text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
# contrastive_search main logic start: # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by # degeneration penalty processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step) next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1) top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_logits: raw_logits += (logit_for_next_step,) if output_scores: scores += (processed_logit_for_next_step,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# This is needed to properly delete outputs.logits which may be very large for this first iteration # Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward() del outputs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if not sequential: # Replicates the new past_key_values to match the `top_k` candidates past = model_kwargs["past_key_values"] # If it is a static cache, modify it in-place layer after layer to save memory if isinstance(past, DynamicCache) or ( isinstance(past, EncoderDecoderCache) and isinstance(past.self_attention_cache, DynamicCache) ): past.batch_repeat_interleave(top_k) else: new_key_values = [] for layer in past: items = [] # item is either the key or the value matrix for item in layer: items.append(item.repeat_interleave(top_k, dim=0)) new_key_values.append(tuple(items)) past = tuple(new_key_values) model_kwargs["past_key_values"] = past
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if sequential: all_outputs = [] for i in range(top_k): # compute the candidate tokens by the language model and collect their hidden_states next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions, ) if isinstance(outputs["past_key_values"], DynamicCache) or ( isinstance(outputs["past_key_values"], EncoderDecoderCache) and isinstance(outputs["past_key_values"].self_attention_cache, DynamicCache) ): # Remove past K-V from output since we don't need to stack later outputs["past_key_values"] = None # Remove last token from past K-V since we don't want to append it at this point model_kwargs["past_key_values"].crop(-1) all_outputs.append(outputs) outputs = stack_model_outputs(all_outputs, self.config.get_text_config())
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
else: # compute the candidate tokens by the language model and collect their hidden_states # assembles top_k_ids into batch of size k next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs) outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions, ) # This is essential to avoid having a last reference to the big past K-V and double the necessary memory # in the next loop del next_model_inputs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# name is different for encoder-decoder and decoder-only models if self.config.is_encoder_decoder: next_hidden = outputs.decoder_hidden_states[-1] full_hidden_states = outputs.decoder_hidden_states else: next_hidden = outputs.hidden_states[-1] full_hidden_states = outputs.hidden_states # .float() is needed to retain precision for later logits manipulations logits = outputs.logits[:, -1, :].float() context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't # introduce (noticeable) slowdowns on single-device runs. selected_idx = _ranking_fast( context_hidden, next_hidden, top_k_probs, cosine_matrix_mask, penalty_alpha, top_k ) cosine_matrix_mask = torch.cat( [cosine_matrix_mask, cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1))], dim=-1 ) selected_idx = selected_idx.to("cpu") # This will be used instead of the previous inneficient torch.stack(torch.split()) augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)])
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores # (model confidence minus degeneration penalty); (6) decoder hidden_states next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx] next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k)) next_hidden = next_hidden[range(batch_size), selected_idx, :] last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1) next_decoder_hidden_states = () for layer in full_hidden_states: layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :] next_decoder_hidden_states += (layer,)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# generate past_key_values cache of only the selected token if sequential: next_model_input = self.prepare_inputs_for_generation( top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs ) selected_outputs = self( **next_model_input, return_dict=True, output_hidden_states=False, output_attentions=False, ) next_past_key_values = selected_outputs["past_key_values"]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
else: _, next_past_key_values = self._extract_past_from_model_output(outputs) # Do it in-place layer per layer to save memory if isinstance(next_past_key_values, DynamicCache) or ( isinstance(next_past_key_values, EncoderDecoderCache) and isinstance(next_past_key_values.self_attention_cache, DynamicCache) ): next_past_key_values.batch_select_indices(augmented_idx) else: new_key_values = [] for layer in next_past_key_values: items = [] # item is either the key or the value matrix for item in layer: items.append(item[augmented_idx, ...]) new_key_values.append(tuple(items)) next_past_key_values = tuple(new_key_values)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :] logit_for_next_step = logit_for_next_step.to(input_ids.device)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration if self.config.is_encoder_decoder: next_step_cross_attentions = () next_step_decoder_attentions = () if output_attentions: for layer in outputs.cross_attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_cross_attentions += (layer,) for layer in outputs.decoder_attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_decoder_attentions += (layer,) outputs = Seq2SeqLMOutput( past_key_values=next_past_key_values, decoder_hidden_states=next_decoder_hidden_states,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
decoder_attentions=next_step_decoder_attentions or None, cross_attentions=next_step_cross_attentions or None, ) else: next_step_attentions = () if output_attentions: for layer in outputs.attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_attentions += (layer,) outputs = CausalLMOutputWithPast( past_key_values=next_past_key_values, hidden_states=next_decoder_hidden_states, attentions=next_step_attentions or None, ) # contrastive_search main logic end
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: continue # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu())
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# stop when each sentence is finished unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 if streamer is not None: streamer.end()
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if return_dict_in_generate: # Contrastive search works by forward looking at the next token, so we need to exclude it from # `past_key_values` to be consistent with the other decoding methods if model_kwargs.get("past_key_values") is not None: if isinstance(model_kwargs["past_key_values"], DynamicCache) or ( isinstance(model_kwargs["past_key_values"], EncoderDecoderCache) and isinstance(model_kwargs["past_key_values"].self_attention_cache, DynamicCache) ): model_kwargs["past_key_values"].crop(-1) else: past_key_values = [] for layer in model_kwargs["past_key_values"]: layer_past_key_values = [] for item in layer: layer_past_key_values.append(item[..., :-1, :]) past_key_values.append(tuple(layer_past_key_values))
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
