text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with the following peculiarities: - lower case all inputs - uses BERT's BasicTokenizer for pre-BPE tokenization This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = OpenAIGPTTokenizer def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs): super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs) @property def do_lower_case(self): return True def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
class_definition
1,020
2,520
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/tokenization_openai_fast.py
null
9,800
class OpenAIGPTConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is used to instantiate a GPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT [openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 40478): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`]. n_positions (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. afn (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. summary_type (`str`, *optional*, defaults to `"cls_index"`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and [`OpenAIGPTDoubleHeadsModel`]. The dropout ratio to be used after the projection and activation. Examples: ```python >>> from transformers import OpenAIGPTConfig, OpenAIGPTModel >>> # Initializing a GPT configuration >>> configuration = OpenAIGPTConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = OpenAIGPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "openai-gpt" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=40478, n_positions=512, n_embd=768, n_layer=12, n_head=12, afn="gelu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.afn = afn self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels super().__init__(**kwargs)
class_definition
848
7,076
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/configuration_openai.py
null
9,801
class Attention(nn.Module): def __init__(self, nx, n_positions, config, scale=False): super().__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implementation] if n_state % config.n_head != 0: raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}") self.register_buffer( "bias", torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions), persistent=False, ) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_head, self.split_size // self.n_head, self.pruned_heads ) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) # w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights # XD: self.b may be larger than w, so we need to crop it b = self.bias[:, :, : w.size(-2), : w.size(-1)] w = w * b + -1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.functional.softmax(w, dim=-1) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions)
class_definition
5,194
8,885
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,802
class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT_FNS[config.afn] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2)
class_definition
8,888
9,338
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,803
class Block(nn.Module): def __init__(self, n_positions, config, scale=False): super().__init__() nx = config.n_embd self.attn = Attention(nx, n_positions, config, scale) self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): attn_outputs = self.attn( x, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, ) a = attn_outputs[0] n = self.ln_1(x + a) m = self.mlp(n) h = self.ln_2(n + m) outputs = [h] + attn_outputs[1:] return outputs
class_definition
9,341
10,162
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,804
class OpenAIGPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OpenAIGPTConfig load_tf_weights = load_tf_weights_in_openai_gpt base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
10,165
11,306
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,805
class OpenAIGPTDoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): Multiple choice classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mc_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mc_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
11,320
13,362
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,806
class OpenAIGPTModel(OpenAIGPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd) self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)]) self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.tokens_embed def set_input_embeddings(self, new_embeddings): self.tokens_embed = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: # Code is different from when we had a single embedding matrix from position and token embeddings position_ids = self.position_ids[None, : input_shape[-1]] # Attention mask. if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.tokens_embed(input_ids) position_embeds = self.positions_embed(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.tokens_embed(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions) hidden_states = outputs[0] if output_attentions: all_attentions = all_attentions + (outputs[1],) hidden_states = hidden_states.view(*output_shape) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, )
class_definition
17,176
23,025
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,807
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = OpenAIGPTModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=lm_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]: # Overwritten -- old model with reduced inputs return {"input_ids": input_ids}
class_definition
23,234
26,657
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,808
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = OpenAIGPTModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, mc_token_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, mc_labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]: r""" mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - 1]`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) Return: Examples: ```python >>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt") >>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt") >>> tokenizer.add_special_tokens( ... {"cls_token": "[CLS]"} ... ) # Add a [CLS] to the vocabulary (we should train it also!) >>> model.resize_token_embeddings(len(tokenizer)) >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices >>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) >>> lm_logits = outputs.logits >>> mc_logits = outputs.mc_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) lm_loss, mc_loss = None, None if mc_labels is not None: loss_fct = CrossEntropyLoss() mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) if labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_loss is not None: output = (mc_loss,) + output return ((lm_loss,) + output) if lm_loss is not None else output return OpenAIGPTDoubleHeadsModelOutput( loss=lm_loss, mc_loss=mc_loss, logits=lm_logits, mc_logits=mc_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
27,090
32,454
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,809
class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = OpenAIGPTModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] # Ensure the batch size is > 1 if there is no padding. if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
33,264
38,363
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/openai/modeling_openai.py
null
9,810
class Dinov2Embeddings(nn.Module): """ Construct the CLS token, mask token, position and patch embeddings. """ def __init__(self, config: Dinov2Config) -> None: super().__init__() self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size)) self.patch_embeddings = Dinov2PatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing and interpolation at torch.float32 precision. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) target_dtype = patch_pos_embed.dtype patch_pos_embed = nn.functional.interpolate( patch_pos_embed.to(torch.float32), size=(new_height, new_width), mode="bicubic", align_corners=False, ).to(dtype=target_dtype) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape target_dtype = self.patch_embeddings.projection.weight.dtype embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype)) if bool_masked_pos is not None: embeddings = torch.where( bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings ) # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) embeddings = self.dropout(embeddings) return embeddings
class_definition
1,824
5,385
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,811
class Dinov2PatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings
class_definition
5,388
6,960
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,812
class Dinov2SelfAttention(nn.Module): def __init__(self, config: Dinov2Config) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
7,048
9,894
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,813
class Dinov2SdpaSelfAttention(Dinov2SelfAttention): def __init__(self, config: Dinov2Config) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Dinov2Model is using Dinov2SdpaSelfAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None
