text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
class EfficientFormerConvMlp(nn.Module):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
drop: float = 0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.convolution1 = nn.Conv2d(in_features, hidden_features, 1)
self.activation = ACT2FN[config.hidden_act]
self.convolution2 = nn.Conv2d(hidden_features, out_features, 1)
self.dropout = nn.Dropout(drop)
self.batchnorm_before = nn.BatchNorm2d(hidden_features, eps=config.batch_norm_eps)
self.batchnorm_after = nn.BatchNorm2d(out_features, eps=config.batch_norm_eps)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.convolution1(hidden_state)
hidden_state = self.batchnorm_before(hidden_state)
| 10,449 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
hidden_state = self.activation(hidden_state)
hidden_state = self.dropout(hidden_state)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.batchnorm_after(hidden_state)
hidden_state = self.dropout(hidden_state)
return hidden_state
| 10,449 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
| 10,450 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerFlat(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
| 10,451 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerMeta3D(nn.Module):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
super().__init__()
self.token_mixer = EfficientFormerSelfAttention(
dim=config.dim,
key_dim=config.key_dim,
num_heads=config.num_attention_heads,
attention_ratio=config.attention_ratio,
resolution=config.resolution,
)
self.layernorm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.layernorm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = EfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim)
| 10,452 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
self_attention_outputs = self.token_mixer(self.layernorm1(hidden_states), output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
| 10,452 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
if self.use_layer_scale:
layer_output = hidden_states + self.drop_path(
self.layer_scale_1.unsqueeze(0).unsqueeze(0) * attention_output
)
layer_output = layer_output + self.drop_path(
self.layer_scale_2.unsqueeze(0).unsqueeze(0) * self.mlp(self.layernorm2(layer_output))
)
else:
layer_output = hidden_states + self.drop_path(attention_output)
layer_output = layer_output + self.drop_path(self.mlp(self.layernorm2(layer_output)))
outputs = (layer_output,) + outputs
return outputs
| 10,452 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerMeta3DLayers(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
for block_idx in range(config.num_meta3d_blocks)
]
self.blocks = nn.ModuleList(
[EfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path) for drop_path in drop_paths]
)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
all_attention_outputs = () if output_attentions else None
for layer_module in self.blocks:
if isinstance(hidden_states, tuple):
hidden_states = hidden_states[0]
hidden_states = layer_module(hidden_states, output_attentions)
if output_attentions:
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
| 10,453 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
if output_attentions:
outputs = (hidden_states[0],) + all_attention_outputs
return outputs
return hidden_states
| 10,453 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerMeta4D(nn.Module):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0):
super().__init__()
pool_size = config.pool_size if config.pool_size is not None else 3
self.token_mixer = EfficientFormerPooling(pool_size=pool_size)
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = EfficientFormerConvMlp(
config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob
)
self.drop_path = EfficientFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.layer_scale_2 = nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
| 10,454 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
outputs = self.token_mixer(hidden_states)
if self.use_layer_scale:
layer_output = hidden_states + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * outputs)
layer_output = layer_output + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(layer_output)
)
else:
layer_output = hidden_states + self.drop_path(outputs)
layer_output = layer_output + self.drop_path(self.mlp(layer_output))
return layer_output
| 10,454 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerMeta4DLayers(nn.Module):
def __init__(self, config: EfficientFormerConfig, stage_idx: int):
super().__init__()
num_layers = (
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
]
self.blocks = nn.ModuleList(
[
EfficientFormerMeta4D(config, config.hidden_sizes[stage_idx], drop_path=drop_path)
for drop_path in drop_paths
]
)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
for layer_module in self.blocks:
hidden_states = layer_module(hidden_states)
return hidden_states
| 10,455 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerIntermediateStage(nn.Module):
def __init__(self, config: EfficientFormerConfig, index: int):
super().__init__()
self.meta4D_layers = EfficientFormerMeta4DLayers(config, index)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
hidden_states = self.meta4D_layers(hidden_states)
return hidden_states
| 10,456 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerLastStage(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
self.meta4D_layers = EfficientFormerMeta4DLayers(config, -1)
self.flat = EfficientFormerFlat()
