text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class PatchTSTForPretrainingOutput(ModelOutput): """ Output type of [`PatchTSTForPretraining`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. prediction_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
37,707
39,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,300
class PatchTSTForRegressionOutput(ModelOutput): """ Output type of [`PatchTSTForRegression`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): Regression outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None regression_outputs: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
39,240
40,735
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,301
class PatchTSTForPredictionOutput(ModelOutput): """ Output type of [`PatchTSTForPrediction`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): MSE loss. prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, -1)`): Prediction outputs of the time series modeling heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length """ loss: Optional[torch.FloatTensor] = None prediction_outputs: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None loc: torch.FloatTensor = None scale: torch.FloatTensor = None
class_definition
40,749
42,709
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,302
class PatchTSTForClassificationOutput(ModelOutput): """ Output type of [`PatchTSTForClassification`]. Parameters: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, num_targets)`): Prediction scores of the PatchTST modeling head (scores before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
42,723
44,360
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,303
class SamplePatchTSTOutput(ModelOutput): """ Base class for time series model's predictions outputs that contains the sampled values from the chosen distribution. Parameters: sequences `(batch_size, num_samples, prediction_length, num_targets)`): Sampled values from the chosen distribution. """ sequences: torch.FloatTensor = None
class_definition
44,374
44,755
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,304
class PatchTSTStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by subtracting from the mean and dividing by the standard deviation. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale
class_definition
46,485
48,223
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,305
class PatchTSTMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data accordingly. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 self.default_scale = config.default_scale if hasattr(config, "default_scale") else None def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale
class_definition
48,396
50,795
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,306
class PatchTSTNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale
class_definition
50,967
52,166
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,307
class PatchTSTScaler(nn.Module): def __init__(self, config: PatchTSTConfig): super().__init__() if config.scaling == "mean" or config.scaling is True: self.scaler = PatchTSTMeanScaler(config) elif config.scaling == "std": self.scaler = PatchTSTStdScaler(config) else: self.scaler = PatchTSTNOPScaler(config) def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): Input for scaler calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, um_input_channels)`) """ data, loc, scale = self.scaler(data, observed_indicator) return data, loc, scale
class_definition
52,169
53,377
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,308
class PatchTSTModel(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) self.scaler = PatchTSTScaler(config) self.patchifier = PatchTSTPatchify(config) self.do_mask_input = config.do_mask_input # get num_patches information from PatchTSTPatchify num_patches = self.patchifier.num_patches if self.do_mask_input: self.masking = PatchTSTMasking(config) else: self.masking = nn.Identity() self.encoder = PatchTSTEncoder(config, num_patches=num_patches) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTModelOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). future_values (`torch.BoolTensor` of shape `(batch_size, prediction_length, num_input_channels)`, *optional*): Future target values associated with the `past_values` output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTModelOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTModel >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = PatchTSTModel.from_pretrained("namctin/patchtst_etth1_pretrain") >>> # during training, one provides both past and future values >>> outputs = model( ... past_values=batch["past_values"], ... future_values=batch["future_values"], ... ) >>> last_hidden_state = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if past_observed_mask is None: past_observed_mask = torch.ones_like(past_values) # x: tensor [bs x sequence_length x num_input_channels] scaled_past_values, loc, scale = self.scaler(past_values, past_observed_mask) # patched_values: [bs x num_input_channels x num_patches x patch_length] for pretrain patched_values = self.patchifier(scaled_past_values) if self.do_mask_input: masked_values, mask = self.masking(patched_values) else: masked_values, mask = self.masking(patched_values), None encoder_output = self.encoder( patch_input=masked_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) if not return_dict: outputs = (encoder_output.last_hidden_state, encoder_output.hidden_states, encoder_output.attentions) outputs = outputs + (mask, loc, scale, patched_values) return tuple(v for v in outputs if v is not None) return PatchTSTModelOutput( last_hidden_state=encoder_output.last_hidden_state, hidden_states=encoder_output.hidden_states, attentions=encoder_output.attentions, mask=mask, loc=loc, scale=scale, patch_input=patched_values, )
class_definition
53,522
58,350
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,309
class PatchTSTMaskPretrainHead(nn.Module): """ Pretraining head for mask modelling """ def __init__(self, config: PatchTSTConfig): super().__init__() self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() self.linear = nn.Linear(config.d_model, config.patch_length) self.use_cls_token = config.use_cls_token def forward(self, embedding: torch.Tensor) -> torch.Tensor: """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True """ embedding = self.linear(self.dropout(embedding)) # [bs x num_channels x num_patches x patch_length] if self.use_cls_token: embedding = embedding[:, :, 1:, :] # remove the first cls token return embedding
class_definition
58,353
59,544
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,310
class PatchTSTForPretraining(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) config.do_mask_input = True self.model = PatchTSTModel(config=config) self.head = PatchTSTMaskPretrainHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTForPretrainingOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForPretrainingOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTConfig, PatchTSTForPretraining >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> # Config for random mask pretraining >>> config = PatchTSTConfig( ... num_input_channels=7, ... context_length=512, ... patch_length=12, ... stride=12, ... mask_type='random', ... random_mask_ratio=0.4, ... use_cls_token=True, ... ) >>> # Config for forecast mask pretraining >>> config = PatchTSTConfig( ... num_input_channels=7, ... context_length=512, ... patch_length=12, ... stride=12, ... mask_type='forecast', ... num_forecast_mask_patches=5, ... use_cls_token=True, ... ) >>> model = PatchTSTForPretraining(config) >>> # during training, one provides both past and future values >>> outputs = model(past_values=batch["past_values"]) >>> loss = outputs.loss >>> loss.backward() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # past_values: [bs x num_channels x num_patches x d_model] or # [bs x num_channels x (num_patches+1) x d_model] if use cls_token model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # last_hidden_state: [bs x num_channels x num_patches x patch_length] or # [bs x num_channels x (num_patches+1) x patch_length] if use cls_token x_hat = self.head(model_output.last_hidden_state) # calculate masked_loss loss = nn.MSELoss(reduction="none") loss_val = loss(x_hat, model_output.patch_input) masked_loss = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) encoder_states = model_output.hidden_states if not return_dict: outputs = (x_hat,) + model_output[1:-4] outputs = (masked_loss,) + outputs if masked_loss is not None else outputs return outputs return PatchTSTForPretrainingOutput( loss=masked_loss, prediction_output=x_hat, hidden_states=encoder_states, attentions=model_output.attentions )
class_definition
59,642
64,207
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,311
class PatchTSTClassificationHead(nn.Module): def __init__(self, config: PatchTSTConfig): super().__init__() self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type self.flatten = nn.Flatten(start_dim=1) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() self.linear = nn.Linear(config.num_input_channels * config.d_model, config.num_targets) def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, num_targets)` """ if self.use_cls_token: # use the first output token, pooled_embedding: bs x num_channels x d_model pooled_embedding = embedding[:, :, 0, :] elif self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2).values else: raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") # pooled_embedding: bs x num_channels * d_model pooled_embedding = self.flatten(pooled_embedding) # output: bs x n_classes output = self.linear(self.dropout(pooled_embedding)) return output
class_definition
64,210
65,910
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,312
class PatchTSTForClassification(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) self.head = PatchTSTClassificationHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, past_observed_mask: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, PatchTSTForClassificationOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model target_values (`torch.Tensor`, *optional*): Labels associates with the `past_values` past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForClassificationOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from transformers import PatchTSTConfig, PatchTSTForClassification >>> # classification task with two input channel2 and 3 classes >>> config = PatchTSTConfig( ... num_input_channels=2, ... num_targets=3, ... context_length=512, ... patch_length=12, ... stride=12, ... use_cls_token=True, ... ) >>> model = PatchTSTForClassification(config=config) >>> # during inference, one only provides past values >>> past_values = torch.randn(20, 512, 2) >>> outputs = model(past_values=past_values) >>> labels = outputs.prediction_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) y_hat = self.head(model_output.last_hidden_state) loss_val = None if target_values is not None: loss = nn.CrossEntropyLoss() loss_val = loss(y_hat, target_values) if not return_dict: outputs = (y_hat,) + model_output[1:-3] outputs = (loss_val,) + outputs if loss_val is not None else outputs return outputs return PatchTSTForClassificationOutput( loss=loss_val, prediction_logits=y_hat, hidden_states=model_output.hidden_states, attentions=model_output.attentions, )
class_definition
66,014
69,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,313
class PatchTSTPredictionHead(nn.Module): def __init__(self, config: PatchTSTConfig, num_patches, distribution_output=None): super().__init__() self.share_projection = config.share_projection self.num_input_channels = config.num_input_channels self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type if self.pooling_type or self.use_cls_token: head_dim = config.d_model else: head_dim = config.d_model * num_patches if not self.share_projection: # if each channel has its own head self.projections = nn.ModuleList() self.dropouts = nn.ModuleList() self.flattens = nn.ModuleList() for i in range(self.num_input_channels): self.flattens.append(nn.Flatten(start_dim=2)) if distribution_output is None: # use linear head self.projections.append(nn.Linear(head_dim, config.prediction_length)) else: # use distribution head self.projections.append(distribution_output.get_parameter_projection(head_dim)) self.dropouts.append(nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()) else: # all the channels share the same head self.flatten = nn.Flatten(start_dim=2) if distribution_output is None: # use linear head self.projection = nn.Linear(head_dim, config.prediction_length) else: # use distribution head self.projection = distribution_output.get_parameter_projection(head_dim) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, forecast_len, num_channels)` """ if self.use_cls_token: # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding[:, :, 0, :] else: if self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2).values else: # pooled_embedding: [bs x num_channels x num_patches x d_model] pooled_embedding = embedding if not self.share_projection: output = [] for i in range(self.num_input_channels): # pooled_embedding: [bs x (d_model * num_patches)] or [bs x d_model)] pooled_embedding = self.flattens[i](pooled_embedding[:, i, :]) pooled_embedding = self.dropouts[i](pooled_embedding) # pooled_embedding: [bs x forecast_len] # or tuple ([bs x forecast_len], [bs x forecast_len]) if using distribution head pooled_embedding = self.projections[i](pooled_embedding) output.append(pooled_embedding) # output: [bs x num_channels x forecast_len] output = torch.stack(output, dim=1) else: # pooled_embedding: [bs x num_channels x (d_model * num_patches)] or [bs x num_channels x d_model)] pooled_embedding = self.flatten(pooled_embedding) pooled_embedding = self.dropout(pooled_embedding) # output: [bs x num_channels x forecast_len] or # tuple ([bs x num_channels x forecast_len], [bs x num_channels x forecast_len]) if using distribution head output = self.projection(pooled_embedding) if isinstance(output, tuple): # output: ([bs x forecast_len x num_channels], [bs x forecast_len x num_channels]) output = tuple(z.transpose(2, 1) for z in output) else: output = output.transpose(2, 1) # [bs x forecast_len x num_channels] return output
