text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
10,740
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Returns the model cache, used to speed up decoding. Different models have a different cache format, check the model's documentation. Usually, a [`~cache_utils.Cache`] instance. """
10,740
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
10,740
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
class GenerateEncoderDecoderOutput(ModelOutput): """ Outputs of encoder-decoder generation models, when using non-beam methods.
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Returns the model cache, used to speed up decoding. Different models have a different cache format, check
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
the model's documentation. Usually, a [`~cache_utils.Cache`] instance. """
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
10,741
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
class GenerateBeamDecoderOnlyOutput(ModelOutput): """ Outputs of decoder-only generation models, when using beam methods.
10,742
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
10,742
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
10,742
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`): Returns the model cache, used to speed up decoding. Different models have a different cache format, check the model's documentation. Usually, a [`~cache_utils.Cache`] instance. """
10,742
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequences: torch.LongTensor = None sequences_scores: Optional[torch.FloatTensor] = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None beam_indices: Optional[torch.LongTensor] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
10,742
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
class GenerateBeamEncoderDecoderOutput(ModelOutput): """ Outputs of encoder-decoder generation models, when using beam methods.
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`): Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequence_length, sequence_length)`. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`): Returns the model cache, used to speed up decoding. Different models have a different cache format, check the model's documentation. Usually, a [`~cache_utils.Cache`] instance. """
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
sequences: torch.LongTensor = None sequences_scores: Optional[torch.FloatTensor] = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None beam_indices: Optional[torch.LongTensor] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
10,743
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
class GenerationMixin: """ A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`]. The class exposes [`~generation.GenerationMixin.generate`], which can be used for: - *greedy decoding* if `num_beams=1` and `do_sample=False` - *contrastive search* if `penalty_alpha>0` and `top_k>1` - *multinomial sampling* if `num_beams=1` and `do_sample=True` - *beam-search decoding* if `num_beams>1` and `do_sample=False` - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True` - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1` - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None` - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()` To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). """
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[Cache] = None, attention_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ): """ Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or slicing inputs given the existing cache. See the forward pass in the model documentation for expected arguments (different models might have different requirements for e.g. `past_key_values`). This function should work as is for most LLMs. """
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 1. Handle BC: model_inputs = {} # - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`) if self._supports_cache_class: model_inputs["cache_position"] = cache_position # - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this # function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly # (this alternative is not as robust as calling `generate` and letting it create `cache_position`) elif cache_position is None: past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. Generic cache-dependent input preparation # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if past_key_values is not None: model_inputs["past_key_values"] = past_key_values if ( inputs_embeds is not None # Exception 1 or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position]
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 3. Prepare base model inputs input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if not self.config.is_encoder_decoder: if inputs_embeds is not None and cache_position[0] == 0: model_inputs[input_ids_key] = None model_inputs["inputs_embeds"] = inputs_embeds else: # `clone` calls in this function ensure a consistent stride. See #32227 model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format) model_inputs["inputs_embeds"] = None else: model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 4. Create missing `position_ids` on the fly if ( attention_mask is not None and kwargs.get("position_ids") is None and "position_ids" in set(inspect.signature(self.forward).parameters.keys()) ): position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) kwargs["position_ids"] = position_ids # placed in kwargs for further processing (see below)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 5. Slice model inputs if it's an input that should have the same length as `input_ids` for model_input_name in ["position_ids", "token_type_ids"]: model_input = kwargs.get(model_input_name) if model_input is not None: if past_key_values is not None: current_input_length = ( model_inputs["inputs_embeds"].shape[1] if model_inputs["inputs_embeds"] is not None else model_inputs[input_ids_key].shape[1] ) model_input = model_input[:, -current_input_length:] model_input = model_input.clone(memory_format=torch.contiguous_format) model_inputs[model_input_name] = model_input
