 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
RickyIG/emotion_face_image_classification_v2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_face_image_classification_v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5157 - Accuracy: 0.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 150 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 2.0924 | 0.15 | | No log | 2.0 | 5 | 2.1024 | 0.0938 | | No log | 2.8 | 7 | 2.0935 | 0.1375 | | No log | 4.0 | 10 | 2.0893 | 0.15 | | No log | 4.8 | 12 | 2.0900 | 0.15 | | No log | 6.0 | 15 | 2.0987 | 0.0813 | | No log | 6.8 | 17 | 2.0901 | 0.1 | | No log | 8.0 | 20 | 2.0872 | 0.15 | | No log | 8.8 | 22 | 2.0831 | 0.1375 | | No log | 10.0 | 25 | 2.0750 | 0.1437 | | No log | 10.8 | 27 | 2.0744 | 0.175 | | No log | 12.0 | 30 | 2.0778 | 0.1437 | | No log | 12.8 | 32 | 2.0729 | 0.1812 | | No log | 14.0 | 35 | 2.0676 | 0.1625 | | No log | 14.8 | 37 | 2.0694 | 0.1688 | | No log | 16.0 | 40 | 2.0562 | 0.1625 | | No log | 16.8 | 42 | 2.0498 | 0.1938 | | No log | 18.0 | 45 | 2.0393 | 0.2188 | | No log | 18.8 | 47 | 2.0458 | 0.2062 | | No log | 20.0 | 50 | 2.0289 | 0.2125 | | No log | 20.8 | 52 | 2.0226 | 0.2437 | | No log | 22.0 | 55 | 1.9997 | 0.2625 | | No log | 22.8 | 57 | 1.9855 | 0.3187 | | No log | 24.0 | 60 | 1.9571 | 0.3187 | | No log | 24.8 | 62 | 1.9473 | 0.3375 | | No log | 26.0 | 65 | 1.9080 | 0.3187 | | No log | 26.8 | 67 | 1.8894 | 0.35 | | No log | 28.0 | 70 | 1.8407 | 0.375 | | No log | 28.8 | 72 | 1.8083 | 0.3438 | | No log | 30.0 | 75 | 1.7652 | 0.3563 | | No log | 30.8 | 77 | 1.7281 | 0.3563 | | No log | 32.0 | 80 | 1.6729 | 0.4062 | | No log | 32.8 | 82 | 1.6527 | 0.3937 | | No log | 34.0 | 85 | 1.6044 | 0.4562 | | No log | 34.8 | 87 | 1.5899 | 0.4313 | | No log | 36.0 | 90 | 1.5488 | 0.4313 | | No log | 36.8 | 92 | 1.5340 | 0.45 | | No log | 38.0 | 95 | 1.5227 | 0.4875 | | No log | 38.8 | 97 | 1.4846 | 0.4875 | | No log | 40.0 | 100 | 1.4579 | 0.4688 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Zekrom997/emotion_recognition_I
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_recognition_I This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2755 - Accuracy: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8344 | 1.0 | 5 | 1.1193 | 0.5813 | | 0.7539 | 2.0 | 10 | 1.2210 | 0.5563 | | 0.6334 | 3.0 | 15 | 1.2974 | 0.5188 | | 0.6163 | 4.0 | 20 | 1.1309 | 0.6 | | 0.4633 | 5.0 | 25 | 1.2804 | 0.5312 | | 0.4066 | 6.0 | 30 | 1.1664 | 0.6 | | 0.335 | 7.0 | 35 | 1.1741 | 0.6062 | | 0.3484 | 8.0 | 40 | 1.1644 | 0.6125 | | 0.3134 | 9.0 | 45 | 1.2799 | 0.55 | | 0.2689 | 10.0 | 50 | 1.2276 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
saskiadwiulfah1810/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2586 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8677 | 0.3688 | | No log | 2.0 | 80 | 1.5622 | 0.3625 | | No log | 3.0 | 120 | 1.4344 | 0.5375 | | No log | 4.0 | 160 | 1.2909 | 0.5 | | No log | 5.0 | 200 | 1.2146 | 0.6 | | No log | 6.0 | 240 | 1.2457 | 0.55 | | No log | 7.0 | 280 | 1.2429 | 0.5563 | | No log | 8.0 | 320 | 1.2015 | 0.5375 | | No log | 9.0 | 360 | 1.2393 | 0.5188 | | No log | 10.0 | 400 | 1.1908 | 0.5687 | | No log | 11.0 | 440 | 1.1580 | 0.6188 | | No log | 12.0 | 480 | 1.1608 | 0.575 | | 1.0532 | 13.0 | 520 | 1.2468 | 0.5687 | | 1.0532 | 14.0 | 560 | 1.2747 | 0.5188 | | 1.0532 | 15.0 | 600 | 1.3293 | 0.525 | | 1.0532 | 16.0 | 640 | 1.3720 | 0.525 | | 1.0532 | 17.0 | 680 | 1.4374 | 0.5125 | | 1.0532 | 18.0 | 720 | 1.3092 | 0.5687 | | 1.0532 | 19.0 | 760 | 1.4143 | 0.5437 | | 1.0532 | 20.0 | 800 | 1.5023 | 0.4938 | | 1.0532 | 21.0 | 840 | 1.4033 | 0.575 | | 1.0532 | 22.0 | 880 | 1.4476 | 0.5437 | | 1.0532 | 23.0 | 920 | 1.3089 | 0.5813 | | 1.0532 | 24.0 | 960 | 1.3866 | 0.5813 | | 0.3016 | 25.0 | 1000 | 1.3748 | 0.5875 | | 0.3016 | 26.0 | 1040 | 1.5846 | 0.5312 | | 0.3016 | 27.0 | 1080 | 1.3451 | 0.5875 | | 0.3016 | 28.0 | 1120 | 1.5289 | 0.5062 | | 0.3016 | 29.0 | 1160 | 1.6067 | 0.5125 | | 0.3016 | 30.0 | 1200 | 1.5002 | 0.5375 | | 0.3016 | 31.0 | 1240 | 1.5404 | 0.55 | | 0.3016 | 32.0 | 1280 | 1.5542 | 0.5563 | | 0.3016 | 33.0 | 1320 | 1.4320 | 0.6062 | | 0.3016 | 34.0 | 1360 | 1.6465 | 0.5312 | | 0.3016 | 35.0 | 1400 | 1.7259 | 0.5062 | | 0.3016 | 36.0 | 1440 | 1.5655 | 0.5687 | | 0.3016 | 37.0 | 1480 | 1.4517 | 0.6188 | | 0.1764 | 38.0 | 1520 | 1.5884 | 0.575 | | 0.1764 | 39.0 | 1560 | 1.4692 | 0.5813 | | 0.1764 | 40.0 | 1600 | 1.5062 | 0.6125 | | 0.1764 | 41.0 | 1640 | 1.5122 | 0.6 | | 0.1764 | 42.0 | 1680 | 1.5859 | 0.6 | | 0.1764 | 43.0 | 1720 | 1.6816 | 0.525 | | 0.1764 | 44.0 | 1760 | 1.5594 | 0.6062 | | 0.1764 | 45.0 | 1800 | 1.7011 | 0.5375 | | 0.1764 | 46.0 | 1840 | 1.5676 | 0.575 | | 0.1764 | 47.0 | 1880 | 1.5260 | 0.6 | | 0.1764 | 48.0 | 1920 | 1.5711 | 0.575 | | 0.1764 | 49.0 | 1960 | 1.7095 | 0.5563 | | 0.1256 | 50.0 | 2000 | 1.7625 | 0.5188 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
reallygoodtechdeals/autotrain-lane-center-8-89748143997
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 89748143997 - CO2 Emissions (in grams): 0.4943 ## Validation Metrics - Loss: 0.693 - Accuracy: 0.523 - Precision: 0.417 - Recall: 0.263 - AUC: 0.371 - F1: 0.323
[ "slight_left", "slight_right" ]
dima806/fast_food_image_detection
Returns fast food type based on an image with about 98% accuracy. See https://www.kaggle.com/code/dima806/fast-food-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Burger 0.9466 0.9750 0.9606 400 Taco 0.9578 0.9650 0.9614 400 Baked Potato 0.9827 0.9925 0.9876 400 Hot Dog 0.9872 0.9698 0.9784 397 Pizza 0.9875 0.9875 0.9875 400 Sandwich 0.9724 0.9724 0.9724 399 Fries 0.9748 0.9675 0.9711 400 Donut 0.9827 1.0000 0.9913 397 Crispy Chicken 0.9822 0.9650 0.9735 400 Taquito 0.9923 0.9700 0.9810 400 accuracy 0.9765 3993 macro avg 0.9766 0.9765 0.9765 3993 weighted avg 0.9766 0.9765 0.9765 3993 ```
[ "burger", "taco", "baked potato", "hot dog", "pizza", "sandwich", "fries", "donut", "crispy chicken", "taquito" ]
gilbertoesp/vit-model-beans-health
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model-beans-health This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0441 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.134 | 3.85 | 500 | 0.0441 | 0.9774 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "angular_leaf_spot", "bean_rust", "healthy" ]
hansin91/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2677 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9379 | 0.97 | 13 | 1.2947 | 0.4875 | | 0.9235 | 1.95 | 26 | 1.3397 | 0.475 | | 0.8298 | 3.0 | 40 | 1.2971 | 0.5563 | | 0.8883 | 3.98 | 53 | 1.3434 | 0.4875 | | 0.8547 | 4.95 | 66 | 1.3226 | 0.475 | | 0.8129 | 6.0 | 80 | 1.3077 | 0.5062 | | 0.8095 | 6.97 | 93 | 1.2503 | 0.525 | | 0.7764 | 7.95 | 106 | 1.2989 | 0.5312 | | 0.7004 | 9.0 | 120 | 1.3383 | 0.4813 | | 0.7013 | 9.97 | 133 | 1.3370 | 0.5125 | | 0.6416 | 10.95 | 146 | 1.3073 | 0.5125 | | 0.5831 | 12.0 | 160 | 1.3192 | 0.5 | | 0.5968 | 12.97 | 173 | 1.2394 | 0.5375 | | 0.5434 | 13.95 | 186 | 1.3389 | 0.5188 | | 0.4605 | 15.0 | 200 | 1.2951 | 0.525 | | 0.4674 | 15.97 | 213 | 1.2038 | 0.5687 | | 0.3953 | 16.95 | 226 | 1.4019 | 0.5062 | | 0.3595 | 18.0 | 240 | 1.4442 | 0.4813 | | 0.3619 | 18.98 | 253 | 1.4213 | 0.525 | | 0.3304 | 19.95 | 266 | 1.2937 | 0.5437 | | 0.34 | 21.0 | 280 | 1.3024 | 0.5687 | | 0.4215 | 21.98 | 293 | 1.4018 | 0.5375 | | 0.3606 | 22.95 | 306 | 1.4221 | 0.5375 | | 0.3402 | 24.0 | 320 | 1.4987 | 0.4313 | | 0.3058 | 24.98 | 333 | 1.5120 | 0.5125 | | 0.3047 | 25.95 | 346 | 1.5749 | 0.5 | | 0.3616 | 27.0 | 360 | 1.4293 | 0.5188 | | 0.3315 | 27.98 | 373 | 1.5326 | 0.5312 | | 0.3535 | 28.95 | 386 | 1.5095 | 0.5188 | | 0.3056 | 29.25 | 390 | 1.5366 | 0.5 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
axelit64/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3340 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.5156 | 0.45 | | No log | 2.0 | 80 | 1.4200 | 0.4562 | | No log | 3.0 | 120 | 1.3790 | 0.5 | | No log | 4.0 | 160 | 1.2859 | 0.525 | | No log | 5.0 | 200 | 1.2592 | 0.5125 | | No log | 6.0 | 240 | 1.3145 | 0.55 | | No log | 7.0 | 280 | 1.3267 | 0.4813 | | No log | 8.0 | 320 | 1.3288 | 0.5 | | No log | 9.0 | 360 | 1.3073 | 0.5 | | No log | 10.0 | 400 | 1.3066 | 0.5188 | | No log | 11.0 | 440 | 1.2691 | 0.5563 | | No log | 12.0 | 480 | 1.2809 | 0.5437 | | 0.876 | 13.0 | 520 | 1.2963 | 0.5625 | | 0.876 | 14.0 | 560 | 1.2965 | 0.5312 | | 0.876 | 15.0 | 600 | 1.3542 | 0.5188 | | 0.876 | 16.0 | 640 | 1.3489 | 0.5125 | | 0.876 | 17.0 | 680 | 1.3146 | 0.5687 | | 0.876 | 18.0 | 720 | 1.2442 | 0.575 | | 0.876 | 19.0 | 760 | 1.3497 | 0.575 | | 0.876 | 20.0 | 800 | 1.3316 | 0.5437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
ahmadtrg/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6734 - Accuracy: 0.35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.9397 | 0.3125 | | No log | 2.0 | 80 | 1.7367 | 0.325 | | No log | 3.0 | 120 | 1.6626 | 0.3812 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
FarizFirdaus/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4916 - Accuracy: 0.4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 2.0695 | 0.1812 | | No log | 2.0 | 40 | 2.0566 | 0.2062 | | No log | 3.0 | 60 | 2.0300 | 0.2625 | | No log | 4.0 | 80 | 1.9731 | 0.3125 | | No log | 5.0 | 100 | 1.8858 | 0.3375 | | No log | 6.0 | 120 | 1.7904 | 0.3438 | | No log | 7.0 | 140 | 1.7051 | 0.3875 | | No log | 8.0 | 160 | 1.6312 | 0.4 | | No log | 9.0 | 180 | 1.5429 | 0.45 | | No log | 10.0 | 200 | 1.4916 | 0.4688 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
asyafalni/vit-emotion-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-emotion-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3090 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4729 | 1.0 | 10 | 1.5748 | 0.4875 | | 1.4484 | 2.0 | 20 | 1.5526 | 0.4875 | | 1.4053 | 3.0 | 30 | 1.5228 | 0.4562 | | 1.3492 | 4.0 | 40 | 1.4721 | 0.5 | | 1.2664 | 5.0 | 50 | 1.4448 | 0.5125 | | 1.2005 | 6.0 | 60 | 1.3783 | 0.5062 | | 1.1231 | 7.0 | 70 | 1.3427 | 0.5375 | | 1.0472 | 8.0 | 80 | 1.2859 | 0.5625 | | 0.9852 | 9.0 | 90 | 1.2732 | 0.5813 | | 0.8974 | 10.0 | 100 | 1.2220 | 0.575 | | 0.8314 | 11.0 | 110 | 1.2782 | 0.5312 | | 0.7964 | 12.0 | 120 | 1.2889 | 0.5437 | | 0.6993 | 13.0 | 130 | 1.2989 | 0.5188 | | 0.6915 | 14.0 | 140 | 1.3053 | 0.5375 | | 0.608 | 15.0 | 150 | 1.2563 | 0.5875 | | 0.5416 | 16.0 | 160 | 1.2473 | 0.5563 | | 0.5202 | 17.0 | 170 | 1.2753 | 0.5625 | | 0.5047 | 18.0 | 180 | 1.2791 | 0.5563 | | 0.4779 | 19.0 | 190 | 1.3142 | 0.5437 | | 0.4569 | 20.0 | 200 | 1.2743 | 0.5813 | | 0.4313 | 21.0 | 210 | 1.2727 | 0.5312 | | 0.4536 | 22.0 | 220 | 1.2514 | 0.5938 | | 0.4166 | 23.0 | 230 | 1.3260 | 0.5312 | | 0.3673 | 24.0 | 240 | 1.2950 | 0.55 | | 0.3544 | 25.0 | 250 | 1.2268 | 0.5875 | | 0.3568 | 26.0 | 260 | 1.3874 | 0.4875 | | 0.3509 | 27.0 | 270 | 1.3735 | 0.525 | | 0.3711 | 28.0 | 280 | 1.2886 | 0.5375 | | 0.3555 | 29.0 | 290 | 1.3152 | 0.5375 | | 0.3068 | 30.0 | 300 | 1.3927 | 0.5375 | | 0.3007 | 31.0 | 310 | 1.4131 | 0.5188 | | 0.3062 | 32.0 | 320 | 1.3256 | 0.575 | | 0.3114 | 33.0 | 330 | 1.3714 | 0.5 | | 0.279 | 34.0 | 340 | 1.4198 | 0.5188 | | 0.2888 | 35.0 | 350 | 1.5321 | 0.475 | | 0.2647 | 36.0 | 360 | 1.4342 | 0.5062 | | 0.2574 | 37.0 | 370 | 1.4149 | 0.5563 | | 0.2539 | 38.0 | 380 | 1.4286 | 0.5125 | | 0.2566 | 39.0 | 390 | 1.4805 | 0.5125 | | 0.2298 | 40.0 | 400 | 1.3820 | 0.4875 | | 0.2236 | 41.0 | 410 | 1.3683 | 0.5437 | | 0.2201 | 42.0 | 420 | 1.3332 | 0.5687 | | 0.2696 | 43.0 | 430 | 1.4725 | 0.5188 | | 0.2319 | 44.0 | 440 | 1.3926 | 0.5375 | | 0.2269 | 45.0 | 450 | 1.3477 | 0.5563 | | 0.2201 | 46.0 | 460 | 1.4054 | 0.5563 | | 0.2114 | 47.0 | 470 | 1.3308 | 0.55 | | 0.2319 | 48.0 | 480 | 1.3353 | 0.5625 | | 0.2177 | 49.0 | 490 | 1.3019 | 0.5437 | | 0.2042 | 50.0 | 500 | 1.3089 | 0.5875 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Alfiyani/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4124 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8082 | 0.3 | | No log | 2.0 | 80 | 1.5637 | 0.3688 | | No log | 3.0 | 120 | 1.4570 | 0.4562 | | No log | 4.0 | 160 | 1.4012 | 0.525 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
irispansee/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8157 - Accuracy: 0.3375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 2.0226 | 0.2625 | | No log | 2.0 | 40 | 1.8855 | 0.2938 | | No log | 3.0 | 60 | 1.8171 | 0.35 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
dima806/portuguese_meals_image_detection
Return Portuguese meal type based on an image. See https://www.kaggle.com/code/dima806/portuguese-meals-image-detection-vit for more details. ``` Classification report: precision recall f1-score support donuts 1.0000 0.9861 0.9930 216 hamburguer 1.0000 0.9954 0.9977 216 feijoada 0.9954 0.9908 0.9931 217 batatas_fritas 1.0000 1.0000 1.0000 216 esparguete_bolonhesa 1.0000 1.0000 1.0000 216 caldo_verde 0.9954 1.0000 0.9977 217 pasteis_bacalhau 0.9954 1.0000 0.9977 217 cozido_portuguesa 1.0000 1.0000 1.0000 216 jardineira 1.0000 1.0000 1.0000 217 arroz_cabidela 1.0000 1.0000 1.0000 216 nata 1.0000 1.0000 1.0000 216 croissant 1.0000 1.0000 1.0000 216 cachorro 0.9954 0.9954 0.9954 217 tripas_moda_porto 0.9909 1.0000 0.9954 217 aletria 0.9954 1.0000 0.9977 216 pizza 0.9954 0.9954 0.9954 217 bacalhau_natas 1.0000 1.0000 1.0000 216 ovo 0.9954 1.0000 0.9977 217 waffles 1.0000 1.0000 1.0000 216 francesinha 1.0000 1.0000 1.0000 217 bolo_chocolate 1.0000 0.9954 0.9977 216 gelado 0.9954 0.9954 0.9954 217 bacalhau_bras 1.0000 1.0000 1.0000 216 accuracy 0.9980 4978 macro avg 0.9980 0.9980 0.9980 4978 weighted avg 0.9980 0.9980 0.9980 4978 ```
[ "donuts", "hamburguer", "feijoada", "batatas_fritas", "esparguete_bolonhesa", "caldo_verde", "pasteis_bacalhau", "cozido_portuguesa", "jardineira", "arroz_cabidela", "nata", "croissant", "cachorro", "tripas_moda_porto", "aletria", "pizza", "bacalhau_natas", "ovo", "waffles", "francesinha", "bolo_chocolate", "gelado", "bacalhau_bras" ]
gabrieloken/exercise
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exercise This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4071 - eval_accuracy: 0.55 - eval_runtime: 123.033 - eval_samples_per_second: 1.3 - eval_steps_per_second: 0.081 - epoch: 0.03 - step: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
clauculus/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6838 - Accuracy: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.3274 | 0.5125 | | No log | 2.0 | 20 | 1.3119 | 0.5188 | | No log | 3.0 | 30 | 1.3825 | 0.4625 | | No log | 4.0 | 40 | 1.2916 | 0.5312 | | No log | 5.0 | 50 | 1.2821 | 0.525 | | No log | 6.0 | 60 | 1.2407 | 0.525 | | No log | 7.0 | 70 | 1.3288 | 0.5125 | | No log | 8.0 | 80 | 1.2818 | 0.525 | | No log | 9.0 | 90 | 1.3710 | 0.4875 | | No log | 10.0 | 100 | 1.3298 | 0.5312 | | No log | 11.0 | 110 | 1.3539 | 0.475 | | No log | 12.0 | 120 | 1.4498 | 0.4688 | | No log | 13.0 | 130 | 1.5422 | 0.4437 | | No log | 14.0 | 140 | 1.4870 | 0.4625 | | No log | 15.0 | 150 | 1.4354 | 0.525 | | No log | 16.0 | 160 | 1.4286 | 0.4938 | | No log | 17.0 | 170 | 1.5332 | 0.4437 | | No log | 18.0 | 180 | 1.4164 | 0.5188 | | No log | 19.0 | 190 | 1.5024 | 0.4625 | | No log | 20.0 | 200 | 1.4730 | 0.5125 | | No log | 21.0 | 210 | 1.3083 | 0.55 | | No log | 22.0 | 220 | 1.4468 | 0.525 | | No log | 23.0 | 230 | 1.3198 | 0.525 | | No log | 24.0 | 240 | 1.3530 | 0.5563 | | No log | 25.0 | 250 | 1.4821 | 0.4938 | | No log | 26.0 | 260 | 1.3475 | 0.5437 | | No log | 27.0 | 270 | 1.5152 | 0.4875 | | No log | 28.0 | 280 | 1.4290 | 0.55 | | No log | 29.0 | 290 | 1.5505 | 0.5 | | No log | 30.0 | 300 | 1.5796 | 0.5062 | | No log | 31.0 | 310 | 1.5988 | 0.5125 | | No log | 32.0 | 320 | 1.6272 | 0.4875 | | No log | 33.0 | 330 | 1.4324 | 0.5437 | | No log | 34.0 | 340 | 1.5245 | 0.5062 | | No log | 35.0 | 350 | 1.7228 | 0.45 | | No log | 36.0 | 360 | 1.4861 | 0.525 | | No log | 37.0 | 370 | 1.5317 | 0.5312 | | No log | 38.0 | 380 | 1.7776 | 0.475 | | No log | 39.0 | 390 | 1.5386 | 0.5563 | | No log | 40.0 | 400 | 1.7608 | 0.475 | | No log | 41.0 | 410 | 1.5469 | 0.55 | | No log | 42.0 | 420 | 1.6919 | 0.4625 | | No log | 43.0 | 430 | 1.5814 | 0.525 | | No log | 44.0 | 440 | 1.5877 | 0.5125 | | No log | 45.0 | 450 | 1.6370 | 0.5188 | | No log | 46.0 | 460 | 1.7375 | 0.5188 | | No log | 47.0 | 470 | 1.7004 | 0.5 | | No log | 48.0 | 480 | 1.6309 | 0.4938 | | No log | 49.0 | 490 | 1.5931 | 0.5437 | | 0.2996 | 50.0 | 500 | 1.7687 | 0.5062 | | 0.2996 | 51.0 | 510 | 1.5321 | 0.5188 | | 0.2996 | 52.0 | 520 | 1.8099 | 0.4688 | | 0.2996 | 53.0 | 530 | 1.5138 | 0.575 | | 0.2996 | 54.0 | 540 | 1.7569 | 0.4688 | | 0.2996 | 55.0 | 550 | 1.7451 | 0.4813 | | 0.2996 | 56.0 | 560 | 1.6871 | 0.5125 | | 0.2996 | 57.0 | 570 | 1.6471 | 0.525 | | 0.2996 | 58.0 | 580 | 1.6966 | 0.525 | | 0.2996 | 59.0 | 590 | 1.7714 | 0.5 | | 0.2996 | 60.0 | 600 | 1.4985 | 0.5938 | | 0.2996 | 61.0 | 610 | 1.9804 | 0.4313 | | 0.2996 | 62.0 | 620 | 1.6116 | 0.5375 | | 0.2996 | 63.0 | 630 | 1.6056 | 0.525 | | 0.2996 | 64.0 | 640 | 1.6115 | 0.5062 | | 0.2996 | 65.0 | 650 | 1.9694 | 0.4625 | | 0.2996 | 66.0 | 660 | 1.6338 | 0.5563 | | 0.2996 | 67.0 | 670 | 1.4823 | 0.5938 | | 0.2996 | 68.0 | 680 | 1.9253 | 0.5 | | 0.2996 | 69.0 | 690 | 1.9015 | 0.4813 | | 0.2996 | 70.0 | 700 | 1.5446 | 0.5687 | | 0.2996 | 71.0 | 710 | 1.9302 | 0.4938 | | 0.2996 | 72.0 | 720 | 1.6973 | 0.5375 | | 0.2996 | 73.0 | 730 | 1.8271 | 0.5 | | 0.2996 | 74.0 | 740 | 1.7559 | 0.5188 | | 0.2996 | 75.0 | 750 | 1.8127 | 0.5312 | | 0.2996 | 76.0 | 760 | 1.8096 | 0.4938 | | 0.2996 | 77.0 | 770 | 1.8460 | 0.5062 | | 0.2996 | 78.0 | 780 | 1.8853 | 0.4813 | | 0.2996 | 79.0 | 790 | 1.7706 | 0.5125 | | 0.2996 | 80.0 | 800 | 1.8129 | 0.5312 | | 0.2996 | 81.0 | 810 | 1.9488 | 0.4688 | | 0.2996 | 82.0 | 820 | 1.8817 | 0.4813 | | 0.2996 | 83.0 | 830 | 1.6759 | 0.5563 | | 0.2996 | 84.0 | 840 | 1.6884 | 0.5 | | 0.2996 | 85.0 | 850 | 1.8146 | 0.4875 | | 0.2996 | 86.0 | 860 | 1.6610 | 0.55 | | 0.2996 | 87.0 | 870 | 1.8811 | 0.475 | | 0.2996 | 88.0 | 880 | 1.8964 | 0.5062 | | 0.2996 | 89.0 | 890 | 1.6848 | 0.5437 | | 0.2996 | 90.0 | 900 | 1.8642 | 0.4938 | | 0.2996 | 91.0 | 910 | 1.8819 | 0.5125 | | 0.2996 | 92.0 | 920 | 1.9193 | 0.4875 | | 0.2996 | 93.0 | 930 | 1.8110 | 0.5 | | 0.2996 | 94.0 | 940 | 1.9086 | 0.4813 | | 0.2996 | 95.0 | 950 | 1.8895 | 0.4625 | | 0.2996 | 96.0 | 960 | 1.7554 | 0.5312 | | 0.2996 | 97.0 | 970 | 1.8978 | 0.5188 | | 0.2996 | 98.0 | 980 | 1.9791 | 0.4875 | | 0.2996 | 99.0 | 990 | 1.7030 | 0.5687 | | 0.0883 | 100.0 | 1000 | 1.8398 | 0.4813 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