class_definition
9,897
11,931
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,814
class Dinov2SelfOutput(nn.Module): """ The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Dinov2Config) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
12,016
12,668
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,815
class Dinov2Attention(nn.Module): def __init__(self, config: Dinov2Config) -> None: super().__init__() self.attention = Dinov2SelfAttention(config) self.output = Dinov2SelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
12,752
14,441
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,816
class Dinov2SdpaAttention(Dinov2Attention): def __init__(self, config: Dinov2Config) -> None: super().__init__(config) self.attention = Dinov2SdpaSelfAttention(config)
class_definition
14,529
14,716
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,817
class Dinov2LayerScale(nn.Module): def __init__(self, config) -> None: super().__init__() self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size)) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: return hidden_state * self.lambda1
class_definition
14,719
15,025
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,818
class Dinov2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob)
class_definition
16,249
16,729
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,819
class Dinov2MLP(nn.Module): def __init__(self, config) -> None: super().__init__() in_features = out_features = config.hidden_size hidden_features = int(config.hidden_size * config.mlp_ratio) self.fc1 = nn.Linear(in_features, hidden_features, bias=True) if isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act self.fc2 = nn.Linear(hidden_features, out_features, bias=True) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.fc1(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.fc2(hidden_state) return hidden_state
class_definition
16,732
17,498
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,820
class Dinov2SwiGLUFFN(nn.Module): def __init__(self, config) -> None: super().__init__() in_features = out_features = config.hidden_size hidden_features = int(config.hidden_size * config.mlp_ratio) hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True) self.weights_out = nn.Linear(hidden_features, out_features, bias=True) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.weights_in(hidden_state) x1, x2 = hidden_state.chunk(2, dim=-1) hidden = nn.functional.silu(x1) * x2 return self.weights_out(hidden)
class_definition
17,501
18,210
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,821
class Dinov2Layer(nn.Module): """This corresponds to the Block class in the original implementation.""" def __init__(self, config: Dinov2Config) -> None: super().__init__() self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = DINOV2_ATTENTION_CLASSES[config._attn_implementation](config) self.layer_scale1 = Dinov2LayerScale(config) self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_swiglu_ffn: self.mlp = Dinov2SwiGLUFFN(config) else: self.mlp = Dinov2MLP(config) self.layer_scale2 = Dinov2LayerScale(config) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] attention_output = self.layer_scale1(attention_output) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Dinov2, layernorm is also applied after self-attention layer_output = self.norm2(hidden_states) layer_output = self.mlp(layer_output) layer_output = self.layer_scale2(layer_output) # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs
class_definition
18,309
20,284
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,822
class Dinov2Encoder(nn.Module): def __init__(self, config: Dinov2Config) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
20,366
22,296
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,823
class Dinov2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Dinov2Config base_model_prefix = "dinov2" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["Dinov2SwiGLUFFN"] _supports_sdpa = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, Dinov2Embeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.cls_token.dtype)
class_definition
22,299
23,987
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,824
class Dinov2Model(Dinov2PreTrainedModel): def __init__(self, config: Dinov2Config): super().__init__(config) self.config = config self.embeddings = Dinov2Embeddings(config) self.encoder = Dinov2Encoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> Dinov2PatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = sequence_output[:, 0, :] if not return_dict: head_outputs = (sequence_output, pooled_output) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
27,274
30,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,825
class Dinov2ForImageClassification(Dinov2PreTrainedModel): def __init__(self, config: Dinov2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.dinov2 = Dinov2Model(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.dinov2( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # batch_size, sequence_length, hidden_size cls_token = sequence_output[:, 0] patch_tokens = sequence_output[:, 1:] linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1) logits = self.classifier(linear_input) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
30,875
34,660
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,826
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] self.embeddings = Dinov2Embeddings(config) self.encoder = Dinov2Encoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> Dinov2PatchEmbeddings: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") >>> model = AutoBackbone.from_pretrained( ... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"] ... ) >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) >>> feature_maps = outputs.feature_maps >>> list(feature_maps[-1].shape) [1, 768, 16, 16] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions embedding_output = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict ) hidden_states = outputs.hidden_states if return_dict else outputs[1] feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: if self.config.apply_layernorm: hidden_state = self.layernorm(hidden_state) if self.config.reshape_hidden_states: hidden_state = hidden_state[:, 1:] # this was actually a bug in the original implementation that we copied here, # cause normally the order is height, width batch_size, _, height, width = pixel_values.shape patch_size = self.config.patch_size hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_maps += (hidden_state,) if not return_dict: if output_hidden_states: output = (feature_maps,) + outputs[1:] else: output = (feature_maps,) + outputs[2:] return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions if output_attentions else None, )
class_definition
34,807
38,683
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_dinov2.py
null
9,827
class Dinov2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinov2 [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`int`, *optional*, defaults to 4): Ratio of the hidden size of the MLPs relative to the `hidden_size`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. layerscale_value (`float`, *optional*, defaults to 1.0): Initial value to use for layer scale. drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate per sample (when applied in the main path of residual layers). use_swiglu_ffn (`bool`, *optional*, defaults to `False`): Whether to use the SwiGLU feedforward neural network. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. apply_layernorm (`bool`, *optional*, defaults to `True`): Whether to apply layer normalization to the feature maps in case the model is used as backbone. reshape_hidden_states (`bool`, *optional*, defaults to `True`): Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, seq_len, hidden_size)`. Example: ```python >>> from transformers import Dinov2Config, Dinov2Model >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration >>> configuration = Dinov2Config() >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration >>> model = Dinov2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinov2" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, image_size=224, patch_size=14, num_channels=3, qkv_bias=True, layerscale_value=1.0, drop_path_rate=0.0, use_swiglu_ffn=False, out_features=None, out_indices=None, apply_layernorm=True, reshape_hidden_states=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.layerscale_value = layerscale_value self.drop_path_rate = drop_path_rate self.use_swiglu_ffn = use_swiglu_ffn self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) self.apply_layernorm = apply_layernorm self.reshape_hidden_states = reshape_hidden_states
class_definition
1,009
7,638
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/configuration_dinov2.py
null
9,828
class Dinov2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
class_definition
7,641
8,040
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/configuration_dinov2.py
