text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class ClapTextModel(ClapPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ config_class = ClapTextConfig def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ClapTextEmbeddings(config) self.encoder = ClapTextEncoder(config) self.pooler = ClapTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
80,676
89,272
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,400
class ClapModel(ClapPreTrainedModel): config_class = ClapConfig def __init__(self, config: ClapConfig): super().__init__(config) if not isinstance(config.text_config, ClapTextConfig): raise TypeError( "config.text_config is expected to be of type ClapTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.audio_config, ClapAudioConfig): raise TypeError( "config.audio_config is expected to be of type ClapAudioConfig but is of type" f" {type(config.audio_config)}." ) text_config = config.text_config audio_config = config.audio_config self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) self.projection_dim = config.projection_dim self.text_model = ClapTextModel(text_config) self.text_projection = ClapProjectionLayer(text_config) self.audio_model = ClapAudioModel(audio_config) self.audio_projection = ClapProjectionLayer(audio_config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, ClapModel >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output text_features = self.text_projection(pooled_output) text_features = F.normalize(text_features, dim=-1) return text_features @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) def get_audio_features( self, input_features: Optional[torch.Tensor] = None, is_longer: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. Examples: ```python >>> from transformers import AutoFeatureExtractor, ClapModel >>> import torch >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") >>> random_audio = torch.rand((16_000)) >>> inputs = feature_extractor(random_audio, return_tensors="pt") >>> audio_features = model.get_audio_features(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, return_dict=return_dict, ) pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_features = self.audio_projection(pooled_output) audio_features = F.normalize(audio_features, dim=-1) return audio_features @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoProcessor, ClapModel >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities ```""" # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_embeds = self.audio_projection(audio_embeds) text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output text_embeds = self.text_projection(text_embeds) # normalized features audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale_text = self.logit_scale_t.exp() logit_scale_audio = self.logit_scale_a.exp() logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio loss = None if return_loss: caption_loss = contrastive_loss(logits_per_text) audio_loss = contrastive_loss(logits_per_audio.t()) loss = (caption_loss + audio_loss) / 2.0 if not return_dict: output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) return ((loss,) + output) if loss is not None else output return ClapOutput( loss=loss, logits_per_audio=logits_per_audio, logits_per_text=logits_per_text, text_embeds=text_embeds, audio_embeds=audio_embeds, text_model_output=text_outputs, audio_model_output=audio_outputs, )
class_definition
89,319
98,955
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,401
class ClapTextModelWithProjection(ClapPreTrainedModel): config_class = ClapTextConfig def __init__(self, config: ClapTextConfig): super().__init__(config) self.text_model = ClapTextModel(config) self.text_projection = ClapProjectionLayer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.word_embeddings def set_input_embeddings(self, value): self.text_model.embeddings.word_embeddings = value @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapTextModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, ClapTextModelWithProjection >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> text_embeds = outputs.text_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output text_embeds = self.text_projection(pooled_output) if not return_dict: outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] return tuple(output for output in outputs if output is not None) return ClapTextModelOutput( text_embeds=text_embeds, last_hidden_state=text_outputs.last_hidden_state, hidden_states=text_outputs.hidden_states, attentions=text_outputs.attentions, )
class_definition
99,123
101,748
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,402
class ClapAudioModelWithProjection(ClapPreTrainedModel): config_class = ClapAudioConfig main_input_name = "input_features" def __init__(self, config: ClapAudioConfig): super().__init__(config) self.audio_model = ClapAudioModel(config) self.audio_projection = ClapProjectionLayer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.audio_model.audio_encoder.patch_embed.proj @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) def forward( self, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ClapAudioModelOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import ClapAudioModelWithProjection, ClapProcessor >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> inputs = processor(audios=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> audio_embeds = outputs.audio_embeds ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) audio_outputs = self.audio_model( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output audio_embeds = self.audio_projection(pooled_output) if not return_dict: outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] return tuple(output for output in outputs if output is not None) return ClapAudioModelOutput( audio_embeds=audio_embeds, last_hidden_state=audio_outputs.last_hidden_state, attentions=audio_outputs.attentions, hidden_states=audio_outputs.hidden_states, )
class_definition
101,917
104,850
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,403
class ClapProcessor(ProcessorMixin): r""" Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. Args: feature_extractor ([`ClapFeatureExtractor`]): The audio processor is a required input. tokenizer ([`RobertaTokenizerFast`]): The tokenizer is a required input. """ feature_extractor_class = "ClapFeatureExtractor" tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. """ sampling_rate = kwargs.pop("sampling_rate", None) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if audios is not None: audio_features = self.feature_extractor( audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs ) if text is not None and audios is not None: encoding.update(audio_features) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
class_definition
752
5,677
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/processing_clap.py
null
7,404
class ClapTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLAP [calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ClapTextModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`, `"relu"`, `"silu"` and `"relu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`]. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. projection_dim (`int`, *optional*, defaults to 512) Dimension of the projection head of the `ClapTextModelWithProjection`. Examples: ```python >>> from transformers import ClapTextConfig, ClapTextModel >>> # Initializing a CLAP text configuration >>> configuration = ClapTextConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = ClapTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clap_text_model" base_config_key = "text_config" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, initializer_factor=1.0, layer_norm_eps=1e-12, projection_dim=512, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, projection_hidden_act="relu", **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.projection_hidden_act = projection_hidden_act self.projection_dim = projection_dim
class_definition
781
6,794
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/configuration_clap.py
null
7,405
class ClapAudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: window_size (`int`, *optional*, defaults to 8): Image size of the spectrogram num_mel_bins (`int`, *optional*, defaults to 64): Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class. spec_size (`int`, *optional*, defaults to 256): Desired input size of the spectrogram that the model supports. It can be different from the output of the `ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size` of the audio models. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. patch_size (`int`, *optional*, defaults to 4): Patch size for the audio spectrogram patch_stride (`list`, *optional*, defaults to `[4, 4]`): Patch stride for the audio spectrogram num_classes (`int`, *optional*, defaults to 527): Number of classes used for the head training hidden_size (`int`, *optional*, defaults to 768): Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's output,which is sent to the projection MLP layer. projection_dim (`int`, *optional*, defaults to 512): Hidden size of the projection layer. depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): Depths used for the Swin Layers of the audio model num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`): Number of attention heads used for the Swin Layers of the audio model enable_fusion (`bool`, *optional*, defaults to `False`): Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the best results. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the encoder. fusion_type (`[type]`, *optional*): Fusion type used for the patch fusion. patch_embed_input_channels (`int`, *optional*, defaults to 1): Number of channels used for the input spectrogram flatten_patch_embeds (`bool`, *optional*, defaults to `True`): Whether or not to flatten the patch embeddings patch_embeds_hidden_size (`int`, *optional*, defaults to 96): Hidden size of the patch embeddings. It is used as the number of output channels. enable_patch_layer_norm (`bool`, *optional*, defaults to `True`): Whether or not to enable layer normalization for the patch embeddings drop_path_rate (`float`, *optional*, defaults to 0.0): Drop path rate for the patch fusion attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not to add a bias to the query, key, value projections. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of the mlp hidden dim to embedding dim. aff_block_r (`int`, *optional*, defaults to 4): downsize_ratio used in the AudioFF block num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the Transformer encoder. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. layer_norm_eps (`[type]`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import ClapAudioConfig, ClapAudioModel >>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration >>> configuration = ClapAudioConfig() >>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration >>> model = ClapAudioModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clap_audio_model" base_config_key = "audio_config" def __init__( self, window_size=8, num_mel_bins=64, spec_size=256, hidden_act="gelu", patch_size=4, patch_stride=[4, 4], num_classes=527, hidden_size=768, projection_dim=512, depths=[2, 2, 6, 2], num_attention_heads=[4, 8, 16, 32], enable_fusion=False, hidden_dropout_prob=0.1, fusion_type=None, patch_embed_input_channels=1, flatten_patch_embeds=True, patch_embeds_hidden_size=96, enable_patch_layer_norm=True, drop_path_rate=0.0, attention_probs_dropout_prob=0.0, qkv_bias=True, mlp_ratio=4.0, aff_block_r=4, num_hidden_layers=4, projection_hidden_act="relu", layer_norm_eps=1e-5, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.window_size = window_size self.num_mel_bins = num_mel_bins self.spec_size = spec_size self.patch_size = patch_size self.patch_stride = patch_stride self.num_classes = num_classes self.hidden_size = hidden_size self.depths = depths self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.window_size = window_size self.enable_fusion = enable_fusion self.fusion_type = fusion_type self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.projection_dim = projection_dim self.flatten_patch_embeds = flatten_patch_embeds self.patch_embeds_hidden_size = patch_embeds_hidden_size self.enable_patch_layer_norm = enable_patch_layer_norm self.drop_path_rate = drop_path_rate self.attention_probs_dropout_prob = attention_probs_dropout_prob self.qkv_bias = qkv_bias self.mlp_ratio = mlp_ratio self.patch_embed_input_channels = patch_embed_input_channels self.aff_block_r = aff_block_r self.layer_norm_eps = layer_norm_eps self.initializer_factor = initializer_factor self.projection_hidden_act = projection_hidden_act
class_definition
6,797
14,388
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/configuration_clap.py
null
7,406
class ClapConfig(PretrainedConfig): r""" [`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLAP [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ClapTextConfig`]. audio_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ClapAudioConfig`]. logit_scale_init_value (`float`, *optional*, defaults to 14.29): The initial value of the *logit_scale* parameter. Default is used as per the original CLAP implementation. projection_dim (`int`, *optional*, defaults to 512): Dimensionality of text and audio projection layers. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): Activation function for the projection layers. initializer_factor (`float`, *optional*, defaults to 1.0): Factor to scale the initialization of the model weights. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ClapConfig, ClapModel >>> # Initializing a ClapConfig with laion-ai/base style configuration >>> configuration = ClapConfig() >>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration >>> model = ClapModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig >>> from transformers import ClapTextConfig, ClapAudioConfig >>> # Initializing a ClapText and ClapAudioConfig configuration >>> config_text = ClapTextConfig() >>> config_audio = ClapAudioConfig() >>> config = ClapConfig.from_text_audio_configs(config_text, config_audio) ```""" model_type = "clap" sub_configs = {"text_config": ClapTextConfig, "audio_config": ClapAudioConfig} def __init__( self, text_config=None, audio_config=None, logit_scale_init_value=(1 / 0.07), projection_dim=512, projection_hidden_act="relu", initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the ClapTextConfig with default values.") if audio_config is None: audio_config = {} logger.info("audio_config is None. initializing the ClapAudioConfig with default values.") self.text_config = ClapTextConfig(**text_config) self.audio_config = ClapAudioConfig(**audio_config) self.text_config.projection_dim = projection_dim self.audio_config.projection_dim = projection_dim self.text_config.projection_hidden_act = projection_hidden_act self.audio_config.projection_hidden_act = projection_hidden_act self.projection_dim = projection_dim self.projection_hidden_act = projection_hidden_act self.hidden_size = self.text_config.hidden_size self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = initializer_factor self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths) @classmethod def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs): r""" Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model configuration. Returns: [`ClapConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs)
class_definition
14,391
18,736
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/configuration_clap.py
null
7,407
class MobileViTConvLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features
class_definition
2,524
4,612
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,408
class MobileViTInvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features
class_definition
4,615
6,130
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,409
class MobileViTMobileNetLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features
class_definition
6,133
6,888
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,410
class MobileViTSelfAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer
class_definition
6,891
9,337
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,411
class MobileViTSelfOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
9,340
9,798
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,412
class MobileViTAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.attention = MobileViTSelfAttention(config, hidden_size) self.output = MobileViTSelfOutput(config, hidden_size) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: self_outputs = self.attention(hidden_states) attention_output = self.output(self_outputs) return attention_output
class_definition
9,801
11,249
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,413
class MobileViTIntermediate(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
11,252
11,875
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,414
class MobileViTOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(intermediate_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states
class_definition
11,878
12,443
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,415
class MobileViTTransformerLayer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.attention = MobileViTAttention(config, hidden_size) self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size) self.output = MobileViTOutput(config, hidden_size, intermediate_size) self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states)) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, hidden_states) return layer_output
class_definition
12,446
13,430
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,416
class MobileViTTransformer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None: super().__init__() self.layer = nn.ModuleList() for _ in range(num_stages): transformer_layer = MobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states
class_definition
13,433
14,116
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,417
class MobileViTLayer(nn.Module): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = MobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, ) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, ) self.transformer = MobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, ) self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.conv_projection = MobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1 ) self.fusion = MobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size ) def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size, channels, orig_height, orig_width = features.shape new_height = ( torch_int(torch.ceil(orig_height / patch_height) * patch_height) if torch.jit.is_tracing() else int(math.ceil(orig_height / patch_height) * patch_height) ) new_width = ( torch_int(torch.ceil(orig_width / patch_width) * patch_width) if torch.jit.is_tracing() else int(math.ceil(orig_width / patch_width) * patch_width) ) interpolate = False if new_width != orig_width or new_height != orig_height: # Note: Padding can be done, but then it needs to be handled in attention function. features = nn.functional.interpolate( features, size=(new_height, new_width), mode="bilinear", align_corners=False ) interpolate = True # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, channels, orig_height, orig_width) # to the shape (batch_size * patch_area, num_patches, channels) patches = features.reshape( batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width ) patches = patches.transpose(1, 2) patches = patches.reshape(batch_size, channels, num_patches, patch_area) patches = patches.transpose(1, 3) patches = patches.reshape(batch_size * patch_area, num_patches, -1) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = patches.contiguous().view(batch_size, patch_area, num_patches, -1) features = features.transpose(1, 3) features = features.reshape( batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width ) features = features.transpose(1, 2) features = features.reshape( batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width ) if info_dict["interpolate"]: features = nn.functional.interpolate( features, size=info_dict["orig_size"], mode="bilinear", align_corners=False ) return features def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) residual = features # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features) features = self.fusion(torch.cat((residual, features), dim=1)) return features
class_definition
14,119
20,307
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,418
class MobileViTEncoder(nn.Module): def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, ) self.layer.append(layer_2) layer_3 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
class_definition
20,310
23,487
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,419
class MobileViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MobileViTLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
23,490
24,512
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,420
class MobileViTModel(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output self.conv_stem = MobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, ) self.encoder = MobileViTEncoder(config) if self.expand_output: self.conv_1x1_exp = MobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, ) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevit_layer = self.encoder.layer[layer_index] if isinstance(mobilevit_layer, MobileViTLayer): for transformer_layer in mobilevit_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, )
class_definition
25,911
29,232
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,421
class MobileViTForImageClassification(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config) # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = ( nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, )
class_definition
29,440
32,829
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,422
class MobileViTASPPPooling(nn.Module): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features
class_definition
32,832
33,658
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,423
class MobileViTASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features
class_definition
33,661
35,493
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,424
class MobileViTDeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.aspp = MobileViTASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features
class_definition
35,496
36,325
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,425
class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config, expand_output=False) self.segmentation_head = MobileViTDeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
class_definition
36,484
40,129
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_mobilevit.py
null
7,426
class MobileViTImageProcessor(BaseImageProcessor): r""" Constructs a MobileViT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`): Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_flip_channel_order (`bool`, *optional*, defaults to `True`): Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_flip_channel_order: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_flip_channel_order = do_flip_channel_order # Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize with PILImageResampling.BICUBIC->PILImageResampling.BILINEAR def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def flip_channel_order( self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Flip the color channels from RGB to BGR or vice versa. Args: image (`np.ndarray`): The image, represented as a numpy array. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ return flip_channel_order(image, data_format=data_format, input_data_format=input_data_format) def __call__(self, images, segmentation_maps=None, **kwargs): """ Preprocesses a batch of images and optionally segmentation maps. Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be passed in as positional arguments. """ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: bool, do_rescale: bool, do_center_crop: bool, do_flip_channel_order: bool, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, rescale_factor: Optional[float] = None, crop_size: Optional[Dict[str, int]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_flip_channel_order: image = self.flip_channel_order(image, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_flip_channel_order: bool = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=do_flip_channel_order, input_data_format=input_data_format, ) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, size=size, resample=PILImageResampling.NEAREST, do_rescale=False, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_flip_channel_order: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. segmentation_maps (`ImageInput`, *optional*): Segmentation map to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image by rescale factor. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop if `do_center_crop` is set to `True`. do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`): Whether to flip the channel order of the image. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_flip_channel_order = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) images = [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=do_flip_channel_order, data_format=data_format, input_data_format=input_data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map=segmentation_map, do_resize=do_resize, size=size, do_center_crop=do_center_crop, crop_size=crop_size, input_data_format=input_data_format, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->MobileViT def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MobileViTForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
class_definition
1,486
21,471
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/image_processing_mobilevit.py
null
7,427
class TFMobileViTConvLayer(keras.layers.Layer): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, **kwargs, ) -> None: super().__init__(**kwargs) logger.warning( f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish " "to train/fine-tune this model, you need a GPU or a TPU" ) padding = int((kernel_size - 1) / 2) * dilation self.padding = keras.layers.ZeroPadding2D(padding) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, strides=stride, padding="VALID", dilation_rate=dilation, groups=groups, use_bias=bias, name="convolution", ) if use_normalization: self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.1, name="normalization") else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = get_tf_activation(use_activation) elif isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act else: self.activation = None self.in_channels = in_channels self.out_channels = out_channels def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: padded_features = self.padding(features) features = self.convolution(padded_features) if self.normalization is not None: features = self.normalization(features, training=training) if self.activation is not None: features = self.activation(features) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convolution", None) is not None: with tf.name_scope(self.convolution.name): self.convolution.build([None, None, None, self.in_channels]) if getattr(self, "normalization", None) is not None: if hasattr(self.normalization, "name"): with tf.name_scope(self.normalization.name): self.normalization.build([None, None, None, self.out_channels])
class_definition
2,531
5,404
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,428
class TFMobileViTInvertedResidual(keras.layers.Layer): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1, **kwargs ) -> None: super().__init__(**kwargs) expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1, name="expand_1x1" ) self.conv_3x3 = TFMobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, name="conv_3x3", ) self.reduce_1x1 = TFMobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, name="reduce_1x1", ) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: residual = features features = self.expand_1x1(features, training=training) features = self.conv_3x3(features, training=training) features = self.reduce_1x1(features, training=training) return residual + features if self.use_residual else features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "expand_1x1", None) is not None: with tf.name_scope(self.expand_1x1.name): self.expand_1x1.build(None) if getattr(self, "conv_3x3", None) is not None: with tf.name_scope(self.conv_3x3.name): self.conv_3x3.build(None) if getattr(self, "reduce_1x1", None) is not None: with tf.name_scope(self.reduce_1x1.name): self.reduce_1x1.build(None)
class_definition
5,407
7,678
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,429
class TFMobileViTMobileNetLayer(keras.layers.Layer): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.layers = [] for i in range(num_stages): layer = TFMobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, name=f"layer.{i}", ) self.layers.append(layer) in_channels = out_channels def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: for layer_module in self.layers: features = layer_module(features, training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None)
class_definition
7,681
8,882
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,430
class TFMobileViTSelfAttention(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size scale = tf.cast(self.attention_head_size, dtype=tf.float32) self.scale = tf.math.sqrt(scale) self.query = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="query") self.key = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="key") self.value = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.hidden_size = hidden_size def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor: batch_size = tf.shape(x)[0] x = tf.reshape(x, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size = tf.shape(hidden_states)[0] key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(self.query(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.scale # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape(context_layer, shape=(batch_size, -1, self.all_head_size)) return context_layer def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size])
class_definition
8,885
12,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,431
class TFMobileViTSelfOutput(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size])
class_definition
12,125
12,980
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,432
class TFMobileViTAttention(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) self.attention = TFMobileViTSelfAttention(config, hidden_size, name="attention") self.dense_output = TFMobileViTSelfOutput(config, hidden_size, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: self_outputs = self.attention(hidden_states, training=training) attention_output = self.dense_output(self_outputs, training=training) return attention_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
12,983
14,083
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,433
class TFMobileViTIntermediate(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size])
class_definition
14,086
15,064
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,434
class TFMobileViTOutput(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.intermediate_size = intermediate_size def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.intermediate_size])
class_definition
15,067
16,038
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,435
class TFMobileViTTransformerLayer(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.attention = TFMobileViTAttention(config, hidden_size, name="attention") self.intermediate = TFMobileViTIntermediate(config, hidden_size, intermediate_size, name="intermediate") self.mobilevit_output = TFMobileViTOutput(config, hidden_size, intermediate_size, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states), training=training) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.mobilevit_output(layer_output, hidden_states, training=training) return layer_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilevit_output", None) is not None: with tf.name_scope(self.mobilevit_output.name): self.mobilevit_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.hidden_size])
