text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, )
10,500
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,)
10,500
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
10,500
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
10,501
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmEmbedderOutput(ModelOutput): """ Outputs of [`RealmEmbedder`] models. Args: projected_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`): Projected score. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`.
10,502
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ projected_score: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
10,502
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmScorerOutput(ModelOutput): """ Outputs of [`RealmScorer`] models. Args: relevance_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates)`): The relevance score of document candidates (before softmax). query_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`): Query score derived from the query embedder. candidate_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates, config.retriever_proj_size)`): Candidate score derived from the embedder. """ relevance_score: torch.FloatTensor = None query_score: torch.FloatTensor = None candidate_score: torch.FloatTensor = None
10,503
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmReaderOutput(ModelOutput): """ Outputs of [`RealmReader`] models.
10,504
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Total loss. retriever_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Retriever loss. reader_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided): Reader loss. retriever_correct (`torch.BoolTensor` of shape `(config.searcher_beam_size,)`, *optional*): Whether or not an evidence block contains answer. reader_correct (`torch.BoolTensor` of shape `(config.reader_beam_size, num_candidates)`, *optional*): Whether or not a span candidate contains answer. block_idx (`torch.LongTensor` of shape `()`): The index of the retrieved evidence block in which the predicted answer is most likely.
10,504
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
candidate (`torch.LongTensor` of shape `()`): The index of the retrieved span candidates in which the predicted answer is most likely. start_pos (`torch.IntTensor` of shape `()`): Predicted answer starting position in *RealmReader*'s inputs. end_pos (`torch.IntTensor` of shape `()`): Predicted answer ending position in *RealmReader*'s inputs. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
10,504
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: torch.FloatTensor = None retriever_loss: torch.FloatTensor = None reader_loss: torch.FloatTensor = None retriever_correct: torch.BoolTensor = None reader_correct: torch.BoolTensor = None block_idx: torch.LongTensor = None candidate: torch.LongTensor = None start_pos: torch.int32 = None end_pos: torch.int32 = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
10,504
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmForOpenQAOutput(ModelOutput): """ Outputs of [`RealmForOpenQA`] models. Args: reader_output (`dict`): Reader output. predicted_answer_ids (`torch.LongTensor` of shape `(answer_sequence_length)`): Predicted answer ids. """ reader_output: dict = None predicted_answer_ids: torch.LongTensor = None
10,505
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
10,506
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = RealmPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
10,507
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = RealmLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores
10,508
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmScorerProjection(nn.Module): def __init__(self, config): super().__init__() self.predictions = RealmLMPredictionHead(config) self.dense = nn.Linear(config.hidden_size, config.retriever_proj_size) self.LayerNorm = nn.LayerNorm(config.retriever_proj_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
10,509
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmReaderProjection(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense_intermediate = nn.Linear(config.hidden_size, config.span_hidden_size * 2) self.dense_output = nn.Linear(config.span_hidden_size, 1) self.layer_normalization = nn.LayerNorm(config.span_hidden_size, eps=config.reader_layer_norm_eps) self.relu = nn.ReLU() def forward(self, hidden_states, block_mask): def span_candidates(masks): """ Generate span candidates. Args: masks: <bool> [num_retrievals, max_sequence_len] Returns: starts: <int32> [num_spans] ends: <int32> [num_spans] span_masks: <int32> [num_retrievals, num_spans] whether spans locate in evidence block. """ _, max_sequence_len = masks.shape
10,510
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def _spans_given_width(width): current_starts = torch.arange(max_sequence_len - width + 1, device=masks.device) current_ends = torch.arange(width - 1, max_sequence_len, device=masks.device) return current_starts, current_ends starts, ends = zip(*(_spans_given_width(w + 1) for w in range(self.config.max_span_width))) # [num_spans] starts = torch.cat(starts, 0) ends = torch.cat(ends, 0) # [num_retrievals, num_spans] start_masks = torch.index_select(masks, dim=-1, index=starts) end_masks = torch.index_select(masks, dim=-1, index=ends) span_masks = start_masks * end_masks return starts, ends, span_masks def mask_to_score(mask, dtype=torch.float32): return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min