null
9,829
class FlaxDinov2PatchEmbeddings(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): image_size = self.config.image_size patch_size = self.config.patch_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.num_patches = num_patches self.num_channels = self.config.num_channels self.projection = nn.Conv( self.config.hidden_size, kernel_size=patch_size, strides=patch_size, padding="VALID", dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), ) # Copied from transformers.models.vit.modeling_flax_vit.FlaxViTPatchEmbeddings.__call__ def __call__(self, pixel_values): num_channels = pixel_values.shape[-1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) batch_size, _, _, channels = embeddings.shape return jnp.reshape(embeddings, (batch_size, -1, channels))
class_definition
4,268
5,848
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,830
class FlaxDinov2Embeddings(nn.Module): """Construct the CLS token, position and patch embeddings.""" config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.cls_token = self.param( "cls_token", jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), (1, 1, self.config.hidden_size), ) self.mask_token = self.param( "mask_token", jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), (1, self.config.hidden_size), ) self.patch_embeddings = FlaxDinov2PatchEmbeddings(self.config, dtype=self.dtype) num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.param( "position_embeddings", jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), (1, num_patches + 1, self.config.hidden_size), ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def interpolate_pos_encoding(self, config, hidden_states, height, width, position_embeddings): num_patches = hidden_states.shape[1] - 1 num_positions = position_embeddings.shape[1] - 1 if num_patches == num_positions and height == width: return position_embeddings class_pos_embed = position_embeddings[:, 0] patch_pos_embed = position_embeddings[:, 1:] dim = hidden_states.shape[-1] h = height // config.patch_size w = width // config.patch_size height, width = h + 0.1, w + 0.1 patch_pos_embed = patch_pos_embed.reshape( (1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ) patch_pos_embed = jnp.transpose(patch_pos_embed, (0, 3, 1, 2)) target_dtype = patch_pos_embed.dtype new_height_ratio = jnp.float32(height / math.sqrt(num_positions)) new_width_ratio = jnp.float32(width / math.sqrt(num_positions)) scale = jnp.array([new_height_ratio, new_width_ratio], dtype=jnp.float32) translation = jnp.array([0.0, 0.0], dtype=jnp.float32) patch_pos_embed = jax.image.scale_and_translate( patch_pos_embed.astype(jnp.float32), shape=(patch_pos_embed.shape[0], patch_pos_embed.shape[1], h, w), spatial_dims=(2, 3), scale=scale, translation=translation, method="bicubic", antialias=False, ) patch_pos_embed = patch_pos_embed.astype(target_dtype) patch_pos_embed = jnp.transpose(patch_pos_embed, (0, 2, 3, 1)).reshape((hidden_states.shape[0], -1, dim)) return jnp.concatenate((class_pos_embed[jnp.newaxis, :], patch_pos_embed), axis=1) def __call__(self, pixel_values, deterministic=True): batch_size = pixel_values.shape[0] target_dtype = self.patch_embeddings.projection.dtype height, width = pixel_values.shape[1], pixel_values.shape[2] embeddings = self.patch_embeddings(pixel_values.astype(target_dtype)) cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) embeddings = embeddings + self.interpolate_pos_encoding( self.config, embeddings, height, width, self.position_embeddings ) embeddings = self.dropout(embeddings, deterministic=deterministic) return embeddings
class_definition
5,851
9,489
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,831
class FlaxDinov2SelfAttention(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:" " {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" ), use_bias=self.config.qkv_bias, ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" ), use_bias=self.config.qkv_bias, ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" ), use_bias=self.config.qkv_bias, ) def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs
class_definition
9,586
12,418
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,832
class FlaxDinov2SelfOutput(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states
class_definition
12,512
13,242
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,833
class FlaxDinov2Attention(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxDinov2SelfAttention(self.config, dtype=self.dtype) self.output = FlaxDinov2SelfOutput(self.config, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False): attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs
class_definition
13,335
14,084
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,834
class FlaxDinov2LayerScale(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.lambda1 = self.config.layerscale_value * self.param( "lambda1", jax.nn.initializers.ones, (self.config.hidden_size,), ) self.lambda1 = self.lambda1 * self.config.layerscale_value def __call__(self, hidden_states): return self.lambda1 * hidden_states
class_definition
14,190
14,670
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,835
class FlaxDinov2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" rate: float @nn.module.compact def __call__(self, inputs, deterministic: Optional[bool] = True): if self.rate == 0.0: return inputs keep_prob = 1.0 - self.rate if deterministic: return inputs else: shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets rng = self.make_rng("droppath") random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype) binary_tensor = jnp.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output
class_definition
14,768
15,565
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,836
class FlaxDinov2MLP(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.fc1 = nn.Dense( self.config.hidden_size * self.config.mlp_ratio, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), dtype=self.dtype, ) self.fc2 = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), dtype=self.dtype, ) if isinstance(self.config.hidden_act, str): self.act = ACT2FN[self.config.hidden_act] else: self.act = self.config.hidden_act def __call__(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
15,568
16,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,837
class FlaxDinov2SwiGLUFFN(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): hidden_features = int(self.config.hidden_size * self.config.mlp_ratio) hidden_features = (int(self.hidden_features * 2 / 3) + 7) // 8 * 8 self.weights_in = nn.Dense( 2 * hidden_features, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), dtype=self.dtype, ) self.weights_out = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), dtype=self.dtype, ) def __call__(self, hidden_states): hidden_states = self.weights_in(hidden_states) x1, x2 = jnp.split(hidden_states, 2, axis=-1) hidden = nn.silu(x1) * x2 return self.weights_out(hidden)
class_definition
16,643
17,707
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,838
class FlaxDinov2Layer(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.attention = FlaxDinov2Attention(self.config, dtype=self.dtype) self.layer_scale1 = FlaxDinov2LayerScale(self.config, dtype=self.dtype) self.drop_path = FlaxDinov2DropPath(self.config.drop_path_rate) self.norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) if self.config.use_swiglu_ffn: self.mlp = FlaxDinov2SwiGLUFFN(self.config, dtype=self.dtype) else: self.mlp = FlaxDinov2MLP(self.config, dtype=self.dtype) self.layer_scale2 = FlaxDinov2LayerScale(self.config, dtype=self.dtype) def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): self_attention_outputs = self.attention( self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention deterministic=deterministic, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] attention_output = self.layer_scale1(attention_output) outputs = self_attention_outputs[1:] # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Dinov2, layernorm is also applied after self-attention layer_output = self.norm2(hidden_states) layer_output = self.mlp(layer_output) layer_output = self.layer_scale2(layer_output) # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs
class_definition
17,710
19,552
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,839
class FlaxDinov2LayerCollection(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxDinov2Layer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
19,651
21,054
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,840
class FlaxDinov2Encoder(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxDinov2LayerCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
class_definition
21,145
21,836
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,841
class FlaxDinov2PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Dinov2Config base_model_prefix = "dinov2" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: Dinov2Config, input_shape=None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) params_rng, dropout_rng = jax.random.split(rng) dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng} random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs["dropout"] = dropout_rng rngs["droppath"] = droppath_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, )