self.meta3D_layers = EfficientFormerMeta3DLayers(config)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False) -> Tuple[torch.Tensor]:
hidden_states = self.meta4D_layers(hidden_states)
hidden_states = self.flat(hidden_states)
hidden_states = self.meta3D_layers(hidden_states, output_attentions)
return hidden_states
| 10,457 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerEncoder(nn.Module):
def __init__(self, config: EfficientFormerConfig):
super().__init__()
self.config = config
num_intermediate_stages = len(config.depths) - 1
downsamples = [
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
for i in range(num_intermediate_stages)
]
intermediate_stages = []
for i in range(num_intermediate_stages):
intermediate_stages.append(EfficientFormerIntermediateStage(config, i))
if downsamples[i]:
intermediate_stages.append(
EfficientFormerPatchEmbeddings(config, config.hidden_sizes[i], config.hidden_sizes[i + 1])
)
self.intermediate_stages = nn.ModuleList(intermediate_stages)
self.last_stage = EfficientFormerLastStage(config)
| 10,458 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
return_dict: bool = True,
) -> BaseModelOutput:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
for layer_module in self.intermediate_stages:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions)
if output_attentions:
all_self_attentions = all_self_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (layer_output[0],)
| 10,458 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
if not return_dict:
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=layer_output[0],
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
| 10,458 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientFormerConfig
base_model_prefix = "efficientformer"
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
| 10,459 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerModel(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.config = config
_no_split_modules = ["EfficientFormerMeta4D"]
self.patch_embed = EfficientFormerConvStem(config, config.hidden_sizes[0])
self.encoder = EfficientFormerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
| 10,460 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
| 10,460 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.patch_embed(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
| 10,460 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerForImageClassification(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = EfficientFormerModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
| 10,461 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
| 10,461 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
| 10,461 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
outputs = self.efficientformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output.mean(-2))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
| 10,461 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 10,461 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerForImageClassificationWithTeacherOutput(ModelOutput):
"""
Output type of [`EfficientFormerForImageClassificationWithTeacher`].
| 10,462 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
Args:
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
class token).
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
| 10,462 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
| 10,462 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
logits: torch.FloatTensor = None
cls_logits: torch.FloatTensor = None
distillation_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
| 10,462 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerForImageClassificationWithTeacher(EfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.efficientformer = EfficientFormerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Distillation head
self.distillation_classifier = (
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
| 10,463 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=EfficientFormerForImageClassificationWithTeacherOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, EfficientFormerForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
| 10,463 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
cls_logits = self.classifier(sequence_output.mean(-2))
distillation_logits = self.distillation_classifier(sequence_output.mean(-2))
# during inference, return the average of both classifier predictions
logits = (cls_logits + distillation_logits) / 2
if not return_dict:
output = (logits, cls_logits, distillation_logits) + outputs[1:]
return output
return EfficientFormerForImageClassificationWithTeacherOutput(
logits=logits,
cls_logits=cls_logits,
distillation_logits=distillation_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| 10,463 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_efficientformer.py
|
class EfficientFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a EfficientFormer image processor.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
crop_size: Dict[str, int] = None,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample:
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "shortest_edge" in size:
size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
return resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or batch of images.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
size = size if size is not None else self.size