10,510
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# [reader_beam_size, max_sequence_len, span_hidden_size * 2] hidden_states = self.dense_intermediate(hidden_states) # [reader_beam_size, max_sequence_len, span_hidden_size] start_projection, end_projection = hidden_states.chunk(2, dim=-1) candidate_starts, candidate_ends, candidate_mask = span_candidates(block_mask) candidate_start_projections = torch.index_select(start_projection, dim=1, index=candidate_starts) candidate_end_projections = torch.index_select(end_projection, dim=1, index=candidate_ends) candidate_hidden = candidate_start_projections + candidate_end_projections
10,510
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# [reader_beam_size, num_candidates, span_hidden_size] candidate_hidden = self.relu(candidate_hidden) # [reader_beam_size, num_candidates, span_hidden_size] candidate_hidden = self.layer_normalization(candidate_hidden) # [reader_beam_size, num_candidates] reader_logits = self.dense_output(candidate_hidden).squeeze(-1) # [reader_beam_size, num_candidates] reader_logits += mask_to_score(candidate_mask, dtype=reader_logits.dtype) return reader_logits, candidate_starts, candidate_ends
10,510
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RealmConfig load_tf_weights = load_tf_weights_in_realm base_model_prefix = "realm"
10,511
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
10,511
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def _flatten_inputs(self, *inputs): """Flatten inputs' shape to (-1, input_shape[-1])""" flattened_inputs = [] for tensor in inputs: if tensor is None: flattened_inputs.append(None) else: input_shape = tensor.shape if len(input_shape) > 2: tensor = tensor.view((-1, input_shape[-1])) flattened_inputs.append(tensor) return flattened_inputs
10,511
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmBertModel(RealmPreTrainedModel): """ Same as the original BertModel but remove docstrings. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RealmEmbeddings(config) self.encoder = RealmEncoder(config) self.pooler = RealmPooler(config) if add_pooling_layer else None # Weights initialization is mostly managed by other Realm models, # but we also have them initialized here to keep a consistency. self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:]
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
10,512
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmEmbedder(RealmPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.realm = RealmBertModel(self.config) self.cls = RealmScorerProjection(self.config) self.post_init() def get_input_embeddings(self): return self.realm.embeddings.word_embeddings def set_input_embeddings(self, value): self.realm.embeddings.word_embeddings = value
10,513
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmEmbedderOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RealmEmbedder >>> import torch
10,513
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-embedder") >>> model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> projected_score = outputs.projected_score ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict realm_outputs = self.realm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
10,513
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# [batch_size, hidden_size] pooler_output = realm_outputs[1] # [batch_size, retriever_proj_size] projected_score = self.cls(pooler_output) if not return_dict: return (projected_score,) + realm_outputs[2:4] else: return RealmEmbedderOutput( projected_score=projected_score, hidden_states=realm_outputs.hidden_states, attentions=realm_outputs.attentions, )
10,513
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmScorer(RealmPreTrainedModel): r""" Args: query_embedder ([`RealmEmbedder`]): Embedder for input sequences. If not specified, it will use the same embedder as candidate sequences. """ def __init__(self, config, query_embedder=None): super().__init__(config) self.embedder = RealmEmbedder(self.config) self.query_embedder = query_embedder if query_embedder is not None else self.embedder self.post_init()
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, candidate_input_ids: Optional[torch.LongTensor] = None, candidate_attention_mask: Optional[torch.FloatTensor] = None, candidate_token_type_ids: Optional[torch.LongTensor] = None, candidate_inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None,
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
) -> Union[Tuple, RealmScorerOutput]: r""" candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`): Indices of candidate input sequence tokens in the vocabulary.
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) candidate_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) candidate_token_type_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token.