class_definition
21,839
24,969
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,842
class FlaxDinov2Module(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embeddings = FlaxDinov2Embeddings(self.config, dtype=self.dtype) self.encoder = FlaxDinov2Encoder(self.config, dtype=self.dtype) self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__( self, pixel_values, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings(pixel_values, deterministic=deterministic) encoder_outputs = self.encoder( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = sequence_output[:, 0, :] if not return_dict: head_outputs = (sequence_output, pooled_output) return head_outputs + encoder_outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
24,972
26,472
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,843
class FlaxDinov2Model(FlaxDinov2PreTrainedModel): module_class = FlaxDinov2Module
class_definition
26,632
26,717
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,844
class FlaxDinov2ForImageClassificationModule(nn.Module): config: Dinov2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.dinov2 = FlaxDinov2Module(config=self.config, dtype=self.dtype) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( self.config.initializer_range**2, "fan_in", "truncated_normal" ), ) def __call__( self, pixel_values=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.dinov2( pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] cls_token = hidden_states[:, 0] patch_tokens = hidden_states[:, 1:] linear_input = jnp.concatenate([cls_token, patch_tokens.mean(axis=1)], axis=-1) logits = self.classifier(linear_input) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
27,584
29,139
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,845
class FlaxDinov2ForImageClassification(FlaxDinov2PreTrainedModel): module_class = FlaxDinov2ForImageClassificationModule
class_definition
29,374
29,498
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinov2/modeling_flax_dinov2.py
null
9,846
class LiltConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LiLT [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LiltModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. channel_shrink_ratio (`int`, *optional*, defaults to 4): The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the 2D position embedding might ever be used with. Typically set this to something large just in case (e.g., 1024). Examples: ```python >>> from transformers import LiltConfig, LiltModel >>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration >>> configuration = LiltConfig() >>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration >>> model = LiltModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "lilt" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", classifier_dropout=None, channel_shrink_ratio=4, max_2d_position_embeddings=1024, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.classifier_dropout = classifier_dropout self.channel_shrink_ratio = channel_shrink_ratio self.max_2d_position_embeddings = max_2d_position_embeddings
class_definition
775
6,693
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/configuration_lilt.py
null
9,847
class LiltTextEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings, position_ids def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Args: Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ Args: We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape)
class_definition
1,442
5,403
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,848
class LiltLayoutEmbeddings(nn.Module): def __init__(self, config): super().__init__() # we divide the hidden_size by 6 here as there are 6 different layout embeddings, # namely left_position, upper_position, right_position, lower_position, height, width self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.padding_idx = config.pad_token_id self.box_position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size // config.channel_shrink_ratio, padding_idx=self.padding_idx, ) self.box_linear_embeddings = nn.Linear( in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio ) self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, bbox=None, position_ids=None): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings) box_position_embeddings = self.box_position_embeddings(position_ids) spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings) spatial_position_embeddings = self.dropout(spatial_position_embeddings) return spatial_position_embeddings
class_definition
5,406
8,265
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,849
class LiltSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.layout_query = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_key = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_value = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.channel_shrink_ratio = config.channel_shrink_ratio def transpose_for_scores(self, x, r=1): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, layout_inputs, attention_mask=None, head_mask=None, output_attentions=False, ): layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio) layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio) layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size) tmp_layout_attention_scores = layout_attention_scores / math.sqrt( self.attention_head_size // self.channel_shrink_ratio ) attention_scores = tmp_attention_scores + tmp_layout_attention_scores layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) layout_attention_scores = layout_attention_scores + attention_mask # Normalize the attention scores to probabilities. layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. layout_attention_probs = self.dropout(layout_attention_probs) # Mask heads if we want to if head_mask is not None: layout_attention_probs = layout_attention_probs * head_mask layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer) layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,) layout_context_layer = layout_context_layer.view(*new_context_layer_shape) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( ((context_layer, layout_context_layer), attention_probs) if output_attentions else ((context_layer, layout_context_layer),) ) return outputs
class_definition
8,268
15,424
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,850
class LiltSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
15,495
16,101
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,851
class LiltAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type) self.output = LiltSelfOutput(config) self.pruned_heads = set() ori_hidden_size = config.hidden_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio self.layout_output = LiltSelfOutput(config) config.hidden_size = ori_hidden_size # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0][0], hidden_states) layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs) outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
16,104
18,344
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,852
class LiltIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
18,417
18,982
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,853
class LiltOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
19,049
19,657
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,854
class LiltLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LiltAttention(config) self.intermediate = LiltIntermediate(config) self.output = LiltOutput(config) ori_hidden_size = config.hidden_size ori_intermediate_size = config.intermediate_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio self.layout_intermediate = LiltIntermediate(config) self.layout_output = LiltOutput(config) config.hidden_size = ori_hidden_size config.intermediate_size = ori_intermediate_size def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_attention_outputs = self.attention( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0][0] layout_attention_output = self_attention_outputs[0][1] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) layout_layer_output = apply_chunking_to_forward( self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output ) outputs = ((layer_output, layout_layer_output),) + outputs return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def layout_feed_forward_chunk(self, attention_output): intermediate_output = self.layout_intermediate(attention_output) layer_output = self.layout_output(intermediate_output, attention_output) return layer_output
class_definition
19,660
22,189
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,855
class LiltEncoder(nn.Module): # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layout_inputs, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module( hidden_states, layout_inputs, attention_mask, layer_head_mask, output_attentions, ) hidden_states = layer_outputs[0][0] layout_inputs = layer_outputs[0][1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
