text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class WhisperEncoder(WhisperPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`WhisperEncoderLayer`]. Args: config: WhisperConfig """ def __init__(self, config: WhisperConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) self.embed_positions.requires_grad_(False) self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`torch.Tensor`)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] if input_features.shape[-1] != expected_seq_length: raise ValueError( f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, None, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, None, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
46,151
53,285
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,900
class WhisperDecoder(WhisperPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] Args: config: WhisperConfig """ main_input_name = "input_ids" def __init__(self, config: WhisperConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) self.layers = nn.ModuleList( [WhisperDecoderLayer(config, layer_idx) for layer_idx in range(config.decoder_layers)] ) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self._use_sdpa = config._attn_implementation == "sdpa" self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, position_ids=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or when `config.use_cache=True` Two formats are allowed: - An [`~cache_utils.EncoderDecoderCache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) return_legacy_cache = False return_self_attention_cache = False if use_cache or past_key_values is not None: if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): return_self_attention_cache = True past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) elif not isinstance(past_key_values, EncoderDecoderCache): return_legacy_cache = True logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. " "You should pass an instance of `EncoderDecoderCache` instead, e.g. " "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." ) past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) past_key_values_length = 0 if cache_position is not None: past_key_values_length = cache_position[0] elif past_key_values is not None: past_key_values_length = past_key_values.get_seq_length() if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # embed positions if input_ids is not None: positions = self.embed_positions( input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids ) else: positions = self.embed_positions( inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids ) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values.self_attention_cache if past_key_values is not None else None, output_attentions, ) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, encoder_hidden_states, None, # encoder attention mask head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, # past_key_value output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, encoder_hidden_states=encoder_hidden_states, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_values if use_cache else None, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = past_key_values if use_cache else None if return_self_attention_cache: next_cache = past_key_values.self_attention_cache if return_legacy_cache: next_cache = past_key_values.to_legacy_cache() if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
53,288
73,110
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,901
class WhisperModel(WhisperPreTrainedModel): def __init__(self, config: WhisperConfig): super().__init__(config) self.encoder = WhisperEncoder(config) self.decoder = WhisperDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. """ self.encoder._freeze_parameters() def _mask_input_features( self, input_features: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return input_features # generate indices & apply SpecAugment along time axis batch_size, hidden_size, sequence_length = input_features.size() if self.config.mask_time_prob > 0 and self.training: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) input_features[mask_time_indices] = 0 if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) input_features[mask_feature_indices] = 0 return input_features @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, WhisperModel >>> from datasets import load_dataset >>> model = WhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: input_features = self._mask_input_features(input_features, attention_mask=attention_mask) encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
73,260
80,916
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,902
class WhisperForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["proj_out.weight"] def __init__(self, config: WhisperConfig): super().__init__(config) self.model = WhisperModel(config) self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) self.max_target_positions = config.max_target_positions # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.proj_out def set_output_embeddings(self, new_embeddings): self.proj_out = new_embeddings def get_input_embeddings(self) -> nn.Module: return self.model.get_input_embeddings() def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. """ self.model.encoder._freeze_parameters() @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. `sequence_length` should be smaller than or equal to `config.max_target_positions`. Returns: Example: ```python >>> import torch >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if labels.shape[1] > self.max_target_positions: raise ValueError( f"Labels' sequence length {labels.shape[1]} cannot exceed the maximum allowed length of {self.max_target_positions} tokens." ) if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, decoder_position_ids=decoder_position_ids, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) lm_logits = self.proj_out(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, use_cache=None, encoder_outputs=None, attention_mask=None, decoder_attention_mask=None, cache_position=None, **kwargs, ): # Overwritten -- encoder-decoder whisper has custom logic, but it's close to the general function. Next time # this function needs to be touched, let's try to sort out the commonalities between the two and remove the # overwrite. decoder_position_ids = None if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) - 1).clamp(min=0) past_length = 0 if past_key_values is not None: if isinstance(past_key_values, EncoderDecoderCache): past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() else: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] if decoder_position_ids is not None: decoder_position_ids = decoder_position_ids[:, remove_prefix_length:] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. decoder_position_ids = decoder_position_ids.clone(memory_format=torch.contiguous_format) if cache_position is None: cache_position = torch.arange( past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device ) elif use_cache: cache_position = cache_position[-decoder_input_ids.shape[1] :] # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 decoder_input_ids = decoder_input_ids.contiguous() if ( isinstance(past_key_values, EncoderDecoderCache) and ( isinstance(past_key_values.self_attention_cache, StaticCache) or isinstance(past_key_values.cross_attention_cache, StaticCache) ) and decoder_attention_mask is not None and decoder_attention_mask.ndim == 2 ): batch_size, sequence_length = decoder_input_ids.shape decoder_attention_mask = self.get_decoder()._prepare_4d_causal_attention_mask_with_cache_position( decoder_attention_mask, sequence_length=sequence_length, target_length=past_key_values.self_attention_cache.get_max_cache_shape(), dtype=self.proj_out.weight.dtype, device=decoder_input_ids.device, cache_position=cache_position, batch_size=batch_size, ) return { "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "use_cache": use_cache, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "cache_position": cache_position, }
class_definition
81,075
91,343
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,903
class WhisperDecoderWrapper(WhisperPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) config.is_encoder_decoder = False self.decoder = WhisperDecoder(config) def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
class_definition
91,346
92,002
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,904
class WhisperForCausalLM(WhisperPreTrainedModel, GenerationMixin): _tied_weights_keys = ["proj_out.weight"] main_input_name = "input_ids" def __init__(self, config): super().__init__(config) config.is_encoder_decoder = False self.model = WhisperDecoderWrapper(config) self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.proj_out def set_output_embeddings(self, new_embeddings): self.proj_out = new_embeddings def get_input_embeddings(self) -> nn.Module: return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. Returns: Example: ```python >>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") >>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor( ... sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" ... ).input_features >>> predicted_ids = model.generate(input_features, assistant_model=assistant_model) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # If the user passed a tuple or `BaseModelOutput` for encoder_outputs, we extract only the hidden states if isinstance(encoder_outputs, (BaseModelOutput, tuple, list)): encoder_outputs = encoder_outputs[0] # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_outputs, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) logits = self.proj_out(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
92,191
102,515
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,905
class WhisperForAudioClassification(WhisperPreTrainedModel): def __init__(self, config): super().__init__(config) self.encoder = WhisperEncoder(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. Only the projection layers and classification head will be updated. """ self.encoder._freeze_parameters() def get_input_embeddings(self) -> nn.Module: return self.encoder.get_input_embeddings() def set_input_embeddings(self, value: nn.Module): self.encoder.set_input_embeddings(value) @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> sample = next(iter(ds)) >>> inputs = feature_extractor( ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> with torch.no_grad(): ... logits = model(input_features).logits >>> predicted_class_ids = torch.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'Afrikaans' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if self.config.use_weighted_layer_sum: output_hidden_states = True elif output_hidden_states is None: output_hidden_states = self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = hidden_states.mean(dim=1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + encoder_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
102,751
108,134
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,906
class TFWhisperPositionalEmbedding(keras.layers.Layer): def __init__( self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, embedding_initializer=None, **kwargs, ): super().__init__(**kwargs) self.num_positions = num_positions self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.embedding_initializer = keras.initializers.get(embedding_initializer) def build(self, input_shape): self.weight = self.add_weight( name="weight", shape=[self.num_positions, self.embedding_dim], initializer=self.embedding_initializer, trainable=True, ) super().build(input_shape) def call(self, input_ids, past_key_values_length=0): past_key_values_length = tf.cast(past_key_values_length, tf.int32) gather_indices = tf.range(tf.shape(input_ids)[1], delta=1) + past_key_values_length return tf.gather(self.weight, gather_indices)
class_definition
4,873
5,928
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,907
class TFWhisperAttention(keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=False, name="k_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim])
class_definition
5,931
13,718
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,908
class TFWhisperEncoderLayer(keras.layers.Layer): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFWhisperAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
13,849
17,538
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,909
class TFWhisperDecoderLayer(keras.layers.Layer): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFWhisperAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFWhisperAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
17,669
24,503
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,910
class TFWhisperPreTrainedModel(TFPreTrainedModel): config_class = WhisperConfig base_model_prefix = "model" main_input_name = "input_features" def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int: """ Computes the output length of the convolutional layers """ input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ return { self.main_input_name: tf.random.uniform( [1, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32 ), "decoder_input_ids": tf.constant([[1, 3]], dtype=tf.int32), } @property def input_signature(self): return { "input_features": tf.TensorSpec((None, self.config.num_mel_bins, None), tf.float32, name="input_features"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), }
class_definition
24,506
25,790
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,911
class TFWhisperEncoder(keras.layers.Layer): config_class = WhisperConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFWhisperEncoderLayer`]. Args: config: WhisperConfig embed_tokens (TFWhisperEmbedding): output embedding """ def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layerdrop = config.encoder_layerdrop self.embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0 # Padding is added in call() to match the PyTorch implementation self.conv1 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1") self.conv2 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2") self.embed_positions = TFWhisperPositionalEmbedding( num_positions=self.max_source_positions, embedding_dim=self.embed_dim, embedding_initializer=sinusoidal_embedding_init, name="embed_positions", ) self.embed_positions.trainable = False self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) @unpack_inputs def call( self, input_features=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`] head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # TF 2.0 layers can't use channels first format when running on CPU. input_features = tf.transpose(input_features, perm=(0, 2, 1)) input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]]) inputs_embeds = keras.activations.gelu(self.conv1(input_features)) inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]]) inputs_embeds = keras.activations.gelu(self.conv2(inputs_embeds)) inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2)) embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32)) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.encoder_layers), message=( f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) for idx, encoder_layer in enumerate(self.encoder_layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, None, layer_head_mask=(head_mask[idx] if head_mask is not None else None), training=training, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv1", None) is not None: with tf.name_scope(self.conv1.name): self.conv1.build([None, None, self.num_mel_bins]) if getattr(self, "conv2", None) is not None: with tf.name_scope(self.conv2.name): self.conv2.build([None, None, self.embed_dim]) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "encoder_layers", None) is not None: for layer in self.encoder_layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
32,214
39,533
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,912
class TFWhisperDecoder(keras.layers.Layer): config_class = WhisperConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`] Args: config: WhisperConfig """ def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="embed_tokens", ) self.embed_positions = TFWhisperPositionalEmbedding( self.max_target_positions, config.d_model, name="embed_positions" ) self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] batch_size, seq_len = input_shape[0], input_shape[1] combined_attention_mask = tf.cond( tf.math.greater(seq_len, 1), lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length), lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len), ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask @unpack_inputs def call( self, input_ids=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = tf.shape(input_ids) input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = tf.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = tf.shape(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) # embed positions filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1] positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions) hidden_states = inputs_embeds + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.decoder_layers), message=( f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is" f" for {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.decoder_layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), past_key_value=past_key_value, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "decoder_layers", None) is not None: for layer in self.decoder_layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
39,556
52,283
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,913
class TFWhisperMainLayer(keras.layers.Layer): config_class = WhisperConfig def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFWhisperEncoder(config, name="encoder") self.decoder = TFWhisperDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import TFWhisperModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
52,453
57,714
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,914
class TFWhisperModel(TFWhisperPreTrainedModel): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(config, **kwargs) self.model = TFWhisperMainLayer(config, name="model") def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def decoder(self): return self.model.decoder def encoder(self): return self.model.encoder @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features: TFModelInputType | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import TFWhisperModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
class_definition
57,864
62,727
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,915
class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ r"encoder.version", r"decoder.version", r"proj_out.weight", ] _keys_to_ignore_on_save = [ r"proj_out.weight", ] def __init__(self, config: WhisperConfig, **kwargs): super().__init__(config, **kwargs) self.model = TFWhisperMainLayer(config, name="model") def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def resize_token_embeddings(self, new_num_tokens: int) -> keras.layers.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features: TFModelInputType | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoProcessor, TFWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> generated_ids = model.generate(input_features=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) decoder_last_hidden_state = outputs[0] # Decoder and encoder embeddings are tied lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True) loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSeq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def generate( self, inputs: Optional[tf.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[TFLogitsProcessorList] = None, seed: Optional[List[int]] = None, return_timestamps: Optional[bool] = None, task: Optional[str] = None, language: Optional[str] = None, is_multilingual: Optional[bool] = None, prompt_ids: Optional[tf.Tensor] = None, return_token_timestamps=None, **kwargs, ): r""" Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). </Tip> Parameters: inputs (`tf.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If unset the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. return_timestamps (`bool`, *optional*): Whether to return the timestamps with the text. This enables the `TFWhisperTimestampsLogitsProcessor`. task (`str`, *optional*): Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` will be updated accordingly. language (`str`, *optional*): Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. is_multilingual (`bool`, *optional*): Whether or not the model is multilingual. prompt_ids (`tf.Tensor`, *optional*): Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value. return_token_timestamps (`bool`, *optional*): Whether to return token-level timestamps with the text. This can be used with or without the `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into words. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `tf.Tensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchDecoderOnlyOutput`], - [`~generation.TFSampleDecoderOnlyOutput`], - [`~generation.TFBeamSearchDecoderOnlyOutput`], - [`~generation.TFBeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchEncoderDecoderOutput`], - [`~generation.TFSampleEncoderDecoderOutput`], - [`~generation.TFBeamSearchEncoderDecoderOutput`], - [`~generation.TFBeamSampleEncoderDecoderOutput`] """ if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: if not hasattr(generation_config, "no_timestamps_token_id"): raise ValueError( "You are trying to return timestamps, but the generation config is not properly set. " "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. " "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" ) generation_config.return_timestamps = return_timestamps else: generation_config.return_timestamps = False if language is not None: language = language.lower() generation_config.language = language if task is not None: generation_config.task = task forced_decoder_ids = None # Legacy code for backward compatibility if hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: forced_decoder_ids = self.config.forced_decoder_ids elif ( hasattr(self.generation_config, "forced_decoder_ids") and self.generation_config.forced_decoder_ids is not None ): forced_decoder_ids = self.generation_config.forced_decoder_ids else: forced_decoder_ids = kwargs.get("forced_decoder_ids", None) if task is not None or language is not None or (forced_decoder_ids is None and prompt_ids is not None): forced_decoder_ids = [] if hasattr(generation_config, "language"): if generation_config.language in generation_config.lang_to_id.keys(): language_token = generation_config.language elif generation_config.language in TO_LANGUAGE_CODE.keys(): language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" elif generation_config.language in TO_LANGUAGE_CODE.values(): language_token = f"<|{generation_config.language}|>" else: is_language_code = len(generation_config.language) == 2 raise ValueError( f"Unsupported language: {generation_config.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if language_token not in generation_config.lang_to_id: raise ValueError( f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`." "(You should just add it to the generation config)" ) forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) else: forced_decoder_ids.append((1, None)) # automatically detect the language if hasattr(generation_config, "task"): if generation_config.task in TASK_IDS: forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: raise ValueError( f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" ) elif hasattr(generation_config, "task_to_id"): forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if forced_decoder_ids is not None: generation_config.forced_decoder_ids = forced_decoder_ids if prompt_ids is not None: if kwargs.get("decoder_start_token_id") is not None: raise ValueError( "When specifying `prompt_ids`, you cannot also specify `decoder_start_token_id` as it gets overwritten." ) prompt_ids = prompt_ids.tolist() decoder_start_token_id, *text_prompt_ids = prompt_ids # Slicing the text prompt ids in a manner consistent with the OpenAI implementation # to accommodate context space for the prefix (see https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/decoding.py#L599) text_prompt_ids = text_prompt_ids[-self.config.max_length // 2 - 1 :] # Set the decoder_start_token_id to <|startofprev|> kwargs.update({"decoder_start_token_id": decoder_start_token_id}) # Update the max generation length to include the prompt specified_max_length = kwargs.pop("max_new_tokens", None) or kwargs.pop("max_length", None) default_max_length = generation_config.max_new_tokens or generation_config.max_length non_prompt_max_length = specified_max_length or default_max_length kwargs["max_new_tokens"] = non_prompt_max_length + len(text_prompt_ids) # Reformat the forced_decoder_ids to incorporate the prompt non_prompt_forced_decoder_ids = ( kwargs.pop("forced_decoder_ids", None) or generation_config.forced_decoder_ids ) forced_decoder_ids = [ *text_prompt_ids, generation_config.decoder_start_token_id, *[token for _rank, token in non_prompt_forced_decoder_ids], ] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_decoder_ids)] generation_config.forced_decoder_ids = forced_decoder_ids # TODO: Implement `WhisperTimeStampLogitsProcessor`. if generation_config.return_timestamps: # logits_processor = [TFWhisperTimeStampLogitsProcessor(generation_config)] raise ValueError("`TFWhisperForConditionalGeneration` doesn't support returning the timestamps yet.") if return_token_timestamps: kwargs["output_attentions"] = True kwargs["return_dict_in_generate"] = True if getattr(generation_config, "task", None) == "translate": logger.warning("Token-level timestamps may not be reliable for task 'translate'.") if not hasattr(generation_config, "alignment_heads"): raise ValueError( "Model generation config has no `alignment_heads`, token-level timestamps not available. " "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config." ) outputs = super().generate( inputs, generation_config, logits_processor, **kwargs, ) if return_token_timestamps and hasattr(generation_config, "alignment_heads"): outputs["token_timestamps"] = self._extract_token_timestamps(outputs, generation_config.alignment_heads) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, use_cache=None, encoder_outputs=None, attention_mask=None, decoder_attention_mask=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past decoder_position_ids = tf.range(decoder_input_ids.shape[1]) decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape) return { "input_features": None, # Needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "use_cache": use_cache, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
