rsi's picture
Merge branch 'main' of hf.co:datasets/rsi/PixelsPointsPolygons
2794340
---
license: cc-by-4.0
pretty_name: Pixels Point Polygons
size_categories:
- 100K<n<1M
task_categories:
- image-segmentation
- object-detection
tags:
- Aerial
- Environement
- Multimodal
- Earth Observation
- Image
- Lidar
- ALS
- pointcloud
- Building
- Polygon
- Vectorization
language:
- en
# configs:
# - config_name: all
# data_files:
# - split: train
# path: "data/224/annotations/annotations_all_train.json"
# - split: val
# path: "data/224/annotations/annotations_all_val.json"
# - split: test
# path: "data/224/annotations/annotations_all_test.json"
# - config_name: CH
# data_files:
# - split: train
# path: "data/224/annotations/annotations_CH_train.json"
# - split: val
# path: "data/224/annotations/annotations_CH_val.json"
# - split: test
# path: "data/224/annotations/annotations_CH_test.json"
# - config_name: NY
# data_files:
# - split: train
# path: "data/224/annotations/annotations_NY_train.json"
# - split: val
# path: "data/224/annotations/annotations_NY_val.json"
# - split: test
# path: "data/224/annotations/annotations_NY_test.json"
# - config_name: NZ
# data_files:
# - split: train
# path: "data/224/annotations/annotations_NZ_train.json"
# - split: val
# path: "data/224/annotations/annotations_NZ_val.json"
# - split: test
# path: "data/224/annotations/annotations_NZ_test.json"
---
<div align="center">
<h1 align="center">The P<sup>3</sup> Dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
<h3><align="center">Raphael Sulzer<sup>1,2</sup> &nbsp;&nbsp;&nbsp; Liuyun Duan<sup>1</sup>
&nbsp;&nbsp;&nbsp; Nicolas Girard<sup>1</sup>&nbsp;&nbsp;&nbsp; Florent Lafarge<sup>2</sup></a></h3>
<align="center"><sup>1</sup>LuxCarta Technology <br> <sup>2</sup>Centre Inria d'Université Côte d'Azur
<img src="./teaser.jpg" width=100% height=100%>
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
</div>
## Table of Contents
- [Abstract](#abstract)
- [Highlights](#highlights)
- [Dataset](#dataset)
- [Pretrained model weights](#pretrained-model-weights)
- [Code](#code)
- [Citation](#citation)
- [Acknowledgements](#acknowledgements)
## Abstract
<div align="justify">
We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P<sup>3</sup> offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons.
</div>
## Highlights
- A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons)
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
- Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
- A paper with an extensive experimental validation, available at [arxiv.org/abs/2505.15379](https://arxiv.org/abs/2505.15379)
## Dataset
### Overview
<div align="left">
<img src="./worldmap.jpg" width=60% height=50%>
</div>
### Download
The recommended and fastest way to download the dataset is to run
```
pip install huggingface_hub
python scripts/download_dataset.py --dataset-root $DATA_ROOT
```
Optionally you can also download the dataset by running
```
git lfs install
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
```
Both options will download the full dataset, including aerial images (as .tif), aerial lidar point clouds (as .copc.laz) and building polygon annotaions (as MS-COCO .json) into `$DATA_ROOT` . The size of the dataset is around 163GB.
