max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
examples/shape/cylinder.py
yp920505/classy_blocks
0
2022767
import os from classes.primitives import Edge from classes.mesh import Mesh from shapes.shapes import Cylinder def create(): axis_point_1 = [0, 0, 0] axis_point_2 = [5, 5, 0] radius_point_1 = [0, 0, 2] cylinder = Cylinder(axis_point_1, axis_point_2, radius_point_1) cylinder.set_bottom_patch('inlet') cylinder.set_top_patch('outlet') cylinder.set_outer_patch('walls') cylinder.set_axial_cell_count(30) cylinder.set_radial_cell_count(20) cylinder.set_tangential_cell_count(15) cylinder.set_axial_cell_size(-0.05) cylinder.set_outer_cell_size(0.03) mesh = Mesh() mesh.add_shape(cylinder) mesh.write('util/blockMeshDict.template', 'examples/meshCase/system/blockMeshDict') # run blockMesh os.system("blockMesh -case examples/meshCase")
812
problems/062.py
6112/project-euler
0
2022973
# encoding=utf-8 ## SOLVED 2014/11/18 ## 127035954683 # The cube, 41063625 (3453), can be permuted to produce two other cubes: # 56623104 (3843) and 66430125 (4053). In fact, 41063625 is the smallest cube # which has exactly three permutations of its digits which are also cube. # Find the smallest cube for which exactly five permutations of its digits are # cube. from helpers.sequence import is_permutation from math import ceil def euler(): for n in range(346, 6000): # number of cubes that are permutations of n^3 cube_permutations = 0 digits = str(n * n * n) maximum = maximum_for(digits) # for each number from n to maximum (see maximum_for()), check if its # cube is a permutation of n for m in range(n, maximum): cube = m * m * m if is_permutation(str(cube), digits): cube_permutations += 1 # return it if it has the right number of permutations if cube_permutations == 5: return n ** 3 # calculate the highest possible value for the cube root of a permutation of # the given digits def maximum_for(digits): xs = reversed(sorted(digits)) return ceil(int("".join(xs)) ** (1 / 3))
1,229
week_1/calculator.py
Ashutosh781/QSTP-Kratos_electronics-Solutions
0
2024014
#! /usr/bin/env python s = 'Y' while s != 'n': try: x = input("Enter the first number : ") s = input("Enter the operation : ") y = input("Enter the second number : ") ans = eval(x+s+y) print(f'{x}{s}{y} = {ans}') except: print("Division by zero is not allowed") while True: s = input("Do you want to use the calculator again (Y/n) : ") if (s == 'Y') or (s == 'n'): break print("\nEnd")
494
expert_system/config/Cmd.py
mffdsp/Sistema_Especialista_IA
3
2024119
import argparse import sys class Cmd: parser = argparse.ArgumentParser() parser.add_argument("-m", "--mode", choices=['shell', 'interactive', 'interface'], default='mode_shell', help="Interface mode") parser.add_argument("-r", "--rules", action='store_true', help="Displays the rules") parser.add_argument("-v", "--verbose", action='store_true', help="Displays the steps of the resolution") parser.add_argument("input", nargs='?', help="The file containing rules, facts and queries") args = parser.parse_args()
538
BFS/773_sliding_puzzle.py
MartinMa28/Algorithms_review
0
2024264
from collections import deque from copy import deepcopy class Solution: def __init__(self): self.directions = ((1, 0), (-1, 0), (0, 1), (0, -1)) def _on_board(self, row, col): return row >= 0 and row < 2 and col >= 0 and col < 3 def slidingPuzzle(self, board: List[List[int]]) -> int: for i in range(2): for j in range(3): if board[i][j] == 0: row = i col = j break visited = set() t_b = tuple([tuple(r) for r in board]) visited.add(t_b) queue = deque([(row, col, board, 0)]) while len(queue) > 0: row, col, board, move = queue.popleft() print(board) if board == [[1,2,3],[4,5,0]]: return move for d in self.directions: new_row = row + d[0] new_col = col + d[1] if self._on_board(new_row, new_col): board[row][col], board[new_row][new_col] = \ board[new_row][new_col], board[row][col] t_n_b = tuple([tuple(r) for r in board]) if t_n_b not in visited: visited.add(t_n_b) queue.append((new_row, new_col, deepcopy(board), move + 1)) board[row][col], board[new_row][new_col] = \ board[new_row][new_col], board[row][col] return -1
1,653
ttwitter_py/views/authentic.py
tongfeifan/ttwitter_py
1
2023521
from django.contrib.auth import authenticate, login, logout from django.views.generic import View, TemplateView from django.http import HttpResponseRedirect, JsonResponse from ..models import UserProfile class Login(TemplateView): template_name = "login.html" def post(self, request): username = request.POST.get("username") password = request.POST.get("password") user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) return HttpResponseRedirect("/u/{}/".format(username)) else: form = { 'error': True, } return JsonResponse(data=form) else: form = { 'error': True } return JsonResponse(data=form) def logout_view(request): logout(request) class Register(View): def post(self, request): username = request.POST.get("username") password = request.POST.get("password")
1,088
ev3dev2simulator/robotpart/UltrasonicSensorBottom.py
NielsOkker/ev3dev2simulator
0
2022751
from ev3dev2simulator.config.config import get_simulation_settings from ev3dev2simulator.robotpart.BodyPart import BodyPart class UltrasonicSensorBottom(BodyPart): """ Class representing an UltrasonicSensor of the simulated robotpart mounted towards the ground. """ def __init__(self, config, robot): dims = get_simulation_settings()['body_part_sizes']['ultrasonic_sensor_bottom'] super(UltrasonicSensorBottom, self).__init__(config, robot, dims['width'], dims['height'], 'ultrasonic_sensor', driver_name='lego-ev3-us') def setup_visuals(self, scale): img_cfg = get_simulation_settings()['image_paths'] self.init_sprite(img_cfg['ultrasonic_sensor_bottom'], scale) def get_latest_value(self): return self.distance() def distance(self) -> float: """ Get the distance in pixels between this ultrasonic sensor and an the ground. :return: a floating point value representing the distance. """ for o in self.sensible_obstacles: if o.collided_with(self.sprite.center_x, self.sprite.center_y): return self.get_default_value() return 20 def get_default_value(self): """ 1 pixel == 1mm so measurement values this sensor returns are one to one mappable to millimeters. Max distance real world robotpart ultrasonic sensor returns is 2550mm. :return: default value in pixels. """ return 2550
1,534
src/db_models_base.py
fp12/sfv-bot
0
2024236
metaattr = 'metaattr' class DBModel(type): def __new__(cls, name, bases, namespace, **kargs): # don't propagate kargs but add them to namespace namespace[metaattr] = kargs.get(metaattr) return super().__new__(cls, name, bases, namespace) def __init__(cls, name, bases, namespace, **kargs): # don't propagate kargs super().__init__(name, bases, namespace) def __call__(cls, *args, **kwds): # create instance but don't propagate arguments obj = type.__call__(cls) # create attributes according to definition if metaattr in cls.__dict__: valid_args = [] # allow plain args, tuples and lists if isinstance(args[0], tuple) or isinstance(args[0], list): valid_args = list(args[0]) elif len(cls.__dict__[metaattr]) == len(args): valid_args = args if len(valid_args) == len(cls.__dict__[metaattr]): for i, f in enumerate(cls.__dict__[metaattr]): setattr(obj, f, valid_args[i]) else: for f in cls.__dict__[metaattr]: setattr(obj, f, None) return obj
1,213
open_cli3/main.py
privcloud-com/open-cli
0
2023986
import os import logging import argparse from distutils.util import strtobool from . import cli from . import formatter HISTORY_PATH = os.path.join(os.path.expanduser("~"), ".open-cli3") def main(): """Open-CLI entry point.""" args_parser = argparse.ArgumentParser(description="Open-CLI.") args_parser.add_argument("-s", "--source", type=str, default=None, help="Open API spec source") args_parser.add_argument( "-v", "--verbose", action="store_true", help="If set, set log level to debug" ) args_parser.add_argument( "-t", "--history", type=str, default=HISTORY_PATH, help="History file path" ) args_parser.add_argument( "-c", "--command", type=str, help="Command (request) to execute", nargs='+', required=False ) args_parser.add_argument( "-f", "--format", type=str, choices=formatter.FORMATTERS.keys(), default=formatter.JSON, help="Set the CLI output format", ) args_parser.add_argument( "--header", nargs="+", default=[], help="Requests headers, usage: --header x-header-1:val-1 x-header-2:val2", ) args_parser.add_argument( "--print-request-time", type=strtobool, default=False, help="Show time of each request if this flag set to true", ) args_parser.add_argument( "--profile", type=str, default=None, help="Open API profile name that point out some settings you can apply to a open-cli3 command and " "which are located in open-cli3 config file") args = args_parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.ERROR) open_cli = cli.OpenCLI( source=args.source, history_path=args.history, output_format=args.format, headers=args.header, print_request_time=args.print_request_time, profile_name=args.profile, ) if args.command: return open_cli.execute(command=args.command[0]) open_cli.run_loop() if __name__ == "__main__": main()
2,116
event/migrations/0003_auto_20200419_0040.py
Aleccc/gtcrew
0
2023330
# Generated by Django 3.0.4 on 2020-04-19 04:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('asset', '0002_auto_20200419_0013'), ('event', '0002_auto_20200418_2310'), ] operations = [ migrations.AlterField( model_name='result', name='shell', field=models.ForeignKey(blank=True, limit_choices_to={'type': 'shell'}, null=True, on_delete=django.db.models.deletion.SET_NULL, to='asset.Asset'), ), ]
571
yc97/182.py
c-yan/yukicoder
0
2023026
N, *A = map(int, open(0).read().split()) t = {} for a in A: t.setdefault(a, 0) t[a] += 1 print(list(t.values()).count(1))
132
lib/checks.py
mhaberler/weather-stations
27
2023516
""" Generic Helpers The code is licensed under the MIT license. """ from meteostat import Stations from stations import merge_dicts, station_template def find_duplicate(station: dict): """ Check if a (similar) station already exists """ # Merge station data with template station = merge_dicts(station, station_template) # Get all weather df stations = Stations() df = stations.fetch() # Get key fields wmo = station['identifiers']['wmo'] icao = station['identifiers']['icao'] lat = station['location']['latitude'] lon = station['location']['longitude'] # First, check for Meteostat ID if station['id'] and station['id'] in df.index: return df.loc[[station['id']]].reset_index().to_dict('records')[0] # Now, check for WMO ID if wmo and (df['wmo'] == wmo).any(): return df[df['wmo'] == wmo].reset_index().to_dict('records')[0] # Now, check for ICAO ID if icao and (df['icao'] == icao).any(): return df[df['icao'] == icao].reset_index().to_dict('records')[0] # Last, check for proximity stations = stations.nearby(lat, lon, 500) if stations.count() > 0: return stations.fetch(1).reset_index().to_dict('records')[0] # No duplicates return None
1,280
src/utils/dedup_csv.py
lhf-labs/finance-news-analysis-bert
20
2022956
import pandas as pd if __name__ == '__main__': FILE_NAME = '../data/2020-08-11to2021-02-11' toclean = pd.read_csv(f'{FILE_NAME}.csv') deduped = toclean.drop_duplicates('RP_STORY_ID') deduped = deduped.drop_duplicates('EVENT_TEXT') deduped = deduped.drop_duplicates('HEADLINE') deduped = deduped[~deduped['EVENT_SENTIMENT_SCORE'].isna()] deduped = deduped[pd.to_numeric(deduped['EVENT_SENTIMENT_SCORE'], errors='coerce').notnull()] deduped.to_csv(f'{FILE_NAME}_deduped.csv', index=False)
521
NLP/Transformer/odd_numbers/model.py
gemessss/models
1
2023744
from transformer import Transformer import numpy as np import math import sys import oneflow as flow import oneflow.nn as nn sys.path.append("../") TO_CUDA = True def to_cuda(tensor, flag=TO_CUDA, where="cuda"): if flag: return tensor.to(where) else: return tensor class Embeddings(nn.Module): def __init__(self, vocab, d_model): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = flow.zeros((max_len, d_model)) position = flow.arange(0, max_len, dtype=flow.float).unsqueeze(1) div_term = flow.exp( flow.arange(0, d_model, 2).to(flow.float) * (-math.log(10000.0) / d_model) ).unsqueeze(0) pe[:, 0::2] = flow.sin(position * div_term) pe[:, 1::2] = flow.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.pe = flow.nn.Parameter(pe, requires_grad=False) def forward(self, x): x = x + self.pe[: x.size(0), :] return self.dropout(x) class TransformerModel(nn.Module): def __init__( self, input_sz, output_sz, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout, ): super(TransformerModel, self).__init__() self.transformer = Transformer( d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, batch_first=False, ) self.softmax = nn.Softmax(dim=2) self.linear = nn.Linear(d_model, output_sz) self.pos_encoder = PositionalEncoding(d_model, dropout) self.pos_decoder = PositionalEncoding(d_model, dropout) self.src_embedding = Embeddings(input_sz, d_model) self.tgt_embedding = Embeddings(output_sz, d_model) @staticmethod def generate_subsequent_mask(tgt_len, src_len): mask = flow.triu(flow.ones((tgt_len, src_len)), 1) mask = mask.masked_fill(mask.to(flow.int32), float("-inf")) return mask @staticmethod def make_len_mask(inp): inp_mask = (inp.numpy() == 0).astype(np.int32) inp_mask = flow.tensor(inp_mask, dtype=flow.int32) return inp_mask.transpose(0, 1) def forward( self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, ): if tgt_mask is None: tgt_mask = self.generate_subsequent_mask(tgt.shape[0], tgt.shape[0]) tgt_mask = to_cuda(tgt_mask, where=tgt.device) src_key_padding_mask = self.make_len_mask(src) src_key_padding_mask = to_cuda(src_key_padding_mask, where=tgt.device) tgt_key_padding_mask = None src = self.src_embedding(src) src = self.pos_encoder(src) tgt = self.tgt_embedding(tgt) tgt = self.pos_decoder(tgt) out = self.transformer( src, tgt, src_mask, tgt_mask, memory_mask, src_key_padding_mask, tgt_key_padding_mask, memory_key_padding_mask, ) out = self.linear(out) return out
3,727
interview_prep_day3/spiral_matrix_2.py
gengannie/solving_questions
0
2022853
# https://leetcode.com/problems/spiral-matrix-ii/ # QID: 59 class Solution: def generateMatrix(self, n: int) -> List[List[int]]: ans_matrix = [[0 for i in range (n)] for j in range (n)] dirs = [(0,1), (1,0), (0,-1), (-1,0)] past = [] max_i = n*n x, y = 0,0 d = 0 for i in range (0, max_i): ans_matrix[x][y] = i + 1 past.append((x,y)) future_x = x + dirs[d][0] future_y = y + dirs[d][1] if (future_x >= n or future_x < 0 or future_y >= n or future_y < 0 or (future_x, future_y) in past): d += 1 if (d > 3): d = 0 x += dirs[d][0] y += dirs[d][1] return ans_matrix
784
djangocms_frontend/contrib/navigation/frameworks/bootstrap5.py
fsbraun/djangocms-bootstrap5
7
2024164
class NavigationRenderMixin: def render(self, context, instance, placeholder): instance.add_classes( "navbar", f"navbar-{instance.config.get('navbar_design', '')}", f"navbar-expand-{instance.config.get('navbar_breakpoint', '')}", ) return super().render(context, instance, placeholder) class PageTreeRenderMixin: def render(self, context, instance, placeholder): instance.add_classes("navbar-nav") return super().render(context, instance, placeholder) class NavBrandRenderMixin: def render(self, context, instance, placeholder): instance.add_classes("navbar-brand") return super().render(context, instance, placeholder) class NavLinkRenderMixin: def render(self, context, instance, placeholder): instance.add_classes("nav-link") if instance.child_plugin_instances: instance.add_classes("dropdown-toggle") return super().render(context, instance, placeholder)
1,009
GNS3/Nodes/cisco7200_node.py
nsg-ethz/Metha
9
2022910
import os import json from GNS3 import send_request, gns3_parser from GNS3.Nodes.netmiko_node import NetmikoNode from settings import GNS_ROUTER_PATH, GNS_METHA_SAME_SYSTEM class Cisco7200Node(NetmikoNode): def __init__(self, name, gp, config=None): with open(f'{GNS_ROUTER_PATH}/cisco-7200.json') as f: router_conf = json.load(f) router_conf['name'] = name if config is not None and GNS_METHA_SAME_SYSTEM: router_conf['properties']['startup_config'] = os.path.abspath(config) param = json.dumps(router_conf) jdata = send_request('POST', f'/v2/projects/{gp.pid}/nodes', param, True) super().__init__(jdata['node_id'], jdata['console'], name, 'show run', 'show ip route', 'clear ip route *') if config is not None and not GNS_METHA_SAME_SYSTEM: self.initial_config = config self.init_commands = ['no logging console', 'no logging monitor'] self.netmiko_node['device_type'] = 'cisco_ios_telnet' def parse_routing_table(self, srt, adj): return gns3_parser.textfsm_to_pd(srt, self.name, adj)
1,121
visualize-examples.py
iSTB/concepts
1
2023199
#!/usr/bin/env python # visualize-examples.py import concepts.visualize DIRECTORY = 'visualize-output' FORMAT = 'pdf' concepts.visualize.render_all('examples/*.cxt', directory=DIRECTORY, out_format=FORMAT)
209
examples/GraphLM_walk_AIDS.py
dtylor/WalkAsString
5
2023493
# -*- coding: utf-8 -*- """GraphLM_walk_AIDS.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1MOA8mc8b__Fb1Nk8yu3iMNdm_vUhL2Hi """ # Commented out IPython magic to ensure Python compatibility. !git clone https://github.com/dtylor/WalkRNN.git # %cd WalkRNN !ls !curl https://course-v3.fast.ai/setup/colab | bash import fastai import pandas as pd from fastai.utils.show_install import * show_install() str(fastai.__dict__['version']) !more /usr/local/lib/python3.6/dist-packages/fastai/version.py !ls from google.colab import drive drive.mount("/content/drive") from utilities import load_graph_kernel_graph, load_graph_kernel_labels node_mappings = [{ 0: "C", 1: "O", 2: "N", 3: "Cl", 4: "F", 5: "S", 6: "Se", 7: "P", 8: "Na", 9: "I", 10: "Co", 11: "Br", 12: "Li", 13: "Si", 14: "Mg", 15: "Cu", 16: "As", 17: "B", 18: "Pt", 19: "Ru", 20: "K", 21: "Pd", 22: "Au", 23: "Te", 24: "W", 25: "Rh", 26: "Zn", 27: "Bi", 28: "Pb", 29: "Ge", 30: "Sb", 31: "Sn", 32: "Ga", 33: "Hg", 34: "Ho", 35: "Tl", 36: "Ni", 37: "Tb" }] label_maps={"node_labels": node_mappings} G = load_graph_kernel_graph("./AIDS", mappings=label_maps) y = load_graph_kernel_labels("./AIDS") from module import get_structural_signatures, walk_as_string newGraph, pca, kmeans = get_structural_signatures(G) walks = walk_as_string(newGraph, componentLabels = y) from fastai.text import * from sklearn.model_selection import train_test_split import numpy walks.head() walks.shape from sklearn.model_selection import train_test_split import numpy data = list(set(walks.component)) x_traina ,x_test = train_test_split(data,test_size=0.1) x_train ,x_val = train_test_split(x_traina,test_size=0.2) train_tmp = pd.DataFrame(x_train) train_tmp.columns = ['component'] df_train = pd.merge(walks, train_tmp, on='component', sort=False) df_train.shape test_tmp = pd.DataFrame(x_test) test_tmp.columns = ['component'] df_test = pd.merge(walks, test_tmp, on='component', sort=False) df_test.shape val_tmp = pd.DataFrame(x_val) val_tmp.columns = ['component'] df_val = pd.merge(walks, val_tmp, on='component', sort=False) df_val.shape !mkdir result mypath = './result' data_lm = TextLMDataBunch.from_df(train_df=df_train[['walk', 'label']], valid_df=df_val[[ 'walk', 'label']], path=mypath, text_cols='walk', label_cols='label') data_lm.save('data_lm.pkl') !ls -l ./result bs = 32 # load the data (can be used in the future as well to prevent reprocessing) data_lm = load_data(mypath, 'data_lm.pkl', bs=bs) data_lm.show_batch() # take a look at the batch fed into the GPU awd_lstm_lm_config = dict(emb_sz=400, n_hid=400, n_layers=1, pad_token=1, qrnn=False, bidir=False, output_p=0.1, hidden_p=0.15, input_p=0.25, embed_p=0.02, weight_p=0.2, tie_weights=True, out_bias=True) awd_lstm_clas_config = dict(emb_sz=400, n_hid=400, n_layers=1, pad_token=1, qrnn=False, bidir=False, output_p=0.4, hidden_p=0.3, input_p=0.4, embed_p=0.05, weight_p=0.5) learn = language_model_learner(data_lm,arch=AWD_LSTM,config= awd_lstm_lm_config,drop_mult=1.8, callback_fns=ShowGraph,pretrained=False) learn.lr_find() learn.recorder.plot() learn.fit_one_cycle(1, 1e-2, moms=(0.8,0.7)) learn.recorder.plot_losses() learn.save('fit-head') learn.unfreeze() learn.lr_find() learn.recorder.plot() learn.fit_one_cycle(3, .05, moms=(0.8,0.7)) learn.save('fit-head') learn.save_encoder('fine_tuned_enc3') df = walks.sample(frac=1).reset_index(drop=True) df['index1']=df.index g = df.groupby('component') df['RN'] = g['index1'].rank(method='min') df[df['component']==1].head() """Choose a path per node and concatenate for entire component""" df.groupby('component')['walk'].apply(lambda x: ', '.join(x)) def f(x): return Series(dict(label = x['label'].min(), text = ', '.join(x['walk']))) df_text_comp = df[(df['RN']<=6.0)].groupby('component').apply(f) df_text_comp.head() df_text_comp['component']= df_text_comp.index df_text_comp.index.names = ['comp'] df_text_comp.head() train = pd.merge(df_text_comp, train_tmp, on='component', sort=False) test = pd.merge(df_text_comp, test_tmp, on='component', sort=False) val = pd.merge(df_text_comp, val_tmp, on='component', sort=False) (train.shape,val.shape, test.shape, train.shape[0]/df_text_comp.shape[0]) bs=32#48 data_clas = TextClasDataBunch.from_df(train_df=train[['text','label']],valid_df=val[['text','label']], path=mypath, text_cols='text',label_cols = 'label', vocab=data_lm.vocab) data_clas.save('tmp_clas') data_clas = load_data(mypath, 'tmp_clas', bs=bs) data_clas.show_batch() learn = text_classifier_learner(data_clas,arch=AWD_LSTM,config = awd_lstm_clas_config, drop_mult=1.7,pretrained=False) learn.load_encoder('fine_tuned_enc3') learn.freeze() gc.collect(); learn.lr_find() learn.recorder.plot() learn.fit_one_cycle(1, 5e-02, moms=(0.8,0.7)) def predict(test,learn): predictions=[] for index, row in test.iterrows(): p=learn.predict(row['text']) #print((row['label'],str(p[0]))) predictions.append((row['text'],str(row['label']),str(p[0]))) dfpred = pd.DataFrame(predictions) dfpred.columns=['text','label','prediction'] match=dfpred[(dfpred['label']==dfpred['prediction'])] #match.head() print((dfpred.shape[0], match.shape[0],match.shape[0]/dfpred.shape[0])) learn.fit_one_cycle(1, 5e-02, moms=(0.8,0.7)) learn.save('first') learn.load('first'); learn.freeze_to(-2) learn.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2), moms=(0.8,0.7)) predict(test,learn) learn.save('second') learn.load('second'); learn.freeze_to(-3) learn.fit_one_cycle(1, slice(5e-3/(2.6**4),5e-3), moms=(0.8,0.7)) predict(test,learn) learn.save('third') learn.load('third'); learn.unfreeze() learn.fit_one_cycle(4, slice(5e-3/(2.6**4),5e-3), moms=(0.8,0.7)) predict(test,learn) learn.model
6,360
mods/plot_rtneat.py
thermalpilot/opennero
215
2024200