aswincandra/rgai_emotion_recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rgai_emotion_recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. It achieves the following results on the evaluation set: - Loss: 1.3077 - Accuracy: 0.5813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0698 | 1.0 | 25 | 2.0921 | 0.1125 | | 1.973 | 2.0 | 50 | 1.9930 | 0.1938 | | 1.8091 | 3.0 | 75 | 1.8374 | 0.3937 | | 1.5732 | 4.0 | 100 | 1.6804 | 0.475 | | 1.4087 | 5.0 | 125 | 1.5660 | 0.5125 | | 1.2653 | 6.0 | 150 | 1.4769 | 0.5375 | | 1.1443 | 7.0 | 175 | 1.4084 | 0.55 | | 0.9888 | 8.0 | 200 | 1.3633 | 0.5625 | | 0.9029 | 9.0 | 225 | 1.3305 | 0.55 | | 0.8372 | 10.0 | 250 | 1.3077 | 0.5813 | | 0.7569 | 11.0 | 275 | 1.2983 | 0.5625 | | 0.6886 | 12.0 | 300 | 1.2806 | 0.5687 | | 0.6216 | 13.0 | 325 | 1.2718 | 0.5687 | | 0.6385 | 14.0 | 350 | 1.2700 | 0.5563 | | 0.6029 | 15.0 | 375 | 1.2693 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
Karsinogenic69/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4512 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4449 | 0.4688 | | No log | 2.0 | 80 | 1.4457 | 0.4938 | | No log | 3.0 | 120 | 1.3813 | 0.5563 | | No log | 4.0 | 160 | 1.5903 | 0.4313 | | No log | 5.0 | 200 | 1.4512 | 0.5 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
amona-io/house_fault_classification
# 주택 하자 분류 주택 시공 후 하자들에 대한 카테고리를 분류 해주는 모델. - 분류 가능한 카테고리 ``` concentrator_broken: 전기콘센트 파손 faultyopening: 문열림 불량 insectscreen_check: 방충망 불량 pedal_malfunction: 페달 작동 오류 wall_contamination: 벽지 오염 wall_crack: 벽 균열 wall_peeloff: 벽지 훼손 waterleak: 천장 누수 ```
[ "concentrator_broken", "faultyopening", "insectscreen_check", "pedal_malfunction", "wall_contamination", "wall_crack", "wall_peeloff", "waterleak" ]
michaelsinanta/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7674 - Accuracy: 0.325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.9714 | 0.2938 | | No log | 2.0 | 80 | 1.7702 | 0.3375 | | No log | 3.0 | 120 | 1.7064 | 0.3125 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
kamilersz/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6249 - Accuracy: 0.3688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8602 | 0.275 | | No log | 2.0 | 80 | 1.6744 | 0.3563 | | No log | 3.0 | 120 | 1.6277 | 0.375 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
amrul-hzz/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6320 - Accuracy: 0.4437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8561 | 0.4062 | | No log | 2.0 | 80 | 1.6491 | 0.4313 | | No log | 3.0 | 120 | 1.5929 | 0.4188 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
grahmatagung/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1877 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8317 | 0.2938 | | No log | 2.0 | 80 | 1.5647 | 0.4437 | | No log | 3.0 | 120 | 1.4497 | 0.4938 | | No log | 4.0 | 160 | 1.3529 | 0.5188 | | No log | 5.0 | 200 | 1.2883 | 0.5125 | | No log | 6.0 | 240 | 1.2861 | 0.5125 | | No log | 7.0 | 280 | 1.2655 | 0.55 | | No log | 8.0 | 320 | 1.2890 | 0.5125 | | No log | 9.0 | 360 | 1.1955 | 0.575 | | No log | 10.0 | 400 | 1.2180 | 0.5687 | | No log | 11.0 | 440 | 1.2835 | 0.55 | | No log | 12.0 | 480 | 1.2838 | 0.5188 | | 1.0368 | 13.0 | 520 | 1.2168 | 0.5875 | | 1.0368 | 14.0 | 560 | 1.1713 | 0.6312 | | 1.0368 | 15.0 | 600 | 1.2222 | 0.5875 | | 1.0368 | 16.0 | 640 | 1.3160 | 0.5563 | | 1.0368 | 17.0 | 680 | 1.2512 | 0.6125 | | 1.0368 | 18.0 | 720 | 1.3575 | 0.5563 | | 1.0368 | 19.0 | 760 | 1.3514 | 0.5375 | | 1.0368 | 20.0 | 800 | 1.3472 | 0.5625 | | 1.0368 | 21.0 | 840 | 1.3449 | 0.5375 | | 1.0368 | 22.0 | 880 | 1.3783 | 0.5375 | | 1.0368 | 23.0 | 920 | 1.3240 | 0.575 | | 1.0368 | 24.0 | 960 | 1.3391 | 0.5687 | | 0.2885 | 25.0 | 1000 | 1.3723 | 0.55 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
dima806/coffee_bean_roast_image_detection
Returns coffee roast type given bean image. See https://www.kaggle.com/code/dima806/roasted-coffee-bean-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Dark 1.0000 1.0000 1.0000 160 Light 1.0000 1.0000 1.0000 160 Green 1.0000 1.0000 1.0000 160 Medium 1.0000 1.0000 1.0000 160 accuracy 1.0000 640 macro avg 1.0000 1.0000 1.0000 640 weighted avg 1.0000 1.0000 1.0000 640 ```
[ "dark", "light", "green", "medium" ]
ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier
# Fine-Tuned ViT for Beans Leaf Disease Classification ## Model Information * **Model Name**: VIT_Beans_Leaf_Disease_Classifier * **Base Model**: Google/ViT-base-patch16-224-in21k * **Task**: Image Classification (Beans Leaf Disease Classification) * **Dataset**: Beans leaf dataset with images of diseased and healthy leaves. ## Problem Statement The goal of this model is to classify leaf images into three categories: ``` { "angular_leaf_spot": 0, "bean_rust": 1, "healthy": 2, } ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6338c06c107c4835a05699f9/3qwVfVNQSt0KHe8t_OCrT.png) ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1495 | 1.54 | 100 | 0.0910 | 0.9774 | | 0.0121 | 3.08 | 200 | 0.0155 | 1.0 | ## Framework versions + Transformers 4.33.2 + Pytorch 2.0.1+cu118 + Datasets 2.14.5 + Tokenizers 0.13.3 ## Get Started With The Model: ``` ! pip -q install datasets transformers[torch] ``` ```python from transformers import pipeline from PIL import Image # Use a pipeline as a high-level helper pipe = pipeline("image-classification", model="ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier") # Load the image image_path = "Your image_path " image = Image.open(image_path) # Run inference using the pipeline result = pipe(image) # The result contains the predicted label and the corresponding score predicted_label = result[0]['label'] confidence_score = result[0]['score'] print(f"Predicted Label: {predicted_label}") print(f"Confidence Score: {confidence_score}") ```
[ "angular_leaf_spot", "bean_rust", "healthy" ]
adityagofi/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0228 - Accuracy: 0.2437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 2.0545 | 0.2062 | | No log | 2.0 | 80 | 2.0342 | 0.2437 | | No log | 3.0 | 120 | 2.0232 | 0.3375 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
nadyadtm/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6689 - Accuracy: 0.4062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8836 | 0.3375 | | No log | 2.0 | 80 | 1.6596 | 0.4562 | | No log | 3.0 | 120 | 1.6118 | 0.4125 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
raffel-22/emotion_classification_2_continue
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification_2_continue This model is a fine-tuned version of [raffel-22/emotion_classification_2](https://huggingface.co/raffel-22/emotion_classification_2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8978 - Accuracy: 0.725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 0.9714 | 0.7063 | | No log | 2.0 | 40 | 0.9432 | 0.7188 | | No log | 3.0 | 60 | 0.9633 | 0.7 | | No log | 4.0 | 80 | 0.9322 | 0.7375 | | No log | 5.0 | 100 | 0.8530 | 0.7063 | | No log | 6.0 | 120 | 0.9063 | 0.7063 | | No log | 7.0 | 140 | 0.8451 | 0.7125 | | No log | 8.0 | 160 | 0.9672 | 0.6375 | | No log | 9.0 | 180 | 0.9036 | 0.6937 | | No log | 10.0 | 200 | 0.9261 | 0.6562 | | No log | 11.0 | 220 | 0.8963 | 0.6937 | | No log | 12.0 | 240 | 0.8852 | 0.7188 | | No log | 13.0 | 260 | 0.8728 | 0.7063 | | No log | 14.0 | 280 | 0.9559 | 0.6875 | | No log | 15.0 | 300 | 0.9352 | 0.65 | | No log | 16.0 | 320 | 0.8638 | 0.7 | | No log | 17.0 | 340 | 0.9156 | 0.7 | | No log | 18.0 | 360 | 1.0299 | 0.6687 | | No log | 19.0 | 380 | 0.8983 | 0.675 | | No log | 20.0 | 400 | 0.8858 | 0.7063 | | No log | 21.0 | 420 | 0.9699 | 0.6937 | | No log | 22.0 | 440 | 1.0603 | 0.625 | | No log | 23.0 | 460 | 1.0404 | 0.6312 | | No log | 24.0 | 480 | 0.8838 | 0.6937 | | 0.4269 | 25.0 | 500 | 0.9280 | 0.6937 | | 0.4269 | 26.0 | 520 | 0.9456 | 0.6937 | | 0.4269 | 27.0 | 540 | 0.9640 | 0.6937 | | 0.4269 | 28.0 | 560 | 0.9865 | 0.6937 | | 0.4269 | 29.0 | 580 | 0.8900 | 0.7188 | | 0.4269 | 30.0 | 600 | 0.9408 | 0.7063 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
kayleenp/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5552 - Accuracy: 0.4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.7654 | 0.3125 | | No log | 2.0 | 80 | 1.5370 | 0.4813 | | No log | 3.0 | 120 | 1.4791 | 0.4813 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
awrysfab/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9328 - Accuracy: 0.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0637 | 1.0 | 10 | 2.0316 | 0.25 | | 1.9805 | 2.0 | 20 | 1.9603 | 0.2687 | | 1.9061 | 3.0 | 30 | 1.9404 | 0.3063 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "calling", "clapping", "running", "sitting", "sleeping", "texting", "using_laptop", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music" ]
ri-xx/vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6306 - Accuracy: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.2472 | 0.5312 | | No log | 2.0 | 80 | 1.2878 | 0.5188 | | No log | 3.0 | 120 | 1.3116 | 0.525 | | No log | 4.0 | 160 | 1.2578 | 0.55 | | No log | 5.0 | 200 | 1.2186 | 0.5563 | | No log | 6.0 | 240 | 1.2680 | 0.5563 | | No log | 7.0 | 280 | 1.3674 | 0.5 | | No log | 8.0 | 320 | 1.3814 | 0.525 | | No log | 9.0 | 360 | 1.4394 | 0.5 | | No log | 10.0 | 400 | 1.3710 | 0.5437 | | No log | 11.0 | 440 | 1.3721 | 0.5437 | | No log | 12.0 | 480 | 1.4309 | 0.5563 | | 0.4861 | 13.0 | 520 | 1.3424 | 0.575 | | 0.4861 | 14.0 | 560 | 1.4617 | 0.525 | | 0.4861 | 15.0 | 600 | 1.3964 | 0.5813 | | 0.4861 | 16.0 | 640 | 1.4751 | 0.5687 | | 0.4861 | 17.0 | 680 | 1.5296 | 0.55 | | 0.4861 | 18.0 | 720 | 1.5887 | 0.5188 | | 0.4861 | 19.0 | 760 | 1.5784 | 0.5312 | | 0.4861 | 20.0 | 800 | 1.7036 | 0.5375 | | 0.4861 | 21.0 | 840 | 1.6988 | 0.5188 | | 0.4861 | 22.0 | 880 | 1.6070 | 0.5687 | | 0.4861 | 23.0 | 920 | 1.7111 | 0.55 | | 0.4861 | 24.0 | 960 | 1.6730 | 0.55 | | 0.2042 | 25.0 | 1000 | 1.6559 | 0.55 | | 0.2042 | 26.0 | 1040 | 1.7221 | 0.5563 | | 0.2042 | 27.0 | 1080 | 1.6637 | 0.5813 | | 0.2042 | 28.0 | 1120 | 1.6806 | 0.5625 | | 0.2042 | 29.0 | 1160 | 1.5743 | 0.5938 | | 0.2042 | 30.0 | 1200 | 1.7899 | 0.4938 | | 0.2042 | 31.0 | 1240 | 1.7422 | 0.5312 | | 0.2042 | 32.0 | 1280 | 1.7712 | 0.55 | | 0.2042 | 33.0 | 1320 | 1.7480 | 0.5188 | | 0.2042 | 34.0 | 1360 | 1.7964 | 0.5375 | | 0.2042 | 35.0 | 1400 | 1.9687 | 0.5188 | | 0.2042 | 36.0 | 1440 | 1.7412 | 0.5813 | | 0.2042 | 37.0 | 1480 | 1.9312 | 0.4875 | | 0.1342 | 38.0 | 1520 | 1.7944 | 0.525 | | 0.1342 | 39.0 | 1560 | 1.8180 | 0.55 | | 0.1342 | 40.0 | 1600 | 1.7720 | 0.5563 | | 0.1342 | 41.0 | 1640 | 1.9014 | 0.5312 | | 0.1342 | 42.0 | 1680 | 1.7519 | 0.55 | | 0.1342 | 43.0 | 1720 | 1.9793 | 0.5 | | 0.1342 | 44.0 | 1760 | 1.8642 | 0.55 | | 0.1342 | 45.0 | 1800 | 1.7573 | 0.5875 | | 0.1342 | 46.0 | 1840 | 1.8508 | 0.5125 | | 0.1342 | 47.0 | 1880 | 1.9741 | 0.5625 | | 0.1342 | 48.0 | 1920 | 1.9012 | 0.525 | | 0.1342 | 49.0 | 1960 | 1.8771 | 0.5625 | | 0.0926 | 50.0 | 2000 | 1.8728 | 0.5125 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
dima806/flowers_image_detection
Returns flower type with about 66% accuracy given an image. See https://www.kaggle.com/code/dima806/flowers-image-detection-vit for more details. ``` Accuracy: 0.6663 F1 Score: 0.6248 Classification report: precision recall f1-score support Aeonium 'Emerald Ice' 0.6429 1.0000 0.7826 144 Aeonium 'Jolly Clusters' 0.8079 1.0000 0.8938 143 Aeonium 'Mardi Gras' 0.8477 0.8951 0.8707 143 Aeonium (Aeonium davidbramwellii 'Sunburst') 0.7705 0.3287 0.4608 143 Aeonium (Aeonium nobile) 0.6829 0.1944 0.3027 144 Aeonium castello-paivae 'Harry Mak' 0.8312 0.8889 0.8591 144 Aeoniums (Aeonium) 1.0000 0.0070 0.0139 143 African Blue Basil (Ocimum 'African Blue') 0.6190 0.4545 0.5242 143 Aloe 'Orange Marmalade' 0.7010 1.0000 0.8242 143 Aloes (Aloe) 0.1127 0.1111 0.1119 144 Alpine Strawberry (Fragaria vesca) 0.6859 0.7431 0.7133 144 Althea (Hibiscus syriacus Blueberry Smoothie™) 0.8136 1.0000 0.8972 144 Amazon Jungle Vine (Vitis amazonica) 0.8866 0.6014 0.7167 143 American Arborvitae (Thuja occidentalis 'Hetz Midget') 0.4828 0.0972 0.1618 144 American Arborvitae (Thuja occidentalis 'Rheingold') 0.4490 0.9231 0.6041 143 American Beautyberry (Callicarpa americana) 0.1026 0.0278 0.0437 144 American Cranberrybush Viburnum (Viburnum opulus var. americanum) 0.3889 0.1469 0.2132 143 American Wisteria (Wisteria frutescens 'Amethyst Falls') 0.9762 0.2867 0.4432 143 American Wisteria (Wisteria frutescens 'Blue Moon') 0.6716 0.3125 0.4265 144 Antelope Horns Milkweed (Asclepias asperula subsp. capricornu) 1.0000 0.3566 0.5258 143 Apple (Malus pumila 'Braeburn') 0.4815 0.7222 0.5778 144 Apple (Malus pumila 'Red Delicious') 0.7763 0.4126 0.5388 143 Apple (Malus pumila 'Red Rome') 0.9118 0.2153 0.3483 144 Apple (Malus pumila 'Sweet Bough') 0.7079 1.0000 0.8290 143 Apple (Malus pumila 'Winter Pearmain') 0.8425 0.7483 0.7926 143 Apple Mint (Mentha suaveolens) 1.0000 0.1667 0.2857 144 Apples (Malus) 0.0000 0.0000 0.0000 144 Apricot (Prunus armeniaca 'Gold Kist') 0.4444 1.0000 0.6154 144 Apricot (Prunus armeniaca 'GoldCot') 0.7891 0.7014 0.7426 144 Apricots (Prunus armeniaca) 1.0000 0.0979 0.1783 143 Arborvitae (Thuja 'Green Giant') 0.3821 0.3287 0.3534 143 Arborvitaes (Thuja) 0.7010 1.0000 0.8242 143 Arilbred Iris (Iris 'Stolon Ginger') 0.9796 1.0000 0.9897 144 Aromatic Aster (Symphyotrichum oblongifolium 'October Skies') 0.9565 0.1528 0.2635 144 Arrowwood Viburnum (Viburnum dentatum) 0.1275 0.1319 0.1297 144 Artichoke Agave (Agave parryi var. truncata) 0.4742 0.9650 0.6359 143 Artichokes (Cynara scolymus) 0.8000 0.3333 0.4706 144 Asparagus (Asparagus officinalis) 0.6237 0.4056 0.4915 143 Asparagus officinalis 'Mondeo' 0.8229 1.0000 0.9028 144 Aster (Aster x frikartii 'Monch') 0.2737 0.9301 0.4229 143 Aster (Aster x frikartii Wonder of Stafa) 0.9074 0.6806 0.7778 144 Asters (Aster) 0.8889 0.1667 0.2807 144 Astilbe 'Fanal' 0.5638 0.7413 0.6405 143 Astilbe 'Icecream' 0.8584 0.6736 0.7549 144 Astilbe 'Peach Blossom' 0.5693 0.7986 0.6647 144 Astilbe 'Rheinland' 0.5139 0.5175 0.5157 143 Astilbe 'Straussenfeder' 0.4857 0.9444 0.6415 144 Astilbes (Astilbe) 1.0000 0.0764 0.1419 144 Azalea (Rhododendron 'Blaney's Blue') 0.4881 1.0000 0.6560 143 Azalea (Rhododendron 'Irene Koster') 0.8667 1.0000 0.9286 143 Baby Burro's Tail (Sedum burrito) 0.9211 0.7343 0.8171 143 Baby's Breath (Gypsophila elegans 'Covent Garden') 0.9172 1.0000 0.9568 144 Baby's Breath (Gypsophila elegans 'Kermesina') 0.7826 1.0000 0.8780 144 Baby's Breaths (Gypsophila elegans) 0.8462 1.0000 0.9167 143 Baptisias (Baptisia) 0.5714 0.0278 0.0530 144 Basil (Ocimum basilicum 'Cardinal') 0.7769 0.7014 0.7372 144 Basil (Ocimum basilicum 'Emily') 0.4337 1.0000 0.6050 144 Basils (Ocimum) 0.0000 0.0000 0.0000 144 Beach Morning Glory (Ipomoea pes-caprae) 0.8354 0.4583 0.5919 144 Bean (Phaseolus vulgaris 'Cherokee Trail of Tears') 0.8372 1.0000 0.9114 144 Beardtongue (Penstemon Red Rocks®) 0.8495 0.5524 0.6695 143 Beautyberry (Callicarpa dichotoma 'Early Amethyst') 0.5183 0.6875 0.5910 144 Bee Balm (Monarda 'Blaustrumpf') 0.7222 0.7273 0.7247 143 Bee Balm (Monarda 'Purple Rooster') 0.9250 0.5139 0.6607 144 Bee Balm (Monarda 'Trinity Purple') 1.0000 1.0000 1.0000 143 Bee Balm (Monarda didyma 'Jacob Cline') 0.5509 0.8264 0.6611 144 Bee Balm (Monarda didyma) 0.5714 0.0280 0.0533 143 Beebalm (Monarda didyma 'Marshall's Delight') 0.6133 0.6389 0.6259 144 Beet (Beta vulgaris 'Boro') 0.6164 1.0000 0.7627 143 Beet (Beta vulgaris 'Bull's Blood') 0.9362 0.6111 0.7395 144 Beet (Beta vulgaris 'Camaro') 0.8807 0.6667 0.7589 144 Beet (Beta vulgaris 'Crosby's Egyptian') 0.9919 0.8542 0.9179 144 Beet (Beta vulgaris 'Moneta') 0.9524 0.6944 0.8032 144 Beet (Beta vulgaris 'Robin') 0.6976 1.0000 0.8218 143 Beet (Beta vulgaris 'Solo') 0.7701 1.0000 0.8701 144 Beet (Beta vulgaris 'Zeppo') 0.9051 1.0000 0.9502 143 Beet (Beta vulgaris var. vulgaris) 0.9597 1.0000 0.9795 143 Bellflower (Campanula Fancy Mee®) 0.8720 1.0000 0.9316 143 Bellflower (Campanula rapunculus subsp. rapunculus) 0.8125 1.0000 0.8966 143 Bellflower (Campanula scheuchzeri) 0.8796 0.6597 0.7540 144 Bellflower (Campanula x haylodgensis 'Blue Wonder') 0.4555 0.8951 0.6038 143 Bellflowers (Campanula) 0.9200 0.1597 0.2722 144 Betony (Stachys spathulata) 0.5714 1.0000 0.7273 144 Bigleaf Hydrangea (Hydrangea macrophylla 'Lanarth White') 0.8563 1.0000 0.9226 143 Bigleaf Hydrangea (Hydrangea macrophylla Gentian Dome) 0.5297 0.8681 0.6579 144 Bigleaf Hydrangea (Hydrangea macrophylla) 0.7500 0.0208 0.0405 144 Bitter Aloe (Aloe ferox) 0.5738 0.2431 0.3415 144 Biznaga de Isla Pichilingue (Mammillaria albicans subsp. fraileana) 0.8944 1.0000 0.9443 144 Biznaga de Otero (Mammillaria oteroi) 0.8041 0.8322 0.8179 143 Black Eyed Susan (Rudbeckia fulgida var. sullivantii 'Goldsturm') 0.6604 0.7343 0.6954 143 Black Eyed Susan (Rudbeckia hirta SmileyZ™ Happy) 0.7857 1.0000 0.8800 143 Black Eyed Susan (Rudbeckia hirta var. hirta) 0.9216 0.3264 0.4821 144 Black Eyed Susans (Rudbeckia) 0.0000 0.0000 0.0000 144 Black-eyed Susan (Rudbeckia hirta 'Autumn Colors') 0.4834 0.7133 0.5763 143 Black-eyed Susan (Rudbeckia hirta 'Cappuccino') 0.6455 0.8472 0.7327 144 Black-eyed Susan (Rudbeckia hirta 'Sputnik') 0.8421 1.0000 0.9143 144 Blackberry (Rubus 'Black Satin') 0.7795 0.6923 0.7333 143 Blanket Flower (Gaillardia 'Arizona Sun') 0.6323 0.6806 0.6555 144 Blanket Flower (Gaillardia Mesa™ Red) 0.8090 1.0000 0.8944 144 Blanket Flower (Gaillardia pulchella) 0.8182 0.1250 0.2169 144 Blanket Flower (Gaillardia) 1.0000 0.0347 0.0671 144 Blazing Star (Liatris spicata) 0.0000 0.0000 0.0000 144 Bleeding Heart (Dicentra 'Ivory Hearts') 0.7176 0.8531 0.7796 143 Bleeding Heart (Lamprocapnos spectabilis Valentine™) 0.6378 0.5625 0.5978 144 Bleeding Heart (Lamprocapnos spectabilis) 0.4502 0.7273 0.5561 143 Bleeding Hearts (Lamprocapnos) 0.7333 0.0764 0.1384 144 Blue Daisy (Felicia amelloides) 0.9510 0.6736 0.7886 144 Blue Sage (Salvia azurea) 0.7573 0.5417 0.6316 144 Blue Wild Indigo (Baptisia australis) 