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass) if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs[input_ids_key].shape device = model_inputs[input_ids_key].device
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create # the 4D causal mask exists, it should be present in the base model (XXXModel class). base_model = getattr(self, self.base_model_prefix, None) if base_model is None: causal_mask_creation_function = getattr( self, "_prepare_4d_causal_attention_mask_with_cache_position", None ) else: causal_mask_creation_function = getattr( base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None ) if causal_mask_creation_function is None: logger.warning_once( f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method " "defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
"writing code, see Llama for an example implementation. If you're a user, please report this " "issue on GitHub." ) else: attention_mask = causal_mask_creation_function( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_cache_shape(), dtype=self.dtype, device=device, cache_position=cache_position, batch_size=batch_size, config=self.config, past_key_values=past_key_values, ) if attention_mask is not None: model_inputs["attention_mask"] = attention_mask
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`). for key, value in kwargs.items(): if key not in model_inputs: model_inputs[key] = value # 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples) model_inputs.pop("labels", None) return model_inputs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_model_inputs( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[torch.Tensor] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: """ This function extracts the model-specific `inputs` for generation. """ # 1. retrieve all kwargs that are non-None or non-model input related. # some encoder-decoder models have different names for model and encoder if ( self.config.is_encoder_decoder and hasattr(self, "encoder") and self.encoder.main_input_name != self.main_input_name ): input_name = self.encoder.main_input_name else: input_name = self.main_input_name model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. check whether model_input_name is passed as kwarg # if yes and `inputs` is None use kwarg inputs inputs_kwarg = model_kwargs.pop(input_name, None) if inputs_kwarg is not None and inputs is not None: raise ValueError( f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. " f"Make sure to either pass {inputs} or {input_name}=..." ) elif inputs_kwarg is not None: inputs = inputs_kwarg
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 3. In the presence of `inputs_embeds` for text models: # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`) # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states. if input_name == "input_ids" and "inputs_embeds" in model_kwargs: if not self.config.is_encoder_decoder: has_inputs_embeds_forwarding = "inputs_embeds" in set( inspect.signature(self.prepare_inputs_for_generation).parameters.keys() ) if not has_inputs_embeds_forwarding: raise ValueError(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} " "doesn't have its forwarding implemented. See the GPT2 implementation for an example " "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!" ) # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of # the attention mask) can rely on the actual model input. model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( inputs, bos_token_id, model_kwargs=model_kwargs ) else: if inputs is not None: raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.") inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 4. if `inputs` is still None, try to create `input_ids` from BOS token inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) return inputs, input_name, model_kwargs def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[torch.Tensor] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if self.config.is_encoder_decoder and encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs.last_hidden_state.size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break if "inputs_embeds" in model_kwargs: return torch.ones((batch_size, 0), dtype=torch.long, device=self.device) if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_attention_mask_for_generation( self, inputs_tensor: torch.Tensor, generation_config: GenerationConfig, model_kwargs: Dict[str, Any], ) -> torch.LongTensor: pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor # `input_ids` may be present in the model kwargs, instead of being the main input (e.g. multimodal model) if "input_ids" in model_kwargs and model_kwargs["input_ids"].shape[1] > 0: inputs_tensor = model_kwargs["input_ids"] # No information for attention mask inference -> return default attention mask default_attention_mask = torch.ones(inputs_tensor.shape[:2], dtype=torch.long, device=inputs_tensor.device) if pad_token_id is None: return default_attention_mask
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