import sys import os import re import time from pylab import * # timestamp format timestamp_fmt = r'%Y-%b-%d %H:%M:%S' # timestamp for file file_timestamp_fmt = r'%Y-%m-%d-%H-%M-%S' # general prefix for OpenNERO log lines (date and time with msec resolution) log_prefix = r'(?P<date>[^\[]*)\.(?P<msec>[0-9]+) \(.\) ' # ----------------------------[ ai.rtneat log line regular expression ]----------------------------------------- # ai.rtneat lines get printed during rtneat evaluations and can be used to keep track of rtneat progress # an example line has the format # 2011-Mar-02 12:52:55.167396 (!) [ai.rtneat] z-min: -0.0898853 z-max: 0.250617 r-min: [ -2.00352e+08 0 -4.97067e+08 -1.64796e+08 0 0 ] r-max: [ -2.59186e+06 0 -7.22071e+07 -6.11801e+06 8 0 ] w: [ 0 0 -1 1 0 0 ] mean: [ -5.74247e+07 0 -1.30798e+08 -2.47332e+07 5.71875 0 ] stdev: [ 6.33428e+07 0 1.22863e+08 4.67422e+07 2.75642 0 ] # The fields are: # * z-min: weighted Z-score minimum (based on population average and standard deviation) # * z-max: weighted Z-score maximum (based on population average and standard deviation) # * r-min: raw score minimum (D values) # * r-max: raw score maximum (D values) # * w: user-assigned weights (D values in [-1,1]) # * mean: average over mature population (D values) # * stdev: standard deviation over mature population (D values) ai_rtneat_pattern = re.compile(log_prefix + r'\[ai\.rtneat\] z-min: (?P<zmin>\S+) z-max: (?P<zmax>\S+) r-min: \[(?P<rmin>[^\]]+)\] r-max: \[(?P<rmax>[^\]]+)\] w: \[(?P<w>[^\]]+)\] mean: \[(?P<mean>[^\]]+)\] stdev: \[(?P<stdev>[^\]]+)\]') # this is the format for the equivalent line in NERO 2.0 files # opennero evaluateAll z-min: -2.16926 z-max: 0 r-min: [ 0 0 0 0 0 352.409 0 2230.01 1e+10 3.40282e+38 21502.5 5970.86 ] r-max: [ 0 134 22 0 0 1465.59 0 18089.8 1.499e+10 -3.40282e+38 95074.5 170507 ] w: [0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -1.00 0.00] mean: [ 0 17.44 4.12 0 0 769.721 0 9097.14 1.12429e+10 0 57245 87640.1 ] stdev: [ 0 35.9222 6.43938 0 0 275.282 0 4604.4 1.76394e+09 0 17438.9 53606.8 ] nero_pattern = re.compile(r'opennero evaluateall z-min: (?P<zmin>\S+) z-max: (?P<zmax>\S+) r-min: \[(?P<rmin>[^\]]+)\] r-max: \[(?P<rmax>[^\]]+)\] w: \[(?P<w>[^\]]+)\] mean: \[(?P<mean>[^\]]+)\] stdev: \[(?P<stdev>[^\]]+)\]') FITNESS_STAND_GROUND = "Stand ground" FITNESS_STICK_TOGETHER = "Stick together" FITNESS_APPROACH_ENEMY = "Approach enemy" FITNESS_APPROACH_FLAG = "Approach flag" FITNESS_HIT_TARGET = "Hit target" FITNESS_AVOID_FIRE = "Avoid fire" FITNESS_DIMENSIONS = [FITNESS_STAND_GROUND, FITNESS_STICK_TOGETHER, FITNESS_APPROACH_ENEMY, FITNESS_APPROACH_FLAG, FITNESS_HIT_TARGET, FITNESS_AVOID_FIRE] zmin, zmax, rmin, rmax, w, mean, stdev = [], [], [], [], [], [], [] def process_line(line): """ Process a line of the log file and record the information in it in the LearningCurve """ global zmin, zmax, rmin, rmax, w, mean, stdev line = line.strip().lower() m = ai_rtneat_pattern.search(line) if not m: m = nero_pattern.search(line) if m: #t = time.strptime(m.group('date'), timestamp_fmt) # time of the record #ms = int(m.group('msec')) / 1000000.0 # the micro-second part in seconds #base = time.mktime(t) + ms # seconds since the epoch zmin.append(float(m.group('zmin'))) zmax.append(float(m.group('zmax'))) rmin.append([float(x) for x in m.group('rmin').strip().split()]) rmax.append([float(x) for x in m.group('rmax').strip().split()]) w.append([float(x) for x in m.group('w').strip().split()]) mean.append([float(x) for x in m.group('mean').strip().split()]) stdev.append([float(x) for x in m.group('stdev').strip().split()]) def process_file(f): line = f.readline() while line: process_line(line.strip()) line = f.readline() def main(): global zmin, zmax, rmin, rmax, w, mean, stdev fname = "nero_log.txt" if len(sys.argv) > 1: fname = sys.argv[1] with open(fname) as f: process_file(f) zmin, zmax, rmin, rmax, w, mean, stdev = np.array(zmin), np.array(zmax), np.array(rmin), np.array(rmax), np.array(w), np.array(mean), np.array(stdev) print np.shape(zmin), np.shape(zmax), np.shape(rmin), np.shape(rmax), np.shape(w), np.shape(mean), np.shape(stdev) # plot each dimension in a separate subplot dd = np.size(mean,1) for d in range(dd): figure() ax = subplot('211') #ax.errorbar(np.arange(np.size(mean,0)), mean[:,d], yerr=stdev[:,d]) ax.hold(True) maxline = ax.plot(rmax[:,d], label='max') avgline = ax.plot(mean[:,d], label='avg') minline = ax.plot(rmin[:,d], label='min') ax.legend() #ax.ylabel('Raw Fitness') if len(FITNESS_DIMENSIONS) == dd: ax.set_title(FITNESS_DIMENSIONS[d]) if d < np.size(w,1): ax = ax = subplot('212') ax.plot(w[:,d]) ax.set_title('Slider Weight') #ax.xlabel('Tick') show() if __name__ == "__main__": main()
5,094
coursera/semana5/lista_exerc/exerc3_vogal.py
pedrobenevides2/Ciencia-de-Dados
0
2023745
def vogal(k): n=k.lower() #print(n) vogal =('a','e','i','o','u') #print(vogal[0:5]) b=0 for letra in vogal: if letra == n: b=b+1 else: b=b if b==0: b = False else: b =True return b # Execução x = input("vogal ") while x.isdigit(): x = input( "vogal ") p=True p= vogal(x)
374
witmotion/protocol.py
kenreider/witmotion
0
2022871
import math from math import * import struct from datetime import datetime, timezone from enum import Enum G = 9.8 class ReceiveMessage: payload_length = 8 @classmethod def compute_checksum(cls, body): assert len(body) == cls.payload_length checksum = 0x55 + cls.code for b in body: checksum += b checksum &= 0xFF return checksum class TimeMessage(ReceiveMessage): code = 0x50 def __init__(self, timestamp): self.timestamp = timestamp def __str__(self): return "time message - timestamp:%s" % self.timestamp @classmethod def parse(cls, body): (year2, month, day, hour, minute, second, millisecond) = struct.unpack( "<BBBBBBH", body ) year4 = year2 + 1970 d = datetime( year=year4, month=month + 1, day=day + 1, hour=hour, minute=minute, second=second, microsecond=millisecond * 1000, ) d = d.replace(tzinfo=timezone.utc) return cls(timestamp=d.timestamp()) class AccelerationMessage(ReceiveMessage): code = 0x51 def __init__(self, a, temp_celsius): self.a = a self.temp_celsius = temp_celsius def __str__(self): return "acceleration message - vec:%s temp_celsius:%s" % ( self.a, self.temp_celsius, ) @classmethod def parse(cls, body): (axr, ayr, azr, tempr) = struct.unpack("<hhhh", body) a = ( (axr / 32768) * 16 * G, (ayr / 32768) * 16 * G, (azr / 32768) * 16 * G, ) temp_celsius = tempr / 100 return cls( a=a, temp_celsius=temp_celsius, ) class AngularVelocityMessage(ReceiveMessage): code = 0x52 def __init__(self, w, temp_celsius): self.w = w self.temp_celsius = temp_celsius def __str__(self): return "angular velocity message - w:%s temp_celsius:%s" % ( self.w, self.temp_celsius, ) @classmethod def parse(cls, body): (wxr, wyr, wzr, tempr) = struct.unpack("<hhhh", body) w = ( (wxr / 32768) * 2000, (wyr / 32768) * 2000, (wzr / 32768) * 2000, ) temp_celsius = tempr / 100 return cls( w=w, temp_celsius=temp_celsius, ) class AngleMessage(ReceiveMessage): code = 0x53 def __init__(self, roll, pitch, yaw, version): self.roll = roll self.pitch = pitch self.yaw = yaw self.version = version def __str__(self): return ( "angle message - roll:%0.1f pitch:%0.1f yaw:%0.1f version:%s" % ( self.roll, self.pitch, self.yaw, self.version, ) ) @classmethod def parse(cls, body): (rollr, pitchr, yawr, version) = struct.unpack("<hhhh", body) roll = (rollr / 32768) * 180 pitch = (pitchr / 32768) * 180 yaw = (yawr / 32768) * 180 return cls( roll=roll, pitch=pitch, yaw=yaw, version=version, ) class MagneticMessage(ReceiveMessage): code = 0x54 def __init__(self, bearing, mag, temp_celsius): self.bearing = bearing self.mag = mag self.temp_celsius = temp_celsius def __str__(self): return "magnetic message - vec:%s bearing:%s temp_celsius:%s" % ( self.mag, self.bearing, self.temp_celsius, ) @classmethod def parse(cls, body): x, y, z, tempr = struct.unpack("<hhhh", body) mag = (x, y, z) temp_celsius = tempr / 100 bearing = math.atan2(y,x)/math.pi*180 if bearing<0: bearing = bearing+360 return cls( mag=mag, bearing=bearing, temp_celsius=temp_celsius, ) class QuaternionMessage(ReceiveMessage): code = 0x59 def __init__(self, q): self.q = q def __str__(self): return "quaternion message - q:%s %s %s %s" % self.q @classmethod def parse(cls, body): qr = struct.unpack("<hhhh", body) q = tuple(el / 32768 for el in qr) return cls(q=q) receive_messages = { cls.code: cls for cls in ( TimeMessage, AccelerationMessage, AngularVelocityMessage, AngleMessage, MagneticMessage, QuaternionMessage, ) } class CalibrationMode(Enum): """ Available sensor calibration modes. """ none = 0 "No calibration mode enabled." gyro_accel = 1 "Enable gyroscope and accelerometer calibration." magnetic = 2 "Enable magnetic calibration." class InstallationDirection(Enum): """ Available installation directions. """ horizontal = 0x00 "Device installed horizontally (default)." vertical = 0x01 "Device installed vertically." class ReturnRateSelect(Enum): rate_0_2hz = 0x01 rate_0_5hz = 0x02 rate_1hz = 0x03 rate_2hz = 0x04 rate_5hz = 0x05 rate_10hz = 0x06 rate_20hz = 0x07 rate_50hz = 0x08 rate_100hz = 0x09 rate_125hz = 0x0A rate_200hz = 0x0B rate_single = 0x0C rate_not_output = 0x0D class BaudRateSelect(Enum): baud_4800 = 0x01 baud_9600 = 0x02 baud_19200 = 0x03 baud_38400 = 0x04 baud_57600 = 0x05 baud_115200 = 0x06 baud_230400 = 0x07 baud_460800 = 0x08 baud_921600 = 0x09 class Register(Enum): save = 0x00 calsw = 0x01 rsw = 0x02 rate = 0x03 baud = 0x04 axoffset = 0x05 ayoffset = 0x06 azoffset = 0x07 gxoffset = 0x08 gyoffset = 0x09 gzoffset = 0x0A hxoffset = 0x0B hyoffset = 0x0C hzoffset = 0x0D sleep = 0x22 direction = 0x23 alg = 0x24 mmyy = 0x30 hhdd = 0x31 ssmm = 0x32 ms = 0x33 ax = 0x34 ay = 0x35 az = 0x36 gx = 0x37 gy = 0x38 gz = 0x39 hx = 0x3A hy = 0x3B hz = 0x3C roll = 0x3D pitch = 0x3E yaw = 0x3F temp = 0x40 q0 = 0x51 q1 = 0x52 q2 = 0x53 q3 = 0x54 gyro = 0x63 unknown_config_cmd = 0x69 class ConfigCommand: def __init__(self, register, data): self.register = register self.data = data def __str__(self): return "config command - register %s -> data %s" % ( self.register.name, self.data, ) def serialize(self): return struct.pack( "<BBBH", 0xFF, 0xAA, self.register.value, self.data, )
6,803
makecafe.py
gurbieta/palm-os-lifedrive-installer
5
2024142
# Generate an acecafe header suitable for the LD ROM partition # import getopt, os, sys from struct import pack from sys import stdout, stderr HEADER = 0xacecafe0 DEF_OFFSET = 134080 # in sectors (1 sector = 512 bytes) DEF_LENGTH = 20479778 # in bytes BLOCKSIZE = 512 # for cancatenate option def usage(): stderr.write('Usage: %s [-o offset] [-l length] [romfile]\n' % sys.argv[0]) stderr.write('Generate a LD rom partition header.\n\n') stderr.write(' -o [offset] image offset in sectors (defaults to %d)\n' % DEF_OFFSET) stderr.write(' -l [length] image length in bytes (defaults to size of given filename)\n') stderr.write(' -c concatenate header with rom image\n') def main(): try: opts, args = getopt.getopt(sys.argv[1:], 'o:l:c') except getopt.GetoptError: usage() sys.exit(2) offset = DEF_OFFSET length = DEF_LENGTH concat = 0 if args: filename = args[0] length = os.path.getsize(filename) for o, a in opts: if o == '-o': offset = int(a) elif o == '-l': length = int(a) elif o == '-c': concat = 1 # first sector # image offset stuff stdout.write( pack('<IIII', HEADER, 4, 0x10000, 0) ) stdout.write( pack('<IIII', 0, offset, 0xb000, 0) ) stdout.write('\0' * 0x1e0) # second sector # image length stdout.write( pack('<IIII', length, 0, 0, 0) ) stdout.write('\0' * 0x1f0) if concat and filename: f = file(filename, 'rb') while 1: data = f.read(BLOCKSIZE) if data == '': break stdout.write(data) del data if __name__ == '__main__': main()
1,554
Backend/Socket/server.py
beckjing/AppLab
0
2024030
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-08-07 16:35 # @Author : <NAME> # @Site : www.nanosparrow.com # @File : server # @Software: PyCharm import socket HOST = '0.0.0.0' PORT = 65432 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen() conn, addr = s.accept() with conn: print('Connect by', addr) while True: data = conn.recv(1024) if not data: break conn.sendall(data)
531
admin.py
chris-skud/madison-transit-api
0
2023246
import os import wsgiref.handlers import logging import webapp2 as webapp import json from operator import itemgetter from datetime import datetime from datetime import date from datetime import timedelta from google.appengine.api import channel from google.appengine.api import mail from google.appengine.api import memcache from google.appengine.api import users from google.appengine.api.labs.taskqueue import Task from google.appengine.ext import db from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext.webapp import template from google.appengine.runtime import apiproxy_errors import gdata.docs.service import gdata.spreadsheet.service import gdata.spreadsheet.text_db import config from data_model import DeveloperKeys # # Every so often persist the API counters to the datastore # class PersistCounterHandler(webapp.RequestHandler): def get(self): logging.debug('persisting API counters to the datastore') devkeys_to_save = [] devkeys = db.GqlQuery("SELECT * FROM DeveloperKeys").fetch(100) for dk in devkeys: counter_key = dk.developerKey + ':counter' count = memcache.get(counter_key) if count is not None: logging.debug('persisting %s at %s' % (counter_key,str(count))) dk.requestCounter += int(count) memcache.set(counter_key,0) devkeys_to_save.append(dk) if len(devkeys_to_save) > 0: db.put(devkeys_to_save) logging.debug('... done persisting %s counters' % str(len(devkeys_to_save))) ## end # # Daily reporting email # class DailyReportHandler(webapp.RequestHandler): def get(self): devkeys_to_save = [] msg_body = '\n' # right now we're only reporting on the API counters devkeys = db.GqlQuery("SELECT * FROM DeveloperKeys").fetch(100) for dk in devkeys: msg_body += dk.developerName + '(%s) : ' % dk.developerKey msg_body += str(dk.requestCounter) msg_body += '\n' # post counter to google doc updateField(dk.developerKey,dk.requestCounter) # reset the daily counter if dk.requestCounter > 0: dk.requestCounter = 0 devkeys_to_save.append(dk) # save the modified developer keys if len(devkeys_to_save) > 0: db.put(devkeys_to_save) ## end class GDocHandler(webapp.RequestHandler): def get(self): devkeys = db.GqlQuery("SELECT * FROM DeveloperKeys").fetch(100) for dk in devkeys: logging.debug('updating gdoc for %s with %s' % (dk.developerKey,str(dk.requestCounter))) updateField(dk.developerKey,dk.requestCounter) ## end class ResetChannelsHandler(webapp.RequestHandler): def get(self): now = datetime.now() channels = json.loads(memcache.get('channels') or '{}') for channel_id, created in channels.items(): dt = datetime.strptime(created.split(".")[0], "%Y-%m-%d %H:%M:%S") # NOTE: normally this would be 60 minutes; set it lower to expose the refresh behavior if (now - dt) > timedelta(minutes=1): del channels[channel_id] channel.send_message(channel_id, json.dumps({'function':'reload'})) if channels: memcache.set('channels', json.dumps(channels)) logging.debug('channels not empty') else: memcache.delete('channels') logging.error('empty. delete it.') ## end def updateField(category,value): member = 'Sheet1' # get a connection to the db/spreadsheet client = gdata.spreadsheet.text_db.DatabaseClient(config.GOOGLE_DOC_EMAIL,config.GOOGLE_DOC_PASSWORD) today = date.today() + timedelta(hours=-6) dateString = str(today.month)+ "/" + str(today.day) + "/" + str(today.year) logging.info('adding %s to %s for %s on %s' % (value,category,member,dateString)) databases = client.GetDatabases(config.GOOGLE_DOC_KEY, config.GOOGLE_DOC_TITLE) if len(databases) != 1: logging.error("database query is broken!?! can't find the document") for db in databases: tables = db.GetTables(name=member) for t in tables: if t: records = t.FindRecords('date == %s' % dateString) for r in records: if r: if category not in r.content: logging.error('could not find %s - 0' % category) else: r.content[category] = str(value) r.Push() else: logging.error("unable to find the contents for this record!?!") else: logging.error("couldn't find the table!?!") return ## end class CreateDeveloperKeysHandler(webapp.RequestHandler): def get(self): key = DeveloperKeys() key.developerName = '<NAME>' key.developerKey = 'fixme' key.developerEmail = '<EMAIL>' key.requestCounter = 0 key.errorCounter = 0 key.put() ## end class APIUserDumpHandler(webapp.RequestHandler): def get(self): devs = db.GqlQuery("SELECT * FROM DeveloperKeys").fetch(limit=None) template_values = { 'devs' : devs } path = os.path.join(os.path.dirname(__file__), 'views/devlist.html') self.response.out.write(template.render(path,template_values)) application = webapp.WSGIApplication([('/admin/persistcounters', PersistCounterHandler), ('/admin/dailyreport', DailyReportHandler), ('/admin/gdoctest', GDocHandler), ('/admin/resetchannels', ResetChannelsHandler), ('/admin/apidump', APIUserDumpHandler), ('/admin/api/create', CreateDeveloperKeysHandler) ], debug=True) def main(): logging.getLogger().setLevel(logging.DEBUG) run_wsgi_app(application) if __name__ == '__main__': main()
6,151
liacs_calendar/read_schedule.py
maximjanssen/liacs-create-calendar
1
2022632
""" The functions that are needed to read the Excel-file and process it into Python understandable objects. """ from os import path from datetime import timezone, datetime, timedelta, time, date try: import xlrd except ImportError: print("Please install all dependencies using `pip install -r requirements.txt`") exit(-1) __raw_data__ = [] def read_excel(f: str) -> list: """Read an Excel file (xls) and process all the content into a list. :param f: Filename of the file to process. It helps if this is an absolute path. :type f: str :returns: A list containing all entries of the xls :rtype: list """ #Do some sanity checks first if type(f) is not str: raise TypeError("Parameter file of function read_excel must be str, but was {}".format(str(type(f)))) if not path.exists(f) or not path.isfile(f): raise ValueError("Given file ({}) does not exist, or is not a file.".format(f)) #Open the wb wb = xlrd.open_workbook(filename=f, on_demand=True, formatting_info=True) xf = wb.xf_list font = wb.font_list sheet = wb.sheet_by_index(0) do_add = True return_list = [] for r in range(sheet.nrows): #Add new row in list row_result_list = [] do_add = True for c in range(sheet.row_len(r)): if not do_add: break cell = sheet.cell(r,c) curr_xf = xf[cell.xf_index] curr_font = font[curr_xf.font_index] #skip cells with text struck out if curr_font.struck_out: do_add = False if cell.ctype == xlrd.XL_CELL_DATE: cell_val = xlrd.xldate.xldate_as_tuple(cell.value, 0) else: cell_val = cell.value row_result_list.append(cell_val) if do_add: return_list.append(row_result_list) global __raw_data__ __raw_data__ = return_list return return_list def get_course_entries(course_names: list, exclude_names: list = [], data: list = []) -> list: if not course_names or type(course_names) is not list: raise TypeError("Parameter course_name must be a list and may not be an empty list!") if type(exclude_names) is not list: raise TypeError("Parameter exclude_names must be a list!") global __raw_data__ if not __raw_data__ and not data: raise RuntimeError("Please either run read_excel, or provide data in the data parameter") if data: d = data else: d = __raw_data__ header = d[0] #I'm only interested in these entries entry_date = None entry_sttime = None entry_endtime = None entry_building = None entry_room = None entry_activity = None #Find which column corresponds to what i = 0 for h in header: #switch stmt would be nice here curr_entry = h.lower() if curr_entry == "date": entry_date = i elif curr_entry == "starttime": entry_sttime = i elif curr_entry == "endtime": entry_endtime = i elif curr_entry == "building": entry_building = i elif curr_entry == "room": entry_room = i elif curr_entry == "activity": entry_activity = i i = i + 1 if not entry_activity: raise ValueError("Could not find the column containing the activity. This is necessary.") tzone = timezone(timedelta(hours=1), name="Europe/Amsterdam") result = [] last_entry = None i = 0 for entry in d[1:]: act_date = None d = None starttime = None endtime = None dstart = None dend = None location = "" activity = entry[entry_activity].lower() #skip all processing if course is not in list do_process = False for course in course_names: if activity.startswith(course): do_process = True break for exclude in exclude_names: #skip all checks if course is excluded by user if activity.startswith(exclude): do_process = False break if not do_process: continue i = i + 1 if entry_date: act_date = entry[entry_date] d = date(act_date[0], act_date[1], act_date[2]) if entry_sttime: st = entry[entry_sttime] if type(st) is tuple: starttime = time(st[3], st[4]) else: try: st = st.split(":") starttime = time(int(st[0]), int(st[1])) except: print(entry[entry_sttime]) # starttime = time.fromisoformat(entry[entry_sttime]) if entry_endtime: et = entry[entry_endtime] if type(et) is tuple: endtime = time(et[3], et[4]) else: try: et = et.split(":") endtime = time(int(et[0]), int(et[1])) except: print(entry[entry_endtime]) # endtime = time.fromisoformat(entry[entry_endtime]) if d and starttime: dstart = datetime.combine(d, starttime, tzinfo=tzone) if d and endtime: dend = datetime.combine(d, endtime, tzinfo=tzone) if entry_building: location = str(entry[entry_building]) if entry_room: location = location + " " + str(entry[entry_room]) #Check if this entry is the same as previous, but only with a different location #if so, merge these entries if last_entry and (last_entry[0] == activity and last_entry[1] == dstart and last_entry[2] == dend): last_entry[3] += " " + location result[-1] = last_entry else: result.append([activity, dstart, dend, location]) last_entry = [activity, dstart, dend, location] print("Found {} entries.".format(i), end="\r") print("Found {} entries. Done.".format(i)) return result def get_course_list(data: list = []) -> list: global __raw_data__ if not __raw_data__ and not data: raise RuntimeError("Please either run read_excel, or provide data in the data parameter") #Here we can safely assume either data or raw_data is used if data: d = data else: d = __raw_data__ #Find the column in which the activity name is stored #Most likely in 9th column, so try that first col_activity = -1 if str(d[0][9]).lower() == "activity": col_activity = 9 else: for i in len(d[0]): if str(i).lower() == "activity": #Found it, stop col_activity = i break course_list = [] #Skip first row, for it is the header row for row in range(1, len(d)): if d[row][col_activity] not in course_list: course_list.append(d[row][col_activity]) return list(course_list)
7,203
pyfilter/proposals/linear.py
merz9b/pyfilter
0
2024263
from .base import Proposal from torch.distributions import Normal, MultivariateNormal from ..timeseries import LinearGaussianObservations as LGO import torch from ..utils import construct_diag class LinearGaussianObservations(Proposal): """ Proposal designed for cases when the observation density is a linear combination of the states, and has a Gaussian density. Note that in order for this to work for multi-dimensional models you must use matrices to form the combination. """ def __init__(self): super().__init__() self._mat = None def _get_mat_and_fix_y(self, x, y): return self._model.observable._theta_vals[0], y def set_model(self, model): if not isinstance(model, LGO): raise ValueError('Model must be of instance {}'.format(LGO.__name__)) self._model = model return self @staticmethod def _kernel_1d(y, loc, h_var_inv, o_var_inv, c): cov = 1 / (h_var_inv + c ** 2 * o_var_inv) m = cov * (h_var_inv * loc + c * o_var_inv * y) kernel = Normal(m, cov.sqrt()) return kernel def _kernel_2d(self, y, loc, h_var_inv, o_var_inv, c): tc = c if self._model.obs_ndim > 1 else c.unsqueeze(-2) # ===== Define covariance ===== # ttc = tc.transpose(-2, -1) diag_o_var_inv = construct_diag(o_var_inv if self._model.observable.ndim > 1 else o_var_inv.unsqueeze(-1)) t2 = torch.matmul(ttc, torch.matmul(diag_o_var_inv, tc)) cov = (construct_diag(h_var_inv) + t2).inverse() # ===== Get mean ===== # t1 = h_var_inv * loc t2 = torch.matmul(diag_o_var_inv, y if y.dim() > 0 else y.unsqueeze(-1)) t3 = torch.matmul(ttc, t2.unsqueeze(-1))[..., 0] m = torch.matmul(cov, (t1 + t3).unsqueeze(-1))[..., 0] return MultivariateNormal(m, scale_tril=torch.cholesky(cov)) def construct(self, y, x): # ===== Hidden ===== # loc = self._model.hidden.mean(x) h_var_inv = 1 / self._model.hidden.scale(x) ** 2 # ===== Observable ===== # c, y = self._get_mat_and_fix_y(x, y) o_var_inv = 1 / self._model.observable.scale(x) ** 2 if self._model.hidden_ndim < 2: self._kernel = self._kernel_1d(y, loc, h_var_inv, o_var_inv, c) else: self._kernel = self._kernel_2d(y, loc, h_var_inv, o_var_inv, c) return self