0.6792 0.2500 0.3655 144 Bok Choy (Brassica rapa subsp. chinensis 'Joi Choi') 1.0000 1.0000 1.0000 144 Bolivian Hummingbird Sage (Salvia oxyphora) 0.8205 0.6713 0.7385 143 Bradford Pear (Pyrus calleryana 'Bradford') 0.4516 0.1944 0.2718 144 Brassicas (Brassica) 0.8889 0.1111 0.1975 144 Bridalwreath Spiraea (Spiraea prunifolia) 0.4320 0.5069 0.4665 144 Bright Green Dudleya (Dudleya virens) 0.3704 0.0699 0.1176 143 Bulbocodium Daffodil (Narcissus 'Spoirot') 0.7871 0.8472 0.8161 144 Bumpy Convolvulaceae (Ipomoea tuberculata) 0.6333 0.6597 0.6463 144 Bush Bean (Phaseolus vulgaris 'Royal Burgundy') 0.7417 0.6224 0.6768 143 Bush Bean (Phaseolus vulgaris 'Topcrop') 0.7586 0.6154 0.6795 143 Butterfly Bush (Buddleja 'Orange Sceptre') 0.7297 0.9375 0.8207 144 Butterfly Bush (Buddleja Buzz™ Sky Blue) 1.0000 0.2308 0.3750 143 Butterfly Bush (Buddleja Humdinger™ Magenta Munchkin) 0.6698 1.0000 0.8022 144 Butterfly Bush (Buddleja davidii 'Asian Moon') 1.0000 0.3194 0.4842 144 Butterfly Bush (Buddleja davidii 'Black Knight') 0.8617 0.5625 0.6807 144 Butterfly Bush (Buddleja davidii 'Nanho Blue') 0.4169 1.0000 0.5885 143 Butterfly Bush (Buddleja davidii Buzz™ Ivory) 1.0000 0.8750 0.9333 144 Butterfly Milkweed (Asclepias tuberosa) 0.2462 0.1111 0.1531 144 Butterfly Weed (Asclepias tuberosa 'Gay Butterflies') 0.7778 0.0486 0.0915 144 Butterfly Weed (Asclepias tuberosa subsp. tuberosa) 0.4715 0.8611 0.6093 144 Butterhead Lettuce (Lactuca sativa 'Tom Thumb') 0.8563 1.0000 0.9226 143 Butternut Squash (Cucurbita moschata 'Waltham') 0.7937 0.6993 0.7435 143 Butterwort (Pinguicula 'Aphrodite') 0.9231 1.0000 0.9600 144 Butterwort (Pinguicula agnata) 0.8000 0.8333 0.8163 144 Butterwort (Pinguicula cyclosecta) 0.8938 0.7063 0.7891 143 Butterwort (Pinguicula esseriana) 1.0000 1.0000 1.0000 144 Butterwort (Pinguicula gigantea) 0.7150 1.0000 0.8338 143 Butterwort (Pinguicula moctezumae) 0.7200 1.0000 0.8372 144 Cabbage (Brassica oleracea var. capitata 'Deep Blue') 0.7044 1.0000 0.8266 143 Cabbage (Brassica oleracea var. capitata 'Red Jewel') 0.9662 1.0000 0.9828 143 Caladium bicolor 'Fiesta' 1.0000 0.3147 0.4787 143 Caladiums (Caladium) 0.8333 0.0694 0.1282 144 California Fishhook Cactus (Mammillaria dioica) 0.6241 0.5804 0.6014 143 Callery Pear (Pyrus calleryana Chanticleer®) 0.9118 0.2168 0.3503 143 Canna 'Annjee' 0.7956 1.0000 0.8862 144 Canna (Canna x generalis 'Maui Punch') 0.8623 1.0000 0.9260 144 Canna CannaSol™ Lily 0.9474 1.0000 0.9730 144 Canna Tropicanna® 0.7987 0.8881 0.8411 143 Cannas (Canna) 0.6364 0.0490 0.0909 143 Cantaloupe (Cucumis melo 'Ambrosia') 0.8552 0.8671 0.8611 143 Cantaloupe (Cucumis melo 'Orange Silverwave') 0.8229 1.0000 0.9028 144 Cantaloupes (Cucumis melo) 0.7153 0.7203 0.7178 143 Caraway Thyme (Thymus herba-barona) 0.5806 1.0000 0.7347 144 Carrot (Daucus carota subsp. sativus 'Atomic Red') 0.7416 0.4615 0.5690 143 Carrot (Daucus carota subsp. sativus 'Black Nebula') 0.5902 1.0000 0.7423 144 Carrot (Daucus carota subsp. sativus 'Burpees A#1') 0.0000 0.0000 0.0000 144 Carrot (Daucus carota subsp. sativus 'Envy') 0.7951 0.6736 0.7293 144 Carrot (Daucus carota subsp. sativus 'Purple 68') 0.9730 1.0000 0.9863 144 Carrot (Daucus carota subsp. sativus 'Sugarsnax 54') 0.9536 1.0000 0.9763 144 Carrot (Daucus carota subsp. sativus 'Ultimate Hybrid') 0.7371 1.0000 0.8487 143 Catmint (Nepeta Cat's Meow) 0.8182 0.3776 0.5167 143 Catmint (Nepeta x faassenii 'Walker's Low') 0.3636 0.0559 0.0970 143 Catmints (Nepeta) 0.3469 0.1181 0.1762 144 Catnip (Nepeta cataria) 0.2511 0.3889 0.3052 144 Cauliflower (Brassica oleracea var. botrytis 'Steady') 0.9470 1.0000 0.9728 143 Celeriac (Apium graveolens var. rapaceum 'Prague Giant') 0.8276 1.0000 0.9057 144 Celeriac (Apium graveolens var. rapaceum 'Prinz') 0.9114 1.0000 0.9536 144 Celery (Apium graveolens var. dulce 'Lathom Self Blanching Galaxy') 0.4218 1.0000 0.5934 143 Celery (Apium graveolens var. dulce 'Redventure') 0.4138 1.0000 0.5854 144 Celery (Apium graveolens var. dulce 'Tall Utah') 0.7908 0.8403 0.8148 144 Center Stripe Agave (Agave univittata 'Quadricolor') 0.5592 0.9514 0.7044 144 Chalk Rose (Dudleya candida) 0.5946 0.1528 0.2431 144 Cheddar Pink (Dianthus Dessert™ Raspberry Swirl) 0.8563 1.0000 0.9226 143 Cheddar Pink (Dianthus gratianopolitanus BluKiss™) 0.6890 1.0000 0.8159 144 Cherry Plum (Prunus cerasifera 'Thundercloud') 0.7907 0.7083 0.7473 144 Chinese Astilbe (Astilbe rubra) 0.5394 0.6181 0.5761 144 Chinese Dogwood (Cornus kousa subsp. chinensis 'Milky Way') 0.7935 0.5069 0.6186 144 Chinese Lanterns (Hibiscus schizopetalus) 0.8170 0.8741 0.8446 143 Chinese Pear (Pyrus pyrifolia 'Shinseiki') 0.8834 1.0000 0.9381 144 Chinese Rhubarb (Rheum tanguticum) 0.5820 0.7692 0.6627 143 Chinese Wisteria (Wisteria sinensis 'Prolific') 0.3157 1.0000 0.4799 143 Chinese Wisteria (Wisteria sinensis) 0.0000 0.0000 0.0000 144 Chinese rhubarb (Rheum palmatum 'Bowles Crimson') 0.6034 1.0000 0.7526 143 Chives (Allium schoenoprasum) 1.0000 0.2657 0.4199 143 Chocolate Mint (Mentha x piperita 'Chocolate') 0.4492 0.5874 0.5091 143 Cilantro (Coriandrum sativum 'Confetti') 0.6139 0.8671 0.7188 143 Cilantros (Coriandrum sativum) 0.7143 0.0347 0.0662 144 Citron (Citrus medica) 1.0000 0.1888 0.3176 143 Citrus Fruits (Citrus) 1.0000 0.1818 0.3077 143 Clustered Bellflower (Campanula glomerata) 0.9600 0.5035 0.6606 143 Coconino County Desert Beardtongue (Penstemon pseudospectabilis 'Coconino County') 0.7164 1.0000 0.8348 144 Colorado Narrowleaf Beardtongue (Penstemon linarioides) 1.0000 1.0000 1.0000 143 Columbine (Aquilegia Kirigami™ Rose & Pink) 0.6059 1.0000 0.7546 143 Columbine (Aquilegia coerulea Origami™ Blue & White) 0.6589 0.9792 0.7877 144 Columbine (Aquilegia vulgaris 'Adelaide Addison') 0.8994 1.0000 0.9470 143 Columbines (Aquilegia) 0.3636 0.0559 0.0970 143 Common Bean (Phaseolus vulgaris 'Contender') 0.7672 0.6224 0.6873 143 Common Fig (Ficus carica 'Brown Turkey') 0.8421 0.4444 0.5818 144 Common Fig (Ficus carica 'Chicago Hardy') 0.4764 0.8462 0.6096 143 Common Fig (Ficus carica 'Jolly Tiger') 0.8045 1.0000 0.8916 144 Common Fig (Ficus carica 'Violette de Bordeaux') 0.6558 0.7014 0.6779 144 Common Jujube (Ziziphus jujuba 'Lang') 0.8882 1.0000 0.9408 143 Common Jujube (Ziziphus jujuba 'Li') 1.0000 1.0000 1.0000 143 Common Lilac (Syringa vulgaris 'Arch McKean') 0.5878 1.0000 0.7404 144 Common Lilac (Syringa vulgaris 'Wonder Blue') 0.9765 0.5764 0.7249 144 Common Milkweed (Asclepias syriaca) 0.6667 0.0559 0.1032 143 Common Sage (Salvia officinalis 'Tricolor') 0.8994 1.0000 0.9470 143 Compact Queen Victoria Agave (Agave victoriae-reginae subsp. swobodae) 0.3575 1.0000 0.5267 143 Conchilinque (Mammillaria pectinifera) 0.8521 1.0000 0.9201 144 Concord Grape (Vitis labrusca 'Concord') 0.8873 0.4375 0.5860 144 Coneflower (Echinacea 'Virgin') 0.9290 1.0000 0.9632 144 Coneflower (Echinacea Big Sky™ Sundown) 0.3876 0.9161 0.5447 143 Coneflower (Echinacea Double Scoop™ Orangeberry) 1.0000 0.4097 0.5813 144 Coneflower (Echinacea Sombrero® Lemon Yellow Improved) 0.8276 1.0000 0.9057 144 Coneflower (Echinacea purpurea 'Green Twister') 0.7222 1.0000 0.8387 143 Confederate Rose (Hibiscus mutabilis) 0.5833 0.0486 0.0897 144 Coppertone Stonecrop (Sedum nussbaumerianum 'Shooting Stars') 0.6976 1.0000 0.8218 143 Coral Bells (Heuchera 'Amethyst Myst') 0.2936 1.0000 0.4540 143 Coral Bells (Heuchera 'Fire Alarm') 0.3644 0.5972 0.4526 144 Coral Bells (Heuchera 'Mahogany') 0.5184 0.9792 0.6779 144 Coral Bells (Heuchera 'Mega Caramel') 0.5760 0.8681 0.6925 144 Coral Bells (Heuchera 'Silver Scrolls') 0.9600 0.1678 0.2857 143 Coral Bells (Heuchera Dolce® Blackberry Ice) 0.8712 0.7986 0.8333 144 Coral Bells (Heuchera micrantha 'Palace Purple') 0.2128 0.0694 0.1047 144 Coral Bells (Heuchera sanguinea 'Ruby Bells') 0.6708 0.7552 0.7105 143 Coral Honeysuckle (Lonicera sempervirens 'Major Wheeler') 0.5474 0.3636 0.4370 143 Coral Honeysuckle (Lonicera sempervirens) 0.6044 0.3846 0.4701 143 Coreopsis Li'l Bang™ Darling Clementine 0.7566 1.0000 0.8614 143 Corn (Zea mays subsp. mays 'Jackpot') 0.4721 1.0000 0.6414 144 Corn (Zea mays subsp. mays) 0.0000 0.0000 0.0000 144 Cos Lettuce (Lactuca sativa 'Little Gem') 0.8276 0.8333 0.8304 144 Coulter's Mock Orange (Philadelphus coulteri) 0.8727 1.0000 0.9320 144 Crabapple (Malus 'Cardinal') 0.9728 1.0000 0.9862 143 Crabapple (Malus 'Prairie Fire') 0.6757 0.5208 0.5882 144 Cranesbill (Geranium Rozanne®) 1.0000 0.0769 0.1429 143 Cranesbill (Geranium platypetalum) 0.8363 1.0000 0.9108 143 Crape Myrtle (Lagerstroemia indica 'Hopi') 0.3025 1.0000 0.4645 144 Crape Myrtle (Lagerstroemia indica Red Rocket®) 0.5618 0.3497 0.4310 143 Creeping Phlox (Phlox subulata 'Emerald Blue') 0.4448 0.9021 0.5958 143 Creeping Phlox (Phlox subulata) 0.5000 0.0210 0.0403 143 Creeping Speedwell (Veronica teucrium) 0.8727 1.0000 0.9320 144 Crepe Myrtle (Lagerstroemia 'Ebony Flame') 0.9615 0.1748 0.2959 143 Crepe Myrtle (Lagerstroemia 'Natchez') 0.0000 0.0000 0.0000 144 Crepe Myrtle (Lagerstroemia 'Zuni') 0.8293 0.2361 0.3676 144 Crepe Myrtle (Lagerstroemia Pink Velour®) 0.4490 0.3077 0.3651 143 Crepe Myrtle (Lagerstroemia indica 'Peppermint Lace') 0.9062 0.6042 0.7250 144 Crinum 'Marisco' 0.8229 1.0000 0.9028 144 Crinum 'Milk and Wine' 0.4298 0.6853 0.5283 143 Crinum Lily (Crinum 'Stars and Stripes') 0.8444 0.7917 0.8172 144 Crinums (Crinum) 0.0000 0.0000 0.0000 144 Crocus 0.8846 0.4792 0.6216 144 Crocus 'Deep Water' 0.9000 1.0000 0.9474 144 Crocus (Crocus chrysanthus 'Ladykiller') 0.9057 1.0000 0.9505 144 Cucumber (Cucumis sativus 'Artist') 0.6085 1.0000 0.7566 143 Cucumber (Cucumis sativus 'Double Yield') 0.9022 0.5764 0.7034 144 Cucumber (Cucumis sativus 'Early Cluster') 0.8182 1.0000 0.9000 144 Cucumber (Cucumis sativus 'Lemon') 0.5833 0.9301 0.7170 143 Cucumber (Cucumis sativus 'Marketmore 76') 0.9098 0.7708 0.8346 144 Culinary Sages (Salvia officinalis) 0.4872 0.1329 0.2088 143 Curly Parsley (Petroselinum crispum var. crispum) 0.8333 0.6294 0.7171 143 Cutleaf Coneflower (Rudbeckia laciniata) 0.6446 0.5417 0.5887 144 Daffodil (Narcissus 'Lavender Bell') 0.7742 1.0000 0.8727 144 Dahlia 'AC Sadie' 0.8136 1.0000 0.8972 144 Dahlia 'Creme de Cassis' 0.7619 1.0000 0.8649 144 Dahlia 'Destiny's John Michael' 0.8727 1.0000 0.9320 144 Dahlia 'Firepot' 0.9597 1.0000 0.9795 143 Dahlia 'Formby Sunrise' 0.9351 1.0000 0.9664 144 Dahlia 'Hapet Champagne' 0.9172 1.0000 0.9568 144 Dahlia 'Kelsey Annie Joy' 0.8276 1.0000 0.9057 144 Dahlia 'Santa Claus' 0.9110 0.9236 0.9172 144 Dahlia 'Thomas A. Edison' 0.9213 0.8125 0.8635 144 Dahlias (Dahlia) 0.0000 0.0000 0.0000 143 Dalmatian Bellflower (Campanula portenschlagiana) 0.5217 1.0000 0.6857 144 Dark Opal Basil (Ocimum basilicum 'Purpurascens') 0.5939 0.6806 0.6343 144 Daylily (Hemerocallis 'Armed to the Teeth') 1.0000 1.0000 1.0000 143 Daylily (Hemerocallis 'Dearest Mahogany') 0.8421 1.0000 0.9143 144 Daylily (Hemerocallis 'Golden Hibiscus') 0.8521 1.0000 0.9201 144 Daylily (Hemerocallis 'Kathrine Carter') 1.0000 1.0000 1.0000 144 Daylily (Hemerocallis 'Put My Picture on the Cover') 0.8571 1.0000 0.9231 144 Daylily (Hemerocallis 'Quoting Hemingway') 0.5844 0.9375 0.7200 144 Daylily (Hemerocallis 'Soli Deo Gloria') 1.0000 0.2083 0.3448 144 Daylily (Hemerocallis 'Sons of Thunder') 0.6000 1.0000 0.7500 144 Daylily (Hemerocallis 'Vanishing Mist') 0.9697 0.4444 0.6095 144 Daylily (Hemerocallis 'Zollo Omega') 0.9351 1.0000 0.9664 144 Delphinium 'Blue Dawn' 0.9863 1.0000 0.9931 144 Delphinium 'Diamonds Blue' 0.7701 1.0000 0.8701 144 Delphinium 'Percival' 0.8462 1.0000 0.9167 143 Delphinium (Delphinium elatum New Millennium™ Royal Aspirations) 0.8133 0.4236 0.5571 144 Delphiniums (Delphinium) 0.0000 0.0000 0.0000 144 Dianthus 0.0000 0.0000 0.0000 144 Dianthus 'Gran's Favorite' 0.9664 1.0000 0.9829 144 Dianthus (Dianthus chinensis 'Black and White Minstrels') 0.8471 1.0000 0.9172 144 Dianthus (Dianthus longicalyx) 0.8571 1.0000 0.9231 144 Dianthus (Dianthus monspessulanus) 0.8614 1.0000 0.9256 143 Dill (Anethum graveolens 'Bouquet') 0.7452 0.8125 0.7774 144 Dill (Anethum graveolens 'Fernleaf') 0.4842 0.7483 0.5879 143 Dills (Anethum graveolens) 0.0000 0.0000 0.0000 144 Dogwoods (Cornus) 0.0000 0.0000 0.0000 143 Double Daffodil (Narcissus 'Ice King') 0.9500 0.6643 0.7819 143 Double Daffodil (Narcissus 'Tahiti') 0.8248 0.7902 0.8071 143 Double Japanese Wisteria (Wisteria floribunda Black Dragon) 0.6313 0.7847 0.6997 144 Double Reeves Spirea (Spiraea cantoniensis 'Lanceata') 0.8333 0.1042 0.1852 144 Drummond's Hedgenettle (Stachys drummondii) 0.7226 0.6875 0.7046 144 Dry Bean (Phaseolus vulgaris 'Good Mother Stallard') 1.0000 0.6923 0.8182 143 Dudleyas (Dudleya) 0.0000 0.0000 0.0000 144 Dune Aloe (Aloe thraskii) 0.9737 0.2569 0.4066 144 Dutch Hyacinth (Hyacinthus orientalis 'Delft Blue') 0.5579 0.3706 0.4454 143 Dutch Hyacinth (Hyacinthus orientalis 'Hollyhock') 0.4444 1.0000 0.6154 144 Dutch Hyacinth (Hyacinthus orientalis 'Splendid Cornelia') 0.3504 1.0000 0.5189 144 Dutchman's Breeches (Dicentra cucullaria) 0.9669 0.8125 0.8830 144 Dwarf Burford Holly (Ilex cornuta 'Burfordii Nana') 0.2689 0.8403 0.4074 144 Dwarf Caladium (Caladium humboldtii) 0.7742 1.0000 0.8727 144 Dwarf Chinese Astilbe (Astilbe rubra 'Pumila') 0.3856 0.4097 0.3973 144 Dwarf Coneflower (Echinacea Kismet® Red) 0.9931 1.0000 0.9965 143 Dwarf Mouse-ear Tickseed (Coreopsis auriculata 'Nana') 0.7551 0.2569 0.3834 144 Dwarf Peach (Prunus persica 'Bonanza') 0.0000 0.0000 0.0000 143 Eastern Dogwood (Cornus florida var. florida 'Rubra') 0.3226 0.1389 0.1942 144 Eastern Dogwood (Cornus florida var. florida Cherokee Brave™) 0.5448 0.5105 0.5271 143 Eastern Ninebark (Physocarpus opulifolius 'Center Glow') 0.6486 0.1667 0.2652 144 Eastern Ninebark (Physocarpus opulifolius 'Dart's Gold') 0.9857 0.4825 0.6479 143 Eastern Ninebark (Physocarpus opulifolius 'Luteus') 0.9536 1.0000 0.9763 144 Eastern Ninebark (Physocarpus opulifolius Coppertina™) 0.4286 0.1469 0.2188 143 Eastern Ninebark (Physocarpus opulifolius Diabolo®) 0.7857 0.0764 0.1392 144 Eastern Red Columbine (Aquilegia canadensis) 0.8732 0.4306 0.5767 144 Echeveria 'Afterglow' 0.5238 0.0769 0.1341 143 Echeveria 'Blue Wren' 0.7172 0.4931 0.5844 144 Echeveria 'Irish Mint' 0.5254 0.8611 0.6526 144 Echeveria 'Mauna Loa' 0.9338 0.8819 0.9071 144 Echeveria 'Perle von Nurnberg' 0.1604 0.8542 0.2700 144 Echeveria 'Rain Drops' 0.8333 0.3125 0.4545 144 Echeveria (Echeveria affinis 'Black Knight') 0.5204 0.3542 0.4215 144 Echeveria (Echeveria agavoides 'Love's Fire') 0.7423 1.0000 0.8521 144 Echeveria (Echeveria runyonii) 0.5000 0.0625 0.1111 144 Echeveria (Echeveria setosa var. minor) 0.9256 0.7832 0.8485 143 Eggplant (Solanum melongena 'Annina') 0.5584 0.9021 0.6898 143 Eggplant (Solanum melongena 'Black Beauty') 0.0000 0.0000 0.0000 144 Eggplant (Solanum melongena 'Bride') 1.0000 0.6597 0.7950 144 Eggplant (Solanum melongena 'Icicle') 0.9412 1.0000 0.9697 144 Eggplant (Solanum melongena 'Orient Express') 0.8372 1.0000 0.9114 144 Eggplant (Solanum melongena 'Orlando') 0.8421 1.0000 0.9143 144 Eggplant (Solanum melongena 'Southern Pink') 1.0000 0.7986 0.8880 144 Eggplant (Solanum melongena 'Violet King') 1.0000 0.6528 0.7899 144 Egyptian Walking Onion (Allium x proliferum) 0.3906 0.6319 0.4828 144 Elephant's Foot Plant (Pachypodium gracilius) 0.9730 1.0000 0.9863 144 Elephant's Trunk (Pachypodium namaquanum) 0.9524 0.1389 0.2424 144 Elfin Thyme (Thymus serpyllum 'Elfin') 0.7324 0.3611 0.4837 144 English Pea (Pisum sativum 'Alaska') 0.5257 1.0000 0.6892 143 English Pea (Pisum sativum 'Bistro') 0.6966 0.7014 0.6990 144 English Pea (Pisum sativum 'Green Arrow') 0.4876 0.4097 0.4453 144 English Pea (Pisum sativum 'Penelope') 0.6842 1.0000 0.8125 143 English Thyme (Thymus vulgaris 'Orange Balsam') 0.8783 0.7063 0.7829 143 European Cranberry Viburnum (Viburnum opulus) 0.7500 0.1042 0.1829 144 European Smoketree (Cotinus coggygria Winecraft Black®) 0.4832 1.0000 0.6516 144 European Snowball Bush (Viburnum opulus 'Roseum') 0.5600 0.6853 0.6164 143 Faassen's Catmint (Nepeta x faassenii 'Six Hills Giant') 0.2802 1.0000 0.4377 144 False Goat's Beard (Astilbe Younique Cerise™) 0.6598 0.8951 0.7596 143 Fancy-Leafed Caladium (Caladium bicolor) 0.8824 0.1049 0.1875 143 Fancy-leaf Caladium (Caladium 'Creamsickle') 0.8882 1.0000 0.9408 143 Fancy-leaf Caladium (Caladium 'Red Flash') 0.0000 0.0000 0.0000 143 Fancy-leaf Caladium (Caladium 'White Christmas') 0.7530 0.8681 0.8065 144 Fancy-leaf Caladium (Caladium Tapestry™) 0.2623 1.0000 0.4156 144 Feather Cactus (Mammillaria plumosa) 0.6985 0.9653 0.8105 144 Fern Leaf Peony (Paeonia tenuifolia) 0.9524 0.4167 0.5797 144 Figs (Ficus carica) 0.5000 0.0769 0.1333 143 Flat-Flowered Aloe (Aloe marlothii) 0.5500 0.3056 0.3929 144 Flint Corn (Zea mays subsp. mays 'Indian Ornamental') 0.6630 0.8531 0.7462 143 Flower of an Hour (Hibiscus trionum) 0.8909 0.3403 0.4925 144 Flowering Cabbage (Brassica oleracea var. viridis Pigeon™ White) 0.9008 0.8252 0.8613 143 Flowering Crabapple (Malus Golden Raindrops) 0.8780 1.0000 0.9351 144 Flowering Dogwood (Cornus Stellar Pink®) 0.5652 0.7273 0.6361 143 Flowering Dogwood (Cornus florida) 0.5000 0.0278 0.0526 144 Flowering Kale (Brassica oleracea 'Kamome White') 0.9462 0.8542 0.8978 144 Flowering Pear (Pyrus calleryana 'Cleveland Select') 0.6243 0.7500 0.6814 144 Foothill Beardtongue (Penstemon heterophyllus 'Electric Blue') 0.8321 0.7569 0.7927 144 Fox Grape (Vitis 'Valiant') 0.9703 0.6806 0.8000 144 Fox Grape (Vitis labrusca) 0.6373 0.4545 0.5306 143 Foxglove (Digitalis 'Honey Trumpet') 0.7222 1.0000 0.8387 143 Foxglove (Digitalis purpurea 'Dalmatian Peach') 0.5405 0.9722 0.6948 144 Foxglove (Digitalis purpurea) 0.5131 0.6806 0.5851 144 Foxgloves (Digitalis) 1.0000 0.0417 0.0800 144 Foxtail Agave (Agave attenuata) 0.7826 0.1250 0.2156 144 Fragaria vesca subsp. vesca 0.7448 1.0000 0.8537 143 French Lilac (Syringa vulgaris 'Michel Buchner') 1.0000 1.0000 1.0000 144 French Lilac (Syringa vulgaris 'Miss Ellen Willmott') 0.7869 1.0000 0.8807 144 French Tarragon (Artemisia dracunculus 'Sativa') 0.8899 0.6736 0.7668 144 Fuchsia Flowering Currant (Ribes speciosum) 1.0000 0.7778 0.8750 144 Gaillardia 'Punch Bowl' 0.5417 1.0000 0.7027 143 Garden Bells (Penstemon hartwegii Phoenix™ Pink) 0.5926 1.0000 0.7442 144 Garden Onion (Allium cepa 'Super Star') 0.7688 1.0000 0.8693 143 