The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: RuntimeError Message: Dataset scripts are no longer supported, but found PixelsPointsPolygons.py Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 989, in dataset_module_factory raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}") RuntimeError: Dataset scripts are no longer supported, but found PixelsPointsPolygons.py
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
The P3 Dataset: Pixels, Points and Polygons
for Multimodal Building Vectorization
Raphael Sulzer1,2 Liuyun Duan1 Nicolas Girard1 Florent Lafarge2
1LuxCarta Technology2Centre Inria d'Université Côte d'Azur

Abstract
Highlights
- A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at huggingface.co/datasets/rsi/PixelsPointsPolygons
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at github.com/raphaelsulzer/PixelsPointsPolygons
- Pretrained model weights, available at huggingface.co/rsi/PixelsPointsPolygons
- A paper with an extensive experimental validation, available at arxiv.org/abs/2505.15379
Dataset
Overview

Download
The recommended and fastest way to download the dataset is to run
pip install huggingface_hub
python scripts/download_dataset.py --dataset-root $DATA_ROOT
Optionally you can also download the dataset by running
git lfs install
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
Both options will download the full dataset, including aerial images (as .tif), aerial lidar point clouds (as .copc.laz) and building polygon annotaions (as MS-COCO .json) into $DATA_ROOT
. The size of the dataset is around 163GB.
Structure
📁 Click to expand dataset folder structure
PixelsPointsPolygons/data/224
├── annotations
│ ├── annotations_all_test.json
│ ├── annotations_all_train.json
│ └── annotations_all_val.json
│ ... (24 files total)
├── images
│ ├── train
│ │ ├── CH
│ │ │ ├── 0
│ │ │ │ ├── image0_CH_train.tif
│ │ │ │ ├── image1000_CH_train.tif
│ │ │ │ └── image1001_CH_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── image5000_CH_train.tif
│ │ │ │ ├── image5001_CH_train.tif
│ │ │ │ └── image5002_CH_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── image10000_CH_train.tif
│ │ │ ├── image10001_CH_train.tif
│ │ │ └── image10002_CH_train.tif
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ ├── NY
│ │ │ ├── 0
│ │ │ │ ├── image0_NY_train.tif
│ │ │ │ ├── image1000_NY_train.tif
│ │ │ │ └── image1001_NY_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── image5000_NY_train.tif
│ │ │ │ ├── image5001_NY_train.tif
│ │ │ │ └── image5002_NY_train.tif
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── image10000_NY_train.tif
│ │ │ ├── image10001_NY_train.tif
│ │ │ └── image10002_NY_train.tif
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ └── NZ
│ │ ├── 0
│ │ │ ├── image0_NZ_train.tif
│ │ │ ├── image1000_NZ_train.tif
│ │ │ └── image1001_NZ_train.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NZ_train.tif
│ │ │ ├── image5001_NZ_train.tif
│ │ │ └── image5002_NZ_train.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NZ_train.tif
│ │ ├── image10001_NZ_train.tif
│ │ └── image10002_NZ_train.tif
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── val
│ │ ├── CH
│ │ │ └── 0
│ │ │ ├── image0_CH_val.tif
│ │ │ ├── image100_CH_val.tif
│ │ │ └── image101_CH_val.tif
│ │ │ ... (529 files total)
│ │ ├── NY
│ │ │ └── 0
│ │ │ ├── image0_NY_val.tif
│ │ │ ├── image100_NY_val.tif
│ │ │ └── image101_NY_val.tif
│ │ │ ... (529 files total)
│ │ └── NZ
│ │ └── 0
│ │ ├── image0_NZ_val.tif
│ │ ├── image100_NZ_val.tif
│ │ └── image101_NZ_val.tif
│ │ ... (529 files total)