2,431
zmsavings/utils/converter.py
vleseg/zmsavings
1
2024149
from datetime import datetime # Third-party imports from money import Money class Converter(object): def __init__(self, model_field_name, convert_method): self.model_field_name = model_field_name self._convert = convert_method def __call__(self, value): return self._convert(value) @classmethod def to_datetime(cls, model_field_name, fmt): def _convert(value): return datetime.strptime(value, fmt) return cls(model_field_name, _convert) @classmethod def to_rubles(cls, model_field_name): def _convert(value): if value == '': value = 0 else: value = value.replace(',', '.') return Money(amount=value, currency='RUR') return cls(model_field_name, _convert)
822
desktopdraw_use_dxlib.py
Kazuhito00/desktopdraw_use_dxlib
1
2023760
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys from ctypes import cdll, create_string_buffer if __name__ == '__main__': # DXライブラリのDLLをロード dxlib = cdll.DxLib_x64 # ウィンドウタイトル設定 dxlib.dx_SetMainWindowText(" ") # ウィンドウのスタイルを枠無しに指定 dxlib.dx_SetWindowStyleMode(2) # ウィンドウを透明に指定 dxlib.dx_SetUseBackBufferTransColorFlag(1) # ウィンドウモード(TRUE:1)に指定 dxlib.dx_ChangeWindowMode(1) # ウィンドウサイズ変更 dxlib.dx_SetWindowSizeChangeEnableFlag(0, 0) dxlib.dx_SetGraphMode(1920, 1080, 32) dxlib.dx_SetWindowSize(1920, 1080) # 非アクティブ状態でも動作継続するよう指定 dxlib.dx_SetAlwaysRunFlag(1) # 最前面(DX_WIN_ZTYPE_TOPMOST:3)表示するよう指定 dxlib.dx_SetWindowZOrder(3) # フォント指定 dxlib.dx_SetFontSize(30) dxlib.dx_ChangeFontType(2) # DXライブラリ初期化 if dxlib.dx_DxLib_Init() == -1: sys.exit() # メインループ dxlib.dx_SetDrawScreen(-2) # DX_SCREEN_BACK:-2 while dxlib.dx_ProcessMessage() == 0: dxlib.dx_ClearDrawScreen() draw_string = 'DESKTOP DRAW TEST' encode_string = draw_string.encode('utf-8') draw_string = create_string_buffer(encode_string) dxlib.dx_DrawString(300, 300, draw_string, dxlib.dx_GetColor( 0, 255, 0)) dxlib.dx_ScreenFlip() dxlib.dx_DxLib_End()
1,303
2nd_week/src/nlp.py
ChoiJunsik/relay_08
3
2024181
import pandas as pd import re from krwordrank.word import KRWordRank import os, sys cur_dir = os.path.dirname(os.path.abspath( __file__ )) os.chdir(cur_dir) os.chdir('..') os.chdir('./public') sentence_pattern = re.compile('\n+|[.?!]') df = pd.read_csv('./contents.csv') data = df[['title', 'body']].agg('\n'.join, axis=1) split_data = [sentence_pattern.split(row) for row in data] min_count = 4 # 단어의 최소 출현 빈도수 (그래프 생성 시) max_length = 10 # 단어의 최대 길이 wordrank_extractor = KRWordRank(min_count=min_count, max_length=max_length) beta = 0.85 # PageRank의 decaying factor beta max_iter = 10 verbose = True df.tagList = df.tagList.astype(str) for i, row in enumerate(split_data): try: keywords, rank, graph = wordrank_extractor.extract(row, beta, max_iter) print(f'[success] index: {i}, len: {len(row)}, keywords: {tuple(keywords.keys())}') df._set_value(i, 'tagList', ' '.join(list(keywords.keys()))) except: print(f'[fail] index: {i}, len: {len(row)}') df._set_value(i, 'tagList', '') df.to_csv('./tag_contents.csv', encoding='utf8', index=False)
1,138
src/processor/raw/processor.py
lcwong0928/hitlads
0
2024280
from abc import abstractmethod import pandas as pd from src.configuration.constants import RAW_DATA_DIRECTORY, INTERIM_DATA_DIRECTORY class RawProcessor: @classmethod @abstractmethod def process(cls, input_directory: str = RAW_DATA_DIRECTORY, out_directory: str = INTERIM_DATA_DIRECTORY): pass @classmethod def create_index_labels(cls, index: pd.DataFrame, anomalies: pd.DataFrame) -> list: labels = [] for i in index: label = 0 for start, end in zip(anomalies.start, anomalies.end): if start <= i <= end: label = 1 break labels.append(label) return labels
709
liveClassify_v2.py
Healbadbad/InternetOfThingsClass
0
2023590
import numpy as np import pdb from iotdata_simpleMostlyStatic import IOTData_simple from ShimmerBluetooth import ShimmerBluetooth from peakdetect2 import locatePeaks import pickle as pkl from sklearn.ensemble import RandomForestClassifier def countSteps(data): # remove the mean data = data - np.mean(data) #disregard end samples data = data[0:(len(data)-len(data)%8)] # break the time domain signal into 8-long windows data = np.reshape(data,(-1,8)) # calculate energy in the windows energy = np.sum(np.square(data),axis=1) # calculate an energy threshold enThreshold = 1.5*np.mean(energy) pkInds = locatePeaks(energy,enThreshold*1,5,minamp = enThreshold) # for i in range(len(energy)): # if energy[i]<enThreshold: # energy[i] = 0 # pkInds,o2 = peakdetect.peakdet(energy,enThreshold) return len(pkInds) # devices = ["Ground_Truth_Treadmill1", "Ground_Truth_Treadmill2", "Ground_Truth_Treadmill3", "Ground_Truth_Treadmill5"] # device = IOTData(devices, 'Ground_Truth_data\\03_27_16\\') # devices = IOTData(None, comport = "COM5") featuregenerator = IOTData_simple(windowsize = 256) print "loading classifier" pkledClassifier = open('randomforestclassifier2.pkl','rb') classifier = pkl.load(pkledClassifier) pkledClassifier.close() print "initializing bluetooth connection" sensors = [ShimmerBluetooth("COM9", 256)] predictions = [None]*len(sensors) stepCount = [0]*len(sensors) try: print "entering main loop" while True: for i in range(len(sensors)): # aquire data df = np.array(sensors[i].getFrame()) featureVector = featuregenerator.generateWindowFeatures(df) print(len(featureVector)) featureVector = np.reshape(featureVector,(1,-1)) # classify pred = classifier.predict(featureVector) predictions[i] = pred[0] # estimate step count # i dunno? accelMagnitude = np.sqrt(np.square(df[:,0])+np.square(df[:,1])+np.square(df[:,2])) if predictions[i] != "not_walking": stepCount[i] += countSteps(accelMagnitude) # save prediciton predictions[i] = pred # output predictions print '-'*20 for i in range(len(sensors)): print 'Sensor #', i+1, ':',predictions[i], 'and', stepCount[i], 'total steps' except KeyboardInterrupt: for sensor in sensors: sensor.closeDevice()
2,501
app.py
atlefren/mineturer2
8
2023947
# -*- coding: utf-8 -*- import os from flask import Flask from webassets.loaders import PythonLoader from flask.ext.assets import Environment from views import create_views from database import init_db def create_bundles(app): assets = Environment(app) assets.debug = True if app.debug == 'True' else False bundles = PythonLoader('assetbundle').load_bundles() for name, bundle in bundles.iteritems(): assets.register(name, bundle) def create_app(debug, database_url): app = Flask(__name__) app.secret_key = os.environ.get('SECRET_KEY', 'development_fallback') app.debug = debug (app.db_session, app.db_metadata, app.db_engine) = init_db(database_url) create_bundles(app) create_views(app) return app if __name__ == "__main__": port = int(os.environ.get('PORT', 5000)) db = os.environ.get('DATABASE_URL', 'sqlite:////tmp/mineturer.db') app = create_app(os.environ.get('DEBUG', False), db) app.run(host='0.0.0.0', port=port, debug=True)
1,013
flint/optim/adam.py
Renovamen/tinyark
15
2022722
import numpy as np from typing import Tuple from .optimizer import Optimizer class Adam(Optimizer): """ Implementation of Adam algorithm proposed in [1]. .. math:: v_t = \\beta_1 v_{t-1} + (1 - \\beta_1) g_t .. math:: h_t = \\beta_2 h_{t-1} + (1 - \\beta_2) g_t^2 Bias correction: .. math:: \hat{v}_t = \\frac{v_t}{1 - \\beta_1^t} .. math:: \hat{h}_t = \\frac{h_t}{1 - \\beta_2^t} Update parameters: .. math:: \\theta_t = \\theta_{t-1} - \\text{lr} \cdot \\frac{\hat{v}_t}{\sqrt{\hat{h}_t + \epsilon}} Parameters ---------- params : iterable An iterable of Tensor lr : float, optional, default=1e-3 Learning rate betas : Tuple[float, float], optional, default=(0.9, 0.999) Coefficients used for computing running averages of gradient and its square eps : float, optional, default=1e-8 Term added to the denominator to improve numerical stability weight_decay : float, optional, default=0 Weight decay (L2 penalty) References ---------- 1. "`Adam: A Method for Stochastic Optimization. <https://arxiv.org/abs/1412.6980>`_" <NAME> and <NAME>. ICLR 2015. """ def __init__( self, params = None, lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0. ): super(Adam, self).__init__(params, lr, weight_decay) self.eps = eps self.beta1, self.beta2 = betas self.v = [np.zeros_like(p.data) for p in self.params] self.h = [np.zeros_like(p.data) for p in self.params] def step(self): super(Adam, self).step() for i, (v, h, p) in enumerate(zip(self.v, self.h, self.params)): if p.requires_grad: # l2 penalty p_grad = p.grad + self.weight_decay * p.data # moving average of gradients v = self.beta1 * v + (1 - self.beta1) * p.grad self.v[i] = v # moving average of squared gradients h = self.beta2 * h + (1 - self.beta2) * (p.grad ** 2) self.h[i] = h # bias correction v_correction = 1 - (self.beta1 ** self.iterations) h_correction = 1 - (self.beta2 ** self.iterations) # update parameters p.data -= (self.lr / v_correction * v) / (np.sqrt(h) / np.sqrt(h_correction) + self.eps)
2,535
src/ml/net/pt/__init__.py
iN1k1/deep-pyramidal-representations-peron-re-identification
13
2024240
from .models import PTModel from .utils import * from .dense import DenseNet, get_densenet_backbone from .resnet import ResNet, get_resnet_backbone from .spp import SpatialPyramidPooling __all__ = ['PTModel', 'init_weights_classifier_module', 'init_weights_module_kaiming', 'init_weights_classifier_model', 'init_weights_model_kaiming', 'init_weights_normal_model', 'init_weights_normal_module', 'init_weights_orthogonal_model', 'init_weights_orthogonal_module', 'DenseNet', 'get_densenet_backbone', 'ResNet', 'get_resnet_backbone', 'utils', 'SpatialPyramidPooling']
633
distributed/protocol/tests/test_protocol_utils.py
crusaderky/distributed
1,358
2024199
from __future__ import annotations import pytest from distributed.protocol.utils import merge_memoryviews, pack_frames, unpack_frames def test_pack_frames(): frames = [b"123", b"asdf"] b = pack_frames(frames) assert isinstance(b, bytes) frames2 = unpack_frames(b) assert frames == frames2 class TestMergeMemroyviews: def test_empty(self): empty = merge_memoryviews([]) assert isinstance(empty, memoryview) and len(empty) == 0 def test_one(self): base = bytearray(range(10)) base_mv = memoryview(base) assert merge_memoryviews([base_mv]) is base_mv @pytest.mark.parametrize( "slices", [ [slice(None, 3), slice(3, None)], [slice(1, 3), slice(3, None)], [slice(1, 3), slice(3, -1)], [slice(0, 0), slice(None)], [slice(None), slice(-1, -1)], [slice(0, 0), slice(0, 0)], [slice(None, 3), slice(3, 7), slice(7, None)], [slice(2, 3), slice(3, 7), slice(7, 9)], [slice(2, 3), slice(3, 7), slice(7, 9), slice(9, 9)], [slice(1, 2), slice(2, 5), slice(5, 8), slice(8, None)], ], ) def test_parts(self, slices: list[slice]): base = bytearray(range(10)) base_mv = memoryview(base) equiv_start = min(s.indices(10)[0] for s in slices) equiv_stop = max(s.indices(10)[1] for s in slices) equiv = base_mv[equiv_start:equiv_stop] parts = [base_mv[s] for s in slices] result = merge_memoryviews(parts) assert result.obj is base assert len(result) == len(equiv) assert result == equiv def test_readonly_buffer(self): pytest.importorskip( "numpy", reason="Read-only buffer zero-copy merging requires NumPy" ) base = bytes(range(10)) base_mv = memoryview(base) result = merge_memoryviews([base_mv[:4], base_mv[4:]]) assert result.obj is base assert len(result) == len(base) assert result == base def test_catch_non_memoryview(self): with pytest.raises(TypeError, match="Expected memoryview"): merge_memoryviews([b"1234", memoryview(b"4567")]) with pytest.raises(TypeError, match="expected memoryview"): merge_memoryviews([memoryview(b"123"), b"1234"]) @pytest.mark.parametrize( "slices", [ [slice(None, 3), slice(4, None)], [slice(None, 3), slice(2, None)], [slice(1, 3), slice(3, 6), slice(9, None)], ], ) def test_catch_gaps(self, slices: list[slice]): base = bytearray(range(10)) base_mv = memoryview(base) parts = [base_mv[s] for s in slices] with pytest.raises(ValueError, match="does not start where the previous ends"): merge_memoryviews(parts) def test_catch_different_buffer(self): base = bytearray(range(8)) base_mv = memoryview(base) with pytest.raises(ValueError, match="different buffer"): merge_memoryviews([base_mv, memoryview(base.copy())]) def test_catch_different_non_contiguous(self): base = bytearray(range(8)) base_mv = memoryview(base)[::-1] with pytest.raises(ValueError, match="non-contiguous"): merge_memoryviews([base_mv[:3], base_mv[3:]]) def test_catch_multidimensional(self): base = bytearray(range(6)) base_mv = memoryview(base).cast("B", [3, 2]) with pytest.raises(ValueError, match="has 2 dimensions, not 1"): merge_memoryviews([base_mv[:1], base_mv[1:]]) def test_catch_different_formats(self): base = bytearray(range(8)) base_mv = memoryview(base) with pytest.raises(ValueError, match="inconsistent format: I vs B"): merge_memoryviews([base_mv[:4], base_mv[4:].cast("I")])
3,909
stock/models.py
aveetron/cafe3_resturant_management
0
2023080
from django.db import models # Create your models here. class Item(models.Model): name = models.CharField(max_length=50, unique=True, null=False, blank=False) price = models.IntegerField(null=False, blank=False) def __str__(self): return self.name
270
porcupine/plugins/statusbar.py
ThePhilgrim/porcupine
0
2024312
"""Display a status bar in each file tab.""" import tkinter from tkinter import ttk from porcupine import get_tab_manager, tabs, textwidget, utils class StatusBar(ttk.Frame): def __init__(self, tab: tabs.FileTab): super().__init__(tab.bottom_frame) self.tab = tab self.left_label = ttk.Label(self) self.right_label = ttk.Label(self) self.left_label.pack(side="left") self.right_label.pack(side="right") def show_path(self, junk: object = None) -> None: self.left_label.config(text=("New file" if self.tab.path is None else str(self.tab.path))) def show_cursor_or_selection(self, junk: object = None) -> None: try: # For line count, if the cursor is in beginning of line, don't count that as another line. chars = textwidget.count(self.tab.textwidget, "sel.first", "sel.last") lines = textwidget.count( self.tab.textwidget, "sel.first", "sel.last - 1 char", option="-lines" ) except tkinter.TclError: # no text selected line, column = self.tab.textwidget.index("insert").split(".") self.right_label.config(text=f"Line {line}, column {column}") else: if lines == 0: self.right_label.config(text=f"{chars} characters selected") else: self.right_label.config(text=f"{chars} characters on {lines+1} lines selected") def show_reload_warning(self, event: utils.EventWithData) -> None: if event.data_class(tabs.ReloadInfo).was_modified: oops = utils.get_binding("<<Undo>>") self.left_label.config( foreground="red", text=( f"File was reloaded with unsaved changes. Press {oops} to get your changes" " back." ), ) def clear_reload_warning(self, junk: object) -> None: if self.left_label["foreground"]: self.left_label.config(foreground="") self.show_path() def on_new_tab(tab: tabs.Tab) -> None: if isinstance(tab, tabs.FileTab): statusbar = StatusBar(tab) statusbar.pack(side="bottom", fill="x") tab.bind("<<PathChanged>>", statusbar.show_path, add=True) utils.bind_with_data(tab, "<<Reloaded>>", statusbar.show_reload_warning, add=True) tab.textwidget.bind("<<CursorMoved>>", statusbar.show_cursor_or_selection, add=True) tab.textwidget.bind("<<Selection>>", statusbar.show_cursor_or_selection, add=True) tab.textwidget.bind("<<ContentChanged>>", statusbar.clear_reload_warning, add=True) statusbar.show_path() statusbar.show_cursor_or_selection() def setup() -> None: get_tab_manager().add_tab_callback(on_new_tab)
2,821
iscr/utils.py
iammrhelo/iscr-searchengine
0
2023451
import math import pickle def normalize(d, inplace=False): total = sum(d.values()) if inplace is True: for k, v in d.items(): d[k] = v / total else: norm_d = {} for k, v in d.items(): norm_d[k] = v / total return norm_d def load_from_pickle(filename): with open(filename, 'rb') as fin: return pickle.load(fin) def save_to_pickle(filename, obj): with open(filename, 'wb') as fout: pickle.dump(obj, fout) def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i])
744
pyt_binary_classification.py
mjbhobe/dl-pytorch
5
2023818
""" pyt_binary_classification.py: binary classification of 2D data @author: <NAME> My experiments with Python, Machine Learning & Deep Learning. This code is meant for education purposes only & is not intended for commercial/production use! Use at your own risk!! I am not responsible if your CPU or GPU gets fried :D """ import warnings warnings.filterwarnings('ignore') import os import sys import random import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, r2_score from sklearn.utils import shuffle # tweaks for libraries np.set_printoptions(precision=6, linewidth=1024, suppress=True) plt.style.use('seaborn') sns.set(style='whitegrid', font_scale=1.1, palette='muted') # Pytorch imports import torch print('Using Pytorch version: ', torch.__version__) import torch.nn as nn import torch.nn.functional as F from torch import optim from torchsummary import summary # My helper functions for training/evaluating etc. import pytorch_toolkit as pytk seed = 42 random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.enabled = False NUM_EPOCHS = 2500 BATCH_SIZE = 1024 * 4 LR = 0.001 DATA_FILE = os.path.join('.', 'csv_files', 'weatherAUS.csv') print(f"Data file: {DATA_FILE}") MODEL_SAVE_PATH = os.path.join('.', 'model_states', 'weather_model.pt') # --------------------------------------------------------------------------- # load data, select fields & apply scaling # --------------------------------------------------------------------------- def get_data(test_split=0.20, shuffle_it=True, balance=False, sampling_strategy=0.85, debug=False): from imblearn.over_sampling import SMOTE df = pd.read_csv(DATA_FILE) if shuffle_it: df = shuffle(df) cols = ['Rainfall', 'Humidity3pm', 'Pressure9am', 'RainToday', 'RainTomorrow'] df = df[cols] # convert categorical cols - RainToday & RainTomorrow to numeric df['RainToday'].replace({"No": 0, "Yes": 1}, inplace=True) df['RainTomorrow'].replace({"No": 0, "Yes": 1}, inplace=True) # drop all rows where any cols == Null df = df.dropna(how='any') # display plot of target sns.countplot(df.RainTomorrow) plt.title("RainTomorrow: existing counts") plt.show() X = df.drop(['RainTomorrow'], axis=1).values y = df['RainTomorrow'].values if debug: print(f"{'Before balancing ' if balance else ''} X.shape = {X.shape}, " f"y.shape = {y.shape}, y-count = {np.bincount(y)}") if balance: ros = SMOTE(sampling_strategy=sampling_strategy, random_state=seed) X, y = ros.fit_resample(X, y) if debug: print(f"Resampled -> X.shape = {X.shape}, y.shape = {y.shape}, " f"y-count = {np.bincount(y)}") # display plot of target sns.countplot(y) plt.title("RainTomorrow: after re-balancing") plt.show() X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=test_split, random_state=seed) if debug: print( f"Split data -> X_train.shape = {X_train.shape}, y_train.shape = {y_train.shape}, " f"X_test.shape = {X_test.shape}, y_test.shape = {y_test.shape}") ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) X_train = X_train.astype('float32') X_test = X_test.astype('float32') # y_train = np.expand_dims(y_train, axis=1) # y_test = np.expand_dims(y_test, axis=1) # NOTE: BCELoss() expects labels to be floats - why??? y_train = y_train.astype('float32') y_test = y_test.astype('float32') y_train = y_train[:, np.newaxis] y_test = y_test[:, np.newaxis] return (X_train, y_train), (X_test, y_test) # our binary classification model # class Net(pytk.PytkModule): # def __init__(self, features): # super(Net, self).__init__() # self.fc1 = pytk.Linear(features, 10) # self.fc2 = pytk.Linear(10, 5) # self.out = pytk.Linear(5, 1) # # def forward(self, x): # x = F.relu(self.fc1(x)) # x = F.relu(self.fc2(x)) # x = F.sigmoid(self.out(x)) # return x class Net(pytk.PytkModule): def __init__(self, features): super(Net, self).__init__() self.fc1 = pytk.Linear(features, 32) self.fc2 = pytk.Linear(32, 16) self.fc3 = pytk.Linear(16, 8) self.out = pytk.Linear(8, 1) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.sigmoid(self.out(x)) return x DO_TRAINING = True DO_PREDICTION = True def main(): # load & preprocess data (X_train, y_train), (X_test, y_test) = get_data(balance=True, sampling_strategy=0.90, debug=True) print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) if DO_TRAINING: # build model model = Net(X_train.shape[1]) criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr=LR) # optimizer = optim.SGD(model.parameters(), lr=LR) model.compile(loss=criterion, optimizer=optimizer, metrics=['accuracy']) print(model) scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=200, gamma=0.2) hist = model.fit(X_train, y_train, validation_split=0.2, epochs=NUM_EPOCHS, batch_size=-1, lr_scheduler=scheduler, report_interval=50, verbose=2) pytk.show_plots(hist, metric='accuracy') # evaluate performance print('Evaluating performance...') loss, acc = model.evaluate(X_train, y_train, batch_size=2048) print(f' - Train dataset -> loss: {loss:.3f} acc: {acc:.3f}') loss, acc = model.evaluate(X_test, y_test) print(f' - Test dataset -> loss: {loss:.3f} acc: {acc:.3f}') model.save(MODEL_SAVE_PATH) del model if DO_PREDICTION: if not os.path.exists(MODEL_SAVE_PATH): raise ValueError(f"Could not find saved model at {MODEL_SAVE_PATH}. Did you train model?") # run predictions # model = pytk.load_model(MODEL_SAVE_PATH) model = Net(X_train.shape[1]) model.load(MODEL_SAVE_PATH) print(model) y_pred = (model.predict(X_test) >= 0.5).astype('int32').ravel() y_test = y_test.astype('int32').reshape(-1) print(classification_report(y_test, y_pred)) pytk.plot_confusion_matrix(confusion_matrix(y_test, y_pred), ["No Rain", "Rain"], title="Rain Prediction for Tomorrow") del model if __name__ == '__main__': main() # Results: # Training (1000 epochs) # - loss: 0.377 acc: 84.0% # Training (1000 epochs) # - loss: 0.377 acc: 84.1% # Conclusion: No overfitting, but accuracy is low. Possibly due to very imbalanced data # # Training (1000 epochs) with re-sampling # - loss: 0.377 acc: 84.0% # Training (1000 epochs) # - loss: 0.377 acc: 84.1% # Conclusion: No overfitting, but accuracy is low. Possibly due to very imbalanced data
7,653
report.py
bakink/oracle-imagecopy-backup
20
2024338