### Structure
<details>
<summary>📁 Click to expand dataset folder structure</summary -->
```text
PixelsPointsPolygons/data/224
├── annotations
│ ├── annotations_all_test.json
│ ├── annotations_all_train.json
│ └── annotations_all_val.json
│ ... (24 files total)
├── images
│ ├── train
│ │ ├── CH
│ │ │ ├── 0
│ │ │ │ ├── image0_CH_train.tif
│ │ │ │ ├── image1000_CH_train.tif
│ │ │ │ └── image1001_CH_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── image5000_CH_train.tif
│ │ │ │ ├── image5001_CH_train.tif
│ │ │ │ └── image5002_CH_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── image10000_CH_train.tif
│ │ │ ├── image10001_CH_train.tif
│ │ │ └── image10002_CH_train.tif
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ ├── NY
│ │ │ ├── 0
│ │ │ │ ├── image0_NY_train.tif
│ │ │ │ ├── image1000_NY_train.tif
│ │ │ │ └── image1001_NY_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── image5000_NY_train.tif
│ │ │ │ ├── image5001_NY_train.tif
│ │ │ │ └── image5002_NY_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── image10000_NY_train.tif
│ │ │ ├── image10001_NY_train.tif
│ │ │ └── image10002_NY_train.tif
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ └── NZ
│ │ ├── 0
│ │ │ ├── image0_NZ_train.tif
│ │ │ ├── image1000_NZ_train.tif
│ │ │ └── image1001_NZ_train.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NZ_train.tif
│ │ │ ├── image5001_NZ_train.tif
│ │ │ └── image5002_NZ_train.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NZ_train.tif
│ │ ├── image10001_NZ_train.tif
│ │ └── image10002_NZ_train.tif
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── val
│ │ ├── CH
│ │ │ └── 0
│ │ │ ├── image0_CH_val.tif
│ │ │ ├── image100_CH_val.tif
│ │ │ └── image101_CH_val.tif
│ │ │ ... (529 files total)
│ │ ├── NY
│ │ │ └── 0
│ │ │ ├── image0_NY_val.tif
│ │ │ ├── image100_NY_val.tif
│ │ │ └── image101_NY_val.tif
│ │ │ ... (529 files total)
│ │ └── NZ
│ │ └── 0
│ │ ├── image0_NZ_val.tif
│ │ ├── image100_NZ_val.tif
│ │ └── image101_NZ_val.tif
│ │ ... (529 files total)
│ └── test
│ ├── CH
│ │ ├── 0
│ │ │ ├── image0_CH_test.tif
│ │ │ ├── image1000_CH_test.tif
│ │ │ └── image1001_CH_test.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_CH_test.tif
│ │ │ ├── image5001_CH_test.tif
│ │ │ └── image5002_CH_test.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_CH_test.tif
│ │ ├── image10001_CH_test.tif
│ │ └── image10002_CH_test.tif
│ │ ... (4400 files total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── image0_NY_test.tif
│ │ │ ├── image1000_NY_test.tif
│ │ │ └── image1001_NY_test.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NY_test.tif
│ │ │ ├── image5001_NY_test.tif
│ │ │ └── image5002_NY_test.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NY_test.tif
│ │ ├── image10001_NY_test.tif
│ │ └── image10002_NY_test.tif
│ │ ... (4400 files total)
│ └── NZ
│ ├── 0
│ │ ├── image0_NZ_test.tif
│ │ ├── image1000_NZ_test.tif
│ │ └── image1001_NZ_test.tif
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NZ_test.tif
│ │ ├── image5001_NZ_test.tif
│ │ └── image5002_NZ_test.tif
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NZ_test.tif
│ ├── image10001_NZ_test.tif
│ └── image10002_NZ_test.tif
│ ... (4400 files total)
├── lidar
│ ├── train
│ │ ├── CH
│ │ │ ├── 0
│ │ │ │ ├── lidar0_CH_train.copc.laz
│ │ │ │ ├── lidar1000_CH_train.copc.laz
│ │ │ │ └── lidar1001_CH_train.copc.laz
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── lidar5000_CH_train.copc.laz