Garden Pea (Pisum sativum 'PLS 534') 1.0000 0.7083 0.8293 144 Garden Phlox (Phlox paniculata 'Blue Paradise') 0.9196 0.7203 0.8078 143 Garden Phlox (Phlox paniculata 'Mount Fuji') 0.6923 1.0000 0.8182 144 Garden Phlox (Phlox paniculata Volcano Pink White Eye) 0.8994 1.0000 0.9470 143 Garden Phlox (Phlox x arendsii 'Miss Mary') 0.6085 1.0000 0.7566 143 Garden Sage (Salvia officinalis 'Robert Grimm') 0.5161 1.0000 0.6809 144 Gardenia (Gardenia jasminoides 'August Beauty') 0.7564 0.4097 0.5315 144 Gardenia (Gardenia jasminoides 'Frostproof') 0.5916 0.7902 0.6766 143 Gardenia (Gardenia jasminoides 'Veitchii') 0.7869 1.0000 0.8807 144 Gardenia (Gardenia jasminoides 'White Gem') 0.6288 1.0000 0.7721 144 Gardenias (Gardenia) 1.0000 0.0556 0.1053 144 Garlic (Allium sativum 'Early Red Italian') 0.8611 0.4336 0.5767 143 Garlic (Allium sativum 'Georgian Crystal') 0.5314 1.0000 0.6940 144 Garlic (Allium sativum 'Russian Red') 0.7347 1.0000 0.8471 144 Garlic (Allium sativum) 0.0000 0.0000 0.0000 143 Gay Feather (Liatris spicata 'Floristan White') 0.8253 0.9514 0.8839 144 Genovese Basil (Ocimum basilicum 'Dolce Fresca') 0.8942 0.6503 0.7530 143 Gentian Speedwell (Veronica gentianoides) 0.9380 0.8403 0.8864 144 Georgia Sweet Vidalia Onion (Allium cepa 'Yellow Granex') 0.8671 0.8611 0.8641 144 Geranium (Geranium wallichianum 'Buxton's Variety') 0.5437 1.0000 0.7044 143 Geranium (Geranium wallichianum 'Crystal Lake') 0.8727 1.0000 0.9320 144 Geraniums (Geranium) 0.0000 0.0000 0.0000 144 Giant Chalk Dudleya (Dudleya brittonii) 0.1818 0.0694 0.1005 144 Gladiola (Gladiolus 'Vista') 0.8947 0.9444 0.9189 144 Gladiola (Gladiolus) 1.0000 0.0140 0.0276 143 Gladiolus 'Atom' 0.8976 0.7972 0.8444 143 Gladiolus 'Fiesta' 0.9474 1.0000 0.9730 144 Globe Artichoke (Cynara scolymus 'Green Globe') 0.6118 0.3636 0.4561 143 Globe Artichoke (Cynara scolymus 'Violet de Provence') 0.8720 1.0000 0.9316 143 Gloriosa Daisy (Rudbeckia hirta 'Prairie Sun') 0.8514 0.8811 0.8660 143 Golden Sage (Salvia officinalis 'Aurea') 0.6560 1.0000 0.7922 143 Gooseberry (Ribes uva-crispa 'Hinnonmaki Rod') 1.0000 1.0000 1.0000 144 Gooseberry (Ribes uva-crispa) 1.0000 0.7483 0.8560 143 Gourds, Squashes and Pumpkins (Cucurbita) 0.6818 0.5208 0.5906 144 Grape (Vitis vinifera 'Gamay') 0.5625 1.0000 0.7200 144 Grape (Vitis vinifera Cotton Candy®) 0.9862 1.0000 0.9931 143 Grapes (Vitis) 0.4734 0.6181 0.5361 144 Green Bean (Phaseolus vulgaris 'Trionfo Violetto') 0.6702 0.4375 0.5294 144 Greigii Tulip (Tulipa 'Fire of Love') 0.9386 0.7483 0.8327 143 Hairy Beardtongue (Penstemon hirsutus) 0.8243 0.8531 0.8385 143 Hardy Geranium (Geranium 'Phoebe Noble') 0.6875 1.0000 0.8148 143 Hardy Geranium (Geranium sanguineum 'Elke') 0.9752 0.8194 0.8906 144 Hardy Geranium (Geranium sanguineum var. striatum) 0.9459 0.7292 0.8235 144 Hardy Hibiscus (Hibiscus moscheutos 'Fireball') 0.6923 0.5664 0.6231 143 Hardy Hibiscus (Hibiscus moscheutos 'Kopper King') 0.2913 0.4167 0.3429 144 Hardy Hibiscus (Hibiscus moscheutos 'Tie Dye') 1.0000 0.3681 0.5381 144 Hardy Hibiscus (Hibiscus moscheutos Summerific™ Cherry Cheesecake) 0.9184 0.3125 0.4663 144 Hardy Hibiscus (Hibiscus moscheutos Summerific™ Starry Starry Night) 0.6667 0.0556 0.1026 144 Hardy Hibiscus Hybrid (Hibiscus 'Summer in Paradise') 0.3803 0.8112 0.5179 143 Heavenly Bamboo (Nandina domestica 'Moon Bay') 0.6250 0.8042 0.7034 143 Heavenly Bamboos (Nandina domestica) 0.4000 0.0139 0.0268 144 Hen and Chicks (Sempervivum 'Blaukraut') 0.1845 0.8611 0.3039 144 Hen and Chicks (Sempervivum 'Gold Nugget') 0.4286 0.2517 0.3172 143 Hen and Chicks (Sempervivum 'Larissa') 0.2157 0.1528 0.1789 144 Hen and Chicks (Sempervivum 'Lynn's Rose Gold') 0.3827 0.8611 0.5299 144 Hen and Chicks (Sempervivum 'Red Lion') 0.9167 0.3846 0.5419 143 Hen and Chicks (Sempervivum 'Space Dog') 0.8313 0.4792 0.6079 144 Hen and Chicks (Sempervivum calcareum) 0.3333 0.0280 0.0516 143 Hen and Chicks (Sempervivum tectorum 'Grammens') 0.4054 0.3147 0.3543 143 Hen and chicks (Sempervivum 'Dea') 0.9438 0.5874 0.7241 143 Henbit (Lamium amplexicaule) 0.6721 0.2847 0.4000 144 Hibiscus 1.0000 0.1944 0.3256 144 Hibiscus (Hibiscus moscheutos Summerific™ Cherry Choco Latte) 0.6311 0.4545 0.5285 143 Hibiscus (Hibiscus moscheutos Summerific™ Cranberry Crush) 0.9565 0.1528 0.2635 144 Hibiscus (Hibiscus moscheutos Summerific™ Summer Storm) 0.6349 0.2778 0.3865 144 Holly (Ilex 'Nellie R. Stevens') 0.0000 0.0000 0.0000 144 Holy Basil (Ocimum tenuiflorum 'Green Sacred') 0.3207 1.0000 0.4857 144 Honeysuckle (Lonicera 'Gold Flame') 0.8378 0.6458 0.7294 144 Hortulan Plum (Prunus hortulana) 0.7164 1.0000 0.8348 144 Hosta 'Blue Angel' 0.8131 0.6042 0.6932 144 Hosta 'Blue Mouse Ears' 0.6989 0.4514 0.5485 144 Hosta 'Curly Fries' 0.4099 0.8056 0.5433 144 Hosta 'Liberty' 0.7806 0.8403 0.8094 144 Hosta 'Popcorn' 0.9315 0.9510 0.9412 143 Hosta 'Tom Schmid' 0.4768 1.0000 0.6457 144 Hosta 'Whirlwind' 0.8024 0.9306 0.8617 144 Hosta 'White Feather' 0.8989 0.5594 0.6897 143 Hostas (Hosta) 0.0000 0.0000 0.0000 143 Hot Pepper (Capsicum annuum 'Petit Marseillais') 0.8079 1.0000 0.8938 143 Hot Pepper (Capsicum annuum 'Super Chili') 0.6875 1.0000 0.8148 143 Hot Pepper (Capsicum baccatum 'Brazilian Starfish') 0.9496 0.7902 0.8626 143 Hot Pepper (Capsicum sinense 'Black Naga') 0.8288 0.8462 0.8374 143 Hummingbird Sage (Salvia coccinea 'Coral Nymph') 0.8571 0.2500 0.3871 144 Hyacinth (Hyacinthus orientalis 'Blue Jacket') 0.7000 0.2937 0.4138 143 Hyacinth (Hyacinthus orientalis) 0.5000 0.0972 0.1628 144 Hyacinths (Hyacinthus) 0.2800 0.0490 0.0833 143 Hybrid Gladiola (Gladiolus 'Boone') 0.8045 1.0000 0.8916 144 Hybrid Gladiola (Gladiolus x gandavensis 'Priscilla') 0.6857 1.0000 0.8136 144 Hybrid Tickseed (Coreopsis 'Cherry Lemonade') 0.6000 1.0000 0.7500 144 Hydrangea (Hydrangea macrophylla 'Nightingale') 0.4864 1.0000 0.6545 143 Hydrangea (Hydrangea macrophylla L.A. Dreamin'™ Lindsey Ann) 0.8452 0.4965 0.6256 143 Hydrangea (Hydrangea quercifolia 'Munchkin') 0.7480 0.6434 0.6917 143 Hydrangeas (Hydrangea) 0.0000 0.0000 0.0000 144 Iceland Poppy (Papaver nudicaule 'Champagne Bubbles White') 0.9231 1.0000 0.9600 144 Iceland Poppy (Papaver nudicaule 'Meadow Pastels') 0.9597 1.0000 0.9795 143 Intersectional Peony (Paeonia 'All That Jazz') 0.6729 1.0000 0.8045 144 Italian Parsley (Petroselinum crispum 'Italian Flat Leaf') 0.4783 0.3077 0.3745 143 Itoh Peony (Paeonia 'Caroline Constabel') 1.0000 0.0350 0.0676 143 Japanese Crepe Myrtle (Lagerstroemia fauriei 'Fantasy') 0.5017 1.0000 0.6682 144 Japanese Cucumber (Cucumis sativus 'Southern Delight') 0.0000 0.0000 0.0000 144 Japanese Hardy Orange (Citrus trifoliata) 0.0000 0.0000 0.0000 144 Japanese Honeysuckle (Lonicera japonica 'Halliana') 0.9593 0.8194 0.8839 144 Japanese Morning Glory (Ipomoea nil 'Seiryu') 0.6085 1.0000 0.7566 143 Japanese Morning Glory (Ipomoea nil) 0.7097 0.1528 0.2514 144 Japanese Spirea (Spiraea japonica 'Magic Carpet') 0.6912 0.6528 0.6714 144 Japanese Spirea (Spiraea japonica 'Neon Flash') 0.6667 0.4306 0.5232 144 Japanese Wisteria (Wisteria floribunda 'Issai Perfect') 0.9536 1.0000 0.9763 144 Japanese Yellow Sage (Salvia koyamae) 0.5477 0.7622 0.6374 143 Jelly Bean (Sedum x rubrotinctum) 0.1429 0.1469 0.1448 143 Jerusalem Artichoke (Helianthus tuberosus 'Clearwater') 0.9000 1.0000 0.9474 144 Jerusalem Artichoke (Helianthus tuberosus 'Stampede') 0.9412 1.0000 0.9697 144 Jonquilla Narcissus (Narcissus 'Blushing Lady') 0.0000 0.0000 0.0000 144 Judd Viburnum (Viburnum carlesii var. bitchiuense) 0.4276 0.8403 0.5667 144 Jujube (Ziziphus jujuba 'Sherwood') 0.8571 1.0000 0.9231 144 Jujubes (Ziziphus jujuba) 0.7867 0.8252 0.8055 143 Kaibab Agave (Agave utahensis subsp. kaibabensis) 0.5556 0.3472 0.4274 144 Kale (Brassica oleracea var. viridis 'Redbor') 0.9355 0.6042 0.7342 144 Koreanspice Viburnum (Viburnum carlesii) 0.3529 0.0417 0.0745 144 Lacecap Hydrangea (Hydrangea macrophylla Endless Summer® Twist-n-Shout®) 1.0000 0.0559 0.1060 143 Lady Tulip (Tulipa clusiana) 0.8000 0.2238 0.3497 143 Lamb's Ears (Stachys) 0.7236 1.0000 0.8397 144 Lambs' Ears (Stachys byzantina) 0.5366 0.1538 0.2391 143 Large Speedwell (Veronica teucrium 'Crater Lake Blue') 0.3789 0.7500 0.5035 144 Large-cupped Daffodil (Narcissus 'Chromacolor') 0.2900 0.8681 0.4348 144 Larkspur (Delphinium 'Benary's Pacific Cameliard') 0.9108 1.0000 0.9533 143 Larkspur (Delphinium elatum 'Guardian Lavender') 0.4983 1.0000 0.6651 143 Larkspur (Delphinium elatum New Millennium™ Black Eyed Angels) 0.9780 0.6224 0.7607 143 Leek (Allium ampeloprasum 'Lancelot') 0.3989 1.0000 0.5703 144 Leek (Allium ampeloprasum 'Large American Flag') 0.0000 0.0000 0.0000 144 Leek (Allium ampeloprasum 'Zermatt') 1.0000 0.7273 0.8421 143 Leeks (Allium ampeloprasum) 0.6984 0.3077 0.4272 143 Lemoine's Mock Orange (Philadelphus 'Belle Etoile') 0.4815 0.0903 0.1520 144 Lemon (Citrus x limon) 0.4952 0.3611 0.4177 144 Lemon Bee Balm (Monarda citriodora) 0.3483 0.9167 0.5048 144 Lemon Thyme (Thymus x citriodorus) 0.7583 0.6319 0.6894 144 Lemon Tree (Citrus x limon 'Eureka') 0.5509 0.6434 0.5935 143 Lettuce (Lactuca sativa 'Parris Island') 0.7744 0.7153 0.7437 144 Lettuce (Lactuca sativa 'Red Romaine') 0.5902 0.5035 0.5434 143 Lettuce (Lactuca sativa 'Rouge d'Hiver') 0.9172 1.0000 0.9568 144 Lettuce (Lactuca sativa 'Yugoslavian Red Butterhead') 0.5950 1.0000 0.7461 144 Lettuces (Lactuca sativa) 0.1379 0.0278 0.0462 144 Lewis' Mockorange (Philadelphus lewisii) 0.3000 0.1458 0.1963 144 Lilac (Syringa First Editions® Virtual Violet™) 1.0000 0.5625 0.7200 144 Lilac (Syringa vulgaris 'Belle de Nancy') 0.4500 0.0629 0.1104 143 Lilac (Syringa vulgaris 'Sensation') 0.8812 0.6181 0.7265 144 Lilac (Syringa x hyacinthiflora 'Sweetheart') 0.4103 1.0000 0.5818 144 Lily (Lilium 'Corsage') 0.9606 0.8472 0.9004 144 Lily (Lilium 'Flavia') 0.9231 1.0000 0.9600 144 Lily (Lilium 'Fusion') 0.8000 0.8112 0.8056 143 Lily (Lilium 'Moonyeen') 0.9351 1.0000 0.9664 144 Lily (Lilium 'Ramona') 0.8090 1.0000 0.8944 144 Lily (Lilium 'Sunny Morning') 0.6745 1.0000 0.8056 143 Lily (Lilium 'Viva La Vida') 0.7784 1.0000 0.8754 144 Lily (Lilium auratum) 0.9296 0.9167 0.9231 144 Lily (Lilium pyrenaicum) 0.8448 0.3403 0.4851 144 Lily Flowering Tulip (Tulipa 'Claudia') 0.8324 1.0000 0.9085 144 Loose-leaf Lettuce (Lactuca sativa 'Salad Bowl') 0.9237 0.7622 0.8352 143 Madagascar Palm (Pachypodium geayi) 1.0000 0.1250 0.2222 144 Madagascar Palm (Pachypodium lamerei) 0.4839 0.2083 0.2913 144 Malagasy Tree Aloe (Aloe vaombe) 0.3662 0.1806 0.2419 144 Marjorams (Origanum laevigatum) 0.7487 1.0000 0.8563 143 Meadow Blazing Star (Liatris ligulistylis) 0.5922 0.8472 0.6971 144 Mealy Cup Sage (Salvia farinacea Cathedral® Shining Seas) 0.5630 1.0000 0.7204 143 Melon (Cucumis melo 'Charentais') 0.9076 0.7500 0.8213 144 Melon (Cucumis melo 'Kajari') 0.7117 0.5524 0.6220 143 Melon (Cucumis melo 'Tigger') 0.9179 0.8542 0.8849 144 Meserve Holly (Ilex 'Casanova') 0.8889 1.0000 0.9412 144 Mexican Butterwort; Mexican Ping (Pinguicula ibarrae) 0.9862 1.0000 0.9931 143 Mexican Dogwood (Cornus florida var. urbiniana) 0.8372 1.0000 0.9114 144 Mexican Plum (Prunus mexicana) 0.4742 0.3217 0.3833 143 Meyer's Lemon (Citrus x limon 'Improved Meyer') 0.5021 0.8182 0.6223 143 Milk and Wine Lily (Crinum fimbriatulum) 0.3280 1.0000 0.4940 143 Miniature Jonquilla Daffodil (Narcissus 'Pipit') 0.5281 0.3264 0.4034 144 Mints (Mentha) 0.3976 0.7014 0.5075 144 Mock Orange (Philadelphus 'Innocence') 0.2156 1.0000 0.3547 144 Mock Orange (Philadelphus 'Snow Dwarf') 0.4660 0.6713 0.5501 143 Moonflower (Ipomoea alba) 0.9559 0.4514 0.6132 144 Morning Glory (Ipomoea 'Split Second') 0.6857 1.0000 0.8136 144 Morning Glory (Ipomoea hederifolia 'Aurantia') 0.9167 1.0000 0.9565 143 Morning Glory (Ipomoea nil 'Kikyo Snowflakes') 0.6408 0.9231 0.7564 143 Morning Glory (Ipomoea purpurea 'Feringa') 0.8171 1.0000 0.8994 143 Morning Glory (Ipomoea tricolor 'Clarke's Heavenly Blue') 0.6792 1.0000 0.8090 144 Mountain Aloe (Aloe broomii) 0.6571 0.4792 0.5542 144 Nectarine (Prunus persica 'Arctic Glo') 0.6180 1.0000 0.7639 144 Nectarine (Prunus persica 'Early Rivers') 0.3538 1.0000 0.5227 144 Nepeta (Nepeta subsessilis) 0.7125 0.3986 0.5112 143 Nepeta (Nepeta x faassenii 'Select Blue') 0.4897 1.0000 0.6575 143 New England Aster (Symphyotrichum novae-angliae 'Andenken an Alma Pötschke') 0.7959 0.5417 0.6446 144 New England Aster (Symphyotrichum novae-angliae) 0.5000 0.0625 0.1111 144 Noble Rhubarb (Rheum nobile) 0.9057 1.0000 0.9505 144 Northern White Cedar (Thuja occidentalis Mr. Bowling Ball™) 0.2623 1.0000 0.4156 144 Okra (Abelmoschus esculentus 'Burmese') 0.7929 0.7762 0.7845 143 Okra (Abelmoschus esculentus 'Clemson Spineless') 0.3656 0.2361 0.2869 144 Okra (Abelmoschus esculentus 'Jambalaya') 0.8512 1.0000 0.9196 143 Okra (Abelmoschus esculentus 'Jing Orange') 0.3593 0.8392 0.5031 143 Okra (Abelmoschus esculentus 'Red Burgundy') 0.6927 0.8611 0.7678 144 Okra (Abelmoschus esculentus) 0.6875 0.1528 0.2500 144 Oleander (Nerium oleander 'Calypso') 0.4892 0.9444 0.6445 144 Oleander (Nerium oleander 'Hardy White') 0.9048 0.6597 0.7631 144 Oleander (Nerium oleander 'Red Cardinal') 0.5185 0.1944 0.2828 144 Onion (Allium cepa 'Red Hunter') 0.4696 0.8112 0.5949 143 Onion (Allium cepa 'Red River F1') 0.7044 1.0000 0.8266 143 Onion (Allium cepa 'Walla Walla Sweet') 0.7885 0.2847 0.4184 144 Onions (Allium cepa) 0.1438 0.1538 0.1486 143 Orange (Citrus reticulata 'Satsuma') 0.9474 1.0000 0.9730 144 Oreganos (Origanum vulgare) 0.0000 0.0000 0.0000 144 Oriental Radish (Raphanus sativus 'New White Spring') 0.3696 0.5944 0.4558 143 Ornamental Gourd (Cucurbita pepo 'Tennessee Dancing') 0.6825 1.0000 0.8113 144 Ornamental Oregano (Origanum laevigatum 'Herrenhausen') 0.4491 0.5208 0.4823 144 Ornamental Pepper (Capsicum annuum 'Black Pearl') 1.0000 0.5139 0.6789 144 Ornamental Pepper (Capsicum annuum 'Chilly Chili') 0.8521 1.0000 0.9201 144 Ornamental Sweet Potato (Ipomoea batatas 'Blackie') 0.5769 0.2083 0.3061 144 Ornamental Sweet Potato (Ipomoea batatas 'Margarita') 0.8276 0.3333 0.4752 144 Pachypodium (Pachypodium brevicaule) 0.6712 0.3403 0.4516 144 Pachypodium (Pachypodium sofiense) 0.8881 0.8881 0.8881 143 Pacific Coast Iris (Iris 'Big Waves') 0.9863 1.0000 0.9931 144 Pacific Coast Iris (Iris 'Caught in the Wind') 0.8780 1.0000 0.9351 144 Pacific Coast Iris (Iris 'Finger Pointing') 0.9862 1.0000 0.9931 143 Panicle Hydrangea (Hydrangea paniculata First Editions® Vanilla Strawberry™) 0.4841 0.9514 0.6417 144 Parsleys (Petroselinum crispum) 0.6783 0.5455 0.6047 143 Parsnip (Pastinaca sativa 'Harris Model') 0.9231 1.0000 0.9600 144 Parsnip (Pastinaca sativa 'Hollow Crown') 0.9533 1.0000 0.9761 143 Parsnip (Pastinaca sativa 'Javelin') 1.0000 1.0000 1.0000 143 Parsnips (Pastinaca sativa) 0.5692 1.0000 0.7254 144 Pea (Pisum sativum 'Spring Blush') 1.0000 1.0000 1.0000 143 Peach (Prunus persica 'Canadian Harmony') 0.4157 1.0000 0.5873 143 Peach (Prunus persica 'Elberta') 0.0000 0.0000 0.0000 143 Peach (Prunus persica Flamin' Fury® PF-24C) 0.5411 0.7778 0.6382 144 Peach-Leaved Bellflower (Campanula persicifolia) 0.9178 0.4685 0.6204 143 Peacock Orchid (Gladiolus murielae) 0.8393 0.3287 0.4724 143 Pear (Pyrus communis 'Early Seckel') 0.9040 0.7902 0.8433 143 Pencilled Cranesbill (Geranium versicolor) 0.9412 1.0000 0.9697 144 Penstemon Riding Hood Red 0.8544 0.6111 0.7126 144 Peonies (Paeonia) 0.1250 0.0139 0.0250 144 Peony (Paeonia 'Athena') 0.6711 0.6993 0.6849 143 Peony (Paeonia 'Pastelegance') 0.8675 1.0000 0.9290 144 Peony (Paeonia daurica subsp. coriifolia) 0.7566 1.0000 0.8614 143 Peony (Paeonia lactiflora 'Bowl of Beauty') 0.7231 0.6528 0.6861 144 Peony (Paeonia lactiflora 'Do Tell') 0.5708 0.8741 0.6906 143 Peony (Paeonia lactiflora 'Top Brass') 0.9021 0.9021 0.9021 143 Pepper (Capsicum 'Mad Hatter') 1.0000 0.7133 0.8327 143 Peppers (Capsicum) 0.9773 0.2986 0.4574 144 Persian Catmint (Nepeta racemosa 'Little Titch') 0.8750 0.5347 0.6638 144 Petunia Amore™ Queen of Hearts 0.7164 1.0000 0.8348 144 Petunia Crazytunia® Cosmic Pink 0.8125 1.0000 0.8966 143 Petunia Headliner™ Night Sky 0.9384 0.9580 0.9481 143 Petunia Midnight Gold 0.8324 1.0000 0.9085 144 Petunia Potunia® Purple Halo 0.8667 1.0000 0.9286 143 Petunia Sweetunia® Fiona Flash 0.6990 1.0000 0.8229 144 Petunias (Petunia) 0.5238 0.0764 0.1333 144 Phlox drummondii 'Sugar Stars' 0.9346 1.0000 0.9662 143 Pineberry (Fragaria x ananassa 'White Carolina') 0.8079 1.0000 0.8938 143 Pineleaf Beardtongue (Penstemon pinifolius Half Pint®) 0.4735 1.0000 0.6427 143 Pinks (Dianthus 'Little Maiden') 0.8521 1.0000 0.9201 144 Plains Coreopsis (Coreopsis tinctoria) 0.9348 0.2986 0.4526 144 Plumeria 'Queen Amber' 0.9536 1.0000 0.9763 144 Plumeria (Plumeria filifolia) 0.8300 0.5804 0.6831 143 Plumeria (Plumeria rubra 'Fireblast') 0.8944 1.0000 0.9443 144 Plumeria (Plumeria rubra 'Flaming Rock Dragon') 0.9580 0.7917 0.8669 144 Plumeria (Plumeria rubra 'J 105') 0.9408 1.0000 0.9695 143 Plumeria (Plumeria rubra 'Mary Helen Eggenberger') 1.0000 1.0000 1.0000 143 Plumeria (Plumeria rubra 'Mellow Yellow') 0.7660 1.0000 0.8675 144 Plumeria (Plumeria rubra 'Naples Sixteen') 0.7347 1.0000 0.8471 144 Plumeria (Plumeria rubra 'Sophie') 0.9730 1.0000 0.9863 144 Plumerias (Plumeria) 0.2500 0.0140 0.0265 143 Plums (Prunus umbellata) 0.7826 0.5035 0.6128 143 Popcorn (Zea mays subsp. mays 'Glass Gem') 0.7250 0.4028 0.5179 144 Poppies (Papaver) 0.8462 0.3056 0.4490 144 Poppy (Papaver 'Sugar Plum') 0.5608 1.0000 0.7186 143 Poppy (Papaver rhoeas 'Shirley Poppy') 0.6250 0.3147 0.4186 143 Possumhaw Holly (Ilex decidua) 0.4889 0.3056 0.3761 144 Potato (Solanum tuberosum 'Adirondack Blue') 0.8889 1.0000 0.9412 144 Potato (Solanum tuberosum 'Baltic Rose') 0.6990 1.0000 0.8229 144 Potato (Solanum tuberosum 'Bojar') 0.5125 1.0000 0.6776 144 Potato (Solanum tuberosum 'Kennebec') 0.7531 0.8531 0.8000 143 Potato (Solanum tuberosum 'Red Pontiac') 0.7292 0.2448 0.3665 143 Potato (Solanum tuberosum 'Vitelotte') 0.9795 1.0000 0.9896 143 Potatoes (Solanum tuberosum) 0.0000 0.0000 0.0000 144 Pumpkin (Cucurbita moschata 'Musquee de Provence') 0.5000 0.9097 0.6453 144 Pumpkin (Cucurbita pepo 'Styrian Hulless') 0.8020 0.5664 0.6639 143 Pumpkin (Cucurbita pepo 'Winter Luxury Pie') 0.9709 0.6993 0.8130 143 Purple Basil (Ocimum basilicum 'Purple Delight') 0.6886 0.7986 0.7395 144 Purple Cherry Plum (Prunus cerasifera 'Hollywood') 0.5872 0.8951 0.7091 143 Purple Coneflower (Echinacea purpurea 'Magnus') 0.0000 0.0000 0.0000 143 Purple Coneflower (Echinacea purpurea 'Rubinstern') 0.4297 0.7847 0.5553 144 Purple Coneflower (Echinacea purpurea) 0.3571 0.0694 0.1163 144 Purple Dead Nettle (Lamium purpureum) 0.5833 0.8811 0.7019 143 Purple Marjoram (Origanum laevigatum 'Hopley's') 0.7024 1.0000 0.8252 144 Purple-flowering raspberry (Rubus odoratus) 0.3298 0.8601 0.4767 143 Quiver Tree (Aloidendron dichotomum) 0.8276 0.3333 0.4752 144 Radish (Raphanus sativus 'Amethyst') 0.9000 1.0000 0.9474 144 Radish (Raphanus sativus 'Burpee Cherry Giant') 0.7024 1.0000 0.8252 144 Radish (Raphanus sativus 'Champion') 0.6636 1.0000 0.7978 144 Radish (Raphanus sativus 'Early Scarlet Globe') 0.5652 0.0909 0.1566 143 Radish (Raphanus sativus 'German Giant') 0.8045 1.0000 0.8916 144 Radishes (Raphanus sativus) 0.4324 0.1111 0.1768 144 Rainbow Carrot (Daucus carota subsp. sativus 'Rainbow') 0.4417 1.0000 0.6128 144 Rape (Brassica napus subsp. napus) 0.7742 1.0000 0.8727 144 Rapini (Brassica rapa subsp. rapa 'Early Fall') 0.3438 1.0000 0.5116 143 Raspberry (Rubus idaeus 'Joan J') 0.4689 1.0000 0.6384 143 Red Currant (Ribes rubrum 'Red Lake') 0.8038 0.8881 0.8439 143 Red Flowering Currant (Ribes sanguineum 'Brocklebankii') 0.9172 1.0000 0.9568 144 Red Table Grape (Vitis labrusca 'Vanessa') 1.0000 1.0000 1.0000 143 Red Twig Dogwood (Cornus sanguinea 'Anny's Winter Orange') 0.8314 1.0000 0.9079 143 Red Twig Dogwood (Cornus sericea) 0.4714 0.2308 0.3099 143 Red-Leaf Hibiscus (Hibiscus acetosella) 0.5200 0.0909 0.1548 143 Rhododendron 'Blue Peter' 0.8896 0.9514 0.9195 144 Rhododendron 'Inga' 0.6234 1.0000 0.7680 144 Rhododendron 'Mother of Pearl' 0.8471 1.0000 0.9172 144 Rhododendron 'Queen of England' 0.7500 1.0000 0.8571 144 Rhododendron 'Roseum Elegans' 1.0000 0.0839 0.1548 143 Rhododendrons (Rhododendron) 0.2174 0.0694 0.1053 144 Rhubarb (Rheum 'Glaskins Perpetual') 0.8741 0.8252 0.8489 143 Rhubarb (Rheum rhabarbarum 'Victoria') 0.9487 0.5175 0.6697 143 Rhubarb (Rheum rhabarbarum) 1.0000 0.2986 0.4599 144 Rhubarbs (Rheum) 0.8240 0.7203 0.7687 143 Rocky Mountain Beardtongue (Penstemon strictus) 1.0000 0.2917 0.4516 144 Rocky Mountain Columbine (Aquilegia coerulea) 0.9167 0.1538 0.2635 143 Romaine (Lactuca sativa 'Willow') 0.5902 1.0000 0.7423 144 Rose (Rosa 'Angel Face') 0.9783 0.3125 0.4737 144 Rose (Rosa 'Ebb Tide') 0.9697 0.6667 0.7901 144 Rose (Rosa 'Institut Lumiere') 0.9057 1.0000 0.9505 144 Rose (Rosa 'Lavender Crush') 0.5496 1.0000 0.7094 144 Rose (Rosa 'Sexy Rexy') 0.9333 0.1944 0.3218 144 Rose (Rosa 'The Pilgrim') 0.9060 0.9375 0.9215 144 Rose (Rosa 'Veilchenblau') 1.0000 0.4825 0.6509 143 Rose (Rosa 'Wife of Bath') 0.4511 1.0000 0.6217 143 Rose of Sharon (Hibiscus Pollypetite™) 0.9536 1.0000 0.9763 144 Rose of Sharon (Hibiscus syriacus 'Danica') 0.5690 0.9167 0.7021 144 Rose of Sharon (Hibiscus syriacus Blue Satin®) 0.8293 0.9444 0.8831 144 Rose of Sharon (Hibiscus syriacus Chateau™ de Chantilly) 0.3854 1.0000 0.5564 143 Roses of Sharon (Hibiscus syriacus) 0.0000 0.0000 0.0000 144 Russian Sage (Perovskia atriplicifolia) 0.5484 0.1189 0.1954 143 Russian Sages (Perovskia) 0.4364 0.7153 0.5421 144 Rusty Blackhaw Viburnum (Viburnum rufidulum) 0.9355 0.2014 0.3314 144 Saffron Crocus (Crocus sativus) 0.9898 0.6736 0.8017 144 Salvia (Salvia coerulea 'Sapphire Blue') 0.9913 0.7917 0.8803 144 Salvia (Salvia splendens 'Yvonne's Salvia') 0.5747 0.3472 0.4329 144 Salvia (Salvia x jamensis Heatwave™ Glimmer) 0.8605 0.5175 0.6463 143 Salvias (Salvia) 0.0000 0.0000 0.0000 143 San Gabriel Alumroot (Heuchera abramsii) 0.7079 1.0000 0.8290 143 Sand Lettuce (Dudleya caespitosa) 0.2240 1.0000 0.3659 144 Sand Pink (Dianthus arenarius) 0.8992 0.7483 0.8168 143 Sargent Viburnum (Viburnum sargentii 'Onondaga') 0.6537 0.9371 0.7701 143 Sargent's Crabapple (Malus sieboldii subsp. sieboldii 'Roselow') 0.7423 0.8462 0.7908 143 Saturn Peach (Prunus persica 'Saturn') 0.6588 0.3889 0.4891 144 Scallop Squash (Cucurbita pepo 'Early White Bush Scallop') 0.9746 0.8042 0.8812 143 Sedum (Sedum palmeri) 0.0000 0.0000 0.0000 144 Shallot (Allium cepa 'Creme Brulee') 0.8834 1.0000 0.9381 144 Shasta Daisies (Leucanthemum x superbum) 0.3000 0.0417 0.0732 144 Shasta Daisy (Leucanthemum x superbum 'Aglaya') 0.6300 1.0000 0.7730 143 Shasta Daisy (Leucanthemum x superbum 'Becky') 0.9231 0.0833 0.1529 144 Shasta Daisy (Leucanthemum x superbum 'Snehurka') 0.8358 0.7832 0.8087 143 Shasta Daisy (Leucanthemum x superbum 'Snowcap') 0.4970 0.5833 0.5367 144 Shasta Daisy (Leucanthemum x superbum 'White Breeze') 0.8079 1.0000 0.8938 143 Shasta Daisy (Leucanthemum x superbum Sweet Daisy™ Christine) 0.5353 1.0000 0.6973 144 Shirley Poppy (Papaver rhoeas 'Amazing Grey') 1.0000 0.9097 0.9527 144 Shirley Poppy (Papaver rhoeas 'Double Mixed') 0.5108 0.8194 0.6293 144 Siempreviva (Dudleya attenuata) 0.8763 0.5903 0.7054 144 Sierra Canelo Pincushion Cactus (Mammillaria standleyi) 0.8614 1.0000 0.9256 143 Sierra Leone Lily (Chlorophytum 'Fireflash') 0.8282 0.9375 0.8795 144 Silver Margined Holly (Ilex aquifolium 'Argentea Marginata') 0.7515 0.8671 0.8052 143 Slow Bolt Cilantro (Coriandrum sativum 'Santo') 0.4797 0.4097 0.4419 144 Smoke Tree (Cotinus coggygria 'Royal Purple') 0.5714 0.0280 0.0533 143 Smoketree (Cotinus coggygria Golden Spirit™) 0.6603 0.7203 0.6890 143 Smoketrees (Cotinus coggygria) 0.6842 0.5417 0.6047 144 Smooth Hydrangea (Hydrangea arborescens 'Annabelle') 0.9189 0.2378 0.3778 143 Snap Bean (String (Phaseolus vulgaris 'Black Seeded Blue Lake') 0.6102 1.0000 0.7579 144 Snap Bean (String (Phaseolus vulgaris 'Blue Lake Bush #274') 0.5071 1.0000 0.6729 143 Snap Bean (String (Phaseolus vulgaris 'Wren's Egg') 0.6777 1.0000 0.8079 143 Soap Aloe (Aloe maculata) 0.1429 0.0347 0.0559 144 Softneck Garlic (Allium sativum 'Inchelium Red') 0.6413 1.0000 0.7814 143 Spearmint (Mentha spicata) 0.2917 0.0972 0.1458 144 Speedwell (Veronica oltensis) 0.8818 0.6783 0.7668 143 Speedwell (Veronica peduncularis 'Georgia Blue') 0.9737 0.5175 0.6758 143 Spider Plant (Chlorophytum comosum) 0.9286 0.0903 0.1646 144 Spike Speedwell (Veronica spicata Royal Candles) 0.5792 0.8889 0.7014 144 Spinach (Spinacia oleracea 'Alexandria') 0.9730 1.0000 0.9863 144 Spinach (Spinacia oleracea 'America') 0.4630 1.0000 0.6330 144 Spinach (Spinacia oleracea 'Ashley') 0.9231 1.0000 0.9600 144 Spinach (Spinacia oleracea 'Gigante d'Inverno') 0.6429 1.0000 0.7826 144 Spinach (Spinacia oleracea 'Red Kitten') 0.2487 1.0000 0.3983 144 Spinach (Spinacia oleracea 'Reflect') 0.9600 1.0000 0.9796 144 Spinach (Spinacia oleracea 'Seaside') 0.9051 1.0000 0.9502 143 Spinaches (Spinacia oleracea) 0.8750 0.7343 0.7985 143 Spiraeas (Spiraea) 0.6026 0.3264 0.4234 144 Spirea (Spiraea nipponica 'Snowmound') 0.7869 0.3357 0.4706 143 Spotted Beebalm (Monarda punctata var. punctata) 0.8000 0.0833 0.1509 144 Spotted Beebalm (Monarda punctata) 0.4615 0.5417 0.4984 144 Spotted Dead Nettle (Lamium maculatum 'Pink Pewter') 0.7448 1.0000 0.8537 143 Spotted Dead Nettle (Lamium maculatum) 0.8594 0.3846 0.5314 143 Spring Crocus (Crocus versicolor 'Picturatus') 0.8034 1.0000 0.8910 143 Squid Agave (Agave bracteosa) 0.5789 0.7639 0.6587 144 St.Christopher Lily (Crinum jagus) 0.9778 0.6111 0.7521 144 Strawberries (Fragaria) 1.0000 0.2292 0.3729 144 Strawberry (Fragaria x ananassa 'Chandler') 0.9114 1.0000 0.9536 144 Strawberry (Fragaria x ananassa) 0.8768 0.8403 0.8582 144 Strawberry Foxglove (Digitalis x mertonensis) 0.8627 0.3056 0.4513 144 Stringy Stonecrop (Sedum sarmentosum) 0.0408 0.0139 0.0207 144 Summer Squash-Crookneck (Cucurbita pepo 'Summer Crookneck') 0.8786 0.8601 0.8693 143 Sunroot (Helianthus tuberosus 'White Fuseau') 0.6729 1.0000 0.8045 144 Sunroots (Helianthus tuberosus) 0.4286 0.2308 0.3000 143 Swamp Milkweed (Asclepias incarnata) 0.9057 0.3333 0.4873 144 Sweet Basil (Ocimum basilicum) 0.3869 0.3681 0.3772 144 Sweet Cherries (Prunus avium) 0.0000 0.0000 0.0000 144 Sweet Cherry (Prunus avium 'Bing') 1.0000 0.6181 0.7639 144 Sweet Cherry (Prunus avium 'Black Tatarian') 0.9831 0.4028 0.5714 144 Sweet Cherry (Prunus avium 'Van') 0.8045 1.0000 0.8916 144 Sweet Corn (Zea mays 'Essence') 0.0000 0.0000 0.0000 143 Sweet Potato (Ipomoea batatas 'Carolina Ruby') 0.9068 0.7483 0.8199 143 Sweet Potato (Ipomoea batatas Sweet Caroline Sweetheart Jet Black™) 0.8647 0.8042 0.8333 143 Sweet Potato Vine (Ipomoea batatas 'Little Blackie') 0.3647 0.8951 0.5182 143 Sweet Potato Vine (Ipomoea batatas 'Pink Frost') 0.7784 1.0000 0.8754 144 Sweet Potatoes (Ipomoea batatas) 0.0000 0.0000 0.0000 144 Swiss Chard (Beta vulgaris subsp. cicla 'Bright Lights') 0.5165 0.3264 0.4000 144 Swiss Chard (Beta vulgaris subsp. cicla 'Rhubarb Chard') 0.4965 1.0000 0.6636 143 Swiss Chard (Beta vulgaris subsp. cicla 'Ruby Red') 0.7317 0.2083 0.3243 144 Tall Bearded Iris (Iris 'Blue Me Away') 0.7044 1.0000 0.8266 143 Tall Bearded Iris (Iris 'Lemon Cloud') 0.9796 1.0000 0.9897 144 Tall Bearded Iris (Iris 'Merchant Marine') 0.9176 0.5455 0.6842 143 Tall Bearded Iris (Iris 'Radiant Garnet') 0.8889 1.0000 0.9412 144 Tall Bearded Iris (Iris 'Serene Silence') 0.9470 1.0000 0.9728 143 Tall Bearded Iris (Iris 'Wonders Never Cease') 1.0000 1.0000 1.0000 143 Tall Phlox (Phlox paniculata) 0.6786 0.2657 0.3819 143 Tarragons (Artemisia dracunculus) 0.8738 0.6250 0.7287 144 Tasteless Stonecrop (Sedum sexangulare) 0.7850 0.5874 0.6720 143 Texas Nipple Cactus (Mammillaria prolifera subsp. texana) 0.9597 1.0000 0.9795 143 Texas Star (Hibiscus coccineus) 0.9722 0.4895 0.6512 143 Thimbleberry (Rubus nutkanus) 0.7059 0.0839 0.1500 143 Thornless Blackberry (Rubus 'Apache') 0.7500 0.7133 0.7312 143 Thornless Blackberry (Rubus 'Arapaho') 0.5714 0.1111 0.1860 144 Thornless Blackberry (Rubus 'Navaho') 0.6203 0.3427 0.4414 143 Thyme (Thymus praecox 'Highland Cream') 0.5106 1.0000 0.6761 144 Thyme (Thymus praecox) 1.0000 0.4514 0.6220 144 Thyme (Thymus serpyllum 'Roseum') 0.7423 1.0000 0.8521 144 Tiare (Gardenia taitensis) 0.7487 1.0000 0.8563 143 Tickseed (Coreopsis Cruizin'™ Main Street) 0.8623 1.0000 0.9260 144 Tickseed (Coreopsis Satin & Lace™ Red Chiffon) 0.9408 1.0000 0.9695 143 Tickseed (Coreopsis UpTick™ Yellow & Red) 0.5830 1.0000 0.7366 144 Tickseed (Coreopsis grandiflora 'Sunkiss') 0.7483 0.7431 0.7456 144 Tomato (Solanum lycopersicum 'Buffalo Steak') 0.6193 0.8531 0.7176 143 Tomato (Solanum lycopersicum 'Dark Galaxy') 1.0000 1.0000 1.0000 144 Tomato (Solanum lycopersicum 'Goldman's Italian-American') 0.9754 0.8322 0.8981 143 Tomato (Solanum lycopersicum 'Helsing Junction Blues') 0.8256 0.4931 0.6174 144 Tomato (Solanum lycopersicum 'Park's Whopper') 0.5107 1.0000 0.6761 143 Tomato (Solanum lycopersicum 'Pink Delicious') 0.8412 1.0000 0.9137 143 Tomato (Solanum lycopersicum 'Sungold') 0.8608 0.4722 0.6099 144 Tomato (Solanum lycopersicum 'Yellow Mortgage Lifter') 0.9597 1.0000 0.9795 143 Tomatoes (Solanum lycopersicum) 1.0000 0.1458 0.2545 144 Triandrus Daffodil (Narcissus 'Thalia') 0.7368 0.4895 0.5882 143 Triple Sweet Corn (Zea mays 'Alto') 0.5882 0.6993 0.6390 143 Triumph Tulip (Tulipa 'Aperitif') 0.7664 0.7292 0.7473 144 Triumph Tulip (Tulipa 'Jackpot') 0.9857 0.4792 0.6449 144 Tropical Milkweed (Asclepias curassavica 'Silky Gold') 0.7265 0.5944 0.6538 143 Tropical Milkweed (Asclepias curassavica) 0.9125 0.5105 0.6547 143 Trumpet Daffodil (Narcissus 'Marieke') 0.8050 0.8951 0.8477 143 Trumpet Narcissus (Narcissus 'Bravoure') 0.9375 0.2083 0.3409 144 Tulip (Tulipa 'Brown Sugar') 0.8045 1.0000 0.8916 144 Tulip (Tulipa 'Rasta Parrot') 0.9863 1.0000 0.9931 144 Turnip (Brassica rapa subsp. rapa 'Gold Ball') 0.7784 1.0000 0.8754 144 Turnip (Brassica rapa subsp. rapa 'Purple Top White Globe') 0.8372 1.0000 0.9114 144 Turnip (Brassica rapa subsp. rapa 'Round Red') 0.6745 1.0000 0.8056 143 Turnip (Brassica rapa subsp. rapa 'White Egg') 1.0000 0.1678 0.2874 143 Turnip (Brassica rapa subsp. rapa 'White Lady') 0.7956 1.0000 0.8862 144 Turnips (Brassica rapa subsp. rapa) 0.8773 1.0000 0.9346 143 Twin-Spined Cactus (Mammillaria geminispina) 0.9811 0.7273 0.8353 143 Van Houtte Spiraea (Spiraea x vanhouttei 'Pink Ice') 0.6923 1.0000 0.8182 144 Variegated Pinwheel (Aeonium haworthii 'Variegatum') 0.6714 1.0000 0.8034 143 Variegated Queen Victoria Century Plant (Agave victoriae-reginae 'Albomarginata') 0.7423 1.0000 0.8521 144 Veronica (Veronica longifolia) 0.6667 0.4306 0.5232 144 Vietnamese Gardenia (Gardenia vietnamensis) 0.9351 1.0000 0.9664 144 Waterlily Tulip (Tulipa kaufmanniana 'Corona') 0.8372 1.0000 0.9114 144 Waterlily Tulip (Tulipa kaufmanniana 'Scarlet Baby') 0.5195 0.9236 0.6650 144 Welsh Poppy (Papaver cambricum 'Flore Pleno') 0.9536 1.0000 0.9763 144 Western Red Cedar (Thuja plicata 'Whipcord') 0.5070 1.0000 0.6729 144 Western Red Cedar (Thuja plicata Forever Goldy®) 0.8182 1.0000 0.9000 144 Western Red Cedar (Thuja plicata) 0.8485 0.7832 0.8145 143 White Currant (Ribes rubrum 'White Versailles') 1.0000 0.4583 0.6286 144 White Dead Nettle (Lamium album) 1.0000 0.8112 0.8958 143 White Stonecrop (Sedum album 'Twickel Purple') 0.7129 1.0000 0.8324 144 White Texas Star Hibiscus (Hibiscus coccineus 'Alba') 0.8761 0.6875 0.7704 144 Wild Asparagus (Asparagus officinalis 'Jersey Knight') 0.3871 0.0833 0.1371 144 Wild Asparagus (Asparagus officinalis 'Mary Washington') 0.6441 0.2639 0.3744 144 Wild Bergamot (Monarda fistulosa) 0.0000 0.0000 0.0000 144 Wild Blackberry (Rubus cochinchinensis) 0.8824 0.3125 0.4615 144 Wild Blue Phlox (Phlox divaricata) 0.5000 0.0972 0.1628 144 Wild Indigo (Baptisia 'Brownie Points') 0.9226 1.0000 0.9597 143 Wild Indigo (Baptisia 'Lemon Meringue') 0.7941 0.9441 0.8626 143 Wild Indigo (Baptisia 'Pink Lemonade') 0.9172 1.0000 0.9568 144 Wild Thyme (Thymus serpyllum 'Pink Chintz') 0.4819 0.6458 0.5519 144 Willow Leaf Foxglove (Digitalis obscura) 0.7763 0.8194 0.7973 144 Winter Honeysuckle (Lonicera fragrantissima) 0.8095 0.3542 0.4928 144 Winter Radish (Raphanus sativus 'China Rose') 0.6857 1.0000 0.8136 144 Winter Squash (Cucurbita maxima 'Buttercup') 0.9541 0.7222 0.8221 144 Winterberry (Ilex verticillata) 0.3233 0.5208 0.3989 144 Winterberry Holly (Ilex verticillata 'Chrysocarpa') 0.7784 1.0000 0.8754 144 Winterberry Holly (Ilex verticillata 'Tiasquam') 0.3397 1.0000 0.5071 143 Winterberry Holly (Ilex verticillata 'Winter Red') 0.5909 0.2708 0.3714 144 Wisterias (Wisteria) 1.0000 0.0280 0.0544 143 Woolly Thyme (Thymus praecox subsp. polytrichus) 0.7333 0.5385 0.6210 143 Woolly Turkish Speedwell (Veronica bombycina) 0.9862 1.0000 0.9931 143 Yarrow (Achillea 'Moonshine') 0.7093 0.8472 0.7722 144 Yarrow (Achillea 'Summer Berries') 0.5574 0.2361 0.3317 144 Yarrow (Achillea millefolium 'Paprika') 1.0000 0.0278 0.0541 144 Yarrow (Achillea millefolium 'Sonoma Coast') 0.5697 1.0000 0.7259 143 Yarrow (Achillea millefolium 'Summer Pastels') 0.5294 0.5035 0.5161 143 Yarrow (Achillea millefolium New Vintage™ Rose) 0.2483 1.0000 0.3978 144 Yarrow (Achillea millefolium) 1.0000 0.0699 0.1307 143 Yarrows (Achillea) 0.0000 0.0000 0.0000 143 Yaupon Holly (Ilex vomitoria) 0.4444 0.2500 0.3200 144 Yellow Archangel (Lamium galeobdolon subsp. montanum 'Florentinum') 0.3165 1.0000 0.4808 144 rose 0.7727 0.8322 0.8013 143 accuracy 0.6663 129240 macro avg 0.6965 0.6664 0.6248 129240 weighted avg 0.6965 0.6663 0.6247 129240 ```
[ "aeonium 'emerald ice'", "aeonium 'jolly clusters'", "aeonium 'mardi gras'", "aeonium (aeonium davidbramwellii 'sunburst')", "aeonium (aeonium nobile)", "aeonium castello-paivae 'harry mak'", "aeoniums (aeonium)", "african blue basil (ocimum 'african blue')", "aloe 'orange marmalade'", "aloes (aloe)", "alpine strawberry (fragaria vesca)", "althea (hibiscus syriacus blueberry smoothieγäó)", "amazon jungle vine (vitis amazonica)", "american arborvitae (thuja occidentalis 'hetz midget')", "american arborvitae (thuja occidentalis 'rheingold')", "american beautyberry (callicarpa americana)", "american cranberrybush viburnum (viburnum opulus var. americanum)", "american wisteria (wisteria frutescens 'amethyst falls')", "american wisteria (wisteria frutescens 'blue moon')", "antelope horns milkweed (asclepias asperula subsp. capricornu)", "apple (malus pumila 'braeburn')", "apple (malus pumila 'red delicious')", "apple (malus pumila 'red rome')", "apple (malus pumila 'sweet bough')", "apple (malus pumila 'winter pearmain')", "apple mint (mentha suaveolens)", "apples (malus)", "apricot (prunus armeniaca 'gold kist')", "apricot (prunus armeniaca 'goldcot')", "apricots (prunus armeniaca)", "arborvitae (thuja 'green giant')", "arborvitaes (thuja)", "arilbred iris (iris 'stolon ginger')", "aromatic aster (symphyotrichum oblongifolium 'october skies')", "arrowwood viburnum (viburnum dentatum)", "artichoke agave (agave parryi var. truncata)", "artichokes (cynara scolymus)", "asparagus (asparagus officinalis)", "asparagus officinalis 'mondeo'", "aster (aster x frikartii 'monch')", "aster (aster x frikartii wonder of stafa)", "asters (aster)", "astilbe 'fanal'", "astilbe 'icecream'", "astilbe 'peach blossom'", "astilbe 'rheinland'", "astilbe 'straussenfeder'", "astilbes (astilbe)", "azalea (rhododendron 'blaney's blue')", "azalea (rhododendron 'irene koster')", "baby burro's tail (sedum burrito)", "baby's breath (gypsophila elegans 'covent garden')", "baby's breath (gypsophila elegans 'kermesina')", "baby's breaths (gypsophila elegans)", "baptisias (baptisia)", "basil (ocimum basilicum 'cardinal')", "basil (ocimum basilicum 'emily')", "basils (ocimum)", "beach morning glory (ipomoea pes-caprae)", "bean (phaseolus vulgaris 'cherokee trail of tears')", "beardtongue (penstemon red rocks┬«)", "beautyberry (callicarpa dichotoma 'early amethyst')", "bee balm (monarda 'blaustrumpf')", "bee balm (monarda 'purple rooster')", "bee balm (monarda 'trinity purple')", "bee balm (monarda didyma 'jacob cline')", "bee balm (monarda didyma)", "beebalm (monarda didyma 'marshall's delight')", "beet (beta vulgaris 'boro')", "beet (beta vulgaris 'bull's blood')", "beet (beta vulgaris 'camaro')", "beet (beta vulgaris 'crosby's egyptian')", "beet (beta vulgaris 'moneta')", "beet (beta vulgaris 'robin')", "beet (beta vulgaris 'solo')", "beet (beta vulgaris 'zeppo')", "beet (beta vulgaris var. vulgaris)", "bellflower (campanula fancy mee┬«)", "bellflower (campanula rapunculus subsp. rapunculus)", "bellflower (campanula scheuchzeri)", "bellflower (campanula x haylodgensis 'blue wonder')", "bellflowers (campanula)", "betony (stachys spathulata)", "bigleaf hydrangea (hydrangea macrophylla 'lanarth white')", "bigleaf hydrangea (hydrangea macrophylla gentian dome)", "bigleaf hydrangea (hydrangea macrophylla)", "bitter aloe (aloe ferox)", "biznaga de isla pichilingue (mammillaria albicans subsp. fraileana)", "biznaga de otero (mammillaria oteroi)", "black eyed susan (rudbeckia fulgida var. sullivantii 'goldsturm')", "black eyed susan (rudbeckia hirta smileyzγäó happy)", "black eyed susan (rudbeckia hirta var. hirta)", "black eyed susans (rudbeckia)", "black-eyed susan (rudbeckia hirta 'autumn colors')", "black-eyed susan (rudbeckia hirta 'cappuccino')", "black-eyed susan (rudbeckia hirta 'sputnik')", "blackberry (rubus 'black satin')", "blanket flower (gaillardia 'arizona sun')", "blanket flower (gaillardia mesaγäó red)", "blanket flower (gaillardia pulchella)", "blanket flower (gaillardia)", "blazing star (liatris spicata)", "bleeding heart (dicentra 'ivory hearts')", "bleeding heart (lamprocapnos spectabilis valentineγäó)", "bleeding heart (lamprocapnos spectabilis)", "bleeding hearts (lamprocapnos)", "blue daisy (felicia amelloides)", "blue sage (salvia azurea)", "blue wild indigo (baptisia australis)", "bok choy (brassica rapa subsp. chinensis 'joi choi')", "bolivian hummingbird sage (salvia oxyphora)", "bradford pear (pyrus calleryana 'bradford')", "brassicas (brassica)", "bridalwreath spiraea (spiraea prunifolia)", "bright green dudleya (dudleya virens)", "bulbocodium daffodil (narcissus 'spoirot')", "bumpy convolvulaceae (ipomoea tuberculata)", "bush bean (phaseolus vulgaris 'royal burgundy')", "bush bean (phaseolus vulgaris 'topcrop')", "butterfly bush (buddleja 'orange sceptre')", "butterfly bush (buddleja buzzγäó sky blue)", "butterfly bush (buddleja humdingerγäó magenta munchkin)", "butterfly bush (buddleja davidii 'asian moon')", "butterfly bush (buddleja davidii 'black knight')", "butterfly bush (buddleja davidii 'nanho blue')", "butterfly bush (buddleja davidii buzzγäó ivory)", "butterfly milkweed (asclepias tuberosa)", "butterfly weed (asclepias tuberosa 'gay butterflies')", "butterfly weed (asclepias tuberosa subsp. tuberosa)", "butterhead lettuce (lactuca sativa 'tom thumb')", "butternut squash (cucurbita moschata 'waltham')", "butterwort (pinguicula 'aphrodite')", "butterwort (pinguicula agnata)", "butterwort (pinguicula cyclosecta)", "butterwort (pinguicula esseriana)", "butterwort (pinguicula gigantea)", "butterwort (pinguicula moctezumae)", "cabbage (brassica oleracea var. capitata 'deep blue')", "cabbage (brassica oleracea var. capitata 'red jewel')", "caladium bicolor 'fiesta'", "caladiums (caladium)", "california fishhook cactus (mammillaria dioica)", "callery pear (pyrus calleryana chanticleer┬«)", "canna 'annjee'", "canna (canna x generalis 'maui punch')", "canna cannasolγäó lily", "canna tropicanna┬«", "cannas (canna)", "cantaloupe (cucumis melo 'ambrosia')", "cantaloupe (cucumis melo 'orange silverwave')", "cantaloupes (cucumis melo)", "caraway thyme (thymus herba-barona)", "carrot (daucus carota subsp. sativus 'atomic red')", "carrot (daucus carota subsp. sativus 'black nebula')", "carrot (daucus carota subsp. sativus 'burpees a#1')", "carrot (daucus carota subsp. sativus 'envy')", "carrot (daucus carota subsp. sativus 'purple 68')", "carrot (daucus carota subsp. sativus 'sugarsnax 54')", "carrot (daucus carota subsp. sativus 'ultimate hybrid')", "catmint (nepeta cat's meow)", "catmint (nepeta x faassenii 'walker's low')", "catmints (nepeta)", "catnip (nepeta cataria)", "cauliflower (brassica oleracea var. botrytis 'steady')", "celeriac (apium graveolens var. rapaceum 'prague giant')", "celeriac (apium graveolens var. rapaceum 'prinz')", "celery (apium graveolens var. dulce 'lathom self blanching galaxy')", "celery (apium graveolens var. dulce 'redventure')", "celery (apium graveolens var. dulce 'tall utah')", "center stripe agave (agave univittata 'quadricolor')", "chalk rose (dudleya candida)", "cheddar pink (dianthus dessertγäó raspberry swirl)", "cheddar pink (dianthus gratianopolitanus blukissγäó)", "cherry plum (prunus cerasifera 'thundercloud')", "chinese astilbe (astilbe rubra)", "chinese dogwood (cornus kousa subsp. chinensis 'milky way')", "chinese lanterns (hibiscus schizopetalus)", "chinese pear (pyrus pyrifolia 'shinseiki')", "chinese rhubarb (rheum tanguticum)", "chinese wisteria (wisteria sinensis 'prolific')", "chinese wisteria (wisteria sinensis)", "chinese rhubarb (rheum palmatum 'bowles crimson')", "chives (allium schoenoprasum)", "chocolate mint (mentha x piperita 'chocolate')", "cilantro (coriandrum sativum 'confetti')", "cilantros (coriandrum sativum)", "citron (citrus medica)", "citrus fruits (citrus)", "clustered bellflower (campanula glomerata)", "coconino county desert beardtongue (penstemon pseudospectabilis 'coconino county')", "colorado narrowleaf beardtongue (penstemon linarioides)", "columbine (aquilegia kirigamiγäó rose & pink)", "columbine (aquilegia coerulea origamiγäó blue & white)", "columbine (aquilegia vulgaris 'adelaide addison')", "columbines (aquilegia)", "common bean (phaseolus vulgaris 'contender')", "common fig (ficus carica 'brown turkey')", "common fig (ficus carica 'chicago hardy')", "common fig (ficus carica 'jolly tiger')", "common fig (ficus carica 'violette de bordeaux')", "common jujube (ziziphus jujuba 'lang')", "common jujube (ziziphus jujuba 'li')", "common lilac (syringa vulgaris 'arch mckean')", "common lilac (syringa vulgaris 'wonder blue')", "common milkweed (asclepias syriaca)", "common sage (salvia officinalis 'tricolor')", "compact queen victoria agave (agave victoriae-reginae subsp. swobodae)", "conchilinque (mammillaria pectinifera)", "concord grape (vitis labrusca 'concord')", "coneflower (echinacea 'virgin')", "coneflower (echinacea big skyγäó sundown)", "coneflower (echinacea double scoopγäó orangeberry)", "coneflower (echinacea sombrero┬« lemon yellow improved)", "coneflower (echinacea purpurea 'green twister')", "confederate rose (hibiscus mutabilis)", "coppertone stonecrop (sedum nussbaumerianum 'shooting stars')", "coral bells (heuchera 'amethyst myst')", "coral bells (heuchera 'fire alarm')", "coral bells (heuchera 'mahogany')", "coral bells (heuchera 'mega caramel')", "coral bells (heuchera 'silver scrolls')", "coral bells (heuchera dolce┬« blackberry ice)", "coral bells (heuchera micrantha 'palace purple')", "coral bells (heuchera sanguinea 'ruby bells')", "coral honeysuckle (lonicera sempervirens 'major wheeler')", "coral honeysuckle (lonicera sempervirens)", "coreopsis li'l bangγäó darling clementine", "corn (zea mays subsp. mays 'jackpot')", "corn (zea mays subsp. mays)", "cos lettuce (lactuca sativa 'little gem')", "coulter's mock orange (philadelphus coulteri)", "crabapple (malus 'cardinal')", "crabapple (malus 'prairie fire')", "cranesbill (geranium rozanne┬«)", "cranesbill (geranium platypetalum)", "crape myrtle (lagerstroemia indica 'hopi')", "crape myrtle (lagerstroemia indica red rocket┬«)", "creeping phlox (phlox subulata 'emerald blue')", "creeping phlox (phlox subulata)", "creeping speedwell (veronica teucrium)", "crepe myrtle (lagerstroemia 'ebony flame')", "crepe myrtle (lagerstroemia 'natchez')", "crepe myrtle (lagerstroemia 'zuni')", "crepe myrtle (lagerstroemia pink velour┬«)", "crepe myrtle (lagerstroemia indica 'peppermint lace')", "crinum 'marisco'", "crinum 'milk and wine'", "crinum lily (crinum 'stars and stripes')", "crinums (crinum)", "crocus", "crocus 'deep water'", "crocus (crocus chrysanthus 'ladykiller')", "cucumber (cucumis sativus 'artist')", "cucumber (cucumis sativus 'double yield')", "cucumber (cucumis sativus 'early cluster')", "cucumber (cucumis sativus 'lemon')", "cucumber (cucumis sativus 'marketmore 76')", "culinary sages (salvia officinalis)", "curly parsley (petroselinum crispum var. crispum)", "cutleaf coneflower (rudbeckia laciniata)", "daffodil (narcissus 'lavender bell')", "dahlia 'ac sadie'", "dahlia 'creme de cassis'", "dahlia 'destiny's john michael'", "dahlia 'firepot'", "dahlia 'formby sunrise'", "dahlia 'hapet champagne'", "dahlia 'kelsey annie joy'", "dahlia 'santa claus'", "dahlia 'thomas a. edison'", "dahlias (dahlia)", "dalmatian bellflower (campanula portenschlagiana)", "dark opal basil (ocimum basilicum 'purpurascens')", "daylily (hemerocallis 'armed to the teeth')", "daylily (hemerocallis 'dearest mahogany')", "daylily (hemerocallis 'golden hibiscus')", "daylily (hemerocallis 'kathrine carter')", "daylily (hemerocallis 'put my picture on the cover')", "daylily (hemerocallis 'quoting hemingway')", "daylily (hemerocallis 'soli deo gloria')", "daylily (hemerocallis 'sons of thunder')", "daylily (hemerocallis 'vanishing mist')", "daylily (hemerocallis 'zollo omega')", "delphinium 'blue dawn'", "delphinium 'diamonds blue'", "delphinium 'percival'", "delphinium (delphinium elatum new millenniumγäó royal aspirations)", "delphiniums (delphinium)", "dianthus", "dianthus 'gran's favorite'", "dianthus (dianthus chinensis 'black and white minstrels')", "dianthus (dianthus longicalyx)", "dianthus (dianthus monspessulanus)", "dill (anethum graveolens 'bouquet')", "dill (anethum graveolens 'fernleaf')", "dills (anethum graveolens)", "dogwoods (cornus)", "double daffodil (narcissus 'ice king')", "double daffodil (narcissus 'tahiti')", "double japanese wisteria (wisteria floribunda black dragon)", "double reeves spirea (spiraea cantoniensis 'lanceata')", "drummond's hedgenettle (stachys drummondii)", "dry bean (phaseolus vulgaris 'good mother stallard')", "dudleyas (dudleya)", "dune aloe (aloe thraskii)", "dutch hyacinth (hyacinthus orientalis 'delft blue')", "dutch hyacinth (hyacinthus orientalis 'hollyhock')", "dutch hyacinth (hyacinthus orientalis 'splendid cornelia')", "dutchman's breeches (dicentra cucullaria)", "dwarf burford holly (ilex cornuta 'burfordii nana')", "dwarf caladium (caladium humboldtii)", "dwarf chinese astilbe (astilbe rubra 'pumila')", "dwarf coneflower (echinacea kismet┬« red)", "dwarf mouse-ear tickseed (coreopsis auriculata 'nana')", "dwarf peach (prunus persica 'bonanza')", "eastern dogwood (cornus florida var. florida 'rubra')", "eastern dogwood (cornus florida var. florida cherokee braveγäó)", "eastern ninebark (physocarpus opulifolius 'center glow')", "eastern ninebark (physocarpus opulifolius 'dart's gold')", "eastern ninebark (physocarpus opulifolius 'luteus')", "eastern ninebark (physocarpus opulifolius coppertinaγäó)", "eastern ninebark (physocarpus opulifolius diabolo┬«)", "eastern red columbine (aquilegia canadensis)", "echeveria 'afterglow'", "echeveria 'blue wren'", "echeveria 'irish mint'", "echeveria 'mauna loa'", "echeveria 'perle von nurnberg'", "echeveria 'rain drops'", "echeveria (echeveria affinis 'black knight')", "echeveria (echeveria agavoides 'love's fire')", "echeveria (echeveria runyonii)", "echeveria (echeveria setosa var. minor)", "eggplant (solanum melongena 'annina')", "eggplant (solanum melongena 'black beauty')", "eggplant (solanum melongena 'bride')", "eggplant (solanum melongena 'icicle')", "eggplant (solanum melongena 'orient express')", "eggplant (solanum melongena 'orlando')", "eggplant (solanum melongena 'southern pink')", "eggplant (solanum melongena 'violet king')", "egyptian walking onion (allium x proliferum)", "elephant's foot plant (pachypodium gracilius)", "elephant's trunk (pachypodium namaquanum)", "elfin thyme (thymus serpyllum 'elfin')", "english pea (pisum sativum 'alaska')", "english pea (pisum sativum 'bistro')", "english pea (pisum sativum 'green arrow')", "english pea (pisum sativum 'penelope')", "english thyme (thymus vulgaris 'orange balsam')", "european cranberry viburnum (viburnum opulus)", "european smoketree (cotinus coggygria winecraft black┬«)", "european snowball bush (viburnum opulus 'roseum')", "faassen's catmint (nepeta x faassenii 'six hills giant')", "false goat's beard (astilbe younique ceriseγäó)", "fancy-leafed caladium (caladium bicolor)", "fancy-leaf caladium (caladium 'creamsickle')", "fancy-leaf caladium (caladium 'red flash')", "fancy-leaf caladium (caladium 'white christmas')", "fancy-leaf caladium (caladium tapestryγäó)", "feather cactus (mammillaria plumosa)", "fern leaf peony (paeonia tenuifolia)", "figs (ficus carica)", "flat-flowered aloe (aloe marlothii)", "flint corn (zea mays subsp. mays 'indian ornamental')", "flower of an hour (hibiscus trionum)", "flowering cabbage (brassica oleracea var. viridis pigeonγäó white)", "flowering crabapple (malus golden raindrops)", "flowering dogwood (cornus stellar pink┬«)", "flowering dogwood (cornus florida)", "flowering kale (brassica oleracea 'kamome white')", "flowering pear (pyrus calleryana 'cleveland select')", "foothill beardtongue (penstemon heterophyllus 'electric blue')", "fox grape (vitis 'valiant')", "fox grape (vitis labrusca)", "foxglove (digitalis 'honey trumpet')", "foxglove (digitalis purpurea 'dalmatian peach')", "foxglove (digitalis purpurea)", "foxgloves (digitalis)", "foxtail agave (agave attenuata)", "fragaria vesca subsp. vesca", "french lilac (syringa vulgaris 'michel buchner')", "french lilac (syringa vulgaris 'miss ellen willmott')", "french tarragon (artemisia dracunculus 'sativa')", "fuchsia flowering currant (ribes speciosum)", "gaillardia 'punch bowl'", "garden bells (penstemon hartwegii phoenixγäó pink)", "garden onion (allium cepa 'super star')", "garden pea (pisum sativum 'pls 534')", "garden phlox (phlox paniculata 'blue paradise')", "garden phlox (phlox paniculata 'mount fuji')", "garden phlox (phlox paniculata volcano pink white eye)", "garden phlox (phlox x arendsii 'miss mary')", "garden sage (salvia officinalis 'robert grimm')", "gardenia (gardenia jasminoides 'august beauty')", "gardenia (gardenia jasminoides 'frostproof')", "gardenia (gardenia jasminoides 'veitchii')", "gardenia (gardenia jasminoides 'white gem')", "gardenias (gardenia)", "garlic (allium sativum 'early red italian')", "garlic (allium sativum 'georgian crystal')", "garlic (allium sativum 'russian red')", "garlic (allium sativum)", "gay feather (liatris spicata 'floristan white')", "genovese basil (ocimum basilicum 'dolce fresca')", "gentian speedwell (veronica gentianoides)", "georgia sweet vidalia onion (allium cepa 'yellow granex')", "geranium (geranium wallichianum 'buxton's variety')", "geranium (geranium wallichianum 'crystal lake')", "geraniums (geranium)", "giant chalk dudleya (dudleya brittonii)", "gladiola (gladiolus 'vista')", "gladiola (gladiolus)", "gladiolus 'atom'", "gladiolus 'fiesta'", "globe artichoke (cynara scolymus 'green globe')", "globe artichoke (cynara scolymus 'violet de provence')", "gloriosa daisy (rudbeckia hirta 'prairie sun')", "golden sage (salvia officinalis 'aurea')", "gooseberry (ribes uva-crispa 'hinnonmaki rod')", "gooseberry (ribes uva-crispa)", "gourds, squashes and pumpkins (cucurbita)", "grape (vitis vinifera 'gamay')", "grape (vitis vinifera cotton candy┬«)", "grapes (vitis)", "green bean (phaseolus vulgaris 'trionfo violetto')", "greigii tulip (tulipa 'fire of love')", "hairy beardtongue (penstemon hirsutus)", "hardy geranium (geranium 'phoebe noble')", "hardy geranium (geranium sanguineum 'elke')", "hardy geranium (geranium sanguineum var. striatum)", "hardy hibiscus (hibiscus moscheutos 'fireball')", "hardy hibiscus (hibiscus moscheutos 'kopper king')", "hardy hibiscus (hibiscus moscheutos 'tie dye')", "hardy hibiscus (hibiscus moscheutos summerificγäó cherry cheesecake)", "hardy hibiscus (hibiscus moscheutos summerificγäó starry starry night)", "hardy hibiscus hybrid (hibiscus 'summer in paradise')", "heavenly bamboo (nandina domestica 'moon bay')", "heavenly bamboos (nandina domestica)", "hen and chicks (sempervivum 'blaukraut')", "hen and chicks (sempervivum 'gold nugget')", "hen and chicks (sempervivum 'larissa')", "hen and chicks (sempervivum 'lynn's rose gold')", "hen and chicks (sempervivum 'red lion')", "hen and chicks (sempervivum 'space dog')", "hen and chicks (sempervivum calcareum)", "hen and chicks (sempervivum tectorum 'grammens')", "hen and chicks (sempervivum 'dea')", "henbit (lamium amplexicaule)", "hibiscus", "hibiscus (hibiscus moscheutos summerificγäó cherry choco latte)", "hibiscus (hibiscus moscheutos summerificγäó cranberry crush)", "hibiscus (hibiscus moscheutos summerificγäó summer storm)", "holly (ilex 'nellie r. stevens')", "holy basil (ocimum tenuiflorum 'green sacred')", "honeysuckle (lonicera 'gold flame')", "hortulan plum (prunus hortulana)", "hosta 'blue angel'", "hosta 'blue mouse ears'", "hosta 'curly fries'", "hosta 'liberty'", "hosta 'popcorn'", "hosta 'tom schmid'", "hosta 'whirlwind'", "hosta 'white feather'", "hostas (hosta)", "hot pepper (capsicum annuum 'petit marseillais')", "hot pepper (capsicum annuum 'super chili')", "hot pepper (capsicum baccatum 'brazilian starfish')", "hot pepper (capsicum sinense 'black naga')", "hummingbird sage (salvia coccinea 'coral nymph')", "hyacinth (hyacinthus orientalis 'blue jacket')", "hyacinth (hyacinthus orientalis)", "hyacinths (hyacinthus)", "hybrid gladiola (gladiolus 'boone')", "hybrid gladiola (gladiolus x gandavensis 'priscilla')", "hybrid tickseed (coreopsis 'cherry lemonade')", "hydrangea (hydrangea macrophylla 'nightingale')", "hydrangea (hydrangea macrophylla l.a. dreamin'γäó lindsey ann)", "hydrangea (hydrangea quercifolia 'munchkin')", "hydrangeas (hydrangea)", "iceland poppy (papaver nudicaule 'champagne bubbles white')", "iceland poppy (papaver nudicaule 'meadow pastels')", "intersectional peony (paeonia 'all that jazz')", "italian parsley (petroselinum crispum 'italian flat leaf')", "itoh peony (paeonia 'caroline constabel')", "japanese crepe myrtle (lagerstroemia fauriei 'fantasy')", "japanese cucumber (cucumis sativus 'southern delight')", "japanese hardy orange (citrus trifoliata)", "japanese honeysuckle (lonicera japonica 'halliana')", "japanese morning glory (ipomoea nil 'seiryu')", "japanese morning glory (ipomoea nil)", "japanese spirea (spiraea japonica 'magic carpet')", "japanese spirea (spiraea japonica 'neon flash')", "japanese wisteria (wisteria floribunda 'issai perfect')", "japanese