22,192
24,749
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,856
class LiltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
24,816
25,375
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,857
class LiltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LiltConfig base_model_prefix = "lilt" supports_gradient_checkpointing = True _no_split_modules = [] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
25,378
26,600
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,858
class LiltModel(LiltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = LiltTextEmbeddings(config) self.layout_embeddings = LiltLayoutEmbeddings(config) self.encoder = LiltEncoder(config) self.pooler = LiltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if bbox is None: bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, position_ids = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids) encoder_outputs = self.encoder( embedding_output, layout_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
30,768
36,897
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,859
class LiltForSequenceClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.lilt = LiltModel(config, add_pooling_layer=False) self.classifier = LiltClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_idx = outputs.logits.argmax(-1).item() >>> predicted_class = model.config.id2label[predicted_class_idx] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
37,119
42,014
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,860
class LiltForTokenClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_indices = outputs.logits.argmax(-1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
42,243
46,155
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,861
class LiltClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x
class_definition
46,262
47,032
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,862
class LiltForQuestionAnswering(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] >>> predicted_answer = tokenizer.decode(predict_answer_tokens) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,319
52,703
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/lilt/modeling_lilt.py
null
9,863
class LlamaTokenizer(PreTrainedTokenizer): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Llama should be used. spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to add spaces between special tokens. legacy (`bool`, *optional*): Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. Make sure to also set `from_slow` to `True`. A simple example: - `legacy=True`: ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) >>> tokenizer.encode("Hello <s>.") # 869 is '▁.' [1, 15043, 29871, 1, 869] ``` - `legacy=False`: ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) >>> tokenizer.encode("Hello <s>.") # 29889 is '.' [1, 15043, 29871, 1, 29889] ``` Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. add_prefix_space (`bool`, *optional*, defaults to `True`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. Again, this should be set with `from_slow=True` to make sure it's taken into account. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, use_default_system_prompt=False, spaces_between_special_tokens=False, legacy=None, add_prefix_space=True, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token if legacy is None: logger.warning_once( f"You are using the default legacy behaviour of the {self.__class__}. This is" " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" " means, and thoroughly read the reason why this was added as explained in" " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" " you can ignore this message" ) legacy = True self.legacy = legacy self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.use_default_system_prompt = use_default_system_prompt self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) self.add_prefix_space = add_prefix_space super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs, clean_up_tokenization_spaces=clean_up_tokenization_spaces, use_default_system_prompt=use_default_system_prompt, spaces_between_special_tokens=spaces_between_special_tokens, legacy=legacy, add_prefix_space=add_prefix_space, **kwargs, ) @property def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor def get_spm_processor(self, from_slow=False): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) if self.legacy or from_slow: # no dependency on protobuf tokenizer.Load(self.vocab_file) return tokenizer with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__.update(d) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def vocab_size(self): """Returns vocab size""" return self.sp_model.get_piece_size() def get_vocab(self): """Returns vocab as a dict""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize def tokenize(self, text: "TextInput", **kwargs) -> List[str]: """ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the first token is special. """ if self.legacy or len(text) == 0: return super().tokenize(text, **kwargs) text = text.replace(SPIECE_UNDERLINE, " ") if self.add_prefix_space: text = SPIECE_UNDERLINE + text tokens = super().tokenize(text, **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): return self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" # since we manually add the prefix space, we have to remove it when decoding if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: tokens[0] = tokens[0][1:] current_sub_tokens = [] out_string = "" prev_is_special = False for i, token in enumerate(tokens): # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special and i != 0 and self.legacy: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE): out_string += " " current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return ( bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id ) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) if token_ids_1 is not None: output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) return output
class_definition
2,091
18,634
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/tokenization_llama.py
null
9,864
class LlamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LLaMA-7B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, Llama 2 up to 4096, CodeLlama up to 16384. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. head_dim (`int`, *optional*): The attention head dimension. If None, it will default to hidden_size // num_attention_heads ```python >>> from transformers import LlamaModel, LlamaConfig >>> # Initializing a LLaMA llama-7b style configuration >>> configuration = LlamaConfig() >>> # Initializing a model from the llama-7b style configuration >>> model = LlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llama" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `LlamaModel` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, head_dim=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, copy it it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
1,076
11,732
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/configuration_llama.py
null
9,865
class FlaxLlamaRMSNorm(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.epsilon = self.config.rms_norm_eps self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size) def __call__(self, hidden_states): variance = jnp.asarray(hidden_states, dtype=jnp.float32) variance = jnp.power(variance, 2) variance = variance.mean(-1, keepdims=True) # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt` hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon) return self.weight * jnp.asarray(hidden_states, dtype=self.dtype)
class_definition
7,414
8,106
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,866
class FlaxLlamaRotaryEmbedding(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): head_dim = self.config.hidden_size // self.config.num_attention_heads self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim) def __call__(self, key, query, position_ids): sincos = self.sincos[position_ids] sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1) key = apply_rotary_pos_emb(key, sin_pos, cos_pos) query = apply_rotary_pos_emb(query, sin_pos, cos_pos) key = jnp.asarray(key, dtype=self.dtype) query = jnp.asarray(query, dtype=self.dtype) return key, query
class_definition
8,109
8,809
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,867