class_definition
69,956
74,402
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,314
class PatchTSTForPrediction(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) if config.loss == "mse": self.distribution_output = None else: if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.prediction_length) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.prediction_length) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.prediction_length) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.head = PatchTSTPredictionHead( config, self.model.patchifier.num_patches, distribution_output=self.distribution_output ) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PatchTSTForPredictionOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). future_values (`torch.Tensor` of shape `(bs, forecast_len, num_input_channels)`, *optional*): Future target values associated with the `past_values` output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForPredictionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import PatchTSTConfig, PatchTSTForPrediction >>> file = hf_hub_download( ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> # Prediction task with 7 input channels and prediction length is 96 >>> model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast") >>> # during training, one provides both past and future values >>> outputs = model( ... past_values=batch["past_values"], ... future_values=batch["future_values"], ... ) >>> loss = outputs.loss >>> loss.backward() >>> # during inference, one only provides past values, the model outputs future values >>> outputs = model(past_values=batch["past_values"]) >>> prediction_outputs = outputs.prediction_outputs ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # get model output model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # get output head y_hat = self.head(model_output.last_hidden_state) loss_val = None if self.distribution_output: y_hat_out = y_hat else: y_hat_out = y_hat * model_output.scale + model_output.loc if future_values is not None: if self.distribution_output: distribution = self.distribution_output.distribution( y_hat, loc=model_output.loc, scale=model_output.scale ) loss_val = nll(distribution, future_values) # take average of the loss loss_val = weighted_average(loss_val) else: loss = nn.MSELoss(reduction="mean") loss_val = loss(y_hat_out, future_values) loc = model_output.loc scale = model_output.scale if not return_dict: outputs = (y_hat_out,) + model_output[1:-1] outputs = (loss_val,) + outputs if loss_val is not None else outputs return outputs return PatchTSTForPredictionOutput( loss=loss_val, prediction_outputs=y_hat_out, hidden_states=model_output.hidden_states, attentions=model_output.attentions, loc=loc, scale=scale, ) def generate( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, ) -> SamplePatchTSTOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the future. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Return: [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length, 1)` or `(batch_size, number of samples, prediction_length, num_input_channels)` for multivariate predictions. """ # get number of samples num_parallel_samples = self.config.num_parallel_samples # get model output outputs = self( past_values=past_values, future_values=None, past_observed_mask=past_observed_mask, output_hidden_states=False, ) if self.distribution_output: # get distribution distribution = self.distribution_output.distribution( outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale ) # get samples: list of [bs x forecast_len x num_channels] samples = [distribution.sample() for _ in range(num_parallel_samples)] # samples: [bs x num_samples x forecast_len x num_channels] samples = torch.stack(samples, dim=1) else: samples = outputs.prediction_outputs.unsqueeze(1) return SamplePatchTSTOutput(sequences=samples)
class_definition
74,502
82,427
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,315
class PatchTSTRegressionHead(nn.Module): """ Regression head """ def __init__(self, config: PatchTSTConfig, distribution_output=None): super().__init__() self.y_range = config.output_range self.use_cls_token = config.use_cls_token self.pooling_type = config.pooling_type self.distribution_output = distribution_output head_dim = config.num_input_channels * config.d_model self.flatten = nn.Flatten(start_dim=1) self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() if distribution_output is None: self.projection = nn.Linear(head_dim, config.num_targets) else: self.projection = distribution_output.get_parameter_projection(head_dim) def forward(self, embedding: torch.Tensor): """ Parameters: embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): Embedding from the model Returns: `torch.Tensor` of shape `(bs, output_dim)` """ if self.use_cls_token: # use the first output token, pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding[:, :, 0, :] elif self.pooling_type == "mean": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.mean(dim=2) elif self.pooling_type == "max": # pooled_embedding: [bs x num_channels x d_model] pooled_embedding = embedding.max(dim=2).values else: raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") # flatten the input # pooled_embedding: bs x (num_channels * d_model) pooled_embedding = self.dropout(self.flatten(pooled_embedding)) # projection # output: bs x output_dim or a tuple of this shape for distribution head output = self.projection(pooled_embedding) # apply sigmoid to bound the output if required if (self.distribution_output is None) & (self.y_range is not None): # linear head output = torch.sigmoid(output) * (self.y_range[1] - self.y_range[0]) + self.y_range[0] return output
class_definition
82,430
84,814
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,316
class PatchTSTForRegression(PatchTSTPreTrainedModel): def __init__(self, config: PatchTSTConfig): super().__init__(config) # Turn off masking if config.do_mask_input: logger.warning("Setting `do_mask_input` parameter to False.") config.do_mask_input = False self.model = PatchTSTModel(config) if config.loss == "mse": self.distribution_output = None else: if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.num_targets) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.num_targets) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.num_targets) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.head = PatchTSTRegressionHead(config, self.distribution_output) # Initialize weights and apply final processing self.post_init() def forward( self, past_values: torch.Tensor, target_values: torch.Tensor = None, past_observed_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, PatchTSTForRegressionOutput]: r""" Parameters: past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): Input sequence to the model target_values (`torch.Tensor` of shape `(bs, num_input_channels)`): Target values associates with the `past_values` past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers output_attentions (`bool`, *optional*): Whether or not to return the output attention of all layers return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. Returns: `PatchTSTForRegressionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) Examples: ```python >>> from transformers import PatchTSTConfig, PatchTSTForRegression >>> # Regression task with 6 input channels and regress 2 targets >>> model = PatchTSTForRegression.from_pretrained("namctin/patchtst_etth1_regression") >>> # during inference, one only provides past values, the model outputs future values >>> past_values = torch.randn(20, 512, 6) >>> outputs = model(past_values=past_values) >>> regression_outputs = outputs.regression_outputs ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_output = self.model( past_values=past_values, past_observed_mask=past_observed_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) # get output head. y_hat is of shape [bs x num_targets] or tuple of this shape y_hat = self.head(model_output.last_hidden_state) loss = None if target_values is not None: if self.distribution_output: distribution = self.distribution_output.distribution(y_hat) # y_hat should be a 2-tuple, each with dimension [bs, num_targets] y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat]) loss = nll(distribution, target_values) # take average of the loss loss = weighted_average(loss) else: loss = nn.MSELoss(reduction="mean") loss = loss(y_hat, target_values) if not return_dict: # hidden_states, attentions, mask outputs = (y_hat,) + model_output[1:-3] outputs = (loss,) + outputs if loss is not None else outputs return outputs return PatchTSTForRegressionOutput( loss=loss, regression_outputs=y_hat, hidden_states=model_output.hidden_states, attentions=model_output.attentions, ) def generate( self, past_values: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, ) -> SamplePatchTSTOutput: """ Generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Past values of the time series that serves as context in order to predict the future. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). Return: [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, num_targets)`. """ # get number of samples num_parallel_samples = self.config.num_parallel_samples # get model output outputs = self( past_values=past_values, target_values=None, past_observed_mask=past_observed_mask, output_hidden_states=False, ) # get distribution distribution = self.distribution_output.distribution(outputs.regression_outputs) # get samples: list of [bs x num_targets] samples = [distribution.sample() for _ in range(num_parallel_samples)] # samples: [bs x num_samples x num_targets] samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets) return SamplePatchTSTOutput(sequences=samples)
class_definition
84,914
91,724
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/patchtst/modeling_patchtst.py
null
7,317
class BlenderbotLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings, embedding_dim) def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions)
class_definition
2,422
3,085
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,318
class BlenderbotScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale
class_definition
3,187
3,678
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,319
class BlenderbotAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[BlenderbotConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
3,770
11,172
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,320
class BlenderbotEncoderLayer(nn.Module): def __init__(self, config: BlenderbotConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
11,354
14,504
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,321
class BlenderbotDecoderLayer(nn.Module): def __init__(self, config: BlenderbotConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
14,622
20,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,322
class BlenderbotPreTrainedModel(PreTrainedModel): config_class = BlenderbotConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs
class_definition
20,521
21,535
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,323
class BlenderbotEncoder(BlenderbotPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BlenderbotEncoderLayer`]. Args: config: BlenderbotConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = BlenderbotScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) self.embed_positions = BlenderbotLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # add final layer norm hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
29,912
37,692
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,324
class BlenderbotDecoder(BlenderbotPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`] Args: config: BlenderbotConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = BlenderbotScaledWordEmbedding( config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale ) self.embed_positions = BlenderbotLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add final layer norm hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
37,695
50,173
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,325