model_kwargs["past_key_values"] = tuple(past_key_values)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if self.config.is_encoder_decoder: return GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else:
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
return input_ids
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _sample( self, input_ids: torch.LongTensor, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate max_length = generation_config.max_length
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) do_sample = generation_config.do_sample
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# keep track of which sequences are already finished batch_size, cur_len = input_ids.shape this_peer_finished = False unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) model_forward = self.__call__ if isinstance(model_kwargs.get("past_key_values"), StaticCache): if self.device.type == "cuda": logger.warning_once("Using `torch.compile`.") os.environ["TOKENIZERS_PARALLELISM"] = "0" model_forward = self.get_compiled_call(generation_config.compile_config) is_prefill = True while self._has_unfinished_sequences( this_peer_finished, synced_gpus, device=input_ids.device, cur_len=cur_len, max_length=max_length ): # prepare model inputs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) if is_prefill: outputs = self(**model_inputs, return_dict=True) is_prefill = False else: outputs = model_forward(**model_inputs, return_dict=True) # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: continue
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) next_token_logits = outputs.logits[:, -1, :].clone().float() next_token_logits = next_token_logits.to(input_ids.device) # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# token selection if do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) # TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(next_token_scores, dim=-1) # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu())
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 cur_len += 1 # This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration del outputs if streamer is not None: streamer.end()
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if return_dict_in_generate: if self.config.is_encoder_decoder: return GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"),
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
) else: return input_ids
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _temporary_reorder_cache(self, past_key_values, beam_idx): """ Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need for this function, with `Cache.reorder_cache` being the sole remaining code path """ model_class = self.__class__.__name__.lower() # Exception 1: code path for models using the legacy cache format if isinstance(past_key_values, (tuple, list)): past_key_values = self._reorder_cache(past_key_values, beam_idx) # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their # cache format is standardized, to avoid adding complexity to the codebase. elif "gptbigcode" in model_class: if not isinstance(past_key_values, (DynamicCache, EncoderDecoderCache)): raise ValueError( f"Using an unsupported cache format with {model_class}. Currently, it only supports the " "legacy tuple format or `DynamicCache`" )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
past_key_values = self._reorder_cache(past_key_values, beam_idx) past_key_values = DynamicCache.from_legacy_cache(past_key_values) # Standard code path: use the `Cache.reorder_cache` else: past_key_values.reorder_cache(beam_idx) return past_key_values
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _beam_search( self, input_ids: torch.LongTensor, beam_scorer: BeamScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, **model_kwargs, ) -> Union[GenerateBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. beam_scorer (`BeamScorer`): An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`: An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate sequential = generation_config.low_memory
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
do_sample = generation_config.do_sample
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
batch_size = len(beam_scorer._beam_hyps) num_beams = beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None beam_indices = ( tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None ) decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens # of the first beam are considered to avoid sampling the exact same tokens across all beams. beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# if sequential is True, split the input to batches of batch_size and run sequentially if sequential: if any( model_name in self.__class__.__name__.lower() for model_name in [ "fsmt", "reformer", "ctrl", "gpt_bigcode", "transo_xl", "xlnet", "cpm", "jamba", ] ): raise RuntimeError( f"Currently generation for {self.__class__.__name__} is not supported " f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
inputs_per_sub_batches = _split_model_inputs( model_inputs, split_size=batch_size, full_batch_size=batch_beam_size, config=self.config.get_text_config(), ) outputs_per_sub_batch = [ self(**inputs_per_sub_batch, return_dict=True) for inputs_per_sub_batch in inputs_per_sub_batches ] outputs = stack_model_outputs(outputs_per_sub_batch, self.config.get_text_config()) else: # Unchanged original behavior outputs = self(**model_inputs, return_dict=True)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) # .float() is needed to retain precision for later logits manipulations next_token_logits = outputs.logits[:, -1, :].clone().float() next_token_logits = next_token_logits.to(input_ids.device) next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * num_beams, vocab_size)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
next_token_scores_processed = logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( next_token_scores_processed )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores_processed,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1 # non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams if do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep) next_token_scores = torch.gather(next_token_scores, -1, next_tokens) next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, _indices) else: next_token_scores, next_tokens = torch.topk( next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") next_tokens = next_tokens % vocab_size # stateless beam_outputs = beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], beam_idx ) if return_dict_in_generate and output_scores: beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) # increase cur_len cur_len = cur_len + 1
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True sequence_outputs = beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _group_beam_search( self, input_ids: torch.LongTensor, beam_scorer: BeamScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, **model_kwargs, ): r""" Generates sequences of token ids for models with a language modeling head using **diverse beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. beam_scorer (`BeamScorer`): An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). model_kwargs: Additional model specific kwargs that will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