class_definition
16,041
18,289
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,436
class TFMobileViTTransformer(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int, **kwargs) -> None: super().__init__(**kwargs) self.layers = [] for i in range(num_stages): transformer_layer = TFMobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), name=f"layer.{i}", ) self.layers.append(transformer_layer) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: for layer_module in self.layers: hidden_states = layer_module(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None)
class_definition
18,292
19,372
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,437
class TFMobileViTLayer(keras.layers.Layer): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = TFMobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, name="downsampling_layer", ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, name="conv_kxk", ) self.conv_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, name="conv_1x1", ) self.transformer = TFMobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, name="transformer" ) self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.conv_projection = TFMobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1, name="conv_projection" ) self.fusion = TFMobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, name="fusion", ) self.hidden_size = hidden_size def unfolding(self, features: tf.Tensor) -> Tuple[tf.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = tf.cast(patch_width * patch_height, "int32") batch_size = tf.shape(features)[0] orig_height = tf.shape(features)[1] orig_width = tf.shape(features)[2] channels = tf.shape(features)[3] new_height = tf.cast(tf.math.ceil(orig_height / patch_height) * patch_height, "int32") new_width = tf.cast(tf.math.ceil(orig_width / patch_width) * patch_width, "int32") interpolate = new_width != orig_width or new_height != orig_height if interpolate: # Note: Padding can be done, but then it needs to be handled in attention function. features = tf.image.resize(features, size=(new_height, new_width), method="bilinear") # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, orig_height, orig_width, channels) # to the shape (batch_size * patch_area, num_patches, channels) features = tf.transpose(features, [0, 3, 1, 2]) patches = tf.reshape( features, (batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width) ) patches = tf.transpose(patches, [0, 2, 1, 3]) patches = tf.reshape(patches, (batch_size, channels, num_patches, patch_area)) patches = tf.transpose(patches, [0, 3, 2, 1]) patches = tf.reshape(patches, (batch_size * patch_area, num_patches, channels)) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: tf.Tensor, info_dict: Dict) -> tf.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = tf.reshape(patches, (batch_size, patch_area, num_patches, -1)) features = tf.transpose(features, perm=(0, 3, 2, 1)) features = tf.reshape( features, (batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width) ) features = tf.transpose(features, perm=(0, 2, 1, 3)) features = tf.reshape( features, (batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width) ) features = tf.transpose(features, perm=(0, 2, 3, 1)) if info_dict["interpolate"]: features = tf.image.resize(features, size=info_dict["orig_size"], method="bilinear") return features def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features, training=training) residual = features # local representation features = self.conv_kxk(features, training=training) features = self.conv_1x1(features, training=training) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches, training=training) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features, training=training) features = self.fusion(tf.concat([residual, features], axis=-1), training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_kxk", None) is not None: with tf.name_scope(self.conv_kxk.name): self.conv_kxk.build(None) if getattr(self, "conv_1x1", None) is not None: with tf.name_scope(self.conv_1x1.name): self.conv_1x1.build(None) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.hidden_size]) if getattr(self, "conv_projection", None) is not None: with tf.name_scope(self.conv_projection.name): self.conv_projection.build(None) if getattr(self, "fusion", None) is not None: with tf.name_scope(self.fusion.name): self.fusion.build(None) if getattr(self, "downsampling_layer", None) is not None: with tf.name_scope(self.downsampling_layer.name): self.downsampling_layer.build(None)
class_definition
19,375
27,147
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,438
class TFMobileViTEncoder(keras.layers.Layer): def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.layers = [] # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = TFMobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, name="layer.0", ) self.layers.append(layer_1) layer_2 = TFMobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, name="layer.1", ) self.layers.append(layer_2) layer_3 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, name="layer.2", ) self.layers.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, name="layer.3", ) self.layers.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, name="layer.4", ) self.layers.append(layer_5) def call( self, hidden_states: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layers): hidden_states = layer_module(hidden_states, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None)
class_definition
27,150
30,535
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,439
class TFMobileViTMainLayer(keras.layers.Layer): config_class = MobileViTConfig def __init__(self, config: MobileViTConfig, expand_output: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.expand_output = expand_output self.conv_stem = TFMobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, name="conv_stem", ) self.encoder = TFMobileViTEncoder(config, name="encoder") if self.expand_output: self.conv_1x1_exp = TFMobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, name="conv_1x1_exp", ) self.pooler = keras.layers.GlobalAveragePooling2D(data_format="channels_first", name="pooler") def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embedding_output = self.conv_stem(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # Change to NCHW output format to have uniformity in the modules last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = self.pooler(last_hidden_state) else: last_hidden_state = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2]) pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) # Change to NCHW output format to have uniformity in the modules if not self.expand_output: remaining_encoder_outputs = encoder_outputs[1:] remaining_encoder_outputs = tuple( [tf.transpose(h, perm=(0, 3, 1, 2)) for h in remaining_encoder_outputs[0]] ) remaining_encoder_outputs = (remaining_encoder_outputs,) return output + remaining_encoder_outputs else: return output + encoder_outputs[1:] # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_stem", None) is not None: with tf.name_scope(self.conv_stem.name): self.conv_stem.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build([None, None, None, None]) if getattr(self, "conv_1x1_exp", None) is not None: with tf.name_scope(self.conv_1x1_exp.name): self.conv_1x1_exp.build(None)
class_definition
30,558
35,434
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,440
class TFMobileViTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values"
class_definition
35,437
35,743
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,441
class TFMobileViTModel(TFMobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.expand_output = expand_output self.mobilevit = TFMobileViTMainLayer(config, expand_output=expand_output, name="mobilevit") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]: output = self.mobilevit(pixel_values, output_hidden_states, return_dict, training=training) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None)
class_definition
39,333
40,690
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,442
class TFMobileViTForImageClassification(TFMobileViTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: MobileViTConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilevit = TFMobileViTMainLayer(config, name="mobilevit") # Classifier head self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.identity ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, labels: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[tuple, TFImageClassifierOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output, training=training)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None) if getattr(self, "classifier", None) is not None: if hasattr(self.classifier, "name"): with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.neck_hidden_sizes[-1]])
class_definition
40,898
43,853
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,443
class TFMobileViTASPPPooling(keras.layers.Layer): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int, **kwargs) -> None: super().__init__(**kwargs) self.global_pool = keras.layers.GlobalAveragePooling2D(keepdims=True, name="global_pool") self.conv_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", name="conv_1x1", ) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: spatial_size = shape_list(features)[1:-1] features = self.global_pool(features) features = self.conv_1x1(features, training=training) features = tf.image.resize(features, size=spatial_size, method="bilinear") return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "global_pool", None) is not None: with tf.name_scope(self.global_pool.name): self.global_pool.build([None, None, None, None]) if getattr(self, "conv_1x1", None) is not None: with tf.name_scope(self.conv_1x1.name): self.conv_1x1.build(None)
class_definition
43,856
45,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,444
class TFMobileViTASPP(keras.layers.Layer): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = [] in_projection = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", name="convs.0", ) self.convs.append(in_projection) self.convs.extend( [ TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", name=f"convs.{i + 1}", ) for i, rate in enumerate(config.atrous_rates) ] ) pool_layer = TFMobileViTASPPPooling( config, in_channels, out_channels, name=f"convs.{len(config.atrous_rates) + 1}" ) self.convs.append(pool_layer) self.project = TFMobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", name="project", ) self.dropout = keras.layers.Dropout(config.aspp_dropout_prob) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: # since the hidden states were transposed to have `(batch_size, channels, height, width)` # layout we transpose them back to have `(batch_size, height, width, channels)` layout. features = tf.transpose(features, perm=[0, 2, 3, 1]) pyramid = [] for conv in self.convs: pyramid.append(conv(features, training=training)) pyramid = tf.concat(pyramid, axis=-1) pooled_features = self.project(pyramid, training=training) pooled_features = self.dropout(pooled_features, training=training) return pooled_features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "project", None) is not None: with tf.name_scope(self.project.name): self.project.build(None) if getattr(self, "convs", None) is not None: for conv in self.convs: with tf.name_scope(conv.name): conv.build(None)
class_definition
45,229
48,080
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,445
class TFMobileViTDeepLabV3(keras.layers.Layer): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) self.aspp = TFMobileViTASPP(config, name="aspp") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = TFMobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, name="classifier", ) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: features = self.aspp(hidden_states[-1], training=training) features = self.dropout(features, training=training) features = self.classifier(features, training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "aspp", None) is not None: with tf.name_scope(self.aspp.name): self.aspp.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None)
class_definition
48,083
49,471
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,446
class TFMobileViTForSemanticSegmentation(TFMobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.num_labels = config.num_labels self.mobilevit = TFMobileViTMainLayer(config, expand_output=False, name="mobilevit") self.segmentation_head = TFMobileViTDeepLabV3(config, name="segmentation_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutputWithNoAttention, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFSemanticSegmenterOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFMobileViTForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, training=training, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None) if getattr(self, "segmentation_head", None) is not None: with tf.name_scope(self.segmentation_head.name): self.segmentation_head.build(None)
class_definition
49,630
54,675
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/modeling_tf_mobilevit.py
null
7,447
class MobileViTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a MobileViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileViT [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 256): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 2): The size (resolution) of each patch. hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`): Dimensionality (hidden size) of the Transformer encoders at each stage. neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`): The number of channels for the feature maps of the backbone. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 2.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. expand_ratio (`float`, *optional*, defaults to 4.0): Expansion factor for the MobileNetv2 layers. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolutional kernel in the MobileViT layer. output_stride (`int`, *optional*, defaults to 32): The ratio of the spatial resolution of the output to the resolution of the input image. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the Transformer encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. aspp_out_channels (`int`, *optional*, defaults to 256): Number of output channels used in the ASPP layer for semantic segmentation. atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): Dilation (atrous) factors used in the ASPP layer for semantic segmentation. aspp_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the ASPP layer for semantic segmentation. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import MobileViTConfig, MobileViTModel >>> # Initializing a mobilevit-small style configuration >>> configuration = MobileViTConfig() >>> # Initializing a model from the mobilevit-small style configuration >>> model = MobileViTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilevit" def __init__( self, num_channels=3, image_size=256, patch_size=2, hidden_sizes=[144, 192, 240], neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640], num_attention_heads=4, mlp_ratio=2.0, expand_ratio=4.0, hidden_act="silu", conv_kernel_size=3, output_stride=32, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-5, qkv_bias=True, aspp_out_channels=256, atrous_rates=[6, 12, 18], aspp_dropout_prob=0.1, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_sizes = hidden_sizes self.neck_hidden_sizes = neck_hidden_sizes self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.expand_ratio = expand_ratio self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias # decode head attributes for semantic segmentation self.aspp_out_channels = aspp_out_channels self.atrous_rates = atrous_rates self.aspp_dropout_prob = aspp_dropout_prob self.semantic_loss_ignore_index = semantic_loss_ignore_index