class BlenderbotModel(BlenderbotPreTrainedModel): _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] def __init__(self, config: BlenderbotConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.shared = BlenderbotScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale) self.encoder = BlenderbotEncoder(config, self.shared) self.decoder = BlenderbotDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): if pretrained_model_name_or_path == "facebook/blenderbot-90M": warnings.warn( "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical" " checkpoint `facebook/small_blenderbot-90M` with" " `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.", FutureWarning, ) return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path) return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotModel >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 6, 1280] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
50,329
56,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,326
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel, GenerationMixin): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: BlenderbotConfig): super().__init__(config) self.model = BlenderbotModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): if pretrained_model_name_or_path == "facebook/blenderbot-90M": warnings.warn( "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical" " checkpoint `facebook/small_blenderbot-90M` with" " `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.", FutureWarning, ) return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path) return super(BlenderbotForConditionalGeneration, cls).from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) self._resize_final_logits_bias(new_embeddings.weight.shape[0]) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
class_definition
56,843
63,851
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,327
class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = BlenderbotDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
class_definition
63,948
64,407
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,328
class BlenderbotForCausalLM(BlenderbotPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = BlenderbotDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
64,555
73,944
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_blenderbot.py
null
7,329
class TFBlenderbotLearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): super().__init__(num_embeddings, embedding_dim, **kwargs) def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length return super().call(tf.cast(position_ids, dtype=tf.int32))
class_definition
4,101
4,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,330
class TFBlenderbotAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim])
class_definition
4,953
12,533
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,331
class TFBlenderbotEncoderLayer(keras.layers.Layer): def __init__(self, config: BlenderbotConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: Optional[bool] = False, ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)* """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
12,637
16,322
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,332
class TFBlenderbotDecoderLayer(keras.layers.Layer): def __init__(self, config: BlenderbotConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBlenderbotAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
16,426
23,234
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,333
class TFBlenderbotPreTrainedModel(TFPreTrainedModel): config_class = BlenderbotConfig base_model_prefix = "model"
class_definition
23,237
23,358
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,334
class TFBlenderbotEncoder(keras.layers.Layer): config_class = BlenderbotConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFBlenderbotEncoderLayer`]. Args: config: BlenderbotConfig """ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBlenderbotLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBlenderbotEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
32,001
39,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,335
class TFBlenderbotDecoder(keras.layers.Layer): config_class = BlenderbotConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotDecoderLayer`] Args: config: BlenderbotConfig embed_tokens: output embedding """ def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBlenderbotLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBlenderbotDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = hidden_states + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
39,846
51,924
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,336
class TFBlenderbotMainLayer(keras.layers.Layer): config_class = BlenderbotConfig def __init__(self, config: BlenderbotConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFBlenderbotEncoder(config, self.shared, name="encoder") self.decoder = TFBlenderbotDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
51,947
57,023
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,337
class TFBlenderbotModel(TFBlenderbotPreTrainedModel): def __init__(self, config: BlenderbotConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): if pretrained_model_name_or_path == "facebook/blenderbot-90M": from ..blenderbot_small import TFBlenderbotSmallModel warnings.warn( "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical" " checkpoint `facebook/small_blenderbot-90M` with" " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`" " instead.", FutureWarning, ) return TFBlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
class_definition
57,179
61,933
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,338
class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias
class_definition
62,002
62,808
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,339
class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): if pretrained_model_name_or_path == "facebook/blenderbot-90M": from ..blenderbot_small import TFBlenderbotSmallForConditionalGeneration warnings.warn( "The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical" " checkpoint `facebook/small_blenderbot-90M` with" " `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`" " instead.", FutureWarning, ) return TFBlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "bias_layer", None) is not None: with tf.name_scope(self.bias_layer.name): self.bias_layer.build(None)
class_definition
62,958
72,693
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_tf_blenderbot.py
null
7,340
class BlenderbotConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlenderbotModel`]. It is used to instantiate an Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Blenderbot [facebook/blenderbot-3B](https://huggingface.co/facebook/blenderbot-3B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BlenderbotModel`] or [`TFBlenderbotModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 128): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 2): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import BlenderbotConfig, BlenderbotModel >>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration >>> configuration = BlenderbotConfig() >>> # Initializing a model (with random weights) from the facebook/blenderbot-3B style configuration >>> model = BlenderbotModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blenderbot" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=8008, max_position_embeddings=128, encoder_layers=2, encoder_ffn_dim=10240, encoder_attention_heads=32, decoder_layers=24, decoder_ffn_dim=10240, decoder_attention_heads=32, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=2560, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=1, scale_embedding=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, encoder_no_repeat_ngram_size=3, forced_eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size, forced_eos_token_id=forced_eos_token_id, **kwargs, )
class_definition
1,119
7,835
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/configuration_blenderbot.py
null
7,341
class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _, num_decoder_layers = self.num_layers for i in range(num_decoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] _, num_decoder_layers = self.num_layers for _ in range(num_decoder_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape past_key_values_length = seqlen _, num_decoder_layers = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_decoder_layers) ] return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.generate_dummy_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) elif self.task == "causal-lm": common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_ def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t ) def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str): if direction not in ["inputs", "outputs"]: raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') name = "past_key_values" if direction == "inputs" else "present" _, num_decoder_layers = self.num_layers encoder_sequence = "past_encoder_sequence" decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence" for i in range(num_decoder_layers): inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
class_definition
7,838
18,780
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/configuration_blenderbot.py
null
7,342
class FlaxBlenderbotAttention(nn.Module): config: BlenderbotConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights
class_definition
11,759
19,164
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,343
class FlaxBlenderbotEncoderLayer(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
19,272
21,571
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,344
class FlaxBlenderbotEncoderLayerCollection(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
21,685
23,654
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,345
class FlaxBlenderbotDecoderLayer(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
class_definition
23,762
27,332
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,346
class FlaxBlenderbotDecoderLayerCollection(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
27,446
30,181
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,347
class FlaxBlenderbotEncoder(nn.Module): config: BlenderbotConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, )
class_definition
30,184
32,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,348
class FlaxBlenderbotDecoder(nn.Module): config: BlenderbotConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
class_definition
32,701
35,597
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,349
class FlaxBlenderbotModule(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
35,695
38,156
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,350
class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel): config_class = BlenderbotConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BlenderbotConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig ) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, )
class_definition
38,159
52,783
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,351
class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxBlenderbotModule
class_definition
52,946
53,139
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,352
class FlaxBlenderbotForConditionalGenerationModule(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, )
class_definition
53,375
55,980
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,353
class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel): module_class = FlaxBlenderbotForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs
class_definition
56,125
63,873
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py
null
7,354
class BlenderbotTokenizer(PreTrainedTokenizer): """ Constructs a Blenderbot tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BlenderbotTokenizer >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") >>> tokenizer.add_prefix_space = False >>> tokenizer("Hello world")["input_ids"] [47, 921, 86, 1085, 2] >>> tokenizer(" Hello world")["input_ids"] [6950, 1085, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Blenderbot tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token # Mask token behave like a normal word, i.e. include the space before it mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) # these special tokens are not part of the vocab.json, let's add them in the correct order with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def vocab_size(self): return len(self.encoder) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Blenderbot, RoBERTa->Blenderbot def get_vocab(self): vocab = dict(self.encoder).copy() vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Blenderbot, RoBERTa->Blenderbot def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Blenderbot, RoBERTa->Blenderbot def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Blenderbot, RoBERTa->Blenderbot def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Blenderbot, RoBERTa->Blenderbot def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Blenderbot, RoBERTa->Blenderbot def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Blenderbot, RoBERTa->Blenderbot def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Blenderbot sequence has the following format: - single sequence: ` X </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Will be ignored Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ return token_ids_0 + [self.eos_token_id]
class_definition
2,524
18,201
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/tokenization_blenderbot.py
null
7,355
class BlenderbotTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Blenderbot tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BlenderbotTokenizerFast >>> tokenizer = BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B") >>> tokenizer("Hello world")["input_ids"] [6950, 1085, 2] >>> tokenizer(" Hello world")["input_ids"] [6950, 1085, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Blenderbot tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BlenderbotTokenizer # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.__init__ with Roberta->Blenderbot, RoBERTa->Blenderbot def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, trim_offsets=True, **kwargs, ): mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, **kwargs, ) tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. Blenderbot tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on Roberta. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._batch_encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast._encode_plus with Roberta->Blenderbot, RoBERTa->Blenderbot def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.save_vocabulary with Roberta->Blenderbot, RoBERTa->Blenderbot def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.create_token_type_ids_from_sequences with Roberta->Blenderbot, RoBERTa->Blenderbot def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Blenderbot does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Blenderbot sequence has the following format: - single sequence: ` X </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Will be ignored Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ return token_ids_0 + [self.eos_token_id]
class_definition
1,185
12,420
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blenderbot/tokenization_blenderbot_fast.py
null
7,356
class MusicgenMelodyDecoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MusicgenMelodyDecoder`]. It is used to instantiate a Musicgen Melody decoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Musicgen Melody [facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 2048): Vocabulary size of the MusicgenMelodyDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MusicgenMelodyDecoder`]. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). num_hidden_layers (`int`, *optional*, defaults to 24): Number of decoder layers. ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer block. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models) activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. initializer_factor (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(hidden_size). num_codebooks (`int`, *optional*, defaults to 4): The number of parallel codebooks forwarded to the model. audio_channels (`int`, *optional*, defaults to 1): Number of audio channels used by the model (either mono or stereo). Stereo models generate a separate audio stream for the left/right output channels. Mono models generate a single audio stream output. pad_token_id (`int`, *optional*, defaults to 2048): The id of the *padding* token. bos_token_id (`int`, *optional*, defaults to 2048): The id of the *beginning-of-sequence* token. eos_token_id (`int`, *optional*): The id of the *end-of-sequence* token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings with the text encoder. """ model_type = "musicgen_melody_decoder" base_config_key = "decoder_config" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=2048, max_position_embeddings=2048, num_hidden_layers=24, ffn_dim=4096, num_attention_heads=16, layerdrop=0.0, use_cache=True, activation_function="gelu", hidden_size=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, initializer_factor=0.02, scale_embedding=False, num_codebooks=4, audio_channels=1, pad_token_id=2048, bos_token_id=2048, eos_token_id=None, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.ffn_dim = ffn_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.initializer_factor = initializer_factor self.layerdrop = layerdrop self.use_cache = use_cache self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.num_codebooks = num_codebooks if audio_channels not in [1, 2]: raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.") self.audio_channels = audio_channels super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
853
6,713
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/configuration_musicgen_melody.py
null
7,357
class MusicgenMelodyConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MusicgenMelodyModel`]. It is used to instantiate a Musicgen Melody model according to the specified arguments, defining the text encoder, audio encoder and Musicgen Melody decoder configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Musicgen Melody [facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_chroma (`int`, *optional*, defaults to 12): Number of chroma bins to use. chroma_length (`int`, *optional*, defaults to 235): Maximum chroma duration if audio is used to condition the model. Corresponds to the maximum duration used during training. kwargs (*optional*): Dictionary of keyword arguments. Notably: - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the text encoder config. - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Example: ```python >>> from transformers import ( ... MusicgenMelodyConfig, ... MusicgenMelodyDecoderConfig, ... T5Config, ... EncodecConfig, ... MusicgenMelodyForConditionalGeneration, ... ) >>> # Initializing text encoder, audio encoder, and decoder model configurations >>> text_encoder_config = T5Config() >>> audio_encoder_config = EncodecConfig() >>> decoder_config = MusicgenMelodyDecoderConfig() >>> configuration = MusicgenMelodyConfig.from_sub_models_config( ... text_encoder_config, audio_encoder_config, decoder_config ... ) >>> # Initializing a MusicgenMelodyForConditionalGeneration (with random weights) from the facebook/musicgen-melody style configuration >>> model = MusicgenMelodyForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> config_text_encoder = model.config.text_encoder >>> config_audio_encoder = model.config.audio_encoder >>> config_decoder = model.config.decoder >>> # Saving the model, including its configuration >>> model.save_pretrained("musicgen_melody-model") >>> # loading model and config from pretrained folder >>> musicgen_melody_config = MusicgenMelodyConfig.from_pretrained("musicgen_melody-model") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("musicgen_melody-model", config=musicgen_melody_config) ```""" model_type = "musicgen_melody" sub_configs = { "text_encoder": AutoConfig, "audio_encoder": AutoConfig, "decoder": MusicgenMelodyDecoderConfig, } is_composition = True def __init__( self, num_chroma=12, chroma_length=235, **kwargs, ): super().__init__(**kwargs) if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs: raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config") text_encoder_config = kwargs.pop("text_encoder") text_encoder_model_type = text_encoder_config.pop("model_type") audio_encoder_config = kwargs.pop("audio_encoder") audio_encoder_model_type = audio_encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config) self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) self.decoder = MusicgenMelodyDecoderConfig(**decoder_config) self.is_encoder_decoder = False self.num_chroma = num_chroma self.chroma_length = chroma_length @classmethod def from_sub_models_config( cls, text_encoder_config: PretrainedConfig, audio_encoder_config: PretrainedConfig, decoder_config: MusicgenMelodyDecoderConfig, **kwargs, ): r""" Instantiate a [`MusicgenMelodyConfig`] (or a derived class) from text encoder, audio encoder and decoder configurations. Returns: [`MusicgenMelodyConfig`]: An instance of a configuration object """ return cls( text_encoder=text_encoder_config.to_dict(), audio_encoder=audio_encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs, ) @property # This is a property because you might want to change the codec model on the fly def sampling_rate(self): return self.audio_encoder.sampling_rate
class_definition
6,716
11,930
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/configuration_musicgen_melody.py
null
7,358
class MusicgenMelodyOutputWithPast(ModelOutput): """ Base class for Musicgen Melody autoregressive outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output. Used as a conditional signal. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[torch.FloatTensor] = None
class_definition
2,124
4,747
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,359
class MusicgenMelodySinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() # Ignore copy def forward(self, inputs_embeds: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len, _ = inputs_embeds.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(inputs_embeds.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach()
class_definition
5,842
8,047
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,360
class MusicgenMelodyAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MusicgenMelodyConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
8,143
15,553
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,361
class MusicgenMelodyFlashAttention2(MusicgenMelodyAttention): """ MusicgenMelody flash attention module. This module inherits from `MusicgenMelodyAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # MusicgenMelodyFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("MusicgenMelodyFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
15,655
22,151
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,362
class MusicgenMelodySdpaAttention(MusicgenMelodyAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "MusicgenMelodyModel is using MusicgenMelodySdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value
class_definition
22,251
28,068
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,363
class MusicgenMelodyDecoderLayer(nn.Module): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MUSICGEN_MELODY_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
class_definition
28,248
31,894
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,364
class MusicgenMelodyPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenMelodyDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenMelodyDecoderLayer", "MusicgenMelodyAttention"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
32,012
32,967
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,365
class MusicgenMelodyDecoder(MusicgenMelodyPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenMelodyDecoderLayer`] """ def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenMelodySinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenMelodyDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) if encoder_hidden_states is not None: # take care of attention masks if encoder_attention_mask is not None and attention_mask is None: attention_mask = torch.ones(inputs_embeds.shape[:2], device=inputs_embeds.device) if attention_mask is not None: if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=attention_mask.device) attention_mask = torch.cat([encoder_attention_mask, attention_mask], dim=1) # fuse encoder_hidden_states and inputs_embeds inputs_embeds = torch.cat([encoder_hidden_states, inputs_embeds], dim=1) input_shape = inputs_embeds.size()[:-1] if self.attn_implementation == "flash_attention_2": attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self.attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, inputs_embeds, past_key_values_length, ) else: attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # embed positions positions = self.embed_positions(inputs_embeds, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The `head_mask` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_attentions += (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_attentions, )
class_definition
44,905
53,602
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,366
class MusicgenMelodyModel(MusicgenMelodyPreTrainedModel): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.decoder = MusicgenMelodyDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPast( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, )
class_definition
53,906
56,616
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,367