is_input_ids = len(inputs_tensor.shape) == 2 and inputs_tensor.dtype in [torch.int, torch.long] if not is_input_ids: return default_attention_mask is_pad_token_in_inputs = (pad_token_id is not None) and ( isin_mps_friendly(elements=inputs_tensor, test_elements=pad_token_id).any() ) is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~( isin_mps_friendly(elements=eos_token_id, test_elements=pad_token_id).any() ) can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id attention_mask_from_padding = inputs_tensor.ne(pad_token_id).long() attention_mask = ( attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask ) return attention_mask
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_encoder_decoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str], generation_config: GenerationConfig, ) -> Dict[str, Any]: # 1. get encoder encoder = self.get_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(self, "hf_device_map"): if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True else: add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. Prepare encoder args and encoder kwargs from model kwargs and generation config. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } encoder_kwargs["output_attentions"] = generation_config.output_attentions encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs) # type: ignore return model_kwargs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: torch.Tensor, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. `decoder_start_token_id` must have shape (batch_size, 1) if device is None: device = self.device if decoder_start_token_id.ndim == 1: if decoder_start_token_id.shape[0] != batch_size: raise ValueError( f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}" ) decoder_start_token_id = decoder_start_token_id.view(-1, 1) else: decoder_start_token_id = ( torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_start_token_id # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token. Note that the # original checkpoints can't be detected through `self.__class__.__name__.lower()`, needing custom logic. # See: https://github.com/huggingface/transformers/pull/31470 elif "donut" in self.__class__.__name__.lower() or ( self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower() ): pass elif self.config.model_type in ["whisper"]: pass # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item(): decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
return decoder_input_ids, model_kwargs @staticmethod def _expand_inputs_for_generation( expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[torch.LongTensor] = None, **model_kwargs, ) -> Tuple[torch.LongTensor, Dict[str, Any]]: """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]""" # Do not call torch.repeat_interleave if expand_size is 1 because it clones # the input tensor and thus requires more memory although no change is applied if expand_size == 1: return input_ids, model_kwargs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if ( key != "cache_position" and dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) ): dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) return dict_to_expand if input_ids is not None: input_ids = input_ids.repeat_interleave(expand_size, dim=0) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _extract_past_from_model_output(self, outputs: ModelOutput): past_key_values = None cache_name = "past_key_values" if "past_key_values" in outputs: past_key_values = outputs.past_key_values elif "mems" in outputs: past_key_values = outputs.mems elif "past_buckets_states" in outputs: past_key_values = outputs.past_buckets_states elif "cache_params" in outputs: past_key_values = outputs.cache_params cache_name = "cache_params" return cache_name, past_key_values
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: # update past_key_values keeping its naming used in model code cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if not is_encoder_decoder: # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) else: # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if model_kwargs.get("use_cache", True): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens else: past_positions = model_kwargs.pop("cache_position") new_positions = torch.arange( past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype ).to(past_positions.device) model_kwargs["cache_position"] = torch.cat((past_positions, new_positions)) return model_kwargs def _reorder_cache(self, past_key_values, beam_idx): raise NotImplementedError( f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to" f" enable beam search for {self.__class__}" )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _get_candidate_generator( self, generation_config: GenerationConfig, input_ids: torch.LongTensor, inputs_tensor: torch.Tensor, assistant_model: "PreTrainedModel", logits_processor: LogitsProcessorList, target_tokenizer: "PreTrainedTokenizerBase", assistant_tokenizer: "PreTrainedTokenizerBase", model_kwargs: Dict, ) -> CandidateGenerator: """ Returns the candidate generator to be used in `assisted_generation` """ different_tokenizers = all(v is not None for v in (assistant_model, target_tokenizer, assistant_tokenizer))
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if generation_config.assistant_early_exit is not None: candidate_generator = EarlyExitCandidateGenerator( input_ids=input_ids, assistant_model=self, generation_config=generation_config, model_kwargs=model_kwargs, inputs_tensor=inputs_tensor, logits_processor=logits_processor, ) elif generation_config.prompt_lookup_num_tokens is not None: candidate_generator = PromptLookupCandidateGenerator( eos_token_id=generation_config._eos_token_tensor, num_output_tokens=generation_config.prompt_lookup_num_tokens, max_matching_ngram_size=generation_config.max_matching_ngram_size, max_length=generation_config.max_length, ) elif different_tokenizers: candidate_generator = AssistedCandidateGeneratorDifferentTokenizers( input_ids=input_ids,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