class_definition
912
6,882
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/configuration_mobilevit.py
null
7,448
class MobileViTOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4
class_definition
6,885
7,531
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/configuration_mobilevit.py
null
7,449
class MobileViTFeatureExtractor(MobileViTImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
class_definition
824
1,206
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevit/feature_extraction_mobilevit.py
null
7,450
class IdeficsVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
1,155
2,942
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,451
class IdeficsVisionEmbeddings(nn.Module): def __init__(self, config: IdeficsVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) # Heavily inspired from https://github.com/huggingface/transformers/blob/v4.33.0/src/transformers/models/vit/modeling_vit.py#L82 def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] - 1 pos_embed = self.position_embedding(self.position_ids) num_positions = pos_embed.shape[1] - 1 if num_patches == num_positions and height == width: return pos_embed class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] embed_dim = embeddings.shape[-1] num_h_patches = height // self.config.patch_size num_w_patches = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 sqrt_num_positions = math.sqrt(num_positions) patch_pos_embed = patch_pos_embed.reshape(1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) fp32_upcasting = patch_pos_embed.dtype == torch.bfloat16 if fp32_upcasting: logger.warning_once( "Upcasting patch_pos_embed to fp32 for interpolation since `upsample_bicubic2d_out_frame` in nn.functional.interpolate " "is not implemented for 'torch.bfloat16' dtype. This will result in a slight overhead." ) patch_pos_embed = patch_pos_embed.to(torch.float) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(num_h_patches / sqrt_num_positions, num_w_patches / sqrt_num_positions), mode="bicubic", align_corners=False, ) if fp32_upcasting: patch_pos_embed = patch_pos_embed.to(torch.bfloat16) if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]: raise ValueError( f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})" ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, embed_dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size or width != self.image_size: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`" ) target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings
class_definition
3,020
7,976
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,452
class IdeficsVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped
class_definition
8,071
12,810
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,453
class IdeficsVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
12,899
13,478
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,454
class IdeficsVisionEncoderLayer(nn.Module): def __init__(self, config: IdeficsVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = IdeficsVisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = IdeficsVisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
13,588
15,569
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,455
class IdeficsVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`IdeficsVisionEncoderLayer`]. Args: config: IdeficsVisionConfig """ def __init__(self, config: IdeficsVisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([IdeficsVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
15,674
20,107
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,456
class IdeficsVisionTransformer(nn.Module): def __init__(self, config: IdeficsVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = IdeficsVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = IdeficsVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
20,186
22,492
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision.py
null
7,457
class IdeficsBaseModelOutputWithPast(ModelOutput): """ Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class_definition
1,916
4,816
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,458
class IdeficsCausalLMOutputWithPast(ModelOutput): """ Base class for Idefics causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class_definition
4,830
7,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,459
class IdeficsDecoupledEmbedding(nn.Embedding): # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding """ Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained. If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`. """ def __init__( self, num_embeddings, num_additional_embeddings, embedding_dim, partially_freeze: Optional[bool] = False, device=None, dtype=None, padding_idx=None, **kwargs, ) -> None: """ Args: num_embeddings (`int`): Size of the dictionary of embeddings num_additional_embeddings (`int`): Number of additional embeddings. Only useful when you `partially_freeze=True`. embedding_dim (`int`): The size of each embedding vector partially_freeze: (`bool`, *optional*, defaults to `False`): If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen. padding_idx (`int`, *optional*): The padding index (needs to be less than num_embeddings) Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these. """ if padding_idx is not None and padding_idx > num_embeddings: raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}") super().__init__( num_embeddings=num_embeddings, embedding_dim=embedding_dim, device=device, dtype=dtype, padding_idx=padding_idx, **kwargs, ) self.num_embeddings = num_embeddings self.padding_idx = padding_idx self.num_additional_embeddings = num_additional_embeddings self.partially_freeze = partially_freeze if partially_freeze: self.weight.requires_grad_(False) if self.num_additional_embeddings > 0: self.additional_embedding = nn.Embedding( num_embeddings=self.num_additional_embeddings, embedding_dim=embedding_dim, device=device, dtype=dtype, ) def forward(self, input_ids): """ we have 2 embeddings, with different indices - one pretrained self.weight and another self.additional_embedding.weight that is being trained. in order to make a lookup of the input ids, we: 1. find out the indices of the entries belonging to the 2nd embedding 2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd embedding starts from 0 and not num_embeddings 3. perform the 2nd embedding lookup 4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index 5. perform the 1st embedding lookup 6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices - i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are usually relatively short it's probably not faster or if faster not by much - but might be a good idea to measure. """ if self.num_additional_embeddings == 0: return F.embedding(input_ids, self.weight) # Clone so that we don't modify the original input_ids later on input_ids = input_ids.clone() additional_vocab_indices = torch.where(input_ids >= self.num_embeddings) input_ids_additional_vocab = input_ids[additional_vocab_indices] additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings) # for successful lookup replace input_ids with 0, the results of these will be discarded anyway input_ids[additional_vocab_indices] = 0 full_vector = F.embedding(input_ids, self.weight) # overwrite the records with high indices full_vector[additional_vocab_indices] = additional_embeddings return full_vector def extra_repr(self) -> str: return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format( self.num_embeddings, self.num_additional_embeddings, self.embedding_dim, self.partially_freeze, )
class_definition
9,882
15,010
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,460
class IdeficsDecoupledLinear(nn.Linear): # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear """ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained. If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`. """ def __init__( self, in_features: int, out_features: int, out_additional_features: int = 0, bias: bool = True, partially_freeze: bool = True, device=None, dtype=None, ) -> None: """ out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`. partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear. """ super().__init__(in_features, out_features, bias, device, dtype) self.out_additional_features = out_additional_features self.partially_freeze = partially_freeze self.in_features = in_features self.out_features = out_features if partially_freeze: self.weight.requires_grad_(False) if bias: self.bias.requires_grad_(False) if out_additional_features > 0: self.additional_fc = nn.Linear( in_features=in_features, out_features=out_additional_features, bias=bias, device=device, dtype=dtype, ) def forward(self, input: torch.Tensor) -> torch.Tensor: output = F.linear(input, self.weight, self.bias) if self.out_additional_features > 0: additional_features = self.additional_fc(input) output = torch.cat((output, additional_features), -1) return output def extra_repr(self) -> str: """Overwriting `nn.Linear.extra_repr` to include new parameters.""" return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( self.in_features, self.out_features, self.out_additional_features, self.bias is not None, self.partially_freeze, )
class_definition
15,013
17,617
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,461
class IdeficsRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ IdeficsRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
17,657
18,467
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,462
class IdeficsEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), )
class_definition
18,561
20,176
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,463
class IdeficsMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class_definition
22,107
22,667
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,464
class IdeficsAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, hidden_size: int, num_heads: int, dropout: float = 0.0, is_cross_attention: bool = False, config: PretrainedConfig = None, qk_layer_norms: bool = False, layer_idx: int = None, ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads self.dropout = dropout self.is_causal = True self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) if (self.head_dim * num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {num_heads})." ) self.is_cross_attention = is_cross_attention if not hasattr(nn.functional, "scaled_dot_product_attention"): raise ValueError("this model requires pytorch 2.0 or higher") if self.is_cross_attention: kv_input_dim = ( self.hidden_size if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim ) self.q_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.k_proj = nn.Linear(kv_input_dim, num_heads * self.head_dim, bias=False) self.v_proj = nn.Linear( kv_input_dim, num_heads * self.head_dim, bias=False, ) else: self.q_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.k_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.v_proj = nn.Linear( self.hidden_size, num_heads * self.head_dim, bias=False, ) self.o_proj = nn.Linear( num_heads * self.head_dim, hidden_size, bias=False, ) self.rotary_emb = IdeficsEmbedding(self.head_dim) self.qk_layer_norms = qk_layer_norms if self.qk_layer_norms: self.q_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # if key_value_states are provided this layer is used as a cross-attention layer is_cross_attention = self.is_cross_attention or key_value_states is not None bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) if not is_cross_attention: key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) else: _, kv_len, _ = key_value_states.size() # Note that, in this case, `kv_len` == `kv_seq_len` key_states = self.k_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = ( self.v_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) ) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += cache_position[0] if not is_cross_attention: cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, q_len)) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) if self.qk_layer_norms: query_states = self.q_layer_norm(query_states) key_states = self.k_layer_norm(key_states) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) attn_weights = None if output_attentions: logger.warning_once( "attn_weights are not extracted in scaled_dot_product_attention. The model returns None instead" ) return attn_output, attn_weights, past_key_value
class_definition
22,709
30,323
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,465
class IdeficsDecoderLayer(nn.Module): def __init__(self, config: IdeficsConfig, layer_idx: int = None): super().__init__() self.hidden_size = config.hidden_size self.self_attn = IdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, dropout=config.dropout, config=config, layer_idx=layer_idx, ) self.mlp = IdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.dropout = config.dropout def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
class_definition
30,368
33,740
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,466
class IdeficsGatedCrossAttentionLayer(nn.Module): def __init__(self, config: IdeficsConfig, layer_idx: int = None): super().__init__() self.hidden_size = config.hidden_size self.cross_attn = IdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, is_cross_attention=True, dropout=config.dropout, config=config, qk_layer_norms=config.qk_layer_norms, layer_idx=layer_idx, ) self.mlp = IdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, ) self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.config = config.dropout self.act_cross_attn = nn.Tanh() self.act_dense = nn.Tanh() if config.alpha_initializer == "zeros": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) self.alpha_dense = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) self.alpha_dense = nn.Parameter(torch.zeros(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer == "ones": if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, self.hidden_size)) self.alpha_dense = nn.Parameter(torch.ones(1, 1, self.hidden_size)) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter(torch.ones(1)) self.alpha_dense = nn.Parameter(torch.ones(1)) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") elif config.alpha_initializer in {"normal", "gaussian", "random"}: if config.alpha_type == "vector": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) ) self.alpha_dense = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) ) elif config.alpha_type == "float": self.alpha_cross_attn = nn.Parameter( torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) ) self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))) else: raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") else: raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!") if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")): raise ValueError("Alpha parameters not initialized correctly!") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_hidden_states: Optional[torch.Tensor] = None, image_attention_mask: Optional[torch.Tensor] = None, cross_attention_gate: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. image_attention_mask (`torch.FloatTensor`, *optional*): image attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. cross_attention_gate (`torch.FloatTensor`, *optional*): gate of size `(batch, seq_len)` used to zero-out cross-attention output for tokens attending no images. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if image_hidden_states is None: raise ValueError( "`image_hidden_states` is required for Idefics cross attention module which are visual features to be" " conditioned on." ) if cross_attention_gate is None: raise ValueError( "`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images." ) if past_key_value is not None: raise NotImplementedError("Past key value states are not implemented for Idefics cross attention module.") residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=image_hidden_states, attention_mask=image_attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) # Fill in zeros for cross_attention hidden_states of tokens attending to no images hidden_states[cross_attention_gate == 0] = hidden_states[cross_attention_gate == 0].fill_(0) hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