class_definition
62,886
84,764
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
null
9,916
class WhisperTokenizer(PreTrainedTokenizer): """ Construct a Whisper tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalizer_file (`str`, *optional*): Path to the normalizer_file file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*): The token used for padding, for example when batching sequences of different lengths. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, normalizer_file=None, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>") self.language = language super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, **kwargs, ) self.task = task self.predict_timestamps = predict_timestamps @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe with GPT2 -> Whisper def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps @property def prefix_tokens(self) -> List[int]: bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") translate_token_id = self.convert_tokens_to_ids("<|translate|>") transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>") notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>") langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize with GPT2 -> Whisper def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id with GPT2 -> Whisper def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """ Converts an index (integer) in a token (str) using the vocab. Whisper's base tokenizer always decodes OOV tokens as "", thus we do not use the `unk_token` here. """ return self.decoder.get(index, "") def _normalize(self, text): warnings.warn( "The private method `_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper English normalizer using the `normalize` method." ) return self.normalize(text) def _basic_normalize(self, text, remove_diacritics=False): warnings.warn( "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method." ) return self.basic_normalize(text, remove_diacritics=remove_diacritics) def normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) @staticmethod def basic_normalize(text, remove_diacritics=False): """ Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on multilingual text. """ normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics) return normalizer(text) def _decode_with_timestamps( self, token_ids, skip_special_tokens=False, time_precision=0.02, segment_size=1500 ) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] cur_max_timestamp = 0.0 prev_segments_len = 0.0 penultimate_timestamp = 0.0 for i, token in enumerate(token_ids): if token >= timestamp_begin: timestamp = float((token - timestamp_begin) * time_precision) if timestamp < cur_max_timestamp: # next segment has started last_was_single_ending = i >= 2 and not ( token_ids[i - 1] >= timestamp_begin and token_ids[i - 2] >= timestamp_begin ) if last_was_single_ending: prev_segments_len += time_precision * segment_size else: cur_max_timestamp = penultimate_timestamp prev_segments_len += penultimate_timestamp outputs = outputs[:-2] penultimate_timestamp = cur_max_timestamp cur_max_timestamp = timestamp outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>") outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) def _compute_offsets(self, token_ids, time_precision=0.02, segment_size=1500): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. segment_size (`int`, *optional*, defaults to 1500): The number of features in the input mel spectrogram. """ offsets = [] # ensure torch tensor of token ids is placed on cpu if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)): token_ids = token_ids.cpu() token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] cur_max_timestamp = 0 prev_segments_len = 0 for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin if start_timestamp_position < cur_max_timestamp: # next segment has started is_single_ending = last_slice >= 2 and not ( token_ids[last_slice - 2] >= timestamp_begin and token_ids[last_slice - 1] >= timestamp_begin ) if is_single_ending: prev_segments_len += segment_size else: prev_segments_len += cur_max_timestamp cur_max_timestamp = end_timestamp_position # strip timestamp tokens from the text output sliced_tokens = self._preprocess_token_ids(sliced_tokens) text = self._decode(sliced_tokens) text = self._filter_timestamp_ids(text) offsets.append( { "text": text, "timestamp": ( start_timestamp_position * time_precision + prev_segments_len * time_precision, end_timestamp_position * time_precision + prev_segments_len * time_precision, ), } ) last_slice = current_slice return offsets @lru_cache def timestamp_ids(self, time_precision=0.02): """ Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache. Args: time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. """ return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]) def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False): """ Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be removed. """ if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) return token_ids def _filter_timestamp_ids(self, token_ids): return re.sub(self.timestamp_pat, "", token_ids) def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision: float = 0.02, decode_with_timestamps: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. Will remove the previous tokens (pre-prompt) if present. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. If there are previous tokens (pre-prompt) to decode, they will only appear in the decoded text if they contain timestamp tokens. time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the English text normalizer to the decoded text. Only applicable when the target text is in English. Otherwise, the basic text normalizer should be applied. basic_normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual target text. remove_diacritics (`bool`, *optional*, defaults to `False`): Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may destroy information in the decoded text, hence it should be used with caution. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ filtered_ids = self._preprocess_token_ids( token_ids, skip_special_tokens=skip_special_tokens, ) text = super().decode( filtered_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, normalize=normalize, basic_normalize=basic_normalize, remove_diacritics=remove_diacritics, **kwargs, ) if decode_with_timestamps: # legacy method to decode timestamps when not included in the tokenizer vocabulary text = self._decode_with_timestamps( filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) else: text = self._filter_timestamp_ids(text) # retrieve offsets if output_offsets: offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) text = "".join(sub_texts) if normalize: clean_text = self.normalize(text) return clean_text elif basic_normalize: clean_text = self.basic_normalize(text, remove_diacritics=remove_diacritics) return clean_text else: return text # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string with GPT2 -> Whisper def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return vocab_file, merge_file, normalizer_file # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.prepare_for_tokenization with GPT2 -> Whisper def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] def _strip_prompt(self, token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): if not isinstance(token_ids, list): token_ids = self._convert_to_list(token_ids) # handle case of empty token_ids for decoding with timestamps. # at this point token_ids is a list, so it is safe to use if not check. if not token_ids: return token_ids has_prompt = token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids @staticmethod def _convert_to_list(token_ids): # convert type to ndarray if necessary if hasattr(token_ids, "numpy"): if "torch" in str(type(token_ids)): token_ids = token_ids.cpu().numpy() elif "tensorflow" in str(type(token_ids)): token_ids = token_ids.numpy() elif "jaxlib" in str(type(token_ids)): token_ids = token_ids.tolist() # now the token ids are either a numpy array, or a list of lists if isinstance(token_ids, np.ndarray): token_ids = token_ids.tolist() return token_ids
class_definition
5,272
37,861
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/tokenization_whisper.py
null
9,917
class WhisperConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Whisper [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51865): Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the `decoder_input_ids` passed when calling [`WhisperModel`] num_mel_bins (`int`, *optional*, defaults to 80): Number of mel features used per input features. Should correspond to the value used in the `WhisperProcessor` class. encoder_layers (`int`, *optional*, defaults to 4): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 4): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_start_token_id (`int`, *optional*, defaults to 50257): Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids` are provided to the `generate` function. It is used to guide the model`s generation process depending on the task. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 384): Dimensionality of the layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_embedding (`bool`, *optional*, defaults to False): Scale embeddings by diving by sqrt(d_model). max_source_positions (`int`, *optional*, defaults to 1500): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 448): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). pad_token_id (`int`, *optional*, defaults to 50256): Padding token id. bos_token_id (`int`, *optional*, defaults to 50256): Begin of stream token id. eos_token_id (`int`, *optional*, defaults to 50256): End of stream token id. suppress_tokens (`List[int]`, *optional*): A list containing the non-speech tokens that will be used by the logit processor in the `generate` function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the `multilingual` model. begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`): A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as the token for `" "` (`blank_token_id`) and the `eos_token_id` use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`WhisperForAudioClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an instance of [`WhisperForAudioClassification`]. apply_spec_augment (`bool`, *optional*, defaults to `False`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`. median_filter_width (`int`, *optional*, defaults to 7): Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps. Should be an odd number. Example: ```python >>> from transformers import WhisperConfig, WhisperModel >>> # Initializing a Whisper tiny style configuration >>> configuration = WhisperConfig() >>> # Initializing a model (with random weights) from the tiny style configuration >>> model = WhisperModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "whisper" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_key_value_heads": "encoder_attention_heads", "num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model", } def __init__( self, vocab_size=51865, num_mel_bins=80, encoder_layers=4, encoder_attention_heads=6, decoder_layers=4, decoder_attention_heads=6, decoder_ffn_dim=1536, encoder_ffn_dim=1536, encoder_layerdrop=0.0, decoder_layerdrop=0.0, decoder_start_token_id=50257, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=384, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, scale_embedding=False, max_source_positions=1500, max_target_positions=448, pad_token_id=50256, bos_token_id=50256, eos_token_id=50256, suppress_tokens=None, begin_suppress_tokens=[220, 50256], use_weighted_layer_sum=False, classifier_proj_size=256, apply_spec_augment=False, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, median_filter_width=7, **kwargs, ): self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.d_model = d_model self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size self.use_weighted_layer_sum = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks self.median_filter_width = median_filter_width super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, suppress_tokens=suppress_tokens, begin_suppress_tokens=begin_suppress_tokens, **kwargs, )
class_definition
2,270
14,903
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/configuration_whisper.py
null
9,918
class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220, ) -> Mapping[str, Any]: dummy_inputs = OrderedDict() encoder_inputs = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=batch_size, framework=framework, sampling_rate=sampling_rate, time_duration=time_duration, frequency=frequency, ) encoder_sequence_length = encoder_inputs["input_features"].shape[2] seq_length = encoder_sequence_length // 2 if self.use_past else seq_length decoder_inputs = super().generate_dummy_inputs( preprocessor.tokenizer, batch_size, seq_length, is_pair, framework ) dummy_inputs["input_features"] = encoder_inputs.pop("input_features") dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values") return dummy_inputs @property def atol_for_validation(self) -> float: return 1e-3
class_definition
14,906
16,990
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/configuration_whisper.py
null
9,919
class WhisperGenerationMixin(GenerationMixin): def _extract_token_timestamps( self, generate_outputs, alignment_heads, time_precision=0.02, num_frames=None, num_input_ids=None ): """ Calculates token-level timestamps using the encoder-decoder cross-attentions and dynamic time-warping (DTW) to map each output token to a position in the input audio. If `num_frames` is specified, the encoder-decoder cross-attentions will be cropped before applying DTW. Returns: tensor containing the timestamps in seconds for each predicted token """ # Create a list with `decoder_layers` elements, each a tensor of shape # (batch size, attention_heads, output length, input length). cross_attentions = [] for i in range(self.config.decoder_layers): cross_attentions.append(torch.cat([x[i] for x in generate_outputs.cross_attentions], dim=2)) # Select specific cross-attention layers and heads. This is a tensor # of shape (batch size, num selected, output length, input length). weights = torch.stack([cross_attentions[l][:, h] for l, h in alignment_heads]) weights = weights.permute([1, 0, 2, 3]) weight_length = None if "beam_indices" in generate_outputs: # If beam search has been used, the output sequences may have been generated for more timesteps than their sequence_lengths # since the beam search strategy chooses the most probable sequences at the end of the search. # In that case, the cross_attentions weights are too long and we have to make sure that they have the right output_length weight_length = (generate_outputs.beam_indices != -1).sum(-1).max() weight_length = weight_length if num_input_ids is None else weight_length + num_input_ids # beam search takes `decoder_input_ids` into account in the `beam_indices` length # but forgot to shift the beam_indices by the number of `decoder_input_ids` beam_indices = torch.zeros_like(generate_outputs.beam_indices[:, :weight_length]) # we actually shif the beam indices here beam_indices[:, num_input_ids:] = generate_outputs.beam_indices[:, : weight_length - num_input_ids] weights = weights[:, :, :weight_length] # If beam index is still -1, it means that the associated token id is EOS # We need to replace the index with 0 since index_select gives an error if any of the indexes is -1. beam_indices = beam_indices.masked_fill(beam_indices == -1, 0) # Select the cross attention from the right beam for each output sequences weights = torch.stack( [ torch.index_select(weights[:, :, i, :], dim=0, index=beam_indices[:, i]) for i in range(beam_indices.shape[1]) ], dim=2, ) # make sure timestamps are as long as weights input_length = weight_length or cross_attentions[0].shape[2] batch_size = generate_outputs.sequences.shape[0] timestamps = torch.zeros( (batch_size, input_length + 1), dtype=torch.float32, device=generate_outputs.sequences.device ) if num_frames is not None: # two cases: # 1. num_frames is the same for each sample -> compute the DTW matrix for each sample in parallel # 2. num_frames is different, compute the DTW matrix for each sample sequentially # we're using np.unique because num_frames can be int/list/tuple if isinstance(num_frames, int): weights = weights[..., : num_frames // 2] elif isinstance(num_frames, (list, tuple, np.ndarray)) and len(np.unique(num_frames)) == 1: weights = weights[..., : num_frames[0] // 2] elif isinstance(num_frames, (torch.Tensor)) and len(torch.unique(num_frames)) == 1: weights = weights[..., : num_frames[0] // 2] else: # num_frames is of shape (batch_size,) whereas batch_size is truely batch_size*num_return_sequences repeat_time = batch_size if isinstance(num_frames, int) else batch_size // len(num_frames) num_frames = num_frames.cpu() if isinstance(num_frames, (torch.Tensor)) else num_frames num_frames = np.repeat(num_frames, repeat_time) if num_frames is None or isinstance(num_frames, int): # Normalize and smoothen the weights. std = torch.std(weights, dim=-2, keepdim=True, unbiased=False) mean = torch.mean(weights, dim=-2, keepdim=True) weights = (weights - mean) / std weights = _median_filter(weights, self.config.median_filter_width) # Average the different cross-attention heads. weights = weights.mean(dim=1) # Perform dynamic time warping on each element of the batch. for batch_idx in range(batch_size): if num_frames is not None and isinstance(num_frames, (tuple, list, np.ndarray, torch.Tensor)): matrix = weights[batch_idx, ..., : num_frames[batch_idx] // 2] # Normalize and smoothen the weights. std = torch.std(matrix, dim=-2, keepdim=True, unbiased=False) mean = torch.mean(matrix, dim=-2, keepdim=True) matrix = (matrix - mean) / std matrix = _median_filter(matrix, self.config.median_filter_width) # Average the different cross-attention heads. matrix = matrix.mean(dim=0) else: matrix = weights[batch_idx] text_indices, time_indices = _dynamic_time_warping(-matrix.cpu().double().numpy()) jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool) jump_times = time_indices[jumps] * time_precision timestamps[batch_idx, 1:] = torch.tensor(jump_times) return timestamps def generate( self, input_features: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, synced_gpus: bool = False, return_timestamps: Optional[bool] = None, task: Optional[str] = None, language: Optional[Union[str, List[str]]] = None, is_multilingual: Optional[bool] = None, prompt_ids: Optional[torch.Tensor] = None, prompt_condition_type: Optional[str] = None, # first-segment, all-segments condition_on_prev_tokens: Optional[bool] = None, temperature: Optional[Union[float, Tuple[float, ...]]] = None, compression_ratio_threshold: Optional[float] = None, logprob_threshold: Optional[float] = None, no_speech_threshold: Optional[float] = None, num_segment_frames: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, time_precision: float = 0.02, time_precision_features: float = 0.01, return_token_timestamps: Optional[bool] = None, return_segments: bool = False, return_dict_in_generate: Optional[bool] = None, force_unique_generate_call: Optional[bool] = None, **kwargs, ): """ Transcribes or translates log-mel input features to a sequence of auto-regressively generated token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*): Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details. generation_config ([`~generation.GenerationConfig`], *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). return_timestamps (`bool`, *optional*): Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`. task (`str`, *optional*): Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` will be updated accordingly. language (`str` or list of `str`, *optional*): Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. For batched generation, a list of language tokens can be passed. You can find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. is_multilingual (`bool`, *optional*): Whether or not the model is multilingual. prompt_ids (`torch.Tensor`, *optional*): Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value. prompt_condition_type (`str`, *optional*): Only relevant for long-form transcription. Condition type of `prompt_ids`. 'first-segment' means only the first segment is conditioned on `prompt_ids`. 'all-segments' means each segment is conditioned on `prompt_ids`. Make sure to enable `condition_on_prev_tokens` for 'all-segments'. Defaults to 'first-segment'. For short-term transcription only 'first-segment' is possible. condition_on_prev_tokens (`bool`, *optional*): Only relevant for long-form transcription. Whether to condition each segment on the previous segment. As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve performance. temperature (`float` or list of `float`, *optional*): The temperature to be used for generation. Passing a single `float` value and `do_sample=True` activates generation using sampling. For long-form transcription, temperature fallback can be activated by passing a list of float values such as (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve performance. compression_ratio_threshold (`float`, *optional*): Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. If `compression_ratio_threshold` is defined make sure that `temperature` is a list of values. A common value for `compression_ratio_threshold` is 1.35. As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve performance. logprob_threshold (`float`, *optional*): Only relevant for long-form transcription. If defined, the average log-probability of each segment will be computed. If the log-probability of a given segment is lower than `logprob_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is repeated using a higher temperature. The intuition behind this feature is that segments of low log-probability can be improved by injecting more randomness by increasing the temperature. If `logprob_threshold` is defined make sure that `temperature` is a list of values. A common value for `logprob_threshold` is -1.0. As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve performance. no_speech_threshold (`float`, *optional*): Only relevant for long-form transcription. If defined, the "no-speech" token combined with the `logprob_threshold` is used to determine whether a segment contains only silence. In this case, the transcription for this segment is skipped. As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve performance. num_segment_frames (`int`, *optional*): The number of frames a single segment is made of. If not defined, `num_segment_frames` defaults to the model's stride times the maximum input length. attention_mask (`torch.Tensor`, *optional*): `attention_mask` needs to be passed when doing long-form transcription using a batch size > 1. time_precision (`int`, *optional*, defaults to 0.02): The duration of output token in seconds. *E.g.* 0.02 means that a generated token on average accounts for 20 ms. time_precision_features (`int`, *optional*, defaults to 0.01): The duration represented by a feature frame in seconds. return_token_timestamps (`bool`, *optional*): Whether to return token-level timestamps with the text. This can be used with or without the `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into words. return_segments (`bool`, *optional*, defaults to `False`): Whether to additionally return a list of all segments. Note that this option can only be enabled when doing long-form transcription. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of just returning the generated tokens. Note that when doing long-form transcription, `return_dict_in_generate` can only be enabled when `return_segments` is set True. In this case the generation outputs of each segment is added to each segment. force_unique_generate_call (`bool`, *optional*): Whether to force a unique call to the underlying GenerationMixin's [`~generation.GenerationMixin.generate`] method. This is useful for assisted decoding and testing purposes to ensure that only one call to [`~generation.GenerationMixin.generate`] is made and therefore decoder input token ids and eos token ids are returned. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `Dict[str, Any]` or `torch.LongTensor`: A: - [`~utils.ModelOutput`] when `return_dict_in_generate=True` and (`return_timestamps=False` or `force_unique_generate_call=True`), including the decoder input ids and end of sequence id. - `Dict[str, Any]` when (`return_dict_in_generate=True` and `return_timestamps=True`) or `return_segments=True` or `return_token_timestamps=True`. - `torch.LongTensor` in all other cases, excluding the decoder input ids and end of sequence id. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`] - [`~generation.GenerateBeamEncoderDecoderOutput`] `segments` is a list of lists (one list per batch element) of `segment`. A `segment` is a dictionary with keys `start`, `end`, `tokens`, `idxs`, and `result`. - `start`: the start timestamp of the segment. - `end`: the end timestamp of the segment. - `tokens`: the tokens of the segment, excluding the decoder input ids and end of sequence id. - `idxs`: the start (included) and end (excluded) indices of the `tokens` of the segment in the underlying call to GenerationMixin's [`~generation.GenerationMixin.generate`] (present in `result`). - `result`: the result of the underlying call to GenerationMixin's [`~generation.GenerationMixin.generate`]. When `return_timestamps=True`, `return_dict_in_generate=True` applies to each call of the underlying GenerationMixin's [`~generation.GenerationMixin.generate`], with outputs stored in `result` of each `segment`. Example: - *Longform transcription*: To transcribe or translate audios longer than 30 seconds, process the audio files without truncation and pass all mel features at once to generate. It is necessary to set `return_timestamps=True`. Indeed, long-form transcription uses a sequential algorithm based on timestamps predictions, with heuristics like compression ratio threshold, log probability threshold and temperature fallback. This algorithm is described in the [the Whisper original paper](https://cdn.openai.com/papers/whisper.pdf), section *3.8. Long-form Transcription*. ```python >>> import torch >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset, Audio >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> model.cuda() # doctest: +IGNORE_RESULT >>> # load audios > 30 seconds >>> ds = load_dataset("distil-whisper/meanwhile", "default")["test"] >>> # resample to 16kHz >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) >>> # take first 8 audios and retrieve array >>> audio = ds[:8]["audio"] >>> audio = [x["array"] for x in audio] >>> # make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio >>> inputs = processor(audio, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, sampling_rate=16_000) >>> inputs = inputs.to("cuda", torch.float32) >>> # transcribe audio to ids >>> generated_ids = model.generate(**inputs) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> transcription[0] " Folks, if you watch the show, you know, I spent a lot of time right over there. Patiently and astutely scrutinizing the boxwood and mahogany chest set of the day's biggest stories developing the central headline pawns, definitely maneuvering an oso topical night to F6, fainting a classic Sicilian, nade door variation on the news, all the while seeing eight moves deep and patiently marshalling the latest press releases into a fisher's shows in Lip Nitsky attack that culminates in the elegant lethal slow-played, all-passant checkmate that is my nightly monologue. But sometimes, sometimes, folks, I. CHEERING AND APPLAUSE Sometimes I startle away, cubside down in the monkey bars of a condemned playground on a super fun site. Get all hept up on goofballs. Rummage that were discarded tag bag of defective toys. Yank out a fist bowl of disembodied doll limbs, toss them on a stained kid's place mat from a defunct dennies. set up a table inside a rusty cargo container down by the Wharf and challenged toothless drifters to the godless bughouse blitz of tournament that is my segment. Meanwhile." ``` - *Shortform transcription*: If passed mel input features are <= 30 seconds, there are two possibilities: - `return_timestamps=False`: the whole audio will be transcribed with a single call to GenerationMixin's [`~generation.GenerationMixin.generate`]. - `return_timestamps=True`: the audio will be transcribed using the same logic as long-form transcription. ```python >>> import torch >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` """ # 0. deprecate old inputs if "inputs" in kwargs: input_features = kwargs.pop("inputs") warnings.warn( "The input name `inputs` is deprecated. Please make sure to use `input_features` instead.", FutureWarning, ) # 1. prepare generation config generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs) # 2. set global generate variables input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0] num_segment_frames = input_stride * self.config.max_source_positions batch_size, total_input_frames = self._retrieve_total_input_frames( input_features=input_features, input_stride=input_stride, kwargs=kwargs ) is_shortform = total_input_frames <= num_segment_frames # 3. Make sure generation config is correctly set # Make sure the generation config is correctly set depending on whether timestamps are to be returned or not return_dict_in_generate = self._set_return_outputs( return_dict_in_generate=return_dict_in_generate, return_token_timestamps=return_token_timestamps, logprob_threshold=logprob_threshold, generation_config=generation_config, ) timestamp_begin = self._set_return_timestamps( return_timestamps=return_timestamps, is_shortform=is_shortform, generation_config=generation_config ) self._set_language_and_task( language=language, task=task, is_multilingual=is_multilingual, generation_config=generation_config ) self._set_num_frames( return_token_timestamps=return_token_timestamps, generation_config=generation_config, kwargs=kwargs ) self._set_thresholds_and_condition( generation_config=generation_config, logprob_threshold=logprob_threshold, compression_ratio_threshold=compression_ratio_threshold, no_speech_threshold=no_speech_threshold, condition_on_prev_tokens=condition_on_prev_tokens, ) self._set_prompt_condition_type( generation_config=generation_config, prompt_condition_type=prompt_condition_type, ) # pass self.config for backward compatibility init_tokens = self._retrieve_init_tokens( input_features, batch_size=batch_size, generation_config=generation_config, config=self.config, num_segment_frames=num_segment_frames, kwargs=kwargs, ) # passing `decoder_input_ids` is deprecated - the only exception is for assisted generation # where the input ids are handled explicitly by the generate method self._check_decoder_input_ids(kwargs=kwargs) # 3. Retrieve logits processors device = kwargs["encoder_outputs"][0].device if "encoder_outputs" in kwargs else input_features.device begin_index = init_tokens.shape[1] num_beams = kwargs.get( "num_beams", generation_config.num_beams if hasattr(generation_config, "num_beams") and generation_config.num_beams is not None else 1, ) if "assistant_model" in kwargs: # speculative decoding: the model should be able to return eos token generation_config.begin_suppress_tokens = None logits_processor = self._retrieve_logit_processors( generation_config=generation_config, logits_processor=logits_processor, begin_index=begin_index, # begin index is index of first generated decoder token num_beams=num_beams, device=device, ) # 4 Set and retrieve global generation variables self._set_condition_on_prev_tokens( condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config ) temperatures = [temperature] if not isinstance(temperature, (list, tuple)) else temperature temperature = temperatures[0] max_frames, seek = self._retrieve_max_frames_and_seek( batch_size=batch_size, attention_mask=attention_mask, total_input_frames=total_input_frames, is_shortform=is_shortform, ) # 5 Prepare running variables, list for generation num_return_sequences = generation_config.num_return_sequences ( batch_idx_map, cur_bsz, input_features, seek, max_frames, init_tokens, do_condition_on_prev_tokens, ) = self._expand_variables_for_generation( input_features=input_features, seek=seek, max_frames=max_frames, init_tokens=init_tokens, batch_size=batch_size, condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config, ) current_segments = self._prepare_segments( prompt_ids=prompt_ids, batch_size=cur_bsz, generation_config=generation_config, ) # 5bis speculative decoding: ensure the assistant model does only one call to generate and therefore returns decoder input token ids and eos token id # we set a flag in the generation config to force the model to make only one call to generate and return the decoder input token ids and eos token id if "assistant_model" in kwargs: assistant_model = kwargs["assistant_model"] assistant_model.generation_config.force_unique_generate_call = True if force_unique_generate_call is None: if hasattr(generation_config, "force_unique_generate_call"): force_unique_generate_call = generation_config.force_unique_generate_call elif hasattr(self.generation_config, "force_unique_generate_call"): force_unique_generate_call = self.generation_config.force_unique_generate_call else: force_unique_generate_call = False # 6 Transcribe audio until we reach the end of all input audios while (seek < max_frames).any(): # 6.1 NOTE: When in longform transcription mode and batch size > 1 we need to dynamically reduce the batch size during the loop # in case one audio finished earlier than another one. Thus, we need to keep a table of "previous-index-2-current-index" in order # to know which original audio is being decoded # Set updated index map, duration of previously decoded chunks and number of max frames of current decoding chunk input_features, cur_bsz, batch_idx_map = self._maybe_reduce_batch( input_features=input_features, seek=seek, max_frames=max_frames, cur_bsz=cur_bsz, batch_idx_map=batch_idx_map, ) time_offset = ( seek.to(torch.float32 if device.type == "mps" else torch.float64) * time_precision / input_stride ) seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames) # 6.2 cut out next 30s segment from input features segment_input = self._get_input_segment( input_features=input_features, seek=seek, seek_num_frames=seek_num_frames, num_segment_frames=num_segment_frames, cur_bsz=cur_bsz, batch_idx_map=batch_idx_map, ) # 6.3 prepare decoder input ids suppress_tokens = _get_attr_from_logit_processors( logits_processor, SuppressTokensLogitsProcessor, "suppress_tokens" ) decoder_input_ids, kwargs = self._prepare_decoder_input_ids( cur_bsz=cur_bsz, init_tokens=init_tokens, current_segments=current_segments, batch_idx_map=batch_idx_map, do_condition_on_prev_tokens=do_condition_on_prev_tokens, prompt_ids=prompt_ids, generation_config=generation_config, config=self.config, device=init_tokens.device, suppress_tokens=suppress_tokens, timestamp_begin=timestamp_begin, kwargs=kwargs, ) # 6.4 set max new tokens or max length self._set_max_new_tokens_and_length( config=self.config, decoder_input_ids=decoder_input_ids, generation_config=generation_config, ) # 6.5 Set current `begin_index` for all logit processors if logits_processor is not None: for proc in logits_processor: if hasattr(proc, "set_begin_index"): proc.set_begin_index(decoder_input_ids.shape[-1]) # 6.6 Run generate with fallback ( seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens, model_output_type, ) = self.generate_with_fallback( segment_input=segment_input, decoder_input_ids=decoder_input_ids, cur_bsz=cur_bsz, batch_idx_map=batch_idx_map, seek=seek, num_segment_frames=num_segment_frames, max_frames=max_frames, temperatures=temperatures, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, return_token_timestamps=return_token_timestamps, do_condition_on_prev_tokens=do_condition_on_prev_tokens, is_shortform=is_shortform, batch_size=batch_size, attention_mask=attention_mask, kwargs=kwargs, ) # 6.7 In every generated sequence, split by timestamp tokens and extract segments for i, seek_sequence in enumerate(seek_sequences): prev_i = batch_idx_map[i] if should_skip[i]: seek[prev_i] += seek_num_frames[prev_i] continue segments, segment_offset = self._retrieve_segment( seek_sequence=seek_sequence, seek_outputs=seek_outputs, time_offset=time_offset, timestamp_begin=timestamp_begin, seek_num_frames=seek_num_frames, time_precision=time_precision, time_precision_features=time_precision_features, input_stride=input_stride, prev_idx=prev_i, idx=i, return_token_timestamps=return_token_timestamps, decoder_input_ids=decoder_input_ids, ) seek[prev_i] += segment_offset current_segments[prev_i] += segments if force_unique_generate_call: break # 7. Once all segments are added to the list of all segments, called `current_segments`, we extract the predicted # output tokens from the list of dicts. If we use batch size > 1, we make sure to pad the output final_segments = ( [x[1:] for x in current_segments] if (prompt_ids is not None and generation_config.prompt_condition_type == "first-segment") else current_segments ) # if return_dict_in_generate=True and we forced a unique call to generate or return_timestamps=False, meaning we are sure only one call to generate has been made, # -> we can return a ModelOutput # otherwise, return_dict_in_generate is applied in the 'result' of each segment in final_segments if ( return_dict_in_generate and generation_config.return_dict_in_generate and (force_unique_generate_call or not return_timestamps) ): # only one call to generate_with_fallback, we can return a ModelOutput outputs = self._stack_split_outputs(seek_outputs, model_output_type, self.device, kwargs) if num_return_sequences > 1: if hasattr(outputs, "encoder_attentions") and outputs.encoder_attentions is not None: outputs.encoder_attentions = tuple( outputs.encoder_attentions[i][::num_return_sequences] for i in range(len(outputs.encoder_attentions)) ) if hasattr(outputs, "encoder_hidden_states") and outputs.encoder_hidden_states is not None: outputs.encoder_hidden_states = tuple( outputs.encoder_hidden_states[i][::num_return_sequences] for i in range(len(outputs.encoder_hidden_states)) ) return outputs padded_outputs = _pad_to_max_length( current_segments=final_segments, pad_token_id=generation_config.pad_token_id, device=self.device, padding_side="right", return_token_timestamps=return_token_timestamps, force_unique_generate_call=force_unique_generate_call, ) if return_dict_in_generate and generation_config.return_dict_in_generate: logger.warning_once( "You have passed `return_dict_in_generate=True` and `return_timestamps=True`, this automatically sets `return_segments=True` to access the resuls of the underlying calls to GenerationMixin's generate in the returned `segments`." ) return_segments = True elif not return_segments and not return_token_timestamps: return padded_outputs if return_token_timestamps: sequences, token_timestamps = padded_outputs outputs = { "sequences": sequences, "token_timestamps": token_timestamps, } else: sequences = padded_outputs outputs = { "sequences": sequences, } if return_segments: outputs["segments"] = final_segments return outputs def generate_with_fallback( self, segment_input, decoder_input_ids, cur_bsz, batch_idx_map, seek, num_segment_frames, max_frames, temperatures, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, return_token_timestamps, do_condition_on_prev_tokens, is_shortform, batch_size, attention_mask, kwargs, ): kwargs = copy.copy(kwargs) # 6.6 Batch generate current chunk seek_sequence_list = [None for _ in range(cur_bsz)] seek_outputs_list = [None for _ in range(cur_bsz)] needs_fallback = [False for _ in range(cur_bsz)] should_skip = [False for _ in range(cur_bsz)] fallback_index_map = list(range(cur_bsz)) if generation_config.no_speech_threshold is not None: self._setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs) for fallback_idx, temperature in enumerate(temperatures): generation_config.do_sample = temperature is not None and temperature > 0.0 generation_config.temperature = temperature if generation_config.do_sample else 1.0 if generation_config.do_sample: generation_config.num_beams = 1 generate_kwargs = copy.copy(kwargs) for key in ["do_sample", "temperature", "num_beams"]: if key in generate_kwargs: del generate_kwargs[key] cur_bsz = decoder_input_ids.shape[0] if generation_config.cache_implementation == "static" and cur_bsz < batch_size: segment_input = F.pad(segment_input, (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0) decoder_input_ids = F.pad( decoder_input_ids, (0, 0, 0, batch_size - cur_bsz), value=generation_config.pad_token_id ) if generate_kwargs.get("decoder_attention_mask") is not None: generate_kwargs["decoder_attention_mask"] = F.pad( generate_kwargs["decoder_attention_mask"], (0, 0, 0, batch_size - cur_bsz), value=True ) if generate_kwargs.get("encoder_outputs") is not None: generate_kwargs["encoder_outputs"] = F.pad( generate_kwargs["encoder_outputs"], (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0 ) seek_outputs = super().generate( segment_input, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, **generate_kwargs, ) model_output_type = type(seek_outputs) # post-process sequence tokens and outputs to be in list form seek_sequences, seek_outputs = self._postprocess_outputs( seek_outputs=seek_outputs, decoder_input_ids=decoder_input_ids, return_token_timestamps=return_token_timestamps, generation_config=generation_config, is_shortform=is_shortform, ) if cur_bsz < batch_size: seek_sequences = seek_sequences[:cur_bsz] seek_outputs = seek_outputs[:cur_bsz] # 6.7 Extract cut sequences from every sequence and check if fallback should be applied # Loop over each decoded audio individually as each decoding can be of a different length new_fallback_index_map = [] new_segment_input = [] new_decoder_input_ids = [] new_decoder_attention_mask = [] for i, seek_sequence in enumerate(seek_sequences): # remove all padding tokens, except for the eos token if seek_sequence[-1] == generation_config.pad_token_id: num_paddings = (seek_sequence == generation_config.pad_token_id).sum() if generation_config.pad_token_id == generation_config.eos_token_id: # we do not remove the eos token id since it is needed for avg logprob calculation in _need_fallback num_paddings -= 1 if num_paddings != 0: seek_sequence = seek_sequence[:-num_paddings] # check which sequences in batch need fallback & which should be skipped needs_fallback[i], should_skip[i] = self._need_fallback( seek_sequence, seek_outputs, i, logits_processor, generation_config, self.config.vocab_size, temperature, ) # remove eos token if seek_sequence[-1] == generation_config.eos_token_id: seek_sequence = seek_sequence[:-1] seek_sequence_list[fallback_index_map[i]] = seek_sequence seek_outputs_list[fallback_index_map[i]] = seek_outputs[i] is_low_temperature = temperature is None or temperature < 0.5 do_condition_on_prev_tokens[fallback_index_map[i]] = ( generation_config.condition_on_prev_tokens and is_low_temperature ) if needs_fallback[i]: new_fallback_index_map.append(fallback_index_map[i]) new_segment_input.append(segment_input[i]) new_decoder_input_ids.append(decoder_input_ids[i]) if "decoder_attention_mask" in kwargs: new_decoder_attention_mask.append(kwargs["decoder_attention_mask"][i]) fallback_index_map = new_fallback_index_map # if no sequence needs to be run with temperature fallback, we're finished if len(fallback_index_map) == 0 or fallback_idx == len(temperatures) - 1: seek_sequences = seek_sequence_list seek_outputs = seek_outputs_list break # if we're still in the loop, make sure that decoder_input_ids and segment inputs are tensors decoder_input_ids = torch.stack(new_decoder_input_ids) segment_input = torch.stack(new_segment_input) if "decoder_attention_mask" in kwargs: kwargs["decoder_attention_mask"] = torch.stack(new_decoder_attention_mask) return seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens, model_output_type @staticmethod def _prepare_segments(prompt_ids, batch_size, generation_config): if prompt_ids is not None and generation_config.prompt_condition_type == "first-segment": prev_sot_token_id = getattr(generation_config, "prev_sot_token_id", None) prompt_ids = prompt_ids[1:] if prompt_ids[0] == prev_sot_token_id else prompt_ids current_segments = [[{"tokens": prompt_ids}] for _ in range(batch_size)] else: current_segments = [[] for _ in range(batch_size)] return current_segments def _postprocess_outputs( self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, is_shortform, ): # remove all previously passed decoder input ids # should happen only if it is the first generated segment start_idx = decoder_input_ids.shape[-1] if isinstance(seek_outputs, torch.Tensor): return seek_outputs[:, start_idx:], seek_outputs if return_token_timestamps and hasattr(generation_config, "alignment_heads"): num_frames = getattr(generation_config, "num_frames", None) seek_outputs["token_timestamps"] = self._extract_token_timestamps( seek_outputs, generation_config.alignment_heads, num_frames=num_frames, num_input_ids=decoder_input_ids.shape[-1], ) def split_by_batch_index(values, key, batch_idx, is_shortform, beam_indices=None): if beam_indices is not None and key == "scores": return [v[beam_idx].cpu() for (v, beam_idx) in zip(values, beam_indices[batch_idx][: len(values)])] if key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]: return [v[batch_idx].cpu() for v in values] if key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]: return tuple(tuple(w[batch_idx][None].cpu() for w in v) for v in values) elif key == "past_key_values": if not is_shortform: # we don't save `past_key_values` as this is too costly for longform return None elif isinstance(values, EncoderDecoderCache): all_past_key_values = [] for layer_idx in range(self.config.decoder_layers): layer_past_key_values = [] for cache_cls in [values.self_attention_cache, values.cross_attention_cache]: for v in [cache_cls.key_cache, cache_cls.value_cache]: layer_past_key_values.append(v[layer_idx][batch_idx][None].cpu()) all_past_key_values.append(tuple(layer_past_key_values)) return tuple(all_past_key_values) else: all_past_key_values = [] for v in range(len(values)): layer_past_key_values = [] for w in values[v]: if len(w) != 0: layer_past_key_values.append(w[batch_idx][None].cpu()) else: layer_past_key_values.append(w) all_past_key_values.append(tuple(layer_past_key_values)) return tuple(all_past_key_values) return values[batch_idx].cpu() sequence_tokens = seek_outputs["sequences"][:, start_idx:] seek_outputs = [ { k: split_by_batch_index(v, k, i, is_shortform, beam_indices=seek_outputs.get("beam_indices")) for k, v in seek_outputs.items() } for i in range(sequence_tokens.shape[0]) ] return sequence_tokens, seek_outputs def _stack_split_outputs(self, seek_outputs, model_output_type, device, kwargs): # Stack back seek_outputs tensors after splitting them with the split_by_batch_index method outputs = {} for key in seek_outputs[0].keys(): if key in ["sequences", "beam_indices", "token_timestamps"]: outputs[key] = torch.stack([v[key] for v in seek_outputs], dim=0).to(device) elif key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]: outputs[key] = tuple( torch.stack([v[key][i] for v in seek_outputs]).to(device) for i in range(len(seek_outputs[0][key])) ) elif key == "sequences_scores": outputs[key] = torch.stack([v[key] for v in seek_outputs], dim=0).to(device) elif key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]: outputs[key] = tuple( tuple( torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device) for j in range(len(seek_outputs[0][key][0])) ) for i in range(len(seek_outputs[0][key])) ) elif key == "past_key_values": past_key_value_type = kwargs.get("past_key_values") if seek_outputs[0][key] is not None: outputs[key] = tuple( tuple( torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device) for j in range(len(seek_outputs[0][key][0])) ) for i in range(len(seek_outputs[0][key])) ) if past_key_value_type is not None and isinstance(past_key_value_type, EncoderDecoderCache): outputs[key] = past_key_value_type.from_legacy_cache(outputs[key]) else: outputs[key] = None token_timestamps = outputs.get("token_timestamps", None) if token_timestamps is not None: model_output_type = dict return model_output_type(**outputs) def _need_fallback( self, seek_sequence, seek_outputs, index, logits_processor, generation_config, vocab_size, temperature, ): needs_fallback = False should_skip = False if generation_config.compression_ratio_threshold is not None: compression_ratio = self._retrieve_compression_ratio(seek_sequence, vocab_size) if compression_ratio > generation_config.compression_ratio_threshold: needs_fallback = True if generation_config.logprob_threshold is not None: if hasattr(seek_outputs[0], "sequences_scores"): logprobs = [s["sequences_scores"] for s in seek_outputs][index] else: scores = seek_outputs[index]["scores"] logprobs = self._retrieve_avg_logprobs( scores, seek_sequence, temperature, ) if logprobs < generation_config.logprob_threshold: needs_fallback = True if generation_config.no_speech_threshold is not None: no_speech_prob = _get_attr_from_logit_processors( logits_processor, WhisperNoSpeechDetection, "no_speech_prob" ) if ( logprobs < generation_config.logprob_threshold and no_speech_prob[index] > generation_config.no_speech_threshold ): needs_fallback = False should_skip = True return needs_fallback, should_skip def _expand_variables_for_generation( self, input_features, seek, max_frames, init_tokens, batch_size, condition_on_prev_tokens, generation_config ): if generation_config.num_return_sequences is not None and generation_config.num_return_sequences > 1: batch_idx_map = list(range(batch_size * generation_config.num_return_sequences)) cur_bsz = len(batch_idx_map) do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(len(batch_idx_map))] input_features = input_features.repeat_interleave(generation_config.num_return_sequences, dim=0) seek = seek.repeat_interleave(generation_config.num_return_sequences, dim=0) max_frames = max_frames.repeat_interleave(generation_config.num_return_sequences, dim=0) init_tokens = init_tokens.repeat_interleave(generation_config.num_return_sequences, dim=0) generation_config.num_return_sequences = 1 else: cur_bsz = batch_size batch_idx_map = list(range(cur_bsz)) do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(cur_bsz)] return ( batch_idx_map, cur_bsz, input_features, seek, max_frames, init_tokens, do_condition_on_prev_tokens, ) @staticmethod def _setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs): set_inputs = _get_attr_from_logit_processors(logits_processor, WhisperNoSpeechDetection, "set_inputs") extra_kwargs = {k: v for k, v in kwargs.items() if torch.is_tensor(v)} set_inputs({"inputs": segment_input, "decoder_input_ids": decoder_input_ids, **extra_kwargs}) @staticmethod def _retrieve_total_input_frames(input_features, input_stride, kwargs): if input_features is not None: return input_features.shape[0], input_features.shape[-1] if "encoder_outputs" in kwargs: encoder_outputs_shape = ( kwargs["encoder_outputs"][0].shape if isinstance(kwargs["encoder_outputs"], BaseModelOutput) else kwargs["encoder_outputs"].shape ) return encoder_outputs_shape[0], encoder_outputs_shape[1] * input_stride raise ValueError("Make sure to provide either `input_features` or `encoder_outputs` to `generate`.") @staticmethod def _maybe_warn_unused_inputs( condition_on_prev_tokens, temperature, compression_ratio_threshold, logprob_threshold, no_speech_threshold, total_input_frames, ): warning_prefix = ( f"Audio input consists of only {total_input_frames}. " "Short-form transcription is activated." "{}, but will be ignored." ) if condition_on_prev_tokens is not None: logger.warning(warning_prefix.format(f"condition_on_prev_tokens is set to {condition_on_prev_tokens}")) if compression_ratio_threshold is not None: logger.warning( warning_prefix.format(f"compression_ratio_threshold is set to {compression_ratio_threshold}") ) if logprob_threshold is not None: logger.warning(warning_prefix.format(f"logprob_threshold is set to {logprob_threshold}")) if no_speech_threshold is not None: logger.warning(warning_prefix.format(f"no_speech_threshold is set to {no_speech_threshold}")) @staticmethod def _set_return_outputs(return_dict_in_generate, return_token_timestamps, logprob_threshold, generation_config): if return_dict_in_generate is None: return_dict_in_generate = generation_config.return_dict_in_generate else: generation_config.return_dict_in_generate = return_dict_in_generate generation_config.return_token_timestamps = return_token_timestamps if return_token_timestamps: generation_config.return_dict_in_generate = True generation_config.output_attentions = True generation_config.output_scores = True if logprob_threshold is not None: generation_config.return_dict_in_generate = True generation_config.output_scores = True return return_dict_in_generate def _set_return_timestamps(self, return_timestamps, is_shortform, generation_config): if return_timestamps is None and hasattr(generation_config, "return_timestamps"): return_timestamps = generation_config.return_timestamps if not is_shortform: if return_timestamps is False: raise ValueError( "You have passed more than 3000 mel input features (> 30 seconds) which automatically enables long-form generation which " "requires the model to predict timestamp tokens. Please either pass `return_timestamps=True` or make sure to pass no more than 3000 mel input features." ) logger.info("Setting `return_timestamps=True` for long-form generation.") return_timestamps = True if return_timestamps and not hasattr(generation_config, "no_timestamps_token_id"): raise ValueError( "You are trying to return timestamps, but the generation config is not properly set. " "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. " "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" ) generation_config.return_timestamps = return_timestamps if hasattr(generation_config, "no_timestamps_token_id"): timestamp_begin = generation_config.no_timestamps_token_id + 1 else: # BC for models missing the `no_timestamps_token_id` in the generation config when generating short-form with no timestamps # We set the timestamp begin token larger than the vocab size, such that the timestamp condition is never met in the decoding loop timestamp_begin = self.config.vocab_size + 1 return timestamp_begin @staticmethod def _set_language_and_task(language, task, is_multilingual, generation_config): if is_multilingual is not None: if not hasattr(generation_config, "is_multilingual"): raise ValueError( "The generation config is outdated and is thus not compatible with the `is_multilingual` argument " "to `generate`. Please update the generation config as per the instructions " "https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224" ) generation_config.is_multilingual = is_multilingual if hasattr(generation_config, "is_multilingual") and not generation_config.is_multilingual: if task is not None or language is not None: raise ValueError( "Cannot specify `task` or `language` for an English-only model. If the model is intended to be " "multilingual, pass `is_multilingual=True` to generate, or update the generation config." ) if language is not None: if not hasattr(generation_config, "lang_to_id"): raise ValueError( "The generation config is outdated and is thus not compatible with the `language` argument " "to `generate`. Either set the language using the `forced_decoder_ids` in the model config, " "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224" ) generation_config.language = language if task is not None: if not hasattr(generation_config, "task_to_id"): raise ValueError( "The generation config is outdated and is thus not compatible with the `task` argument " "to `generate`. Either set the task using the `forced_decoder_ids` in the model config, " "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224" ) generation_config.task = task def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs): def replace_or_add(lst: List[int], num: int, itr: Iterator[int]): """short function to replace num with a itr in lst""" found = any(i in lst for i in itr) if found: lst = [num if i in itr else i for i in lst] else: lst.append(num) return lst def language_to_id(language: str) -> int: language = language.lower() if language in generation_config.lang_to_id.keys(): language_token = language elif language in TO_LANGUAGE_CODE.keys(): language_token = f"<|{TO_LANGUAGE_CODE[language]}|>" elif language in TO_LANGUAGE_CODE.values(): language_token = f"<|{language}|>" else: is_language_code = len(language) == 2 raise ValueError( f"Unsupported language: {language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if language_token not in generation_config.lang_to_id: raise ValueError( f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`." "(You should just add it to the generation config)" ) return generation_config.lang_to_id[language_token] task = getattr(generation_config, "task", None) language = getattr(generation_config, "language", None) forced_decoder_ids = generation_config.forced_decoder_ids if forced_decoder_ids is not None: if language is None and task is None and forced_decoder_ids[0][1] is None: logger.warning_once( "Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English." "This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`." ) elif hasattr(config, "forced_decoder_ids") and config.forced_decoder_ids is not None: forced_decoder_ids = config.forced_decoder_ids if forced_decoder_ids is not None and task is not None: logger.warning_once( f"You have passed task={task}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of task={task}." ) forced_decoder_ids = None elif forced_decoder_ids is not None and language is not None: logger.warning_once( f"You have passed language={language}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of language={language}." ) forced_decoder_ids = None init_tokens = [generation_config.decoder_start_token_id] if forced_decoder_ids is not None and forced_decoder_ids[0][0] == 1: i = 1 while len(forced_decoder_ids) > 0 and forced_decoder_ids[0][0] == i: init_tokens += [forced_decoder_ids[0][1]] forced_decoder_ids = forced_decoder_ids[1:] i += 1 if len(forced_decoder_ids) > 0: raise ValueError( f"You are using token ids in `forced_decoder_ids` that do not seem to correctly follow the prompt pattern of Whisper. Make sure that {forced_decoder_ids} has an entry for all indices >= 1 and < {forced_decoder_ids[0][0]}.", ) # from v4.39 the forced decoder ids are always None in favour of decoder input ids generation_config.forced_decoder_ids = None is_lang_id_undefined = len(init_tokens) <= 1 or (len(init_tokens) > 1 and init_tokens[1] is None) # Make sure language is a list of strings of the correct length if isinstance(language, (list, tuple)): if any(l is None for l in language): raise TypeError( "Expected `language` to be `None`, a single string (e.g. `'en'`), or a list of strings with length equal to the batch size (e.g. `('en', 'fr')` for a batch size of 2). Got a list containing `None`." ) if len(language) != batch_size: raise ValueError( "When passing a list of languages, the length of the list must match the batch size. " f"Expected length of {batch_size}, but got {len(language)} languages." ) languages = language elif language is None: # Language will be detected for each item in batch languages = [None] * batch_size else: languages = [language] # Use a length-1 list now, broadcast later # Separate init_tokens for each language init_tokens = [copy.copy(init_tokens) for _ in languages] # Update init_tokens with languages lang_ids = None if language is not None: lang_ids = [language_to_id(l) for l in languages] elif hasattr(generation_config, "lang_to_id") and is_lang_id_undefined: # language is not defined or intentially set to `None` to trigger language detection lang_ids = self.detect_language( input_features=input_features, encoder_outputs=kwargs.get("encoder_outputs", None), generation_config=generation_config, num_segment_frames=num_segment_frames, ).tolist() if lang_ids is not None: # append or replace lang_ids to init_tokens for i in range(len(init_tokens)): if len(init_tokens[i]) > 1: init_tokens[i][1] = lang_ids[i] else: init_tokens[i].append(lang_ids[i]) del languages # Update init_tokens with task for i in range(len(init_tokens)): if task is not None: if task in TASK_IDS: init_tokens[i].append(generation_config.task_to_id[generation_config.task]) task_id = generation_config.task_to_id[generation_config.task] # if task is defined it'll overwrite task ids that might have already been defined via the generation_config replace_or_add(init_tokens[i], task_id, generation_config.task_to_id.values()) else: raise ValueError(f"The `{task}`task is not supported. The task should be one of `{TASK_IDS}`") elif language is not None and hasattr(generation_config, "task_to_id"): # if language is defined, but no task id is in `init_tokens`, default to transcribe if not any(ti in init_tokens[i] for ti in generation_config.task_to_id.values()): init_tokens[i].append(generation_config.task_to_id["transcribe"]) if ( not generation_config.return_timestamps and hasattr(generation_config, "no_timestamps_token_id") and init_tokens[i][-1] != generation_config.no_timestamps_token_id ): init_tokens[i].append(generation_config.no_timestamps_token_id) elif ( generation_config.return_timestamps and init_tokens[i][-1] == generation_config.no_timestamps_token_id ): logger.info( "<|notimestamps|> prompt token is removed from generation_config since `return_timestamps` is set to `'True'`." ) init_tokens[i] = init_tokens[i][:-1] # let's make sure we don't pass `None` tokens as prompt tokens init_tokens[i] = [t for t in init_tokens[i] if t is not None] return torch.as_tensor(init_tokens, dtype=torch.long, device=self.device).expand(batch_size, -1) def detect_language( self, input_features: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[Union[torch.FloatTensor, BaseModelOutput]] = None, generation_config: Optional[GenerationConfig] = None, num_segment_frames: int = 3000, ) -> torch.Tensor: """ Detects language from log-mel input features or encoder_outputs Parameters: input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*): Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. num_segment_frames (`int`, *optional*, defaults to 3000): The number of log-mel frames the model expects Return: A `torch.LongTensor` representing the detected language ids. """ if input_features is None and encoder_outputs is None: raise ValueError("You have to specify either `input_features` or `encoder_outputs`") elif input_features is not None and encoder_outputs is not None: raise ValueError("Make sure to specificy only one of `input_features` or `encoder_outputs` - not both!") elif input_features is not None: inputs = {"input_features": input_features[:, :, :num_segment_frames]} batch_size = input_features.shape[0] elif encoder_outputs is not None: inputs = {"encoder_outputs": encoder_outputs} batch_size = ( encoder_outputs[0].shape[0] if isinstance(encoder_outputs, BaseModelOutput) else encoder_outputs[0] ) generation_config = generation_config or self.generation_config decoder_input_ids = ( torch.ones((batch_size, 1), device=self.device, dtype=torch.long) * generation_config.decoder_start_token_id ) with torch.no_grad(): logits = self(**inputs, decoder_input_ids=decoder_input_ids, use_cache=False).logits[:, -1] non_lang_mask = torch.ones_like(logits[0], dtype=torch.bool) non_lang_mask[list(generation_config.lang_to_id.values())] = False logits[:, non_lang_mask] = -np.inf lang_ids = logits.argmax(-1) return lang_ids @staticmethod def _check_decoder_input_ids(kwargs): decoder_input_ids = kwargs.get("decoder_input_ids", None) assistant_model = kwargs.get("assistant_model", None) if decoder_input_ids is not None and assistant_model is not None: raise ValueError( "Passing `decoder_input_ids` is deprecated. Consider passing `prompt_ids` instead.", ) @staticmethod def _set_num_frames(return_token_timestamps, generation_config, kwargs): if return_token_timestamps: if getattr(generation_config, "task", None) == "translate": logger.warning("Token-level timestamps may not be reliable for task 'translate'.") if not hasattr(generation_config, "alignment_heads"): raise ValueError( "Model generation config has no `alignment_heads`, token-level timestamps not available. " "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config." ) generation_config.num_frames = kwargs.pop("num_frames", None) @staticmethod def _set_thresholds_and_condition( generation_config, logprob_threshold, compression_ratio_threshold, no_speech_threshold, condition_on_prev_tokens, ): generation_config.logprob_threshold = ( logprob_threshold if logprob_threshold is not None else getattr(generation_config, "logprob_threshold", None) ) generation_config.compression_ratio_threshold = ( compression_ratio_threshold if compression_ratio_threshold is not None else getattr(generation_config, "compression_ratio_threshold", None) ) generation_config.no_speech_threshold = ( no_speech_threshold if no_speech_threshold is not None else getattr(generation_config, "no_speech_threshold", None) ) generation_config.condition_on_prev_tokens = ( condition_on_prev_tokens if condition_on_prev_tokens is not None else getattr(generation_config, "condition_on_prev_tokens", None) ) @staticmethod def _set_prompt_condition_type(generation_config, prompt_condition_type): allowed_cond_types = ["first-segment", "all-segments"] # default to "first-segment" prompt_condition_type = prompt_condition_type or allowed_cond_types[0] if prompt_condition_type not in allowed_cond_types: raise ValueError( f"`prompt_condition_type={prompt_condition_type} does not exist. Make sure to set `prompt_condition_type` to one of {', '.join(allowed_cond_types)}" ) if generation_config.condition_on_prev_tokens is not True and prompt_condition_type == "all-segments": raise ValueError( "Make sure to set `condition_on_prev_tokens=True` when setting `prompt_condition_type='all-segments'`." ) generation_config.prompt_condition_type = prompt_condition_type @staticmethod def _set_condition_on_prev_tokens(condition_on_prev_tokens, generation_config): condition_on_prev_tokens = ( condition_on_prev_tokens if condition_on_prev_tokens is not None else getattr(generation_config, "condition_on_prev_tokens", False) ) generation_config.condition_on_prev_tokens = condition_on_prev_tokens @staticmethod def _retrieve_max_frames_and_seek(batch_size, attention_mask, total_input_frames, is_shortform): if batch_size > 1 and not is_shortform and attention_mask is None: raise ValueError( "When doing batched long-form audio transcription, make sure to pass an `attention_mask`. You can retrieve the `attention_mask` by doing `processor(audio, ..., return_attention_mask=True)` " ) elif batch_size > 1 and not is_shortform: max_frames = attention_mask.sum(-1).cpu().to(torch.long) seek = torch.zeros((batch_size,), dtype=torch.long) else: max_frames = torch.ones((batch_size,), dtype=torch.long) * total_input_frames seek = torch.zeros((batch_size,), dtype=torch.long) return max_frames, seek def _retrieve_logit_processors(self, generation_config, logits_processor, begin_index, num_beams, device): if generation_config.return_timestamps is True: timestamp_processor = WhisperTimeStampLogitsProcessor(generation_config, begin_index=begin_index) logits_processor = ( [timestamp_processor] if logits_processor is None else [timestamp_processor] + logits_processor ) if generation_config.suppress_tokens is not None: suppress_tokens_processor = SuppressTokensLogitsProcessor(generation_config.suppress_tokens, device=device) logits_processor = ( [suppress_tokens_processor] if logits_processor is None else [suppress_tokens_processor] + logits_processor ) generation_config.suppress_tokens = None if generation_config.begin_suppress_tokens is not None: begin_suppress_processor = SuppressTokensAtBeginLogitsProcessor( generation_config.begin_suppress_tokens, begin_index=begin_index, device=device ) logits_processor = ( [begin_suppress_processor] if logits_processor is None else [begin_suppress_processor] + logits_processor ) generation_config.begin_suppress_tokens = None if generation_config.no_speech_threshold is not None: no_speech_detector = WhisperNoSpeechDetection( no_speech_token=generation_config.no_timestamps_token_id - 1, begin_index=begin_index, scores_is_logprobs=num_beams > 1, ) logits_processor = ( [no_speech_detector] if logits_processor is None else [no_speech_detector] + logits_processor ) no_speech_detector.set_model(self) return logits_processor @staticmethod def _maybe_reduce_batch(input_features, seek, max_frames, cur_bsz, batch_idx_map): prev_bsz = cur_bsz new_batch_idx_map = [] for i in range(prev_bsz): prev_i = batch_idx_map[i] if seek[prev_i] >= max_frames[prev_i]: cut_index = i + (cur_bsz - prev_bsz) cur_bsz -= 1 input_features = torch.cat([input_features[:cut_index], input_features[cut_index + 1 :]], dim=0) else: # cut out index that goes away new_batch_idx_map.append(prev_i) return input_features, cur_bsz, new_batch_idx_map @staticmethod def _get_input_segment(input_features, seek, seek_num_frames, num_segment_frames, cur_bsz, batch_idx_map): if input_features is None: return None segment_input = [] for i in range(cur_bsz): prev_i = batch_idx_map[i] segment_input_slice = input_features[i : i + 1, :, seek[prev_i] : seek[prev_i] + seek_num_frames[prev_i]] if segment_input_slice.shape[-1] < num_segment_frames: # pad to 3000 if necessary segment_input_slice = F.pad( segment_input_slice, pad=(0, num_segment_frames - segment_input_slice.shape[-1]) ) segment_input.append(segment_input_slice) segment_input = torch.cat(segment_input, dim=0) return segment_input @staticmethod def _prepare_decoder_input_ids( cur_bsz, init_tokens, current_segments, batch_idx_map, do_condition_on_prev_tokens, prompt_ids, generation_config, config, device, suppress_tokens, timestamp_begin, kwargs, ): if "decoder_input_ids" in kwargs: decoder_input_ids = kwargs.pop("decoder_input_ids") return decoder_input_ids, kwargs cut_off_length = config.max_target_positions // 2 - 1 decoder_input_ids = init_tokens[batch_idx_map] prev_start_of_text = getattr(generation_config, "prev_sot_token_id", None) if prev_start_of_text is None: prev_start_of_text = suppress_tokens[-2] if suppress_tokens is not None else None if any(do_condition_on_prev_tokens) and len(current_segments[0]) > 0: # according to https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/decoding.py#L609 active_segments = [current_segments[i] if do_condition_on_prev_tokens[i] else None for i in batch_idx_map] for segments in active_segments: for seg in segments: if len(seg["tokens"]) > 2 and seg["tokens"][-2] >= timestamp_begin: # the segment finishes with two timestamp tokens # we need to ignore the last timestamp token # see https://github.com/huggingface/transformers/pull/34537 seg["tokens"] = seg["tokens"][:-1] if prompt_ids is not None and generation_config.prompt_condition_type == "all-segments": prev_ids = prompt_ids else: one_tensor = torch.ones((cur_bsz, 1), device=device, dtype=torch.long) prev_ids = prev_start_of_text * one_tensor[0] if prev_start_of_text is not None else None padding = "max_length" if generation_config.cache_implementation == "static" else "longest" prev_tokens = _pad_to_max_length( active_segments, generation_config.pad_token_id, device=device, padding_side="left", padding=padding, bos_token_tensor=prev_ids, cut_off_length=cut_off_length, ) decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1) kwargs["decoder_attention_mask"] = decoder_input_ids != generation_config.pad_token_id elif prompt_ids is not None: prev_tokens = prompt_ids[None].repeat(decoder_input_ids.shape[0], 1) decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1) # make sure `"decoder_attention_mask"` is not passed to forward kwargs.pop("decoder_attention_mask", None) else: # make sure `"decoder_attention_mask"` is not passed to forward kwargs.pop("decoder_attention_mask", None) return decoder_input_ids, kwargs def _set_max_new_tokens_and_length(self, config, decoder_input_ids, generation_config): max_new_tokens = generation_config.max_new_tokens if generation_config.max_new_tokens is not None else 0 if max_new_tokens + decoder_input_ids.shape[-1] > self.config.max_target_positions: raise ValueError( f"The length of `decoder_input_ids`, including special start tokens, prompt tokens, and previous tokens, is {decoder_input_ids.shape[-1]}, " f" and `max_new_tokens` is {max_new_tokens}. Thus, the combined length of " f"`decoder_input_ids` and `max_new_tokens` is: {max_new_tokens + decoder_input_ids.shape[-1]}. This exceeds the " f"`max_target_positions` of the Whisper model: {self.config.max_target_positions}. " "You should either reduce the length of your prompt, or reduce the value of `max_new_tokens`, " f"so that their combined length is less than {self.config.max_target_positions}." ) num_initial_tokens = min(config.max_target_positions // 2 - 1, decoder_input_ids.shape[-1] - 1) # Make sure we don't get larger than `max_length` if generation_config.max_length is not None and generation_config.max_new_tokens is None: max_length = min(generation_config.max_length + num_initial_tokens, config.max_target_positions) logger.info( f"Increase max_length from {generation_config.max_length} to {max_length} since input is conditioned on previous segment." ) elif ( generation_config.max_new_tokens is not None and generation_config.max_new_tokens + decoder_input_ids.shape[-1] > config.max_target_positions ): max_new_tokens = config.max_target_positions - decoder_input_ids.shape[-1] generation_config.max_new_tokens = max_new_tokens @staticmethod def _retrieve_compression_ratio(tokens, vocab_size): """Compute byte length of zlib compressed token bytes vs. byte length of raw token bytes""" length = int(math.log2(vocab_size) / 8) + 1 token_bytes = b"".join([t.to_bytes(length, "little") for t in tokens.tolist()]) compression_ratio = len(token_bytes) / len(zlib.compress(token_bytes)) return compression_ratio @staticmethod def _retrieve_avg_logprobs(scores, tokens, temperature): rescale_temperature = temperature if temperature > 0.0 else 1 scores = torch.stack(scores).to(tokens.device) if scores.shape[0] > tokens.shape[0]: scores = scores[: tokens.shape[0]] else: tokens = tokens[-scores.shape[0] :] logprobs = F.log_softmax((scores * rescale_temperature).float(), dim=-1).to(scores.dtype) # retrieve logprob of selected tokens and sum # don't remove the eos token logprob! it counts in avg_logprob calculation in the original implementation sum_logprobs = sum(logprobs[i][tokens[i]] for i in range(logprobs.shape[0])) avg_logprobs = sum_logprobs / len(tokens) return avg_logprobs @staticmethod def _retrieve_segment( seek_sequence, seek_outputs, time_offset, timestamp_begin, seek_num_frames, time_precision, time_precision_features, input_stride, prev_idx, idx, return_token_timestamps, decoder_input_ids, ): # find the predicted "end of segment" predictions of Whisper # "end of segment" predictions occur whenever Whisper predicts a timestamp token timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin) single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True] timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] timestamp_segment_indices.add_(1) token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else [] idx_offset = decoder_input_ids.shape[-1] device = seek_sequence.device # If whisper predicted a "end of segment" via a timestep token, let's go ever each # "end of segment" prediction and slice the decoding into segments accordingly if len(timestamp_segment_indices) > 0: # if the output contains two consecutive timestamp tokens slices = timestamp_segment_indices.tolist() segments = [] if single_timestamp_ending: slices.append(len(seek_sequence)) else: # we want to include the last timestamp token in the last segment to know it was no single ending slices[-1] += 1 last_slice = 0 # Add each segment to list of all segments for i, current_slice in enumerate(slices): is_last_slice = i == len(slices) - 1 sliced_tokens = seek_sequence[last_slice:current_slice] start_timestamp_pos = sliced_tokens[0] - timestamp_begin idx_sliced_tokens = -1 if not is_last_slice or single_timestamp_ending else -2 end_timestamp_pos = sliced_tokens[idx_sliced_tokens] - timestamp_begin segments.append( { "start": time_offset[prev_idx] + start_timestamp_pos.to(torch.float32 if device.type == "mps" else torch.float64) * time_precision, "end": time_offset[prev_idx] + end_timestamp_pos.to(torch.float32 if device.type == "mps" else torch.float64) * time_precision, "tokens": sliced_tokens, "idxs": (idx_offset + last_slice, idx_offset + current_slice), "result": seek_outputs[idx], } ) if return_token_timestamps: segments[-1]["token_timestamps"] = ( token_timestamps[idx_offset + last_slice : idx_offset + current_slice] + time_offset[prev_idx] ) last_slice = current_slice if single_timestamp_ending: # single timestamp at the end means no speech after the last timestamp. segment_offset = seek_num_frames[prev_idx] else: # otherwise, ignore the unfinished segment and seek to the last timestamp # here we throw away all predictions after the last predicted "end of segment" # since we are cutting right in the middle of an audio last_timestamp_pos = seek_sequence[last_slice - 2].item() - timestamp_begin segment_offset = last_timestamp_pos * input_stride else: # If whisper does not predict any "end of segment" token, then # the whole decoding is considered a segment and we add it to the list of segments timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()] last_timestamp_pos = int(seek_num_frames[prev_idx] * time_precision_features / time_precision) if timestamps.numel() > 0 and timestamps[-1] != timestamp_begin: # no consecutive timestamps but it has a timestamp; use the last one. last_timestamp_pos = (timestamps[-1] - timestamp_begin).to( torch.float32 if device.type == "mps" else torch.float64 ) segments = [ { "start": time_offset[prev_idx], "end": time_offset[prev_idx] + last_timestamp_pos * time_precision, "tokens": seek_sequence, "idxs": (idx_offset, idx_offset + len(seek_sequence)), "result": seek_outputs[idx], } ] if return_token_timestamps: segments[-1]["token_timestamps"] = ( token_timestamps[idx_offset : idx_offset + len(seek_sequence)] + time_offset[prev_idx] ) segment_offset = seek_num_frames[prev_idx] return segments, segment_offset
class_definition
8,013
102,444
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/generation_whisper.py
null
9,920
class WhisperFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Whisper feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time Fourier Transform` which should match pytorch's `torch.stft` equivalent. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). hop_length (`int`, *optional*, defaults to 160): Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. chunk_length (`int`, *optional*, defaults to 30): The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio sequences. n_fft (`int`, *optional*, defaults to 400): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. """ model_input_names = ["input_features"] def __init__( self, feature_size=80, sampling_rate=16000, hop_length=160, chunk_length=30, n_fft=400, padding_value=0.0, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.n_fft = n_fft self.hop_length = hop_length self.chunk_length = chunk_length self.n_samples = chunk_length * sampling_rate self.nb_max_frames = self.n_samples // hop_length self.sampling_rate = sampling_rate self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=8000.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ) def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch implementation with 1e-5 tolerance. """ if device != "cpu": raise ValueError( f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator " "devices requires torch, which is not installed. Either set `device='cpu'`, or " "install torch according to the official instructions: https://pytorch.org/get-started/locally/" ) log_spec_batch = [] for waveform in waveform_batch: log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="log10", ) log_spec = log_spec[:, :-1] log_spec = np.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 log_spec_batch.append(log_spec) log_spec_batch = np.array(log_spec_batch) return log_spec_batch def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray: """ Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching, yielding results similar to cpu computing with 1e-5 tolerance. """ waveform = torch.from_numpy(waveform).type(torch.float32) window = torch.hann_window(self.n_fft) if device != "cpu": waveform = waveform.to(device) window = window.to(device) stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) if device != "cpu": mel_filters = mel_filters.to(device) mel_spec = mel_filters.T @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() if waveform.dim() == 2: max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0] log_spec = torch.maximum(log_spec, max_val - 8.0) else: log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 if device != "cpu": log_spec = log_spec.detach().cpu() return log_spec.numpy() @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, padding: Optional[str] = "max_length", max_length: Optional[int] = None, sampling_rate: Optional[int] = None, do_normalize: Optional[bool] = None, device: Optional[str] = "cpu", return_token_timestamps: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for the STFT computation if available, otherwise a slower NumPy based one. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. truncation (`bool`, *optional*, default to `True`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*, defaults to None): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values / vectors. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance of the model. device (`str`, *optional*, defaults to `'cpu'`): Specifies the device for computation of the log-mel spectrogram of audio signals in the `_torch_extract_fbank_features` method. (e.g., "cpu", "cuda") return_token_timestamps (`bool`, *optional*, defaults to `None`): Whether or not to return the number of frames of the input raw_speech. These num_frames can be used by the model to compute word level timestamps. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] batched_speech = BatchFeature({"input_features": raw_speech}) # convert into correct format for padding padded_inputs = self.pad( batched_speech, padding=padding, max_length=max_length if max_length else self.n_samples, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: padded_inputs["input_features"] = self.zero_mean_unit_var_norm( padded_inputs["input_features"], attention_mask=padded_inputs["attention_mask"], padding_value=self.padding_value, ) padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0) # make sure list is in array format input_features = padded_inputs.get("input_features").transpose(2, 0, 1) extract_fbank_features = ( self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features ) input_features = extract_fbank_features(input_features[0], device) if isinstance(input_features[0], List): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] else: padded_inputs["input_features"] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_token_timestamps is not None: padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech] if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
class_definition
1,073
14,894
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/feature_extraction_whisper.py
null
9,921
class FlaxWhisperAttention(nn.Module): config: WhisperConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj = dense(use_bias=self.bias) self.k_proj = dense(use_bias=False) self.v_proj = dense(use_bias=self.bias) self.out_proj = dense(use_bias=self.bias) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_target_positions), dtype="bool"), dtype="bool" ) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] query_states = self.q_proj(hidden_states) if is_cross_attention: key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights def _split_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only # attend to those key positions that have already been generated and cached, not the # remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask
class_definition
12,188
18,992
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,922
class FlaxWhisperEncoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
19,097
21,387
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,923
class FlaxWhisperEncoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperEncoderCheckpointLayer = remat(FlaxWhisperEncoderLayer, static_argnums=(2, 3)) self.layers = [ FlaxWhisperEncoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] else: self.layers = [ FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
21,390
23,758
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,924
class FlaxWhisperDecoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
23,863
27,421
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,925
class FlaxWhisperDecoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperDecoderCheckpointLayer = remat(FlaxWhisperDecoderLayer, static_argnums=(4, 5, 6)) self.layers = [ FlaxWhisperDecoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] else: self.layers = [ FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
27,424
30,458
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,926
class FlaxWhisperEncoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.conv1 = nn.Conv( self.config.d_model, kernel_size=(3,), padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.conv2 = nn.Conv( self.config.d_model, kernel_size=(3,), strides=2, padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layers = FlaxWhisperEncoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.embed_positions = nn.Embed( self.config.max_source_positions, self.config.d_model, dtype=self.dtype, embedding_init=sinusoidal_embedding_init, ) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_features: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: if input_features.shape[1:] != (self.config.num_mel_bins, self.config.max_source_positions * 2): raise ValueError( "input_features.shape[1:], must be equal to (self.config.num_mel_bins," f" self.config.max_source_positions * 2) (got {input_features.shape[1:]}, but should be" f" ({self.config.num_mel_bins}, {self.config.max_source_positions * 2}))" ) input_features = input_features.transpose(0, 2, 1) hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) # freeze the sinusoidal embeddings by stopping the back-prop embed_positions = jax.lax.stop_gradient(embed_positions) hidden_states = hidden_states + embed_positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=None, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, )
class_definition
30,461
33,973
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,927
class FlaxWhisperDecoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.embed_tokens = nn.Embed(self.config.vocab_size, self.config.d_model, dtype=self.dtype) self.embed_positions = nn.Embed(self.config.max_target_positions, self.config.d_model, dtype=self.dtype) self.layers = FlaxWhisperDecoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-5) def __call__( self, input_ids: jnp.ndarray, attention_mask: jnp.ndarray, position_ids: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: input_embeds = self.embed_tokens(input_ids) position_embeds = self.embed_positions(position_ids) hidden_states = input_embeds + position_embeds hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
33,976
36,549
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,928
class FlaxWhisperModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.decoder = FlaxWhisperDecoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, decoder_attention_mask: jnp.ndarray, decoder_position_ids: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder
class_definition
36,552
38,768
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,929
class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): config_class = WhisperConfig base_model_prefix: str = "model" main_input_name = "input_features" module_class: nn.Module = None def __init__( self, config: WhisperConfig, input_shape: Tuple[int] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) if input_shape is None: input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->Whisper def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig) def encode( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_features, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_features, **kwargs) return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> import jax.numpy as jnp >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((input_features.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare decoder inputs if decoder_position_ids is None: if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, )
class_definition
38,771
52,988
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,930
class FlaxWhisperModel(FlaxWhisperPreTrainedModel): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxWhisperModule
class_definition
53,150
53,331
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,931
class FlaxWhisperForConditionalGenerationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.model = FlaxWhisperModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_features, decoder_input_ids, decoder_attention_mask: jnp.ndarray = None, decoder_position_ids: jnp.ndarray = None, position_ids: jnp.ndarray = None, attention_mask: jnp.ndarray = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
53,445
55,901
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,932
class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def generate( self, input_features, generation_config=None, logits_processor=None, return_timestamps=None, task=None, language=None, is_multilingual=None, **kwargs, ): if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: generation_config.return_timestamps = return_timestamps if task is not None: generation_config.task = task if is_multilingual is not None: generation_config.is_multilingual = is_multilingual if language is not None: generation_config.language = language if kwargs is not None and "decoder_input_ids" in kwargs: decoder_input_length = len(kwargs["decoder_input_ids"]) else: decoder_input_length = 1 forced_decoder_ids = [] if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: if hasattr(generation_config, "language"): forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) else: forced_decoder_ids.append((1, None)) if hasattr(generation_config, "task"): forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) if ( hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps ) or return_timestamps: logits_processor = [ FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) ] else: if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if len(forced_decoder_ids) > 0: generation_config.forced_decoder_ids = forced_decoder_ids return super().generate( input_features, generation_config, logits_processor=logits_processor, **kwargs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs
class_definition
56,003
66,187
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,933
class FlaxWhisperForAudioClassificationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.config.is_encoder_decoder = False num_layers = self.config.num_hidden_layers + 1 if self.config.use_weighted_layer_sum: self.layer_weights = jnp.repeat(1 / num_layers, num_layers) self.projector = nn.Dense(self.config.classifier_proj_size, dtype=self.dtype) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_features, encoder_outputs=None, output_attentions=None, output_hidden_states: bool = True, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = jnp.stack(encoder_outputs, axis=1) norm_weights = jax.nn.softmax(self.layer_weights, axis=-1) hidden_states = jnp.sum(hidden_states * jnp.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = jnp.mean(hidden_states, axis=1) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + encoder_outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
67,406
69,747
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,934
class FlaxWhisperForAudioClassification(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForAudioClassificationModule dtype: jnp.dtype = jnp.float32 def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, )
class_definition
69,860
72,224
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
null
9,935
class BasicTextNormalizer: def __init__(self, remove_diacritics: bool = False, split_letters: bool = False): self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = self.clean(s).lower() if self.split_letters: s = " ".join(regex.findall(r"\X", s, regex.U)) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s
class_definition
2,060
2,762
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/english_normalizer.py
null
9,936
class EnglishNumberNormalizer: """ Convert any spelled-out numbers into arabic numbers, while handling: - remove any commas - keep the suffixes such as: `1960s`, `274th`, `32nd`, etc. - spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars` - spell out `one` and `ones` - interpret successive single-digit numbers as nominal: `one oh one` -> `101` """ def __init__(self): super().__init__() self.zeros = {"o", "oh", "zero"} # fmt: off self.ones = { name: i for i, name in enumerate( ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"], start=1, ) } # fmt: on self.ones_plural = { "sixes" if name == "six" else name + "s": (value, "s") for name, value in self.ones.items() } self.ones_ordinal = { "zeroth": (0, "th"), "first": (1, "st"), "second": (2, "nd"), "third": (3, "rd"), "fifth": (5, "th"), "twelfth": (12, "th"), **{ name + ("h" if name.endswith("t") else "th"): (value, "th") for name, value in self.ones.items() if value > 3 and value != 5 and value != 12 }, } self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal} self.tens = { "twenty": 20, "thirty": 30, "forty": 40, "fifty": 50, "sixty": 60, "seventy": 70, "eighty": 80, "ninety": 90, } self.tens_plural = {name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()} self.tens_ordinal = {name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()} self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal} self.multipliers = { "hundred": 100, "thousand": 1_000, "million": 1_000_000, "billion": 1_000_000_000, "trillion": 1_000_000_000_000, "quadrillion": 1_000_000_000_000_000, "quintillion": 1_000_000_000_000_000_000, "sextillion": 1_000_000_000_000_000_000_000, "septillion": 1_000_000_000_000_000_000_000_000, "octillion": 1_000_000_000_000_000_000_000_000_000, "nonillion": 1_000_000_000_000_000_000_000_000_000_000, "decillion": 1_000_000_000_000_000_000_000_000_000_000_000, } self.multipliers_plural = {name + "s": (value, "s") for name, value in self.multipliers.items()} self.multipliers_ordinal = {name + "th": (value, "th") for name, value in self.multipliers.items()} self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal} self.decimals = {*self.ones, *self.tens, *self.zeros} self.preceding_prefixers = { "minus": "-", "negative": "-", "plus": "+", "positive": "+", } self.following_prefixers = { "pound": "£", "pounds": "£", "euro": "€", "euros": "€", "dollar": "$", "dollars": "$", "cent": "¢", "cents": "¢", } self.prefixes = set(list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())) self.suffixers = { "per": {"cent": "%"}, "percent": "%", } self.specials = {"and", "double", "triple", "point"} self.words = { key for mapping in [ self.zeros, self.ones, self.ones_suffixed, self.tens, self.tens_suffixed, self.multipliers, self.multipliers_suffixed, self.preceding_prefixers, self.following_prefixers, self.suffixers, self.specials, ] for key in mapping } self.literal_words = {"one", "ones"} def process_words(self, words: List[str]) -> Iterator[str]: prefix: Optional[str] = None value: Optional[Union[str, int]] = None skip = False def to_fraction(s: str): try: return Fraction(s) except ValueError: return None def output(result: Union[str, int]): nonlocal prefix, value result = str(result) if prefix is not None: result = prefix + result value = None prefix = None return result if len(words) == 0: return for i, current in enumerate(words): prev = words[i - 1] if i != 0 else None next = words[i + 1] if i != len(words) - 1 else None if skip: skip = False continue next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next) has_prefix = current[0] in self.prefixes current_without_prefix = current[1:] if has_prefix else current if re.match(r"^\d+(\.\d+)?$", current_without_prefix): # arabic numbers (potentially with signs and fractions) f = to_fraction(current_without_prefix) if f is None: raise ValueError("Converting the fraction failed") if value is not None: if isinstance(value, str) and value.endswith("."): # concatenate decimals / ip address components value = str(value) + str(current) continue else: yield output(value) prefix = current[0] if has_prefix else prefix if f.denominator == 1: value = f.numerator # store integers as int else: value = current_without_prefix elif current not in self.words: # non-numeric words if value is not None: yield output(value) yield output(current) elif current in self.zeros: value = str(value or "") + "0" elif current in self.ones: ones = self.ones[current] if value is None: value = ones elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: # replace the last zero with the digit value = value[:-1] + str(ones) else: value = str(value) + str(ones) elif ones < 10: if value % 10 == 0: value += ones else: value = str(value) + str(ones) else: # eleven to nineteen if value % 100 == 0: value += ones else: value = str(value) + str(ones) elif current in self.ones_suffixed: # ordinal or cardinal; yield the number right away ones, suffix = self.ones_suffixed[current] if value is None: yield output(str(ones) + suffix) elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: yield output(value[:-1] + str(ones) + suffix) else: yield output(str(value) + str(ones) + suffix) elif ones < 10: if value % 10 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) else: # eleven to nineteen if value % 100 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) value = None elif current in self.tens: tens = self.tens[current] if value is None: value = tens elif isinstance(value, str): value = str(value) + str(tens) else: if value % 100 == 0: value += tens else: value = str(value) + str(tens) elif current in self.tens_suffixed: # ordinal or cardinal; yield the number right away tens, suffix = self.tens_suffixed[current] if value is None: yield output(str(tens) + suffix) elif isinstance(value, str): yield output(str(value) + str(tens) + suffix) else: if value % 100 == 0: yield output(str(value + tens) + suffix) else: yield output(str(value) + str(tens) + suffix) elif current in self.multipliers: multiplier = self.multipliers[current] if value is None: value = multiplier elif isinstance(value, str) or value == 0: f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: value = p.numerator else: yield output(value) value = multiplier else: before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier elif current in self.multipliers_suffixed: multiplier, suffix = self.multipliers_suffixed[current] if value is None: yield output(str(multiplier) + suffix) elif isinstance(value, str): f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: yield output(str(p.numerator) + suffix) else: yield output(value) yield output(str(multiplier) + suffix) else: # int before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier yield output(str(value) + suffix) value = None elif current in self.preceding_prefixers: # apply prefix (positive, minus, etc.) if it precedes a number if value is not None: yield output(value) if next in self.words or next_is_numeric: prefix = self.preceding_prefixers[current] else: yield output(current) elif current in self.following_prefixers: # apply prefix (dollars, cents, etc.) only after a number if value is not None: prefix = self.following_prefixers[current] yield output(value) else: yield output(current) elif current in self.suffixers: # apply suffix symbols (percent -> '%') if value is not None: suffix = self.suffixers[current] if isinstance(suffix, dict): if next in suffix: yield output(str(value) + suffix[next]) skip = True else: yield output(value) yield output(current) else: yield output(str(value) + suffix) else: yield output(current) elif current in self.specials: if next not in self.words and not next_is_numeric: # apply special handling only if the next word can be numeric if value is not None: yield output(value) yield output(current) elif current == "and": # ignore "and" after hundreds, thousands, etc. if prev not in self.multipliers: if value is not None: yield output(value) yield output(current) elif current == "double" or current == "triple": if next in self.ones or next in self.zeros: repeats = 2 if current == "double" else 3 ones = self.ones.get(next, 0) value = str(value or "") + str(ones) * repeats skip = True else: if value is not None: yield output(value) yield output(current) elif current == "point": if next in self.decimals or next_is_numeric: value = str(value or "") + "." else: # should all have been covered at this point raise ValueError(f"Unexpected token: {current}") else: # all should have been covered at this point raise ValueError(f"Unexpected token: {current}") if value is not None: yield output(value) def preprocess(self, s: str): # replace "<number> and a half" with "<number> point five" results = [] segments = re.split(r"\band\s+a\s+half\b", s) for i, segment in enumerate(segments): if len(segment.strip()) == 0: continue if i == len(segments) - 1: results.append(segment) else: results.append(segment) last_word = segment.rsplit(maxsplit=2)[-1] if last_word in self.decimals or last_word in self.multipliers: results.append("point five") else: results.append("and a half") s = " ".join(results) # put a space at number/letter boundary s = re.sub(r"([a-z])([0-9])", r"\1 \2", s) s = re.sub(r"([0-9])([a-z])", r"\1 \2", s) # but remove spaces which could be a suffix s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s) return s def postprocess(self, s: str): def combine_cents(m: Match): try: currency = m.group(1) integer = m.group(2) cents = int(m.group(3)) return f"{currency}{integer}.{cents:02d}" except ValueError: return m.string def extract_cents(m: Match): try: return f"¢{int(m.group(1))}" except ValueError: return m.string # apply currency postprocessing; "$2 and ¢7" -> "$2.07" s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s) s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s) # write "one(s)" instead of "1(s)", just for the readability s = re.sub(r"\b1(s?)\b", r"one\1", s) return s def __call__(self, s: str): s = self.preprocess(s) s = " ".join(word for word in self.process_words(s.split()) if word is not None) s = self.postprocess(s) return s
class_definition
2,765
18,988
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/english_normalizer.py
null
9,937
class EnglishSpellingNormalizer: """ Applies British-American spelling mappings as listed in [1]. [1] https://www.tysto.com/uk-us-spelling-list.html """ def __init__(self, english_spelling_mapping): self.mapping = english_spelling_mapping def __call__(self, s: str): return " ".join(self.mapping.get(word, word) for word in s.split())
class_definition
18,991
19,368
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/english_normalizer.py
null
9,938
class EnglishTextNormalizer: def __init__(self, english_spelling_mapping): self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b" self.replacers = { # common contractions r"\bwon't\b": "will not", r"\bcan't\b": "can not", r"\blet's\b": "let us", r"\bain't\b": "aint", r"\by'all\b": "you all", r"\bwanna\b": "want to", r"\bgotta\b": "got to", r"\bgonna\b": "going to", r"\bi'ma\b": "i am going to", r"\bimma\b": "i am going to", r"\bwoulda\b": "would have", r"\bcoulda\b": "could have", r"\bshoulda\b": "should have", r"\bma'am\b": "madam", # contractions in titles/prefixes r"\bmr\b": "mister ", r"\bmrs\b": "missus ", r"\bst\b": "saint ", r"\bdr\b": "doctor ", r"\bprof\b": "professor ", r"\bcapt\b": "captain ", r"\bgov\b": "governor ", r"\bald\b": "alderman ", r"\bgen\b": "general ", r"\bsen\b": "senator ", r"\brep\b": "representative ", r"\bpres\b": "president ", r"\brev\b": "reverend ", r"\bhon\b": "honorable ", r"\basst\b": "assistant ", r"\bassoc\b": "associate ", r"\blt\b": "lieutenant ", r"\bcol\b": "colonel ", r"\bjr\b": "junior ", r"\bsr\b": "senior ", r"\besq\b": "esquire ", # prefect tenses, ideally it should be any past participles, but it's harder.. r"'d been\b": " had been", r"'s been\b": " has been", r"'d gone\b": " had gone", r"'s gone\b": " has gone", r"'d done\b": " had done", # "'s done" is ambiguous r"'s got\b": " has got", # general contractions r"n't\b": " not", r"'re\b": " are", r"'s\b": " is", r"'d\b": " would", r"'ll\b": " will", r"'t\b": " not", r"'ve\b": " have", r"'m\b": " am", } self.standardize_numbers = EnglishNumberNormalizer() self.standardize_spellings = EnglishSpellingNormalizer(english_spelling_mapping) def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = re.sub(self.ignore_patterns, "", s) s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe for pattern, replacement in self.replacers.items(): s = re.sub(pattern, replacement, s) s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics s = self.standardize_numbers(s) s = self.standardize_spellings(s) # now remove prefix/suffix symbols that are not preceded/followed by numbers s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s) s = re.sub(r"([^0-9])%", r"\1 ", s) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s