size_dict = get_size_dict(size)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 10,464 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/image_processing_efficientformer.py
|
class TFEfficientFormerPatchEmbeddings(keras.layers.Layer):
"""
This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels,
height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride]
"""
def __init__(
self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs
) -> None:
super().__init__(**kwargs)
self.num_channels = num_channels
| 10,465 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
self.padding = keras.layers.ZeroPadding2D(padding=config.downsample_pad)
self.projection = keras.layers.Conv2D(
filters=embed_dim,
kernel_size=config.downsample_patch_size,
strides=config.downsample_stride,
padding="valid",
name="projection",
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.norm = (
keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm")
if apply_norm
else tf.identity
)
self.embed_dim = embed_dim
| 10,465 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
tf.debugging.assert_shapes(
[(pixel_values, (..., None, None, self.num_channels))],
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
)
embeddings = self.projection(self.padding(pixel_values))
embeddings = self.norm(embeddings, training=training)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
if getattr(self, "norm", None) is not None:
if hasattr(self.norm, "name"):
with tf.name_scope(self.norm.name):
self.norm.build([None, None, None, self.embed_dim])
| 10,465 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerSelfAttention(keras.layers.Layer):
def __init__(
self,
dim: int,
key_dim: int,
num_heads: int,
attention_ratio: int,
resolution: int,
config: EfficientFormerConfig,
**kwargs,
):
super().__init__(**kwargs)
self.num_heads = num_heads
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.scale = key_dim**-0.5
self.total_key_dim = key_dim * num_heads
self.expanded_key_dim = int(attention_ratio * key_dim)
self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads)
hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2
| 10,466 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
self.qkv = keras.layers.Dense(
units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
)
self.projection = keras.layers.Dense(
units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
)
self.resolution = resolution
self.dim = dim
def build(self, input_shape: tf.TensorShape) -> None:
points = list(itertools.product(range(self.resolution), range(self.resolution)))
num_points = len(points)
attention_offsets = {}
idxs = []
for point_1 in points:
for point_2 in points:
offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
| 10,466 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
self.attention_biases = self.add_weight(
shape=(self.num_heads, len(attention_offsets)),
initializer=keras.initializers.zeros(),
trainable=True,
name="attention_biases",
)
self.attention_bias_idxs = self.add_weight(
shape=(num_points, num_points),
trainable=False,
dtype=tf.int32,
name="attention_bias_idxs",
)
self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points)))
if self.built:
return
self.built = True
if getattr(self, "qkv", None) is not None:
with tf.name_scope(self.qkv.name):
self.qkv.build([None, None, self.dim])
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, self.total_expanded_key_dim])
| 10,466 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
batch_size, sequence_length, *_ = shape_list(hidden_states)
qkv = self.qkv(inputs=hidden_states)
query_layer, key_layer, value_layer = tf.split(
tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)),
num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim],
axis=3,
)
query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3])
key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3])
value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3])
attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2]))
scale = tf.cast(self.scale, dtype=attention_probs.dtype)
attention_probs = tf.multiply(attention_probs, scale)
| 10,466 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1)
attention_probs = attention_probs + attention_biases
attention_probs = stable_softmax(logits=attention_probs, axis=-1)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
context_layer = tf.reshape(
tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim)
)
context_layer = self.projection(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
| 10,466 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerConvStem(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs):
super().__init__(**kwargs)
self.padding = keras.layers.ZeroPadding2D(padding=1)
self.convolution1 = keras.layers.Conv2D(
filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1"
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_before = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
)
| 10,467 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
self.convolution2 = keras.layers.Conv2D(
filters=out_channels,
kernel_size=3,
strides=2,
padding="valid",
name="convolution2",
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_after = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
)
self.activation = keras.layers.Activation(activation=keras.activations.relu, name="activation")
self.out_channels = out_channels
self.config = config
| 10,467 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor:
features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training)
features = self.activation(features)
features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training)