│ └── test
│ ├── CH
│ │ ├── 0
│ │ │ ├── image0_CH_test.tif
│ │ │ ├── image1000_CH_test.tif
│ │ │ └── image1001_CH_test.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_CH_test.tif
│ │ │ ├── image5001_CH_test.tif
│ │ │ └── image5002_CH_test.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_CH_test.tif
│ │ ├── image10001_CH_test.tif
│ │ └── image10002_CH_test.tif
│ │ ... (4400 files total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── image0_NY_test.tif
│ │ │ ├── image1000_NY_test.tif
│ │ │ └── image1001_NY_test.tif
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NY_test.tif
│ │ │ ├── image5001_NY_test.tif
│ │ │ └── image5002_NY_test.tif
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NY_test.tif
│ │ ├── image10001_NY_test.tif
│ │ └── image10002_NY_test.tif
│ │ ... (4400 files total)
│ └── NZ
│ ├── 0
│ │ ├── image0_NZ_test.tif
│ │ ├── image1000_NZ_test.tif
│ │ └── image1001_NZ_test.tif
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NZ_test.tif
│ │ ├── image5001_NZ_test.tif
│ │ └── image5002_NZ_test.tif
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NZ_test.tif
│ ├── image10001_NZ_test.tif
│ └── image10002_NZ_test.tif
│ ... (4400 files total)
├── lidar
│ ├── train
│ │ ├── CH
│ │ │ ├── 0
│ │ │ │ ├── lidar0_CH_train.copc.laz
│ │ │ │ ├── lidar1000_CH_train.copc.laz
│ │ │ │ └── lidar1001_CH_train.copc.laz
│ │ │ │ ... (5000 files total)
│ │ │ ├── 5000
│ │ │ │ ├── lidar5000_CH_train.copc.laz
│ │ │ │ ├── lidar5001_CH_train.copc.laz
│ │ │ │ └── lidar5002_CH_train.copc.laz
│ │ │ │ ... (5000 files total)
│ │ │ └── 10000
│ │ │ ├── lidar10000_CH_train.copc.laz
│ │ │ ├── lidar10001_CH_train.copc.laz
│ │ │ └── lidar10002_CH_train.copc.laz
│ │ │ ... (5000 files total)
│ │ │ ... (11 dirs total)
│ │ ├── NY
│ │ │ ├── 0
│ │ │ │ ├── lidar0_NY_train.copc.laz
│ │ │ │ ├── lidar10_NY_train.copc.laz
│ │ │ │ └── lidar1150_NY_train.copc.laz
│ │ │ │ ... (1071 files total)
│ │ │ ├── 5000
│ │ │ │ ├── lidar5060_NY_train.copc.laz
│ │ │ │ ├── lidar5061_NY_train.copc.laz
│ │ │ │ └── lidar5062_NY_train.copc.laz
│ │ │ │ ... (2235 files total)
│ │ │ └── 10000
│ │ │ ├── lidar10000_NY_train.copc.laz
│ │ │ ├── lidar10001_NY_train.copc.laz
│ │ │ └── lidar10002_NY_train.copc.laz
│ │ │ ... (4552 files total)
│ │ │ ... (11 dirs total)
│ │ └── NZ
│ │ ├── 0
│ │ │ ├── lidar0_NZ_train.copc.laz
│ │ │ ├── lidar1000_NZ_train.copc.laz
│ │ │ └── lidar1001_NZ_train.copc.laz
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_NZ_train.copc.laz
│ │ │ ├── lidar5001_NZ_train.copc.laz
│ │ │ └── lidar5002_NZ_train.copc.laz
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── lidar10000_NZ_train.copc.laz
│ │ ├── lidar10001_NZ_train.copc.laz
│ │ └── lidar10002_NZ_train.copc.laz
│ │ ... (4999 files total)
│ │ ... (11 dirs total)
│ ├── val
│ │ ├── CH
│ │ │ └── 0
│ │ │ ├── lidar0_CH_val.copc.laz
│ │ │ ├── lidar100_CH_val.copc.laz
│ │ │ └── lidar101_CH_val.copc.laz
│ │ │ ... (529 files total)
│ │ ├── NY
│ │ │ └── 0
│ │ │ ├── lidar0_NY_val.copc.laz
│ │ │ ├── lidar100_NY_val.copc.laz
│ │ │ └── lidar101_NY_val.copc.laz
│ │ │ ... (529 files total)
│ │ └── NZ
│ │ └── 0
│ │ ├── lidar0_NZ_val.copc.laz
│ │ ├── lidar100_NZ_val.copc.laz
│ │ └── lidar101_NZ_val.copc.laz
│ │ ... (529 files total)
│ └── test
│ ├── CH
│ │ ├── 0
│ │ │ ├── lidar0_CH_test.copc.laz
│ │ │ ├── lidar1000_CH_test.copc.laz
│ │ │ └── lidar1001_CH_test.copc.laz
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_CH_test.copc.laz
│ │ │ ├── lidar5001_CH_test.copc.laz
│ │ │ └── lidar5002_CH_test.copc.laz
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── lidar10000_CH_test.copc.laz