class_definition
19,371
22,821
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/english_normalizer.py
null
9,939
class LlavaOnevisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaOnevisionForConditionalGeneration`]. It is used to instantiate an Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [llava-hf/llava-onevision-qwen2-7b-ov-hf](https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf) model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SiglipVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`): The config object or dictionary of the text backbone. image_token_index (`int`, *optional*, defaults to 151646): The image token index to encode the image prompt. video_token_index (`int`, *optional*, defaults to 151647): The video token index to encode the video prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"full"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. vision_feature_layer (`int`, *optional*, defaults to -1): The index of the layer to select the vision feature. vision_aspect_ratio (`str`, *optional*, defaults to `"anyres_max_9"`): Aspect ratio used when processong image features. The default value is "anyres_max_9". image_grid_pinpoints (`List`, *optional*): A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list of the form `(height, width)`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. multimodal_projector_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the multimodal projector. Example: ```python >>> from transformers import LlavaOnevisionForConditionalGeneration, LlavaOnevisionConfig, SiglipVisionConfig, Qwen2Config >>> # Initializing a CLIP-vision config >>> vision_config = SiglipVisionConfig() >>> # Initializing a Llama config >>> text_config = Qwen2Config() >>> # Initializing a Llava-Next llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration >>> configuration = LlavaOnevisionConfig(vision_config, text_config) >>> # Initializing a model from the llava-hf/llava-onevision-qwen2-7b-ov-hf style configuration >>> model = LlavaOnevisionForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava_onevision" sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, text_config=None, image_token_index=151646, video_token_index=151647, projector_hidden_act="gelu", vision_feature_select_strategy="full", vision_feature_layer=-1, vision_aspect_ratio="anyres_max_9", image_grid_pinpoints=None, tie_word_embeddings=False, multimodal_projector_bias=True, **kwargs, ): self.image_token_index = image_token_index self.video_token_index = video_token_index self.projector_hidden_act = projector_hidden_act self.multimodal_projector_bias = multimodal_projector_bias if vision_feature_select_strategy not in ["default", "full"]: raise ValueError( "vision_feature_select_strategy should be one of 'default', 'full'." f"Got: {vision_feature_select_strategy}" ) self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.vision_aspect_ratio = vision_aspect_ratio image_grid_pinpoints = ( image_grid_pinpoints if image_grid_pinpoints is not None else [ [384, 384], [384, 768], [384, 1152], [384, 1536], [384, 1920], [384, 2304], [768, 384], [768, 768], [768, 1152], [768, 1536], [768, 1920], [768, 2304], [1152, 384], [1152, 768], [1152, 1152], [1152, 1536], [1152, 1920], [1152, 2304], [1536, 384], [1536, 768], [1536, 1152], [1536, 1536], [1536, 1920], [1536, 2304], [1920, 384], [1920, 768], [1920, 1152], [1920, 1536], [1920, 1920], [1920, 2304], [2304, 384], [2304, 768], [2304, 1152], [2304, 1536], [2304, 1920], [2304, 2304], ] ) self.image_grid_pinpoints = image_grid_pinpoints if isinstance(vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" ) vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["siglip_vision_model"]( hidden_size=1152, intermediate_size=4304, patch_size=14, image_size=384, num_hidden_layers=26, num_attention_heads=14, vision_use_head=False, ) self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["qwen2"]() self.text_config = text_config super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class_definition
802
7,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/configuration_llava_onevision.py
null
9,940
class LlavaOnevisionProcessorKwargs(ProcessingKwargs, total=False): # see processing_utils.ProcessingKwargs documentation for usage. _defaults = { "text_kwargs": { "padding": False, }, "image_kwargs": {}, "video_kwargs": {}, }
class_definition
1,161
1,443
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/processing_llava_onevision.py
null
9,941
class LlavaOnevisionProcessor(ProcessorMixin): r""" Constructs a LLaVa-Onevision processor which wraps a LLaVa-Onevision video processor, LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor. [`LlavaNextProcessor`] offers all the functionalities of [`LlavaOnevisionVideoProcessor`], [`LlavaOnevisionImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaOnevisionVideoProcessor.__call__`], [`~LlavaNextProcessor.__call__`] and [`~LlavaNextProcessor.decode`] for more information. Args: image_processor ([`LlavaOnevisionImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. video_processor ([`LlavaOnevisionVideoProcessor`], *optional*): The video processor is a required input. num_image_tokens (`int`, *optional*): Number of image tokens for one imagethat will be returned by vision tower. vision_feature_select_strategy (`str`, *optional*): The feature selection strategy used to select the vision feature from the vision backbone. Shoudl be same as in model's config chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. image_token (`str`, *optional*, defaults to `"<image>"`): Special token used to denote image location. video_token (`str`, *optional*, defaults to `"<video>"`): Special token used to denote video location. """ attributes = ["image_processor", "tokenizer", "video_processor"] valid_kwargs = [ "chat_template", "num_image_tokens", "vision_feature_select_strategy", "image_token", "video_token", ] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" video_processor_class = "LlavaOnevisionVideoProcessor" def __init__( self, image_processor=None, tokenizer=None, video_processor=None, num_image_tokens=None, vision_feature_select_strategy=None, chat_template=None, image_token="<image>", video_token="<video>", **kwargs, ): self.num_image_tokens = num_image_tokens self.vision_feature_select_strategy = vision_feature_select_strategy self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos: VideoInput = None, **kwargs: Unpack[LlavaOnevisionProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`. - **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`. """ output_kwargs = self._merge_kwargs( LlavaOnevisionProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") image_inputs = video_inputs = {} if images is not None: image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) image_sizes = iter(image_inputs["image_sizes"]) height, width = get_image_size( to_numpy_array(image_inputs["pixel_values"][0][0]), channel_dim=output_kwargs["images_kwargs"].get("data_format"), ) text = self._expand_image_tokens(text, image_sizes, height, width, self.image_token) if videos is not None: video_inputs = self.video_processor(videos, **output_kwargs["videos_kwargs"]) one_video = to_numpy_array(video_inputs.get("pixel_values_videos")[0]) height, width = get_image_size(one_video[0], channel_dim=output_kwargs["images_kwargs"].get("data_format")) num_frames = one_video.shape[0] # frame dim is always after batch dim patches_height_width = int(math.sqrt(self.num_image_tokens)) pooled_height_width = math.ceil(patches_height_width / 2) num_video_tokens = (num_frames * pooled_height_width * pooled_height_width) + 1 # +1 for newline token text = [sample.replace(self.video_token, self.video_token * num_video_tokens) for sample in text] text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs}) def _expand_image_tokens( self, text: List[TextInput], image_sizes: Iterable[Union[List[int], int]], height: int, width: int, special_token: str, num_frames: int = 1, ): prompt_strings = [] for sample in text: while special_token in sample: image_size_list = next(image_sizes) original_size = image_size_list[0] if num_frames != 1 else image_size_list if not isinstance(original_size, (list, tuple)): # cast to list to avoid numerical precision errors when calculating unpadding original_size = original_size.tolist() orig_height, orig_width = original_size num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width) if self.vision_feature_select_strategy == "default": num_image_tokens -= 1 sample = sample.replace(special_token, "<placeholder>" * num_image_tokens * num_frames, 1) prompt_strings.append(sample) text = [sample.replace("<placeholder>", special_token) for sample in prompt_strings] return text def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int: image_grid_pinpoints = self.image_processor.image_grid_pinpoints height_best_resolution, width_best_resolution = select_best_resolution( [orig_height, orig_width], image_grid_pinpoints ) scale_height, scale_width = height_best_resolution // height, width_best_resolution // width patches_height = patches_width = int(math.sqrt(self.num_image_tokens)) unpadded_features, newline_features = self._get_unpadded_features( orig_height, orig_width, patches_height, patches_width, scale_height, scale_width ) # The base patch covers the entire image (no CLS for SigLIP) base_features = self.num_image_tokens num_image_tokens = unpadded_features + newline_features + base_features return num_image_tokens def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width): """ Get number of features for a given image with height/width. LLaVA-NeXT is different from LLaVA because it divided each image into patches depending on its resolution. Therefore we need to calculate how many patches an image is divided into and get the number of features from that. """ current_height = patches_height * scale_height current_width = patches_width * scale_width original_aspect_ratio = width / height current_aspect_ratio = current_width / current_height if original_aspect_ratio > current_aspect_ratio: new_height = int(height * (current_width / width)) padding = (current_height - new_height) // 2 current_height -= padding * 2 else: new_width = int(width * (current_height / height)) padding = (current_width - new_width) // 2 current_width -= padding * 2 unpadded_features = current_height * current_width newline_features = current_height ratio = math.sqrt(current_height * current_width / (9 * patches_height**2)) if ratio > 1.1: unpadded_features = int(current_height // ratio) * int(current_width // ratio) newline_features = int(current_height // ratio) return (unpadded_features, newline_features) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) # override to save video-config in a separate config file def save_pretrained(self, save_directory, **kwargs): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) video_processor_path = os.path.join(save_directory, "video_processor") self.video_processor.save_pretrained(video_processor_path) video_processor_present = "video_processor" in self.attributes if video_processor_present: self.attributes.remove("video_processor") outputs = super().save_pretrained(save_directory, **kwargs) if video_processor_present: self.attributes += ["video_processor"] return outputs # override to load video-config from a separate config file @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs) # if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs' if isinstance(processor, tuple): processor = processor[0] try: video_processor = AutoImageProcessor.from_pretrained( pretrained_model_name_or_path, subfolder="video_processor" ) processor.video_processor = video_processor except EnvironmentError: # this means users are using prev version of saved processor where we had only one preprocessor_config.json # for loading back that should work and load a LlavaOnevisionVideoProcessor class logger.info( "You are loading `LlavaOnevisionProcessor` but the indicated `path` doesn't contain a folder called " "`video_processor`. It is strongly recommended to load and save the processor again so the video processor is saved " "in a separate config." ) return processor
class_definition
1,446
15,553
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/processing_llava_onevision.py
null
9,942
class LlavaOnevisionImageProcessor(BaseImageProcessor): r""" Constructs a LLaVa-Onevisino-Video video processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`): A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess` method. Not used for processinf videos. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values_videos"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, image_grid_pinpoints: List = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = True, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 384, "width": 384} size = get_size_dict(size, default_to_square=False) image_grid_pinpoints = ( image_grid_pinpoints if image_grid_pinpoints is not None else [ [384, 384], [384, 768], [384, 1152], [384, 1536], [384, 1920], [384, 2304], [768, 384], [768, 768], [768, 1152], [768, 1536], [768, 1920], [768, 2304], [1152, 384], [1152, 768], [1152, 1152], [1152, 1536], [1152, 1920], [1152, 2304], [1536, 384], [1536, 768], [1536, 1152], [1536, 1536], [1536, 1920], [1536, 2304], [1920, 384], [1920, 768], [1920, 1152], [1920, 1536], [1920, 1920], [1920, 2304], [2304, 384], [2304, 768], [2304, 1152], [2304, 1536], [2304, 1920], [2304, 2304], ] ) self.do_resize = do_resize self.size = size self.image_grid_pinpoints = image_grid_pinpoints self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_pad = do_pad self.do_convert_rgb = do_convert_rgb # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.pad def pad( self, image: np.ndarray, padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]], mode: PaddingMode = PaddingMode.CONSTANT, constant_values: Union[float, Iterable[float]] = 0.0, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`) dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected as input. Args: image (`np.ndarray`): The image to pad. padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`): Padding to apply to the edges of the height, width axes. Can be one of three formats: - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis. - `((before, after),)` yields same before and after pad for height and width. - `(pad,)` or int is a shortcut for before = after = pad width for all axes. mode (`PaddingMode`): The padding mode to use. Can be one of: - `"constant"`: pads with a constant value. - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: `np.ndarray`: The padded image. """ # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim if isinstance(padding, int) or len(padding) != 4: return pad(image, padding, mode, constant_values, data_format, input_data_format) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) if mode == PaddingMode.CONSTANT: image = np.pad(image, padding, mode="constant", constant_values=constant_values) elif mode == PaddingMode.REFLECT: image = np.pad(image, padding, mode="reflect") elif mode == PaddingMode.REPLICATE: image = np.pad(image, padding, mode="edge") elif mode == PaddingMode.SYMMETRIC: image = np.pad(image, padding, mode="symmetric") else: raise ValueError(f"Invalid padding mode: {mode}") image = ( to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image ) return image # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._resize_for_patching def _resize_for_patching( self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension ) -> np.array: """ Resizes an image to a target resolution while maintaining aspect ratio. Args: image (np.array): The input image. target_resolution (tuple): The target resolution (height, width) of the image. resample (`PILImageResampling`): Resampling filter to use if resizing the image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: np.array: The resized and padded image. """ new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) # Resize the image resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format) return resized_image # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_patching def _pad_for_patching( self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension ) -> np.array: """ Pad an image to a target resolution while maintaining aspect ratio. """ target_height, target_width = target_resolution new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x))) return padded_image # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor.get_image_patches def get_image_patches( self, image: np.array, grid_pinpoints, size: tuple, patch_size: int, resample: PILImageResampling, data_format: ChannelDimension, input_data_format: ChannelDimension, ) -> List[np.array]: """ Process an image with variable resolutions by dividing it into patches. Args: image (np.array): The input image to be processed. grid_pinpoints (List): A string representation of a list of possible resolutions. size (`tuple`): Size to resize the original image to. patch_size (`int`): Size of the patches to divide the image into. resample (`PILImageResampling`): Resampling filter to use if resizing the image. data_format (`ChannelDimension` or `str`): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: List[np.array]: A list of NumPy arrays containing the processed image patches. """ if not isinstance(grid_pinpoints, list): raise TypeError("grid_pinpoints must be a list of possible resolutions.") possible_resolutions = grid_pinpoints image_size = get_image_size(image, channel_dim=input_data_format) best_resolution = select_best_resolution(image_size, possible_resolutions) resized_image = self._resize_for_patching( image, best_resolution, resample=resample, input_data_format=input_data_format ) padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format) patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format) # make sure that all patches are in the input data format patches = [ to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format) for patch in patches ] resized_original_image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, ) image_patches = [resized_original_image] + patches return image_patches # Copied from transformers.models.llava_next.image_processing_llava_next.LlavaNextImageProcessor._pad_for_batching def _pad_for_batching( self, pixel_values: List[np.ndarray], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. Args: pixel_values (`List[np.ndarray]`): An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: List[`np.ndarray`]: The padded images. """ max_patch = max(len(x) for x in pixel_values) pixel_values = [ self.pad( image, padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)), data_format=data_format, input_data_format=input_data_format, ) for image in pixel_values ] return pixel_values def _preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Image.Image: """ Args: images (`ImageInput`): Batch of frames (one video) to preprocess. Expects a batch of frames with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if do_resize: images = [ resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] return images def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, image_grid_pinpoints: List = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. image_grid_pinpoints (`List` *optional*, defaults to `self.image_grid_pinpoints`): A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_batched_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) new_images = [] image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images] for image in images: # convert image into a list of patches # we intentially use the same data format as the input data format size_tuple = ( (size["height"], size["width"]) if "height" in size and "width" in size else (size["shortest_edge"], size["shortest_edge"]) ) image_patches = self.get_image_patches( image, image_grid_pinpoints, size=size_tuple, patch_size=size["height"], resample=resample, data_format=input_data_format, input_data_format=input_data_format, ) # preprocess patches pixel_values = self._preprocess( image_patches, do_resize=do_resize, size=size_tuple, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) pixel_values = np.array(pixel_values) new_images.append(pixel_values) if do_pad: processed_images = self._pad_for_batching(new_images) return BatchFeature( data={"pixel_values": processed_images, "image_sizes": image_sizes}, tensor_type=return_tensors )
class_definition
4,853
34,194
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/image_processing_llava_onevision.py
null
9,943
class LlavaOnevisionVideoProcessor(BaseImageProcessor): r""" Constructs a LLaVa-Onevisino-Video video processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values_videos"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 384, "width": 384} size = get_size_dict(size, default_to_square=False) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def _preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Image.Image: """ Args: images (`ImageInput`): Batch of frames (one video) to preprocess. Expects a batch of frames with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled videos. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] return images def preprocess( self, videos: VideoInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Args: videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb videos = make_batched_videos(videos) if not valid_images(videos[0]): raise ValueError( "Invalid video type. Must be a list consisting of PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) size_tuple = ( (size["height"], size["width"]) if "height" in size and "width" in size else (size["shortest_edge"], size["shortest_edge"]) ) pixel_values = [ self._preprocess( video, do_resize=do_resize, size=size_tuple, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=do_convert_rgb, data_format=data_format, input_data_format=input_data_format, ) for video in videos ] return BatchFeature( data={"pixel_values_videos": pixel_values}, tensor_type=return_tensors, )
class_definition
1,996
16,900
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/video_processing_llava_onevision.py
null
9,944
class LlavaOnevisionCausalLMOutputWithPast(ModelOutput): """ Base class for LlavaOnevision causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. video_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`. video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None video_hidden_states: Optional[torch.FloatTensor] = None
class_definition
6,173
9,149
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/modeling_llava_onevision.py
null
9,945
class LlavaOnevisionMultiModalProjector(nn.Module): def __init__(self, config: LlavaOnevisionConfig): super().__init__() self.linear_1 = nn.Linear( config.vision_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states
class_definition
9,259
9,990
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/modeling_llava_onevision.py
null
9,946
class LlavaOnevisionPreTrainedModel(PreTrainedModel): config_class = LlavaOnevisionConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlavaOnevisionVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True _supports_static_cache = False # Qwen2 doesn't but llava has no reasons to not support _supports_quantized_cache = True _supports_sdpa = True # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextPreTrainedModel._init_weights def _init_weights(self, module): # important: this ported version of LlavaNext isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
11,075
12,738
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/modeling_llava_onevision.py
null
9,947