assistant_model=assistant_model, generation_config=generation_config, model_kwargs=model_kwargs, inputs_tensor=inputs_tensor, logits_processor=logits_processor, target_tokenizer=target_tokenizer, assistant_tokenizer=assistant_tokenizer, ) else: candidate_generator = AssistedCandidateGenerator( input_ids=input_ids, assistant_model=assistant_model, generation_config=generation_config, model_kwargs=model_kwargs, inputs_tensor=inputs_tensor, logits_processor=logits_processor, ) return candidate_generator
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _get_logits_processor( self, generation_config: GenerationConfig, input_ids_seq_length: int, encoder_input_ids: torch.LongTensor, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], logits_processor: Optional[LogitsProcessorList], device: str = None, model_kwargs: Optional[Dict[str, Any]] = None, negative_prompt_ids: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, ) -> LogitsProcessorList: """ This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`] instances used to modify the scores of the language model head. """ # instantiate processors list processors = LogitsProcessorList()
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1: processors.append( UnbatchedClassifierFreeGuidanceLogitsProcessor( generation_config.guidance_scale, self, unconditional_ids=negative_prompt_ids, unconditional_attention_mask=negative_prompt_attention_mask, use_cache=generation_config.use_cache, ) ) if generation_config.sequence_bias is not None: processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0: processors.append( HammingDiversityLogitsProcessor( diversity_penalty=generation_config.diversity_penalty, num_beams=generation_config.num_beams, num_beam_groups=generation_config.num_beam_groups, ) ) if ( generation_config.encoder_repetition_penalty is not None and generation_config.encoder_repetition_penalty != 1.0 ): if len(encoder_input_ids.shape) == 2: processors.append( EncoderRepetitionPenaltyLogitsProcessor( penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids, ) ) else: warnings.warn(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
"Passing `encoder_repetition_penalty` requires some form of `input_ids` to be passed to " "`generate`, ignoring the argument.", UserWarning, ) if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0: processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty)) if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0: processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size)) if ( generation_config.encoder_no_repeat_ngram_size is not None and generation_config.encoder_no_repeat_ngram_size > 0 ): if len(encoder_input_ids.shape) == 2: processors.append( EncoderNoRepeatNGramLogitsProcessor( generation_config.encoder_no_repeat_ngram_size,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
encoder_input_ids, ) ) else: warnings.warn( "Passing `encoder_no_repeat_ngram_size` requires some form of `input_ids` to be passed to " "`generate`, ignoring the argument.", UserWarning, ) if generation_config.bad_words_ids is not None: processors.append( NoBadWordsLogitsProcessor( generation_config.bad_words_ids, generation_config._eos_token_tensor, ) ) if ( generation_config.min_length is not None and generation_config._eos_token_tensor is not None and generation_config.min_length > 0 ): processors.append( MinLengthLogitsProcessor( generation_config.min_length, generation_config._eos_token_tensor,
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
device=device, ) ) if ( generation_config.min_new_tokens is not None and generation_config._eos_token_tensor is not None and generation_config.min_new_tokens > 0 ): processors.append( MinNewTokensLengthLogitsProcessor( input_ids_seq_length, generation_config.min_new_tokens, generation_config._eos_token_tensor, device=device, ) ) if prefix_allowed_tokens_fn is not None: processors.append( PrefixConstrainedLogitsProcessor( prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups, ) ) if generation_config.forced_bos_token_id is not None: processors.append( ForcedBOSTokenLogitsProcessor(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config.forced_bos_token_id, ) ) if generation_config.forced_eos_token_id is not None: processors.append( ForcedEOSTokenLogitsProcessor( generation_config.max_length, generation_config.forced_eos_token_id, device=device, ) ) if generation_config.remove_invalid_values is True: processors.append(InfNanRemoveLogitsProcessor()) if generation_config.exponential_decay_length_penalty is not None: processors.append( ExponentialDecayLengthPenalty( generation_config.exponential_decay_length_penalty, generation_config._eos_token_tensor, input_ids_seq_length, ) ) if generation_config.suppress_tokens is not None: processors.append( SuppressTokensLogitsProcessor(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
generation_config.suppress_tokens, device=device, ) ) if generation_config.begin_suppress_tokens is not None: begin_index = input_ids_seq_length begin_index = ( begin_index if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) else begin_index + 1 ) processors.append( SuppressTokensAtBeginLogitsProcessor( generation_config.begin_suppress_tokens, begin_index, device=device, ) ) if generation_config.forced_decoder_ids is not None: # TODO (sanchit): move this exception to GenerationConfig.validate() when TF & FLAX are aligned with PT raise ValueError( "You have explicitly specified `forced_decoder_ids`. Please remove the `forced_decoder_ids` argument "
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