#!/usr/bin/python2 import os, sys, json from backupcommon import scriptpath, Configuration, BackupLogger, BackupTemplate, info, error, debug, exception, create_snapshot_class from tempfile import mkstemp from oraexec import OracleExec def printhelp(): print "Usage: report.py [comma separated list of databases]" sys.exit(2) if len(sys.argv) not in [1,2]: printhelp() # Directory where the executable script is located scriptpath = scriptpath() # Read configuration logf = mkstemp(prefix='backupreport-', suffix='.log') os.close(logf[0]) Configuration.init('generic') BackupLogger.init(logf[1], 'reporting') Configuration.substitutions.update( {'logfile': BackupLogger.logfile, 'autorestorecatalog': Configuration.get('autorestorecatalog', 'autorestore')} ) reporttemplate = BackupTemplate('reporttemplate.cfg') def exec_sqlplus(oraexec, script, header = 'sqlplusheader'): finalscript = "%s\n%s\n%s" % (reporttemplate.get(header), script, reporttemplate.get('sqlplusfooter')) output = oraexec.sqlplus(finalscript, silent=True) for line in output.splitlines(): if line.startswith('OUTLOG: '): yield(line.strip()[8:]) def process_database(dbname): Configuration.defaultsection = dbname Configuration.substitutions.update({'dbname': dbname}) oraexec = OracleExec(oraclehome=Configuration.get('oraclehome', 'generic'), tnspath=os.path.join(scriptpath, Configuration.get('tnsadmin', 'generic'))) # Read job status information from the database jobinfo = {} for line in exec_sqlplus(oraexec, reporttemplate.get('jobstatus')): j = json.loads(line) if j["type"] == "job": if j["job_name"] == "ARCHLOGBACKUP_JOB": jobinfo["archlog"] = j elif j["job_name"] == "IMAGECOPY_JOB": jobinfo["imagecopy"] = j elif j["type"] == "exec": if j["job_name"] == "ARCHLOGBACKUP_JOB": jobinfo["archlogexec"] = j elif j["job_name"] == "IMAGECOPY_JOB": jobinfo["imagecopyexec"] = j # Read snapshot information zfs = create_snapshot_class(dbname) snaps = zfs.listsnapshots(True, True) # Autorestore information autorestoreinfo = None try: for line in exec_sqlplus(oraexec, reporttemplate.get('autorestorestatus'), 'sqlplusautorestoreheader'): autorestoreinfo = json.loads(line) except: pass # Print output print "%s:" % dbname try: print " Backup job: %s, last: %s, duration: %s, last failure: %s" % (jobinfo['imagecopy']['state'], jobinfo['imagecopy']['last_start_date'], jobinfo['imagecopy']['last_run_duration'], jobinfo['imagecopyexec']['last_failed']) print " Archivelog job: %s, last: %s, duration: %s, last failure: %s" % (jobinfo['archlog']['state'], jobinfo['archlog']['last_start_date'], jobinfo['archlog']['last_run_duration'], jobinfo['archlogexec']['last_failed']) if len(snaps) > 0: firstsnap = zfs.getsnapinfo(snaps[0]) lastsnap = zfs.getsnapinfo(snaps[-1]) print " Snapshots: %d, latest: %s, oldest: %s" % (len(snaps), firstsnap["creation"], lastsnap["creation"]) else: print " Snapshots: none" if autorestoreinfo is not None: print " Last successful restore: %s, last restore failure: %s, last successful validation: %s, avg difference from target (s): %d, avg restore time (min): %d" % (autorestoreinfo["last_success"], autorestoreinfo["last_fail"], autorestoreinfo["last_validated"], autorestoreinfo["avgdiff"], autorestoreinfo["avgrestoremin"]) except: print " Error getting information." excludelist = ['generic','rman','zfssa','autorestore'] includelist = [] if len(sys.argv) == 2: includelist = sys.argv[1].split(",") # Loop through all sections for dbname in Configuration.sections(): if dbname not in excludelist and (len(includelist) == 0 or dbname in includelist): process_database(dbname)
4,003
mk-trees-01.py
mykespb/pythoner
1
2023974
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # mk-trees-01.py 2018-04-27 0.2 # <NAME>, 2018-04 # tests for trees etc # Just adding old tests and problems for students of Python. # --------------------------- import random # --------------------------- # test 1 # --------------------------- VALFROM = 0 VALTO = 50 VALNUM = 20 class Tree1: def __init__(self, val=0): self.val = val self.left = None self.right = None def add(self, val): """add a unique value to tree""" if val < self.val: if self.left: self.left.add(val) else: self.left = Tree1(val) elif val > self.val: if self.right: self.right.add(val) else: self.right = Tree1(val) def print(self): """ordered output""" if self.left: self.left.print() print(self.val, end=", ") if self.right: self.right.print() def exists(self, val): """test if value is in tree""" if val == self.val: return True if val < self.val and self.left: return self.left.exists(val) if val > self.val and self.right: return self.right.exists(val) return False def test1(): """create a tree and find a value""" tree = t1make(VALNUM) tree.print() t1find(tree) def t1make(valnum): """make a tree""" r = random.randint(VALFROM, VALTO) print (f"adding {r}, ") t = Tree1(r) for i in range(1, valnum): r = random.randint(VALFROM, VALTO) print (f"adding {r}, ") t.add (r) return t def t1find(tree): """find a value""" print() for i in range(VALNUM): r = random.randint(VALFROM, VALTO) print(f"Looking for {r}, result is {tree.exists(r)}") # --------------------------- def main(args): test1() return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
2,029
table/county.py
lovenery/life-prediction-model
5
2024175
import pandas as pd import os.path as path df = pd.read_csv(path.join(path.dirname(__file__), './county.csv')) # print df # .js for index, row in df.iterrows(): print("{\n\tid: %d,\n\tname: \"%s\"\n}," % (index+1, row.chinese))
235
utils/load_weights.py
advsail/Tensorflow-quantization-test
74
2024283
import h5py import sys import numpy as np sys.path.append('../') def weight_loader(weight_file): weights = {} f = h5py.File(weight_file, mode='r') # f = f['model_weights'] try: layers = f.attrs['layer_names'] except: raise ValueError("weights file must contain attribution: 'layer_names'") for layer_name in layers: g = f[layer_name] for weight_name in g.attrs['weight_names']: weight_value = g[weight_name].value name = str(weight_name).split("'")[1] weights[name] = weight_value return weights
595
component_tests/cpackaga_a/test_a.py
crazeejeeves/trisuite
0
2022733
from unittest import TestCase from ddt import * from basic_math.accumulate import add from framework.tags import tag, ProductTag class TestComponentA(TestCase): def test_one_param(self): self.assertRaises(TypeError, lambda: add(1)) @tag("Nightly", "Long-running", priority=1) def test_two_params(self): self.assertEquals(3, add(1, 2), "Add result did not produce 3") @tag("Nightly", priority=1, product=ProductTag.BME) def test_three_params(self): self.assertEquals(6, add(1, 2, 3), "Add result did not produce 6") @tag("Nightly", priority=1, product=ProductTag.BME) def test_parameterized_params(self, a, b, c, result): self.assertEquals(result, add(a, b, c), "Add result did not produce {}".format(result))
782
tests/builtins/test_filter.py
katharosada/voc
0
2024042
from .. utils import TranspileTestCase, BuiltinTwoargFunctionTestCase class FilterTests(TranspileTestCase): def test_bool(self): self.assertCodeExecution('print(list(filter(bool, [True, False, True])))') self.assertCodeExecution('print(list(filter(bool, [1, 0, 3, -1])))') self.assertCodeExecution('print(list(filter(bool, [])))') def test_none(self): self.assertCodeExecution('print(list(filter(None, [True, False, True])))') self.assertCodeExecution('print(list(filter(None, [])))') def test_lambda(self): self.assertCodeExecution('print(list(filter(lambda x: x > 1, [3, 4, 56, 1, -11])))') def test_wrong_argument(self): self.assertCodeExecution('print(list(filter(None, None)))', exits_early=True) class BuiltinFilterFunctionTests(BuiltinTwoargFunctionTestCase, TranspileTestCase): functions = ["filter"] not_implemented = [ 'test_bool_bytearray', 'test_bool_bytes', 'test_bool_dict', 'test_bool_frozenset', 'test_bool_list', 'test_bool_range', 'test_bool_set', 'test_bool_str', 'test_bool_tuple', 'test_bytearray_bytearray', 'test_bytearray_bytes', 'test_bytearray_dict', 'test_bytearray_frozenset', 'test_bytearray_list', 'test_bytearray_range', 'test_bytearray_set', 'test_bytearray_str', 'test_bytearray_tuple', 'test_bytes_bytearray', 'test_bytes_bytes', 'test_bytes_dict', 'test_bytes_frozenset', 'test_bytes_list', 'test_bytes_range', 'test_bytes_set', 'test_bytes_str', 'test_bytes_tuple', 'test_class_bytearray', 'test_complex_bytearray', 'test_complex_bytes', 'test_complex_dict', 'test_complex_frozenset', 'test_complex_list', 'test_complex_range', 'test_complex_set', 'test_complex_str', 'test_complex_tuple', 'test_dict_bytearray', 'test_dict_bytes', 'test_dict_dict', 'test_dict_frozenset', 'test_dict_list', 'test_dict_range', 'test_dict_set', 'test_dict_str', 'test_dict_tuple', 'test_float_bytearray', 'test_float_bytes', 'test_float_dict', 'test_float_frozenset', 'test_float_list', 'test_float_range', 'test_float_set', 'test_float_str', 'test_float_tuple', 'test_frozenset_bytearray', 'test_frozenset_bytes', 'test_frozenset_dict', 'test_frozenset_frozenset', 'test_frozenset_list', 'test_frozenset_range', 'test_frozenset_set', 'test_frozenset_str', 'test_frozenset_tuple', 'test_int_bytearray', 'test_int_bytes', 'test_int_dict', 'test_int_frozenset', 'test_int_list', 'test_int_range', 'test_int_set', 'test_int_str', 'test_int_tuple', 'test_list_bytearray', 'test_list_bytes', 'test_list_dict', 'test_list_frozenset', 'test_list_list', 'test_list_range', 'test_list_set', 'test_list_str', 'test_list_tuple', 'test_None_bytearray', 'test_NotImplemented_bytearray', 'test_NotImplemented_bytes', 'test_NotImplemented_dict', 'test_NotImplemented_frozenset', 'test_NotImplemented_list', 'test_NotImplemented_range', 'test_NotImplemented_set', 'test_NotImplemented_str', 'test_NotImplemented_tuple', 'test_range_bytearray', 'test_range_bytes', 'test_range_dict', 'test_range_frozenset', 'test_range_list', 'test_range_range', 'test_range_set', 'test_range_str', 'test_range_tuple', 'test_set_bytearray', 'test_set_bytes', 'test_set_dict', 'test_set_frozenset', 'test_set_list', 'test_set_range', 'test_set_set', 'test_set_str', 'test_set_tuple', 'test_slice_bytearray', 'test_slice_bytes', 'test_slice_dict', 'test_slice_frozenset', 'test_slice_list', 'test_slice_range', 'test_slice_set', 'test_slice_str', 'test_slice_tuple', 'test_str_bytearray', 'test_str_bytes', 'test_str_dict', 'test_str_frozenset', 'test_str_list', 'test_str_range', 'test_str_set', 'test_str_str', 'test_str_tuple', 'test_tuple_bytearray', 'test_tuple_bytes', 'test_tuple_dict', 'test_tuple_frozenset', 'test_tuple_list', 'test_tuple_range', 'test_tuple_set', 'test_tuple_str', 'test_tuple_tuple', ]
4,903
genchartbl.py
bryancall/nghttp3
474
2022918
#!/usr/bin/env python3 import sys import string def name(i): if i < 0x21: return \ ['NUL ', 'SOH ', 'STX ', 'ETX ', 'EOT ', 'ENQ ', 'ACK ', 'BEL ', 'BS ', 'HT ', 'LF ', 'VT ', 'FF ', 'CR ', 'SO ', 'SI ', 'DLE ', 'DC1 ', 'DC2 ', 'DC3 ', 'DC4 ', 'NAK ', 'SYN ', 'ETB ', 'CAN ', 'EM ', 'SUB ', 'ESC ', 'FS ', 'GS ', 'RS ', 'US ', 'SPC '][i] if i == 0x7f: return 'DEL ' def gentbl(tblname, pred): sys.stdout.write('''\ /* Generated by genchartbl.py */ static const int {}[] = {{ '''.format(tblname)) for i in range(256): if pred(chr(i)): v = 1 else: v = 0 if 0x21 <= i and i < 0x7f: sys.stdout.write('{} /* {} */, '.format(v, chr(i))) elif 0x80 <= i: sys.stdout.write('{} /* {} */, '.format(v, hex(i))) else: sys.stdout.write('{} /* {} */, '.format(v, name(i))) if (i + 1)%4 == 0: sys.stdout.write('\n') sys.stdout.write('};\n') def sf_key(): gentbl('SF_KEY_CHARS', lambda c: c in string.ascii_lowercase or c in string.digits or c in '_-.*') def sf_dquote(): gentbl('SF_DQUOTE_CHARS', lambda c: (0x20 <= ord(c) and ord(c) <= 0x21) or (0x23 <= ord(c) and ord(c) <= 0x5b) or (0x5d <= ord(c) and ord(c) <= 0x7e)) def sf_token(): gentbl('SF_TOKEN_CHARS', lambda c: c in "!#$%&'*+-.^_`|~:/" or c in string.digits or c in string.ascii_letters) def sf_byteseq(): gentbl('SF_BYTESEQ_CHARS', lambda c: c in string.ascii_letters or c in string.digits or c in '+/=') sf_key() sys.stdout.write('\n') sf_dquote() sys.stdout.write('\n') sf_token() sys.stdout.write('\n') sf_byteseq() sys.stdout.write('\n')
1,809
cc150/PermutationOfString.py
JulyKikuAkita/PythonPrac
1
2023895
__author__ = 'July' # write a method to compute all permutation of a string # write a methof to compute all combinatino of a string import re class Solution: # no ordering def getPermutation(self, str): result = self.getPermutationRecu(str) for i in xrange(len(result)): result[i] = result[i].translate(None, '.') return result def getPermutationRecu(self, str): result = [] if str == None: return elif len(str) == 0: #base case result.append(".") # if use "", result is null return result first_char = str[0] remain_char = str[1:] words = self.getPermutationRecu(remain_char) for word in words: for j in xrange(len(word)): result.append(self.insertCharAt(word, j, first_char)) return result def insertCharAt(self, word, index, char): #print word first_half = str(word[:index]) last_half = str(word[index:]) return first_half + char + last_half def getCombinateion(self, str): result = [] space = 1 << len(str) for i in xrange(space): k = i index = 0 substr = [] while k: if k & 1 > 0: substr.append(str[index]) k >>= 1 index += 1 result.append(substr) return result if __name__ == "__main__": print Solution().getPermutation("ab") print Solution().getCombinateion("ab")
1,563
data_processing/main.py
bioengstrom/master-thesis
0
2024337
""" Starting point for the pose extraction, using OpenPose. """ import os import time import numpy as np from helpers import SHOULD_LIMIT, lower_lim_check, upper_lim_check, read_from_json from helpers.display_helper import display_session from helpers.json_helper import combine_json_files from helpers.paths import DATASET_PATH, EXTR_PATH, EXTR_PATH_SSD from pose_extraction.extraction_config import TRIMMED_SESSION_FLAG, SHOULD_USE_TRIMMED from pose_extraction.foi_extraction import extract_session from pre_processing.cc_sync_sessions import cc_session_sync from pre_processing.post_extraction_processing import process_extracted_files def loop_over_session(session_dir, subject_idx, session_idx, action): """ Extracts, processes and saves the poses from a session. A session can consist of many videos covering different views. :param session_dir: :param subject_idx: :param session_idx: :param action: :return: """ if not os.path.exists(session_dir): return # Get the view names (child file names of a session) _, _, views = next(os.walk(session_dir)) action(session_dir, subject_idx, session_idx, views) def loop_over_subject(subject_dir, subject_idx, action=None): """ Extract the poses from a single subject :param subject_dir: :param subject_idx: :param action: :return: """ if not os.path.exists(subject_dir): return # Get the session names (child folder names of a subject) _, sess_names, _ = next(os.walk(subject_dir)) if SHOULD_USE_TRIMMED: # Remove un-trimmed sessions (sess) before extraction if they have trimmed counterparts # Some sessions are trimmed in the beginning and end to remove frames containing more than one individual for sess_name in sess_names: if TRIMMED_SESSION_FLAG in sess_name: deprecate_session_name = sess_name.replace(TRIMMED_SESSION_FLAG, "") sess_names.remove(deprecate_session_name) else: for sess_name in sess_names: if TRIMMED_SESSION_FLAG in sess_name: sess_names.remove(sess_name) for sess_idx in range(len(sorted(sess_names))): if SHOULD_LIMIT and lower_lim_check(sess_idx, "sess"): continue if SHOULD_LIMIT and upper_lim_check(sess_idx, "sess"): break sess_dir = os.path.join(subject_dir, sess_names[sess_idx]) loop_over_session(sess_dir, subject_idx, sess_idx, action) def loop_over_foi_dataset(root_dir, action=None): """ Extract the poses from all the subjects :param root_dir: :param action: :return: """ # Loop through the dir containing all the subjects _, subject_names, _ = next(os.walk(root_dir)) for subject_idx in range(len(sorted(subject_names))): if SHOULD_LIMIT and lower_lim_check(subject_idx, "sub"): continue if SHOULD_LIMIT and upper_lim_check(subject_idx, "sub"): break subject_dir = os.path.join(root_dir, subject_names[subject_idx]) loop_over_subject(subject_dir, subject_idx, action) if __name__ == "__main__": start_time = time.time() """"""""""" For extraction of the FOI dataset """"""""""" #loop_over_foi_dataset(root_dir=DATASET_PATH, action=extract_session) """"""""""" For syncing the sessions """"""""""" #loop_over_foi_dataset(root_dir=DATASET_PATH, action=cc_session_sync) """"""""""" For viewing session, synced or not """"""""""" #loop_over_foi_dataset(root_dir=DATASET_PATH, action=display_session) """"""""""" other """"""""""" #process_extracted_files() #data_info = read_from_json(EXTR_PATH + "final_data_info.json") #print(data_info) #combine_json_files(EXTR_PATH + "final/") #data = read_from_json(EXTR_PATH_SSD + "final/combined/combined.json") #print(np.array(data["SUB5_SESS0_VIEW3.json"]).shape) #print(f"Main finished in {time.time()-start_time:0.1f}s")
4,045
hftools/dataset/tests/test_arrayobj_funcs.py
extrakteon/hftools-1
3
2022967
#----------------------------------------------------------------------------- # Copyright (c) 2014, HFTools Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import os import pdb import numpy as np from numpy import newaxis import hftools.dataset.arrayobj as aobj import hftools.dataset.dim as dim import hftools.dataset as ds from hftools.testing import TestCase, skip, make_load_tests from hftools.testing import random_value_array, random_complex_value_array,\ SKIP basepath = os.path.split(__file__)[0] class Test_get_new_anonymous(TestCase): def test_get_new_anon_1(self): dims = (dim.DimSweep("a", 3),) anon = aobj.get_new_anonymous_dim(dims, [1, 2, 3]) self.assertIsInstance(anon, aobj.DimAnonymous) self.assertEqual(anon.name, "ANON1") def test_get_new_anon_2(self): dims = (dim.DimSweep("ANON1", 3), dim.DimSweep("ANON2", 3), ) anon = aobj.get_new_anonymous_dim(dims, [1, 2, 3]) self.assertIsInstance(anon, aobj.DimAnonymous) self.assertEqual(anon.name, "ANON1") def test_get_new_anon_3(self): dims = aobj.hfarray([1, 2, 3]) anon = aobj.get_new_anonymous_dim(dims, [1, 2, 3]) self.assertIsInstance(anon, aobj.DimAnonymous) self.assertEqual(anon.name, "ANON1") class Test_axis_handler(TestCase): def setUp(self): (ai, bi, ci) = (dim.DimSweep("ai", 2), dim.DimRep("bi", 3), dim.DimSweep("ci", 4)) self.ai = ai self.bi = bi self.ci = ci self.a = aobj.hfarray(ai) self.b = aobj.hfarray(bi) * 10 self.c = aobj.hfarray(ci) * 100 self.abc = self.a + self.c + self.b def test_1(self): self.assertIsNone(aobj.axis_handler(self.a, None)) def test_2(self): res = aobj.axis_handler(self.a, "ai") self.assertEqual(res, self.ai) def test_3(self): res = aobj.axis_handler(self.abc, 2) self.assertEqual(res, self.bi) def test_4(self): res = aobj.axis_handler(self.abc, dim.DimRep) self.assertEqual(res, self.bi) def test_5(self): res = aobj.axis_handler(self.abc, self.bi) self.assertEqual(res, self.bi) def test_error_1(self): self.assertRaises(IndexError, aobj.axis_handler, self.abc, dim.DimAnonymous) def test_error_2(self): self.assertRaises(IndexError, aobj.axis_handler, self.abc, dim.DimSweep) def test_error_3(self): self.assertRaises(IndexError, aobj.axis_handler, self.a, self.ci) class Test_multiple_axis_handler(TestCase): def setUp(self): (ai, bi, ci) = (dim.DimSweep("ai", 2), dim.DimRep("bi", 3), dim.DimSweep("ci", 4)) self.ai = ai self.bi = bi self.ci = ci self.a = aobj.hfarray(ai) self.b = aobj.hfarray(bi) * 10 self.c = aobj.hfarray(ci) * 100 self.abc = self.a + self.b + self.c def test_1(self): self.assertEqual(aobj.multiple_axis_handler(self.a, None), (None, None)) def test_2(self): self.assertEqual(aobj.multiple_axis_handler(self.a, self.ai), ((self.ai,), (0,))) def test_3(self): self.assertEqual(aobj.multiple_axis_handler(self.a, (self.ai, )), ((self.ai,), (0,))) def test_4(self): self.assertEqual(aobj.multiple_axis_handler(self.a, (0, )), ((self.ai,), (0,))) def test_5(self): self.assertEqual(aobj.multiple_axis_handler(self.abc, (0, )), ((self.ai,), (0,))) def test_6(self): self.assertEqual(aobj.multiple_axis_handler(self.abc, ("ai", 1)), ((self.ai, self.ci), (0, 1))) def test_7(self): self.assertEqual(aobj.multiple_axis_handler(self.abc, dim.DimSweep), ((self.ai, self.ci), (0, 1))) def test_8(self): self.assertEqual(aobj.multiple_axis_handler(self.abc, (self.ai, self.ci)), ((self.ai, self.ci), (0, 1))) def test_erro_1(self): self.assertRaises(IndexError, aobj.multiple_axis_handler, self.a, self.ci)
4,594
examples/idioms/programs/059.0668-write-to-standard-error-stream.py
laowantong/paroxython
31
2023259
"""Write to standard error stream. Print the message "_x is negative" to standard error (stderr), with integer _x value substitution (e.g. "-2 is negative"). Source: programming-idioms.org """ # Implementation author: cym13 # Created on 2015-11-30T12:37:29.950568Z # Last modified on 2015-11-30T12:37:29.950568Z # Version 1 # Python3 import sys print(x, "is negative", file=sys.stderr)
392
task/models.py
cavidanhasanli/TaskManager
0
2023134
import peewee from app.database import db from user.models import User class BaseModel(peewee.Model): class Meta: database = db class UserIpDetail(BaseModel): id = peewee.AutoField() ip = peewee.CharField(null=False, max_length=255) details = peewee.CharField(null=False, max_length=255) user_id = peewee.ForeignKeyField(User, backref="useripdetail", on_delete="CASCADE")
406
examples/0230-navdate-navdate_collection.py
dnoneill/pyIIIFpres
12
2023501
# https://iiif.io/api/cookbook/recipe/0230-navdate/navdate-collection.json from IIIFpres import iiifpapi3 iiifpapi3.BASE_URL = r"https://iiif.io/api/cookbook/recipe/0230-navdate/" manifest_1 = iiifpapi3.Manifest() manifest_1.set_id(extendbase_url="navdate_map_1-manifest.json") manifest_1.add_label("en","1987 Chesapeake and Ohio Canal, Washington, D.C., Maryland, West Virginia, official map and guide") manifest_1.set_navDate("1987-01-01T00:00:00+00:00") canvas = manifest_1.add_canvas_to_items() canvas.set_id(extendbase_url="canvas/p1") canvas.set_height(7072) canvas.set_width(5212) canvas.add_label("en","1987 Map, recto and verso, with a date of publication") annopage = canvas.add_annotationpage_to_items() annopage.set_id(extendbase_url="page/p1/1") annotation = annopage.add_annotation_to_items(target=canvas.id) annotation.set_motivation("painting") annotation.set_id(extendbase_url="annotation/p0001-image") annotation.body.set_height(7072) annotation.body.set_width(5212) annotation.body.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-88695674/full/max/0/default.jpg") annotation.body.set_format("image/jpeg") annotation.body.set_type("Image") s = annotation.body.add_service() s.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-88695674/") s.set_type("ImageService3") s.set_profile("level1") manifest_2 = iiifpapi3.Manifest() manifest_2.set_id(extendbase_url="navdate_map_2-manifest.json") manifest_2.add_label("en","1986 Chesapeake and Ohio Canal, Washington, D.C., Maryland, West Virginia, official map and guide") manifest_2.set_navDate("1986-01-01T00:00:00+00:00") canvas = manifest_2.add_canvas_to_items() canvas.set_id(extendbase_url="canvas/p1") canvas.set_height(1765) canvas.set_width(1286) canvas.add_label("en","1986 Map, recto and verso, with a date of publication" ) annopage = canvas.add_annotationpage_to_items() annopage.set_id(extendbase_url="page/p1/1") annotation = annopage.add_annotation_to_items(target=canvas.id) annotation.set_motivation("painting") annotation.set_id(extendbase_url="annotation/p0001-image") annotation.body.set_height(1765) annotation.body.set_width(1286) annotation.body.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-87691274-1986/full/max/0/default.jpg") annotation.body.set_format("image/jpeg") annotation.body.set_type("Image") s = annotation.body.add_service() s.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-87691274-1986/") s.set_type("ImageService3") s.set_profile("level1") collection = iiifpapi3.Collection() collection.set_id("https://iiif.io/api/cookbook/recipe/0230-navdate/navdate-collection.json") collection.add_label(language='en',text="Chesapeake and Ohio Canal map and guide pamphlets") tbn = collection.add_thumbnail() tbn.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-88695674/full/max/0/default.jpg") tbn.set_type('Image') tbn.set_format('image/jpeg') tbn.set_height(300) tbn.set_width(221) srv = tbn.add_service() srv.set_id("https://iiif.io/api/image/3.0/example/reference/43153e2ec7531f14dd1c9b2fc401678a-88695674") srv.set_profile('level1') srv.set_type('ImageService3') collection.add_manifest_to_items(manifest_2) collection.add_manifest_to_items(manifest_1)
3,361