│ │ │ │ ├── lidar5001_CH_train.copc.laz
│ │ │ │ └── lidar5002_CH_train.copc.laz
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── lidar10000_CH_train.copc.laz
│ │ │ ├── lidar10001_CH_train.copc.laz
│ │ │ └── lidar10002_CH_train.copc.laz
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ ├── NY
│ │ │ ├── 0
│ │ │ │ ├── lidar0_NY_train.copc.laz
│ │ │ │ ├── lidar10_NY_train.copc.laz
│ │ │ │ └── lidar1150_NY_train.copc.laz
│ │ │ │ ... (1071 files total)
│ │ │ ├── 5000
│ │ │ │ ├── lidar5060_NY_train.copc.laz
│ │ │ │ ├── lidar5061_NY_train.copc.laz
│ │ │ │ └── lidar5062_NY_train.copc.laz
│ │ │ │ ... (2235 files total)
│ │ │ └── 10000
│ │ │ ├── lidar10000_NY_train.copc.laz
│ │ │ ├── lidar10001_NY_train.copc.laz
│ │ │ └── lidar10002_NY_train.copc.laz
│ │ │ ... (4552 files total)
│ │ │ ... (11 dirs total)
│ │ └── NZ
│ │ ├── 0
│ │ │ ├── lidar0_NZ_train.copc.laz
│ │ │ ├── lidar1000_NZ_train.copc.laz
│ │ │ └── lidar1001_NZ_train.copc.laz
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_NZ_train.copc.laz
│ │ │ ├── lidar5001_NZ_train.copc.laz
│ │ │ └── lidar5002_NZ_train.copc.laz
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── lidar10000_NZ_train.copc.laz
│ │ ├── lidar10001_NZ_train.copc.laz
│ │ └── lidar10002_NZ_train.copc.laz
│ │ ... (4999 files total)
│ │ ... (11 dirs total)
│ ├── val
│ │ ├── CH
│ │ │ └── 0
│ │ │ ├── lidar0_CH_val.copc.laz
│ │ │ ├── lidar100_CH_val.copc.laz
│ │ │ └── lidar101_CH_val.copc.laz
│ │ │ ... (529 files total)
│ │ ├── NY
│ │ │ └── 0
│ │ │ ├── lidar0_NY_val.copc.laz
│ │ │ ├── lidar100_NY_val.copc.laz
│ │ │ └── lidar101_NY_val.copc.laz
│ │ │ ... (529 files total)
│ │ └── NZ
│ │ └── 0
│ │ ├── lidar0_NZ_val.copc.laz
│ │ ├── lidar100_NZ_val.copc.laz
│ │ └── lidar101_NZ_val.copc.laz
│ │ ... (529 files total)
│ └── test
│ ├── CH
│ │ ├── 0
│ │ │ ├── lidar0_CH_test.copc.laz
│ │ │ ├── lidar1000_CH_test.copc.laz
│ │ │ └── lidar1001_CH_test.copc.laz
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_CH_test.copc.laz
│ │ │ ├── lidar5001_CH_test.copc.laz
│ │ │ └── lidar5002_CH_test.copc.laz
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── lidar10000_CH_test.copc.laz
│ │ ├── lidar10001_CH_test.copc.laz
│ │ └── lidar10002_CH_test.copc.laz
│ │ ... (4400 files total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── lidar0_NY_test.copc.laz
│ │ │ ├── lidar1000_NY_test.copc.laz
│ │ │ └── lidar1001_NY_test.copc.laz
│ │ │ ... (4964 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_NY_test.copc.laz
│ │ │ ├── lidar5001_NY_test.copc.laz
│ │ │ └── lidar5002_NY_test.copc.laz
│ │ │ ... (4953 files total)
│ │ └── 10000
│ │ ├── lidar10000_NY_test.copc.laz
│ │ ├── lidar10001_NY_test.copc.laz
│ │ └── lidar10002_NY_test.copc.laz
│ │ ... (4396 files total)
│ └── NZ
│ ├── 0
│ │ ├── lidar0_NZ_test.copc.laz
│ │ ├── lidar1000_NZ_test.copc.laz
│ │ └── lidar1001_NZ_test.copc.laz
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── lidar5000_NZ_test.copc.laz
│ │ ├── lidar5001_NZ_test.copc.laz
│ │ └── lidar5002_NZ_test.copc.laz
│ │ ... (5000 files total)
│ └── 10000
│ ├── lidar10000_NZ_test.copc.laz
│ ├── lidar10001_NZ_test.copc.laz
│ └── lidar10002_NZ_test.copc.laz
│ ... (4400 files total)
└── ffl
├── train
│ ├── CH
│ │ ├── 0
│ │ │ ├── image0_CH_train.pt
│ │ │ ├── image1000_CH_train.pt
│ │ │ └── image1001_CH_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_CH_train.pt
│ │ │ ├── image5001_CH_train.pt