features = self.activation(features)
return features
| 10,467 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution1", None) is not None:
with tf.name_scope(self.convolution1.name):
self.convolution1.build([None, None, None, self.config.num_channels])
if getattr(self, "batchnorm_before", None) is not None:
with tf.name_scope(self.batchnorm_before.name):
self.batchnorm_before.build([None, None, None, self.out_channels // 2])
if getattr(self, "convolution2", None) is not None:
with tf.name_scope(self.convolution2.name):
self.convolution2.build([None, None, None, self.out_channels // 2])
if getattr(self, "batchnorm_after", None) is not None:
with tf.name_scope(self.batchnorm_after.name):
self.batchnorm_after.build([None, None, None, self.out_channels])
if getattr(self, "activation", None) is not None:
| 10,467 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
with tf.name_scope(self.activation.name):
self.activation.build(None)
| 10,467 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerPooling(keras.layers.Layer):
def __init__(self, pool_size: int, **kwargs):
super().__init__(**kwargs)
self.pool = keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same")
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
output = self.pool(hidden_states)
output = output - hidden_states
return output
| 10,468 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerDenseMlp(keras.layers.Layer):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
**kwargs,
):
super().__init__(**kwargs)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.linear_in = keras.layers.Dense(
units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in"
)
self.activation = ACT2FN[config.hidden_act]
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.linear_out = keras.layers.Dense(
units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out"
)
self.hidden_features = hidden_features
self.in_features = in_features
| 10,469 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.linear_in(inputs=hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.linear_out(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_in", None) is not None:
with tf.name_scope(self.linear_in.name):
self.linear_in.build([None, None, self.in_features])
if getattr(self, "linear_out", None) is not None:
with tf.name_scope(self.linear_out.name):
self.linear_out.build([None, None, self.hidden_features])
| 10,469 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerConvMlp(keras.layers.Layer):
def __init__(
self,
config: EfficientFormerConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
drop: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.convolution1 = keras.layers.Conv2D(
filters=hidden_features,
kernel_size=1,
name="convolution1",
padding="valid",
)
self.activation = ACT2FN[config.hidden_act]
self.convolution2 = keras.layers.Conv2D(
filters=out_features,
kernel_size=1,
name="convolution2",
padding="valid",
)
self.dropout = keras.layers.Dropout(rate=drop)
| 10,470 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_before = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before"
)
# Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization
self.batchnorm_after = keras.layers.BatchNormalization(
axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after"
)
self.hidden_features = hidden_features
self.in_features = in_features
self.out_features = out_features
| 10,470 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_state = self.convolution1(hidden_state)
hidden_state = self.batchnorm_before(hidden_state, training=training)
hidden_state = self.activation(hidden_state)
hidden_state = self.dropout(hidden_state, training=training)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.batchnorm_after(hidden_state, training=training)
hidden_state = self.dropout(hidden_state, training=training)
return hidden_state
| 10,470 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution1", None) is not None:
with tf.name_scope(self.convolution1.name):
self.convolution1.build([None, None, None, self.in_features])
if getattr(self, "convolution2", None) is not None:
with tf.name_scope(self.convolution2.name):
self.convolution2.build([None, None, None, self.hidden_features])
if getattr(self, "batchnorm_before", None) is not None:
with tf.name_scope(self.batchnorm_before.name):
self.batchnorm_before.build([None, None, None, self.hidden_features])
if getattr(self, "batchnorm_after", None) is not None:
with tf.name_scope(self.batchnorm_after.name):
self.batchnorm_after.build([None, None, None, self.out_features])
| 10,470 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
| 10,471 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerFlat(keras.layers.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]:
batch_size, _, _, in_channels = shape_list(hidden_states)
hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels])
return hidden_states
| 10,472 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerMeta3D(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
self.token_mixer = TFEfficientFormerSelfAttention(
dim=config.dim,
key_dim=config.key_dim,
num_heads=config.num_attention_heads,
attention_ratio=config.attention_ratio,
resolution=config.resolution,
name="token_mixer",
config=config,
)
self.dim = dim
self.config = config
self.layernorm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1")
self.layernorm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2")
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp")