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
[What are token type IDs?](../glossary#token-type-ids) candidate_inputs_embeds (`torch.FloatTensor` of shape `(batch_size * num_candidates, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `candidate_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *candidate_input_ids* indices into associated vectors than the model's internal embedding lookup matrix. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, RealmScorer >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-scorer") >>> model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=2)
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
>>> # batch_size = 2, num_candidates = 2 >>> input_texts = ["How are you?", "What is the item in the picture?"] >>> candidates_texts = [["Hello world!", "Nice to meet you!"], ["A cute cat.", "An adorable dog."]] >>> inputs = tokenizer(input_texts, return_tensors="pt") >>> candidates_inputs = tokenizer.batch_encode_candidates(candidates_texts, max_length=10, return_tensors="pt") >>> outputs = model( ... **inputs, ... candidate_input_ids=candidates_inputs.input_ids, ... candidate_attention_mask=candidates_inputs.attention_mask, ... candidate_token_type_ids=candidates_inputs.token_type_ids, ... ) >>> relevance_score = outputs.relevance_score ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or input_embeds.")
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if candidate_input_ids is None and candidate_inputs_embeds is None: raise ValueError("You have to specify either candidate_input_ids or candidate_inputs_embeds.") query_outputs = self.query_embedder( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size * num_candidates, candidate_seq_len] (flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs( candidate_input_ids, candidate_attention_mask, candidate_token_type_ids )
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
candidate_outputs = self.embedder( flattened_input_ids, attention_mask=flattened_attention_mask, token_type_ids=flattened_token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=candidate_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size, retriever_proj_size] query_score = query_outputs[0] # [batch_size * num_candidates, retriever_proj_size] candidate_score = candidate_outputs[0] # [batch_size, num_candidates, retriever_proj_size] candidate_score = candidate_score.view(-1, self.config.num_candidates, self.config.retriever_proj_size) # [batch_size, num_candidates] relevance_score = torch.einsum("bd,bnd->bn", query_score, candidate_score)
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if not return_dict: return relevance_score, query_score, candidate_score return RealmScorerOutput( relevance_score=relevance_score, query_score=query_score, candidate_score=candidate_score )
10,514
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmKnowledgeAugEncoder(RealmPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) self.realm = RealmBertModel(self.config) self.cls = RealmOnlyMLMHead(self.config) self.post_init() def get_input_embeddings(self): return self.realm.embeddings.word_embeddings def set_input_embeddings(self, value): self.realm.embeddings.word_embeddings = value def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
@add_start_docstrings_to_model_forward( REALM_INPUTS_DOCSTRING.format("batch_size, num_candidates, sequence_length") ) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, relevance_score: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, mlm_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r"""
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*): Relevance score derived from RealmScorer, must be specified if you want to compute the masked language modeling loss.
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` mlm_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid calculating joint loss on certain positions. If not specified, the loss will not be masked. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, RealmKnowledgeAugEncoder
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder") >>> model = RealmKnowledgeAugEncoder.from_pretrained( ... "google/realm-cc-news-pretrained-encoder", num_candidates=2 ... ) >>> # batch_size = 2, num_candidates = 2 >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]] >>> inputs = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and relevance_score is None: raise ValueError( "You have to specify `relevance_score` when `labels` is specified in order to compute loss." )
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
(flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs( input_ids, attention_mask, token_type_ids ) joint_outputs = self.realm( flattened_input_ids, attention_mask=flattened_attention_mask, token_type_ids=flattened_token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # [batch_size * num_candidates, joint_seq_len, hidden_size] joint_output = joint_outputs[0] # [batch_size * num_candidates, joint_seq_len, vocab_size] prediction_scores = self.cls(joint_output) # [batch_size, num_candidates] candidate_score = relevance_score
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
masked_lm_loss = None if labels is not None: batch_size, seq_length = labels.size() if mlm_mask is None: mlm_mask = torch.ones_like(labels, dtype=torch.float32) else: mlm_mask = mlm_mask.type(torch.float32) # Compute marginal log-likelihood loss_fct = CrossEntropyLoss(reduction="none") # -100 index = padding token
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# [batch_size * num_candidates * joint_seq_len, vocab_size] mlm_logits = prediction_scores.view(-1, self.config.vocab_size) # [batch_size * num_candidates * joint_seq_len] mlm_targets = labels.tile(1, self.config.num_candidates).view(-1) # [batch_size, num_candidates, joint_seq_len] masked_lm_log_prob = -loss_fct(mlm_logits, mlm_targets).view( batch_size, self.config.num_candidates, seq_length ) # [batch_size, num_candidates, 1] candidate_log_prob = candidate_score.log_softmax(-1).unsqueeze(-1) # [batch_size, num_candidates, joint_seq_len] joint_gold_log_prob = candidate_log_prob + masked_lm_log_prob # [batch_size, joint_seq_len] marginal_gold_log_probs = joint_gold_log_prob.logsumexp(1) # [] masked_lm_loss = -torch.nansum(torch.sum(marginal_gold_log_probs * mlm_mask) / torch.sum(mlm_mask))
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if not return_dict: output = (prediction_scores,) + joint_outputs[2:4] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=joint_outputs.hidden_states, attentions=joint_outputs.attentions, )
10,515
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmReader(RealmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.realm = RealmBertModel(config) self.cls = RealmOnlyMLMHead(config) self.qa_outputs = RealmReaderProjection(config) self.post_init()
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("reader_beam_size, sequence_length")) @replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, relevance_score: Optional[torch.FloatTensor] = None, block_mask: Optional[torch.BoolTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, has_answers: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None,
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
) -> Union[Tuple, RealmReaderOutput]: r""" relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*): Relevance score, which must be specified if you want to compute the logits and marginal log loss. block_mask (`torch.BoolTensor` of shape `(searcher_beam_size, sequence_length)`, *optional*): The mask of the evidence block, which must be specified if you want to compute the logits and marginal log loss. start_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*):
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. has_answers (`torch.BoolTensor` of shape `(searcher_beam_size,)`, *optional*): Whether or not the evidence block has answer(s).
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if relevance_score is None: raise ValueError("You have to specify `relevance_score` to calculate logits and loss.") if block_mask is None: raise ValueError("You have to specify `block_mask` to separate question block and evidence block.") if token_type_ids.size(1) < self.config.max_span_width: raise ValueError("The input sequence length must be greater than or equal to config.max_span_width.") outputs = self.realm( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# [reader_beam_size, joint_seq_len, hidden_size] sequence_output = outputs[0] # [reader_beam_size, num_candidates], [num_candidates], [num_candidates] reader_logits, candidate_starts, candidate_ends = self.qa_outputs( sequence_output, block_mask[0 : self.config.reader_beam_size] ) # [searcher_beam_size, 1] retriever_logits = torch.unsqueeze(relevance_score[0 : self.config.reader_beam_size], -1) # [reader_beam_size, num_candidates] reader_logits += retriever_logits # [] predicted_block_index = torch.argmax(torch.max(reader_logits, dim=1).values) # [] predicted_candidate = torch.argmax(torch.max(reader_logits, dim=0).values) # [1] predicted_start = torch.index_select(candidate_starts, dim=0, index=predicted_candidate) # [1] predicted_end = torch.index_select(candidate_ends, dim=0, index=predicted_candidate)
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