external/openglcts/scripts/verify_kc_cts_rev.py
iabernikhin/VK-GL-CTS
354
2024220
# -*- coding: utf-8 -*- #------------------------------------------------------------------------- # Khronos OpenGL CTS # ------------------ # # Copyright (c) 2016 The Khronos Group Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------- import os import sys import shutil import argparse import subprocess sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) from fetch_kc_cts import SHA1 sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "scripts")) from build.common import * EXTERNAL_DIR = os.path.realpath(os.path.normpath(os.path.join(os.path.dirname(__file__), "..", ".."))) def computeChecksum (data): return hashlib.sha256(data).hexdigest() class Source: def __init__(self, baseDir, extractDir): self.baseDir = baseDir self.extractDir = extractDir def clean (self): fullDstPath = os.path.join(EXTERNAL_DIR, self.baseDir, self.extractDir) if os.path.exists(fullDstPath): shutil.rmtree(fullDstPath, ignore_errors=False) class GitRepo (Source): def __init__(self, url, revision, baseDir, extractDir = "src"): Source.__init__(self, baseDir, extractDir) self.url = url self.revision = revision def update (self): fullDstPath = os.path.join(EXTERNAL_DIR, self.baseDir, self.extractDir) if not os.path.exists(fullDstPath): execute(["git", "clone", "--no-checkout", self.url, fullDstPath]) pushWorkingDir(fullDstPath) try: execute(["git", "fetch", self.url, "+refs/heads/*:refs/remotes/origin/*"]) execute(["git", "checkout", self.revision]) finally: popWorkingDir() def compare_rev(self): fullDstPath = os.path.join(EXTERNAL_DIR, self.baseDir, self.extractDir) pushWorkingDir(fullDstPath) try: out = subprocess.check_output(["git", "rev-parse", "HEAD"]) if out.replace('\n', '') != SHA1: raise Exception ("KC CTS checkout revision %s in external/fetch_kc_cts.py doesn't match KC CTS master HEAD revision %s" % (SHA1, out)) finally: popWorkingDir() PACKAGES = [ GitRepo( "<EMAIL>:opengl/kc-cts.git", "HEAD", "kc-cts"), ] if __name__ == "__main__": for pkg in PACKAGES: pkg.update() pkg.compare_rev()
2,713
vunit/test/unit/test_test_suites.py
bjacobs1/vunit
1
2024118
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Copyright (c) 2014-2018, <NAME> <EMAIL> """ Test the test suites """ from os.path import join from unittest import TestCase from vunit.test_suites import (TestRun) from vunit.test_report import (PASSED, SKIPPED, FAILED) from vunit.test.common import create_tempdir class TestTestSuites(TestCase): """ Test the test suites """ def test_missing_results_fails_all(self): self.assertEqual( self._read_test_results(contents=None, expected_test_cases=["test1", "test2"]), {"test1": FAILED, "test2": FAILED}) def test_read_results_all_passed(self): self.assertEqual( self._read_test_results(contents="""\ test_start:test1 test_start:test2 test_suite_done """, expected_test_cases=["test1", "test2"]), {"test1": PASSED, "test2": PASSED}) def test_read_results_suite_not_done(self): self.assertEqual( self._read_test_results(contents="""\ test_start:test1 test_start:test2 """, expected_test_cases=["test1", "test2"]), {"test1": PASSED, "test2": FAILED}) self.assertEqual( self._read_test_results(contents="""\ test_start:test2 test_start:test1 """, expected_test_cases=["test1", "test2"]), {"test1": FAILED, "test2": PASSED}) def test_read_results_skipped_test(self): self.assertEqual( self._read_test_results(contents="""\ test_start:test1 test_suite_done """, expected_test_cases=["test1", "test2", "test3"]), {"test1": PASSED, "test2": SKIPPED, "test3": SKIPPED}) def test_read_results_anonynmous_test_pass(self): self.assertEqual( self._read_test_results(contents="""\ test_suite_done """, expected_test_cases=[None]), {None: PASSED}) def test_read_results_anonynmous_test_fail(self): self.assertEqual( self._read_test_results(contents="""\ """, expected_test_cases=[None]), {None: FAILED}) def test_read_results_unknown_test(self): try: self._read_test_results( contents="""\ test_start:test1 test_start:test3 test_suite_done""", expected_test_cases=["test1"]) except RuntimeError as exc: self.assertIn("unknown test case test3", str(exc)) else: assert False, "RuntimeError not raised" @staticmethod def _read_test_results(contents, expected_test_cases): """ Helper method to test the read_test_results function """ with create_tempdir() as path: file_name = join(path, "vunit_results") if contents is not None: with open(file_name, "w") as fptr: fptr.write(contents) run = TestRun(simulator_if=None, config=None, elaborate_only=False, test_suite_name=None, test_cases=expected_test_cases) return run._read_test_results(file_name=file_name) # pylint: disable=protected-access
3,527
LeetCode/2019-10-03-407-Trapping-Rain-Water-II.py
HeRuivio/-Algorithm
5
2023996
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2019-10-03 08:11:17 # @Last Modified by: 何睿 # @Last Modified time: 2019-10-03 11:57:48 import heapq from typing import List class Solution: def trapRainWater(self, heightMap: List[List[int]]) -> int: if not heightMap or not heightMap[0]: return 0 queue, visited, max_heigth, water = [], set(), 0, 0 row, col = len(heightMap), len(heightMap[0]) count = row * col self.fill_border(queue, heightMap) visited = {(row, col) for _, row, col in queue} while queue: if len(visited) == count: return water height, i, j = heapq.heappop(queue) max_heigth = max(max_heigth, height) water += self.visit_neighbors(queue, visited, heightMap, max_heigth, row, col, i, j) return water def visit_neighbors(self, queue, visited, heightMap, max_heigth, row, col, i, j): water = 0 for x, y in [(-1, 0), (1, 0), (0, -1), (0, 1)]: nrow, ncol = i + x, j + y if (nrow, ncol) not in visited and self.is_in_border(row, col, nrow, ncol): num = heightMap[nrow][ncol] water += max(0, max_heigth - num) visited.add((nrow, ncol)) heapq.heappush(queue, (num, nrow, ncol)) return water def fill_border(self, queue, heightMap): row, col = len(heightMap), len(heightMap[0]) for i in range(row): heapq.heappush(queue, (heightMap[i][0], i, 0)) heapq.heappush(queue, (heightMap[i][-1], i, col - 1)) for i in range(1, col - 1): heapq.heappush(queue, (heightMap[0][i], 0, i)) heapq.heappush(queue, (heightMap[-1][i], row - 1, i)) def is_in_border(self, row, col, i, j): return 0 <= i < row and 0 <= j < col
1,899
ampel/ztf/base/CatalogMatchUnit.py
AmpelProject/Ampel-ZTF
1
2022997
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: Ampel-ZTF/ampel/ztf/base/CatalogMatchUnit.py # License: BSD-3-Clause # Author: <NAME> <<EMAIL>> # Date: 10.03.2021 # Last Modified Date: 10.03.2021 # Last Modified By: <NAME> <<EMAIL>> from functools import cached_property from typing import ( Sequence, Dict, Any, Literal, TypedDict, Optional, List, Union, overload, ) import backoff import requests from requests_toolbelt.sessions import BaseUrlSession from ampel.base.LogicalUnit import LogicalUnit from ampel.core.ContextUnit import ContextUnit class BaseConeSearchRequest(TypedDict): """ :param use: either extcats or catsHTM, depending on how the catalog is set up. :param rs_arcsec: search radius for the cone search, in arcseconds In case 'use' is set to 'extcats', 'catq_kwargs' can (or MUST?) contain the names of the ra and dec keys in the catalog (see example below), all valid arguments to extcats.CatalogQuert.findclosest can be given, such as pre- and post cone-search query filters can be passed. In case 'use' is set to 'catsHTM', 'catq_kwargs' SHOULD contain the the names of the ra and dec keys in the catalog if those are different from 'ra' and 'dec' the 'keys_to_append' parameters is OPTIONAL and specifies which fields from the catalog should be returned in case of positional match: if not present: all the fields in the given catalog will be returned. if `list`: just take this subset of fields. Example (SDSS_spec): { 'use': 'extcats', 'catq_kwargs': { 'ra_key': 'ra', 'dec_key': 'dec' }, 'rs_arcsec': 3, 'keys_to_append': ['z', 'bptclass', 'subclass'] } Example (NED): { 'use': 'catsHTM', 'rs_arcsec': 20, 'keys_to_append': ['fuffa1', 'fuffa2', ..], } """ name: str use: Literal["extcats", "catsHTM"] rs_arcsec: float class ConeSearchRequest(BaseConeSearchRequest, total=False): keys_to_append: None | Sequence[str] pre_filter: None | dict[str, Any] post_filter: None | dict[str, Any] class CatalogItem(TypedDict): body: dict[str, Any] dist_arcsec: float class CatalogMatchUnitBase: """ A mixin providing catalog matching with catalogmatch-service """ @cached_property def session(self) -> BaseUrlSession: """ A session bound to the base URL of the catalogmatch service """ raise NotImplementedError @overload def _cone_search( self, method: Literal["any"], ra: float, dec: float, catalogs: Sequence[ConeSearchRequest], ) -> list[bool]: ... @overload def _cone_search( self, method: Literal["nearest"], ra: float, dec: float, catalogs: Sequence[ConeSearchRequest], ) -> list[None | CatalogItem]: ... @overload def _cone_search( self, method: Literal["all"], ra: float, dec: float, catalogs: Sequence[ConeSearchRequest], ) -> list[None | list[CatalogItem]]: ... @backoff.on_exception( backoff.expo, requests.ConnectionError, max_tries=5, factor=10, ) @backoff.on_exception( backoff.expo, requests.HTTPError, giveup=lambda e: e.response.status_code not in {503, 504, 429, 408}, max_time=60, ) def _cone_search( self, method: Literal["any", "nearest", "all"], ra: float, dec: float, catalogs: Sequence[ConeSearchRequest], ) -> list[bool] | list[None | CatalogItem] | list[None | list[CatalogItem]]: response = self.session.post( f"cone_search/{method}", json={ "ra_deg": ra, "dec_deg": dec, "catalogs": catalogs, }, ) response.raise_for_status() return response.json() def cone_search_any( self, ra: float, dec: float, catalogs: Sequence[ConeSearchRequest] ) -> list[bool]: return self._cone_search("any", ra, dec, catalogs) def cone_search_nearest( self, ra: float, dec: float, catalogs: Sequence[ConeSearchRequest] ) -> list[None | CatalogItem]: return self._cone_search("nearest", ra, dec, catalogs) def cone_search_all( self, ra: float, dec: float, catalogs: Sequence[ConeSearchRequest] ) -> list[None | list[CatalogItem]]: return self._cone_search("all", ra, dec, catalogs) class CatalogMatchUnit(CatalogMatchUnitBase, LogicalUnit): """ Catalog matching for LogicalUnits """ require = ("ampel-ztf/catalogmatch",) @cached_property def session(self) -> BaseUrlSession: assert self.resource is not None return BaseUrlSession(base_url=self.resource["ampel-ztf/catalogmatch"]) class CatalogMatchContextUnit(CatalogMatchUnitBase, ContextUnit): """ Catalog matching for ContextUnits """ @cached_property def session(self) -> BaseUrlSession: return BaseUrlSession( base_url=self.context.config.get( "resource.ampel-ztf/catalogmatch", str, raise_exc=True ) )
5,367
tests/test_classify_comments.py
drivet/mf2util
0
2023767
import copy import mf2util TEST_BLOB = { "alternates": [ ], "items": [ { "properties": { "name": ["Author"], "photo": ["http://example.com/author_img.jpg"], "url": ["http://example.com"] }, "type": ["h-card"], "value": "<NAME>" }, { "properties": { "content": [ { "html": "some content", "value": "some content" } ], "name": ["some title"], "published": ["2014-05-07T17:15:44+00:00"], "url": ["http://example.com/reply/2014/05/07/1"] }, "type": [ "h-entry" ] } ], "rels": { } } def test_no_reference(): blob = copy.deepcopy(TEST_BLOB) assert mf2util.classify_comment(blob, ('http://example.com',)) == [] # add some irrelevant references blob['items'][1]['in-reply-to'] = [ "http://werd.io/2014/homebrew-website-club-4", "https://www.facebook.com/events/1430990723825351/" ] assert mf2util.classify_comment(blob, ('http://example.com',)) == [] # no target url assert mf2util.classify_comment(blob, ()) == [] def test_rsvps(): blob = copy.deepcopy(TEST_BLOB) blob['items'][1]['properties'].update({ 'in-reply-to': ['http://mydomain.com/my-post'], 'rsvp': ['yes'], }) assert mf2util.classify_comment( blob, ('http://mydoma.in/short', 'http://mydomain.com/my-post')) \ == ['rsvp', 'reply'] def test_invites(): blob = copy.deepcopy(TEST_BLOB) blob['items'][1]['properties'].update({ 'in-reply-to': ['http://mydomain.com/my-post'], 'invitee': [{ 'name': '<NAME>', 'url': 'https://kylewm.com', }], }) assert mf2util.classify_comment( blob, ('http://mydoma.in/short', 'http://mydomain.com/my-post')) \ == ['invite', 'reply'] def test_likes(): """make sure we find likes""" blob = copy.deepcopy(TEST_BLOB) # add some references blob['items'][1]['properties'].update({ 'in-reply-to': ['http://someoneelse.com/post'], 'like-of': ['http://mydomain.com/my-post'], }) assert mf2util.classify_comment( blob, ('http://mydoma.in/short', 'http://mydomain.com/my-post')) \ == ['like'] def test_reposts(): """make sure we find reposts""" blob = copy.deepcopy(TEST_BLOB) # add some references blob['items'][1]['properties'].update({ 'repost-of': ['http://mydomain.com/my-post'], 'like-of': ['http://someoneelse.com/post'], }) assert mf2util.classify_comment( blob, ('http://mydoma.in/short', 'http://mydomain.com/my-post')) \ == ['repost'] def test_multireply(): """check behavior if our post is one among several posts in a multireply""" blob = copy.deepcopy(TEST_BLOB) # add some references blob['items'][1]['properties'].update({ 'in-reply-to': [ 'http://someoneelse.com/post', 'http://mydomain.com/my-post', 'http://athirddomain.org/permalink', ], }) assert mf2util.classify_comment(blob, ('http://mydomain.com/my-post')) \ == ['reply'] def test_multimodal(): """a mention can have more than one classification, make sure we find all of them. also tests some of the alternate/historical classnames""" blob = copy.deepcopy(TEST_BLOB) # add some references blob['items'][1]['properties'].update({ 'reply-to': ['http://noone.im/'], 'repost-of': [ 'http://someoneelse.com', 'http://mydomain.com/my-post', ], 'like': [ 'http://mydoma.in/short', 'http://someoneelse.com/post', ], }) assert sorted( mf2util.classify_comment( blob, ('http://mydoma.in/short', 'http://mydomain.com/my-post')))\ == ['like', 'repost'] def test_h_cite(): """Test object references (e.g., class="p-in-reply-to h-cite")""" blob = copy.deepcopy(TEST_BLOB) # add some references blob['items'][1]['properties'].update({ 'in-reply-to': [{ 'type': 'h-cite', 'properties': { 'url': ['http://mydomain.com/my-post'], }, }], }) assert mf2util.classify_comment(blob, ('http://mydomain.com/my-post',))\ == ['reply']
4,594
orchestra/contrib/settings/admin.py
RubenPX/django-orchestra
68
2024053
from django.contrib import admin, messages from django.shortcuts import render_to_response from django.views import generic from django.utils.translation import ngettext, ugettext_lazy as _ from orchestra.contrib.settings import Setting from orchestra.utils import sys from . import parser from .forms import SettingFormSet class SettingView(generic.edit.FormView): template_name = 'admin/settings/change_form.html' reload_template_name = 'admin/settings/reload.html' form_class = SettingFormSet success_url = '.' def get_context_data(self, **kwargs): context = super(SettingView, self).get_context_data(**kwargs) context.update({ 'title': _("Change settings"), 'settings_file': parser.get_settings_file(), }) return context def get_initial(self): initial_data = [] prev_app = None account = 0 for name, setting in Setting.settings.items(): app = name.split('_')[0] initial = { 'name': setting.name, 'help_text': setting.help_text, 'default': setting.default, 'type': type(setting.default), 'value': setting.value, 'setting': setting, 'app': app, } if app == 'ORCHESTRA': initial_data.insert(account, initial) account += 1 else: initial_data.append(initial) return initial_data def form_valid(self, form): settings = Setting.settings changes = {} for data in form.cleaned_data: setting = settings[data['name']] if not isinstance(data['value'], parser.NotSupported) and setting.editable: if setting.value != data['value']: # Ignore differences between lists and tuples if (type(setting.value) != type(data['value']) and isinstance(data['value'], list) and tuple(data['value']) == setting.value): continue if setting.default == data['value']: changes[setting.name] = parser.Remove() else: changes[setting.name] = data['value'] if changes: # Display confirmation if not self.request.POST.get('confirmation'): settings_file = parser.get_settings_file() new_content = parser.apply(changes) cmd = "cat <<EOF | diff %s -\n%s\nEOF" % (settings_file, new_content) diff = sys.run(cmd, valid_codes=(1, 0)).stdout context = self.get_context_data(form=form) context['diff'] = diff if not diff: messages.warning(self.request, _("Changes detected but no diff %s.") % changes) return self.render_to_response(context) n = len(changes) # Save changes parser.save(changes) sys.touch_wsgi() context = { 'message': ngettext( _("One change successfully applied, orchestra is being restarted."), _("%s changes successfully applied, orchestra is being restarted.") % n, n), } return render_to_response(self.reload_template_name, context) else: messages.success(self.request, _("No changes have been detected.")) return super(SettingView, self).form_valid(form) class SettingFileView(generic.TemplateView): template_name = 'admin/settings/view.html' def get_context_data(self, **kwargs): context = super(SettingFileView, self).get_context_data(**kwargs) settings_file = parser.get_settings_file() with open(settings_file, 'r') as handler: content = handler.read() context.update({ 'title': _("Settings file content"), 'settings_file': settings_file, 'content': content, }) return context admin.site.register_url(r'^settings/setting/view/$', SettingFileView.as_view(), 'settings_setting_view') admin.site.register_url(r'^settings/setting/$', SettingView.as_view(), 'settings_setting_change')
4,378
src/sima/riflex/responseamount.py
SINTEF/simapy
0
2022777
# Generated with ResponseAmount # from enum import Enum from enum import auto class ResponseAmount(Enum): """""" MIN = auto() MED = auto() MAX = auto() def label(self): if self == ResponseAmount.MIN: return "Minimum" if self == ResponseAmount.MED: return "Medium" if self == ResponseAmount.MAX: return "Maximum"
394
tests/utils.py
notnotcamscott/portraiture
0
2023023
import json from runway import RunwayModel def get_test_client(rw_model): assert isinstance(rw_model, RunwayModel) rw_model.app.config['TESTING'] = True return rw_model.app.test_client() def get_manifest(client): response = client.get('/meta') return json.loads(response.data)
299
examples/squareworld_example.py
omardrwch/rl_exploration_benchmark
1
2023467
from rlxp.envs import SquareWorld from rlxp.rendering import render_env2d env = SquareWorld() env.enable_rendering() for tt in range(10): env.step(env.action_space.sample()) render_env2d(env)
199
decision-trees/python/objective_functions.py
rjgpacheco/decision-trees
0
2024238
""" Implement decision functions for decision trees """ import numpy as np from utils import is_left, is_right, to_array def gini_impurity(y): categories, counts = np.unique(y, return_counts=True) p = counts / counts.sum() # Class probabilities return 1 - np.multiply(p, p).sum() # Final Gini calculation def gini_impurity_split(x, y, boundary): y = to_array(y) left = is_left(x, boundary) right = is_right(x, boundary) gini_l = gini_impurity(y[left]) gini_r = gini_impurity(y[right]) gini_split = gini_l * left.sum() + gini_r * right.sum() gini_split = gini_split / len(y) return gini_split def information_gain(): return None
687
deployment/pulumi_aws_fargate/pulumi_redata/pulumi_redata/service.py
jwarlander/redata
0
2022657
from typing import List import pulumi_aws as aws from pulumi import ComponentResource, Output, Resource, ResourceOptions class BackendService(ComponentResource): def __init__(self, name, cluster, subnets, task_definition, load_balancers: List[aws.ecs.ServiceLoadBalancerArgs] = None, namespace_id = None, security_groups = None, opts: ResourceOptions = None): super().__init__("redata:service:BackendService", name, {}, opts) svc_registries_args = None if namespace_id is not None: sd_svc = aws.servicediscovery.Service(f"{name}-sd-svc", name=name, dns_config=aws.servicediscovery.ServiceDnsConfigArgs( namespace_id=namespace_id, dns_records=[aws.servicediscovery.ServiceDnsConfigDnsRecordArgs(ttl=10, type="A")], routing_policy="MULTIVALUE", ), health_check_custom_config=aws.servicediscovery.ServiceHealthCheckCustomConfigArgs( failure_threshold=1, ), opts=ResourceOptions(parent=self, delete_before_replace=True) ) svc_registries_args = aws.ecs.ServiceServiceRegistriesArgs(registry_arn=sd_svc.arn) self.service = aws.ecs.Service(f"{name}-svc", cluster=cluster, desired_count=1, launch_type='FARGATE', platform_version='1.4.0', service_registries=svc_registries_args, task_definition=task_definition, network_configuration=aws.ecs.ServiceNetworkConfigurationArgs( subnets=subnets, security_groups=security_groups, ), load_balancers=load_balancers, opts=ResourceOptions(parent=self) ) self.register_outputs({}) class WebService(ComponentResource): def __init__(self, name, cluster, health_check_path, listener_arn, security_groups, service_path, service_port, subnets, task_definition, vpc_id, namespace_id = None, opts: ResourceOptions = None): super().__init__("redata:service:WebService", name, {}, opts) tg = aws.lb.TargetGroup(f"{name}-tg", health_check=aws.lb.TargetGroupHealthCheckArgs( path=health_check_path ), port=service_port, protocol='HTTP', target_type='ip', vpc_id=vpc_id, opts=ResourceOptions(parent=self) ) lr = aws.lb.ListenerRule(f"{name}-listener-rule", listener_arn=listener_arn, actions=[aws.lb.ListenerRuleActionArgs( type="forward", target_group_arn=tg.arn, )], conditions=[ aws.lb.ListenerRuleConditionArgs( path_pattern=aws.lb.ListenerRuleConditionPathPatternArgs( values=[f"{service_path}*"], ), ), ], opts=ResourceOptions(parent=self) ) self.service = BackendService(name, cluster=cluster, subnets=subnets, task_definition=task_definition, namespace_id=namespace_id, security_groups=security_groups, load_balancers=[aws.ecs.ServiceLoadBalancerArgs( target_group_arn=tg.arn, container_name=f"redata-{name}", container_port=service_port, )], opts=ResourceOptions(parent=self), ) self.register_outputs({})
3,918
regexlib/2021-5-15/python_re2_test_file/regexlib_1114.py
yetingli/ReDoS-Benchmarks
1
2023081
# 1114 # ^p(ost)?[ |\.]*o(ffice)?[ |\.]*(box)?[ 0-9]*[^[a-z ]]* # POLYNOMIAL # nums:5 # POLYNOMIAL AttackString:"po"+" "*5000+"! _1_POA(i)" import re2 as re from time import perf_counter regex = """^p(ost)?[ |\.]*o(ffice)?[ |\.]*(box)?[ 0-9]*[^[a-z ]]*""" REGEX = re.compile(regex) for i in range(0, 150000): ATTACK = "po" + " " * i * 10000 + "! _1_POA(i)" LEN = len(ATTACK) BEGIN = perf_counter() m = REGEX.search(ATTACK) # m = REGEX.match(ATTACK) DURATION = perf_counter() - BEGIN print(f"{i *10000}: took {DURATION} seconds!")