| 10,473 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
# Using `layers.Activation` instead of `tf.identity` to better control `training' behavior.
self.drop_path = (
TFEfficientFormerDropPath(drop_path)
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.config = config
def build(self, input_shape=None):
self.layer_scale_1 = None
self.layer_scale_2 = None
if self.config.use_layer_scale:
self.layer_scale_1 = self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_1",
)
self.layer_scale_2 = self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_2",
)
| 10,473 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
if self.built:
return
self.built = True
if getattr(self, "token_mixer", None) is not None:
with tf.name_scope(self.token_mixer.name):
self.token_mixer.build(None)
if getattr(self, "layernorm1", None) is not None:
with tf.name_scope(self.layernorm1.name):
self.layernorm1.build([None, None, self.dim])
if getattr(self, "layernorm2", None) is not None:
with tf.name_scope(self.layernorm2.name):
self.layernorm2.build([None, None, self.dim])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
| 10,473 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
self_attention_outputs = self.token_mixer(
hidden_states=self.layernorm1(hidden_states, training=training),
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
| 10,473 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
if self.config.use_layer_scale:
layer_output = hidden_states + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output,
training=training,
)
layer_output = layer_output + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
* self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
training=training,
)
else:
layer_output = hidden_states + self.drop_path(attention_output, training=training)
layer_output = layer_output + self.drop_path(
self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training),
training=training,
)
outputs = (layer_output,) + outputs
return outputs
| 10,473 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerMeta3DLayers(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:-1]))
for block_idx in range(config.num_meta3d_blocks)
]
self.blocks = [
TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}")
for i, drop_path in enumerate(drop_paths)
]
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
all_attention_outputs = () if output_attentions else None
for i, layer_module in enumerate(self.blocks):
if isinstance(hidden_states, tuple):
hidden_states = hidden_states[0]
| 10,474 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
hidden_states = layer_module(
hidden_states=hidden_states, output_attentions=output_attentions, training=training
)
if output_attentions:
all_attention_outputs = all_attention_outputs + (hidden_states[1],)
if output_attentions:
outputs = (hidden_states[0],) + all_attention_outputs
return outputs
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
| 10,474 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerMeta4D(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
pool_size = config.pool_size if config.pool_size is not None else 3
self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer")
self.dim = dim
mlp_hidden_dim = int(dim * config.mlp_expansion_ratio)
self.mlp = TFEfficientFormerConvMlp(
config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp"
)
self.drop_path = (
TFEfficientFormerDropPath(drop_path, name="drop_path")
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.config = config
def build(self, input_shape=None):
self.layer_scale_1 = None
self.layer_scale_2 = None
| 10,475 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
if self.config.use_layer_scale:
self.layer_scale_1 = self.add_weight(
shape=(self.dim),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_1",
)
self.layer_scale_2 = self.add_weight(
shape=(self.dim),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_2",
)
| 10,475 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
if self.built:
return
self.built = True
if getattr(self, "token_mixer", None) is not None:
with tf.name_scope(self.token_mixer.name):
self.token_mixer.build(None)
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
outputs = self.token_mixer(hidden_states)
if self.config.use_layer_scale:
layer_output = hidden_states + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs,
training=training,
)
| 10,475 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
layer_output = layer_output + self.drop_path(
tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0)
* self.mlp(hidden_state=layer_output, training=training),
training=training,
)
else:
layer_output = hidden_states + self.drop_path(outputs, training=training)
layer_output = layer_output + self.drop_path(
self.mlp(hidden_state=layer_output, training=training), training=training
)
return layer_output
| 10,475 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerMeta4DLayers(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs):
super().__init__(**kwargs)
num_layers = (
config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks
)
drop_paths = [
config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers)
]
self.blocks = [
TFEfficientFormerMeta4D(
config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}"
)
for i in range(len(drop_paths))
]
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
for layer_module in self.blocks:
hidden_states = layer_module(hidden_states=hidden_states, training=training)
return hidden_states
| 10,476 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
| 10,476 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerIntermediateStage(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, index: int, **kwargs):