total_loss = None retriever_loss = None reader_loss = None retriever_correct = None reader_correct = None if start_positions is not None and end_positions is not None and has_answers is not None: def compute_correct_candidates(candidate_starts, candidate_ends, gold_starts, gold_ends): """Compute correct span.""" # [reader_beam_size, num_answers, num_candidates] is_gold_start = torch.eq( torch.unsqueeze(torch.unsqueeze(candidate_starts, 0), 0), torch.unsqueeze(gold_starts, -1) ) is_gold_end = torch.eq( torch.unsqueeze(torch.unsqueeze(candidate_ends, 0), 0), torch.unsqueeze(gold_ends, -1) ) # [reader_beam_size, num_candidates] return torch.any(torch.logical_and(is_gold_start, is_gold_end), 1)
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
def marginal_log_loss(logits, is_correct): """Loss based on the negative marginal log-likelihood.""" def mask_to_score(mask, dtype=torch.float32): return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min # [] log_numerator = torch.logsumexp(logits + mask_to_score(is_correct, dtype=logits.dtype), dim=-1) log_denominator = torch.logsumexp(logits, dim=-1) return log_denominator - log_numerator # sometimes the start/end positions are outside our model inputs, we ignore these terms # `-1` is reserved for no answer. ignored_index = sequence_output.size(1) start_positions = start_positions.clamp(-1, ignored_index) end_positions = end_positions.clamp(-1, ignored_index) retriever_correct = has_answers any_retriever_correct = torch.any(retriever_correct)
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
reader_correct = compute_correct_candidates( candidate_starts=candidate_starts, candidate_ends=candidate_ends, gold_starts=start_positions[0 : self.config.reader_beam_size], gold_ends=end_positions[0 : self.config.reader_beam_size], ) any_reader_correct = torch.any(reader_correct) retriever_loss = marginal_log_loss(relevance_score, retriever_correct) reader_loss = marginal_log_loss(reader_logits.view(-1), reader_correct.view(-1)) retriever_loss *= any_retriever_correct.type(torch.float32) reader_loss *= any_reader_correct.type(torch.float32) total_loss = (retriever_loss + reader_loss).mean()
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
if not return_dict: output = (predicted_block_index, predicted_candidate, predicted_start, predicted_end) + outputs[2:] return ( ((total_loss, retriever_loss, reader_loss, retriever_correct, reader_correct) + output) if total_loss is not None else output ) return RealmReaderOutput( loss=total_loss, retriever_loss=retriever_loss, reader_loss=reader_loss, retriever_correct=retriever_correct, reader_correct=reader_correct, block_idx=predicted_block_index, candidate=predicted_candidate, start_pos=predicted_start, end_pos=predicted_end, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
10,516
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class RealmForOpenQA(RealmPreTrainedModel): def __init__(self, config, retriever=None): super().__init__(config) self.embedder = RealmEmbedder(config) self.reader = RealmReader(config) self.register_buffer( "block_emb", torch.zeros(()).new_empty( size=(config.num_block_records, config.retriever_proj_size), dtype=torch.float32, device=torch.device("cpu"), ), ) self.retriever = retriever self.post_init() @property def searcher_beam_size(self): if self.training: return self.config.searcher_beam_size return self.config.reader_beam_size def block_embedding_to(self, device): """Send `self.block_emb` to a specific device. Args: device (`str` or `torch.device`): The device to which `self.block_emb` will be sent. """ self.block_emb = self.block_emb.to(device)
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
@add_start_docstrings_to_model_forward(REALM_FOR_OPEN_QA_DOCSTRING.format("1, sequence_length")) @replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor], attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, answer_ids: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RealmForOpenQAOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import RealmForOpenQA, RealmRetriever, AutoTokenizer >>> retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa") >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-orqa-nq-openqa") >>> model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa", retriever=retriever)
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
>>> question = "Who is the pioneer in modern computer science?" >>> question_ids = tokenizer([question], return_tensors="pt") >>> answer_ids = tokenizer( ... ["alan mathison turing"], ... add_special_tokens=False, ... return_token_type_ids=False, ... return_attention_mask=False, ... ).input_ids >>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False) >>> predicted_answer = tokenizer.decode(predicted_answer_ids) >>> loss = reader_output.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and input_ids.shape[0] != 1: raise ValueError("The batch_size of the inputs must be 1.")