class FlaxLlamaAttention(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 causal: bool = True is_cross_attention: bool = False def setup(self): config = self.config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 dense = partial( nn.Dense, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.q_proj = dense(self.num_heads * self.head_dim) self.k_proj = dense(self.num_key_value_heads * self.head_dim) self.v_proj = dense(self.num_key_value_heads * self.head_dim) self.o_proj = dense(self.embed_dim) self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") self.rotary_emb = FlaxLlamaRotaryEmbedding(config, dtype=self.dtype) def _split_heads(self, hidden_states, num_heads): return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query, self.num_heads) key = self._split_heads(key, self.num_key_value_heads) value = self._split_heads(value, self.num_key_value_heads) key, query = self.rotary_emb(key, query, position_ids) query_length, key_length = query.shape[1], key.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) dropout_rng = None if not deterministic and self.config.attention_dropout > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) key = jnp.repeat(key, self.num_key_value_groups, axis=2) value = jnp.repeat(value, self.num_key_value_groups, axis=2) # transform boolean mask into float mask attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) # usual dot product attention attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_dropout, deterministic=deterministic, dtype=attention_dtype, ) if self.attention_softmax_in_fp32: attn_weights = attn_weights.astype(self.dtype) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.o_proj(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs
class_definition
8,812
15,617
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,868
class FlaxLlamaMLP(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim kernel_init = jax.nn.initializers.normal(self.config.initializer_range) self.act = ACT2FN[self.config.hidden_act] self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) def __call__(self, hidden_states): up_proj_states = self.up_proj(hidden_states) gate_states = self.act(self.gate_proj(hidden_states)) hidden_states = self.down_proj(up_proj_states * gate_states) return hidden_states
class_definition
15,620
16,585
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,869
class FlaxLlamaDecoderLayer(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.input_layernorm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype) self.self_attn = FlaxLlamaAttention(self.config, dtype=self.dtype) self.post_attention_layernorm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype) self.mlp = FlaxLlamaMLP(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) outputs = self.self_attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) # residual connection attn_output = outputs[0] hidden_states = residual + attn_output residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + hidden_states return (hidden_states,) + outputs[1:]
class_definition
16,588
18,001
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,870
class FlaxLlamaPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LlamaConfig base_model_prefix = "model" module_class: nn.Module = None def __init__( self, config: LlamaConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxLlamaAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs
class_definition
18,149
23,462
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,871
class FlaxLlamaLayerCollection(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.blocks = [ FlaxLlamaDecoderLayer(self.config, dtype=self.dtype, name=str(i)) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxLlamaModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs
class_definition
23,465
24,940
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,872
class FlaxLlamaModule(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.hidden_size = self.config.hidden_size embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) self.embed_tokens = nn.Embed( self.config.vocab_size, self.hidden_size, embedding_init=embedding_init, dtype=self.dtype, ) self.layers = FlaxLlamaLayerCollection(self.config, dtype=self.dtype) self.norm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.embed_tokens(input_ids.astype("i4")) outputs = self.layers( input_embeds, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], )
class_definition
24,943
26,835
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,873
class FlaxLlamaModel(FlaxLlamaPreTrainedModel): module_class = FlaxLlamaModule
class_definition
26,993
27,075
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,874
class FlaxLlamaForCausalLMModule(nn.Module): config: LlamaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxLlamaModule(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.model( input_ids, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
class_definition
27,249
28,615
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,875
class FlaxLlamaForCausalLM(FlaxLlamaPreTrainedModel): module_class = FlaxLlamaForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since Llama uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs
class_definition
28,867
30,392
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_flax_llama.py
null
9,876
class Llama3Converter(TikTokenConverter): def __init__(self, vocab_file, special_tokens=None, instruct=False, llama_version="3.2", **kwargs): super().__init__(vocab_file, additional_special_tokens=special_tokens, **kwargs) tokenizer = self.converted() # References for chat templates in instruct models templates_for_version = { "2": ("meta-llama/Llama-2-7b-chat-hf", "f5db02db724555f92da89c216ac04704f23d4590"), "3": ("meta-llama/Meta-Llama-3-8B-Instruct", "5f0b02c75b57c5855da9ae460ce51323ea669d8a"), "3.1": ("meta-llama/Llama-3.1-8B-Instruct", "0e9e39f249a16976918f6564b8830bc894c89659"), "3.2": ("meta-llama/Llama-3.2-1B-Instruct", "e9f8effbab1cbdc515c11ee6e098e3d5a9f51e14"), "Guard-3": ("meta-llama/Llama-Guard-3-1B", "acf7aafa60f0410f8f42b1fa35e077d705892029"), } # Add chat_template only if instruct is True. # Prevents a null chat_template, which triggers # a parsing warning in the Hub. additional_kwargs = {} if instruct or llama_version in ["Guard-3"]: model_id, revision = templates_for_version.get(llama_version, (None, None)) if model_id is not None: from transformers import AutoTokenizer t = AutoTokenizer.from_pretrained(model_id, revision=revision) additional_kwargs["chat_template"] = t.chat_template self.converted_tokenizer = PreTrainedTokenizerFast( tokenizer_object=tokenizer, bos_token="<|begin_of_text|>", eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>", model_input_names=["input_ids", "attention_mask"], model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version], clean_up_tokenization_spaces=True, **additional_kwargs, ) self.update_post_processor(self.converted_tokenizer) # finer special_tokens_map.json self.converted_tokenizer._bos_token = BOS_ADDED_TOKEN self.converted_tokenizer._eos_token = EOT_ADDED_TOKEN if instruct else EOS_ADDED_TOKEN # We can't do this while building the tokenizer because we have no easy access to the bos token id def update_post_processor(self, tokenizer): tokenizer._tokenizer.post_processor = processors.Sequence( [ processors.ByteLevel(trim_offsets=False), processors.TemplateProcessing( single="<|begin_of_text|> $A", pair="<|begin_of_text|>:0 $A:0 <|begin_of_text|>:1 $B:1", special_tokens=[ ("<|begin_of_text|>", tokenizer.convert_tokens_to_ids("<|begin_of_text|>")), ], ), ] )
class_definition
16,966
19,778
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py
null
9,877
class LlamaTokenizerFast(PreTrainedTokenizerFast): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. This uses notably ByteFallback and no normalization. ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") >>> tokenizer.encode("Hello this is a test") [1, 15043, 445, 338, 263, 1243] ``` If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the values of the first token and final token of an encoded sequence will not be correct). For more details, checkout [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that contains the vocabulary necessary to instantiate a tokenizer. tokenizer_file (`str`, *optional*): [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): The end of sequence token. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Llama should be used legacy (`bool`, *optional*): Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. Make sure to also set `from_slow` to `True`. A simple example: - `legacy=True`: ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True) >>> tokenizer.encode("Hello <s>.") # 869 is '▁.' [1, 15043, 29871, 1, 869] ``` - `legacy=False`: ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True) >>> tokenizer.encode("Hello <s>.") # 29889 is '.' [1, 15043, 29871, 1, 29889] ``` Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. add_prefix_space (`bool`, *optional*): Whether or not the tokenizer should automatically add a prefix space """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = LlamaTokenizer padding_side = "left" model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, clean_up_tokenization_spaces=False, unk_token="<unk>", bos_token="<s>", eos_token="</s>", add_bos_token=True, add_eos_token=False, use_default_system_prompt=False, legacy=None, add_prefix_space=None, **kwargs, ): if legacy is None: logger.warning_once( f"You are using the default legacy behaviour of the {self.