yellow sage (salvia koyamae)", "jelly bean (sedum x rubrotinctum)", "jerusalem artichoke (helianthus tuberosus 'clearwater')", "jerusalem artichoke (helianthus tuberosus 'stampede')", "jonquilla narcissus (narcissus 'blushing lady')", "judd viburnum (viburnum carlesii var. bitchiuense)", "jujube (ziziphus jujuba 'sherwood')", "jujubes (ziziphus jujuba)", "kaibab agave (agave utahensis subsp. kaibabensis)", "kale (brassica oleracea var. viridis 'redbor')", "koreanspice viburnum (viburnum carlesii)", "lacecap hydrangea (hydrangea macrophylla endless summer┬« twist-n-shout┬«)", "lady tulip (tulipa clusiana)", "lamb's ears (stachys)", "lambs' ears (stachys byzantina)", "large speedwell (veronica teucrium 'crater lake blue')", "large-cupped daffodil (narcissus 'chromacolor')", "larkspur (delphinium 'benary's pacific cameliard')", "larkspur (delphinium elatum 'guardian lavender')", "larkspur (delphinium elatum new millenniumγäó black eyed angels)", "leek (allium ampeloprasum 'lancelot')", "leek (allium ampeloprasum 'large american flag')", "leek (allium ampeloprasum 'zermatt')", "leeks (allium ampeloprasum)", "lemoine's mock orange (philadelphus 'belle etoile')", "lemon (citrus x limon)", "lemon bee balm (monarda citriodora)", "lemon thyme (thymus x citriodorus)", "lemon tree (citrus x limon 'eureka')", "lettuce (lactuca sativa 'parris island')", "lettuce (lactuca sativa 'red romaine')", "lettuce (lactuca sativa 'rouge d'hiver')", "lettuce (lactuca sativa 'yugoslavian red butterhead')", "lettuces (lactuca sativa)", "lewis' mockorange (philadelphus lewisii)", "lilac (syringa first editions┬« virtual violetγäó)", "lilac (syringa vulgaris 'belle de nancy')", "lilac (syringa vulgaris 'sensation')", "lilac (syringa x hyacinthiflora 'sweetheart')", "lily (lilium 'corsage')", "lily (lilium 'flavia')", "lily (lilium 'fusion')", "lily (lilium 'moonyeen')", "lily (lilium 'ramona')", "lily (lilium 'sunny morning')", "lily (lilium 'viva la vida')", "lily (lilium auratum)", "lily (lilium pyrenaicum)", "lily flowering tulip (tulipa 'claudia')", "loose-leaf lettuce (lactuca sativa 'salad bowl')", "madagascar palm (pachypodium geayi)", "madagascar palm (pachypodium lamerei)", "malagasy tree aloe (aloe vaombe)", "marjorams (origanum laevigatum)", "meadow blazing star (liatris ligulistylis)", "mealy cup sage (salvia farinacea cathedral┬« shining seas)", "melon (cucumis melo 'charentais')", "melon (cucumis melo 'kajari')", "melon (cucumis melo 'tigger')", "meserve holly (ilex 'casanova')", "mexican butterwort; mexican ping (pinguicula ibarrae)", "mexican dogwood (cornus florida var. urbiniana)", "mexican plum (prunus mexicana)", "meyer's lemon (citrus x limon 'improved meyer')", "milk and wine lily (crinum fimbriatulum)", "miniature jonquilla daffodil (narcissus 'pipit')", "mints (mentha)", "mock orange (philadelphus 'innocence')", "mock orange (philadelphus 'snow dwarf')", "moonflower (ipomoea alba)", "morning glory (ipomoea 'split second')", "morning glory (ipomoea hederifolia 'aurantia')", "morning glory (ipomoea nil 'kikyo snowflakes')", "morning glory (ipomoea purpurea 'feringa')", "morning glory (ipomoea tricolor 'clarke's heavenly blue')", "mountain aloe (aloe broomii)", "nectarine (prunus persica 'arctic glo')", "nectarine (prunus persica 'early rivers')", "nepeta (nepeta subsessilis)", "nepeta (nepeta x faassenii 'select blue')", "new england aster (symphyotrichum novae-angliae 'andenken an alma po╠êtschke')", "new england aster (symphyotrichum novae-angliae)", "noble rhubarb (rheum nobile)", "northern white cedar (thuja occidentalis mr. bowling ballγäó)", "okra (abelmoschus esculentus 'burmese')", "okra (abelmoschus esculentus 'clemson spineless')", "okra (abelmoschus esculentus 'jambalaya')", "okra (abelmoschus esculentus 'jing orange')", "okra (abelmoschus esculentus 'red burgundy')", "okra (abelmoschus esculentus)", "oleander (nerium oleander 'calypso')", "oleander (nerium oleander 'hardy white')", "oleander (nerium oleander 'red cardinal')", "onion (allium cepa 'red hunter')", "onion (allium cepa 'red river f1')", "onion (allium cepa 'walla walla sweet')", "onions (allium cepa)", "orange (citrus reticulata 'satsuma')", "oreganos (origanum vulgare)", "oriental radish (raphanus sativus 'new white spring')", "ornamental gourd (cucurbita pepo 'tennessee dancing')", "ornamental oregano (origanum laevigatum 'herrenhausen')", "ornamental pepper (capsicum annuum 'black pearl')", "ornamental pepper (capsicum annuum 'chilly chili')", "ornamental sweet potato (ipomoea batatas 'blackie')", "ornamental sweet potato (ipomoea batatas 'margarita')", "pachypodium (pachypodium brevicaule)", "pachypodium (pachypodium sofiense)", "pacific coast iris (iris 'big waves')", "pacific coast iris (iris 'caught in the wind')", "pacific coast iris (iris 'finger pointing')", "panicle hydrangea (hydrangea paniculata first editions┬« vanilla strawberryγäó)", "parsleys (petroselinum crispum)", "parsnip (pastinaca sativa 'harris model')", "parsnip (pastinaca sativa 'hollow crown')", "parsnip (pastinaca sativa 'javelin')", "parsnips (pastinaca sativa)", "pea (pisum sativum 'spring blush')", "peach (prunus persica 'canadian harmony')", "peach (prunus persica 'elberta')", "peach (prunus persica flamin' fury┬« pf-24c)", "peach-leaved bellflower (campanula persicifolia)", "peacock orchid (gladiolus murielae)", "pear (pyrus communis 'early seckel')", "pencilled cranesbill (geranium versicolor)", "penstemon riding hood red", "peonies (paeonia)", "peony (paeonia 'athena')", "peony (paeonia 'pastelegance')", "peony (paeonia daurica subsp. coriifolia)", "peony (paeonia lactiflora 'bowl of beauty')", "peony (paeonia lactiflora 'do tell')", "peony (paeonia lactiflora 'top brass')", "pepper (capsicum 'mad hatter')", "peppers (capsicum)", "persian catmint (nepeta racemosa 'little titch')", "petunia amoreγäó queen of hearts", "petunia crazytunia┬« cosmic pink", "petunia headlinerγäó night sky", "petunia midnight gold", "petunia potunia┬« purple halo", "petunia sweetunia┬« fiona flash", "petunias (petunia)", "phlox drummondii 'sugar stars'", "pineberry (fragaria x ananassa 'white carolina')", "pineleaf beardtongue (penstemon pinifolius half pint┬«)", "pinks (dianthus 'little maiden')", "plains coreopsis (coreopsis tinctoria)", "plumeria 'queen amber'", "plumeria (plumeria filifolia)", "plumeria (plumeria rubra 'fireblast')", "plumeria (plumeria rubra 'flaming rock dragon')", "plumeria (plumeria rubra 'j 105')", "plumeria (plumeria rubra 'mary helen eggenberger')", "plumeria (plumeria rubra 'mellow yellow')", "plumeria (plumeria rubra 'naples sixteen')", "plumeria (plumeria rubra 'sophie')", "plumerias (plumeria)", "plums (prunus umbellata)", "popcorn (zea mays subsp. mays 'glass gem')", "poppies (papaver)", "poppy (papaver 'sugar plum')", "poppy (papaver rhoeas 'shirley poppy')", "possumhaw holly (ilex decidua)", "potato (solanum tuberosum 'adirondack blue')", "potato (solanum tuberosum 'baltic rose')", "potato (solanum tuberosum 'bojar')", "potato (solanum tuberosum 'kennebec')", "potato (solanum tuberosum 'red pontiac')", "potato (solanum tuberosum 'vitelotte')", "potatoes (solanum tuberosum)", "pumpkin (cucurbita moschata 'musquee de provence')", "pumpkin (cucurbita pepo 'styrian hulless')", "pumpkin (cucurbita pepo 'winter luxury pie')", "purple basil (ocimum basilicum 'purple delight')", "purple cherry plum (prunus cerasifera 'hollywood')", "purple coneflower (echinacea purpurea 'magnus')", "purple coneflower (echinacea purpurea 'rubinstern')", "purple coneflower (echinacea purpurea)", "purple dead nettle (lamium purpureum)", "purple marjoram (origanum laevigatum 'hopley's')", "purple-flowering raspberry (rubus odoratus)", "quiver tree (aloidendron dichotomum)", "radish (raphanus sativus 'amethyst')", "radish (raphanus sativus 'burpee cherry giant')", "radish (raphanus sativus 'champion')", "radish (raphanus sativus 'early scarlet globe')", "radish (raphanus sativus 'german giant')", "radishes (raphanus sativus)", "rainbow carrot (daucus carota subsp. sativus 'rainbow')", "rape (brassica napus subsp. napus)", "rapini (brassica rapa subsp. rapa 'early fall')", "raspberry (rubus idaeus 'joan j')", "red currant (ribes rubrum 'red lake')", "red flowering currant (ribes sanguineum 'brocklebankii')", "red table grape (vitis labrusca 'vanessa')", "red twig dogwood (cornus sanguinea 'anny's winter orange')", "red twig dogwood (cornus sericea)", "red-leaf hibiscus (hibiscus acetosella)", "rhododendron 'blue peter'", "rhododendron 'inga'", "rhododendron 'mother of pearl'", "rhododendron 'queen of england'", "rhododendron 'roseum elegans'", "rhododendrons (rhododendron)", "rhubarb (rheum 'glaskins perpetual')", "rhubarb (rheum rhabarbarum 'victoria')", "rhubarb (rheum rhabarbarum)", "rhubarbs (rheum)", "rocky mountain beardtongue (penstemon strictus)", "rocky mountain columbine (aquilegia coerulea)", "romaine (lactuca sativa 'willow')", "rose (rosa 'angel face')", "rose (rosa 'ebb tide')", "rose (rosa 'institut lumiere')", "rose (rosa 'lavender crush')", "rose (rosa 'sexy rexy')", "rose (rosa 'the pilgrim')", "rose (rosa 'veilchenblau')", "rose (rosa 'wife of bath')", "rose of sharon (hibiscus pollypetiteγäó)", "rose of sharon (hibiscus syriacus 'danica')", "rose of sharon (hibiscus syriacus blue satin┬«)", "rose of sharon (hibiscus syriacus chateauγäó de chantilly)", "roses of sharon (hibiscus syriacus)", "russian sage (perovskia atriplicifolia)", "russian sages (perovskia)", "rusty blackhaw viburnum (viburnum rufidulum)", "saffron crocus (crocus sativus)", "salvia (salvia coerulea 'sapphire blue')", "salvia (salvia splendens 'yvonne's salvia')", "salvia (salvia x jamensis heatwaveγäó glimmer)", "salvias (salvia)", "san gabriel alumroot (heuchera abramsii)", "sand lettuce (dudleya caespitosa)", "sand pink (dianthus arenarius)", "sargent viburnum (viburnum sargentii 'onondaga')", "sargent's crabapple (malus sieboldii subsp. sieboldii 'roselow')", "saturn peach (prunus persica 'saturn')", "scallop squash (cucurbita pepo 'early white bush scallop')", "sedum (sedum palmeri)", "shallot (allium cepa 'creme brulee')", "shasta daisies (leucanthemum x superbum)", "shasta daisy (leucanthemum x superbum 'aglaya')", "shasta daisy (leucanthemum x superbum 'becky')", "shasta daisy (leucanthemum x superbum 'snehurka')", "shasta daisy (leucanthemum x superbum 'snowcap')", "shasta daisy (leucanthemum x superbum 'white breeze')", "shasta daisy (leucanthemum x superbum sweet daisyγäó christine)", "shirley poppy (papaver rhoeas 'amazing grey')", "shirley poppy (papaver rhoeas 'double mixed')", "siempreviva (dudleya attenuata)", "sierra canelo pincushion cactus (mammillaria standleyi)", "sierra leone lily (chlorophytum 'fireflash')", "silver margined holly (ilex aquifolium 'argentea marginata')", "slow bolt cilantro (coriandrum sativum 'santo')", "smoke tree (cotinus coggygria 'royal purple')", "smoketree (cotinus coggygria golden spiritγäó)", "smoketrees (cotinus coggygria)", "smooth hydrangea (hydrangea arborescens 'annabelle')", "snap bean (string (phaseolus vulgaris 'black seeded blue lake')", "snap bean (string (phaseolus vulgaris 'blue lake bush #274')", "snap bean (string (phaseolus vulgaris 'wren's egg')", "soap aloe (aloe maculata)", "softneck garlic (allium sativum 'inchelium red')", "spearmint (mentha spicata)", "speedwell (veronica oltensis)", "speedwell (veronica peduncularis 'georgia blue')", "spider plant (chlorophytum comosum)", "spike speedwell (veronica spicata royal candles)", "spinach (spinacia oleracea 'alexandria')", "spinach (spinacia oleracea 'america')", "spinach (spinacia oleracea 'ashley')", "spinach (spinacia oleracea 'gigante d'inverno')", "spinach (spinacia oleracea 'red kitten')", "spinach (spinacia oleracea 'reflect')", "spinach (spinacia oleracea 'seaside')", "spinaches (spinacia oleracea)", "spiraeas (spiraea)", "spirea (spiraea nipponica 'snowmound')", "spotted beebalm (monarda punctata var. punctata)", "spotted beebalm (monarda punctata)", "spotted dead nettle (lamium maculatum 'pink pewter')", "spotted dead nettle (lamium maculatum)", "spring crocus (crocus versicolor 'picturatus')", "squid agave (agave bracteosa)", "st.christopher lily (crinum jagus)", "strawberries (fragaria)", "strawberry (fragaria x ananassa 'chandler')", "strawberry (fragaria x ananassa)", "strawberry foxglove (digitalis x mertonensis)", "stringy stonecrop (sedum sarmentosum)", "summer squash-crookneck (cucurbita pepo 'summer crookneck')", "sunroot (helianthus tuberosus 'white fuseau')", "sunroots (helianthus tuberosus)", "swamp milkweed (asclepias incarnata)", "sweet basil (ocimum basilicum)", "sweet cherries (prunus avium)", "sweet cherry (prunus avium 'bing')", "sweet cherry (prunus avium 'black tatarian')", "sweet cherry (prunus avium 'van')", "sweet corn (zea mays 'essence')", "sweet potato (ipomoea batatas 'carolina ruby')", "sweet potato (ipomoea batatas sweet caroline sweetheart jet blackγäó)", "sweet potato vine (ipomoea batatas 'little blackie')", "sweet potato vine (ipomoea batatas 'pink frost')", "sweet potatoes (ipomoea batatas)", "swiss chard (beta vulgaris subsp. cicla 'bright lights')", "swiss chard (beta vulgaris subsp. cicla 'rhubarb chard')", "swiss chard (beta vulgaris subsp. cicla 'ruby red')", "tall bearded iris (iris 'blue me away')", "tall bearded iris (iris 'lemon cloud')", "tall bearded iris (iris 'merchant marine')", "tall bearded iris (iris 'radiant garnet')", "tall bearded iris (iris 'serene silence')", "tall bearded iris (iris 'wonders never cease')", "tall phlox (phlox paniculata)", "tarragons (artemisia dracunculus)", "tasteless stonecrop (sedum sexangulare)", "texas nipple cactus (mammillaria prolifera subsp. texana)", "texas star (hibiscus coccineus)", "thimbleberry (rubus nutkanus)", "thornless blackberry (rubus 'apache')", "thornless blackberry (rubus 'arapaho')", "thornless blackberry (rubus 'navaho')", "thyme (thymus praecox 'highland cream')", "thyme (thymus praecox)", "thyme (thymus serpyllum 'roseum')", "tiare (gardenia taitensis)", "tickseed (coreopsis cruizin'γäó main street)", "tickseed (coreopsis satin & laceγäó red chiffon)", "tickseed (coreopsis uptickγäó yellow & red)", "tickseed (coreopsis grandiflora 'sunkiss')", "tomato (solanum lycopersicum 'buffalo steak')", "tomato (solanum lycopersicum 'dark galaxy')", "tomato (solanum lycopersicum 'goldman's italian-american')", "tomato (solanum lycopersicum 'helsing junction blues')", "tomato (solanum lycopersicum 'park's whopper')", "tomato (solanum lycopersicum 'pink delicious')", "tomato (solanum lycopersicum 'sungold')", "tomato (solanum lycopersicum 'yellow mortgage lifter')", "tomatoes (solanum lycopersicum)", "triandrus daffodil (narcissus 'thalia')", "triple sweet corn (zea mays 'alto')", "triumph tulip (tulipa 'aperitif')", "triumph tulip (tulipa 'jackpot')", "tropical milkweed (asclepias curassavica 'silky gold')", "tropical milkweed (asclepias curassavica)", "trumpet daffodil (narcissus 'marieke')", "trumpet narcissus (narcissus 'bravoure')", "tulip (tulipa 'brown sugar')", "tulip (tulipa 'rasta parrot')", "turnip (brassica rapa subsp. rapa 'gold ball')", "turnip (brassica rapa subsp. rapa 'purple top white globe')", "turnip (brassica rapa subsp. rapa 'round red')", "turnip (brassica rapa subsp. rapa 'white egg')", "turnip (brassica rapa subsp. rapa 'white lady')", "turnips (brassica rapa subsp. rapa)", "twin-spined cactus (mammillaria geminispina)", "van houtte spiraea (spiraea x vanhouttei 'pink ice')", "variegated pinwheel (aeonium haworthii 'variegatum')", "variegated queen victoria century plant (agave victoriae-reginae 'albomarginata')", "veronica (veronica longifolia)", "vietnamese gardenia (gardenia vietnamensis)", "waterlily tulip (tulipa kaufmanniana 'corona')", "waterlily tulip (tulipa kaufmanniana 'scarlet baby')", "welsh poppy (papaver cambricum 'flore pleno')", "western red cedar (thuja plicata 'whipcord')", "western red cedar (thuja plicata forever goldy┬«)", "western red cedar (thuja plicata)", "white currant (ribes rubrum 'white versailles')", "white dead nettle (lamium album)", "white stonecrop (sedum album 'twickel purple')", "white texas star hibiscus (hibiscus coccineus 'alba')", "wild asparagus (asparagus officinalis 'jersey knight')", "wild asparagus (asparagus officinalis 'mary washington')", "wild bergamot (monarda fistulosa)", "wild blackberry (rubus cochinchinensis)", "wild blue phlox (phlox divaricata)", "wild indigo (baptisia 'brownie points')", "wild indigo (baptisia 'lemon meringue')", "wild indigo (baptisia 'pink lemonade')", "wild thyme (thymus serpyllum 'pink chintz')", "willow leaf foxglove (digitalis obscura)", "winter honeysuckle (lonicera fragrantissima)", "winter radish (raphanus sativus 'china rose')", "winter squash (cucurbita maxima 'buttercup')", "winterberry (ilex verticillata)", "winterberry holly (ilex verticillata 'chrysocarpa')", "winterberry holly (ilex verticillata 'tiasquam')", "winterberry holly (ilex verticillata 'winter red')", "wisterias (wisteria)", "woolly thyme (thymus praecox subsp. polytrichus)", "woolly turkish speedwell (veronica bombycina)", "yarrow (achillea 'moonshine')", "yarrow (achillea 'summer berries')", "yarrow (achillea millefolium 'paprika')", "yarrow (achillea millefolium 'sonoma coast')", "yarrow (achillea millefolium 'summer pastels')", "yarrow (achillea millefolium new vintageγäó rose)", "yarrow (achillea millefolium)", "yarrows (achillea)", "yaupon holly (ilex vomitoria)", "yellow archangel (lamium galeobdolon subsp. montanum 'florentinum')", "rose" ]
yahyapp/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4040 - Accuracy: 0.475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.6080 | 0.45 | | No log | 2.0 | 40 | 1.4799 | 0.4875 | | No log | 3.0 | 60 | 1.4764 | 0.425 | | No log | 4.0 | 80 | 1.3875 | 0.5 | | No log | 5.0 | 100 | 1.4627 | 0.4437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