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
question_outputs = self.embedder( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, return_dict=True ) # [1, projection_size] question_projection = question_outputs[0] # CPU computation starts. # [1, block_emb_size] batch_scores = torch.einsum("BD,QD->QB", self.block_emb, question_projection.to(self.block_emb.device)) # [1, searcher_beam_size] _, retrieved_block_ids = torch.topk(batch_scores, k=self.searcher_beam_size, dim=-1) # [searcher_beam_size] retrieved_block_ids = retrieved_block_ids.squeeze() # [searcher_beam_size, projection_size] retrieved_block_emb = torch.index_select(self.block_emb, dim=0, index=retrieved_block_ids) # CPU computation ends.
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
# Retrieve possible answers has_answers, start_pos, end_pos, concat_inputs = self.retriever( retrieved_block_ids.cpu(), input_ids, answer_ids, max_length=self.config.reader_seq_len ) concat_inputs = concat_inputs.to(self.reader.device) block_mask = concat_inputs.special_tokens_mask.type(torch.bool).to(device=self.reader.device) block_mask.logical_not_().logical_and_(concat_inputs.token_type_ids.type(torch.bool)) if has_answers is not None: has_answers = torch.tensor(has_answers, dtype=torch.bool, device=self.reader.device) start_pos = torch.tensor(start_pos, dtype=torch.long, device=self.reader.device) end_pos = torch.tensor(end_pos, dtype=torch.long, device=self.reader.device) # [searcher_beam_size] retrieved_logits = torch.einsum( "D,BD->B", question_projection.squeeze(), retrieved_block_emb.to(self.reader.device) )
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
reader_output = self.reader( input_ids=concat_inputs.input_ids[0 : self.config.reader_beam_size], attention_mask=concat_inputs.attention_mask[0 : self.config.reader_beam_size], token_type_ids=concat_inputs.token_type_ids[0 : self.config.reader_beam_size], relevance_score=retrieved_logits, block_mask=block_mask, has_answers=has_answers, start_positions=start_pos, end_positions=end_pos, return_dict=True, ) predicted_block = concat_inputs.input_ids[reader_output.block_idx] predicted_answer_ids = predicted_block[reader_output.start_pos : reader_output.end_pos + 1] if not return_dict: return reader_output, predicted_answer_ids return RealmForOpenQAOutput( reader_output=reader_output, predicted_answer_ids=predicted_answer_ids, )
10,517
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/realm/modeling_realm.py
class GPTSanJapaneseDenseActDense(nn.Module): """ FFN Layer for Switch Transformer and Extra layers GPTSAN can mix Switch Transformer layers and normal Transformer layers This class is used as Expert in Switch Transformer layers and as FFN in regular Transformer layers. RELU is used in the Switch Transformer layer, and Swish is used in the normal Transformer layer, so there is a choice of which is used in the argument. """ def __init__(self, config: GPTSanJapaneseConfig, ext_layer=False): super().__init__() d_inter = config.d_ext if ext_layer else config.d_ff self.wi = nn.Linear(config.d_model, d_inter, bias=ext_layer) self.wo = nn.Linear(d_inter, config.d_model, bias=ext_layer) self.dropout = nn.Identity() if ext_layer else nn.Dropout(config.dropout_rate) self.act = ACT2FN["swish" if ext_layer else "relu"]
10,518
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states
10,518
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseTop1Router(nn.Module): """ Router using tokens choose top-1 experts assignment. This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each token is processed by an expert**, or that each expert receives at least one token. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.num_experts = config.num_experts self.expert_capacity = config.expert_capacity self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) self.jitter_noise = config.router_jitter_noise self.ignore_padding_tokens = config.router_ignore_padding_tokens self.dtype = getattr(torch, config.router_dtype)
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: r""" Computes router probabilities from input hidden states.