"in favour of `input_ids` or `decoder_input_ids` respectively.", )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# TODO (joao): find a strategy to specify the order of the processors processors = self._merge_criteria_processor_list(processors, logits_processor) # Processors previously known as `LogitsWarpers`, only applied with sampling strategies if generation_config.do_sample: # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a # better score (i.e. keep len(list(generation_config._eos_token_tensor)) + 1) if generation_config.num_beams > 1: if isinstance(generation_config._eos_token_tensor, list): min_tokens_to_keep = len(generation_config._eos_token_tensor) + 1 elif isinstance(generation_config._eos_token_tensor, torch.Tensor): min_tokens_to_keep = generation_config._eos_token_tensor.shape[0] + 1 else: min_tokens_to_keep = 2 else: min_tokens_to_keep = 1
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files # all samplers can be found in `generation_utils_samplers.py` if generation_config.temperature is not None and generation_config.temperature != 1.0: processors.append(TemperatureLogitsWarper(generation_config.temperature)) if generation_config.top_k is not None and generation_config.top_k != 0: processors.append( TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.top_p is not None and generation_config.top_p < 1.0: processors.append( TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.min_p is not None:
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084) processors.append( MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.typical_p is not None and generation_config.typical_p < 1.0: processors.append( TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0: processors.append( EpsilonLogitsWarper( epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep ) ) if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0: processors.append(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
EtaLogitsWarper( epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device ) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Watermarking should be after all logits processing is finished (see #34630) if generation_config.watermarking_config is not None: processors.append( generation_config.watermarking_config.construct_processor(self.config.vocab_size, device) ) # `LogitNormalization` should always be the last logit processor, when present if generation_config.renormalize_logits is True: processors.append(LogitNormalization()) return processors
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _get_stopping_criteria( self, generation_config: GenerationConfig, stopping_criteria: Optional[StoppingCriteriaList], tokenizer: Optional["PreTrainedTokenizerBase"] = None, **kwargs, ) -> StoppingCriteriaList: criteria = StoppingCriteriaList() if generation_config.max_length is not None: max_position_embeddings = getattr(self.config, "max_position_embeddings", None) criteria.append( MaxLengthCriteria( max_length=generation_config.max_length, max_position_embeddings=max_position_embeddings, ) ) if generation_config.max_time is not None: criteria.append(MaxTimeCriteria(max_time=generation_config.max_time)) if generation_config.stop_strings is not None: if tokenizer is None: raise ValueError(
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
"There are one or more stop strings, either in the arguments to `generate` or in the " "model's generation config, but we could not locate a tokenizer. When generating with " "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`." ) criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer)) if generation_config._eos_token_tensor is not None: criteria.append(EosTokenCriteria(eos_token_id=generation_config._eos_token_tensor)) if ( generation_config.is_assistant and generation_config.assistant_confidence_threshold is not None and generation_config.assistant_confidence_threshold > 0 ): criteria.append( ConfidenceCriteria(assistant_confidence_threshold=generation_config.assistant_confidence_threshold) )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
criteria = self._merge_criteria_processor_list(criteria, stopping_criteria) return criteria
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _merge_criteria_processor_list( self, default_list: Union[LogitsProcessorList, StoppingCriteriaList], custom_list: Union[LogitsProcessorList, StoppingCriteriaList], ) -> Union[LogitsProcessorList, StoppingCriteriaList]: if len(custom_list) == 0: return default_list for default in default_list: for custom in custom_list: if type(custom) is type(default): object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor" raise ValueError( f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" f" `.generate()`, but it has already been created with the values {default}. {default} has been" " created by passing the corresponding arguments to generate or by the model's config default"
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
f" values. If you just want to change the default values of {object_type} consider passing" f" them as arguments to `.generate()` instead of using a custom {object_type}." ) default_list.extend(custom_list) return default_list
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def compute_transition_scores( self, sequences: torch.Tensor, scores: Tuple[torch.Tensor], beam_indices: Optional[torch.Tensor] = None, normalize_logits: bool = False, ) -> torch.Tensor: """ Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Parameters: sequences (`torch.LongTensor`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)`): Transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
`(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at generate-time. normalize_logits (`bool`, *optional*, defaults to `False`): Whether to normalize the logits (which, for legacy reasons, may be unnormalized).