class_definition
33,743
40,893
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,467
class IdeficsPreTrainedModel(PreTrainedModel): config_class = IdeficsConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True def _init_weights(self, module): # important: this ported version of Idefics isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the m4 code # base should be used for training from scratch and it contains the correct code. std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
41,917
43,013
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,468
class IdeficsModel(IdeficsPreTrainedModel): """ Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`] Args: config: IdeficsConfig """ def __init__(self, config: IdeficsConfig): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = IdeficsDecoupledEmbedding( num_embeddings=config.vocab_size, num_additional_embeddings=config.additional_vocab_size, embedding_dim=config.hidden_size, partially_freeze=config.freeze_text_layers, padding_idx=self.padding_idx, ) self.image_size = config.vision_config.image_size self.vision_config = config.vision_config self.vision_model = IdeficsVisionTransformer(config.vision_config) # Perceiver Resampler if config.use_resampler: perceiver_config = config.perceiver_config self.perceiver_resampler = IdeficsPerceiverResampler( config, config.vision_config.embed_dim, perceiver_config.resampler_depth, perceiver_config.resampler_n_heads, perceiver_config.resampler_head_dim, perceiver_config.resampler_n_latents, ) self.layers = nn.ModuleList( [IdeficsDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self.cross_layer_interval = config.cross_layer_interval num_cross_layers = config.num_hidden_layers // self.cross_layer_interval self.gated_cross_attn_layers = nn.ModuleList( [IdeficsGatedCrossAttentionLayer(config, layer_idx=i) for i in range(num_cross_layers)] ) self.gradient_checkpointing = False self.norm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Initialize weights and apply final processing self.post_init() self.freeze_relevant_params(config) def freeze_relevant_params(self, config=None): if config is None: config = self.config if config.freeze_text_layers: self.freeze_text_layers(config.freeze_text_module_exceptions) if config.freeze_vision_layers: freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) def freeze_text_layers(self, module_exceptions=[]): for module in [self.layers, self.norm]: freeze_model(module, module_exceptions=module_exceptions) def freeze_vision_layers(self, module_exceptions=[]): freeze_model(self.vision_model, module_exceptions=module_exceptions) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_encoder_embeddings: Optional[torch.FloatTensor] = None, perceiver_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, IdeficsBaseModelOutputWithPast]: device = input_ids.device if input_ids is not None else inputs_embeds.device output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) batch_size, seq_length, _ = inputs_embeds.shape past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 seq_length_with_past = seq_length + past_key_values_length if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids[:, -seq_length:] elif position_ids is None: position_ids = cache_position.unsqueeze(0) if (pixel_values, image_encoder_embeddings, perceiver_embeddings).count(None) != 2: raise ValueError( "Exactly 1 of pixel_values, image_encoder_embeddings or perceiver_embeddings has to be not-None." ) elif pixel_values is not None: pixel_values = pixel_values.to(dtype=self.dtype, device=device) # fp16 compatibility batch_size, num_images = pixel_values.shape[:2] pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ).last_hidden_state elif image_encoder_embeddings is not None: batch_size, num_images, image_seq_len, image_hidden_size = image_encoder_embeddings.size() image_hidden_states = image_encoder_embeddings.to(dtype=self.dtype, device=device) image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) if self.config.use_resampler: if perceiver_embeddings is None: perceiver_embeddings = self.perceiver_resampler(image_hidden_states) image_seq_len, image_hidden_size = perceiver_embeddings.size(1), perceiver_embeddings.size(2) else: batch_size, num_images, image_seq_len, image_hidden_size = perceiver_embeddings.size() image_hidden_states = perceiver_embeddings elif perceiver_embeddings is None: image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) else: raise ValueError("If `perceiver_embeddings` are passed, use_resampler should be True") image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) # # Hack to use the model in full language modeling mode # image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device) # Make image_attention_mask compatible with hidden states text_seq_len = image_attention_mask.size(1) image_attention_mask = image_attention_mask.unsqueeze(-1) image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) if image_hidden_states is not None: image_batch_size, image_sequence_length, _ = image_hidden_states.size() image_hidden_shape = (image_batch_size, image_sequence_length) if image_attention_mask is None: image_attention_mask = torch.ones(image_hidden_shape, device=device) image_attention_mask = self.invert_attention_mask(image_attention_mask) else: image_attention_mask = None # cross_attention_gate: # For any tokens attending to no images, the hidden_states comming out of the cross-attention should be zeroed-out. # `image_attention_mask` has shape [bsz, 1, num_images, hidden_size] with elements equal to either 0.0 or a very negative number. # If any of the elements are 0.0, then the token is attending to at least one image and the gate value is 1. Otherwise the gate value is 0. # `cross_attention_gate` has shape [bsz, seq_len] with elements equal to either 0.0 or 1.0. cross_attention_gate = ((((image_attention_mask == 0.0).any(dim=-1)).to(dtype=self.dtype)).squeeze(dim=1)).to( device ) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) def vblock( main_block, hidden_states, attention_mask, position_ids, past_key_value, image_hidden_states, image_attention_mask, cross_attention_gate, output_attentions, use_cache, layer_idx, cross_layer_interval, gated_cross_attn_layers, cache_position, ): # TODO(ls): Add cross attention values to respective lists if layer_idx % cross_layer_interval == 0: xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] outputs = xblock( hidden_states, attention_mask=attention_mask, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, cross_attention_gate=cross_attention_gate, output_attentions=output_attentions, use_cache=use_cache, past_key_value=None, # not implemented ) hidden_states = outputs[0] layer_outputs = main_block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) return layer_outputs if self.gradient_checkpointing and self.training: past_key_values = None if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( vblock, decoder_layer, hidden_states, attention_mask, position_ids, past_key_values, image_hidden_states, image_attention_mask, cross_attention_gate, output_attentions, use_cache, idx, self.cross_layer_interval, self.gated_cross_attn_layers, cache_position, ) else: layer_outputs = vblock( decoder_layer, hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, image_hidden_states=image_hidden_states, image_attention_mask=image_attention_mask, cross_attention_gate=cross_attention_gate, output_attentions=output_attentions, use_cache=use_cache, layer_idx=idx, cross_layer_interval=self.cross_layer_interval, gated_cross_attn_layers=self.gated_cross_attn_layers, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() image_hidden_states = image_hidden_states.view(batch_size, num_images, image_seq_len, image_hidden_size) if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states] if v is not None ) return IdeficsBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, image_hidden_states=image_hidden_states, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
47,474
69,214
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,469
class IdeficsForVisionText2Text(IdeficsPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = [r"lm_head.weight"] _tied_weights_keys = ["model.embed_tokens.weight", "lm_head.weight"] def __init__(self, config, vision_model=None): super().__init__(config) self.model = IdeficsModel(config) self.lm_head = IdeficsDecoupledLinear( in_features=config.hidden_size, out_features=config.vocab_size, out_additional_features=config.additional_vocab_size, bias=False, partially_freeze=config.freeze_lm_head, ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def tie_weights(self): """ Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of IdeficsDecoupledLinear and IdeficsDecoupledEmbedding. """ output_embeddings = self.get_output_embeddings() input_embeddings = self.get_input_embeddings() if getattr(self.config, "tie_word_embeddings", True): output_embeddings.weight = input_embeddings.weight if input_embeddings.num_additional_embeddings > 0: assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings if hasattr(output_embeddings, "out_additional_features") and hasattr( input_embeddings, "num_additional_embeddings" ): output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=IdeficsCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_encoder_embeddings: Optional[torch.FloatTensor] = None, perceiver_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, IdeficsCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoProcessor, IdeficsForVisionText2Text >>> model = IdeficsForVisionText2Text.from_pretrained("HuggingFaceM4/idefics-9b") >>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics-9b") >>> dogs_image_url_1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg" >>> dogs_image_url_2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image2.jpeg" >>> prompts = [ ... [ ... "User:", ... dogs_image_url_1, ... "Describe this image.\nAssistant: An image of two dogs.\n", ... "User:", ... dogs_image_url_2, ... "Describe this image.\nAssistant:", ... ] ... ] >>> inputs = processor(prompts, return_tensors="pt") >>> generate_ids = model.generate(**inputs, max_new_tokens=6) >>> processor.batch_decode(generate_ids, skip_special_tokens=True) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_encoder_embeddings=image_encoder_embeddings, perceiver_embeddings=perceiver_embeddings, image_attention_mask=image_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: labels = labels.to(logits.device) # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return IdeficsCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values=None, cache_position=None, pixel_values=None, image_hidden_states=None, image_attention_mask=None, use_cache=None, **kwargs, ): # Overwritten -- custom processing based on `config.use_resampler` model_inputs = {} if image_hidden_states is not None: if self.config.use_resampler: model_inputs["perceiver_embeddings"] = image_hidden_states else: model_inputs["image_encoder_embeddings"] = image_hidden_states else: model_inputs["pixel_values"] = pixel_values # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens if past_key_values is not None: if inputs_embeds is not None: input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: input_ids = input_ids[:, cache_position] if image_attention_mask is not None: image_attention_mask = image_attention_mask[:, -input_ids.shape[1] :] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs.update({"inputs_embeds": inputs_embeds, "input_ids": None}) else: # The clone here is for the same reason as for `position_ids`. model_inputs.update( {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} ) model_inputs.update( { "past_key_values": past_key_values, "use_cache": use_cache, "cache_position": cache_position, "position_ids": position_ids, "attention_mask": attention_mask, "image_attention_mask": image_attention_mask, "interpolate_pos_encoding": kwargs.get("interpolate_pos_encoding", False), } ) return model_inputs def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, **kwargs, ) -> Dict[str, Any]: model_kwargs = super()._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder, **kwargs, ) if "image_attention_mask" in model_kwargs: image_attention_mask = model_kwargs["image_attention_mask"] last_mask = image_attention_mask[:, -1, :].unsqueeze(1) if model_kwargs.get("use_cache", True): model_kwargs["image_attention_mask"] = last_mask else: model_kwargs["image_attention_mask"] = torch.cat([image_attention_mask, last_mask], dim=1) # Get the precomputed image_hidden_states model_kwargs["image_hidden_states"] = outputs.image_hidden_states return model_kwargs @staticmethod def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
class_definition
69,217
81,324
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_idefics.py
null
7,470
class IdeficsPerceiverResampler(nn.Module): def __init__( self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__() self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver # Create Latents for Perceiver self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True) self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = nn.ModuleList( [ nn.ModuleList( [ IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms), IdeficsMLP(self.intermediate_dim, config), ] ) for _ in range(depth) ] ) self.layer_norm = nn.LayerNorm(self.embed_dim) def forward(self, context: torch.Tensor) -> torch.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = self.latents.repeat(context.shape[0], 1, 1) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents)
class_definition
2,215
5,126
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver.py
null
7,471
class IdeficsPerceiverAttention(nn.Module): def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__() self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = nn.LayerNorm(self.embed_dim) self.latents_layer_norm = nn.LayerNorm(self.embed_dim) if self.qk_layer_norms: self.q_layer_norm = nn.LayerNorm(self.head_dim) self.k_layer_norm = nn.LayerNorm(self.head_dim) self.qk_scale = self.head_dim**-0.5 # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False) def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`torch.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`torch.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = context.shape[:3] # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(torch.cat([context, latents], dim=-2)) v = self.v_proj(torch.cat([context, latents], dim=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] # einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) attn = stabilized_scores.softmax(dim=-1) # Attend & project back to output... resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) # einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class_definition
5,129
8,630
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver.py
null
7,472
class IdeficsMLP(nn.Module): def __init__(self, intermediate_size, config: IdeficsConfig): """Simple MLP block with intermediate_size and embedding size""" super().__init__() self.embed_dim = config.vision_config.embed_dim self.ln = nn.LayerNorm(self.embed_dim) self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False) self.act = nn.ReLU() self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states
class_definition
8,633
9,432
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver.py
null
7,473
class IdeficsImagesKwargs(ImagesKwargs, total=False): transform: Optional[Callable] image_size: Optional[Dict[str, int]] image_mean: Optional[Union[float, List[float]]] image_std: Optional[Union[float, List[float]]]
class_definition
1,285
1,516
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/processing_idefics.py
null
7,474
class IdeficsTextKwargs(TextKwargs, total=False): add_eos_token: Optional[bool] add_end_of_utterance_token: Optional[bool]
class_definition
1,519
1,649