super().__init__(**kwargs)
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers")
def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]:
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "meta4D_layers", None) is not None:
with tf.name_scope(self.meta4D_layers.name):
self.meta4D_layers.build(None)
| 10,477 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerLastStage(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers")
self.flat = TFEfficientFormerFlat(name="flat")
self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers")
def call(
self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False
) -> Tuple[tf.Tensor]:
hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training)
hidden_states = self.flat(hidden_states=hidden_states)
hidden_states = self.meta3D_layers(
hidden_states=hidden_states, output_attentions=output_attentions, training=training
)
return hidden_states
| 10,478 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "meta4D_layers", None) is not None:
with tf.name_scope(self.meta4D_layers.name):
self.meta4D_layers.build(None)
if getattr(self, "flat", None) is not None:
with tf.name_scope(self.flat.name):
self.flat.build(None)
if getattr(self, "meta3D_layers", None) is not None:
with tf.name_scope(self.meta3D_layers.name):
self.meta3D_layers.build(None)
| 10,478 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerEncoder(keras.layers.Layer):
def __init__(self, config: EfficientFormerConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
num_intermediate_stages = len(config.depths) - 1
downsamples = [
config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1]
for i in range(num_intermediate_stages)
]
| 10,479 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
intermediate_stages = []
layer_count = -1
for i in range(num_intermediate_stages):
layer_count += 1
intermediate_stages.append(
TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}")
)
if downsamples[i]:
layer_count += 1
intermediate_stages.append(
TFEfficientFormerPatchEmbeddings(
config,
config.hidden_sizes[i],
config.hidden_sizes[i + 1],
name=f"intermediate_stages.{layer_count}",
)
)
self.intermediate_stages = intermediate_stages
self.last_stage = TFEfficientFormerLastStage(config, name="last_stage")
| 10,479 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
def call(
self,
hidden_states: tf.Tensor,
output_hidden_states: bool,
output_attentions: bool,
return_dict: bool,
training: bool = False,
) -> TFBaseModelOutput:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
for layer_module in self.intermediate_stages:
hidden_states = layer_module(hidden_states, training=training)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training)
if output_attentions:
all_self_attentions = all_self_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (layer_output[0],)
| 10,479 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
if not return_dict:
return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=layer_output[0],
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "last_stage", None) is not None:
with tf.name_scope(self.last_stage.name):
self.last_stage.build(None)
for layer in self.intermediate_stages:
with tf.name_scope(layer.name):
layer.build(None)
| 10,479 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerMainLayer(keras.layers.Layer):
config_class = EfficientFormerConfig
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
super().__init__(**kwargs)
self.config = config
self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed")
self.encoder = TFEfficientFormerEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
@unpack_inputs
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[tf.Tensor] = None,
output_hidden_states: Optional[tf.Tensor] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
| 10,480 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# When running on CPU, keras.layers.Conv2D and keras.layers.AveragePool2D do not
# support channels first NCHW format. A number of blocks contain both.
# So change the input format from (batch_size, num_channels, height, width) to
# (batch_size, height, width, num_channels) here.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embedding_output = self.patch_embed(pixel_values, training=training)
| 10,480 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
encoder_outputs = self.encoder(
hidden_states=embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output, training=training)
# Change the hidden states from (batch_size, height, width, num_channels) to
# (batch_size, num_channels, height, width).
# The hidden states are in (batch_size, height, width, num_channels)
# shape after all stages except the MB3D blocks.
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + (
encoder_outputs[1][-1],
)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
| 10,480 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
return TFBaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "patch_embed", None) is not None:
with tf.name_scope(self.patch_embed.name):
self.patch_embed.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_sizes[-1]])
| 10,480 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientFormerConfig
base_model_prefix = "efficientformer"
main_input_name = "pixel_values"
| 10,481 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel):
def __init__(self, config: EfficientFormerConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer")
| 10,482 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
@unpack_inputs
@add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.efficientformer(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
| 10,482 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.