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
Return: `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing the transition scores (logits) Examples: ```python >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM >>> import numpy as np >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2") >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> tokenizer.pad_token_id = tokenizer.eos_token_id >>> inputs = tokenizer(["Today is"], return_tensors="pt")
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
>>> # Example 1: Print the scores for each token generated with Greedy Search >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, normalize_logits=True ... ) >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for >>> # encoder-decoder models, like BART or T5. >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] >>> generated_tokens = outputs.sequences[:, input_length:] >>> for tok, score in zip(generated_tokens[0], transition_scores[0]): ... # | token | token string | log probability | probability ... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}") | 262 | the | -1.414 | 24.33%
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
| 1110 | day | -2.609 | 7.36% | 618 | when | -2.010 | 13.40% | 356 | we | -1.859 | 15.58% | 460 | can | -2.508 | 8.14%
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
>>> # Example 2: Reconstruct the sequence scores from Beam Search >>> outputs = model.generate( ... **inputs, ... max_new_tokens=5, ... num_beams=4, ... num_return_sequences=4, ... return_dict_in_generate=True, ... output_scores=True, ... ) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False ... ) >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores. >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the >>> # use case, you might want to recompute it with `normalize_logits=True`. >>> # Tip 2: the output length does NOT include the input length >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
>>> length_penalty = model.generation_config.length_penalty >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty) >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores)) True ```""" # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent # to a beam search approach were the first (and only) beam is always selected if beam_indices is None: beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device) beam_indices = beam_indices.expand(-1, len(scores))
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being # seq_len - input_length scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1) # 3. Optionally normalize the logits (across the vocab dimension) if normalize_logits: scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1]) scores = torch.nn.functional.log_softmax(scores, dim=1) scores = scores.reshape(-1, scores.shape[-1]) # 4. cut beam_indices to longest beam length beam_indices_mask = beam_indices < 0 max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max() beam_indices = beam_indices.clone()[:, :max_beam_length] beam_indices_mask = beam_indices_mask[:, :max_beam_length] # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards beam_indices[beam_indices_mask] = 0
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 6. multiply beam_indices with vocab size to gather correctly from scores beam_sequence_indices = beam_indices * self.config.vocab_size # 7. Define which indices contributed to scores cut_idx = sequences.shape[-1] - max_beam_length indices = sequences[:, cut_idx:] + beam_sequence_indices # 8. Compute scores transition_scores = scores.gather(0, indices) # 9. Mask out transition_scores of beams that stopped early transition_scores[beam_indices_mask] = 0 return transition_scores
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _validate_model_class(self): """ Confirms that the model class is compatible with generation. If not, raises an exception that points to the right class to use. """ # TODO(joao): remove this function in v4.50, i.e. when we remove the inheritance of `GenerationMixin` from # `PreTrainedModel`. With that inheritance removed, all model classes inheriting from `GenerationMixin` can # safely call `GenerationMixin.generate` if not is_torchdynamo_compiling() and not self.can_generate(): terminations_with_generation_support = [ "ForCausalLM", "ForConditionalGeneration", "ForSpeechSeq2Seq", "ForVision2Seq", ] raise TypeError( f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
"it doesn't have a language model head. Classes that support generation often end in one of these " f"names: {terminations_with_generation_support}." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _validate_assistant(self, assistant_model, tokenizer, assistant_tokenizer): if assistant_model is None: return if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder: attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"] attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check] are_equal = all( getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check ) if not are_equal: raise ValueError( "The main model and the assistant don't have compatible encoder-dependent input shapes. " "Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