559
scripts/profile_cpu.py
hyenal/tensorflow-image-models
154
2023439
""" Script to measure inference speed on CPU. Copyright 2021 <NAME> """ from pathlib import Path import click import pandas as pd import tensorflow as tf import tfimm from tfimm.utils.profile import time_model @click.command() @click.option("--results-file", help="Where to save results") @click.option("--name-filter", type=str, default="", help="Regex to include models") @click.option("--module", type=str, default="", help="Filter models by module") @click.option("--exclude-filters", type=str, default="", help="Regex to exclude models") @click.option("--input-size", type=int, default=None, help="Model input resolution") @click.option("--nb-classes", type=int, default=None, help="Number of classes") @click.option("--ignore-results/--no-ignore-results", default=False) def main( results_file, name_filter, module, exclude_filters, input_size, nb_classes, ignore_results, ): """ Main function to do the work. The parameters `name_filter`, `module` and `exclude_filters` are passed directly to `tfimm.list_models` to find which models to profile. If `--ignore-results` is set, we ignore any results already existing in the results file and rerun profiling for all models. Otherwise (default) we run profiling only on models not already in the results file. """ model_names = tfimm.list_models( name_filter=name_filter, module=module, exclude_filters=exclude_filters ) results_file = Path(results_file) if results_file.exists() and not ignore_results: results_df = pd.read_csv(results_file, index_col=0) else: results_df = pd.DataFrame( columns=[ "inference_time", "inference_img_per_sec", ] ) results_df.index.name = "model" model_names = [name for name in model_names if name not in results_df.index] for model_name in model_names: print(f"Model: {model_name}. ", end="") try: img_per_sec = time_model( model_name, target="inference", input_size=input_size, nb_classes=nb_classes, batch_size=1, float_policy="float32", nb_batches=5, ) duration = 1.0 / img_per_sec except tf.errors.InvalidArgumentError: img_per_sec = 0 duration = 0 results_df.loc[model_name, "inference_time"] = duration results_df.loc[model_name, "inference_img_per_sec"] = img_per_sec print(f"Time: {duration:.3f}.") results_df.to_csv(results_file) # Some final massaging of results results_df.sort_index(inplace=True) results_df.to_csv(results_file) if __name__ == "__main__": main()
2,805
moodle/mod/assign/assignment.py
Hardikris/moodlepy
0
2022773
from typing import List, Optional from moodle import ResponsesFactory, MoodleWarning from moodle.attr import dataclass, field @dataclass class File: """File Args: filename (Optional[str]): File name. filepath (Optional[str]): File path. filesize (Optional[int]): File size. fileurl (Optional[str]): Downloadable file url. timemodified (Optional[int]): Time modified. mimetype (Optional[str]): File mime type. isexternalfile (Optional[int]): Whether is an external file. repositorytype (Optional[str]): The repository type for external files. """ filename: Optional[str] filepath: Optional[str] filesize: Optional[int] fileurl: Optional[str] timemodified: Optional[int] mimetype: Optional[str] isexternalfile: Optional[int] repositorytype: Optional[str] @dataclass class Config: """Config Args id (Optional[int]): assign_plugin_config id assignment (Optional[int]): assignment id plugin (str): plugin subtype (str): subtype name (str): name value (str): value """ id: Optional[int] assignment: Optional[int] plugin: str subtype: str name: str value: str @dataclass class Assignment: """Assigment Args: id (int): assignment id cmid (int): course module id course (int): course id name (str): assignment name nosubmissions (int): no submissions submissiondrafts (int): submissions drafts sendnotifications (int): send notifications sendlatenotifications (int): send notifications sendstudentnotifications (int): send student notifications (default) duedate (int): assignment due date allowsubmissionsfromdate (int): allow submissions from date grade (int): grade type timemodified (int): last time assignment was modified completionsubmit (int): if enabled, set activity as complete following submission cutoffdate (int): date after which submission is not accepted without an extension gradingduedate (int): the expected date for marking the submissions teamsubmission (int): if enabled, students submit as a team requireallteammemberssubmit (int): if enabled, all team members must submit teamsubmissiongroupingid (int): the grouping id for the team submission groups blindmarking (int): if enabled, hide identities until reveal identities actioned hidegrader (int): If enabled, hide grader to student revealidentities (int): show identities for a blind marking assignment attemptreopenmethod (str): method used to control opening new attempts maxattempts (int): maximum number of attempts allowed markingworkflow (int): enable marking workflow markingallocation (int): enable marking allocation requiresubmissionstatement (int): student must accept submission statement preventsubmissionnotingroup (Optional[int]): Prevent submission not in group submissionstatement (Optional[str]): Submission statement formatted. submissionstatementformat (int): submissionstatement format (1 = HTML, 0 = MOODLE, 2 = PLAIN or 4 = MARKDOWN) configs (Config): configuration settings intro (Optional[str]): assignment intro, not allways returned because it deppends on the activity configuration introformat (Optional[int]): intro format (1 = HTML, 0 = MOODLE, 2 = PLAIN or 4 = MARKDOWN) introfiles (List[File]): Files in the introduction text introattachments (List[File]): intro attachments files """ id: int cmid: int course: int name: str nosubmissions: int submissiondrafts: int sendnotifications: int sendlatenotifications: int sendstudentnotifications: int duedate: int allowsubmissionsfromdate: int grade: int timemodified: int completionsubmit: int cutoffdate: int gradingduedate: int teamsubmission: int requireallteammemberssubmit: int teamsubmissiongroupingid: int blindmarking: int hidegrader: int revealidentities: int attemptreopenmethod: str maxattempts: int markingworkflow: int markingallocation: int requiresubmissionstatement: int preventsubmissionnotingroup: Optional[int] submissionstatement: Optional[str] submissionstatementformat: int configs: Config intro: Optional[str] introformat: Optional[int] introfiles: List[File] = field(factory=list) introattachments: List[File] = field(factory=list) @dataclass class AssignmentCourse(ResponsesFactory[Assignment]): """Courses with assignment Args: id (int): course id fullname (str): course full name shortname (str): course short name timemodified (int): last time modified assignments (List[Assignment]): assignment info """ id: int fullname: str shortname: str timemodified: int assignments: List[Assignment] = field(factory=list) @property def items(self) -> List[Assignment]: return self.assignments @dataclass class Assignments(ResponsesFactory[AssignmentCourse]): """Assigments from get assignments Args: courses (List[AssignmentCourse]): List of course with assigments warnings (List[Warning]): List of warnings """ courses: List[AssignmentCourse] = field(factory=list) warnings: List[MoodleWarning] = field(factory=list) @property def items(self) -> List[AssignmentCourse]: return self.courses
5,638
package/crud/cli/commands/check.py
derekmerck/pycrud
0
2023878
import click from crud.abc import Endpoint from crud.cli.utils import CLICK_ENDPOINT @click.command(short_help="Check endpoint status") @click.argument("endpoint", type=CLICK_ENDPOINT) @click.pass_context def check(ctx, endpoint: Endpoint): """Check endpoint status \b $ crud-cli check redis """ click.echo(click.style('Check Endpoint Status', underline=True, bold=True)) avail = endpoint.check() s = "{}: {}".format(endpoint.name, "Ready" if avail else "Unavailable") if avail: click.echo(click.style(s, fg="green")) else: click.echo(click.style(s, fg="red"))
617
pathways/urls.py
CodeForBuffalo/affordable_water
2
2024359
from django.urls import path from pathways import views urlpatterns = [ path('', views.HomeView.as_view(), name='pathways-home'), path('about/', views.AboutView.as_view(),name='pathways-about'), path('nondiscrimination/', views.NondiscriminationView.as_view(), name='pathways-nondiscrimination'), path('privacy/', views.PrivacyView.as_view(), name='pathways-privacy'), path('metrics/', views.ProgramMetricsView.as_view(), name='pathways-metrics'), path('apply/', views.ApplyOverviewAssistanceView.as_view(), name='pathways-apply'), path('apply/discount-overview/', views.ApplyDiscountView.as_view(), name='pathways-apply-discount-overview'), # Amnesty Debt Forgiveness path('forgive/overview/', views.ForgiveOverviewView.as_view(), name='pathways-forgive-overview'), path('forgive/city-resident/', views.ForgiveCityResidentView.as_view(), name='pathways-forgive-city-resident'), path('forgive/additional-questions/', views.ForgiveAdditionalQuestionsView.as_view(), name='pathways-forgive-additional-questions'), path('forgive/resident-info/', views.ForgiveResidentInfoView.as_view(), name='pathways-forgive-resident-info'), path('forgive/refer/', views.ForgiveReferralView.as_view(), name='pathways-forgive-refer'), path('forgive/review-application/', views.ForgiveReviewApplicationView.as_view(), name='pathways-forgive-review-application'), path('forgive/confirmation/', views.ForgiveConfirmationView.as_view(), name='pathways-forgive-confirmation'), path('apply/city-resident/', views.CityResidentView.as_view(), name='pathways-apply-city-resident'), path('apply/non-resident/', views.NonResidentView.as_view(), name='pathways-apply-non-resident'), # Household path('apply/household-size/', views.HouseholdSizeView.as_view(), name='pathways-apply-household-size'), path('apply/household-benefits/', views.HouseholdBenefitsView.as_view(), name='pathways-apply-household-benefits'), # Income path('apply/household-contributors/', views.HouseholdContributorsView.as_view(), name='pathways-apply-household-contributors'), path('apply/job-status/', views.JobStatusView.as_view(), name='pathways-apply-job-status'), path('apply/self-employment/', views.SelfEmploymentView.as_view(), name='pathways-apply-self-employment'), path('apply/number-of-jobs/', views.NumberOfJobsView.as_view(), name='pathways-apply-number-of-jobs'), path('apply/income-methods/', views.IncomeMethodsView.as_view(), name='pathways-apply-income-methods'), path('apply/income/', views.IncomeView.as_view(), name='pathways-apply-income'), path('apply/other-income-sources/', views.OtherIncomeSourcesView.as_view(), name='pathways-apply-other-income-sources'), path('apply/non-job-income/', views.NonJobIncomeView.as_view(), name='pathways-apply-non-job-income'), # Eligibility path('apply/review-eligibility/', views.ReviewEligibilityView.as_view(), name='pathways-apply-review-eligibility'), path('apply/eligibility/', views.EligibilityView.as_view(), name='pathways-apply-eligibility'), # Additional Info path('apply/additional-questions/', views.AdditionalQuestionsView.as_view(), name='pathways-apply-additional-questions'), path('apply/resident-info/', views.ResidentInfoView.as_view(), name='pathways-apply-resident-info'), path('apply/account-holder/', views.AccountHolderView.as_view(), name='pathways-apply-account-holder'), path('apply/address/', views.AddressView.as_view(), name='pathways-apply-address'), path('apply/contact-info/', views.ContactInfoView.as_view(), name='pathways-apply-contact-info'), path('apply/account-number/', views.AccountNumberView.as_view(), name='pathways-apply-account-number'), # Review and sign path('apply/review-application/', views.ReviewApplicationView.as_view(), name='pathways-apply-review-application'), path('apply/legal/', views.LegalView.as_view(), name='pathways-apply-legal'), path('apply/refer/', views.ReferralView.as_view(), name='pathways-apply-refer'), path('apply/signature/', views.SignatureView.as_view(), name='pathways-apply-signature'), # Documents path('apply/documents-overview/', views.DocumentOverviewView.as_view(), name='pathways-apply-documents-overview'), path('apply/documents-income/', views.DocumentIncomeView.as_view(), name='pathways-apply-documents-income'), path('apply/documents-residence/', views.DocumentResidenceView.as_view(), name='pathways-apply-documents-residence'), path('apply/confirmation/', views.ConfirmationView.as_view(), name='pathways-apply-confirmation'), path('later-documents/', views.LaterDocumentsView.as_view(), name='pathways-later-documents'), path('later-documents/no-match-found/', views.NoDocumentFoundView.as_view(), name='pathways-later-documents-not-found'), path('later-documents/more-info-needed/', views.MoreDocumentInfoRequiredView.as_view(), name='pathways-later-documents-more-info') ]
5,307
Chapter 04/Chap04_Example4.33.py
Anancha/Programming-Techniques-using-Python
0
2023844
from functools import reduce myseq_list = [0,1,2,3,4,7,8,9] mysum = reduce (lambda a, b: a+b, myseq_list) print(mysum)
119
schttp/utils.py
h0nde/schttp
9
2023469
from .models import URL, Response from .structures import CaseInsensitiveDict from .exceptions import * from functools import lru_cache from socket import socket, gethostbyname from base64 import b64encode from gzip import decompress as gzip_decompress from zlib import decompress as zlib_decompress from brotli import decompress as brotli_decompress default_ports = { "http": 80, "https": 443 } def parse_url(url): scheme, _, url = url.partition(":") url, _, path = url[2:].partition("/") auth, _, url = url.rpartition("@") hostname, _, port = url.partition(":") scheme = scheme.lower() auth = auth if auth else None hostname = hostname.lower() port = port and int(port) or default_ports.get(scheme) path = "/" + path.partition("#")[0] return URL( scheme=scheme, auth=auth, hostname=hostname, port=port, path=path ) @lru_cache() def ip_from_hostname(hostname): return gethostbyname(hostname) def tunnel_connect(conn, proxy_url, address): conn.connect((proxy_url.hostname, proxy_url.port)) if proxy_url.scheme in ("http", "https"): # HTTP proxy proxy_headers = CaseInsensitiveDict() if proxy_url.auth: proxy_headers["Proxy-Authorization"] = "Basic " + b64encode(proxy_url.auth.encode()).decode() # Send initial CONNECT request to proxy server. send_request(conn, "CONNECT", f"{address[0]}:{address[1]}", tuple(proxy_headers.items())) if not (resp := conn.recv(4096)).partition(b" ")[2].startswith(b"200"): # Proxy server did not return status 200 for initial CONNECT request. raise ProxyError( f"Malformed CONNECT response: {resp.splitlines()[0]}") return True raise SchemeNotImplemented( f"'{proxy_url.scheme}' is not a supported proxy scheme") def send_request(conn, method, path, headers, body=None): conn.sendall(b"".join(( # Status line (method + " " + path + " HTTP/1.1\r\n").encode(), # Headers "".join([ name + ": " + str(value) + "\r\n" for name, value in headers if value is not None ]).encode(), # Body separator b"\r\n", # Body body is not None and body or b"" ))) def get_response(conn, chunk_size): resp, _, resp_body = conn.recv(49152).partition(b"\r\n\r\n") if not resp: raise EmptyResponse("Empty response received") status_line, _, resp_headers = resp.decode().partition("\r\n") status, message = status_line.split(" ", 2)[1:] status = int(status) resp_headers = CaseInsensitiveDict( line.split(": ", 1) for line in resp_headers.splitlines() ) resp_body = stream_body( conn, resp_headers, initial_body=resp_body, chunk_size=chunk_size) if (encoding := resp_headers.get("Content-Encoding")): resp_body = decode_content(resp_body, encoding) return Response( status=status, message=message, headers=resp_headers, body=resp_body) def stream_body(conn, headers, chunk_size, initial_body=None): body = initial_body or b"" if (exp_length := headers.get("content-length")): # Content-Length exp_length = int(exp_length) while exp_length > len(body): body += conn.recv(chunk_size) return body elif headers.get("transfer-encoding") == "chunked": # Transfer-Encoding: chunked while not body.endswith(b"0\r\n\r\n"): body += conn.recv(chunk_size) temp_body = b"" index = 0 while True: new_index = body.find(b"\r\n", index) length = int(body[index : new_index], 16) if not length: break index = new_index + 2 + length + 2 temp_body += body[new_index + 2 : index - 2] return temp_body else: # No transfer header specified. # Stream chunks until an empty one is received. while True: if (chunk := conn.recv(chunk_size)): body += chunk else: break return body def decode_content(data, encoding): if encoding == "gzip": return gzip_decompress(data) elif encoding == "deflate": return zlib_decompress(data, -15) elif encoding == "br": return brotli_decompress(data) return data
4,517
Projects/cgi-app/start.py
tonysulfaro/MI-250
0
2023306
from http.server import CGIHTTPRequestHandler, HTTPServer def runCgi(): print('starting server...') # Server settings server_address = ('127.0.0.1', 8989) handler = CGIHTTPRequestHandler # I can configure the directories I want to use here handler.cgi_directories = ['/cgi'] httpd = HTTPServer(server_address, handler) print('running server...') print('now listening on port: ' + str(server_address[1])) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() def main(): runCgi() if __name__ == "__main__": main()
620
python/tests/test_hashtable.py
Yonatan1P/data-structures-and-algorithms
1
2024358
from challenges.hashtable.hashtable import Hashtable def test_create_hashtable(): assert Hashtable() def test_add_key(): hashtable = Hashtable() hashtable.add('hi','my name is WHO') assert hashtable._buckets[hashtable._hash('hi')] def test_get_value(): table = Hashtable() table.add('hey','my name is WHERE') actual = table.get('hey') expected = 'my name is WHERE' assert actual == expected def test_get_null_key(): table = Hashtable() actual = table.get('hey') expected = 'Null' assert actual == expected def test_handle_collision(): table = Hashtable() table.add('hi', 'my name is WHAT') table.add('Ñ','my name is WHO') assert table._hash('Ñ') == table._hash('hi') def test_get_second_in_bueket(): table = Hashtable() table.add('hi', 'my name is WHAT') table.add('Ñ','my name is WHO') actual = table.get('Ñ') expected = 'my name is WHO' assert actual == expected def test_contains(): table = Hashtable() table.add('hi', 'my name is WHAT') assert table.contains('hi') def test_add_key_in_range(): table = Hashtable() table.add('hi', 'my name is WHAT')
1,177
exercicios/06. estrutura de controle/057.py
augustolimads/Exercicios_Python
0
2024052
sexo = str(input('Digite o seu sexo[M/F]: ')).strip().upper()[0] while sexo not in 'MmFf': print('Digite novamente...') sexo = str(input('Digite o seu sexo[M/F]: ')).strip().upper()[0]
192
site_scons/site_tools/chromium_builders.py
rwatson/chromium-capsicum
11
2024290
# Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Tool module for adding, to a construction environment, Chromium-specific wrappers around SCons builders. This gives us a central place for any customization we need to make to the different things we build. """ import sys from SCons.Script import * class Null(object): def __new__(cls, *args, **kwargs): if '_inst' not in vars(cls): cls._inst = super(type, cls).__new__(cls, *args, **kwargs) return cls._inst def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __repr__(self): return "Null()" def __nonzero__(self): return False def __getattr__(self, name): return self def __setattr__(self, name, val): return self def __delattr__(self, name): return self def __getitem__(self, name): return self def generate(env): # Add the grit tool to the base environment because we use this a lot. sys.path.append(env.Dir('$SRC_DIR/tools/grit').abspath) env.Tool('scons', toolpath=[env.Dir('$SRC_DIR/tools/grit/grit')]) # Add the repack python script tool that we use in multiple places. sys.path.append(env.Dir('$SRC_DIR/tools/data_pack').abspath) env.Tool('scons', toolpath=[env.Dir('$SRC_DIR/tools/data_pack/')]) def exists(env): return True
1,408
binarize/utilDataGenerator.py
caroacostatovany/hackathon_RIIAA2021
0
2023917
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function import random import math import cv2 import numpy as np from keras import backend as K # ---------------------------------------------------------------------------- def load_files(array_x_files, x_sufix, y_sufix): x_data = [] y_data = [] for fname_x in array_x_files: fname_y = fname_x.replace(x_sufix, y_sufix) img_x = cv2.imread(fname_x, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(fname_y, cv2.IMREAD_GRAYSCALE) x_data.append(img_x) y_data.append(img_y) x_data = np.asarray(x_data).astype('float32') x_data = 255. - x_data y_data = np.asarray(y_data).astype('float32') / 255. y_data = 1. - y_data return x_data, y_data # ---------------------------------------------------------------------------- def generate_chunks(array_x_files, x_sufix, y_sufix, window_size, step_size): x_data = [] y_data = [] for fname_x in array_x_files: fname_y = fname_x.replace(x_sufix, y_sufix) img_x = cv2.imread(fname_x, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(fname_y, cv2.IMREAD_GRAYSCALE) if img_x.shape[0] < window_size or img_x.shape[1] < window_size: # Scale approach new_rows = window_size if img_x.shape[0] < window_size else img_x.shape[0] new_cols = window_size if img_x.shape[1] < window_size else img_x.shape[1] img_x = cv2.resize(img_x, (new_cols, new_rows), interpolation = cv2.INTER_CUBIC) img_y = cv2.resize(img_y, (new_cols, new_rows), interpolation = cv2.INTER_CUBIC) for (x, y, window) in sliding_window(img_x, stepSize=step_size, windowSize=(window_size, window_size)): if window.shape[0] != window_size or window.shape[1] != window_size: # if the window does not meet our desired window size, ignore it continue x_data.append( window.copy() ) for (x, y, window) in sliding_window(img_y, stepSize=step_size, windowSize=(window_size, window_size)): if window.shape[0] != window_size or window.shape[1] != window_size: # if the window does not meet our desired window size, ignore it continue y_data.append( window.copy() ) x_data = np.asarray(x_data).astype('float32') x_data = 255. - x_data y_data = np.asarray(y_data).astype('float32') / 255. y_data = 1. - y_data print('x_data min:', np.min(x_data), ' - mean:', np.mean(x_data), ' - max:', np.max(x_data)) print('y_data min:', np.min(y_data), ' - mean:', np.mean(y_data), ' - max:', np.max(y_data)) if K.image_data_format() == 'channels_first': x_data = x_data.reshape(x_data.shape[0], 1, x_data.shape[1], x_data.shape[2]) # channel_first y_data = y_data.reshape(y_data.shape[0], 1, y_data.shape[1], y_data.shape[2]) # channel_first else: x_data = x_data.reshape(x_data.shape[0], x_data.shape[1], x_data.shape[2], 1) y_data = y_data.reshape(y_data.shape[0], y_data.shape[1], y_data.shape[2], 1) return x_data, y_data # ---------------------------------------------------------------------------- # slide a window across the image def sliding_window(img, stepSize, windowSize): n_steps_y = int( math.ceil( img.shape[0] / float(stepSize) ) ) n_steps_x = int( math.ceil( img.shape[1] / float(stepSize) ) ) for y in range(n_steps_y): for x in range(n_steps_x): posX = x * stepSize posY = y * stepSize posToX = posX + windowSize[0] posToY = posY + windowSize[1] if posToX > img.shape[1]: posToX = img.shape[1] - 1 posX = posToX - windowSize[0] if posToY > img.shape[0]: posToY = img.shape[0] - 1 posY = posToY - windowSize[1] yield (posX, posY, img[posY:posToY, posX:posToX]) # yield the current window # ---------------------------------------------------------------------------- class LazyFileLoader: def __init__(self, array_x_files, x_sufix, y_sufix, page_size): self.array_x_files = array_x_files self.x_sufix = x_sufix self.y_sufix = y_sufix self.pos = 0 if page_size <= 0: self.page_size = len(array_x_files) else: self.page_size = page_size def __len__(self): return len(self.array_x_files) def __iter__(self): return self def __next__(self): return self.next() def truncate_to_size(self, truncate_to): self.array_x_files = self.array_x_files[0:truncate_to] def set_x_files(self, array_x_files): self.array_x_files = array_x_files def reset(self): self.pos = 0 def get_pos(self): return self.pos def set_pos(self, pos): self.pos = pos def shuffle(self): random.shuffle(self.array_x_files) def next(self): psize = self.page_size if self.pos + psize >= len(self.array_x_files): # last page? if self.pos >= len(self.array_x_files): raise StopIteration else: psize = len(self.array_x_files) - self.pos print('> Loading page from', self.pos, 'to', self.pos + psize, '...') X_data, Y_data = load_files(self.array_x_files[self.pos:self.pos + psize], self.x_sufix, self.y_sufix) self.pos += self.page_size return X_data, Y_data # ---------------------------------------------------------------------------- class LazyChunkGenerator(LazyFileLoader): def __init__(self, array_x_files, x_sufix, y_sufix, page_size, window_size, step_size): LazyFileLoader.__init__(self, array_x_files, x_sufix, y_sufix, page_size) self.window_size = window_size self.step_size = step_size def next(self): psize = self.page_size if self.pos + psize >= len(self.array_x_files): # last page? if self.pos >= len(self.array_x_files): raise StopIteration else: psize = len(self.array_x_files) - self.pos print('> Loading page from', self.pos, 'to', self.pos + psize, '...') X_data, Y_data = generate_chunks(self.array_x_files[self.pos:self.pos + psize], self.x_sufix, self.y_sufix, self.window_size, self.step_size) self.pos += self.page_size return X_data, Y_data