class MusicgenMelodyForCausalLM(MusicgenMelodyPreTrainedModel, GenerationMixin): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.model = MusicgenMelodyModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MusicgenMelodyOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (labels is not None) and (input_ids is None and inputs_embeds is None): input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id) outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: # since encoder hidden states have been concatenated to the decoder hidden states, # we take the last timestamps corresponding to labels logits = lm_logits[:, :, -labels.shape[1] :] loss_fct = CrossEntropyLoss() loss = torch.zeros([], device=self.device) # per codebook cross-entropy # ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243 # -100 labels are ignored labels = labels.masked_fill(labels == self.config.pad_token_id, -100) # per codebook cross-entropy for codebook in range(self.config.num_codebooks): codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1]) codebook_labels = labels[..., codebook].contiguous().view(-1) loss += loss_fct(codebook_logits, codebook_labels) loss = loss / self.config.num_codebooks # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MusicgenMelodyOutputWithPast( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Ignore copy def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): # Overwritten -- MusicGen has custom processing if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if encoder_hidden_states is not None: encoder_hidden_states = torch.concatenate( [encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0 ) if encoder_attention_mask is not None: encoder_attention_mask = torch.concatenate( encoder_attention_mask, torch.zeros_like(encoder_attention_mask), dim=0 ) if past_key_values is not None: input_ids = input_ids[:, -1:] # we only want to use conditional signal in the 1st generation step but keeping the attention mask encoder_hidden_states = None return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * channel_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(channel_codebooks): if self.config.audio_channels == 1: # mono channel - loop over the codebooks one-by-one input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] else: # left/right channels are interleaved in the generated codebooks, so handle one then the other input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook] input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool)) if self.config.audio_channels == 2: # for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion delay_pattern = delay_pattern.repeat_interleave(2, dim=0) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() # Ignore copy def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device) # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config, model_kwargs ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=input_ids, input_ids_length=input_ids_length, ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config._decoder_start_token_tensor, max_length=generation_config.max_length, ) if streamer is not None: streamer.put(input_ids.cpu()) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode generation_mode = generation_config.get_generation_mode() # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, device=input_ids.device, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 11. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids
class_definition
56,924
79,696
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,368
class MusicgenMelodyForConditionalGeneration(PreTrainedModel, GenerationMixin): config_class = MusicgenMelodyConfig main_input_name = "input_ids" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def __init__( self, config: MusicgenMelodyConfig = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenMelodyForCausalLM] = None, ): if config is None and None in (text_encoder, audio_encoder, decoder): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and Musicgen Melody decoder." ) if config is None: config = MusicgenMelodyConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config ) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") # initialize with config super().__init__(config) if text_encoder is None: text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenMelodyForCausalLM._from_config(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation self.config.decoder._attn_implementation = self.decoder.config._attn_implementation self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) # audio encoder outputs after chroma extraction might need to be projected to different dimension for decoder if self.config.num_chroma != self.decoder.config.hidden_size: self.audio_enc_to_dec_proj = nn.Linear(self.config.num_chroma, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) # Initialize projection layers weights and tie text encoder and decoder weights if set accordingly self.post_init() def _init_weights(self, module): # MusicgenMelodyForConditionalGeneration is made of PreTrainedModels that have already been initialized # Projection layers still need to be initialized. std = self.decoder.config.initializer_factor if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix tied_weights = self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix, "text_encoder", ) # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class # attributed not an instance member, therefore modifying it will modify the entire class # Leading to issues on subsequent calls by different tests or subsequent calls. self._dynamic_tied_weights_keys = tied_weights def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the conditionning hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration.from_sub_models_pretrained with Musicgen->MusicgenMelody, musicgen-small->musicgen-melody def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenMelodyForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenMelodyForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="google-t5/t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-melody", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenMelodyConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenMelodyForCausalLM.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder ) # instantiate config with corresponding kwargs config = MusicgenMelodyConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_features: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MusicgenMelodyOutputWithPast]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, encoder_len + tgt_len, vocab_size) torch.Size([8, 249, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_hidden_states is None: if inputs_embeds is not None or input_ids is not None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None and encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] # set a default audio conditional hidden states if text is not None if encoder_hidden_states is not None and input_features is None: input_features = torch.zeros( (encoder_hidden_states.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype, ) input_features[:, :, 0] = 1 if input_features is not None: audio_hidden_states = input_features # optionally project audio_hidden_states -> # (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size) if self.config.num_chroma != self.decoder.config.hidden_size: audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states) # pad or truncate to config.chroma_length if audio_hidden_states.shape[1] < self.config.chroma_length: n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1])) audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1) else: logger.warning( f"The conditional audio signal is of length {audio_hidden_states.shape[1]}, which exceeds" f"the maximum chroma duration of {self.config.chroma_length}." f"The audio will be truncated to {self.config.chroma_length} frames." ) audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length] if encoder_hidden_states is not None: encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1) else: encoder_hidden_states = audio_hidden_states if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, labels=labels, **kwargs_decoder, ) if not return_dict: return decoder_outputs + (encoder_hidden_states,) return MusicgenMelodyOutputWithPast( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, encoder_hidden_states=encoder_hidden_states, ) def prepare_inputs_for_generation( self, decoder_input_ids, encoder_hidden_states=None, past_key_values=None, attention_mask=None, decoder_attention_mask=None, decoder_head_mask=None, use_cache=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): # Overwritten -- MusicGen has custom processing if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] # we only want to use conditional signal in the 1st generation step but keeping the attention mask encoder_hidden_states = None # we also have to update the attention mask return { "input_ids": None, # encoder_hidden_states is defined. input_ids not needed "encoder_hidden_states": encoder_hidden_states, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_head_mask": decoder_head_mask, "use_cache": use_cache, } # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._prepare_decoder_input_ids_for_generation def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_encoder_hidden_states_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str], generation_config: GenerationConfig, ) -> Dict[str, Any]: encoder_hidden_states = None # attention mask is consumed once to produce text conditional hidden states through the text encoder encoder_attention_mask = model_kwargs.pop("attention_mask") guidance_scale = generation_config.guidance_scale # 1. condition on text if inputs_tensor is not None: encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # Prepare args and kwargs from model kwargs. irrelevant_prefix = ["decoder_", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } encoder_kwargs["output_attentions"] = generation_config.output_attentions encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states # make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor if encoder_attention_mask is not None: encoder_kwargs["attention_mask"] = encoder_attention_mask encoder_hidden_states = encoder(**encoder_kwargs).last_hidden_state # optionally project encoder_hidden_states if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: encoder_hidden_states = torch.concatenate( [encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0 ) if encoder_attention_mask is not None: encoder_attention_mask = torch.concatenate( [encoder_attention_mask, torch.zeros_like(encoder_attention_mask)], dim=0 ) if encoder_attention_mask is not None: encoder_hidden_states = encoder_hidden_states * encoder_attention_mask[..., None] # 2. condition on audio audio_hidden_states = model_kwargs.get("input_features", None) if inputs_tensor is not None: if audio_hidden_states is not None: null_audio_hidden_states = torch.zeros_like(audio_hidden_states) else: null_audio_hidden_states = torch.zeros( (inputs_tensor.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype ) null_audio_hidden_states[:, :, 0] = 1 if audio_hidden_states is None: audio_hidden_states = null_audio_hidden_states if audio_hidden_states is not None: # for classifier free guidance we need to add a 'null' input to our audio hidden states if guidance_scale is not None and guidance_scale > 1: audio_hidden_states = torch.concatenate([audio_hidden_states, null_audio_hidden_states], dim=0) # optionally project audio_hidden_states -> # (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size) if self.config.num_chroma != self.decoder.config.hidden_size: audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states) # pad or truncate to config.chroma_length if audio_hidden_states.shape[1] < self.config.chroma_length: n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1])) audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1) audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length] if encoder_hidden_states is not None: encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1) else: encoder_hidden_states = audio_hidden_states model_kwargs["encoder_hidden_states"] = encoder_hidden_states return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id def freeze_audio_encoder(self): """ Freeze the audio encoder weights. """ for param in self.audio_encoder.parameters(): param.requires_grad = False self.audio_encoder._requires_grad = False def freeze_text_encoder(self): """ Freeze the text encoder weights. """ for param in self.text_encoder.parameters(): param.requires_grad = False self.text_encoder._requires_grad = False # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._get_decoder_start_token_id def _get_decoder_start_token_id( self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None ) -> int: decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif bos_token_id is not None: return bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device) # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config, model_kwargs ) if "encoder_hidden_states" not in model_kwargs: # encoder_hidden_states are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, generation_config ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config._decoder_start_token_tensor, bos_token_id=generation_config._bos_token_tensor, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=inputs_tensor, input_ids_length=input_ids_length, ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config._decoder_start_token_tensor, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # input_ids are ready to be placed on the streamer (if used) if streamer is not None: streamer.put(input_ids.cpu()) # 7. determine generation mode generation_mode = generation_config.get_generation_mode() # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, device=input_ids.device, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 11. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size if self.decoder.config.audio_channels == 1: output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ).audio_values else: codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) output_values_left = codec_outputs_left.audio_values codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) output_values_right = codec_outputs_right.audio_values output_values = torch.cat([output_values_left, output_values_right], dim=1) if generation_config.return_dict_in_generate: outputs.sequences = output_values return outputs else: return output_values def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, model_inputs: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: # update past_key_values cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, ) return model_kwargs