class LlavaOnevisionForConditionalGeneration(LlavaOnevisionPreTrainedModel, GenerationMixin): def __init__(self, config: LlavaOnevisionConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = LlavaOnevisionMultiModalProjector(config) embed_std = 1 / math.sqrt(config.text_config.hidden_size) self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.post_init() # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.language_model.get_input_embeddings() # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.language_model.get_output_embeddings() # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_decoder def set_decoder(self, decoder): self.language_model.set_decoder(decoder) # Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_decoder def get_decoder(self): return self.language_model.get_decoder() def pack_image_features(self, image_features, image_sizes, image_newline=None, vision_aspect_ratio="anyres_max_9"): """ Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors. Args: image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`) List of image feature tensor, each contains all the visual feature of all patches. image_sizes (`torch.Tensor` of shape `(num_images, 2)`) Actual image size of each images (H, W). image_newline (`torch.Tensor` of shape `(embed_dim)`) New line embedding vector. vision_aspect_ratio (`str`, *optional*, "anyres_max_9"): Aspect ratio used when processong image features. The default value is "anyres_max_9". Returns: image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`) feature_lens (`List[int]`) token length of each image in image_features """ new_image_features = [] feature_lens = [] for image_idx, image_feature in enumerate(image_features): if image_feature.shape[0] > 1: base_image_feature = image_feature[0] image_feature = image_feature[1:] height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size if height * width != base_image_feature.shape[0]: raise ValueError("The number of patches is not consistent with the image size.") num_patch_height, num_patch_width = get_anyres_image_grid_shape( image_sizes[image_idx], self.config.image_grid_pinpoints, self.config.vision_config.image_size, ) image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() image_feature = image_feature.flatten(1, 2).flatten(2, 3) image_feature = unpad_image(image_feature, image_sizes[image_idx]) max_num_patches = int(vision_aspect_ratio.strip("anyres_max_")) channels, curr_height, curr_width = image_feature.shape ratio = math.sqrt(curr_height * curr_width / (max_num_patches * height**2)) if ratio > 1.1: image_feature = image_feature[None] image_feature = nn.functional.interpolate( image_feature, [int(curr_height // ratio), int(curr_width // ratio)], mode="bilinear" )[0] if image_newline is not None: image_feature = torch.cat( ( image_feature, image_newline[:, None, None] .expand(*image_feature.shape[:-1], 1) .to(image_feature.device, image_feature.dtype), ), dim=-1, ) image_feature = image_feature.flatten(1, 2).transpose(0, 1) image_feature = torch.cat((base_image_feature, image_feature), dim=0) else: image_feature = image_feature[0] if image_newline is not None: image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0) new_image_features.append(image_feature) feature_lens.append(image_feature.size(0)) image_features = torch.cat(new_image_features, dim=0) feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) return image_features, feature_lens def apply_pooling(self, image_features): height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size batch_frames, seq_len, dim = image_features.shape image_features = image_features.view(batch_frames, height, width, -1) image_features = image_features.permute(0, 3, 1, 2).contiguous() height, width = image_features.shape[2:] scaled_shape = [math.ceil(height / 2), math.ceil(width / 2)] image_features = nn.functional.interpolate(image_features, size=scaled_shape, mode="bilinear") image_features = image_features.permute(0, 2, 3, 1) image_features = image_features.view(batch_frames, -1, dim) return image_features def get_image_features( self, pixel_values: torch.FloatTensor, image_sizes: torch.Tensor, vision_feature_layer: int, vision_feature_select_strategy: str, ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`) The tensors corresponding to the input images. image_sizes (`torch.Tensor` of shape `(num_images, 2)`) Actual image size of each images (H, W). vision_feature_layer (`int`): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches and are of shape `(num_patches, image_length, embed_dim)`). """ # ! infer image_num_patches from image_sizes image_num_patches = [ image_size_to_num_patches( image_size=imsize, grid_pinpoints=self.config.image_grid_pinpoints, patch_size=self.config.vision_config.image_size, ) for imsize in image_sizes ] if pixel_values.dim() == 5: # stacked if input is (batch_size, num_patches, num_channels, height, width) _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)] pixel_values = torch.cat(_pixel_values_list, dim=0) elif pixel_values.dim() != 4: # otherwise has to be stacked from list of (num_patches, num_channels, height, width) raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") image_features = self.vision_tower(pixel_values, output_hidden_states=True) selected_image_feature = image_features.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature image_features = self.multi_modal_projector(selected_image_feature) image_features = torch.split(image_features, image_num_patches, dim=0) return image_features def get_video_features( self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str ): """ Obtains video last hidden states from the vision tower, apply multimodal projection and pooling. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_frames, channels, height, width)`) The tensors corresponding to the input video. vision_feature_layer (`int`): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: video_features (List[`torch.Tensor`]): List of video feature tensor, each contains all the visual feature of all patches and are of shape `(num_videos, video_length, embed_dim)`). """ batch_size, frames, channels, height, width = pixel_values.shape pixel_values = pixel_values.view(batch_size * frames, channels, height, width) video_features = self.vision_tower(pixel_values, output_hidden_states=True) selected_video_feature = video_features.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_video_feature = selected_video_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_video_feature = selected_video_feature video_features = self.multi_modal_projector(selected_video_feature) video_features = self.apply_pooling(video_features) video_features = video_features.reshape(batch_size, frames * video_features.shape[1], -1) return video_features @add_start_docstrings(LLAVA_ONEVISION_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: Optional[torch.LongTensor] = None, pixel_values_videos: torch.FloatTensor = None, image_sizes_videos: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, vision_aspect_ratio: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple, LlavaOnevisionCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: [`~LlavaOnevisionCausalLMOutputWithPast`] (if `return_dict=True`) or a `tuple`. Example: ```python >>> from PIL import Image >>> import requests >>> import torch >>> from transformers import LlavaOnevisionProcessor, LlavaOnevisionForConditionalGeneration >>> model = LlavaOnevisionForConditionalGeneration.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf", torch_dtype="float16", device_map="cuda:0") >>> processor = LlavaOnevisionProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf") >>> conversation = [ ... { ... "role": "user", ... "content": [ ... {"type": "text", "text": "What is shown in this image?"}, ... {"type": "image"}, ... ], ... }, ... ] >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) >>> image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> raw_image = Image.open(requests.get(image_file, stream=True).raw) >>> inputs = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16) >>> output = model.generate(**inputs, max_new_tokens=20, do_sample=False) >>> processor.batch_decode(output, skip_special_tokens=True)[0] "user\n\nWhat is shown in this image?\nassistant\ncat" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) vision_aspect_ratio = ( vision_aspect_ratio if vision_aspect_ratio is not None else self.config.vision_aspect_ratio ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None: raise ValueError( "You cannot specify both `pixel_values`/`pixel_values_videos` and `inputs_embeds` at the same time, " "and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) # Images are processed with Anyres if pixel_values is not None: image_features = self.get_image_features( pixel_values, image_sizes, vision_feature_layer=vision_feature_layer, vision_feature_select_strategy=vision_feature_select_strategy, ) image_features, feature_lens = self.pack_image_features( image_features, image_sizes, image_newline=self.image_newline, vision_aspect_ratio=vision_aspect_ratio, ) n_image_tokens = (input_ids == self.config.image_token_index).sum().item() n_image_features = image_features.shape[0] if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) special_image_mask = ( (input_ids == self.config.image_token_index) .unsqueeze(-1) .expand_as(inputs_embeds) .to(inputs_embeds.device) ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) # Video are simply embedded and further pooled to decrease seq len if pixel_values_videos is not None: video_features = self.get_video_features( pixel_values_videos, vision_feature_layer=vision_feature_layer, vision_feature_select_strategy=vision_feature_select_strategy, ) image_newline = ( self.image_newline[None, None, :].repeat(video_features.shape[0], 1, 1).to(video_features.device) ) video_features = torch.cat((video_features, image_newline), dim=1) video_features = video_features.flatten(0, 1) n_video_tokens = (input_ids == self.config.video_token_index).sum().item() n_video_features = video_features.shape[0] if n_video_tokens != n_video_features: raise ValueError( f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" ) special_video_mask = ( (input_ids == self.config.video_token_index) .unsqueeze(-1) .expand_as(inputs_embeds) .to(inputs_embeds.device) ) video_features = video_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_video_mask, video_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaOnevisionCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, video_hidden_states=video_features if pixel_values_videos is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, image_sizes=None, pixel_values_videos=None, image_sizes_videos=None, attention_mask=None, cache_position=None, num_logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, num_logits_to_keep=num_logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values model_inputs["image_sizes"] = image_sizes model_inputs["pixel_values_videos"] = pixel_values_videos model_inputs["image_sizes_videos"] = image_sizes_videos return model_inputs
class_definition
19,036
41,606
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llava_onevision/modeling_llava_onevision.py
null
9,948
class Qwen2AudioCausalLMOutputWithPast(ModelOutput): """ Base class for Qwen2Audio causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. attention_mask (`torch.FloatTensor`, *optional*): Attentions mask, used to update attention mask and position_ids. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None attention_mask: Optional[torch.FloatTensor] = None
class_definition
1,622
4,066
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,949
class Qwen2AudioAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, layer_idx: Optional[int] = None, config: Optional[Qwen2AudioConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal if layer_idx is None and is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.layer_idx = layer_idx self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_probs, value_states) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights, past_key_value
class_definition
4,170
9,993
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,950
class Qwen2AudioFlashAttention2(Qwen2AudioAttention): """ Qwen2Audio flash attention module. This module inherits from `Qwen2AudioAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" ) # Qwen2AudioFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("Qwen2AudioFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] # We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, : key_states.shape[-2]] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, causal_mask, tgt_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, tgt_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
10,103
16,521
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,951
class Qwen2AudioSdpaAttention(Qwen2AudioAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "Qwen2AudioModel is using Qwen2AudioSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, cache_position=cache_position, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value
class_definition
16,629
22,030
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,952
class Qwen2AudioEncoderLayer(nn.Module): def __init__(self, config: Qwen2AudioConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = QWEN2AUDIO_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
22,318
25,468
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,953
class Qwen2AudioPreTrainedModel(PreTrainedModel): config_class = Qwen2AudioConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen2AudioAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): # important: this ported version of Qwen2Audio isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed std = self.config.init_std if hasattr(self.config, "init_std") else self.config.audio_config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
26,510
27,575
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,954
class Qwen2AudioEncoder(Qwen2AudioPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`Qwen2AudioEncoderLayer`]. Args: config: Qwen2AudioEncoderConfig """ # Ignore copy config_class = Qwen2AudioEncoderConfig main_input_name = "input_features" _no_split_modules = ["Qwen2AudioEncoderLayer"] def __init__(self, config: Qwen2AudioEncoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) self.embed_positions.requires_grad_(False) self.layers = nn.ModuleList([Qwen2AudioEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) # Ignore copy self.avg_pooler = nn.AvgPool1d(2, stride=2) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`torch.Tensor`)`, *optional*): Qwen2Audio does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] if input_features.shape[-1] != expected_seq_length: raise ValueError( f"Qwen2Audio expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Ignore copy input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True # Ignore copy if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Ignore copy hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.avg_pooler(hidden_states) hidden_states = hidden_states.permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Ignore copy def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers and the output length of the audio encoder """ input_lengths = (input_lengths - 1) // 2 + 1 output_lengths = (input_lengths - 2) // 2 + 1 return input_lengths, output_lengths
class_definition
28,723
36,868
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,955
class Qwen2AudioMultiModalProjector(nn.Module): def __init__(self, config: Qwen2AudioConfig): super().__init__() self.linear = nn.Linear(config.audio_config.d_model, config.text_config.hidden_size, bias=True) def forward(self, audio_features): hidden_states = self.linear(audio_features) return hidden_states
class_definition
36,871
37,220
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,956
class Qwen2AudioForConditionalGeneration(Qwen2AudioPreTrainedModel, GenerationMixin): def __init__(self, config: Qwen2AudioConfig): super().__init__(config) self.audio_tower = AutoModel.from_config(config.audio_config) self.multi_modal_projector = Qwen2AudioMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides self.post_init() @property def padding_side(self): return self._padding_side @padding_side.setter def padding_side(self, padding_side: str): if padding_side not in ["left", "right"]: raise ValueError(f"{padding_side} is not `left` or `right`.") self._padding_side = padding_side # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.language_model.get_input_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.language_model.get_output_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder def set_decoder(self, decoder): self.language_model.set_decoder(decoder) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder def get_decoder(self): return self.language_model.get_decoder() def _merge_input_ids_with_audio_features( self, audio_features, num_audio_tokens, inputs_embeds, input_ids, attention_mask, labels ): """ Merge input_ids with with audio features into final embeddings Args: audio_features (`torch.Tensor` of shape `(num_audios, max_audio_tokens, embed_dim)`): All audio vectors of all audios in the batch num_audio_tokens (`torch.LongTensor` of shape `(num_audios)`): The length of audio embeddings of each audio as stacked in `audio_features` inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): Token embeddings before merging with audio embeddings input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input_ids of tokens, possibly filled with audio token attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Mask to avoid performing attention on padding token indices. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) labels need to be recalculated to support training (if provided) Returns: final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids Explanation: each audio has variable length embeddings, with length specified by num_audio_tokens audio_features is concatenation of all audio embed vectors task: fill each <|AUDIO|> with the correct number of audio embeddings Example: X (5 tokens), Y (3 tokens), Z (8 tokens) X, Y are in the same sequence (in-context learning) if right padding input_ids: [ a b c d e f X g h i j k Y l m o p q r Z s t u v _ _ _ _ _ _ ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ ] elif left padding input_ids: [ a b c d e f X g h i j k Y l m _ _ _ _ _ _ o p q r Z s t u v ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v ] Edge cases: * If tokens are same but audio token sizes are different, then cannot infer left or right padding ```python url1 = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" audio1, _ = librosa.load(BytesIO(urlopen(url1).read()), sr=processor.feature_extractor.sampling_rate) url2 = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav" audio2, _ = librosa.load(BytesIO(urlopen(url2).read()), sr=processor.feature_extractor.sampling_rate) prompts = [ "[INST] <|AUDIO|>\nWhat is that in this audio? [/INST]", "[INST] <|AUDIO|>\nWhat is that in this audio? [/INST]", ] inputs = processor(text=prompts, audios=[audio1, audio2], return_tensors='pt', padding=True).to("cuda") audio1 has 101 tokens, while audio2 has 72 tokens ``` input_ids: [ a b c d X g h i j Y k l m n ] where X is 3 tokens while Y is 5, this mean after merge if left-padding (batched generation) input_ids should be: [ _ _ a b c d X X X g h i j Y Y Y Y Y k l m n ] elif (right padding) (training) input_ids should be: [ a b c d X X X g h _ _ i j Y Y Y Y Y k l m n ] """ num_audios, max_audio_tokens, embed_dim = audio_features.shape audio_features_mask = torch.arange(max_audio_tokens).expand(num_audios, max_audio_tokens).to( num_audio_tokens.device ) < num_audio_tokens.unsqueeze(1) masked_audio_features = audio_features[audio_features_mask].view(-1, embed_dim) batch_size, sequence_length = input_ids.shape _left_padding = torch.any(attention_mask[:, 0] == 0) _right_padding = torch.any(attention_mask[:, -1] == 0) left_padding = True if batch_size > 1: if _left_padding and not _right_padding: left_padding = True elif not _left_padding and _right_padding: left_padding = False elif not _left_padding and not _right_padding: # both side is 1, so cannot tell left_padding = self.padding_side == "left" else: # invalid attention_mask raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") # 1. Create a mask to know where special audio tokens are special_audio_token_mask = input_ids == self.config.audio_token_index num_special_audio_tokens = torch.sum(special_audio_token_mask, dim=-1) # In case the Audio model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device attention_mask = attention_mask.to(target_device) input_ids = input_ids.to(target_device) num_audio_tokens = num_audio_tokens.to(target_device) batch_indices, non_audio_indices = torch.where( (input_ids != self.config.audio_token_index) & (attention_mask == 1) ) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged audio-text sequence. # `special_audio_token_mask` identifies audio tokens. Each audio token will be replaced by `audio_feat_lengths - 1` text tokens. # `torch.cumsum` computes how each audio token shifts subsequent text token positions. token_placeholder_num = torch.zeros_like(input_ids) token_placeholder_num[special_audio_token_mask] = num_audio_tokens.long() - 1 token_placeholder_num = token_placeholder_num + 1 new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1 max_token_num = token_placeholder_num.sum(-1).max() nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_audio_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_audio_indices] batch_indices, non_audio_indices, text_to_overwrite = ( batch_indices.to(target_device), non_audio_indices.to(target_device), text_to_overwrite.to(target_device), ) # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_token_num, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_token_num, dtype=attention_mask.dtype, device=inputs_embeds.device ) final_input_ids = torch.full( (batch_size, max_token_num), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device ) # 4. Fill the embeddings based on the mask. If we have ["hey" "<audio>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the audio features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_audio_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices] final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_audio_indices] final_labels = None if labels is not None: labels = labels.to(target_device) final_labels = torch.full_like(final_attention_mask, self.config.ignore_index).to(torch.long) final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_audio_indices] # 5. Fill the embeddings corresponding to the audios. Anything that is still zeros needs filling audio_to_overwrite = torch.full( (batch_size, max_token_num), True, dtype=torch.bool, device=inputs_embeds.device ) audio_to_overwrite[batch_indices, text_to_overwrite] = False seq_indices = torch.arange(max_token_num).unsqueeze(0).to(target_device) seq_indices = seq_indices.expand(batch_size, max_token_num) if left_padding: # exclude padding on the left max_token_num = max_token_num.to(target_device) val = (max_token_num - seq_indices) <= ( token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1) )[:, None] else: # exclude padding on the right val = seq_indices < (token_placeholder_num.sum(-1) - (attention_mask == 0).long().sum(-1))[:, None] audio_to_overwrite &= val if audio_to_overwrite.sum() != num_audio_tokens.sum(): raise ValueError( f"The input provided to the model are wrong. The number of audio tokens is {num_special_audio_tokens} while" f" the number of audio given to the model is {num_audios}. This prevents correct indexing and breaks batch generation." ) final_embedding[audio_to_overwrite] = ( masked_audio_features.contiguous().reshape(-1, embed_dim).to(target_device) ) final_attention_mask |= audio_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) return final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids @add_start_docstrings_to_model_forward(QWEN2AUDIO_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Qwen2AudioCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, input_features: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, feature_attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Qwen2AudioCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from io import BytesIO >>> from urllib.request import urlopen >>> import librosa >>> from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration >>> model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B") >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B") >>> prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>Generate the caption in English:" >>> url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" >>> audio, _ = librosa.load(BytesIO(urlopen(url).read()), sr=self.processor.feature_extractor.sampling_rate) >>> inputs = processor(text=prompt, audios=audio, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Generate the caption in English: Glass is breaking." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict target_device = self.audio_tower.device if input_features is not None: input_features = input_features.to(target_device) feature_attention_mask = feature_attention_mask.to(target_device) if inputs_embeds is None: # 1. Extract the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and audios if input_features is not None and input_ids.shape[1] != 1: audio_feat_lengths, audio_output_lengths = self.audio_tower._get_feat_extract_output_lengths( feature_attention_mask.sum(-1) ) batch_size, _, max_mel_seq_len = input_features.shape max_seq_len = (max_mel_seq_len - 2) // 2 + 1 # Create a sequence tensor of shape (batch_size, max_seq_len) seq_range = ( torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) .unsqueeze(0) .expand(batch_size, max_seq_len) ) lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len) # Create mask padding_mask = seq_range >= lengths_expand audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( batch_size, 1, max_seq_len, max_seq_len ) audio_attention_mask = audio_attention_mask_.to( dtype=self.audio_tower.conv1.weight.dtype, device=self.audio_tower.conv1.weight.device ) audio_attention_mask[audio_attention_mask_] = float("-inf") audio_outputs = self.audio_tower(input_features, attention_mask=audio_attention_mask) selected_audio_feature = audio_outputs.last_hidden_state audio_features = self.multi_modal_projector(selected_audio_feature) # if we have consecutive audio tokens, then it means we expanded input_ids in processing audio_tokens = input_ids == self.config.audio_token_index legacy_processing = (audio_tokens[:, :-1] & audio_tokens[:, 1:]).sum() == 0 if legacy_processing: logger.warning_once( "Expanding inputs for audio tokens in Qwen2Audio should be done in processing." ) inputs_embeds, attention_mask, labels, position_ids, _ = self._merge_input_ids_with_audio_features( audio_features, audio_output_lengths, inputs_embeds, input_ids, attention_mask, labels ) else: num_audios, max_audio_tokens, embed_dim = audio_features.shape audio_features_mask = torch.arange(max_audio_tokens, device=audio_output_lengths.device)[None, :] audio_features_mask = audio_features_mask < audio_output_lengths[:, None] audio_features = audio_features[audio_features_mask] n_audio_tokens = (input_ids == self.config.audio_token_index).sum().item() n_audio_features = audio_features.shape[0] if n_audio_tokens != n_audio_features: raise ValueError( f"Audio features and audio tokens do not match: tokens: {n_audio_tokens}, features {n_audio_features}" ) special_audio_mask = (input_ids == self.config.audio_token_index).to(inputs_embeds.device) special_audio_mask = special_audio_mask.unsqueeze(-1).expand_as(inputs_embeds) audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, audio_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Qwen2AudioCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, attention_mask=attention_mask, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, input_features=None, attention_mask=None, **kwargs, ): # Overwritten -- custom processing (note: might not be needed, but there are no generation tests running atm) if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Here, we get the attention_mask, which was previously stored in the state after _merge_input_ids_with_audio_features. if input_features is not None and kwargs.get("attention_mask") is not None: attention_mask = kwargs["attention_mask"] attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.audio_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} feature_attention_mask = kwargs.get("feature_attention_mask", None) model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "input_features": input_features, "feature_attention_mask": feature_attention_mask, } ) return model_inputs def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: # update past_key_values keeping its naming used in model code cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update attention_mask if getattr(outputs, "attention_mask", None) is not None: model_kwargs["attention_mask"] = outputs.attention_mask # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) if not is_encoder_decoder: # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) else: # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, ) if model_kwargs.get("use_cache", True): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens else: past_positions = model_kwargs.pop("cache_position") new_positions = torch.arange( past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype ).to(past_positions.device) model_kwargs["cache_position"] = torch.cat((past_positions, new_positions)) return model_kwargs def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs)