doc_reference = ( "(see https://huggingface.co/docs/transformers/en/generation_strategies#universal-assisted-decoding)" ) if self.config.get_text_config().vocab_size == assistant_model.config.get_text_config().vocab_size: if assistant_tokenizer is not None: raise ValueError( f"`assistant_tokenizer` is not required when the main and assistant models use the same tokenizer. Please omit `assistant_tokenizer` from `generate()` {doc_reference}." ) else: if tokenizer is None or assistant_tokenizer is None: raise ValueError( f"The main and assistant moedels have different tokenizers. Please provide `tokenizer` and `assistant_tokenizer` to `generate()` {doc_reference}." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): """Validates model kwargs for generation. Generate argument typos will also be caught here.""" # If a `Cache` instance is passed, checks whether the model is compatible with it if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class: raise ValueError( f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please " "check the model documentation for supported cache formats." ) # Excludes arguments that are handled before calling any model function if self.config.is_encoder_decoder: for key in ["decoder_input_ids"]: model_kwargs.pop(key, None)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
unused_model_args = [] model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) if "kwargs" in model_args or "model_kwargs" in model_args: model_args |= set(inspect.signature(self.forward).parameters) # Encoder-Decoder models may also need Encoder arguments from `model_kwargs` if self.config.is_encoder_decoder: base_model = getattr(self, self.base_model_prefix, None)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# allow encoder kwargs encoder = getattr(self, "encoder", None) # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`. # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder` # TODO: A better way to handle this. if encoder is None and base_model is not None: encoder = getattr(base_model, "encoder", None) if encoder is not None: encoder_model_args = set(inspect.signature(encoder.forward).parameters) model_args |= encoder_model_args # allow decoder kwargs decoder = getattr(self, "decoder", None) if decoder is None and base_model is not None: decoder = getattr(base_model, "decoder", None)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if decoder is not None: decoder_model_args = set(inspect.signature(decoder.forward).parameters) model_args |= {f"decoder_{x}" for x in decoder_model_args} # allow assistant_encoder_outputs to be passed if we're doing assisted generating if "assistant_encoder_outputs" in model_kwargs: model_args |= {"assistant_encoder_outputs"} for key, value in model_kwargs.items(): if value is not None and key not in model_args: unused_model_args.append(key) if unused_model_args: raise ValueError( f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" " generate arguments will also show up in this list)" ) def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length): """Performs validation related to the resulting generated length"""
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# Can't throw warnings/exceptions during compilation if is_torchdynamo_compiling(): return
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 1. Max length warnings related to poor parameterization if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: # 20 is the default max_length of the generation config warnings.warn( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the " "generation length. We recommend setting `max_new_tokens` to control the maximum length of the " "generation.", UserWarning, ) if input_ids_length >= generation_config.max_length: input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" raise ValueError( f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
" increasing `max_length` or, better yet, setting `max_new_tokens`." )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# 2. Min length warnings due to unfeasible parameter combinations min_length_error_suffix = ( " Generation will stop at the defined maximum length. You should decrease the minimum length and/or " "increase the maximum length." ) if has_default_max_length: min_length_error_suffix += ( f" Note that `max_length` is set to {generation_config.max_length}, its default value." ) if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: warnings.warn( f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than" f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, UserWarning, ) if generation_config.min_new_tokens is not None: min_length = generation_config.min_new_tokens + input_ids_length
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
if min_length > generation_config.max_length: warnings.warn( f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when " f"added to the prompt length ({input_ids_length}), is larger than" f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, UserWarning, )
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
def _prepare_generated_length( self, generation_config, has_default_max_length, has_default_min_length, model_input_name, input_ids_length, inputs_tensor, ): """Prepared max and min length in generation configs to avoid clashes between similar attributes""" if generation_config.max_new_tokens is not None: if not has_default_max_length and generation_config.max_length is not None: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_length
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py
# if both `inputs_embeds` and `input_ids` are passed, we do not correct the length # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length`` elif ( model_input_name == "inputs_embeds" and input_ids_length != inputs_tensor.shape[1] and input_ids_length != 0 and not self.config.is_encoder_decoder ): generation_config.max_length -= inputs_tensor.shape[1] elif has_default_max_length: # by default let's always generate 20 new tokens if generation_config.max_length == GenerationConfig().max_length: generation_config.max_length = generation_config.max_length + input_ids_length max_position_embeddings = getattr(self.config, "max_position_embeddings", None) if max_position_embeddings is not None: generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
10,744
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/generation/utils.py