__class__}. This is" " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" " means, and thoroughly read the reason why this was added as explained in" " https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file" " you can ignore this message." ) legacy = True self.legacy = legacy if add_prefix_space is not None: kwargs["from_slow"] = True super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, clean_up_tokenization_spaces=clean_up_tokenization_spaces, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, use_default_system_prompt=use_default_system_prompt, add_prefix_space=add_prefix_space, legacy=legacy, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.update_post_processor() self.use_default_system_prompt = use_default_system_prompt self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def update_post_processor(self): """ Updates the underlying post processor with the current `bos_token` and `eos_token`. """ bos = self.bos_token bos_token_id = self.bos_token_id if bos is None and self.add_bos_token: raise ValueError("add_bos_token = True but bos_token = None") eos = self.eos_token eos_token_id = self.eos_token_id if eos is None and self.add_eos_token: raise ValueError("add_eos_token = True but eos_token = None") single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" special_tokens = [] if self.add_bos_token: special_tokens.append((bos, bos_token_id)) if self.add_eos_token: special_tokens.append((eos, eos_token_id)) self._tokenizer.post_processor = processors.TemplateProcessing( single=single, pair=pair, special_tokens=special_tokens ) @property def add_eos_token(self): return self._add_eos_token @property def add_bos_token(self): return self._add_bos_token @add_eos_token.setter def add_eos_token(self, value): self._add_eos_token = value self.update_post_processor() @add_bos_token.setter def add_bos_token(self, value): self._add_bos_token = value self.update_post_processor() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output
class_definition
1,817
11,146
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/tokenization_llama_fast.py
null
9,878
class LlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ LlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
2,083
2,803
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,879
class LlamaRotaryEmbedding(nn.Module): def __init__(self, config: LlamaConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
2,850
6,045
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,880
class LlamaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
7,773
8,471
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,881
class LlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: LlamaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
10,025
13,592
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,882
class LlamaDecoderLayer(nn.Module): def __init__(self, config: LlamaConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx) self.mlp = LlamaMLP(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
13,595
15,665
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,883
class LlamaPreTrainedModel(PreTrainedModel): config_class = LlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlamaDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
16,687
17,610
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,884
class LlamaModel(LlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] Args: config: LlamaConfig """ def __init__(self, config: LlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
22,414
33,639
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,885
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
33,642
33,704
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,886
class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = LlamaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
33,707
38,834
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,887
class LlamaForSequenceClassification(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = LlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
39,627
43,439
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,888
class LlamaForQuestionAnswering(LlamaPreTrainedModel): base_model_prefix = "transformer" # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama def __init__(self, config): super().__init__(config) self.transformer = LlamaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.transformer.embed_tokens def set_input_embeddings(self, value): self.transformer.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,735
47,239
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,889
class LlamaForTokenClassification(LlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = LlamaModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,486
50,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/llama/modeling_llama.py
null
9,890
class WhisperTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. normalizer_file (`str`, *optional*): Path to the normalizer_file file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Whisper tokenizer detect beginning of words by the preceding space). language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = WhisperTokenizer def __init__( self, vocab_file=None, merges_file=None, normalizer_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>") self.language = language self.task = task self.predict_timestamps = predict_timestamps # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps def _decode_with_timestamps( self, token_ids, skip_special_tokens=False, time_precision=0.02, segment_size=1500 ) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] cur_max_timestamp = 0.0 prev_segments_len = 0.0 penultimate_timestamp = 0.0 for i, token in enumerate(token_ids): if token >= timestamp_begin: timestamp = float((token - timestamp_begin) * time_precision) if timestamp < cur_max_timestamp: # next segment has started last_was_single_ending = i >= 2 and not ( token_ids[i - 1] >= timestamp_begin and token_ids[i - 2] >= timestamp_begin ) if last_was_single_ending: prev_segments_len += time_precision * segment_size else: cur_max_timestamp = penultimate_timestamp prev_segments_len += penultimate_timestamp outputs = outputs[:-2] penultimate_timestamp = cur_max_timestamp cur_max_timestamp = timestamp outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>") outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets def _compute_offsets(self, token_ids, time_precision=0.02, segment_size=1500): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. segment_size (`int`, *optional*, defaults to 1500): The number of features in the input mel spectrogram. """ offsets = [] # ensure torch tensor of token ids is placed on cpu if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)): token_ids = token_ids.cpu() token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] cur_max_timestamp = 0 prev_segments_len = 0 for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin if start_timestamp_position < cur_max_timestamp: # next segment has started is_single_ending = last_slice >= 2 and not ( token_ids[last_slice - 2] >= timestamp_begin and token_ids[last_slice - 1] >= timestamp_begin ) if is_single_ending: prev_segments_len += segment_size else: prev_segments_len += cur_max_timestamp cur_max_timestamp = end_timestamp_position # strip timestamp tokens from the text output sliced_tokens = self._preprocess_token_ids(sliced_tokens) text = self._decode(sliced_tokens) text = self._filter_timestamp_ids(text) offsets.append( { "text": text, "timestamp": ( start_timestamp_position * time_precision + prev_segments_len * time_precision, end_timestamp_position * time_precision + prev_segments_len * time_precision, ), } ) last_slice = current_slice return offsets @lru_cache # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids def timestamp_ids(self, time_precision=0.02): """ Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache. Args: time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. """ return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False): """ Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be removed. """ if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) return token_ids # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids def _filter_timestamp_ids(self, token_ids): return re.sub(self.timestamp_pat, "", token_ids) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision: float = 0.02, decode_with_timestamps: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. Will remove the previous tokens (pre-prompt) if present. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. If there are previous tokens (pre-prompt) to decode, they will only appear in the decoded text if they contain timestamp tokens. time_precision (`float`, *optional*, defaults to 0.02): The time ratio to convert from token to time. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the English text normalizer to the decoded text. Only applicable when the target text is in English. Otherwise, the basic text normalizer should be applied. basic_normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual target text. remove_diacritics (`bool`, *optional*, defaults to `False`): Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may destroy information in the decoded text, hence it should be used with caution. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ filtered_ids = self._preprocess_token_ids( token_ids, skip_special_tokens=skip_special_tokens, ) text = super().decode( filtered_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, normalize=normalize, basic_normalize=basic_normalize, remove_diacritics=remove_diacritics, **kwargs, ) if decode_with_timestamps: # legacy method to decode timestamps when not included in the tokenizer vocabulary text = self._decode_with_timestamps( filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) else: text = self._filter_timestamp_ids(text) # retrieve offsets if output_offsets: offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs ) -> str: text = super()._decode(*args, **kwargs) if normalize: clean_text = self._normalize(text) return clean_text elif basic_normalize: clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics) return clean_text else: return text # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize def _normalize(self, text): warnings.warn( "The private method `_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper English normalizer using the `normalize` method." ) return self.normalize(text) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize def _basic_normalize(self, text, remove_diacritics=False): warnings.warn( "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method." ) return self.basic_normalize(text, remove_diacritics=remove_diacritics) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize def normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize def basic_normalize(text, remove_diacritics=False): """ Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on multilingual text. """ normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics) return normalizer(text) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return tuple(files) + (normalizer_file,) def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps prefix_token_ids = self.prefix_tokens prefixes = self.convert_ids_to_tokens(prefix_token_ids) eos = self.eos_token eos_token_id = self.eos_token_id prefix_template = " ".join([f"{token}:0" for token in prefixes]) self.backend_tokenizer.post_processor = processors.TemplateProcessing( single=f"{prefix_template} $A:0 {eos}:0", pair=f"{prefix_template} $A:0 $B:1 {eos}:1", special_tokens=[ (eos, eos_token_id), *zip(prefixes, prefix_token_ids), ], ) @property # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens def prefix_tokens(self) -> List[int]: bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") translate_token_id = self.convert_tokens_to_ids("<|translate|>") transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>") notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>") langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt def _strip_prompt(self, token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): if not isinstance(token_ids, list): token_ids = self._convert_to_list(token_ids) # handle case of empty token_ids for decoding with timestamps. # at this point token_ids is a list, so it is safe to use if not check. if not token_ids: return token_ids has_prompt = token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._convert_to_list def _convert_to_list(token_ids): # convert type to ndarray if necessary if hasattr(token_ids, "numpy"): if "torch" in str(type(token_ids)): token_ids = token_ids.cpu().numpy() elif "tensorflow" in str(type(token_ids)): token_ids = token_ids.numpy() elif "jaxlib" in str(type(token_ids)): token_ids = token_ids.tolist() # now the token ids are either a numpy array, or a list of lists if isinstance(token_ids, np.ndarray): token_ids = token_ids.tolist() return token_ids
class_definition
1,392
30,205
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/tokenization_whisper_fast.py
null
9,891
class WhisperProcessor(ProcessorMixin): r""" Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single processor. [`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information. Args: feature_extractor (`WhisperFeatureExtractor`): An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input. tokenizer (`WhisperTokenizer`): An instance of [`WhisperTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "WhisperFeatureExtractor" tokenizer_class = "WhisperTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def __call__(self, *args, **kwargs): """ Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text` argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def get_prompt_ids(self, text: str, return_tensors="np"): return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
class_definition
698
3,889
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/processing_whisper.py
null
9,892
class WhisperPositionalEmbedding(nn.Embedding): def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__(num_positions, embedding_dim) def forward(self, input_ids, past_key_values_length=0, position_ids=None): if position_ids is None: return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]] else: return self.weight[position_ids]
class_definition
8,451
8,925
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,893
class WhisperAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, layer_idx: Optional[int] = None, config: Optional[WhisperConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal if layer_idx is None and is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.layer_idx = layer_idx self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_probs, value_states) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights, past_key_value
class_definition
8,928
14,745
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,894
class WhisperFlashAttention2(WhisperAttention): """ Whisper flash attention module. This module inherits from `WhisperAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" ) # WhisperFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("WhisperFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] # We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, : key_states.shape[-2]] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, causal_mask, tgt_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, tgt_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
14,748
21,148
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,895
class WhisperSdpaAttention(WhisperAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "WhisperModel is using WhisperSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, cache_position=cache_position, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache past_key_value.is_updated[self.layer_idx] = True past_key_value = past_key_value.cross_attention_cache else: past_key_value = past_key_value.self_attention_cache # use key_value_states if cross attention current_states = key_value_states if key_value_states is not None else hidden_states if is_cross_attention and past_key_value and is_updated: # reuse k,v, cross_attentions key_states = past_key_value.key_cache[self.layer_idx] value_states = past_key_value.value_cache[self.layer_idx] else: key_states = self._shape(self.k_proj(current_states), -1, bsz) value_states = self._shape(self.v_proj(current_states), -1, bsz) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value
class_definition
21,151
26,540
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,896
class WhisperEncoderLayer(nn.Module): def __init__(self, config: WhisperConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
26,800
29,941
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,897
class WhisperDecoderLayer(nn.Module): def __init__(self, config: WhisperConfig, layer_idx: int = None): super().__init__() self.embed_dim = config.d_model self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, layer_idx=layer_idx, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, layer_idx=layer_idx, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[EncoderDecoderCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, cache_position: Optional[torch.LongTensor] = None, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 1 of present_key_value tuple present_key_value = (present_key_value, cross_attn_present_key_value) # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
29,944
35,487
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,898
class WhisperPreTrainedModel(PreTrainedModel): config_class = WhisperConfig base_model_prefix = "model" main_input_name = "input_features" supports_gradient_checkpointing = True _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, WhisperEncoder): with torch.no_grad(): embed_positions = module.embed_positions.weight embed_positions.copy_(sinusoids(*embed_positions.shape)) def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths
class_definition
35,490
36,835
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/whisper/modeling_whisper.py
null
9,899