class_definition
42,290
69,816
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/modeling_qwen2_audio.py
null
9,957
class Qwen2AudioProcessor(ProcessorMixin): r""" Constructs a Qwen2Audio processor which wraps a Qwen2Audio feature extractor and a Qwen2Audio tokenizer into a single processor. [`Qwen2AudioProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`Qwen2TokenizerFast`]. See the [`~Qwen2AudioProcessor.__call__`] and [`~Qwen2AudioProcessor.decode`] for more information. Args: feature_extractor ([`WhisperFeatureExtractor`], *optional*): The feature extractor is a required input. tokenizer ([`Qwen2TokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`Optional[str]`, *optional*): The Jinja template to use for formatting the conversation. If not provided, the default chat template is used. audio_token (`str`, *optional*, defaults to `"<|AUDIO|>"`): The token to use for audio tokens. audio_bos_token (`str`, *optional*, defaults to `"<|audio_bos|>"`): The token to use for audio bos tokens. audio_eos_token (`str`, *optional*, defaults to `"<|audio_eos|>"`): The token to use for audio eos tokens. """ attributes = ["feature_extractor", "tokenizer"] feature_extractor_class = "WhisperFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__( self, feature_extractor=None, tokenizer=None, chat_template=None, audio_token="<|AUDIO|>", audio_bos_token="<|audio_bos|>", audio_eos_token="<|audio_eos|>", ): if chat_template is None: chat_template = self.default_chat_template self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token self.audio_bos_token = tokenizer.audio_bos_token if hasattr(tokenizer, "audio_bos_token") else audio_bos_token self.audio_eos_token = tokenizer.audio_eos_token if hasattr(tokenizer, "audio_eos_token") else audio_eos_token super().__init__(feature_extractor, tokenizer, chat_template=chat_template) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audios: Union[np.ndarray, List[np.ndarray]] = None, padding: Union[bool, str, PaddingStrategy] = False, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `List[np.ndarray]`): The audio or batch of audios to be prepared. Each audio can be a NumPy array. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). sampling_rate (`int`, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). """ if text is None: raise ValueError("You need to specify either a `text` input to process.") elif isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") # ensure we have as much audios as audio tokens num_audio_tokens = sum(sample.count(self.audio_token) for sample in text) num_audios = 1 if type(audios) == np.ndarray else len(audios) if num_audio_tokens != num_audios: raise ValueError( f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}" ) if audios is not None: audio_inputs = self.feature_extractor( audios, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", **kwargs ) audio_inputs["feature_attention_mask"] = audio_inputs.pop( "attention_mask" ) # rename attention_mask to prevent conflicts later on expanded_text = [] audio_lengths = audio_inputs["feature_attention_mask"].sum(-1).tolist() for sample in text: replace_str = [] while self.audio_token in sample: audio_length = audio_lengths.pop(0) input_length = (audio_length - 1) // 2 + 1 num_audio_tokens = (input_length - 2) // 2 + 1 expanded_audio_token = self.audio_token * num_audio_tokens audio_token_start_idx = sample.find(self.audio_token) audio_token_end_idx = audio_token_start_idx + len(self.audio_token) has_bos = ( sample[audio_token_start_idx - len(self.audio_bos_token) : audio_token_start_idx] == self.audio_bos_token ) has_eos = ( sample[audio_token_end_idx : audio_token_end_idx + len(self.audio_eos_token)] == self.audio_eos_token ) # Check if this audio token is surrounded by bos/eos tokens if not has_bos and not has_eos: expanded_audio_token = self.audio_bos_token + expanded_audio_token + self.audio_eos_token replace_str.append(expanded_audio_token) sample = sample.replace(self.audio_token, "<placeholder>", 1) while "<placeholder>" in sample: sample = sample.replace("<placeholder>", replace_str.pop(0), 1) expanded_text.append(sample) text = expanded_text inputs = self.tokenizer(text, padding=padding, **kwargs) if audios is not None: inputs.update(audio_inputs) return BatchFeature(data={**inputs}) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names + ["feature_attention_mask"])) @property def default_chat_template(self): """ This default vicuna template formats inputs in the form of a chat history. For each message in the chat history: * the template will output the role of the speaker followed by the content of the message. * content is a list of strings and audios. * If the content element is an audio, the template will output a sequence of <|AUDIO|> tokens Example: ```python messages = [ {'role': 'system', 'content': 'You are a helpful assistant.'}, {"role": "user", "content": [ {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"}, {"type": "text", "text": "What's that sound?"}, ]}, {"role": "assistant", "content": "It is the sound of glass shattering."}, {"role": "user", "content": [ {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"}, {"type": "text", "text": "How about this one?"}, ]}, ] result = template.render(messages=messages, add_generation_prompt=True) ``` """ # fmt: off return ( "{% set audio_count = namespace(value=0) %}" "{% for message in messages %}" "{% if loop.first and message['role'] != 'system' %}" "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "{% endif %}" "<|im_start|>{{ message['role'] }}\n" "{% if message['content'] is string %}" "{{ message['content'] }}<|im_end|>\n" "{% else %}" "{% for content in message['content'] %}" "{% if 'audio' in content or 'audio_url' in content %}" "{% set audio_count.value = audio_count.value + 1 %}" "Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n" "{% elif 'text' in content %}" "{{ content['text'] }}" "{% endif %}" "{% endfor %}" "<|im_end|>\n" "{% endif %}" "{% endfor %}" "{% if add_generation_prompt %}" "<|im_start|>assistant\n" "{% endif %}" ) # fmt: on
class_definition
895
11,922
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/processing_qwen2_audio.py
null
9,958
class Qwen2AudioEncoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Qwen2AudioEncoder`]. It is used to instantiate a Qwen2-Audio audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of the Qwen2-Audio architecture. e.g. [Qwen/Qwen2-Audio-7B](https://huggingface.co/Qwen/Qwen2-Audio-7B) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_mel_bins (`int`, *optional*, defaults to 128): Number of mel features used per input features. Should correspond to the value used in the `Qwen2AudioProcessor` class. encoder_layers (`int`, *optional*, defaults to 32): Number of encoder layers. encoder_attention_heads (`int`, *optional*, defaults to 20): Number of attention heads for each attention layer in the Transformer encoder. encoder_ffn_dim (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. d_model (`int`, *optional*, defaults to 1280): Dimensionality of the layers. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. max_source_positions (`int`, *optional*, defaults to 1500): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. Example: ```python >>> from transformers import Qwen2AudioEncoderConfig, Qwen2AudioEncoder >>> # Initializing a Qwen2AudioEncoderConfig >>> configuration = Qwen2AudioEncoderConfig() >>> # Initializing a Qwen2AudioEncoder (with random weights) >>> model = Qwen2AudioEncoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qwen2_audio_encoder" def __init__( self, num_mel_bins=128, encoder_layers=32, encoder_attention_heads=20, encoder_ffn_dim=5120, encoder_layerdrop=0.0, d_model=1280, dropout=0.0, attention_dropout=0.0, activation_function="gelu", activation_dropout=0.0, scale_embedding=False, init_std=0.02, max_source_positions=1500, **kwargs, ): super().__init__(**kwargs) self.num_mel_bins = num_mel_bins self.d_model = d_model self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.encoder_ffn_dim = encoder_ffn_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation_function = activation_function self.activation_dropout = activation_dropout self.encoder_layerdrop = encoder_layerdrop self.num_hidden_layers = encoder_layers self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions
class_definition
888
5,305
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/configuration_qwen2_audio.py
null
9,959
class Qwen2AudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Qwen2AudioForConditionalGeneration`]. It is used to instantiate an Qwen2-Audio model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Qwen2-Audio. e.g. [Qwen/Qwen2-Audio-7B](https://huggingface.co/Qwen/Qwen2-Audio-7B) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: audio_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): The config object or dictionary of the audio backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): The config object or dictionary of the text backbone. audio_token_index (`int`, *optional*, defaults to 151646): The image token index to encode the image prompt. Example: ```python >>> from transformers import Qwen2AudioForConditionalGeneration, Qwen2AudioConfig, Qwen2AudioEncoderConfig, Qwen2Config >>> # Initializing a Qwen2AudioEncoder config >>> audio_config = Qwen2AudioEncoderConfig() >>> # Initializing a Qwen2 config >>> text_config = Qwen2Config() >>> # Initializing a Qwen2Audio configuration >>> configuration = Qwen2AudioConfig(audio_config, text_config) >>> # Initializing a model from the qwen2-audio style configuration >>> model = Qwen2AudioForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qwen2_audio" sub_configs = {"text_config": AutoConfig, "audio_config": AutoConfig} def __init__( self, audio_config=None, text_config=None, audio_token_index=151646, **kwargs, ): self.audio_token_index = audio_token_index if isinstance(audio_config, dict): audio_config["model_type"] = ( audio_config["model_type"] if "model_type" in audio_config else "qwen2_audio_encoder" ) audio_config = CONFIG_MAPPING[audio_config["model_type"]](**audio_config) elif audio_config is None: audio_config = CONFIG_MAPPING["qwen2_audio_encoder"]( d_model=1280, encoder_attention_heads=20, encoder_ffn_dim=5120, encoder_layerdrop=0.0, encoder_layers=32, num_mel_bins=128, max_source_positions=1500, scale_embedding=False, activation_function="gelu", ) self.audio_config = audio_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["qwen2"]() self.text_config = text_config super().__init__(**kwargs)
class_definition
5,308
8,588
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/qwen2_audio/configuration_qwen2_audio.py
null
9,960
class RemBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.input_embedding_size, padding_idx=config.pad_token_id ) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.input_embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.input_embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.input_embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
5,221
7,561
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,961
class RemBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
7,647
8,209
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,962
class RemBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Tuple[Tuple[torch.FloatTensor]] = None, output_attentions: bool = False, ) -> Tuple: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RemBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
8,212
13,410
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,963
class RemBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
13,500
14,109
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,964
class RemBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = RemBertSelfAttention(config) self.output = RemBertSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) # Copied from transformers.models.bert.modeling_bert.BertAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
14,112
16,265
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,965
class RemBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
16,357
16,925
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,966
class RemBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
17,011
17,622
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,967
class RemBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RemBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = RemBertAttention(config) self.intermediate = RemBertIntermediate(config) self.output = RemBertOutput(config) # Copied from transformers.models.bert.modeling_bert.BertLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
17,625
21,672
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,968
class RemBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embedding_hidden_mapping_in = nn.Linear(config.input_embedding_size, config.hidden_size) self.layer = nn.ModuleList([RemBertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
21,675
25,601
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,969
class RemBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
25,704
26,407
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,970
class RemBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.output_embedding_size) self.decoder = nn.Linear(config.output_embedding_size, config.vocab_size) self.activation = ACT2FN[config.hidden_act] self.LayerNorm = nn.LayerNorm(config.output_embedding_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
26,410
27,129
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,971
class RemBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = RemBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
27,220
27,540
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,972
class RemBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RemBertConfig load_tf_weights = load_tf_weights_in_rembert base_model_prefix = "rembert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
27,543
28,705
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,973
class RemBertModel(RemBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RemBertEmbeddings(config) self.encoder = RemBertEncoder(config) self.pooler = RemBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
32,138
40,955
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,974
class RemBertForMaskedLM(RemBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RemBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.rembert = RemBertModel(config, add_pooling_layer=False) self.cls = RemBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask}
class_definition
41,066
45,324
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,975
class RemBertForCausalLM(RemBertPreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RemBertForCausalLM` as a standalone, add `is_decoder=True.`") self.rembert = RemBertModel(config, add_pooling_layer=False) self.cls = RemBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, RemBertForCausalLM, RemBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/rembert") >>> config = RemBertConfig.from_pretrained("google/rembert") >>> config.is_decoder = True >>> model = RemBertForCausalLM.from_pretrained("google/rembert", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
class_definition
45,461
51,933
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,976
class RemBertForSequenceClassification(RemBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.rembert = RemBertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
52,161
56,007
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,977
class RemBertForMultipleChoice(RemBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.rembert = RemBertModel(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
56,244
59,760
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,978
class RemBertForTokenClassification(RemBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.rembert = RemBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
59,995
62,721
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,979
class RemBertForQuestionAnswering(RemBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.rembert = RemBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.rembert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
63,014
67,187
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_rembert.py
null
9,980
class RemBertTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" RemBert tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether or not to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = RemBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, remove_space=True, keep_accents=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RemBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Set to True if the token list is already formatted with special tokens for the model Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
class_definition
1,211
9,994
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/tokenization_rembert_fast.py
null
9,981
class RemBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RemBERT [google/rembert](https://huggingface.co/google/rembert) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250300): Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`RemBertModel`]. hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 18): Number of attention heads for each attention layer in the Transformer encoder. input_embedding_size (`int`, *optional*, defaults to 256): Dimensionality of the input embeddings. output_embedding_size (`int`, *optional*, defaults to 1664): Dimensionality of the output embeddings. intermediate_size (`int`, *optional*, defaults to 4608): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the classifier layer when fine-tuning. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import RemBertModel, RemBertConfig >>> # Initializing a RemBERT rembert style configuration >>> configuration = RemBertConfig() >>> # Initializing a model from the rembert style configuration >>> model = RemBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "rembert" def __init__( self, vocab_size=250300, hidden_size=1152, num_hidden_layers=32, num_attention_heads=18, input_embedding_size=256, output_embedding_size=1664, intermediate_size=4608, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=0, bos_token_id=312, eos_token_id=313, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.input_embedding_size = input_embedding_size self.output_embedding_size = output_embedding_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.tie_word_embeddings = False
class_definition
899
6,659
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/configuration_rembert.py
null
9,982
class RemBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] ) @property def atol_for_validation(self) -> float: return 1e-4
class_definition
6,662
7,239
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/configuration_rembert.py
null
9,983
class RemBertTokenizer(PreTrainedTokenizer): """ Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=True, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _tokenize(self, text, sample=False): """Tokenize a string.""" pieces = self.sp_model.EncodeAsPieces(text) return pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): out_string = self.sp_model.decode_pieces(tokens) return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REMBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
class_definition
992
10,591
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/tokenization_rembert.py
null
9,984
class TFRemBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.input_embedding_size = config.input_embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.input_embedding_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.input_embedding_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
class_definition
1,895
5,219
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,985
class TFRemBertSelfAttention(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFRemBertModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size])
class_definition
5,317
12,143
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,986
class TFRemBertSelfOutput(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size])
class_definition
12,238
13,571
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,987
class TFRemBertAttention(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFRemBertSelfAttention(config, name="self") self.dense_output = TFRemBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
13,665
15,509
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,988
class TFRemBertIntermediate(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
15,606
16,634
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,989
class TFRemBertOutput(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size])
class_definition
16,725
18,060
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,990
class TFRemBertLayer(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFRemBertAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFRemBertAttention(config, name="crossattention") self.intermediate = TFRemBertIntermediate(config, name="intermediate") self.bert_output = TFRemBertOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None)
class_definition
18,150
22,897
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,991
class TFRemBertEncoder(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_hidden_mapping_in = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embedding_hidden_mapping_in", ) self.layer = [TFRemBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_values: Tuple[Tuple[tf.Tensor]], use_cache: bool, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embedding_hidden_mapping_in", None) is not None: with tf.name_scope(self.embedding_hidden_mapping_in.name): self.embedding_hidden_mapping_in.build([None, None, self.config.input_embedding_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None)
class_definition
22,900
26,529
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,992
class TFRemBertPooler(keras.layers.Layer): def __init__(self, config: RemBertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
26,620
27,595
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,993
class TFRemBertLMPredictionHead(keras.layers.Layer): def __init__(self, config: RemBertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.initializer_range = config.initializer_range self.output_embedding_size = config.output_embedding_size self.dense = keras.layers.Dense( config.output_embedding_size, kernel_initializer=get_initializer(self.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def build(self, input_shape=None): self.decoder = self.add_weight( name="decoder/weight", shape=[self.config.vocab_size, self.output_embedding_size], initializer=get_initializer(self.initializer_range), ) self.decoder_bias = self.add_weight( shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias" ) if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, self.config.output_embedding_size]) def get_output_embeddings(self) -> keras.layers.Layer: return self def set_output_embeddings(self, value): self.decoder = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"decoder_bias": self.decoder_bias} def set_bias(self, value: tf.Variable): self.decoder_bias = value["decoder_bias"] self.config.vocab_size = shape_list(value["decoder_bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.activation(hidden_states) seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.output_embedding_size]) hidden_states = self.LayerNorm(hidden_states) hidden_states = tf.matmul(a=hidden_states, b=self.decoder, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias) return hidden_states
class_definition
27,598
30,393
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,994
class TFRemBertMLMHead(keras.layers.Layer): def __init__(self, config: RemBertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFRemBertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None)
class_definition
30,485
31,197
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,995
class TFRemBertMainLayer(keras.layers.Layer): config_class = RemBertConfig def __init__(self, config: RemBertConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TFRemBertEmbeddings(config, name="embeddings") self.encoder = TFRemBertEncoder(config, name="encoder") self.pooler = TFRemBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None)
class_definition
31,220
41,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,996
class TFRemBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RemBertConfig base_model_prefix = "rembert"
class_definition
41,058
41,321
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,997
class TFRemBertModel(TFRemBertPreTrainedModel): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.rembert = TFRemBertMainLayer(config, name="rembert") @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None)
class_definition
47,306
51,192
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,998
class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: RemBertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFRemBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.rembert = TFRemBertMainLayer(config, name="rembert", add_pooling_layer=False) self.mlm = TFRemBertMLMHead(config, input_embeddings=self.rembert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="google/rembert", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.rembert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rembert", None) is not None: with tf.name_scope(self.rembert.name): self.rembert.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None)
class_definition
51,303
54,826
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rembert/modeling_tf_rembert.py
null
9,999