│ │ │ └── image5002_CH_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_CH_train.pt
│ │ ├── image10001_CH_train.pt
│ │ └── image10002_CH_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── image0_NY_train.pt
│ │ │ ├── image1000_NY_train.pt
│ │ │ └── image1001_NY_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NY_train.pt
│ │ │ ├── image5001_NY_train.pt
│ │ │ └── image5002_NY_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NY_train.pt
│ │ ├── image10001_NY_train.pt
│ │ └── image10002_NY_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── NZ
│ │ ├── 0
│ │ │ ├── image0_NZ_train.pt
│ │ │ ├── image1000_NZ_train.pt
│ │ │ └── image1001_NZ_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NZ_train.pt
│ │ │ ├── image5001_NZ_train.pt
│ │ │ └── image5002_NZ_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NZ_train.pt
│ │ ├── image10001_NZ_train.pt
│ │ └── image10002_NZ_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── processed-flag-all
│ ├── processed-flag-CH
│ └── processed-flag-NY
│ ... (8 files total)
├── val
│ ├── CH
│ │ └── 0
│ │ ├── image0_CH_val.pt
│ │ ├── image100_CH_val.pt
│ │ └── image101_CH_val.pt
│ │ ... (529 files total)
│ ├── NY
│ │ └── 0
│ │ ├── image0_NY_val.pt
│ │ ├── image100_NY_val.pt
│ │ └── image101_NY_val.pt
│ │ ... (529 files total)
│ ├── NZ
│ │ └── 0
│ │ ├── image0_NZ_val.pt
│ │ ├── image100_NZ_val.pt
│ │ └── image101_NZ_val.pt
│ │ ... (529 files total)
│ ├── processed-flag-all
│ ├── processed-flag-CH
│ └── processed-flag-NY
│ ... (8 files total)
└── test
├── CH
│ ├── 0
│ │ ├── image0_CH_test.pt
│ │ ├── image1000_CH_test.pt
│ │ └── image1001_CH_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_CH_test.pt
│ │ ├── image5001_CH_test.pt
│ │ └── image5002_CH_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_CH_test.pt
│ ├── image10001_CH_test.pt
│ └── image10002_CH_test.pt
│ ... (4400 files total)
├── NY
│ ├── 0
│ │ ├── image0_NY_test.pt
│ │ ├── image1000_NY_test.pt
│ │ └── image1001_NY_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NY_test.pt
│ │ ├── image5001_NY_test.pt
│ │ └── image5002_NY_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NY_test.pt
│ ├── image10001_NY_test.pt
│ └── image10002_NY_test.pt
│ ... (4400 files total)
├── NZ
│ ├── 0
│ │ ├── image0_NZ_test.pt
│ │ ├── image1000_NZ_test.pt
│ │ └── image1001_NZ_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NZ_test.pt
│ │ ├── image5001_NZ_test.pt
│ │ └── image5002_NZ_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NZ_test.pt
│ ├── image10001_NZ_test.pt
│ └── image10002_NZ_test.pt
│ ... (4400 files total)
├── processed-flag-all
├── processed-flag-CH
└── processed-flag-NY
... (8 files total)
```
</details>
## Pretrained model weights
### Download
The recommended and fastest way to download the pretrained model weights is to run
```
python scripts/download_pretrained.py --model-root $MODEL_ROOT
```
Optionally you can also download the weights by running
```
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
```
Both options will download all checkpoints (as .pth) and results presented in the paper (as MS-COCO .json) into `$MODEL_ROOT` .
## Code
### Download
```
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
```
### Installation
To create a conda environment named `p3` and install the repository as a python package with all dependencies run
```
bash install.sh
```
or, if you want to manage the environment yourself run
```
pip install -r requirements-torch-cuda.txt
pip install .