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/processing_idefics.py
null
7,475
class IdeficsProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: IdeficsTextKwargs images_kwargs: IdeficsImagesKwargs _defaults = { "text_kwargs": { "add_special_tokens": False, "padding": "longest", "add_eos_token": False, }, "images_kwargs": {}, "common_kwargs": {"return_tensors": "pt"}, }
class_definition
1,652
2,037
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/processing_idefics.py
null
7,476
class IdeficsProcessor(ProcessorMixin): r""" Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor. [`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information. Args: image_processor (`IdeficsImageProcessor`): An instance of [`IdeficsImageProcessor`]. The image processor is a required input. tokenizer (`LlamaTokenizerFast`): An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input. image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image) add_end_of_utterance_token (`str`, *optional*): The string representation of token representing end of utterance """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["image_size", "add_end_of_utterance_token"] image_processor_class = "IdeficsImageProcessor" tokenizer_class = "LlamaTokenizerFast" def __init__(self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor self.image_token_id = ( tokenizer.image_token_id if hasattr(tokenizer, "image_token") else tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) ) self.default_image_dims = ( self.image_processor.image_num_channels, self.image_processor.image_size, self.image_processor.image_size, ) self.tokenizer_was_trained_with_end_of_utterance_token = ( True if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", []) else False ) @deprecate_kwarg(old_name="prompts", version="5.0.0", new_name="text", raise_if_both_names=True) def __call__( self, images: Union[ImageInput, List[ImageInput], str, List[str], List[List[str]]] = None, text: Union[ TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[List[TextInput]], List[List[PreTokenizedInput]], ] = None, audio=None, videos=None, **kwargs: Unpack[IdeficsProcessorKwargs], ) -> BatchFeature: """This method takes batched or non-batched prompts made of text and images and converts them into prompts that the model was trained on and prepares the image pixel values for the model to process. Args: images (`Union[ImageInput, List[ImageInput], str, List[str], List[List[str]]]`): either a single image or a batched list of images - can be passed in when text contains only text prompts, in order to use the image-text-to-text behavior. text (`Union[List[TextInput], [List[List[TextInput]]]]`): either a single prompt or a batched list of prompts - see the detailed description immediately after the end of the arguments doc section. return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`): The type of tensors to return. Can be one of: - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. Returns: a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be directly passed to `model.generate` Detailed explanation: Each entry in `text` is either a text to be passed as is or an image that will be processed. An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved. When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>` entry into the prompt. Example: ```python checkpoint = "HuggingFaceM4/idefics-9b" processor = AutoProcessor.from_pretrained(checkpoint) url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg" img = processor.image_processor.fetch_images([url])[0] prompts = [ "User:", img, "Describe this image.\nAssistant: An image of two kittens in grass.\n", "User:", "https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg", "Describe this image.\nAssistant:", ] inputs = processor(text=prompts, return_tensors="pt") generated_ids = model.generate(**inputs, max_length=100) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` In this example the `prompts` will be converted into: ``` <s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant: An image of two kittens in grass. User:<fake_token_around_image><image><fake_token_around_image>Describe this image. Assistant:' ``` and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the `pixel_values` dict entry of the return value. This example also examplifies that images can be passed as objects or as text urls. It can be seen that the first image is passed as object and the second one as a url. To do training do: ```python image_transform = transforms.Compose( [ transforms.RandomResizedCrop( (w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize(mean=self.image_mean, std=self.image_std), ] ) inputs = processor(text=prompts, transform=image_transform, return_tensors="pt") ``` In order to help debug prompt generation enable `debug=True` which will show you what's happening. """ if images is None and text is None: raise ValueError("You need to specify either `text` or `images` and `text`.") # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) if images is None: # assuming the user wants to use the old behavior with prompts as the only argument prompts = text elif text is not None: # Assuming image-text-to-text behavior: # Check if batched images are provided if not isinstance(images, (list, tuple)): images = [images] if isinstance(text, str): text = [text] # Check if batched images and text are in the correct format if isinstance(text, (list, tuple)) and len(text) != len(images): raise ValueError( "When providing both images and text arguments, the number of text prompts should be the same as the number of images." "If you want to have several images per prompt, images should be nested as such: images=[[img1, img2], [img3, img4], ...] for text=[prompt1, prompt2, ...]." ) # Check that only text is present in the prompts if not all(isinstance(i, str) for i in text): raise ValueError("When using the image-text-to-text behavior, the prompts should only contain text.") if isinstance(images[0], (list, tuple)): # if nested images, nest text as well text = [[i] for i in text] prompts = list(zip(images, text)) output_kwargs = self._merge_kwargs( IdeficsProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) add_eos_token = output_kwargs["text_kwargs"].pop("add_eos_token", False) add_end_of_utterance_token = output_kwargs["text_kwargs"].pop("add_end_of_utterance_token", None) # if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it if add_end_of_utterance_token is None: add_end_of_utterance_token = self.tokenizer_was_trained_with_end_of_utterance_token # turn non-batched prompts into batched if not any(isinstance(i, (list, tuple)) for i in prompts): prompts = [prompts] fake_token = "<fake_token_around_image>" image_token = "<image>" end_of_utterance_token = "<end_of_utterance>" def image_tokens(last_was_image): if last_was_image: return image_token + fake_token else: return fake_token + image_token + fake_token all_prompts = [] all_images = [] for sample in prompts: # the model was trained on samples starting with <s> full_text = f"{self.tokenizer.bos_token}" # an image can either be an image object in the item or the url, everything else is a verbatim prompt text image_objects = [] last_was_image = False last_was_text = False for i, item in enumerate(sample): if i > 0: last_was_text = True if not last_was_image else False if isinstance(item, str): item = item.strip(" ") if is_url(item): image = self.image_processor.fetch_images(item) full_text += image_tokens(last_was_image) image_objects.append(image) last_was_image = True else: # we add end_of_utterance_token between each subsequent text prompts (but not at the last one!) if add_end_of_utterance_token and last_was_text: full_text += end_of_utterance_token full_text += item last_was_image = False else: # must be an image obj full_text += image_tokens(last_was_image) image_objects.append(item) last_was_image = True if add_eos_token: full_text += self.tokenizer.eos_token image_objects = self.image_processor(image_objects, **output_kwargs["images_kwargs"]) all_prompts.append(full_text) all_images.append(image_objects) # For BC return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt") text_encoding = self.tokenizer(all_prompts, **output_kwargs["text_kwargs"]) all_texts = text_encoding["input_ids"] all_attention_masks = text_encoding["attention_mask"] # max_num_images has to be at least 1 even when there are no images max_num_images = max(len(x) for x in all_images) max_num_images = max(1, max_num_images) at_least_one_image = sum(len(x) for x in all_images) > 0 output_input_ids = [] output_images = [] output_attention_masks = [] for text_single, attention_mask, extracted_images in zip(all_texts, all_attention_masks, all_images): padded_input_ids = text_single image_count = padded_input_ids.count(self.image_token_id) local_max_num_images = min(image_count, max_num_images) current_images = extracted_images[:local_max_num_images] if len(current_images) > 0: if return_tensors == "pt": padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:]) padded_image_tensor[: current_images.size(0)] = current_images elif return_tensors == "tf": # Assuming current_images is a TensorFlow tensor # Get the shape of current_images, excluding the first dimension image_shape = tf.shape(current_images)[1:] # Create a shape for the padded_image_tensor padded_shape = tf.concat([[max_num_images], image_shape], axis=0) # Create the padded_image_tensor of zeros padded_image_tensor = tf.zeros(padded_shape, dtype=current_images.dtype) # Get the number of images (assuming current_images has shape [num_images, height, width, channels]) num_images = tf.shape(current_images)[0] # Update the padded_image_tensor with the values from current_images indices = tf.reshape(tf.range(num_images), (-1, 1)) updates = current_images padded_image_tensor = tf.tensor_scatter_nd_update(padded_image_tensor, indices, updates) else: if return_tensors == "pt": padded_image_tensor = torch.zeros(max_num_images, *self.default_image_dims) elif return_tensors == "tf": padded_image_tensor = tf.zeros((max_num_images, *self.default_image_dims)) output_images.append(padded_image_tensor) if return_tensors == "pt": output_input_ids.append(torch.tensor(padded_input_ids)) output_attention_masks.append(torch.tensor(attention_mask)) elif return_tensors == "tf": output_input_ids.append(tf.convert_to_tensor(padded_input_ids, dtype=tf.int32)) output_attention_masks.append(attention_mask) if return_tensors == "pt": output_input_ids = torch.stack(output_input_ids) output_images = torch.stack(output_images) output_attention_masks = torch.stack(output_attention_masks) elif return_tensors == "tf": output_input_ids = tf.stack(output_input_ids) output_images = tf.stack(output_images) output_attention_masks = tf.stack(output_attention_masks) if at_least_one_image: image_attention_mask, _ = image_attention_mask_for_packed_input_ids( output_input_ids, self.tokenizer, return_tensors ) image_attention_mask = incremental_to_binary_attention_mask( image_attention_mask, return_tensors, num_classes=max_num_images ) else: # in full language mode we set the image mask to all-0s if return_tensors == "pt": image_attention_mask = torch.zeros( output_input_ids.shape[0], output_input_ids.shape[1], 1, dtype=torch.bool ) elif return_tensors == "tf": image_attention_mask = tf.zeros( (output_input_ids.shape[0], output_input_ids.shape[1], 1), dtype=tf.bool ) return BatchFeature( data={ "input_ids": output_input_ids, "attention_mask": output_attention_masks, "pixel_values": output_images, "image_attention_mask": image_attention_mask, } ) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class_definition
7,230
23,833
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/processing_idefics.py
null
7,477
class TFIdeficsVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[tf.Tensor] = None last_hidden_state: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None
class_definition
1,226
2,925
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,478
class TFIdeficsVisionEmbeddings(tf.keras.layers.Layer): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = tf.keras.layers.Conv2D( filters=self.embed_dim, kernel_size=self.patch_size, strides=self.patch_size, use_bias=False, padding="valid", data_format="channels_last", name="patch_embedding", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = tf.keras.layers.Embedding( self.num_positions, self.embed_dim, name="position_embedding" ) # self.position_ids = tf.range(self.num_positions)[tf.newaxis, :] def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor: num_patches = shape_list(embeddings)[1] - 1 pos_embed = self.position_embedding(self.position_ids) num_positions = shape_list(pos_embed)[1] - 1 if num_patches == num_positions and height == width: return pos_embed class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] embed_dim = shape_list(embeddings)[-1] num_h_patches = height // self.config.patch_size num_w_patches = width // self.config.patch_size num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 sqrt_num_positions = math.sqrt(float(num_positions)) patch_pos_embed = tf.reshape(patch_pos_embed, (1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim)) scale_height = num_h_patches / sqrt_num_positions scale_width = num_w_patches / sqrt_num_positions original_height = tf.cast(tf.shape(patch_pos_embed)[1], tf.float32) original_width = tf.cast(tf.shape(patch_pos_embed)[2], tf.float32) # Apply scaling new_height = tf.cast(original_height * scale_height, tf.int32) new_width = tf.cast(original_width * scale_width, tf.int32) patch_pos_embed = tf.image.resize( patch_pos_embed, size=[new_height, new_width], method=tf.image.ResizeMethod.BICUBIC ) if ( int(num_h_patches) != shape_list(patch_pos_embed)[-3] or int(num_w_patches) != shape_list(patch_pos_embed)[-2] ): raise ValueError( f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " f"shape of position embedding ({shape_list(patch_pos_embed)[-2], shape_list(patch_pos_embed)[-1]})" ) patch_pos_embed = tf.reshape(patch_pos_embed, (1, -1, embed_dim)) return tf.concat((class_pos_embed[tf.newaxis, :], patch_pos_embed), axis=1) def call(self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False) -> tf.Tensor: # Input `pixel_values` is NCHW format which doesn't run on CPU so first thing we do is # transpose it to change it to NHWC. We don't care to transpose it back because # the Conv2D layer is only hit once for each query if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) batch_size, height, width, num_channels = shape_list(pixel_values) if not interpolate_pos_encoding: if height != self.image_size or width != self.image_size: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`" ) patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) patch_embeds = flatten(patch_embeds, 1, 2) class_embeds = tf.broadcast_to( self.class_embedding[tf.newaxis, tf.newaxis, :], [batch_size, 1, self.embed_dim] ) embeddings = tf.concat([class_embeds, patch_embeds], axis=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings def build(self, input_shape=None): if self.built: return self.built = True self.position_ids = tf.range(self.num_positions, name="self.position_ids")[tf.newaxis, :] self.class_embedding = self.add_weight(shape=(self.embed_dim,), name="class_embedding") if getattr(self, "patch_embedding", None) is not None: with tf.name_scope(self.patch_embedding.name): self.patch_embedding.build([None, None, None, self.config.num_channels]) if getattr(self, "position_embedding", None) is not None: with tf.name_scope(self.position_embedding.name): self.position_embedding.build(None)
class_definition
2,928
8,369
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,479
class TFIdeficsVisionAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = tf.keras.layers.Dense(self.embed_dim, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.embed_dim, name="v_proj") self.q_proj = tf.keras.layers.Dense(self.embed_dim, name="q_proj") self.out_proj = tf.keras.layers.Dense(self.embed_dim, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, causal_attention_mask: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.linalg.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( tf.shape(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, src_len]}, but is {tf.shape(attn_weights)}", ) # apply the causal_attention_mask first if causal_attention_mask is not None: if shape_list(causal_attention_mask) != [bsz, 1, tgt_len, src_len]: raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(causal_attention_mask)}" ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + causal_attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) if attention_mask is not None: if shape_list(attention_mask) != [bsz, 1, tgt_len, src_len]: raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}" ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) attn_weights = tf.reshape(attn_weights_reshaped, (bsz * self.num_heads, tgt_len, src_len)) else: attn_weights_reshaped = None attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout) attn_output = tf.linalg.matmul(attn_probs, value_states) tf.debugging.assert_equal( tf.shape(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, self.head_dim]}, but is {tf.shape(attn_output)}", ) attn_output = tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)) attn_output = tf.transpose(attn_output, perm=[0, 2, 1, 3]) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build((self.embed_dim, self.embed_dim))
class_definition
8,372
14,138
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,480
class TFIdeficsVisionMLP(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.activation_fn = get_tf_activation(config.hidden_act) self.fc1 = tf.keras.layers.Dense(config.intermediate_size, name="fc1") self.fc2 = tf.keras.layers.Dense(config.hidden_size, name="fc2") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build(self.config.hidden_size) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build(self.config.intermediate_size)
class_definition
14,141
15,178
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,481
class TFIdeficsVisionEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFIdeficsVisionAttention(config, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFIdeficsVisionMLP(config, name="mlp") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm1", None) is not None: with tf.name_scope(self.layer_norm1.name): self.layer_norm1.build([None, None, self.embed_dim]) if getattr(self, "layer_norm2", None) is not None: with tf.name_scope(self.layer_norm2.name): self.layer_norm2.build([None, None, self.embed_dim])
class_definition
15,181
17,726
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,482
class TFIdeficsVisionEncoder(tf.keras.layers.Layer): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`TFIdeficsVisionEncoderLayer`]. Args: config: IdeficsVisionConfig """ def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layers = [ TFIdeficsVisionEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers) ] self.gradient_checkpointing = False def call( self, inputs_embeds, attention_mask: Optional[tf.Tensor] = None, causal_attention_mask: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutput]: r""" Args: inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = tf.recompute_grad( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
17,729
22,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,483
class TFIdeficsVisionTransformer(TFPreTrainedModel): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.embed_dim = config.hidden_size self.embeddings = TFIdeficsVisionEmbeddings(config, name="embeddings") self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm") self.encoder = TFIdeficsVisionEncoder(config, name="encoder") self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm") # Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "pre_layrnorm", None) is not None: with tf.name_scope(self.pre_layrnorm.name): self.pre_layrnorm.build([None, None, self.embed_dim]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "post_layernorm", None) is not None: with tf.name_scope(self.post_layernorm.name): self.post_layernorm.build([None, self.embed_dim])
class_definition
22,701
26,009
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/vision_tf.py
null
7,484
class IdeficsImageProcessor(BaseImageProcessor): r""" Constructs a Idefics image processor. Args: image_size (`int`, *optional*, defaults to 224): Resize to image size image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. image_num_channels (`int`, *optional*, defaults to 3): Number of image channels. """ model_input_names = ["pixel_values"] def __init__( self, image_size: int = 224, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, image_num_channels: Optional[int] = 3, **kwargs, ) -> None: super().__init__(**kwargs) self.image_size = image_size self.image_num_channels = image_num_channels self.image_mean = image_mean self.image_std = image_std def preprocess( self, images: ImageInput, image_num_channels: Optional[int] = 3, image_size: Optional[Dict[str, int]] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, transform: Callable = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, **kwargs, ) -> TensorType: """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. image_size (`int`, *optional*, defaults to `self.image_size`): Resize to image size image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`): Number of image channels. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. transform (`Callable`, *optional*, defaults to `None`): A custom transform function that accepts a single image can be passed for training. For example, `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is assumed - and then a preset of inference-specific transforms will be applied to the images Returns: a PyTorch tensor of the processed images """ image_size = image_size if image_size is not None else self.image_size image_num_channels = image_num_channels if image_num_channels is not None else self.image_num_channels image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = (image_size, image_size) if isinstance(images, list) and len(images) == 0: return [] images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # For training a user needs to pass their own set of transforms as a Callable. # For reference this is what was used in the original IDEFICS training: # transform = transforms.Compose([ # convert_to_rgb, # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), # transforms.ToTensor(), # transforms.Normalize(mean=image_mean, std=image_std), # ]) if transform is not None: if not is_torch_available(): raise ImportError("To pass in `transform` torch must be installed") import torch images = [transform(x) for x in images] return torch.stack(images) # for inference we do the exact transforms that were used to train IDEFICS images = [convert_to_rgb(x) for x in images] # further transforms expect numpy arrays images = [to_numpy_array(x) for x in images] images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images] images = [self.rescale(image=image, scale=1 / 255) for image in images] images = [self.normalize(x, mean=image_mean, std=image_std) for x in images] images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images] images = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)["pixel_values"] return images
class_definition
1,728
7,763
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/image_processing_idefics.py
null
7,485
class TFIdeficsPerceiverResampler(tf.keras.layers.Layer): def __init__( self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, **kwargs ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__(**kwargs) self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = [] for i in range(depth): self.blocks.append( [ TFIdeficsPerceiverAttention( self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms, name=f"blocks.{i}.0" ), TFIdeficsMLP(self.intermediate_dim, config, name=f"blocks.{i}.1"), ] ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def build(self, input_shape): # Create Latents for Perceiver self.latents = self.add_weight( shape=(self.n_latents, self.embed_dim), initializer="random_normal", trainable=True, name="latents" ) super().build(input_shape) def call(self, context: tf.Tensor) -> tf.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # tf.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = tf.expand_dims(self.latents, axis=0) latents = tf.tile(latents, [tf.shape(context)[0], 1, 1]) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents)
class_definition
2,248
5,422
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver_tf.py
null
7,486
class TFIdeficsPerceiverAttention(tf.keras.layers.Layer): def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool, **kwargs) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__(**kwargs) self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="context_layer_norm") self.latents_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="latents_layer_norm") if self.qk_layer_norms: self.q_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="q_layer_norm") self.k_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="k_layer_norm") self.qk_scale = self.head_dim**-0.5 # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="q_proj") self.k_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="v_proj") self.output_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="output_proj") def call(self, context: tf.Tensor, latents: tf.Tensor) -> tf.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`tf.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`tf.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `tf.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = shape_list(context) # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(tf.concat([context, latents], axis=-2)) v = self.v_proj(tf.concat([context, latents], axis=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] q, k, v = [ tf.transpose(tf.reshape(x, (batch_size, x.shape[1], self.n_heads, self.head_dim)), perm=[0, 2, 1, 3]) for x in (q, k, v) ] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = tf.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - tf.reduce_max(scores, axis=-1, keepdims=True) attn = tf.nn.softmax(stabilized_scores, axis=-1) # Attend & project back to output... resampled = tf.einsum("... i j, ... j d -> ... i d", attn, v) return self.output_proj( tf.reshape(tf.transpose(resampled, perm=[0, 2, 1, 3]), (batch_size, -1, self.n_heads * self.head_dim)) )
class_definition
5,425
9,113
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver_tf.py
null
7,487
class TFIdeficsMLP(tf.keras.layers.Layer): def __init__(self, intermediate_size, config: IdeficsConfig, **kwargs): """Simple MLP block with intermediate_size and embedding size""" super().__init__(**kwargs) self.embed_dim = config.vision_config.embed_dim self.ln = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="ln") self.fc = tf.keras.layers.Dense(intermediate_size, use_bias=False, name="fc") self.act = tf.keras.layers.ReLU(name="act") self.c_proj = tf.keras.layers.Dense(self.embed_dim, use_bias=False, name="c_proj") def call(self, hidden_states: Optional[Tuple[tf.Tensor]]) -> tf.Tensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states
class_definition
9,116
10,005
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/perceiver_tf.py
null
7,488
class TFIdeficsBaseModelOutputWithPast(ModelOutput): """ Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(tf.Tensor)`, *optional*): Tuple of `tf.Tensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ last_hidden_state: tf.Tensor = None past_key_values: Optional[Tuple[Tuple[tf.Tensor]]] = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None image_hidden_states: Optional[Tuple[tf.Tensor]] = None
class_definition
1,840
4,630
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,489
class TFIdeficsCausalLMOutputWithPast(ModelOutput): """ Base class for Idefics causal language model (or autoregressive) outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(tf.Tensor)`, *optional*): Tuple of `tf.Tensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[tf.Tensor] = None logits: tf.Tensor = None past_key_values: Optional[List[tf.Tensor]] = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None image_hidden_states: Optional[Tuple[tf.Tensor]] = None
class_definition
4,644
7,169
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,490
class TFIdeficsDecoupledEmbedding(tf.keras.layers.Embedding): """ Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained. If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `tf.keras.layers.Embedding`. """ def __init__( self, num_embeddings, num_additional_embeddings, embedding_dim, partially_freeze: Optional[bool] = False, dtype=None, **kwargs, ) -> None: """ Args: num_embeddings (`int`): Size of the dictionary of embeddings num_additional_embeddings (`int`): Number of additional embeddings. Only useful when you `partially_freeze=True`. embedding_dim (`int`): The size of each embedding vector partially_freeze: (`bool`, *optional*, defaults to `False`): If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen. Note: there are a lot of other parameters to initialize a standard `tf.keras.layers.Embedding` such as `mask_zero`, `input_length` or `embeddings_initializer`. We are not supporting these. """ super().__init__( input_dim=num_embeddings, output_dim=embedding_dim, dtype=dtype, **kwargs, ) self.num_embeddings = num_embeddings self.num_additional_embeddings = num_additional_embeddings self.partially_freeze = partially_freeze if partially_freeze: self.trainable = False if self.num_additional_embeddings > 0: self.additional_embedding = tf.keras.layers.Embedding( input_dim=self.num_additional_embeddings, output_dim=embedding_dim, dtype=dtype, name="additional_embedding", ) def call(self, input_ids): """ we have 2 embeddings, with different indices - one pretrained self.weight and another self.additional_embedding.weight that is being trained. in order to make a lookup of the input ids, we: 1. find out the indices of the entries belonging to the 2nd embedding 2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd embedding starts from 0 and not num_embeddings 3. perform the 2nd embedding lookup 4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index 5. perform the 1st embedding lookup 6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices - i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are usually relatively short it's probably not faster or if faster not by much - but might be a good idea to measure. """ if self.num_additional_embeddings == 0: return super().call(input_ids) # Clone so that we don't modify the original input_ids later on input_ids = tf.identity(input_ids) additional_vocab_indices = tf.where(input_ids >= self.num_embeddings) input_ids_additional_vocab = tf.gather_nd(input_ids, additional_vocab_indices) additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings) # for successful lookup replace input_ids with 0, the results of these will be discarded anyway input_ids = tf.tensor_scatter_nd_update( input_ids, additional_vocab_indices, # tensor filled with 0, having the same length as additional_vocab_indices tf.zeros(tf.shape(additional_vocab_indices)[0], dtype=input_ids.dtype), ) full_vector = super().call(input_ids) # overwrite the records with high indices full_vector = tf.tensor_scatter_nd_update(full_vector, additional_vocab_indices, additional_embeddings) return full_vector def extra_repr(self) -> str: return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format( self.num_embeddings, self.num_additional_embeddings, self.output_dim, self.partially_freeze, )
class_definition
12,477
17,381
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,491