class_definition
80,274
129,471
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py
null
7,369
class MusicgenMelodyFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a MusicgenMelody feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts chroma features from audio processed by [Demucs](https://github.com/adefossez/demucs/tree/main) or directly from raw audio waveform. Args: feature_size (`int`, *optional*, defaults to 12): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 32000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). hop_length (`int`, *optional*, defaults to 4096): Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. chunk_length (`int`, *optional*, defaults to 30): The maximum number of chunks of `sampling_rate` samples used to trim and pad longer or shorter audio sequences. n_fft (`int`, *optional*, defaults to 16384): Size of the Fourier transform. num_chroma (`int`, *optional*, defaults to 12): Number of chroma bins to use. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. return_attention_mask (`bool`, *optional*, defaults to `False`): Whether to return the attention mask. Can be overwritten when calling the feature extractor. [What are attention masks?](../glossary#attention-mask) <Tip> For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> stem_indices (`List[int]`, *optional*, defaults to `[3, 2]`): Stem channels to extract if demucs outputs are passed. """ model_input_names = ["input_features"] def __init__( self, feature_size=12, sampling_rate=32000, hop_length=4096, chunk_length=30, n_fft=16384, num_chroma=12, padding_value=0.0, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask stem_indices=[3, 2], **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.n_fft = n_fft self.hop_length = hop_length self.chunk_length = chunk_length self.n_samples = chunk_length * sampling_rate self.sampling_rate = sampling_rate self.chroma_filters = torch.from_numpy( chroma_filter_bank(sampling_rate=sampling_rate, num_frequency_bins=n_fft, tuning=0, num_chroma=num_chroma) ).float() self.spectrogram = torchaudio.transforms.Spectrogram( n_fft=n_fft, win_length=n_fft, hop_length=hop_length, power=2, center=True, pad=0, normalized=True ) self.stem_indices = stem_indices def _torch_extract_fbank_features(self, waveform: torch.Tensor) -> torch.Tensor: """ Compute the chroma spectrogram of the provided audio using the torchaudio spectrogram implementation and the librosa chroma features. """ # if wav length is not long enough, pad it wav_length = waveform.shape[-1] if wav_length < self.n_fft: pad = self.n_fft - wav_length rest = 0 if pad % 2 == 0 else 1 waveform = torch.nn.functional.pad(waveform, (pad // 2, pad // 2 + rest), "constant", 0) # squeeze alongside channel dimension spec = self.spectrogram(waveform).squeeze(1) # sum along the frequency dimension raw_chroma = torch.einsum("cf, ...ft->...ct", self.chroma_filters, spec) # normalise with max value norm_chroma = torch.nn.functional.normalize(raw_chroma, p=float("inf"), dim=-2, eps=1e-6) # transpose time and chroma dimension -> (batch, time, chroma) norm_chroma = norm_chroma.transpose(1, 2) # replace max value alongside chroma dimension with 1 and replace the rest with 0 idx = norm_chroma.argmax(-1, keepdim=True) norm_chroma[:] = 0 norm_chroma.scatter_(dim=-1, index=idx, value=1) return norm_chroma def _extract_stem_indices(self, audio, sampling_rate=None): """ Extracts stems from the output of the [Demucs](https://github.com/adefossez/demucs/tree/main) audio separation model, then converts to mono-channel and resample to the feature extractor sampling rate. Args: audio (`torch.Tensor` of shape `(batch_size, num_stems, channel_size, audio_length)`): The output of the Demucs model to be processed. sampling_rate (`int`, *optional*): Demucs sampling rate. If not specified, defaults to `44000`. """ sampling_rate = 44000 if sampling_rate is None else sampling_rate # extract "vocals" and "others" sources from audio encoder (demucs) output # [batch_size, num_stems, channel_size, audio_length] wav = audio[:, torch.tensor(self.stem_indices)] # merge extracted stems to single waveform wav = wav.sum(1) # convert to mono-channel waveform wav = wav.mean(dim=1, keepdim=True) # resample to model sampling rate # not equivalent to julius.resample if sampling_rate != self.sampling_rate: wav = torchaudio.functional.resample( wav, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24 ) # [batch_size, 1, audio_length] -> [batch_size, audio_length] wav = wav.squeeze(1) return wav def __call__( self, audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, padding: Optional[str] = True, max_length: Optional[int] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: audio (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a torch tensor, a numpy array, a list of float values, a list of numpy arrays, a list of torch tensors, or a list of list of float values. If `audio` is the output of Demucs, it has to be a torch tensor of shape `(batch_size, num_stems, channel_size, audio_length)`. Otherwise, it must be mono or stereo channel audio. truncation (`bool`, *optional*, default to `True`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*, defaults to None): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Musicgen Melody models, audio `attention_mask` is not necessary. </Tip> padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). sampling_rate (`int`, *optional*): The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. Note that if `audio` is the output of Demucs, `sampling_rate` must be the sampling rate at which Demucs operates. """ if sampling_rate is None: logger.warning_once( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if isinstance(audio, torch.Tensor) and len(audio.shape) == 4: logger.warning_once( "`audio` is a 4-dimensional torch tensor and has thus been recognized as the output of `Demucs`. " "If this is not the case, make sure to read Musicgen Melody docstrings and " "to correct `audio` to get the right behaviour." "Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody" ) audio = self._extract_stem_indices(audio, sampling_rate=sampling_rate) elif sampling_rate is not None and sampling_rate != self.sampling_rate: audio = torchaudio.functional.resample( audio, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24 ) is_batched = isinstance(audio, (np.ndarray, torch.Tensor)) and len(audio.shape) > 1 is_batched = is_batched or ( isinstance(audio, (list, tuple)) and (isinstance(audio[0], (torch.Tensor, np.ndarray, tuple, list))) ) if is_batched and not isinstance(audio[0], torch.Tensor): audio = [torch.tensor(speech, dtype=torch.float32).unsqueeze(-1) for speech in audio] elif is_batched: audio = [speech.unsqueeze(-1) for speech in audio] elif not is_batched and not isinstance(audio, torch.Tensor): audio = torch.tensor(audio, dtype=torch.float32).unsqueeze(-1) if isinstance(audio[0], torch.Tensor) and audio[0].dtype is torch.float64: audio = [speech.to(torch.float32) for speech in audio] # always return batch if not is_batched: audio = [audio] if len(audio[0].shape) == 3: logger.warning_once( "`audio` has been detected as a batch of stereo signals. Will be convert to mono signals. " "If this is an undesired behaviour, make sure to read Musicgen Melody docstrings and " "to correct `audio` to get the right behaviour." "Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody" ) # convert to mono-channel waveform audio = [stereo.mean(dim=0) for stereo in audio] batched_speech = BatchFeature({"input_features": audio}) padded_inputs = self.pad( batched_speech, padding=padding, max_length=max_length if max_length else self.n_samples, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_tensors="pt", ) input_features = self._torch_extract_fbank_features(padded_inputs["input_features"].squeeze(-1)) padded_inputs["input_features"] = input_features if return_attention_mask: # rescale from raw audio length to spectrogram length padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["feature_extractor_type"] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "window" in output: del output["window"] if "chroma_filters" in output: del output["chroma_filters"] if "spectrogram" in output: del output["spectrogram"] return output
class_definition
1,173
15,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py
null
7,370
class MusicgenMelodyProcessor(ProcessorMixin): r""" Constructs a MusicGen Melody processor which wraps a Wav2Vec2 feature extractor - for raw audio waveform processing - and a T5 tokenizer into a single processor class. [`MusicgenProcessor`] offers all the functionalities of [`MusicgenMelodyFeatureExtractor`] and [`T5Tokenizer`]. See [`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information. Args: feature_extractor (`MusicgenMelodyFeatureExtractor`): An instance of [`MusicgenMelodyFeatureExtractor`]. The feature extractor is a required input. tokenizer (`T5Tokenizer`): An instance of [`T5Tokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "MusicgenMelodyFeatureExtractor" tokenizer_class = ("T5Tokenizer", "T5TokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.get_decoder_prompt_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def __call__(self, audio=None, text=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio` and `kwargs` arguments to MusicgenMelodyFeatureExtractor's [`~MusicgenMelodyFeatureExtractor.__call__`] if `audio` is not `None` to pre-process the audio. It also forwards the `text` and `kwargs` arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be a mono-stereo signal of shape (T), where T is the sample length of the audio. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the tokenizer. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`. - **attention_mask** -- List of token indices specifying which tokens should be attended to by the model when `text` is not `None`. When only `audio` is specified, returns the timestamps attention mask. """ sampling_rate = kwargs.pop("sampling_rate", None) if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: inputs = self.tokenizer(text, **kwargs) if audio is not None: audio_inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs) if text is None: return audio_inputs elif audio is None: return inputs else: inputs["input_features"] = audio_inputs["input_features"] return inputs # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.batch_decode with padding_mask->attention_mask def batch_decode(self, *args, **kwargs): """ This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ audio_values = kwargs.pop("audio", None) attention_mask = kwargs.pop("attention_mask", None) if len(args) > 0: audio_values = args[0] args = args[1:] if audio_values is not None: return self._decode_audio(audio_values, attention_mask=attention_mask) else: return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.decode def decode(self, *args, **kwargs): """ This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) # Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor._decode_audio with padding_mask->attention_mask def _decode_audio(self, audio_values, attention_mask: Optional = None) -> List[np.ndarray]: """ This method strips any padding from the audio values to return a list of numpy audio arrays. """ audio_values = to_numpy(audio_values) bsz, channels, seq_len = audio_values.shape if attention_mask is None: return list(audio_values) attention_mask = to_numpy(attention_mask) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) difference = seq_len - attention_mask.shape[-1] padding_value = 1 - self.feature_extractor.padding_value attention_mask = np.pad(attention_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value) audio_values = audio_values.tolist() for i in range(bsz): sliced_audio = np.asarray(audio_values[i])[ attention_mask[i][None, :] != self.feature_extractor.padding_value ] audio_values[i] = sliced_audio.reshape(channels, -1) return audio_values def get_unconditional_inputs(self, num_samples=1, return_tensors="pt"): """ Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. Example: ```python >>> from transformers import MusicgenMelodyForConditionalGeneration, MusicgenMelodyProcessor >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> # get the unconditional (or 'null') inputs for the model >>> processor = MusicgenMelodyProcessor.from_pretrained("facebook/musicgen-melody") >>> unconditional_inputs = processor.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```""" inputs = self.tokenizer([""] * num_samples, return_tensors=return_tensors, return_attention_mask=True) inputs["attention_mask"][:] = 0 return inputs
class_definition
828
8,633
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/musicgen_melody/processing_musicgen_melody.py
null
7,371
class ClapFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a CLAP feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the *Short Time Fourier Transform* (STFT) which should match pytorch's `torch.stft` equivalent. Args: feature_size (`int`, *optional*, defaults to 64): The feature dimension of the extracted Mel spectrograms. This corresponds to the number of mel filters (`n_mels`). sampling_rate (`int`, *optional*, defaults to 48000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). This only serves to warn users if the audio fed to the feature extractor does not have the same sampling rate. hop_length (`int`,*optional*, defaults to 480): Length of the overlaping windows for the STFT used to obtain the Mel Spectrogram. The audio will be split in smaller `frames` with a step of `hop_length` between each frame. max_length_s (`int`, *optional*, defaults to 10): The maximum input length of the model in seconds. This is used to pad the audio. fft_window_size (`int`, *optional*, defaults to 1024): Size of the window (in samples) on which the Fourier transform is applied. This controls the frequency resolution of the spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not the model should return the attention masks coresponding to the input. frequency_min (`float`, *optional*, defaults to 0): The lowest frequency of interest. The STFT will not be computed for values below this. frequency_max (`float`, *optional*, defaults to 14000): The highest frequency of interest. The STFT will not be computed for values above this. top_db (`float`, *optional*): The highest decibel value used to convert the mel spectrogram to the log scale. For more details see the `audio_utils.power_to_db` function truncation (`str`, *optional*, defaults to `"fusion"`): Truncation pattern for long audio inputs. Two patterns are available: - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and a downsampled version of the entire mel spectrogram. If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a copy of the original mel obtained from the padded audio. - `rand_trunc` will select a random crop of the mel spectrogram. padding (`str`, *optional*, defaults to `"repeatpad"`): Padding pattern for shorter audio inputs. Three patterns were originally implemented: - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. - `repeat`: the audio is repeated and then cut to fit the `max_length` - `pad`: the audio is padded. """ model_input_names = ["input_features", "is_longer"] def __init__( self, feature_size=64, sampling_rate=48_000, hop_length=480, max_length_s=10, fft_window_size=1024, padding_value=0.0, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask frequency_min: float = 0, frequency_max: float = 14_000, top_db: int = None, truncation: str = "fusion", padding: str = "repeatpad", **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.top_db = top_db self.truncation = truncation self.padding = padding self.fft_window_size = fft_window_size self.nb_frequency_bins = (fft_window_size >> 1) + 1 self.hop_length = hop_length self.max_length_s = max_length_s self.nb_max_samples = max_length_s * sampling_rate self.sampling_rate = sampling_rate self.frequency_min = frequency_min self.frequency_max = frequency_max self.mel_filters = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=feature_size, min_frequency=frequency_min, max_frequency=frequency_max, sampling_rate=sampling_rate, norm=None, mel_scale="htk", ) self.mel_filters_slaney = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=feature_size, min_frequency=frequency_min, max_frequency=frequency_max, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, excpet for the mel filter banks, which do not need to be saved or printed as they are too long. """ output = copy.deepcopy(self.__dict__) output["feature_extractor_type"] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _np_extract_fbank_features(self, waveform: np.array, mel_filters: Optional[np.array] = None) -> np.ndarray: """ Compute the log-mel spectrogram of the provided `waveform` using the Hann window. In CLAP, two different filter banks are used depending on the truncation pattern: - `self.mel_filters`: they correspond to the default parameters of `torchaudio` which can be obtained from calling `torchaudio.transforms.MelSpectrogram().mel_scale.fb`. These filters are used when `truncation` is set to `"fusion"`. - `self.mel_filteres_slaney` : they correspond to the default parameters of `librosa` which used `librosa.filters.mel` when computing the mel spectrogram. These filters were only used in the original implementation when the truncation mode is not `"fusion"`. """ log_mel_spectrogram = spectrogram( waveform, window_function(self.fft_window_size, "hann"), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=mel_filters, log_mel="dB", ) return log_mel_spectrogram.T def _random_mel_fusion(self, mel, total_frames, chunk_frames): ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk ranges[1] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk ranges[2] = [0] # randomly choose index for each part idx_front = np.random.choice(ranges[0]) idx_middle = np.random.choice(ranges[1]) idx_back = np.random.choice(ranges[2]) mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :] mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :] mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :] mel = torch.tensor(mel[None, None, :]) mel_shrink = torch.nn.functional.interpolate( mel, size=[chunk_frames, 64], mode="bilinear", align_corners=False ) mel_shrink = mel_shrink[0][0].numpy() mel_fusion = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0) return mel_fusion def _get_input_mel(self, waveform: np.array, max_length, truncation, padding) -> np.array: """ Extracts the mel spectrogram and prepares it for the mode based on the `truncation` and `padding` arguments. Four different path are possible: - `truncation="fusion"` and the length of the waveform is greater than the max length: the mel spectrogram will be computed on the entire audio. 3 random crops and a dowsampled version of the full mel spectrogram are then stacked together. They will later be used for `feature_fusion`. - `truncation="rand_trunc"` and the length of the waveform is smaller than the max length: the audio is padded based on `padding`. - `truncation="fusion"` and the length of the waveform is smaller than the max length: the audio is padded based on `padding`, and is repeated `4` times. - `truncation="rand_trunc"` and the length of the waveform is greater than the max length: the mel spectrogram will be computed on a random crop of the waveform. """ if waveform.shape[0] > max_length: if truncation == "rand_trunc": longer = True # random crop to max_length (for compatibility) -> this should be handled by self.pad overflow = len(waveform) - max_length idx = np.random.randint(0, overflow + 1) waveform = waveform[idx : idx + max_length] input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] elif truncation == "fusion": mel = self._np_extract_fbank_features(waveform, self.mel_filters) chunk_frames = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed total_frames = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. input_mel = np.stack([mel, mel, mel, mel], axis=0) longer = False else: input_mel = self._random_mel_fusion(mel, total_frames, chunk_frames) longer = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented") else: longer = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": n_repeat = int(max_length / len(waveform)) waveform = np.tile(waveform, n_repeat + 1)[:max_length] if padding == "repeatpad": n_repeat = int(max_length / len(waveform)) waveform = np.tile(waveform, n_repeat) waveform = np.pad(waveform, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0) if truncation == "fusion": input_mel = self._np_extract_fbank_features(waveform, self.mel_filters) input_mel = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0) else: input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], truncation: str = None, padding: Optional[str] = None, max_length: Optional[int] = None, sampling_rate: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. truncation (`str`, *optional*): Truncation pattern for long audio inputs. Two patterns are available: - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and a downsampled version of the entire mel spectrogram. If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a copy of the original mel obtained from the padded audio. - `rand_trunc` will select a random crop of the mel spectrogram. padding (`str`, *optional*): Padding pattern for shorter audio inputs. Three patterns were originally implemented: - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. - `repeat`: the audio is repeated and then cut to fit the `max_length` - `pad`: the audio is padded. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.np.array` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. """ truncation = truncation if truncation is not None else self.truncation padding = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float64) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float64) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float64) # always return batch if not is_batched: raw_speech = [np.asarray(raw_speech)] # convert to mel spectrogram, truncate and pad if needed. padded_inputs = [ self._get_input_mel(waveform, max_length if max_length else self.nb_max_samples, truncation, padding) for waveform in raw_speech ] input_mel = [] is_longer = [] for mel, longer in padded_inputs: input_mel.append(mel) is_longer.append(longer) if truncation == "fusion" and sum(is_longer) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer rand_idx = np.random.randint(0, len(input_mel)) is_longer[rand_idx] = True if isinstance(input_mel[0], List): input_mel = [np.asarray(feature, dtype=np.float64) for feature in input_mel] # is_longer is a list of bool is_longer = [[longer] for longer in is_longer] input_features = {"input_features": input_mel, "is_longer": is_longer} input_features = BatchFeature(input_features) if return_tensors is not None: input_features = input_features.convert_to_tensors(return_tensors) return input_features
class_definition
1,048
18,690
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/feature_extraction_clap.py
null
7,372
class ClapTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
5,265
7,020
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,373
class ClapAudioModelOutput(ModelOutput): """ ClapAudio model output to mimic the output of the original implementation. Args: audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): The Audio embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ audio_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
7,034
8,703
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,374
class ClapOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for audio-text similarity. logits_per_audio (`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. audio_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`ClapTextModel`]. audio_model_output (`BaseModelOutputWithPooling`): The output of the [`ClapAudioModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_audio: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None audio_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None audio_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() for k in self.keys() )
class_definition
8,841
10,698
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,375
class ClapDropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly refactored version of the `SwinDropPath` implementation. """ def __init__(self, drop_prob=None): super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states): if self.drop_prob == 0.0 or not self.training: return hidden_states keep_prob = 1 - self.drop_prob # work with diff dim tensors, not just 2D ConvNets shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) random_tensor.floor_() # binarize output = hidden_states.div(keep_prob) * random_tensor return output
class_definition
10,768
11,630
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,376
class ClapAudioAFFBlock(nn.Module): r""" ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement the 1D version. """ def __init__(self, config: ClapAudioConfig): super().__init__() channels = config.patch_embeds_hidden_size downsize_ratio = config.aff_block_r inter_channels = int(channels // downsize_ratio) self.local_att = nn.Sequential( nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.global_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(inter_channels), nn.ReLU(inplace=True), nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(channels), ) self.sigmoid = nn.Sigmoid() def forward(self, hidden_states, residual): attention_input = hidden_states + residual fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) fused_layer_output = self.sigmoid(fused_layer_output) output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) return output
class_definition
11,764
13,313
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,377