```
⚠️ **Warning**: The implementation of the LiDAR point cloud encoder uses Open3D-ML. Currently, Open3D-ML officially only supports the PyTorch version specified in `requirements-torch-cuda.txt`.
<!-- ## Model Zoo
| Model | \<model> | Encoder | \<encoder> |Image |LiDAR | IoU | C-IoU |
|--------------- |---- |--------------- |--------------- |--- |--- |----- |----- |
| Frame Field Learning |\<ffl> | Vision Transformer (ViT) | \<vit_cnn> | ✅ | | 0.85 | 0.90 |
| Frame Field Learning |\<ffl> | PointPillars (PP) + ViT | \<pp_vit_cnn> | | ✅ | 0.80 | 0.88 |
| Frame Field Learning |\<ffl> | PP+ViT \& ViT | \<fusion_vit_cnn> | ✅ |✅ | 0.78 | 0.85 |
| HiSup |\<hisup> | Vision Transformer (ViT) | \<vit_cnn> | ✅ | | 0.85 | 0.90 |
| HiSup |\<hisup> | PointPillars (PP) + ViT | \<pp_vit_cnn> | | ✅ | 0.80 | 0.88 |
| HiSup |\<hisup> | PP+ViT \& ViT | \<fusion_vit> | ✅ |✅ | 0.78 | 0.85 |
| Pix2Poly |\<pix2poly>| Vision Transformer (ViT) | \<vit> | ✅ | | 0.85 | 0.90 |
| Pix2Poly |\<pix2poly>| PointPillars (PP) + ViT | \<pp_vit> | | ✅ | 0.80 | 0.88 |
| Pix2Poly |\<pix2poly>| PP+ViT \& ViT | \<fusion_vit> | ✅ |✅ | 0.78 | 0.85 | -->
### Setup
The project supports hydra configuration which allows to modify any parameter either from a `.yaml` file or directly from the command line.
To setup the project structure we recommend to specify your `$DATA_ROOT` and `$MODEL_ROOT` in `config/host/default.yaml`.
To view all available configuration options run
```
python scripts/train.py --help
```
<!-- The most important parameters are described below:
<details>
<summary>CLI Parameters</summary>
```text
├── processed-flag-all
├── processed-flag-CH
└── processed-flag-NY
... (8 files total)
```
</details> -->
### Predict demo tile
After downloading the model weights and setting up the code you can predict a demo tile by running
```
python scripts/predict_demo.py checkpoint=best_val_iou experiment=$MODEL_$MODALITY +image_file=demo_data/image0_CH_val.tif +lidar_file=demo_data/lidar0_CH_val.copc.laz
```
At least one of `image_file` or `lidar_file` has to be specified. `$MODEL` can be one of the following: `ffl`, `hisup` or `p2p`. `$MODALITY` can be `image`, `lidar` or `fusion`.
The result will be stored in `prediction.png`.
### Reproduce paper results
To reproduce the results from the paper you can run the following commands
```
python scripts/modality_ablation.py
python scripts/lidar_density_ablation.py
python scripts/all_countries.py
```
### Custom training, prediction and evaluation
We recommend to first setup a custom experiment file `$EXP_FILE` in `config/experiment/` following the structure of one of the existing files, e.g. `ffl_fusion.yaml`. You can then run
```
# train your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
# predict the test set with your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
# evaluate your prediction of the test set
python scripts/evaluate.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
```
You could also continue training from a provided pretrained model with
```
# train your model (on a single GPU)
python scripts/train.py experiment=p2p_fusion checkpoint=latest
```
## Citation
If you use our work please cite
```bibtex
@misc{sulzer2025p3datasetpixelspoints,
title={The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization},
author={Raphael Sulzer and Liuyun Duan and Nicolas Girard and Florent Lafarge},
year={2025},
eprint={2505.15379},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.15379},
}
```
## Acknowledgements
This repository benefits from the following open-source work. We thank the authors for their great work.
1. [Frame Field Learning](https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning)
2. [HiSup](https://github.com/SarahwXU/HiSup)
3. [Pix2Poly](https://github.com/yeshwanth95/Pix2Poly)