class TFIdeficsDecoupledLinear(tf.keras.layers.Layer): """ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained. If `out_additional_features=0`, then the module defaults back to the regular behavior of `tf.keras.layers.Dense`. """ def __init__( self, in_features: int, out_features: int, out_additional_features: int = 0, bias: bool = True, partially_freeze: bool = True, **kwargs, ) -> None: """ out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`. partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of tf.keras.layers.Dense. """ super().__init__(**kwargs) self.out_additional_features = out_additional_features self.partially_freeze = partially_freeze self.in_features = in_features self.out_features = out_features self.use_bias = bias if out_additional_features > 0: self.additional_fc = tf.keras.layers.Dense( units=out_additional_features, use_bias=bias, name="additional_fc" ) def call(self, inputs: tf.Tensor) -> tf.Tensor: output = tf.linalg.matmul(a=inputs, b=self.weight, transpose_b=True) if self.bias is not None: output = tf.nn.bias_add(output, self.bias) if self.out_additional_features > 0: additional_features = self.additional_fc(inputs) output = tf.concat([output, additional_features], axis=-1) return output def get_config(self): config = super().get_config() config.update( { "in_features": self.in_features, "out_features": self.out_features, "out_additional_features": self.out_additional_features, "bias": self.bias is not None, "partially_freeze": self.partially_freeze, } ) return config def extra_repr(self) -> str: """Overwriting `nn.Linear.extra_repr` to include new parameters.""" return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( self.in_features, self.out_features, self.out_additional_features, self.bias is not None, self.partially_freeze, ) @classmethod def from_config(cls, config): return cls(**config) def build(self, input_shape=None): if self.built: return self.built = True self.weight = self.add_weight( shape=(self.out_features, self.in_features), trainable=not self.partially_freeze, name="weight" ) if self.use_bias: self.bias = self.add_weight(shape=(self.out_features,), trainable=not self.partially_freeze, name="bias") else: self.bias = None if getattr(self, "additional_fc", None) is not None: with tf.name_scope(self.additional_fc.name): self.additional_fc.build(self.in_features)
class_definition
17,384
20,910
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,492
class TFIdeficsRMSNorm(tf.keras.layers.Layer): def __init__(self, hidden_size, eps=1e-6, **kwargs): """ TFIdeficsRMSNorm is equivalent to T5LayerNorm """ super().__init__(**kwargs) self.hidden_size = hidden_size self.variance_epsilon = eps def build(self, input_shape): if self.built: return self.built = True self.weight = self.add_weight(name="weight", shape=[self.hidden_size], initializer="ones") super().build(input_shape) def call(self, hidden_states): variance = tf.math.reduce_mean(tf.math.square(tf.cast(hidden_states, tf.float32)), axis=-1, keepdims=True) hidden_states = hidden_states * tf.math.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [tf.float16, tf.bfloat16]: hidden_states = tf.cast(hidden_states, self.weight.dtype) return self.weight * hidden_states
class_definition
22,651
23,644
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,493
class TFIdeficsEmbedding(tf.keras.layers.Layer): def __init__(self, dim, max_position_embeddings=2048, base=10000, **kwargs): super().__init__(**kwargs) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.inv_freq = tf.constant( 1.0 / (self.base ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim)) ) def _compute_cos_sin(self, seq_len): t = tf.range(seq_len, dtype=self.inv_freq.dtype) freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication emb = tf.concat((freqs, freqs), axis=-1) return tf.cos(emb), tf.sin(emb) def call(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len is None: seq_len = shape_list(x)[2] return self._compute_cos_sin(seq_len=seq_len)
class_definition
23,647
24,566
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,494
class TFIdeficsMLP(tf.keras.layers.Layer): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, **kwargs, ): super().__init__(**kwargs) self.gate_proj = tf.keras.layers.Dense(intermediate_size, use_bias=False, name="gate_proj") self.down_proj = tf.keras.layers.Dense(hidden_size, use_bias=False, name="down_proj") self.up_proj = tf.keras.layers.Dense(intermediate_size, use_bias=False, name="up_proj") self.act_fn = get_tf_activation(hidden_act) self.intermediate_size = intermediate_size self.hidden_size = hidden_size def call(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "gate_proj", None) is not None: with tf.name_scope(self.gate_proj.name): self.gate_proj.build(self.hidden_size) if getattr(self, "down_proj", None) is not None: with tf.name_scope(self.down_proj.name): self.down_proj.build(self.intermediate_size) if getattr(self, "up_proj", None) is not None: with tf.name_scope(self.up_proj.name): self.up_proj.build(self.hidden_size)
class_definition
25,141
26,497
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,495
class TFIdeficsAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, hidden_size: int, num_heads: int, dropout: float = 0.0, is_cross_attention: bool = False, config: IdeficsConfig = None, qk_layer_norms: bool = False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads self.dropout = dropout self.config = config self.is_causal = True if (self.head_dim * num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {num_heads})." ) self.is_cross_attention = is_cross_attention self.q_proj = tf.keras.layers.Dense( num_heads * self.head_dim, use_bias=False, name="q_proj", ) self.k_proj = tf.keras.layers.Dense( num_heads * self.head_dim, use_bias=False, name="k_proj", ) self.v_proj = tf.keras.layers.Dense( num_heads * self.head_dim, use_bias=False, name="v_proj", ) self.o_proj = tf.keras.layers.Dense( hidden_size, use_bias=False, name="o_proj", ) self.rotary_emb = TFIdeficsEmbedding(self.head_dim, name="rotary_emb") self.qk_layer_norms = qk_layer_norms if self.qk_layer_norms: self.q_layer_norm = TFIdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps, name="q_layer_norm") self.k_layer_norm = TFIdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps, name="k_layer_norm") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, key_value_states: Optional[tf.Tensor] = None, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]: # if key_value_states are provided this layer is used as a cross-attention layer is_cross_attention = self.is_cross_attention or key_value_states is not None bsz, q_len, _ = shape_list(hidden_states) query_states = self._shape(self.q_proj(hidden_states), q_len, bsz) if not is_cross_attention: key_states = self._shape(self.k_proj(hidden_states), q_len, bsz) value_states = self._shape(self.v_proj(hidden_states), q_len, bsz) else: _, kv_len, _ = shape_list(key_value_states) # Note that, in this case, `kv_len` == `kv_seq_len` key_states = self._shape(self.k_proj(key_value_states), kv_len, bsz) value_states = self._shape(self.v_proj(key_value_states), kv_len, bsz) kv_seq_len = shape_list(key_states)[-2] if past_key_value is not None: kv_seq_len += shape_list(past_key_value[0])[-2] if not is_cross_attention: # Below is to allow symbolic tensors compilation if tf.is_tensor(kv_seq_len): seq_len = tf.reduce_max(kv_seq_len, q_len) else: seq_len = max(kv_seq_len, q_len) cos, sin = self.rotary_emb(value_states, seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) past_key_value = (key_states, value_states) if use_cache else None if self.qk_layer_norms: query_states = self.q_layer_norm(query_states) key_states = self.k_layer_norm(key_states) tf.debugging.assert_equal( tf.shape(attention_mask), [bsz, 1, q_len, kv_seq_len], message=f"Attention weights should be of size {[bsz, 1, q_len, kv_seq_len]}, but is {tf.shape(attention_mask)}", ) attn_output = scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) tf.debugging.assert_equal( tf.shape(attn_output), [bsz, self.num_heads, q_len, self.head_dim], message=f"Attention weights should be of size {[bsz, self.num_heads, q_len, self.head_dim]}, but is {tf.shape(attn_output)}", ) attn_output = tf.reshape(tf.transpose(attn_output, perm=[0, 2, 1, 3]), (bsz, q_len, self.hidden_size)) attn_output = self.o_proj(attn_output) attn_weights = None if output_attentions: logger.warning_once( "attn_weights are not extracted in scaled_dot_product_attention. The model returns None instead" ) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if self.is_cross_attention: kv_input_dim = ( self.hidden_size if not hasattr(self.config.vision_config, "embed_dim") else self.config.vision_config.embed_dim ) else: kv_input_dim = self.hidden_size if getattr(self, "o_proj", None) is not None: with tf.name_scope(self.o_proj.name): self.o_proj.build(self.num_heads * self.head_dim) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build(self.hidden_size) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build(kv_input_dim) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build(kv_input_dim) if getattr(self, "rotary_emb", None) is not None: with tf.name_scope(self.rotary_emb.name): self.rotary_emb.build(None)
class_definition
26,500
33,409
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,496
class TFIdeficsDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: IdeficsConfig, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size self.self_attn = TFIdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, dropout=config.dropout, config=config, name="self_attn", ) self.mlp = TFIdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, name="mlp", ) self.input_layernorm = TFIdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps, name="input_layernorm") self.post_attention_layernorm = TFIdeficsRMSNorm( config.hidden_size, eps=config.rms_norm_eps, name="post_attention_layernorm" ) self.dropout = config.dropout def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, training=False, ) -> Tuple[tf.Tensor, Optional[Tuple[tf.Tensor, tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = tf.nn.dropout(hidden_states, rate=self.dropout) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = tf.nn.dropout(hidden_states, rate=self.dropout) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "input_layernorm", None) is not None: with tf.name_scope(self.input_layernorm.name): self.input_layernorm.build(None) if getattr(self, "post_attention_layernorm", None) is not None: with tf.name_scope(self.post_attention_layernorm.name): self.post_attention_layernorm.build(None)
class_definition
33,412
37,463
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,497
class TFIdeficsGatedCrossAttentionLayer(tf.keras.layers.Layer): def __init__(self, config: IdeficsConfig, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size self.cross_attn = TFIdeficsAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, is_cross_attention=True, dropout=config.dropout, config=config, qk_layer_norms=config.qk_layer_norms, name="cross_attn", ) self.mlp = TFIdeficsMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, name="mlp", ) self.input_layernorm = TFIdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps, name="input_layernorm") self.post_attention_layernorm = TFIdeficsRMSNorm( config.hidden_size, eps=config.rms_norm_eps, name="post_attention_layernorm" ) self.config = config.dropout self.act_cross_attn = tf.keras.activations.tanh self.act_dense = tf.keras.activations.tanh self.alpha_initializer = config.alpha_initializer self.alpha_type = config.alpha_type self.alphas_initializer_range = config.alphas_initializer_range def build(self, input_shape): if self.built: return self.built = True if self.alpha_initializer == "zeros": if self.alpha_type == "vector": self.alpha_cross_attn = self.add_weight( shape=(1, 1, self.hidden_size), initializer="zeros", trainable=True, name="alpha_cross_attn" ) self.alpha_dense = self.add_weight( shape=(1, 1, self.hidden_size), initializer="zeros", trainable=True, name="alpha_dense" ) elif self.alpha_type == "float": self.alpha_cross_attn = self.add_weight( shape=(1,), initializer="zeros", trainable=True, name="alpha_cross_attn" ) self.alpha_dense = self.add_weight(shape=(1,), initializer="zeros", trainable=True, name="alpha_dense") else: raise ValueError(f"Unknown value for `alpha_type` ({self.alpha_type})") elif self.alpha_initializer == "ones": if self.alpha_type == "vector": self.alpha_cross_attn = self.add_weight( shape=(1, 1, self.hidden_size), initializer="ones", trainable=True, name="alpha_cross_attn" ) self.alpha_dense = self.add_weight( shape=(1, 1, self.hidden_size), initializer="ones", trainable=True, name="alpha_dense" ) elif self.alpha_type == "float": self.alpha_cross_attn = self.add_weight( shape=(1,), initializer="ones", trainable=True, name="alpha_cross_attn" ) self.alpha_dense = self.add_weight(shape=(1,), initializer="ones", trainable=True, name="alpha_dense") else: raise ValueError(f"Unknown value for `alpha_type` ({self.alpha_type})") elif self.alpha_initializer in {"normal", "gaussian", "random"}: if self.alpha_type == "vector": self.alpha_cross_attn = self.add_weight( shape=(1, 1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.alphas_initializer_range), trainable=True, name="alpha_cross_attn", ) self.alpha_dense = self.add_weight( shape=(1, 1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.alphas_initializer_range), trainable=True, name="alpha_dense", ) elif self.alpha_type == "float": self.alpha_cross_attn = self.add_weight( shape=(1,), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.alphas_initializer_range), trainable=True, name="alpha_type", ) self.alpha_dense = self.add_weight( shape=(1,), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.alphas_initializer_range), trainable=True, name="alpha_dense", ) else: raise ValueError(f"Unknown value for `alpha_type` ({self.alpha_type})") else: raise NotImplementedError(f"Alpha initialization scheme {self.alpha_initializer} not yet implemented!") if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")): raise ValueError("Alpha parameters not initialized correctly!") with tf.name_scope(self.cross_attn.name): self.cross_attn.build(None) with tf.name_scope(self.mlp.name): self.mlp.build(None) with tf.name_scope(self.input_layernorm.name): self.input_layernorm.build(None) with tf.name_scope(self.post_attention_layernorm.name): self.post_attention_layernorm.build(None) super().build(input_shape) def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, image_hidden_states: Optional[tf.Tensor] = None, image_attention_mask: Optional[tf.Tensor] = None, cross_attention_gate: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[tf.Tensor]] = None, ) -> Tuple[tf.Tensor, Optional[Tuple[tf.Tensor, tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states no_images (`bool`, *optional*, defaults to `False`): If `True` the vision part is ignored """ if image_hidden_states is None: raise ValueError( "`image_hidden_states` is required for Idefics cross attention module which are visual features to be" " conditioned on." ) if cross_attention_gate is None: raise ValueError( "`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images." ) if past_key_value is not None: raise NotImplementedError("Past key value states are not implemented for Idefics cross attention module.") residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=image_hidden_states, attention_mask=image_attention_mask, output_attentions=output_attentions, ) hidden_states = tf.nn.dropout(hidden_states, rate=self.config) mask = tf.cast(cross_attention_gate == 0, dtype=hidden_states.dtype) # Expand dimensions of mask to match hidden_states mask = tf.expand_dims(mask, -1) hidden_states = tf.where( tf.broadcast_to(mask, tf.shape(hidden_states)) == 1, tf.zeros_like(hidden_states), hidden_states ) # when there are no images the model is used in pure language mode # gate = 0 if no_images else 1 hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = tf.nn.dropout(hidden_states, rate=self.config) hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
class_definition
37,466
46,541
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,498
class TFIdeficsPreTrainedModel(TFPreTrainedModel): config_class = IdeficsConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["TFIdeficsDecoderLayer", "TFIdeficsGatedCrossAttentionLayer"]
class_definition
47,592
47,837
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/idefics/modeling_tf_idefics.py
null
7,499