│ │ ├── lidar10001_CH_test.copc.laz
│ │ └── lidar10002_CH_test.copc.laz
│ │ ... (4400 files total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── lidar0_NY_test.copc.laz
│ │ │ ├── lidar1000_NY_test.copc.laz
│ │ │ └── lidar1001_NY_test.copc.laz
│ │ │ ... (4964 files total)
│ │ ├── 5000
│ │ │ ├── lidar5000_NY_test.copc.laz
│ │ │ ├── lidar5001_NY_test.copc.laz
│ │ │ └── lidar5002_NY_test.copc.laz
│ │ │ ... (4953 files total)
│ │ └── 10000
│ │ ├── lidar10000_NY_test.copc.laz
│ │ ├── lidar10001_NY_test.copc.laz
│ │ └── lidar10002_NY_test.copc.laz
│ │ ... (4396 files total)
│ └── NZ
│ ├── 0
│ │ ├── lidar0_NZ_test.copc.laz
│ │ ├── lidar1000_NZ_test.copc.laz
│ │ └── lidar1001_NZ_test.copc.laz
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── lidar5000_NZ_test.copc.laz
│ │ ├── lidar5001_NZ_test.copc.laz
│ │ └── lidar5002_NZ_test.copc.laz
│ │ ... (5000 files total)
│ └── 10000
│ ├── lidar10000_NZ_test.copc.laz
│ ├── lidar10001_NZ_test.copc.laz
│ └── lidar10002_NZ_test.copc.laz
│ ... (4400 files total)
└── ffl
├── train
│ ├── CH
│ │ ├── 0
│ │ │ ├── image0_CH_train.pt
│ │ │ ├── image1000_CH_train.pt
│ │ │ └── image1001_CH_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_CH_train.pt
│ │ │ ├── image5001_CH_train.pt
│ │ │ └── image5002_CH_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_CH_train.pt
│ │ ├── image10001_CH_train.pt
│ │ └── image10002_CH_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── NY
│ │ ├── 0
│ │ │ ├── image0_NY_train.pt
│ │ │ ├── image1000_NY_train.pt
│ │ │ └── image1001_NY_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NY_train.pt
│ │ │ ├── image5001_NY_train.pt
│ │ │ └── image5002_NY_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NY_train.pt
│ │ ├── image10001_NY_train.pt
│ │ └── image10002_NY_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── NZ
│ │ ├── 0
│ │ │ ├── image0_NZ_train.pt
│ │ │ ├── image1000_NZ_train.pt
│ │ │ └── image1001_NZ_train.pt
│ │ │ ... (5000 files total)
│ │ ├── 5000
│ │ │ ├── image5000_NZ_train.pt
│ │ │ ├── image5001_NZ_train.pt
│ │ │ └── image5002_NZ_train.pt
│ │ │ ... (5000 files total)
│ │ └── 10000
│ │ ├── image10000_NZ_train.pt
│ │ ├── image10001_NZ_train.pt
│ │ └── image10002_NZ_train.pt
│ │ ... (5000 files total)
│ │ ... (11 dirs total)
│ ├── processed-flag-all
│ ├── processed-flag-CH
│ └── processed-flag-NY
│ ... (8 files total)
├── val
│ ├── CH
│ │ └── 0
│ │ ├── image0_CH_val.pt
│ │ ├── image100_CH_val.pt
│ │ └── image101_CH_val.pt
│ │ ... (529 files total)
│ ├── NY
│ │ └── 0
│ │ ├── image0_NY_val.pt
│ │ ├── image100_NY_val.pt
│ │ └── image101_NY_val.pt
│ │ ... (529 files total)
│ ├── NZ
│ │ └── 0
│ │ ├── image0_NZ_val.pt
│ │ ├── image100_NZ_val.pt
│ │ └── image101_NZ_val.pt
│ │ ... (529 files total)
│ ├── processed-flag-all
│ ├── processed-flag-CH
│ └── processed-flag-NY
│ ... (8 files total)
└── test
├── CH
│ ├── 0
│ │ ├── image0_CH_test.pt
│ │ ├── image1000_CH_test.pt
│ │ └── image1001_CH_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_CH_test.pt
│ │ ├── image5001_CH_test.pt
│ │ └── image5002_CH_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_CH_test.pt
│ ├── image10001_CH_test.pt
│ └── image10002_CH_test.pt
│ ... (4400 files total)
├── NY
│ ├── 0
│ │ ├── image0_NY_test.pt
│ │ ├── image1000_NY_test.pt
│ │ └── image1001_NY_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NY_test.pt
│ │ ├── image5001_NY_test.pt
│ │ └── image5002_NY_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NY_test.pt
│ ├── image10001_NY_test.pt
│ └── image10002_NY_test.pt
│ ... (4400 files total)