6,388
neutron_fwaas/services/firewall/drivers/dptech/driver_client.py
Woody89/neutron-fwaas
0
2022794
from neutron.i18n import _ from oslo_config import cfg from zeep import Client as ZeepClient from requests import Session from zeep.transports import Transport from requests.auth import HTTPBasicAuth import logging logging.basicConfig(level=logging.INFO) logging.getLogger('zeep.transports').setLevel(logging.DEBUG) device_opts = [ cfg.StrOpt('host', default='localhost', help=_('The server hostname/ip to connect to.')), cfg.StrOpt('username', default='admin', help=_('The username which use for connect backend ' 'firewall device')), cfg.StrOpt('password', default='<PASSWORD>', help=_('The password which use to connect backend ' 'firewall device')), cfg.StrOpt('protocol', default='https', help=_("The protocol of request 'http|https'")) ] device_group = cfg.OptGroup( name="device", title="device info in the Group" ) CONF = cfg.CONF CONF.register_group(device_group) CONF.register_opts(device_opts, device_group) ZEEP_CLIENT = None username = None password = <PASSWORD> class Client(): def __init__(self): self.host = CONF.device.host self.username = CONF.device.username self.password = CONF.device.password @classmethod def get_instance(cls): global ZEEP_CLIENT if not ZEEP_CLIENT: ZEEP_CLIENT = cls() return ZEEP_CLIENT def get_client(self, url_dir, host_ip, username=None, password=None): try: if username: self.username = username if password: self.password = password if not host_ip: host_ip = CONF.device.host protocol = CONF.device.protocol # host_ip = "192.168.1.234" ip_link = protocol + '://%s' % host_ip full_url = "%s%s" % (ip_link, url_dir) session = Session() session.verify = False session.auth = HTTPBasicAuth(self.username, self.password) transport = Transport(session=session) client = ZeepClient(full_url, transport=transport) service = client.service except Exception as e: raise return service
2,336
tests/unit/test_output_utils.py
dav-pascual/mrack
1
2024113
# Copyright 2021 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mrack.outputs.utils""" from unittest.mock import patch from mrack.outputs.utils import get_external_id @patch("mrack.outputs.utils.resolve_hostname") def test_get_external_id(mock_resolve, provisioning_config, host1_aws, metahost1): """ Test that resolve_hostname is not called when it is not supposed to be. """ dns = "my.dns.name" mock_resolve.return_value = dns # By default, it resolves DNS ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == dns # Disable in host metadata metahost1["resolve_host"] = False ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr # Disable in provider del metahost1["resolve_host"] provisioning_config["aws"]["resolve_host"] = False ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr # Explicitly enabled in provider provisioning_config["aws"]["resolve_host"] = True ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == dns # Resolution enabled, but nothing is resolved mock_resolve.return_value = None ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr
1,907
examples/example-2.py
itzmanish/python-loggable-decorator
0
2023925
# -*- coding: utf-8 -*- import logging import sys # this is just an example config logging.basicConfig( stream=sys.stdout, level=logging.DEBUG ) from loggable import loggable_class as loggable @loggable class Example2(object): def decorated_method_one(self): self.logger.debug("Debug decorated_method_with_name") print("This is a decorated method") def decorated_method_two(self): self.logger.debug("Debug decorated_method_two") print("This is a decorated method") if __name__ == "__main__": Example2().decorated_method_one() Example2().decorated_method_two()
621
tests/test_config_loader.py
atten/django-docker-helpers
8
2023976
# noinspection PyPackageRequirements import pytest import os from django_docker_helpers.config import ConfigLoader, exceptions from django_docker_helpers.config.backends import * from django_docker_helpers.utils import mp_serialize_dict pytestmark = pytest.mark.config_loader REDIS_HOST = os.getenv('REDIS_HOST', '127.0.0.1') REDIS_PORT = os.getenv('REDIS_PORT', 6379) CONSUL_HOST = os.getenv('CONSUL_HOST', '127.0.0.1') CONSUL_PORT = os.getenv('CONSUL_PORT', 8500) @pytest.fixture def store_mpt_consul_config(): import consul sample = { 'project': { 'variable': 2 } } c = consul.Consul(host=CONSUL_HOST, port=CONSUL_PORT) for path, value in mp_serialize_dict(sample, separator='/'): c.kv.put(path, value) return c @pytest.fixture def store_consul_config(): import consul from yaml import dump sample = { 'some': { 'variable': 2, } } c = consul.Consul(host=CONSUL_HOST, port=CONSUL_PORT) data = dump(sample).encode() c.kv.put('my/service/config.yml', data) return c @pytest.fixture def store_mpt_redis_config(): import redis sample = { 'project': { 'i': { 'am': { 'redis': True } } } } c = redis.Redis(host=REDIS_HOST, port=REDIS_PORT) for path, value in mp_serialize_dict(sample, separator='.'): c.set(path, value) c.set('my-prefix:%s' % path, value) return c @pytest.fixture def store_redis_config(): from redis import Redis from yaml import dump sample = { 'some': { 'variable': 44, 'brutal': 666 } } c = Redis(host=REDIS_HOST, port=REDIS_PORT) data = dump(sample).encode() c.set('my/conf/service/config.yml', data) return c @pytest.fixture def loader(): env = { 'PROJECT__DEBUG': 'false' } parsers = [ EnvironmentParser(scope='project', env=env), MPTConsulParser(host=CONSUL_HOST, port=CONSUL_PORT, scope='project'), ConsulParser('my/service/config.yml', host=CONSUL_HOST, port=CONSUL_PORT), MPTRedisParser(host=REDIS_HOST, port=REDIS_PORT, scope='project'), RedisParser('my/conf/service/config.yml', host=REDIS_HOST, port=REDIS_PORT), YamlParser(config='./tests/data/config.yml', scope='project'), ] return ConfigLoader(parsers=parsers) # noinspection PyMethodMayBeStatic,PyShadowingNames,PyUnusedLocal class ConfigLoaderTest: def test__priority(self, loader: ConfigLoader, store_mpt_consul_config, store_mpt_redis_config, store_consul_config, store_redis_config): assert loader.get('debug') == 'false', 'Ensure value is taken from env' assert loader.get('debug', coerce_type=bool) is False, 'Ensure value is coercing properly for env' assert loader.get('variable', coerce_type=int) == 2, 'Ensure consul MPT backend attached' assert loader.get('i.am.redis', coerce_type=bool) is True, 'Ensure redis MPT backend attached' assert loader.get('some.variable', coerce_type=int) == 2, 'Ensure consul backend attached' assert loader.get('some.brutal', coerce_type=int) == 666, 'Ensure redis backend attached' def test__availability(self, loader: ConfigLoader): assert loader.get('name') == 'wroom-wroom' def test__default(self, loader: ConfigLoader): sentinel = object() assert loader.get('nonexi', default=sentinel) is sentinel def test__from_env__raises_on_empty_values(self): with pytest.raises(ValueError): ConfigLoader.from_env([], {}) def test__from_env(self): env = { 'CONFIG__PARSERS': 'EnvironmentParser,RedisParser,YamlParser', 'ENVIRONMENTPARSER__SCOPE': 'nested', 'YAMLPARSER__CONFIG': './tests/data/config.yml', 'REDISPARSER__HOST': 'wtf.test', 'NESTED__VARIABLE': 'i_am_here', } loader = ConfigLoader.from_env(env=env) assert [type(p) for p in loader.parsers] == [EnvironmentParser, RedisParser, YamlParser] assert loader.get('variable') == 'i_am_here', 'Ensure env copied from ConfigLoader' with pytest.raises(Exception): loader.get('nothing.here') loader = ConfigLoader.from_env(env=env, silent=True) assert loader.get('nothing.here', True) is True loader = ConfigLoader.from_env(parser_modules=['EnvironmentParser'], env={}) assert loader.parsers def test__import_parsers(self): parsers = list(ConfigLoader.import_parsers([ 'EnvironmentParser', 'django_docker_helpers.config.backends.YamlParser' ])) assert parsers == [EnvironmentParser, YamlParser] def test__load_parser_options_from_env(self): env = { 'REDISPARSER__ENDPOINT': 'go.deep', 'REDISPARSER__HOST': 'my-host', 'REDISPARSER__PORT': '66', } res = ConfigLoader.load_parser_options_from_env(RedisParser, env) assert res == {'endpoint': 'go.deep', 'host': 'my-host', 'port': 66} env = { 'ENVIRONMENTPARSER__SCOPE': 'deep', } res = ConfigLoader.load_parser_options_from_env(EnvironmentParser, env) assert res == {'scope': 'deep'} def test__config_read_queue(self, loader: ConfigLoader, store_mpt_consul_config, store_mpt_redis_config, store_consul_config, store_redis_config): loader.get('some.variable') loader.get('some.brutal') loader.get('debug', coerce_type=bool) loader.get('i.am.redis') loader.get('variable') loader.get('name') loader.get('nothing.here', 'very long string lol') loader.get('secret') loader.get('something.long', list(range(100))) loader.get('something.long.q', '=' * 80) assert loader.config_read_queue assert '\033[0m' in loader.format_config_read_queue(use_color=True) assert '\033[0m' not in loader.format_config_read_queue(use_color=False) loader.print_config_read_queue(use_color=True) def test__shortcut_for_get_method(self, loader: ConfigLoader): assert loader('some.variable') def test__get_with_required(self, loader: ConfigLoader): assert loader.get('some.variable', required=True) with pytest.raises(exceptions.RequiredValueIsEmpty): loader.get('some.nonexistent_var', required=True)
6,801
tests/qctests/test_qc_woa_normbias.py
jmetteUni/CoTeDe-modified
35
2023766
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ """ from datetime import datetime import numpy as np from numpy import ma from cotede.qctests import WOA_NormBias, woa_normbias from cotede.qc import ProfileQC from ..data import DummyData def test_woa_normbias_standard_dataset(): profile = DummyData() features = woa_normbias(profile, "TEMP") for v in [ "woa_mean", "woa_std", "woa_nsamples", "woa_se", "woa_bias", "woa_normbias", ]: assert v in features def test_woa_normbias_invalid_position(): profile = DummyData() assert "LONGITUDE" in profile.attrs profile.attrs["LONGITUDE"] = 38 features = woa_normbias(profile, "TEMP") for v in [ "woa_mean", "woa_std", "woa_se", "woa_bias", "woa_normbias", ]: assert np.isnan(features[v]).all() def test_woa_normbias_invalid_position_track(): alongtrack = { "time": ["2000-01-01", "2000-01-02", "2000-01-03"], "DEPTH": np.array([0, 0, 0]), "latitude": [14.9, 15, 15.1], "longitude": [38, 38.1, 38], "TEMP": [25, 25, 25], } features = woa_normbias(alongtrack, "TEMP") for v in [ "woa_mean", "woa_std", "woa_se", "woa_bias", "woa_normbias", ]: assert np.isnan(features[v]).all() def test_woa_track(): alongtrack = { "time": ["2000-01-01", "2000-01-02", "2000-01-03"], "DEPTH": [0, 0, 0], "latitude": [14.9, 15, 15.1], "longitude": [-38, -38.1, -38], "TEMP": [25, 25, 25], } features = woa_normbias(alongtrack, "TEMP") for v in [ "woa_mean", "woa_std", "woa_nsamples", "woa_se", "woa_bias", "woa_normbias", ]: assert v in features def test_standard_dataset(): """Test WOA_NormBias with a standard dataset """ flags = { "woa_normbias": np.array( [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9], dtype="i1" ) } profile = DummyData() cfg = {"threshold": 3} y = WOA_NormBias(profile, "TEMP", cfg, autoflag=True) assert len(y.features) > 0 for f in y.flags: assert np.allclose(y.flags[f], flags[f], equal_nan=True) def test_features_non_masked_array(): """WOA_NormBias should return features type array Originally I used masked arrays, which is the standard for OceansDB but recently I moved to regular arrays using NaN. """ profile = DummyData() cfg = {"threshold": 3} y = WOA_NormBias(profile, "TEMP", cfg, autoflag=True) assert len(y.features) > 0 for v in y.features: assert not isinstance(y.features[v], ma.MaskedArray) def test_basic(): """ """ profile = DummyData() cfg = { "TEMP": {"woa_normbias": {"threshold": 3, "flag_bad": 3}}, "PSAL": {"woa_normbias": {"threshold": 3, "flag_bad": 3}}, } pqc = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert sorted(np.unique(pqc.flags["TEMP"]["woa_normbias"])) == [1, 3, 9] assert sorted(np.unique(pqc.flags["PSAL"]["woa_normbias"])) == [1, 9] def test_attribute(): profile = DummyData() cfg = {"TEMP": {"woa_normbias": {"threshold": 3}}} pqc = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert pqc.flags["TEMP"]["woa_normbias"].shape == profile.data["TEMP"].shape assert np.unique(pqc.features["TEMP"]["woa_mean"]).size > 1 assert np.allclose( pqc.flags["TEMP"]["woa_normbias"], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9], equal_nan=True, ) def test_track(): profile = DummyData() N = profile["TEMP"].size profile.data["LATITUDE"] = np.linspace(4, 25, N) profile.data["LONGITUDE"] = np.linspace(-30, -38, N) profile.data["PRES"] *= 0 # Location in data, one per measurement, has precedence on attrs profile.attrs["LATITUDE"] = None profile.attrs["LONGITUDE"] = None cfg = {"TEMP": {"woa_normbias": {"threshold": 3}}} pqc = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert pqc.flags["TEMP"]["woa_normbias"].shape == profile.data["TEMP"].shape assert np.unique(pqc.features["TEMP"]["woa_mean"]).size > 1 assert np.allclose( pqc.flags["TEMP"]["woa_normbias"], [1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 9], equal_nan=True, ) def test_standard_error(): """I need to improve this!! """ profile = DummyData() profile.attrs["datetime"] = datetime(2016, 6, 4) profile.attrs["LATITUDE"] = -30.0 profile.attrs["LONGITUDE"] = 15 profile.data["PRES"] = np.array([2.0, 5.0, 6.0, 21.0, 44.0, 79.0, 1000, 5000]) profile.data["TEMP"] = np.array([16.0, 15.6, 15.9, 15.7, 15.2, 14.1, 8.6, 2.0]) cfg = {"TEMP": {"woa_normbias": {"threshold": 10}}} pqc = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert pqc.flags["TEMP"]["woa_normbias"].shape == profile.data["TEMP"].shape assert (pqc.flags["TEMP"]["woa_normbias"] == [1, 1, 1, 1, 1, 1, 3, 0]).all() cfg = {"TEMP": {"woa_normbias": {"threshold": 10, "use_standard_error": False}}} pqc_noSE = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert pqc.flags["TEMP"]["woa_normbias"].shape == profile.data["TEMP"].shape assert (pqc.flags["TEMP"]["woa_normbias"] == [1, 1, 1, 1, 1, 1, 3, 0]).all() cfg = {"TEMP": {"woa_normbias": {"threshold": 10, "use_standard_error": True}}} pqc_SE = ProfileQC(profile, cfg=cfg) assert "woa_normbias" in pqc.flags["TEMP"] assert pqc.flags["TEMP"]["woa_normbias"].shape == profile.data["TEMP"].shape assert (pqc.flags["TEMP"]["woa_normbias"] == [1, 1, 1, 1, 1, 1, 3, 0]).all()
5,909
test.py
Samadarshi-Maity/Casimir-programming
0
2024409
print('hello world') """ <NAME> <NAME> """ import numpy as np ''' Samadarshi: Circumference of this beautiful circle ''' def circumference_of_circle(r): ''' Returns circumference of a circle''' return 2*np.pi.r def surface_area_of_circle(r): return np.pi*r**2
280
mwclientcli/commands/__init__.py
adundovi/mwclientcli
2
2023011
__all__ = ['Edit', 'Show', 'List', 'Search', 'Move', 'Remove', 'Upload', 'Open'] from edit import Edit from show import Show from list import List from search import Search from move import Move from remove import Remove from upload import Upload from open import Open
270
samples/network/nat/manage_nat_gateway.py
leigharubin/azure-samples-python-management
47
2023534
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import os from azure.identity import DefaultAzureCredential from azure.mgmt.network import NetworkManagementClient from azure.mgmt.resource import ResourceManagementClient def main(): SUBSCRIPTION_ID = os.environ.get("SUBSCRIPTION_ID", None) GROUP_NAME = "testgroupx" NAT_GATEWAY = "nat_gatewayxxyyzz" PUBLIC_IP_ADDRESS = "publicipaddress" PUBLIC_IP_PREFIX = "publicipprefix" # Create client # For other authentication approaches, please see: https://pypi.org/project/azure-identity/ resource_client = ResourceManagementClient( credential=DefaultAzureCredential(), subscription_id=SUBSCRIPTION_ID ) network_client = NetworkManagementClient( credential=DefaultAzureCredential(), subscription_id=SUBSCRIPTION_ID ) # Create resource group resource_client.resource_groups.create_or_update( GROUP_NAME, {"location": "eastus"} ) # - init depended resources - # Create public ip address network_client.public_ip_addresses.begin_create_or_update( GROUP_NAME, PUBLIC_IP_ADDRESS, { 'location': "eastus", 'public_ip_allocation_method': 'Static', 'idle_timeout_in_minutes': 4, 'sku': { 'name': 'Standard' } } ).result() # Create public ip prefix network_client.public_ip_prefixes.begin_create_or_update( GROUP_NAME, PUBLIC_IP_PREFIX, { "location": "eastus", "prefix_length": "30", "sku": { "name": "Standard" } } ).result() # - end - # Create nat gateway nat_gateway = network_client.nat_gateways.begin_create_or_update( GROUP_NAME, NAT_GATEWAY, { "location": "eastus", "sku": { "name": "Standard" }, "public_ip_addresses": [ { "id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + GROUP_NAME + "/providers/Microsoft.Network/publicIPAddresses/" + PUBLIC_IP_ADDRESS } ], "public_ip_prefixes": [ { "id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + GROUP_NAME + "/providers/Microsoft.Network/publicIPPrefixes/" + PUBLIC_IP_PREFIX } ] } ).result() print("Create nat gateway:\n{}".format(nat_gateway)) # Get nat gateway nat_gateway = network_client.nat_gateways.get( GROUP_NAME, NAT_GATEWAY ) print("Get nat gateway:\n{}".format(nat_gateway)) # Update nat gateway nat_gateway = network_client.nat_gateways.update_tags( GROUP_NAME, NAT_GATEWAY, { "tags": { "tag1": "value1", "tag2": "value2" } } ) print("Update nat gateway:\n{}".format(nat_gateway)) # Delete nat gateway nat_gateway = network_client.nat_gateways.begin_delete( GROUP_NAME, NAT_GATEWAY ).result() print("Delete nat gateway.\n") # Delete Group resource_client.resource_groups.begin_delete( GROUP_NAME ).result() if __name__ == "__main__": main()
3,561
visorspass/visor/migrations/0023_alter_indicador_nombre.py
RobertoMarroquin/spass
0
2022817
# Generated by Django 3.2.5 on 2021-11-30 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('visor', '0022_auto_20211111_2017'), ] operations = [ migrations.AlterField( model_name='indicador', name='nombre', field=models.CharField(blank=True, max_length=300, null=True, verbose_name='Nombre'), ), ]
434
studygroups/signals.py
p2pu/learning-circles
10
2022957
from django.db.models.signals import post_save, pre_save from django.dispatch import receiver from studygroups.utils import render_to_string_ctx from django.core.mail import EmailMultiAlternatives, send_mail from django.conf import settings from django.utils import timezone from studygroups.email_helper import render_html_with_css from .models import Application from .models import StudyGroup from .models import Course from .models import get_study_group_organizers from .utils import html_body_to_text from .utils import use_language from advice.models import Advice import pytz @receiver(post_save, sender=Application) def handle_new_application(sender, instance, created, **kwargs): """ Send welcome message to learner introducing them to their facilitator """ if not created: return application = instance # get a random piece of advice # TODO only supported in English atm advice = None if application.study_group.language == 'en': advice = Advice.objects.order_by('?').first() # activate language and timezone for message reminder with use_language(application.study_group.language), timezone.override(pytz.timezone(application.study_group.timezone)): # Send welcome message to learner learner_signup_subject = render_to_string_ctx( 'studygroups/email/learner_signup-subject.txt', { 'application': application, 'advice': advice, } ).strip('\n') learner_signup_html = render_html_with_css( 'studygroups/email/learner_signup.html', { 'application': application, 'advice': advice, } ) learner_signup_body = html_body_to_text(learner_signup_html) to = [application.email] # CC facilitator and put in reply-to welcome_message = EmailMultiAlternatives( learner_signup_subject, learner_signup_body, settings.DEFAULT_FROM_EMAIL, to, cc=[application.study_group.facilitator.email], reply_to=[application.study_group.facilitator.email] ) welcome_message.attach_alternative(learner_signup_html, 'text/html') welcome_message.send() @receiver(post_save, sender=StudyGroup) def handle_new_study_group_creation(sender, instance, created, **kwargs): if not created: return study_group = instance context = { 'study_group': study_group, } subject = render_to_string_ctx('studygroups/email/learning_circle_created-subject.txt', context).strip(' \n') html_body = render_html_with_css('studygroups/email/learning_circle_created.html', context) text_body = html_body_to_text(html_body) # on all learning circles, CC p2pu cc = [settings.TEAM_EMAIL] # if the user is part of a team, send to the organizer(s) cc += [ o.email for o in get_study_group_organizers(study_group)] # if there is a question, send to the welcoming comitte if study_group.facilitator_concerns: cc += [settings.COMMUNITY_MANAGER] notification = EmailMultiAlternatives( subject, text_body, settings.DEFAULT_FROM_EMAIL, [study_group.facilitator.email], cc=cc, reply_to=[study_group.facilitator.email] + cc ) notification.attach_alternative(html_body, 'text/html') notification.send()