nadyanvl/emotion_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3497 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0823 | 1.0 | 10 | 2.0560 | 0.1625 | | 2.0479 | 2.0 | 20 | 2.0218 | 0.2812 | | 1.9636 | 3.0 | 30 | 1.8882 | 0.4062 | | 1.7902 | 4.0 | 40 | 1.6881 | 0.4313 | | 1.5792 | 5.0 | 50 | 1.6159 | 0.3688 | | 1.4429 | 6.0 | 60 | 1.3871 | 0.5687 | | 1.2854 | 7.0 | 70 | 1.2973 | 0.5437 | | 1.1487 | 8.0 | 80 | 1.2303 | 0.6 | | 1.0374 | 9.0 | 90 | 1.2661 | 0.5375 | | 0.9584 | 10.0 | 100 | 1.1662 | 0.5563 | | 0.8108 | 11.0 | 110 | 1.2135 | 0.5312 | | 0.7402 | 12.0 | 120 | 1.2117 | 0.5813 | | 0.6349 | 13.0 | 130 | 1.1176 | 0.6062 | | 0.5674 | 14.0 | 140 | 1.1794 | 0.575 | | 0.5103 | 15.0 | 150 | 1.0948 | 0.6375 | | 0.4826 | 16.0 | 160 | 1.1833 | 0.5875 | | 0.4128 | 17.0 | 170 | 1.2601 | 0.5375 | | 0.3664 | 18.0 | 180 | 1.3378 | 0.55 | | 0.3112 | 19.0 | 190 | 1.2789 | 0.5437 | | 0.335 | 20.0 | 200 | 1.2913 | 0.5625 | | 0.3261 | 21.0 | 210 | 1.1114 | 0.6 | | 0.3443 | 22.0 | 220 | 1.2177 | 0.5938 | | 0.2642 | 23.0 | 230 | 1.2299 | 0.5938 | | 0.2895 | 24.0 | 240 | 1.2339 | 0.5813 | | 0.266 | 25.0 | 250 | 1.2384 | 0.5875 | | 0.2725 | 26.0 | 260 | 1.2100 | 0.6062 | | 0.2725 | 27.0 | 270 | 1.3073 | 0.575 | | 0.2637 | 28.0 | 280 | 1.3019 | 0.5875 | | 0.2561 | 29.0 | 290 | 1.3597 | 0.5437 | | 0.2375 | 30.0 | 300 | 1.3404 | 0.5563 | | 0.2188 | 31.0 | 310 | 1.2922 | 0.5813 | | 0.2141 | 32.0 | 320 | 1.3778 | 0.5312 | | 0.198 | 33.0 | 330 | 1.3473 | 0.5875 | | 0.1805 | 34.0 | 340 | 1.3984 | 0.5437 | | 0.1888 | 35.0 | 350 | 1.3508 | 0.5813 | | 0.1867 | 36.0 | 360 | 1.3531 | 0.575 | | 0.1596 | 37.0 | 370 | 1.5846 | 0.4875 | | 0.1564 | 38.0 | 380 | 1.3380 | 0.5687 | | 0.1719 | 39.0 | 390 | 1.5206 | 0.5312 | | 0.1678 | 40.0 | 400 | 1.2929 | 0.5875 | | 0.136 | 41.0 | 410 | 1.5031 | 0.55 | | 0.1602 | 42.0 | 420 | 1.3855 | 0.5625 | | 0.174 | 43.0 | 430 | 1.4385 | 0.5875 | | 0.179 | 44.0 | 440 | 1.3153 | 0.575 | | 0.1284 | 45.0 | 450 | 1.4295 | 0.5875 | | 0.1419 | 46.0 | 460 | 1.4126 | 0.575 | | 0.1425 | 47.0 | 470 | 1.3760 | 0.5687 | | 0.1602 | 48.0 | 480 | 1.4374 | 0.5875 | | 0.1473 | 49.0 | 490 | 1.3126 | 0.5813 | | 0.153 | 50.0 | 500 | 1.3497 | 0.6 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
syahid33/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4068 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.3074 | 0.5563 | | No log | 2.0 | 80 | 1.4204 | 0.5312 | | No log | 3.0 | 120 | 1.4447 | 0.525 | | No log | 4.0 | 160 | 1.3472 | 0.5375 | | No log | 5.0 | 200 | 1.3472 | 0.5437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
ShinraC002/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2152 - Accuracy: 0.5687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.3484 | 0.5437 | | No log | 2.0 | 80 | 1.3268 | 0.4875 | | No log | 3.0 | 120 | 1.2463 | 0.5437 | | No log | 4.0 | 160 | 1.2361 | 0.5563 | | No log | 5.0 | 200 | 1.2089 | 0.5813 | | No log | 6.0 | 240 | 1.2544 | 0.525 | | No log | 7.0 | 280 | 1.1947 | 0.5563 | | No log | 8.0 | 320 | 1.2502 | 0.5188 | | No log | 9.0 | 360 | 1.3415 | 0.4938 | | No log | 10.0 | 400 | 1.1336 | 0.6 | | No log | 11.0 | 440 | 1.2716 | 0.5437 | | No log | 12.0 | 480 | 1.4631 | 0.5 | | 0.6882 | 13.0 | 520 | 1.3970 | 0.5563 | | 0.6882 | 14.0 | 560 | 1.2654 | 0.5188 | | 0.6882 | 15.0 | 600 | 1.2498 | 0.575 | | 0.6882 | 16.0 | 640 | 1.2655 | 0.5938 | | 0.6882 | 17.0 | 680 | 1.3577 | 0.55 | | 0.6882 | 18.0 | 720 | 1.2711 | 0.5813 | | 0.6882 | 19.0 | 760 | 1.3127 | 0.5687 | | 0.6882 | 20.0 | 800 | 1.2478 | 0.575 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
fahmindra/emotion_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4050 - Accuracy: 0.4688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8187 | 1.0 | 10 | 1.8406 | 0.3063 | | 1.6795 | 2.0 | 20 | 1.6701 | 0.3688 | | 1.5506 | 3.0 | 30 | 1.5578 | 0.45 | | 1.4417 | 4.0 | 40 | 1.5077 | 0.4875 | | 1.3707 | 5.0 | 50 | 1.4297 | 0.5062 | | 1.3167 | 6.0 | 60 | 1.4157 | 0.4938 | | 1.267 | 7.0 | 70 | 1.3779 | 0.525 | | 1.2197 | 8.0 | 80 | 1.3784 | 0.5 | | 1.191 | 9.0 | 90 | 1.3701 | 0.5188 | | 1.1649 | 10.0 | 100 | 1.3611 | 0.4938 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
byrocuy/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3393 - Accuracy: 0.5312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.2359 | 0.5625 | | No log | 2.0 | 80 | 1.2754 | 0.5625 | | No log | 3.0 | 120 | 1.2272 | 0.5437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
farhanyh/emotion-classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2636 - Accuracy: 0.5125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9736 | 0.225 | | No log | 2.0 | 40 | 1.7481 | 0.2687 | | No log | 3.0 | 60 | 1.6042 | 0.3187 | | No log | 4.0 | 80 | 1.5067 | 0.4062 | | No log | 5.0 | 100 | 1.4777 | 0.3875 | | No log | 6.0 | 120 | 1.4160 | 0.4437 | | No log | 7.0 | 140 | 1.3415 | 0.4875 | | No log | 8.0 | 160 | 1.3274 | 0.4813 | | No log | 9.0 | 180 | 1.3460 | 0.4938 | | No log | 10.0 | 200 | 1.3201 | 0.5 | | No log | 11.0 | 220 | 1.2853 | 0.5125 | | No log | 12.0 | 240 | 1.2671 | 0.5312 | | No log | 13.0 | 260 | 1.2979 | 0.5062 | | No log | 14.0 | 280 | 1.2755 | 0.575 | | No log | 15.0 | 300 | 1.2490 | 0.5312 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
fauzifadhi/image-classificaation
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classificaation This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
amaliaam/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 2.0915 - eval_accuracy: 0.0938 - eval_runtime: 10.0977 - eval_samples_per_second: 15.845 - eval_steps_per_second: 0.99 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
rdtm/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3541 - Accuracy: 0.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.4409 | 0.475 | | No log | 2.0 | 80 | 1.3711 | 0.4813 | | No log | 3.0 | 120 | 1.3471 | 0.5125 | | No log | 4.0 | 160 | 1.3580 | 0.525 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
kausarme/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
arnaucas/wildfire-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wildfire classifier This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the [Kaggle Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset). It achieves the following results on the evaluation set: - Loss: 0.2329 - Accuracy: 0.9202 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1208 | 1.28 | 100 | 0.2329 | 0.9202 | | 0.0261 | 2.56 | 200 | 0.2469 | 0.9316 | | 0.0007 | 3.85 | 300 | 0.2358 | 0.9392 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3 ### Aditional resources [Fine-tuning tutorial](https://huggingface.co/blog/fine-tune-vit)
[ "nofire", "fire" ]
stbnlen/pokemon_classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pokemon_classifier This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pokemon-classification and the full datasets. It achieves the following results on the evaluation set: - Loss: 8.0935 - Accuracy: 0.0885 ## Model description This model, referred to as "PokemonClassifier," is a fine-tuned version of google/vit-base-patch16-224 on Pokemon classification datasets. Its primary objective is to accurately identify the Pokemon in input images. While this general summary provides information about its performance in terms of loss and accuracy, its core function lies in precisely classifying Pokemon images. ## Intended uses & limitations This model is limited to the training data it was exposed to and can only identify the following Pokémon: Golbat, Machoke, Omastar, Diglett, Lapras, Kabuto, Persian, Weepinbell, Golem, Dodrio, Raichu, Zapdos, Raticate, Magnemite, Ivysaur, Growlithe, Tangela, Drowzee, Rapidash, Venonat, Pidgeot, Nidorino, Porygon, Lickitung, Rattata, Machop, Charmeleon, Slowbro, Parasect, Eevee, Starmie, Staryu, Psyduck, Dragonair, Magikarp, Vileplume, Marowak, Pidgeotto, Shellder, Mewtwo, Farfetchd, Kingler, Seel, Kakuna, Doduo, Electabuzz, Charmander, Rhyhorn, Tauros, Dugtrio, Poliwrath, Gengar, Exeggutor, Dewgong, Jigglypuff, Geodude, Kadabra, Nidorina, Sandshrew, Grimer, MrMime, Pidgey, Koffing, Ekans, Alolan Sandslash, Venusaur, Snorlax, Paras, Jynx, Chansey, Hitmonchan, Gastly, Kangaskhan, Oddish, Wigglytuff, Graveler, Arcanine, Clefairy, Articuno, Poliwag, Abra, Squirtle, Voltorb, Ponyta, Moltres, Nidoqueen, Magmar, Onix, Vulpix, Butterfree, Krabby, Arbok, Clefable, Goldeen, Magneton, Dratini, Caterpie, Jolteon, Nidoking, Alakazam, Dragonite, Fearow, Slowpoke, Weezing, Beedrill, Weedle, Cloyster, Vaporeon, Gyarados, Golduck, Machamp, Hitmonlee, Primeape, Cubone, Sandslash, Scyther, Haunter, Metapod, Tentacruel, Aerodactyl, Kabutops, Ninetales, Zubat, Rhydon, Mew, Pinsir, Ditto, Victreebel, Omanyte, Horsea, Pikachu, Blastoise, Venomoth, Charizard, Seadra, Muk, Spearow, Bulbasaur, Bellsprout, Electrode, Gloom, Poliwhirl, Flareon, Seaking, Hypno, Wartortle, Mankey, Tentacool, Exeggcute, and Meowth. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0872 | 0.82 | 500 | 7.2669 | 0.0640 | | 0.1581 | 1.64 | 1000 | 7.6072 | 0.0712 | | 0.0536 | 2.46 | 1500 | 7.8952 | 0.0842 | | 0.0169 | 3.28 | 2000 | 8.0935 | 0.0885 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "golbat", "machoke", "raichu", "dragonite", "fearow", "slowpoke", "weezing", "beedrill", "weedle", "cloyster", "vaporeon", "gyarados", "golduck", "zapdos", "machamp", "hitmonlee", "primeape", "cubone", "sandslash", "scyther", "haunter", "metapod", "tentacruel", "aerodactyl", "raticate", "kabutops", "ninetales", "zubat", "rhydon", "mew", "pinsir", "ditto", "victreebel", "omanyte", "horsea", "magnemite", "pikachu", "blastoise", "venomoth", "charizard", "seadra", "muk", "spearow", "bulbasaur", "bellsprout", "electrode", "ivysaur", "gloom", "poliwhirl", "flareon", "seaking", "hypno", "wartortle", "mankey", "tentacool", "exeggcute", "meowth", "growlithe", "tangela", "drowzee", "rapidash", "venonat", "omastar", "pidgeot", "nidorino", "porygon", "lickitung", "rattata", "machop", "charmeleon", "slowbro", "parasect", "eevee", "diglett", "starmie", "staryu", "psyduck", "dragonair", "magikarp", "vileplume", "marowak", "pidgeotto", "shellder", "mewtwo", "lapras", "farfetchd", "kingler", "seel", "kakuna", "doduo", "electabuzz", "charmander", "rhyhorn", "tauros", "dugtrio", "kabuto", "poliwrath", "gengar", "exeggutor", "dewgong", "jigglypuff", "geodude", "kadabra", "nidorina", "sandshrew", "grimer", "persian", "mrmime", "pidgey", "koffing", "ekans", "alolan sandslash", "venusaur", "snorlax", "paras", "jynx", "chansey", "weepinbell", "hitmonchan", "gastly", "kangaskhan", "oddish", "wigglytuff", "graveler", "arcanine", "clefairy", "articuno", "poliwag", "golem", "abra", "squirtle", "voltorb", "ponyta", "moltres", "nidoqueen", "magmar", "onix", "vulpix", "butterfree", "dodrio", "krabby", "arbok", "clefable", "goldeen", "magneton", "dratini", "caterpie", "jolteon", "nidoking", "alakazam" ]
rizepth/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6857 - Accuracy: 0.4062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.8755 | 0.3125 | | No log | 2.0 | 80 | 1.6801 | 0.4062 | | No log | 3.0 | 120 | 1.6357 | 0.3812 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
dima806/medicinal_plants_image_detection
Detect type of Indian medicinal plant based on plants/leafs image. See https://www.kaggle.com/code/dima806/indian-medicinal-plants-image-detection-vit for more details. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/EbkjNJjy0OT-Rpr6B2-Hu.png) ``` Classification report: precision recall f1-score support Amla 1.0000 1.0000 1.0000 116 Curry 1.0000 1.0000 1.0000 115 Betel 0.9914 1.0000 0.9957 115 Bamboo 1.0000 1.0000 1.0000 116 Palak(Spinach) 1.0000 1.0000 1.0000 116 Coriender 1.0000 1.0000 1.0000 115 Ashoka 1.0000 1.0000 1.0000 115 Seethapala 1.0000 1.0000 1.0000 115 Lemon_grass 1.0000 1.0000 1.0000 116 Pappaya 1.0000 1.0000 1.0000 115 Curry_Leaf 1.0000 1.0000 1.0000 116 Lemon 1.0000 0.9913 0.9956 115 Nooni 1.0000 1.0000 1.0000 116 Henna 1.0000 1.0000 1.0000 116 Mango 1.0000 1.0000 1.0000 116 Doddpathre 1.0000 1.0000 1.0000 115 Amruta_Balli 1.0000 1.0000 1.0000 115 Betel_Nut 1.0000 1.0000 1.0000 116 Tulsi 0.9914 0.9914 0.9914 116 Pomegranate 1.0000 1.0000 1.0000 115 Castor 1.0000 1.0000 1.0000 116 Jackfruit 1.0000 1.0000 1.0000 116 Insulin 1.0000 1.0000 1.0000 116 Pepper 1.0000 1.0000 1.0000 116 Raktachandini 1.0000 1.0000 1.0000 116 Aloevera 1.0000 1.0000 1.0000 116 Jasmine 1.0000 1.0000 1.0000 116 Doddapatre 1.0000 1.0000 1.0000 115 Neem 1.0000 1.0000 1.0000 115 Geranium 1.0000 1.0000 1.0000 115 Rose 1.0000 1.0000 1.0000 115 Gauva 1.0000 1.0000 1.0000 116 Hibiscus 1.0000 1.0000 1.0000 116 Nithyapushpa 1.0000 1.0000 1.0000 116 Wood_sorel 1.0000 1.0000 1.0000 115 Tamarind 1.0000 1.0000 1.0000 116 Guava 1.0000 1.0000 1.0000 116 Bhrami 1.0000 1.0000 1.0000 115 Sapota 1.0000 1.0000 1.0000 116 Basale 1.0000 1.0000 1.0000 116 Avacado 1.0000 1.0000 1.0000 116 Ashwagandha 1.0000 1.0000 1.0000 116 Nagadali 0.9897 0.8348 0.9057 115 Arali 1.0000 1.0000 1.0000 115 Ekka 1.0000 1.0000 1.0000 116 Ganike 0.8582 0.9914 0.9200 116 Tulasi 0.9913 0.9913 0.9913 115 Honge 1.0000 1.0000 1.0000 115 Mint 1.0000 1.0000 1.0000 116 Catharanthus 1.0000 1.0000 1.0000 116 Papaya 1.0000 1.0000 1.0000 116 Brahmi 1.0000 1.0000 1.0000 116 accuracy 0.9962 6012 macro avg 0.9966 0.9962 0.9961 6012 weighted avg 0.9966 0.9962 0.9962 6012 ```
[ "amla", "curry", "betel", "bamboo", "palak(spinach)", "coriender", "ashoka", "seethapala", "lemon_grass", "pappaya", "curry_leaf", "lemon", "nooni", "henna", "mango", "doddpathre", "amruta_balli", "betel_nut", "tulsi", "pomegranate", "castor", "jackfruit", "insulin", "pepper", "raktachandini", "aloevera", "jasmine", "doddapatre", "neem", "geranium", "rose", "gauva", "hibiscus", "nithyapushpa", "wood_sorel", "tamarind", "guava", "bhrami", "sapota", "basale", "avacado", "ashwagandha", "nagadali", "arali", "ekka", "ganike", "tulasi", "honge", "mint", "catharanthus", "papaya", "brahmi" ]
3sulton/image_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6601 - Accuracy: 0.4375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0289 | 1.0 | 10 | 1.9865 | 0.2812 | | 1.9055 | 2.0 | 20 | 1.8493 | 0.3875 | | 1.7613 | 3.0 | 30 | 1.7289 | 0.4625 | | 1.6622 | 4.0 | 40 | 1.6590 | 0.4688 | | 1.6224 | 5.0 | 50 | 1.6339 | 0.4688 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
DHEIVER/Modelo-Avancado-de-Ultrassom-de-Mama
- Perda (Loss): 0.0398 - Precisão (Accuracy): 0.9882 ## Descrição do Modelo Mais informações são necessárias para entender completamente a descrição deste modelo. ## Usos Previstos e Limitações Mais informações são necessárias para entender completamente os usos previstos e as limitações específicas deste modelo. ## Dados de Treinamento e Avaliação Mais informações são necessárias para entender os detalhes dos conjuntos de dados utilizados no treinamento e avaliação deste modelo. ## Procedimento de Treinamento ### Hiperparâmetros de Treinamento Durante o treinamento, os seguintes hiperparâmetros foram utilizados: - Taxa de Aprendizado (learning_rate): 5e-05 - Tamanho do Lote de Treinamento (train_batch_size): 16 - Tamanho do Lote de Avaliação (eval_batch_size): 16 - Semente (seed): 42 - Acumulação de Gradientes (gradient_accumulation_steps): 2 - Tamanho Total do Lote de Treinamento (total_train_batch_size): 32 - Otimizador: Adam com betas=(0.9, 0.999) e epsilon=1e-08 - Tipo de Programador de Taxa de Aprendizado (lr_scheduler_type): Linear - Proporção de Aquecimento do Programador de Taxa de Aprendizado (lr_scheduler_warmup_ratio): 0.9 - Número de Épocas (num_epochs): 14 ### Resultados do Treinamento | Perda de Treinamento | Época | Passo | Precisão | Perda de Validação | |:--------------------:|:-----:|:----:|:--------:|:-------------------:| | 0.5059 | 1.0 | 199 | 0.9001 | 0.4826 | | 0.2533 | 2.0 | 398 | 0.9515 | 0.2124 | | 0.2358 | 3.0 | 597 | 0.9538 | 0.1543 | | 0.2584 | 4.0 | 796 | 0.9642 | 0.1136 | | 0.1085 | 5.0 | 995 | 0.9746 | 0.0891 | | 0.1007 | 6.0 | 1194 | 0.9769 | 0.0725 | | 0.1463 | 7.0 | 1393 | 0.9840 | 0.0541 | | 0.3564 | 8.0 | 1592 | 0.9802 | 0.0880 | | 0.0957 | 9.0 | 1791 | 0.9656 | 0.1375 | | 0.1481 | 10.0 | 1990 | 0.0511 | 0.9873 | | 0.1536 | 11.0 | 2189 | 0.0827 | 0.9713 | | 0.0458 | 12.0 | 2388 | 0.0398 | 0.9882 | | 0.4956 | 13.0 | 2587 | 0.3474 | 0.8643 | | 0.0801 | 14.0 | 2786 | 0.0850 | 0.9797 | ### Versões das Frameworks - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
[ "benign", "malignant" ]
krismp/emotion_recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3469 - Accuracy: 0.175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 2.0721 | 0.125 | | No log | 2.0 | 20 | 2.0633 | 0.125 | | No log | 3.0 | 30 | 2.0038 | 0.125 | | No log | 4.0 | 40 | 1.9097 | 0.125 | | No log | 5.0 | 50 | 1.7412 | 0.125 | | No log | 6.0 | 60 | 1.6189 | 0.05 | | No log | 7.0 | 70 | 1.5343 | 0.0375 | | No log | 8.0 | 80 | 1.4746 | 0.0688 | | No log | 9.0 | 90 | 1.4330 | 0.0938 | | No log | 10.0 | 100 | 1.4130 | 0.15 | | No log | 11.0 | 110 | 1.3735 | 0.1062 | | No log | 12.0 | 120 | 1.3516 | 0.1062 | | No log | 13.0 | 130 | 1.2838 | 0.1375 | | No log | 14.0 | 140 | 1.3058 | 0.1187 | | No log | 15.0 | 150 | 1.3116 | 0.1 | | No log | 16.0 | 160 | 1.3269 | 0.1313 | | No log | 17.0 | 170 | 1.2624 | 0.1062 | | No log | 18.0 | 180 | 1.3285 | 0.1187 | | No log | 19.0 | 190 | 1.3490 | 0.1437 | | No log | 20.0 | 200 | 1.2592 | 0.1375 | | No log | 21.0 | 210 | 1.3600 | 0.0938 | | No log | 22.0 | 220 | 1.2835 | 0.1313 | | No log | 23.0 | 230 | 1.2842 | 0.1375 | | No log | 24.0 | 240 | 1.2840 | 0.1 | | No log | 25.0 | 250 | 1.2456 | 0.1313 | | No log | 26.0 | 260 | 1.2960 | 0.1562 | | No log | 27.0 | 270 | 1.3208 | 0.1375 | | No log | 28.0 | 280 | 1.3207 | 0.1375 | | No log | 29.0 | 290 | 1.2892 | 0.175 | | No log | 30.0 | 300 | 1.2837 | 0.1812 | | No log | 31.0 | 310 | 1.3548 | 0.1562 | | No log | 32.0 | 320 | 1.4371 | 0.1437 | | No log | 33.0 | 330 | 1.4219 | 0.1562 | | No log | 34.0 | 340 | 1.4033 | 0.1875 | | No log | 35.0 | 350 | 1.4505 | 0.1437 | | No log | 36.0 | 360 | 1.2975 | 0.1562 | | No log | 37.0 | 370 | 1.3906 | 0.1562 | | No log | 38.0 | 380 | 1.3547 | 0.1688 | | No log | 39.0 | 390 | 1.4706 | 0.1938 | | No log | 40.0 | 400 | 1.3595 | 0.1625 | | No log | 41.0 | 410 | 1.4236 | 0.1625 | | No log | 42.0 | 420 | 1.4180 | 0.1812 | | No log | 43.0 | 430 | 1.3993 | 0.1562 | | No log | 44.0 | 440 | 1.4066 | 0.1625 | | No log | 45.0 | 450 | 1.3760 | 0.175 | | No log | 46.0 | 460 | 1.4221 | 0.1812 | | No log | 47.0 | 470 | 1.3772 | 0.1625 | | No log | 48.0 | 480 | 1.4265 | 0.2 | | No log | 49.0 | 490 | 1.4716 | 0.1625 | | 0.6962 | 50.0 | 500 | 1.3917 | 0.1625 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]