├── NZ
│ ├── 0
│ │ ├── image0_NZ_test.pt
│ │ ├── image1000_NZ_test.pt
│ │ └── image1001_NZ_test.pt
│ │ ... (5000 files total)
│ ├── 5000
│ │ ├── image5000_NZ_test.pt
│ │ ├── image5001_NZ_test.pt
│ │ └── image5002_NZ_test.pt
│ │ ... (5000 files total)
│ └── 10000
│ ├── image10000_NZ_test.pt
│ ├── image10001_NZ_test.pt
│ └── image10002_NZ_test.pt
│ ... (4400 files total)
├── processed-flag-all
├── processed-flag-CH
└── processed-flag-NY
... (8 files total)
Pretrained model weights
Download
The recommended and fastest way to download the pretrained model weights is to run
python scripts/download_pretrained.py --model-root $MODEL_ROOT
Optionally you can also download the weights by running
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
Both options will download all checkpoints (as .pth) and results presented in the paper (as MS-COCO .json) into $MODEL_ROOT
.
Code
Download
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
Installation
To create a conda environment named p3
and install the repository as a python package with all dependencies run
bash install.sh
or, if you want to manage the environment yourself run
pip install -r requirements-torch-cuda.txt
pip install .
⚠️ Warning: The implementation of the LiDAR point cloud encoder uses Open3D-ML. Currently, Open3D-ML officially only supports the PyTorch version specified in requirements-torch-cuda.txt
.
Setup
The project supports hydra configuration which allows to modify any parameter either from a .yaml
file or directly from the command line.
To setup the project structure we recommend to specify your $DATA_ROOT
and $MODEL_ROOT
in config/host/default.yaml
.
To view all available configuration options run
python scripts/train.py --help
Predict demo tile
After downloading the model weights and setting up the code you can predict a demo tile by running
python scripts/predict_demo.py checkpoint=best_val_iou experiment=$MODEL_$MODALITY +image_file=demo_data/image0_CH_val.tif +lidar_file=demo_data/lidar0_CH_val.copc.laz
At least one of image_file
or lidar_file
has to be specified. $MODEL
can be one of the following: ffl
, hisup
or p2p
. $MODALITY
can be image
, lidar
or fusion
.
The result will be stored in prediction.png
.
Reproduce paper results
To reproduce the results from the paper you can run the following commands
python scripts/modality_ablation.py
python scripts/lidar_density_ablation.py
python scripts/all_countries.py
Custom training, prediction and evaluation
We recommend to first setup a custom experiment file $EXP_FILE
in config/experiment/
following the structure of one of the existing files, e.g. ffl_fusion.yaml
. You can then run
# train your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
# predict the test set with your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
# evaluate your prediction of the test set
python scripts/evaluate.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
You could also continue training from a provided pretrained model with
# train your model (on a single GPU)
python scripts/train.py experiment=p2p_fusion checkpoint=latest
Citation
If you use our work please cite
@misc{sulzer2025p3datasetpixelspoints,
title={The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization},
author={Raphael Sulzer and Liuyun Duan and Nicolas Girard and Florent Lafarge},
year={2025},
eprint={2505.15379},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.15379},
}
Acknowledgements
This repository benefits from the following open-source work. We thank the authors for their great work.
- Downloads last month
- 658