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
Args: hidden_states (`torch.Tensor`): (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. Returns: router_probabilities (`torch.Tensor`): Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each token and expert. Used for routing tokens to experts. router_logits (`torch.Tensor`): Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. This is used later for computing router z-loss. """ # float32 is used to ensure stability. See the discussion of "selective precision" in # https://arxiv.org/abs/2101.03961. # We also store the previous dtype to cast back the output to the previous dtype self.input_dtype = hidden_states.dtype hidden_states = hidden_states.to(self.dtype)
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
if self.training and self.jitter_noise > 0: # Multiply the token inputs by the uniform distribution - adding some noise hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) # Shape: [num_groups, tokens_per_group, num_experts] self._cast_classifier() router_logits = self.classifier(hidden_states) # Apply Softmax and cast back to the original `dtype` router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) return router_probabilities, router_logits
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
def _cast_classifier(self): r""" `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an instance of the `Linear8bitLt` class by checking special attributes. """ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): self.classifier = self.classifier.to(self.dtype) def forward(self, hidden_states: torch.Tensor) -> Tuple: r""" Generic forward function for every Router class. Each Router expects to have the same input hidden states (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert.
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs and the router logits. The router probabilities and logits are required to compute the loss. """ router_probs, router_logits = self._compute_router_probabilities(hidden_states) expert_index = torch.argmax(router_probs, dim=-1) expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts)
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
# Mask tokens outside expert capacity. Sum over each sequence token_priority = torch.cumsum(expert_index, dim=-2) # mask if the token routed to to the expert will overflow expert_capacity_mask = token_priority <= self.expert_capacity expert_index = expert_index * expert_capacity_mask router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) return expert_index, router_probs, router_logits
10,519
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseSparseMLP(nn.Module): r""" Implementation of the Switch Transformers Sparse MLP module. """ def __init__(self, config: GPTSanJapaneseConfig, expert_class: nn.Module = GPTSanJapaneseDenseActDense): super().__init__() # Step 1: Get the correct router according to its class self.router = GPTSanJapaneseTop1Router(config) # Step 2: Get the experts self.experts = nn.ModuleDict() for idx in range(config.num_experts): self.experts[f"expert_{idx}"] = expert_class(config) def forward(self, hidden_states): r""" Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following:
10,520
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each expert the corresponding hidden states. """ # Step 1: Get the router_mask from the router as wel as the probabilities router_mask, router_probs, router_logits = self.router(hidden_states) expert_index = torch.argmax(router_mask, dim=-1) # The routers introduced might not always map all the tokens, to a router, which means that some hidden states # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones.
10,520
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
next_states = hidden_states.clone() for idx, expert in enumerate(self.experts.values()): token_indices = router_mask[:, :, idx].bool() next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) hidden_states = router_probs * next_states return hidden_states, (router_logits, expert_index)
10,520
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseLayerSparseFF(nn.Module): r""" Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.mlp = GPTSanJapaneseSparseMLP(config) self.soft_bypass_mlp = nn.Linear(config.d_model, config.d_model, bias=False) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
10,521
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
def forward(self, hidden_states, output_router_logits): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. output_router_logits (`bool`) : output experts router output. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states, router_tuple = self.mlp(hidden_states) forwarded_states += torch.tanh(self.soft_bypass_mlp(hidden_states)) output = hidden_states + self.norm(forwarded_states) if output_router_logits and router_tuple is not None: return output, router_tuple else: return output
10,521
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseLayerDenseFF(nn.Module): r""" Extra Transformers Feed Forward layer module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() # Check if it is a sparse layer, if not then it is a dense layer self.mlp = GPTSanJapaneseDenseActDense(config, ext_layer=True) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
10,522
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states = self.mlp(hidden_states) output = hidden_states + self.norm(forwarded_states) return output
10,522
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[GPTSanJapaneseConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel"""
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
# if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size()
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
# get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape)
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1)
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" )
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
10,523
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
class GPTSanJapaneseLayerSelfAttention(nn.Module): """ Self Attention and Normalization Unit """ def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.self_attn = GPTSanJapaneseAttention( embed_dim=config.d_model, num_heads=config.num_heads, is_decoder=True, bias=has_relative_attention_bias, ) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: r""" Self-attention and normalize block.
10,524
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
10,524
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
10,524
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py
- 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**.
10,524
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/gptsan_japanese/modeling_gptsan_japanese.py