num_beams = beam_scorer.num_beams num_beam_groups = beam_scorer.num_beam_groups num_sub_beams = num_beams // num_beam_groups batch_size = len(beam_scorer._beam_hyps) // num_beam_groups device = input_ids.device batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if return_dict_in_generate and output_scores: beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)] else: beam_indices = None if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in # the same group don't produce same tokens every time. beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device) beam_scores[:, ::num_sub_beams] = 0 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # predicted tokens in cur_len step current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device) # indices which will form the beams in the next time step reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# do one decoder step on all beams of all sentences in batch model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) outputs = self(**model_inputs, return_dict=True) # synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if output_scores: processed_score = torch.zeros_like(outputs.logits[:, -1, :]) if output_logits: # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) raw_logit_score = outputs.logits[:, -1, :].clone() raw_logit_score = raw_logit_score.to(input_ids.device) for beam_group_idx in range(num_beam_groups): group_start_idx = beam_group_idx * num_sub_beams group_end_idx = min(group_start_idx + num_sub_beams, num_beams) group_size = group_end_idx - group_start_idx # indices of beams of current group among all sentences in batch batch_group_indices = []
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
for batch_idx in range(batch_size): batch_group_indices.extend( [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)] ) group_input_ids = input_ids[batch_group_indices] # select outputs of beams of current group only # No need to clone() the logits here as they will not retain outputs.logits at the end of the loop # .float() is needed to retain precision for later logits manipulations next_token_logits = outputs.logits[batch_group_indices, -1, :].float() next_token_logits = next_token_logits.to(input_ids.device) next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * group_size, vocab_size) vocab_size = next_token_scores.shape[-1]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
next_token_scores_processed = logits_processor( group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx ) next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1) next_token_scores = next_token_scores.expand_as(next_token_scores_processed) if output_scores: processed_score[batch_group_indices] = next_token_scores_processed # reshape for beam search next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 next_token_scores, next_tokens = torch.topk( next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True ) next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") next_tokens = next_tokens % vocab_size
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# stateless process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None beam_outputs = beam_scorer.process( group_input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=process_beam_indices, group_index=beam_group_idx, decoder_prompt_len=decoder_prompt_len, ) beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if return_dict_in_generate and output_scores: beam_indices[beam_group_idx] = tuple( beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0])) ) input_ids[batch_group_indices] = group_input_ids[beam_idx] group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) current_tokens[batch_group_indices] = group_input_ids[:, -1] # (beam_idx // group_size) -> batch_idx # (beam_idx % group_size) -> offset of idx inside the group reordering_indices[batch_group_indices] = ( num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (processed_score,) if output_logits: raw_logits += (raw_logit_score,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], reordering_indices ) # increase cur_len cur_len = cur_len + 1 if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None sequence_outputs = beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=final_beam_indices, decoder_prompt_len=decoder_prompt_len, ) if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _constrained_beam_search( self, input_ids: torch.LongTensor, constrained_beam_scorer: ConstrainedBeamSearchScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, **model_kwargs, ) -> Union[GenerateBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **constrained beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. constrained_beam_scorer (`ConstrainedBeamSearchScorer`): A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation, while satisfying a list of positive constraints. For more information, the documentation of [`ConstrainedBeamSearchScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
batch_size = len(constrained_beam_scorer._beam_hyps) num_beams = constrained_beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None beam_indices = ( tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None ) decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens # of the first beam are considered to avoid sampling the exact same tokens across all beams. beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) outputs = self(**model_inputs, return_dict=True)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) # .float() is needed to retain precision for later logits manipulations next_token_logits = outputs.logits[:, -1, :].clone().float() next_token_logits = next_token_logits.to(input_ids.device) next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * num_beams, vocab_size)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
next_token_scores_processed = logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( next_token_scores_processed ) scores_for_all_vocab = next_token_scores.clone() # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 next_token_scores, next_tokens = torch.topk( next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True ) next_indices = (next_tokens / vocab_size).long() next_tokens = next_tokens % vocab_size
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# stateless beam_outputs = constrained_beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, scores_for_all_vocab, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], beam_idx ) if return_dict_in_generate and output_scores: beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) # increase cur_len cur_len = cur_len + 1
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True sequence_outputs = constrained_beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _assisted_decoding( self, input_ids: torch.LongTensor, candidate_generator: CandidateGenerator, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **greedy decoding** or **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. candidate_generator (`CandidateGenerator`): A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For more information, the documentation of [`CandidateGenerator`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values do_sample = generation_config.do_sample output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) this_peer_finished = False is_first_iteration = True # to preserve the same API in the output as other generation methods while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): cur_len = input_ids.shape[-1] # 1. Fetch candidate sequences from a `CandidateGenerator` and move to the correct device candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids) candidate_input_ids = candidate_input_ids.to(self.device) if candidate_logits is not None: candidate_logits = candidate_logits.to(self.device)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py