class ClapAudioPatchEmbed(nn.Module): """ This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the Transformer block. """ def __init__(self, config: ClapAudioConfig): super().__init__() img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size patch_size = ( (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size ) patch_stride = ( (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride ) self.img_size = img_size self.patch_stride = patch_stride self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = config.flatten_patch_embeds self.enable_fusion = config.enable_fusion padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 self.proj = nn.Conv2d( config.patch_embed_input_channels * scale_factor, config.patch_embeds_hidden_size, kernel_size=patch_size, stride=patch_stride, padding=padding, ) self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() if self.enable_fusion: self.fusion_model = ClapAudioAFFBlock(config) self.mel_conv2d = nn.Conv2d( config.patch_embed_input_channels, config.patch_embeds_hidden_size, kernel_size=(patch_size[0], patch_size[1] * 3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding, ) def forward(self, hidden_states, is_longer_idx=None): if self.enable_fusion: # retrieve the last mel as we have transposed the input global_hidden_states = hidden_states[:, 0:1, :, :] # global processing batch_size, num_channels, height, width = global_hidden_states.shape if height != self.img_size[0] or width != self.img_size[1]: raise ValueError( f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." ) global_hidden_states = self.proj(global_hidden_states) output_width = global_hidden_states.size(-1) if len(is_longer_idx) > 0: # local processing local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() batch_size, num_channels, height, width = local_hidden_states.shape local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) local_hidden_states = self.mel_conv2d(local_hidden_states) _, features, height, width = local_hidden_states.shape local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) local_width = local_hidden_states.size(-1) local_hidden_states = torch.nn.functional.pad( local_hidden_states, (0, output_width - local_width), "constant", 0 ) global_hidden_states[is_longer_idx] = self.fusion_model( global_hidden_states[is_longer_idx], local_hidden_states ) hidden_states = global_hidden_states else: _, _, height, width = hidden_states.shape if height != self.img_size[0] or width != self.img_size[1]: raise ValueError( f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." ) hidden_states = self.proj(hidden_states) if self.flatten: hidden_states = hidden_states.flatten(2).transpose(1, 2) hidden_states = self.norm(hidden_states) return hidden_states
class_definition
13,316
17,712
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,378
class ClapAudioSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
17,807
22,684
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,379
class ClapAudioSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
22,776
23,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,380
class ClapAudioAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) self.output = ClapAudioSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
23,309
25,002
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,381
class ClapAudioIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
25,096
25,659
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,382
class ClapAudioOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
25,747
26,171
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,383
class ClapAudioLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, drop_path_rate=0.0, shift_size=0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) self.drop_path = ClapDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = ClapAudioIntermediate(config, dim) self.output = ClapAudioOutput(config, dim) def set_shift_and_window_size(self, input_resolution): if min(input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = torch_int(0) self.window_size = ( torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution) ) def get_attn_mask(self, height, width, dtype, device): if self.shift_size > 0: # calculate attention mask for SW-MSA img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_right = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, 0, pad_right, 0, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if not always_partition: self.set_shift_and_window_size(input_dimensions) else: pass height, width = input_dimensions batch_size, _, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask( height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device ) attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = attention_outputs[0] attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs
class_definition
26,286
31,974
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,384
class ClapAudioStage(nn.Module): def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ ClapAudioLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, drop_path_rate=drop_path[i], shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, always_partition: Optional[bool] = False, ) -> Tuple[torch.Tensor]: height, width = input_dimensions for i, layer_module in enumerate(self.blocks): layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs
class_definition
32,061
34,285
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,385
class ClapAudioPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature
class_definition
34,379
36,662
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,386
class ClapAudioEncoder(nn.Module): def __init__(self, config): super().__init__() self.num_layers = len(config.depths) self.config = config self.patch_embed = ClapAudioPatchEmbed(config) self.enable_fusion = config.enable_fusion self.patch_stride = self.patch_embed.patch_stride self.spec_size = config.spec_size self.freq_ratio = config.spec_size // config.num_mel_bins self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] grid_size = self.patch_embed.grid_size self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] self.layers = nn.ModuleList( [ ClapAudioStage( config=config, dim=int(config.patch_embeds_hidden_size * 2**i_layer), input_resolution=self.input_resolutions[i_layer], depth=config.depths[i_layer], num_heads=config.num_attention_heads[i_layer], drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) self.norm = nn.LayerNorm(self.num_features) self.depths = config.depths self.avgpool = nn.AdaptiveAvgPool1d(1) def reshape_mel2img(self, normalized_input_features): """ The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. """ _, _, time_length, freq_length = normalized_input_features.shape spec_width = int(self.spec_size * self.freq_ratio) spec_heigth = self.spec_size // self.freq_ratio if time_length > spec_width or freq_length > spec_heigth: raise ValueError("the wav size should be less than or equal to the swin input size") # to avoid bicubic zero error if time_length < spec_width: normalized_input_features = nn.functional.interpolate( normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True ) if freq_length < spec_heigth: normalized_input_features = nn.functional.interpolate( normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True ) batch, channels, time, freq = normalized_input_features.shape # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio normalized_input_features = normalized_input_features.reshape( batch, channels * self.freq_ratio, time // self.freq_ratio, freq ) normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() normalized_input_features = normalized_input_features.reshape( batch, channels, freq * self.freq_ratio, time // self.freq_ratio ) return normalized_input_features def forward( self, input_features, is_longer: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, always_partition: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, ClapAudioModelOutput]: input_features = input_features.transpose(1, 3) normalized_input_features = self.batch_norm(input_features) normalized_input_features = normalized_input_features.transpose(1, 3) is_longer_list_idx = None if self.enable_fusion: is_longer_list = is_longer.to(input_features.device) is_longer_list_idx = torch.where(is_longer_list == 1)[0] hidden_states = self.reshape_mel2img(normalized_input_features) frames_num = hidden_states.shape[2] hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None input_dimensions = self.input_resolutions[0] if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange batch_size (height width) channels -> batch_size channel height width reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None input_dimensions = self.input_resolutions[i] if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions ) else: layer_outputs = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition ) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] output_dimensions = layer_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange batch_size (height width) channels -> batch_size channel height width # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange batch_size (height width) channels -> batch_size channel height width reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[3:] last_hidden_state = self.norm(hidden_states) batch_size, _, n_channels = last_hidden_state.shape freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] last_hidden_state = ( last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) ) batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape # group 2D CNN c_freq_bin = n_frequencies // self.freq_ratio last_hidden_state = last_hidden_state.reshape( batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp ) last_hidden_state = ( last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) ) latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) latent_output = torch.flatten(latent_output, 1) if not return_dict: return tuple( v for v in [ last_hidden_state, latent_output, all_reshaped_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=latent_output, hidden_states=all_reshaped_hidden_states, attentions=all_self_attentions, )
class_definition
36,665
45,949
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,387
class ClapProjectionLayer(nn.Module): def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): super().__init__() self.config = config hidden_size = config.hidden_size projection_dim = config.projection_dim self.linear1 = nn.Linear(hidden_size, projection_dim) self.activation = ACT2FN[config.projection_hidden_act] self.linear2 = nn.Linear(projection_dim, projection_dim) def forward(self, hidden_states): hidden_states = self.linear1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.linear2(hidden_states) return hidden_states
class_definition
51,753
52,424
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,388
class ClapTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape)
class_definition
52,562
56,741
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,389
class ClapTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
56,835
64,185
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,390
class ClapTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
64,256
64,866
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,391
class ClapTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = CLAP_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = ClapTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
65,049
67,184
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,392
class ClapTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
67,257
67,826
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,393
class ClapTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
67,893
68,505
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,394
class ClapTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ClapTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") self.intermediate = ClapTextIntermediate(config) self.output = ClapTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
68,591
72,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,395
class ClapTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
72,606
76,404
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,396
class ClapTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
76,471
77,034
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,397
class ClapPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ClapConfig base_model_prefix = "clap" supports_gradient_checkpointing = False def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, ClapTextEmbeddings): module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, ClapModel): nn.init.normal_(module.logit_scale_a, std=factor * 0.02) nn.init.normal_(module.logit_scale_t, std=factor * 0.02) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv2d, nn.Linear)): in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor nn.init.normal_(module.weight, std=in_proj_std) if module.bias is not None: module.bias.data.zero_()
class_definition
77,037
78,421
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,398
class ClapAudioModel(ClapPreTrainedModel): config_class = ClapAudioConfig main_input_name = "input_features" def __init__(self, config: ClapAudioConfig): super().__init__(config) self.audio_encoder = ClapAudioEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.audio_encoder.patch_embed.proj @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) def forward( self, input_features: Optional[torch.FloatTensor] = None, is_longer: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoProcessor, ClapAudioModel >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") >>> inputs = processor(audios=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return self.audio_encoder( input_features=input_features, is_longer=is_longer, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
class_definition
78,424
80,673
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clap/modeling_clap.py
null
7,399