3,381
Attendance_Management_System/vcet/student/migrations/0016_auto_20180402_1511.py
jainritik153/ATTENDANCE-MANAGEMENT-SYSTEM
0
2023552
# Generated by Django 2.0.2 on 2018-04-02 15:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0015_auto_20180402_1016'), ] operations = [ migrations.AddField( model_name='aoa', name='_4', field=models.CharField(default='Not', max_length=10), ), migrations.AddField( model_name='aoa', name='_5', field=models.CharField(default='Not', max_length=10), ), migrations.AddField( model_name='aoa', name='_6', field=models.CharField(default='Not', max_length=10), ), migrations.AddField( model_name='aoa', name='_7', field=models.CharField(default='Not', max_length=10), ), ]
869
Exercício feitos pela primeira vez/ex092.py
Claayton/pythonExerciciosLinux
1
2023599
# Ex092 from datetime import date ano_atual = date.today().year cadastro = {} cadastro['Nome'] = str(input('Nome: ')).title().strip() ano_de_nascimento = int(input('Ano de nascimento: ')) cadastro['Idade'] = ano_atual - ano_de_nascimento cadastro['CTPS'] = int(input('Carteira de Trabalho [digite "0" caso não tenha]: ')) if cadastro['CTPS'] != 0: while True: cadastro['Contratação'] = int(input('Ano de contratação: ')) if cadastro['Contratação'] > ano_de_nascimento: break else: print('\033[31mSegundo os dados cadastrados') print('essa pessoa não teria nascido ainda nessa data') print('POR FAVOR TENTE NOVAMENTE\033[m') cadastro['Salário'] = float(input('Salário: ')) cadastro['Aposentadoria'] = (cadastro['Contratação'] + 35) - ano_de_nascimento print('-' * 30) for c, j in cadastro.items(): print(f'\033[36m{c}\033[m tem o valor \033[34m{j}\033[m') print('-' * 30)
963
ntype.py
accept8605/OOT-Rando-with-working-Navi
2
2022709
# Written by mzxrules import struct class uint16: _struct = struct.Struct('>H') def write(buffer, address, value): struct.pack_into('>H', buffer, address, value) def read(buffer, address=0): return uint16._struct.unpack_from(buffer, address)[0] def bytes(value): value = value & 0xFFFF return [(value >> 8) & 0xFF, value & 0xFF] def value(values): return (values[0] << 8) | values[1] class uint32: _struct = struct.Struct('>I') def write(buffer, address, value): struct.pack_into('>I', buffer, address, value) def read(buffer, address=0): return uint32._struct.unpack_from(buffer, address)[0] def bytes(value): value = value & 0xFFFFFFFF return [(value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF, value & 0xFF] def value(values): return (values[0] << 24) | (values[1] << 16) | (values[2] << 8) | values[3] class int32: _struct = struct.Struct('>i') def write(buffer, address, value): struct.pack_into('>i', buffer, address, value) def read(buffer, address=0): return int32._struct.unpack_from(buffer, address)[0] def bytes(value): value = value & 0xFFFFFFFF return [(value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF, value & 0xFF] def value(values): value = (values[0] << 24) | (values[1] << 16) | (values[2] << 8) | values[3] if value >= 0x80000000: value ^= 0xFFFFFFFF value += 1 return value class uint24: def write(buffer, address, value): byte_arr = bytes(value) buffer[address:address + 3] = byte_arr[0:3] def read(buffer, address=0): return (buffer[address+0] << 16) | (buffer[address+1] << 8) | buffer[address+2] def bytes(value): value = value & 0xFFFFFF return [(value >> 16) & 0xFF, (value >> 8) & 0xFF, value & 0xFF] def value(values): return (values[0] << 16) | (values[1] << 8) | values[2] class BigStream(object): def __init__(self, buffer:bytearray): self.last_address = 0 self.buffer = buffer def seek_address(self, address=None, delta=None): if delta is None: self.last_address = address else: self.last_address += delta def eof(self): return self.last_address >= len(self.buffer) def read_byte(self, address=None): if address == None: address = self.last_address self.last_address = address + 1 return self.buffer[address] def read_bytes(self, address=None, length=1): if address == None: address = self.last_address self.last_address = address + length return self.buffer[address : address + length] def read_int16(self, address=None): if address == None: address = self.last_address return uint16.value(self.read_bytes(address, 2)) def read_int24(self, address=None): if address == None: address = self.last_address return uint24.value(self.read_bytes(address, 3)) def read_int32(self, address=None): if address == None: address = self.last_address return uint32.value(self.read_bytes(address, 4)) def write_byte(self, address, value): if address == None: address = self.last_address self.buffer[address] = value self.last_address = address + 1 def write_sbyte(self, address, value): if address == None: address = self.last_address self.write_bytes(address, struct.pack('b', value)) def write_int16(self, address, value): if address == None: address = self.last_address self.write_bytes(address, uint16.bytes(value)) def write_int24(self, address, value): if address == None: address = self.last_address self.write_bytes(address, uint24.bytes(value)) def write_int32(self, address, value): if address == None: address = self.last_address self.write_bytes(address, uint32.bytes(value)) def write_f32(self, address, value:float): if address == None: address = self.last_address self.write_bytes(address, struct.pack('>f', value)) def write_bytes(self, startaddress, values): if startaddress == None: startaddress = self.last_address for i, value in enumerate(values): self.write_byte(startaddress + i, value) def write_int16s(self, startaddress, values): if startaddress == None: startaddress = self.last_address for i, value in enumerate(values): self.write_int16(startaddress + (i * 2), value) def write_int24s(self, startaddress, values): if startaddress == None: startaddress = self.last_address for i, value in enumerate(values): self.write_int24(startaddress + (i * 3), value) def write_int32s(self, startaddress, values): if startaddress == None: startaddress = self.last_address for i, value in enumerate(values): self.write_int32(startaddress + (i * 4), value) def append_byte(self, value): self.buffer.append(value) def append_sbyte(self, value): self.append_bytes(struct.pack('b', value)) def append_int16(self, value): self.append_bytes(uint16.bytes(value)) def append_int24(self, value): self.append_bytes(uint24.bytes(value)) def append_int32(self, value): self.append_bytes(uint32.bytes(value)) def append_f32(self, value:float): self.append_bytes(struct.pack('>f', value)) def append_bytes(self, values): for value in values: self.append_byte(value) def append_int16s(self, values): for value in values: self.append_int16(value) def append_int24s(self, values): for value in values: self.append_int24(value) def append_int32s(self, values): for value in values: self.append_int32(value)
6,216
26-50/test1.py
tonyyzy/ProjectEuler
0
2023902
b_list = [2, 2, 2, 2, 2, 2, 5, 13, 5, 19, 2, 7, 7] b_list.sort() b_dict = {} token = 0 counter = 0 for i in b_list: if token == 0: token = i counter += 1 elif token == i: counter += 1 else: b_dict[token] = counter token = i counter = 1 b_dict[token] = counter print(b_dict)
355
src/suffix_trees/test/test_simple.py
udimaha/jump_model
0
2022619
import pytest from src.suffix_trees.STree import starts_with, STree def test_lcs(): a = [ [1, 2, 5, 3, 5, 4, 1], [1, 2, 5, 3, 5, 4, 14, 9, 11], [1, 2, 5, 1, 2, 5, 3, 5, 4, 1, 2, 5, 3, 5, 4], [1, 2, 5, 3, 5, 4, 1, 1, 1, 1], [1, 1, 1, 2, 2, 2, 5, 5, 5, 3, 3, 5, 5, 5, 4, 4, 1, 1, 1, 1, 1, 2, 5, 3, 5, 4, 1]] st = STree(a) assert st.lcs() == [1, 2, 5, 3, 5, 4] def test_missing(): text = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] stree = STree(text) assert stree.find((4, 3, 2)) == -1 assert stree.find((9, 9, 9)) == -1 assert stree.find(tuple(text) + (20,)) == -1 def test_find(): data = list(range(1, 9)) + list(range(1, 3)) st = STree(data) assert st.find((1, 2, 3)) == 0 assert st.find_all((1, 2)) == {0, 8} @pytest.mark.parametrize("is_tuple", (True, False)) @pytest.mark.parametrize("to_check,prefix,expected", ( ([1, 2, 3, 4], [1, 2, 3], True), ([1, 2, 3, 4], [1, 2], True), ([1, 2, 3, 4], [1], True), ([1, 2, 3, 4], [], True), ([1, 2, 3, 4], [2], False), ([1, 2, 3, 4], [4, 3, 2, 1], False) )) def test_starts_with(is_tuple: bool, to_check, prefix, expected): if is_tuple: prefix = tuple(prefix) assert expected == starts_with(to_check, prefix)
1,284
lib/ftp_sync.py
dlf412/comscore
1
2023692
#!/usr/bin/env python # encoding: utf-8 import os import gzip import shutil import traceback import pysftp from functools import partial from os.path import dirname, exists, basename from utils import md5sum class FTPSyncError(Exception): pass class FileNotExists(FTPSyncError): pass class CompressError(FTPSyncError): pass class InvalidFilelist(FTPSyncError): pass class MD5CheckError(FTPSyncError): pass class DownloadError(FTPSyncError): pass class UploadError(FTPSyncError): pass class ConnectionError(FTPSyncError): pass class FTPSync(object): conn = None def __init__(self, host, username=None, password=<PASSWORD>, port=22): cnopts = pysftp.CnOpts() cnopts.hostkeys = None try: self.conn = pysftp.Connection(host, username=username, password=password, port=port, cnopts=cnopts) except: raise ConnectionError("connection failed, %s" % traceback.format_exc()) def download_d(self, remotedir, localdir): try: self.conn.get_d(remotedir, localdir) except: raise DownloadError("download error, error: %s" % traceback.format_exc()) def download(self, remotefile, localfile, files): try: if type(files) == str: files = [files] for f in files: self.conn.get(os.path.join(remotefile, basename(f)), os.path.join(localfile, basename(f))) except: raise DownloadError("download error, error: %s" % traceback.format_exc()) def upload(self, localdir, remotedir, files): try: if type(files) == str: files = [files] if not self.conn.exists(remotedir): self.conn.makedirs(remotedir) for f in files: self.conn.put(os.path.join(localdir, basename(f)), os.path.join(remotedir, basename(f))) except: raise UploadError("upload error, error:%s" % traceback.format_exc()) def exists(self, src): return self.conn.exists(src) def __del__(self): if self.conn: self.conn.close() def _remote_path(root_path, day): _1st = root_path _2nd = day[:4] + '_' + day[4:6] _3rd = day return os.path.join(_1st, _2nd, _3rd) def _output_files(dailydir, suffix='.csv'): #NOTES, call once `listdir` can not find file !!! # we use cloudfs, after first access, it will sync file from oss server csvs = os.listdir(dailydir) csvs = os.listdir(dailydir) #NOTES endswith = lambda suff, self: str.endswith(self, suff) csvs = filter(partial(endswith, suffix), csvs) return [os.path.join(dailydir, c) for c in csvs] def _filelist(dailydir, files): fname = os.path.join(dailydir, "filelist.txt") with open(fname, 'w') as fd: for f in files: fd.write("%s %s\n" % (basename(f), md5sum(f))) return fname def gz(src, files, dst=None): if dst is None: dst = src for f in files: with open(os.path.join(src, f), 'r') as f_in, \ gzip.open(os.path.join(dst, f + ".gz"), 'wb') as f_out: f_out.writelines(f_in) return [os.path.join(dst, f + ".gz") for f in files] def ungz(src, files, dst=None): if dst is None: dst = src for f in files: with gzip.open(os.path.join(src, f), 'r') as f_in, \ open(os.path.join(dst, f[:-3]), 'wb') as f_out: f_out.writelines(f_in) return [os.path.join(dst, f[:-3]) for f in files] def valid_files(dailydir, filelist): files = [] with open(os.path.join(dailydir, filelist), "r") as f: for line in f: if not line.strip(): continue file_name, md5 = line.strip().split() abs_file = os.path.join(dailydir, file_name) if not exists(abs_file): raise InvalidFilelist("%s not exist" % file_name) if not md5sum(abs_file) == md5: raise MD5CheckError("md5 check failed: %s" % (abs_file)) files.append(abs_file) return files def daily_download(ftpsync, day, localdir, uncompress=False): ''' download sample url file list by one day ''' indir = _remote_path('DailyInput', day) dailydir = os.path.join(localdir, indir) if not exists(dailydir): os.makedirs(dailydir) if not ftpsync.exists(os.path.join(indir, 'filelist.txt')): raise FileNotExists("filelist.txt not exists in {%s}" % indir) ftpsync.download_d(indir, dailydir) files = valid_files(dailydir, "filelist.txt") if not files: raise FileNotExists("filelist.txt is empty, in {%s}" % indir) if uncompress: files = ungz(dailydir, [basename(f) for f in files]) return files def daily_upload(ftpsync, day, localdir, compress=True): ''' upload results by one day ''' outdir = _remote_path('DailyReturn', day) dailydir = os.path.join(localdir, outdir) suffix = '.csv.gz' if compress else '.csv' outfiles = _output_files(dailydir, suffix=suffix) if not compress: outfiles = gz(dailydir, outfiles) ftpsync.upload(dailydir, outdir, outfiles) filelist = _filelist(dailydir, outfiles) ftpsync.upload(dailydir, outdir, filelist) return outfiles def reference_download(ftpsync, day, localdir): ''' download reference video ''' indir = _remote_path('ReferenceCreative', day) download_dir = localdir filelist = 'filelist.txt' if not ftpsync.exists(os.path.join(indir, filelist)): raise FileNotExists("filelist.txt not exists in {%s}" % indir) if not exists(download_dir): os.makedirs(download_dir) ftpsync.download(indir, download_dir, filelist) reference_info = [] md5_error_file = [] invalid_file = [] with open(os.path.join(download_dir, filelist), "r") as f: for line in f: video = line.strip() if video: reference_info.append(video) meta = os.path.join(indir, video) if not ftpsync.exists(meta): invalid_file.append(video) else: local_meta = os.path.join(localdir, video) if not exists(local_meta) or \ md5sum(local_meta) != video[:32]: ftpsync.download(indir, download_dir, [local_meta]) if md5sum(local_meta) != video[:32]: md5_error_file.append(video) if not reference_info: raise FileNotExists("filelist.txt is empty, on {}".format(day)) return (reference_info, md5_error_file, invalid_file) def ingest_upload(ftpsync, day, localdir): ''' ingested csv file upload, filelist.txt as last uploaded file ''' outdir = _remote_path('AdsIngestion', day) upload_dir = os.path.join(localdir, outdir) result_files = _output_files(upload_dir, suffix='.csv.gz') filelist = _filelist(upload_dir, result_files) ftpsync.upload(upload_dir, outdir, result_files) ftpsync.upload(upload_dir, outdir, filelist) return result_files def test_download(): ftpsync = FTPSync('ftp.comscore.com', username='Vobile', password='<PASSWORD>') day = "20160801" localdir = "/tmp" print daily_download(ftpsync, day, localdir, uncompress=True) # test_download() def test_upload(): ftpsync = FTPSync('ftp.comscore.com', username='Vobile', password='<PASSWORD>') day = "20160823" localdir = "/tmp" print daily_upload(ftpsync, day, localdir, compress=False) # test_upload() def test_reference_download(): ftpsync = FTPSync('ftp.comscore.com', username='Vobile', password='<PASSWORD>') day = "20160801" localdir = "/tmp" print reference_download(ftpsync, day, localdir) # test_reference_download() def test_ingest_upload(): ftpsync = FTPSync('ftp.comscore.com', username='Vobile', password='<PASSWORD>') day = "20160801" localdir = "/tmp" print ingest_upload(ftpsync, day, localdir)
8,599
api/questions/sidewalk_search.py
scarletstudio/transithealth
2
2024138
from api.utils.database import rows_to_dicts class SidewalkCafePermitSearch: """ Search for sidewalk cafe permits. """ def __init__(self, con): self.con = con def search_permits(self, search): """ Returns permits for restaurants that match the search query. """ # Create a view for matching results statements = """ -- Remove this view if it exists DROP VIEW IF EXISTS sidewalk_search; -- Get matching sidewalk permits CREATE VIEW sidewalk_search AS SELECT * FROM sidewalk_cafe WHERE LOWER(doing_business_as_name) LIKE '%{search}%'; """.format(search=search) # Then sort the results query = """ SELECT * FROM sidewalk_search ORDER BY issued_date_dt DESC """ cur = self.con.cursor() cur.executescript(statements) cur.execute(query) rows = rows_to_dicts(cur, cur.fetchall()) return rows
1,042
section-22-unittesting/03_calculator/calculator.py
mugan86/bootcamp-basic-to-expert-from-scratch
31
2023145
class Calculator: def add(self, num1, num2): return num1 + num2 def substract(self, num1, num2): return num1 - num2 def multiply(self, num1, num2): return num1 * num2 def division(self, num1, num2): return num1 / num2
269
Depatchport.py
zj3t/FirmAE
0
2023453
#!/usr/bin/env python3 import os import subprocess def command(cmd): try: result = subprocess.check_output(cmd, shell=True) result = result.decode().split('\n')[:-1] except: result = '' return result if __name__ == "__main__": os.chdir('./scripts') for i in range(1,10): find ="listen=:"+str(i)+"00" match = "listen=:200" cmd = 'find ./makeNetwork.py -name "*" -exec perl -pi -e "s/'+str(find)+'/'+str(match)+'/g" {} \;' command(cmd+' 2> /dev/null') print("Success Patch.") os.chdir('../')
579
src/python3_learn_video/pickle_module.py
HuangHuaBingZiGe/GitHub-Demo
0
2024087
""" pickle:泡菜 数据类型和二进制数据之间的转换工具 将一些json或者数据写入到单独的一个文件里,使代码更加的有逻辑性,更优雅 """ import pickle print('--------------------------------------------------') my_list = [123, 3.14, '小甲鱼', ['another list']] pickle_file = open('wyz.pkl', 'wb') # 二进制的写入形式 pickle.dump(my_list, pickle_file) pickle_file.close() pickle_file = open('wyz.pkl', 'rb') my_list2 = pickle.load(pickle_file) print(my_list2) print('--------------------------------------------------')
451
server_LDAP/account/views.py
CARV-ICS-FORTH/django-oauth2-oidc-example
1
2022988
# Copyright [2021] [FORTH-ICS] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.db import connection from django.shortcuts import render, redirect from django.contrib.auth import login, authenticate, logout from account.forms import RegistrationForm, AccountAuthenticationForm, AccountUpdateForm def registration_view(request): context = {} if request.POST: form = RegistrationForm(request.POST) if form.is_valid(): form.save() email = form.cleaned_data.get('email') raw_password = form.cleaned_data.get('<PASSWORD>') account = authenticate(email=email, password=<PASSWORD>) login(request, account) return redirect('home') else: context['registration_form'] = form else: form = RegistrationForm() context['registration_form'] = form return render(request, 'account/register.html', context) def logout_view(request): logout(request) return redirect('/') def login_view(request): context = {} user = request.user if user.is_authenticated: return redirect("home") if request.POST: form = AccountAuthenticationForm(request.POST) if form.is_valid(): username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user: login(request, user) return redirect("home") else: form = AccountAuthenticationForm() context['login_form'] = form # print(form) return render(request, "account/login.html", context) def account_view(request): if not request.user.is_authenticated: return redirect("login") context = {} if request.POST: form = AccountUpdateForm(request.POST, instance=request.user) if form.is_valid(): form.initial = { "email": request.POST['email'], "username": request.POST['username'], } form.save() context['success_message'] = "Updated" else: form = AccountUpdateForm( initial={ "email": request.user.email, "username": request.user.username, } ) context['account_form'] = form return render(request, "account/account.html", context)
2,565
websitescanner/main.py
chauhanjatin10/thepythonway
0
2023445
from general import * from domain_name import * from ip_address import * from nmap import * from robots_txt import * from whois import * import os ROOT_DIR = 'websites' create(ROOT_DIR) def gather(name,url): domain_name = get_domain_name(url) ip_address = get_ip_address(url) nmap = get_nmap('-F',ip_address) robots_txt = get_robots_txt(url) whois = get_whois(domain_name) reports(name,url,domain_name,nmap,robots_txt,whois) def reports(name,url,domain_name,nmap,robots_txt,whois): project_dir = ROOT_DIR + '/' + name create(project_dir) data = url + domain_name + ip_address + nmap + robots_txt + whois write(project_dir + 'details.txt',data) gather('thenewsboston','https://www.thenewsboston.com/')
716
Hackerank/Python/Standard Deviation.py
abdzitter/Daily-Coding-DS-ALGO-Practice
289
2023851
n = int(input()) arr = list(map(int, input().split())) avg = sum(arr) / len(arr) std = (sum([(arr[x] - avg)**2 for x in range(n)])/n)**(1/2) print(std)
152
src/base.py
rpSebastian/LeducPoker
1
2022788
class TreeParams(): def __init__(self): self.root_node = None class Node(): def __init__(self, parent_node=None): self.board = None self.board_string = None self.street = None self.current_player = None self.bets = None self.pot = None self.terminal = False self.num_bets = 0 self.children = None self.action = None self.node_type = None self.cfv = None # [PC, CC] self.range = None # [PC, CC] self.strategy = None # [AC, CC] self.regret = None # [PC, CC] self.strategy_weight_sum = None # [AC, CC] self.average_strategy = None # [AC, CC] self.br_cfv = None # [PC, CC] self.exploitability = None self.reach_prop = None # [PC, CC] self.estimate_value = None # [AC, CC] self.init = 1 if parent_node is not None: self.board = parent_node.board self.board_string = parent_node.board_string self.street = parent_node.street self.current_player = 1 - parent_node.current_player self.bets = parent_node.bets.clone() self.num_bets = parent_node.num_bets def vis(self): outputs = "board = {}\nstreet = {}\nplayer = {}\nbets = [{}, {}]\npot = {}\nterm = {}\n".format( self.board_string, self.street, self.current_player, self.bets[0].item(), self.bets[1].item(), self.pot, self.terminal ) outputs += "cfv = {}\nrange = {}\nstrategy={}\nregret={}\nave_strategy={}\nbr_cfv={}\nexp={}\n".format( self.cfv, self.range, self.strategy, self.regret, self.average_strategy, self.br_cfv, self.exploitability ) return outputs def __str__(self): return "board = {}, street = {}, player = {}, bets = [{}, {}], term = {}".format( self.board_string, self.street, self.current_player, self.bets[0].item(), self.bets[1].item(), self.terminal ) def __setattr__(self, name, value): if 'init' in self.__dict__: if name in self.__dict__: self.__dict__[name] = value else: raise Exception("name error") else: self.__dict__[name] = value class Players(): def __init__(self): self.chance = None self.P1 = None self.P2 = None class NodeTypes(): def __init__(self): self.terminal_fold = None self.terminal_call = None self.check = None self.chance_node = None self.inner_node = None
2,601